-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
134 lines (100 loc) · 3.79 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from kernel_function import KernelFunctions
import pycuda.driver as cuda
import numpy as np
class Evaluator:
## define kernel functions
kernel_functions = KernelFunctions.define_evaluator_kernel_functions()
get_error_vector = kernel_functions["get_error_vector"]
get_mva_error_vector = kernel_functions["get_mva_error_vector"]
get_vector_norm = kernel_functions["get_vector_norm"]
get_norm_of_gradient = kernel_functions["get_norm_of_gradient"]
def __init__(self, problem, optimizer):
## important constants
self.axis = 3
self.DOF = 6
self.epsilon = 3
## ex> MEC(minimum energy control)
self.problem = problem
## ex> OptimizerForInput
self.optimizer = optimizer
## initialize
self.error = np.empty((1)).astype(np.float32)
self.gradient = np.empty((1)).astype(np.float32)
################################################################################
def define_error_vector(self, step):
error_vector = np.ones((self.axis*step)).astype(np.float32)
error_vector_byte = error_vector.nbytes
self.error_vector = cuda.mem_alloc(error_vector_byte)
cuda.memcpy_htod(self.error_vector, error_vector)
################################################################################
def evaluate_error(self, pre_error, iteration, step, TPB):
## calculate new error(data type: np.float32)
error = cuda.mem_alloc(4)
## get norm of error
self.calculate_error(error, iteration, step, TPB)
## copy error from GPU to CPU
cuda.memcpy_dtoh(self.error, error)
error.free()
## check we're going good way or not
## good way
if pre_error > self.error[0]:
self.optimizer.learning_rate *= np.float32(1.2)
## bad way
else:
self.optimizer.learning_rate *= np.float32(0.5)
return self.error[0]
def calculate_error(self, error, iteration, step, TPB):
## set size
block_size = step + 2
grid_size = self.axis * step + self.DOF
## evaluate learning
if self.problem.mva:
Evaluator.get_mva_error_vector(
self.problem.G,
self.problem.lambdas,
self.problem.u,
self.problem.C,
iteration,
self.error_vector,
block=(TPB,1,1),
grid=(grid_size,1,1)
)
else:
Evaluator.get_error_vector(
self.problem.G,
self.problem.rho_matrix,
self.problem.u,
self.problem.C,
iteration,
self.error_vector,
block=(TPB,1,1),
grid=(grid_size,1,1)
)
Evaluator.get_vector_norm(
self.error_vector,
error,
block=(block_size,1,1),
grid=(1,1,1)
)
################################################################################
def evaluate_gradient(self, step):
## calculate new norm of gradient(data type: np.float32)
gradient = cuda.mem_alloc(4)
## get norm of gradient
Evaluator.get_norm_of_gradient(
self.problem.gradient,
gradient ,
block=(step,1,1),
grid=(1,1,1)
)
## copy norm of gradient from GPU to CPU
cuda.memcpy_dtoh(self.gradient, gradient)
gradient.free()
## compare with epsilon(standard)
if self.gradient[0] < self.epsilon:
return True
else:
return False
################################################################################
def memory_free(self):
self.error_vector.free()