-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.tex
270 lines (245 loc) · 7.8 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
\documentclass{beamer}
\usepackage[british]{babel}
\usepackage{ru,adrian,comment}
\title[Plasmonic Excitations in Mono-Layer Graphene]{Plasmonic Excitations in Mono-Layer Graphene}
\subtitle{BSc Presentation}
\author[Adrián A. Sousa-Poza]{Adrián A. Sousa-Poza}
\institute[Radboud University Nijmegen]{
Institute for Molecules and Materials -- Theory of Condensed Matter\\
Radboud University Nijmegen}
\date[\today]{\today}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Introduction and Overview}
\begin{comment}
\begin{frame}
\frametitle{Introduction}
\begin{figure}[H]
\begin{subfigure}[b]{0.49\linewidth}
\centering
\includegraphics[width=\linewidth]{img/diamond.pdf}
\vspace{1ex}
\end{subfigure}
\begin{subfigure}[b]{0.49\linewidth}
\centering
\includegraphics[width=\linewidth]{img/graphite.pdf}
\vspace{1ex}
\end{subfigure}
\end{figure}
\end{frame}
\end{comment}
\begin{frame}
\frametitle{Table of Contents and Goals}
\tableofcontents
\end{frame}
\begin{frame}
\frametitle{Structure of Graphene}
\begin{figure}[H]
\centering
\includegraphics[width=.9\linewidth]{img/graphene_structure.pdf}
\end{figure}
\tiny{Image Source: \href{https://link.springer.com/chapter/10.1007/978-3-319-48933-9_48}{10.1007/978-3-319-48933-9\_48}}
\end{frame}
\begin{frame}
\frametitle{Plasmonics}
\begin{columns}
\column{0.5\textwidth}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{img/eigenmode.pdf}
\end{figure}
\column{0.5\textwidth}
\begin{itemize}
\item Plasmons are collective oscillations of charge carriers
\item Have been studied in metals for some time
\item As graphene is only one atom thick, it is very sensitive to its environment such that plasmons can be tuned quite easily
\end{itemize}
\end{columns}
\end{frame}
\begin{frame}
\begin{block}{Goals of the Thesis}
\begin{itemize}
\item Find Coulomb model which includes screening in real space
\item Determine real-space plasmonic excitations and investigate their dependency on dielectric screening
\end{itemize}
\end{block}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{comment}
\begin{frame}
\frametitle{Tight-Binding Theory}
\begin{block}{Hamiltonian}
\begin{equation}
\begin{split}
H &= \sum_{i,j}T_{i,j} c_i^\dagger c_j + \frac{1}{2}\sum_{i,j} U_{i,j} n_i n_j\\
&= \underbrace{t \sum_{i,j} c_i^\dagger c_j}_{\text{tight-binding matrix}} + \underbrace{\frac{1}{2}\sum_{i,j} U_{i,j} n_i n_j}_{\text{Coulomb interaction matrix}}
\end{split}
\end{equation}
\end{block}
\end{frame}
\end{comment}
\section{Screened Coulomb Interaction}
\begin{frame}
\frametitle{Screened Coulomb Interaction}
\begin{figure}
\centering
\includegraphics[width=.6\textwidth]{img/FSG_large.pdf}
\end{figure}
\begin{block}{Coulomb Interaction assuming $\epsilon_2=\epsilon_3$}
\begin{equation*}
U(r)= \underbrace{\frac{e^2}{\epsilon_1 \sqrt{r^2+\delta^2}}}_\ttext{classical} + \underbrace{\frac{2e^2}{\epsilon_1}\sum_{n=1}^\infty\brackets{\frac{\epsilon_1-\epsilon_2}{\epsilon_1+\epsilon_2}}^{n}\brackets{r^2+\delta^2+n^2h^2}^{-1/2}}_\ttext{screening}
\end{equation*}
\end{block}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Free-Standing Graphene}
\begin{columns}
\column{0.7\textwidth}
\begin{figure}[H]
\centering
\includegraphics[width=\textwidth]{img/FSG_Cho_2018.pdf}
\end{figure}
\column{0.3\textwidth}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{img/FSG.pdf}
\end{figure}
\begin{equation*}
\begin{split}
\delta &\approx \SI{0.709}{\angstrom}\\
\epsilon_1&\approx 2.58\\
\epsilon_2 &= 1\\
h &= \SI{3.35}{\angstrom}
\end{split}
\end{equation*}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Mono-Layer Graphene Embedded in h-BN}
\begin{columns}
\column{0.7\textwidth}
\begin{figure}[H]
\centering
\includegraphics[width=\textwidth]{img/cho_2018_BN_all.pdf}
\end{figure}
\column{0.3\textwidth}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{img/FSG_hBN.pdf}
\end{figure}
\begin{equation*}
\begin{split}
\delta &\approx \SI{0.716}{\angstrom}\\
\epsilon_1 &\approx 3.12\\
\epsilon_2 &\approx 1.34\\
h &\approx \SI{10.7}{\angstrom}
\end{split}
\end{equation*}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Plasmons}
\begin{frame}
\frametitle{Plasmons}
\begin{block}{Dielectric function}
\begin{equation}
\boxed{\begin{rcases}
(H_\ttext{tb},\omega)\Rightarrow \ttext{RPA} &\Rightarrow \Pi(\omega)\\
\ttext{ab initio}\Rightarrow \ttext{FT} &\Rightarrow U_{i,j}
\end{rcases} (\Pi(\omega),U_{i,j}) \Rightarrow \epsilon(\omega) }
\end{equation}
\end{block}
\end{frame}
\begin{comment}
\begin{frame}{...}
\begin{block}{EELS and Eigenmodes}
\begin{itemize}
\item The eigenvalues of $\epsilon(\omega)$ can be used to plot the EELS
\item The peaks of the EELS represent the frequencies at which plasmonic excitations occur
\item The eigenvectors of $\epsilon(\omega)$ corresponding to the plasmon frequencies are the eigenmodes
\end{itemize}
\end{block}
\end{frame}
\end{comment}
\begin{frame}{EELS}
\begin{figure}
\centering
\includegraphics[width=.8\textwidth]{img/eels_FSG_pres.pdf}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Eigenmodes for FSG}
\begin{columns}
\column{.5\textwidth}
\begin{figure}[H]
\begin{subfigure}[b]{0.45\textwidth}
\centering
\includegraphics[width=\textwidth]{img/eigenmode_1s.pdf}
\caption{1s-like state}
\vspace{-1ex}
\end{subfigure}
\begin{subfigure}[b]{0.45\textwidth}
\centering
\includegraphics[width=\textwidth]{img/eigenmode_1p.pdf}
\caption{1p-like state}
\vspace{-1ex}
\end{subfigure}
\begin{subfigure}[b]{0.45\textwidth}
\centering
\includegraphics[width=\textwidth]{img/eigenmode_1d.pdf}
\caption{1d-like state}
\vspace{-1ex}
\end{subfigure}
\begin{subfigure}[b]{0.45\textwidth}
\centering
\includegraphics[width=\textwidth]{img/eigenmode_2s.pdf}
\caption{2s-like state}
\vspace{-1ex}
\end{subfigure}
\end{figure}
\column{.5\textwidth}
\begin{itemize}
\item Interesting structures where the charge is polarised
\item Different for h-BN embedding
\item What is the effect of different dielectric materials?
\end{itemize}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Different Dielectric Environments}
\begin{columns}
\column{.7\textwidth}
\begin{figure}[H]
\centering
\includegraphics[width=\textwidth]{img/1s.pdf}
\end{figure}
\column{.3\textwidth}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{img/FSG_dielectric.pdf}
\end{figure}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Conclusion and Outlook}
\begin{frame}
\frametitle{Conclusion and Outlook}
\begin{itemize}
\item Results:
\begin{itemize}
\item Real-space continuous screened Coulomb interaction model for mono-layer graphene and graphene embedded in h-BN
\item Plasmon eigenmodes/frequencies depend on the dielectric environment
\end{itemize}
\item Further research:
\begin{itemize}
\item Analyse parameters for h-BN, new model?
\item Better tight-binding model
\item Different substrates
\end{itemize}
\end{itemize}
\end{frame}
\end{document}