forked from stanfordhpccenter/HTR-solver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterpolate.py
executable file
·235 lines (201 loc) · 10.4 KB
/
interpolate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#!/usr/bin/env python3
import argparse
import h5py
import json
import sys
import os
import re
import numpy as np
from joblib import Parallel, delayed
# load local modules
sys.path.insert(0, os.path.expandvars("$HTR_DIR/scripts/modules"))
import gridGen
parser = argparse.ArgumentParser()
parser.add_argument('json_file', type=argparse.FileType('r'),
help='original simulation configuration file')
parser.add_argument('--np', nargs='?', default=1, type=int,
help='number of cores')
parser.add_argument('--outputdir', nargs='?', const='.', default='.',
help='directory where output will be saved')
parser.add_argument('--inputfile', nargs='?', const='.', default='.',
help='input file saved')
parser.add_argument('--Xper', nargs='?', default=False, const=True,
help="Activate periodic grid in X-direction.")
parser.add_argument('--Yper', nargs='?', default=False, const=True,
help="Activate periodic grid in Y-direction.")
parser.add_argument('--Zper', nargs='?', default=False, const=True,
help="Activate periodic grid in Z-direction.")
parser.add_argument('--Xscale', nargs=1, default=1.0, type=float,
help="Activate grid scaling in X-direction.")
parser.add_argument('--Yscale', nargs=1, default=1.0, type=float,
help="Activate grid scaling in Y-direction.")
parser.add_argument('--Zscale', nargs=1, default=1.0, type=float,
help="Activate grid scaling in Z-direction.")
args = parser.parse_args()
##############################################################################
# Linear interpolation #
##############################################################################
def interp(values, i, j, k, w1, w2, w3):
im1 = max(i-1, 0)
jm1 = max(j-1, 0)
km1 = max(k-1, 0)
return(values[im1,jm1,km1] * w1 * w2 * w3 +
values[im1,jm1,k ] * w1 * w2 * (1.0-w3) +
values[im1,j ,km1] * w1 * (1.0-w2) * w3 +
values[i ,jm1,km1] * (1.0-w1) * w2 * w3 +
values[im1,j ,k ] * w1 * (1.0-w2) * (1.0-w3) +
values[i ,jm1,k ] * (1.0-w1) * w2 * (1.0-w3) +
values[i ,j ,km1] * (1.0-w1) * (1.0-w2) * w3 +
values[i ,j ,k ] * (1.0-w1) * (1.0-w2) * (1.0-w3))
##############################################################################
# Read Input files #
##############################################################################
fin = h5py.File(args.inputfile, 'r')
config = json.load(args.json_file)
xIn = fin["centerCoordinates"][:][0,0,:,0]*args.Xscale
yIn = fin["centerCoordinates"][:][0,:,0,1]*args.Yscale
zIn = fin["centerCoordinates"][:][:,0,0,2]*args.Zscale
velocityIn = fin["velocity"][:]
pressureIn = fin["pressure"][:]
rhoIn = fin["rho"][:]
temperatureIn = fin["temperature"][:]
MolarFracsIn = fin["MolarFracs"][:]
temperatureIn = fin["temperature"][:]
simTime = fin.attrs["simTime"]
channelForcing = fin.attrs["channelForcing"]
simTime = fin.attrs["simTime"]
nSpec = MolarFracsIn.shape[3]
##############################################################################
# New Generate Grid #
##############################################################################
dx0 = 1.0
dy0 = 1.0
dz0 = 1.0
if "xDelta0" in config["Grid"]: dx0 = config["Grid"]["xDelta0"]
if "yDelta0" in config["Grid"]: dy0 = config["Grid"]["yDelta0"]
if "zDelta0" in config["Grid"]: dz0 = config["Grid"]["zDelta0"]
xGrid, dx = gridGen.GetGrid(config["Grid"]["origin"][0],
config["Grid"]["xWidth"],
config["Grid"]["xNum"],
config["Grid"]["xType"],
config["Grid"]["yStretching"],
args.Xper,
dx0)
yGrid, dy = gridGen.GetGrid(config["Grid"]["origin"][1],
config["Grid"]["yWidth"],
config["Grid"]["yNum"],
config["Grid"]["yType"],
config["Grid"]["yStretching"],
args.Yper,
dy0)
zGrid, dz = gridGen.GetGrid(config["Grid"]["origin"][2],
config["Grid"]["zWidth"],
config["Grid"]["zNum"],
config["Grid"]["zType"],
config["Grid"]["zStretching"],
args.Zper,
dz0)
# Load mapping
Ntiles = config["Mapping"]["tiles"]
assert config["Grid"]["xNum"] % Ntiles[0] == 0
assert config["Grid"]["yNum"] % Ntiles[1] == 0
assert config["Grid"]["zNum"] % Ntiles[2] == 0
NxTile = int(config["Grid"]["xNum"]/Ntiles[0])
NyTile = int(config["Grid"]["yNum"]/Ntiles[1])
NzTile = int(config["Grid"]["zNum"]/Ntiles[2])
halo = [int(0.5*(xGrid.size-config["Grid"]["xNum"])),
int(0.5*(yGrid.size-config["Grid"]["yNum"])),
int(0.5*(zGrid.size-config["Grid"]["zNum"]))]
##############################################################################
# Produce restart file #
##############################################################################
if not os.path.exists(args.outputdir):
os.makedirs(args.outputdir)
def writeTile(xt, yt, zt):
lo_bound = [(xt )*NxTile +halo[0], (yt )*NyTile +halo[1], (zt )*NzTile +halo[2]]
hi_bound = [(xt+1)*NxTile-1+halo[0], (yt+1)*NyTile-1+halo[1], (zt+1)*NzTile-1+halo[2]]
if (xt == 0): lo_bound[0] -= halo[0]
if (yt == 0): lo_bound[1] -= halo[1]
if (zt == 0): lo_bound[2] -= halo[2]
if (xt == Ntiles[0]-1): hi_bound[0] += halo[0]
if (yt == Ntiles[1]-1): hi_bound[1] += halo[1]
if (zt == Ntiles[2]-1): hi_bound[2] += halo[2]
filename = ('%s,%s,%s-%s,%s,%s.hdf'
% (lo_bound[0], lo_bound[1], lo_bound[2],
hi_bound[0], hi_bound[1], hi_bound[2]))
print("Working on: ", filename)
shape = [hi_bound[2] - lo_bound[2] +1,
hi_bound[1] - lo_bound[1] +1,
hi_bound[0] - lo_bound[0] +1]
centerCoordinates = np.ndarray(shape, dtype=np.dtype("(3,)f8"))
cellWidth = np.ndarray(shape, dtype=np.dtype("(3,)f8"))
rho = np.ndarray(shape)
pressure = np.ndarray(shape)
temperature = np.ndarray(shape)
MolarFracs = np.ndarray(shape, dtype=np.dtype("("+str(nSpec)+",)f8"))
velocity = np.ndarray(shape, dtype=np.dtype("(3,)f8"))
dudtBoundary = np.ndarray(shape, dtype=np.dtype("(3,)f8"))
dTdtBoundary = np.ndarray(shape)
dudtBoundary[:] = [0.0, 0.0, 0.0]
dTdtBoundary[:] = 0.0
for (k,kc) in enumerate(centerCoordinates):
kIn = np.searchsorted(zIn, zGrid[k+lo_bound[2]])
if (kIn == 0):
zweight = 0.0
elif (kIn > zIn.size-1):
kIn = zIn.size-1
zweight = 1.0
else:
zweight = (zIn[kIn] - zGrid[k+lo_bound[2]])/(zIn[kIn] - zIn[kIn-1])
for (j,jc) in enumerate(kc):
jIn = np.searchsorted(yIn, yGrid[j+lo_bound[1]])
if (jIn == 0):
yweight = 0.0
elif (jIn > yIn.size-1):
jIn = yIn.size-1
yweight = 1.0
else:
yweight = (yIn[jIn] - yGrid[j+lo_bound[1]])/(yIn[jIn] - yIn[jIn-1])
for (i,ic) in enumerate(jc):
iIn = np.searchsorted(xIn, xGrid[i+lo_bound[0]])
if (iIn == 0):
xweight = 0.0
elif (iIn > xIn.size-1):
iIn = xIn.size-1
xweight = 1.0
else:
xweight = (xIn[iIn] - xGrid[i+lo_bound[0]])/(xIn[iIn] - xIn[iIn-1])
centerCoordinates[k,j,i] = [xGrid[i+lo_bound[0]], yGrid[j+lo_bound[1]], zGrid[k+lo_bound[2]]]
cellWidth [k,j,i] = [ dx[i+lo_bound[0]], dy[j+lo_bound[1]], dz[k+lo_bound[2]]]
temperature [k,j,i] = interp(temperatureIn, kIn, jIn, iIn, zweight, yweight, xweight)
pressure [k,j,i] = interp( pressureIn, kIn, jIn, iIn, zweight, yweight, xweight)
rho [k,j,i] = interp( rhoIn, kIn, jIn, iIn, zweight, yweight, xweight)
for sp in range(nSpec):
MolarFracs [k,j,i,sp] = interp(MolarFracsIn[:,:,:,sp], kIn, jIn, iIn, zweight, yweight, xweight)
velocity [k,j,i] = [ interp(velocityIn[:,:,:,0], kIn, jIn, iIn, zweight, yweight, xweight),
interp(velocityIn[:,:,:,1], kIn, jIn, iIn, zweight, yweight, xweight),
interp(velocityIn[:,:,:,2], kIn, jIn, iIn, zweight, yweight, xweight)]
with h5py.File(os.path.join(args.outputdir, filename), 'w') as fout:
fout.attrs.create("SpeciesNames", ["MIX".encode()], dtype="S20")
fout.attrs.create("timeStep", 0)
fout.attrs.create("simTime", simTime)
fout.attrs.create("channelForcing", channelForcing)
fout.create_dataset("centerCoordinates", shape=shape, dtype = np.dtype("(3,)f8"))
fout.create_dataset("cellWidth", shape=shape, dtype = np.dtype("(3,)f8"))
fout.create_dataset("rho", shape=shape, dtype = np.dtype("f8"))
fout.create_dataset("pressure", shape=shape, dtype = np.dtype("f8"))
fout.create_dataset("temperature", shape=shape, dtype = np.dtype("f8"))
fout.create_dataset("MolarFracs", shape=shape, dtype = np.dtype("("+str(nSpec)+",)f8"))
fout.create_dataset("velocity", shape=shape, dtype = np.dtype("(3,)f8"))
fout.create_dataset("dudtBoundary", shape=shape, dtype = np.dtype("(3,)f8"))
fout.create_dataset("dTdtBoundary", shape=shape, dtype = np.dtype("f8"))
fout["centerCoordinates"][:] = centerCoordinates
fout["cellWidth"][:] = cellWidth
fout["rho"][:] = rho
fout["pressure"][:] = pressure
fout["temperature"][:] = temperature
fout["MolarFracs"][:] = MolarFracs
fout["velocity"][:] = velocity
fout["dudtBoundary"][:] = dudtBoundary
fout["dTdtBoundary"][:] = dTdtBoundary
Parallel(n_jobs=args.np)(delayed(writeTile)(x, y, z) for x, y, z in np.ndindex((Ntiles[0], Ntiles[1], Ntiles[2])))