-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
327 lines (255 loc) · 9.95 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import json
import torch
import numpy as np
import pandas as pd
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import Dataset
from itertools import cycle, combinations
from torch.utils.tensorboard import SummaryWriter
from torcheval.metrics.functional import r2_score
class RetNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Sequential(
nn.Conv3d(in_channels=1, out_channels=12, kernel_size=3, padding=1, padding_mode='circular', bias=False),
nn.BatchNorm3d(num_features=12),
nn.LeakyReLU(),
)
self.conv2 = nn.Sequential(
nn.Conv3d(in_channels=12, out_channels=24, kernel_size=3, bias=False),
nn.BatchNorm3d(num_features=24),
nn.LeakyReLU(),
)
self.max1 = nn.MaxPool3d(kernel_size=2)
self.conv3 = nn.Sequential(
nn.Conv3d(in_channels=24, out_channels=32, kernel_size=2, bias=False),
nn.BatchNorm3d(num_features=32),
nn.LeakyReLU(),
)
self.max2 = nn.MaxPool3d(kernel_size=2)
self.conv4 = nn.Sequential(
nn.Conv3d(in_channels=32, out_channels=64, kernel_size=2, bias=False),
nn.BatchNorm3d(num_features=64),
nn.LeakyReLU(),
)
self.conv5 = nn.Sequential(
nn.Conv3d(in_channels=64, out_channels=120, kernel_size=2, bias=False),
nn.BatchNorm3d(num_features=120),
nn.LeakyReLU(),
)
self.fc = nn.Sequential(
nn.Flatten(1),
nn.Dropout(0.3),
nn.Linear(3*3*3*120, 84),
nn.BatchNorm1d(num_features=84),
nn.LeakyReLU(),
nn.Linear(84, 20),
nn.BatchNorm1d(num_features=20),
nn.LeakyReLU(),
nn.Linear(20, 1),
)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.max1(x)
x = self.conv3(x)
x = self.max2(x)
x = self.conv4(x)
x = self.conv5(x)
x = self.fc(x)
return x
class VoNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Sequential(
nn.Conv3d(in_channels=1, out_channels=12, kernel_size=3, padding=1, padding_mode='circular', bias=False),
nn.BatchNorm3d(num_features=12),
nn.LeakyReLU(),
)
self.conv2 = nn.Sequential(
nn.Conv3d(in_channels=12, out_channels=24, kernel_size=3, bias=False),
nn.BatchNorm3d(num_features=24),
nn.LeakyReLU(),
)
self.max1 = nn.MaxPool3d(kernel_size=2)
self.conv3 = nn.Sequential(
nn.Conv3d(in_channels=24, out_channels=32, kernel_size=2, bias=False),
nn.BatchNorm3d(num_features=32),
nn.LeakyReLU(),
)
self.max2 = nn.MaxPool3d(kernel_size=2)
self.conv4 = nn.Sequential(
nn.Conv3d(in_channels=32, out_channels=64, kernel_size=2, bias=False),
nn.BatchNorm3d(num_features=64),
nn.LeakyReLU(),
)
self.conv5 = nn.Sequential(
nn.Conv3d(in_channels=64, out_channels=120, kernel_size=2, bias=False),
nn.BatchNorm3d(num_features=120),
nn.LeakyReLU(),
)
self.fc = nn.Sequential(
nn.Flatten(1),
nn.Dropout(0.3),
nn.Linear(3*3*3*120, 84),
nn.BatchNorm1d(num_features=84),
nn.LeakyReLU(),
nn.Linear(84, 20),
nn.BatchNorm1d(num_features=20),
nn.LeakyReLU(),
nn.Linear(20, 1),
)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.max1(x)
x = self.conv3(x)
x = self.max2(x)
x = self.conv4(x)
x = self.conv5(x)
x = self.fc(x)
return x
class LearningMethod:
def __init__(self, network, optimizer, criterion):
self.net = network
self.optimizer = optimizer
self.criterion = criterion
def train(
self, train_loader, val_loader,
val_loss_freq=15, epochs=1, scheduler=None,
metric=r2_score, device=None, tb_writer=None, verbose=True,
):
self.scheduler = scheduler
self.val_loss_freq = val_loss_freq
self.train_hist = []
self.train_metric = []
self.val_hist = []
self.val_metric = []
self.writer = tb_writer
self.train_batch_size = train_loader.batch_size
self.val_batch_size = val_loader.batch_size
self.epochs = epochs
val_loader = cycle(val_loader)
# Training phase.
counter = 0
for e in range(epochs):
if verbose:
print(f'\nEpoch: {e}')
for i, (X_train, y_train) in enumerate(train_loader):
X_train, y_train = X_train.to(device), y_train.to(device)
# Initialize zero gradients.
self.optimizer.zero_grad()
y_train_hat = self.net(X_train)
train_loss = self.criterion(y_train_hat.ravel(), y_train)
if (i % val_loss_freq == 0):
counter += val_loss_freq
X_val, y_val = next(val_loader)
X_val, y_val = X_val.to(device), y_val.to(device)
# Account for Dropout + BatchNorm.
yth = self.predict(X_train)
y_val_hat = self.predict(X_val)
val_loss = self.criterion(y_val_hat.ravel(), y_val)
train_metric = metric(yth.ravel(), y_train)
val_metric = metric(y_val_hat.ravel(), y_val)
# Update the parameters.
train_loss.backward()
self.optimizer.step()
# Print train and validation loss per `val_loss_freq` is.
if verbose and (i % val_loss_freq == 0):
print(
f'{f"Iteration {counter}":<20} ->',
#f'{f"train_loss = {train_loss:.3f}":<22}',
f'{f"train_metric = {train_metric:.3f}":<22}',
#f'{f"val_loss = {val_loss:.3f}":>22}', sep=4*' '
f'{f"val_metric = {val_metric:.3f}":>22}', sep=4*' '
)
self.train_hist.append(train_loss.item())
self.train_metric.append(train_metric.item())
self.val_hist.append(val_loss.item())
self.val_metric.append(val_metric.item())
if tb_writer:
self.writer.add_scalars(
'learning_curve',
#{'train': train_loss, 'val': val_loss},
{'train': train_metric, 'val': val_metric},
e
)
self.writer.add_scalar('Metric/train', train_metric, e)
self.writer.add_scalar('Metric/val', val_metric, e)
for name, value in self.net.named_parameters():
self.writer.add_histogram(f'Values/{name}', value, e)
self.writer.add_histogram(f'Gradients/{name}', value.grad, e)
if scheduler:
self.scheduler.step()
if tb_writer:
self.writer.flush()
self.writer.close()
print('\nTraining finished!')
def predict(self, X):
self.net.eval()
with torch.no_grad():
y_pred = self.net(X)
self.net.train()
return y_pred
class CustomDataset(Dataset):
def __init__(self, X, y, transform_X=None, transform_y=None):
self.transform_X = transform_X
self.transform_y = transform_y
self.X = X
self.y = y
def __len__(self):
return len(self.y)
def __getitem__(self, idx):
sample_x = torch.tensor(self.X[idx])
sample_y = torch.tensor(self.y[idx])
if self.transform_X:
sample_x = self.transform_X(sample_x)
if self.transform_y:
sample_y = self.transform_y(sample_y)
return sample_x, sample_y
class Rotate90:
def __init__(self):
self.planes = list(combinations([1, 2, 3], 2))
self.n_choices = len(self.planes)
def __call__(self, sample):
plane = self.planes[np.random.choice(self.n_choices)]
direction = np.random.choice([-1, 1])
return torch.rot90(sample, k=direction, dims=plane)
class Flip:
def __call__(self, sample):
axis = np.random.choice([1, 2, 3])
return torch.flip(sample, [axis])
class Reflect:
def __init__(self):
self.planes = list(combinations([1, 2, 3], 2))
self.n_choices = len(self.planes)
def __call__(self, sample):
plane = self.planes[np.random.choice(self.n_choices)]
return torch.transpose(sample, *plane)
class Roll:
def __call__(self, sample):
axis = np.random.choice([1, 2, 3])
shift = np.random.choice([1, 2, 4, 6, 10])
direction = np.random.choice([-1, 1])
return torch.roll(sample, shifts=shift * direction, dims=axis)
class Identity:
def __call__(self, sample):
return sample
@torch.no_grad()
def init_weights(m, initialization='normal', **kwargs):
if initialization == 'normal':
if type(m) == nn.Linear:
m.weight = nn.init.kaiming_normal_(m.weight, **kwargs)
elif initialization == 'uniform':
if type(m) == nn.Linear:
m.weight = nn.init.kaiming_uniform_(m.weight, **kwargs)
def load_data(dir_batch, path_to_csv, target_name, index_name_csv, size=None):
with open(f'{dir_batch}/clean_names.json', 'r') as fhand:
names = json.load(fhand)['names']
df = pd.read_csv(path_to_csv)
df.set_index(index_name_csv, inplace=True)
y = df.loc[names, target_name].values.astype('float32')
X = np.load(f'{dir_batch}/clean_voxels.npy', mmap_mode='c')
return X[:size], y[:size]