-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscode-logl.c
103 lines (84 loc) · 3.1 KB
/
scode-logl.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
/* scode-logl model < data */
const char *usage = "Usage: scode-logl [-z Z] model < data\n";
/*
Computes the average log likelihood of the tuples in data based on
the embeddings given in model output by scode. The model file has
the format:
i:token <tab> cnt <tab> vec1 <tab> vec2 ...
Where i is the column of the tuple at which token was observed, cnt
is the number of times it was observed and [vec1, vec2, ...] is the
embedding vector.
The Globerson07 MM model defines the likelihood of a pair as:
p(x,y) = (1/Z) * phat(x) * phat(y) * exp(-d2(x,y))
Z = Sum_{x,y} phat(x) * phat(y) * exp(-d2(x,y))
where phat are the empirical probabilities and d2 is the squared
distance between the embeddings of the two tokens.
Globerson07 Section 6.2 suggests the following for more than two
variables:
logp(x0,x1,...,xn) = Sum_{i=1..n} wi * (Sum_{x0,xi} phat(x0,xi) * logp(x0,xi))
Assuming all wi = 1, this is just the sum of pairwise average logp
between x0 and xi.
On the issue of Z, we should calculate the real Z instead of
relying on the approximation like the scode training algorithm.
On the issue of missing values: when column i is empty do not
include that tuple in the (x0,xi) calculation.
*/
#include <stdio.h>
#include <unistd.h>
#include <math.h>
#include "dlib.h"
#include "scode-model.h"
/*** main() */
int main(int argc, char **argv) {
// Load the model from the file given as first non-option argument.
// Normalization constant Z, will be calculated (takes long) if not provided.
double Z = 0;
int opt;
while((opt = getopt(argc, argv, "z:")) != -1) {
switch(opt) {
case 'z': Z = atof(optarg); break;
default: die("%s", usage);
}
}
if (optind == argc) die("%s", usage);
msg("Loading model from %s.", argv[optind]);
if (Z > 0) msg("Will use fixed Z of %g.", Z);
else msg("Will calculate Z, this may take some time...");
model_t m = load_model(argv[optind], Z);
// Read data from stdin and calculate logL
char **toks = _d_calloc(m->ntok, sizeof(char *));
svec_t *x = _d_calloc(m->ntok, sizeof(svec_t));
double *logZ = _d_calloc(m->ntok, sizeof(double));
for (size_t i = 1; i < m->ntok; i++) {
logZ[i] = log(m->z[i]);
}
double logL = 0;
size_t nline = 0;
msg("Reading data from stdin (each dot = 1M lines)...");
forline (line, NULL) {
if ((++nline & ((1<<20)-1)) == 0) fputc('.', stderr);
line[strlen(line)-1] = 0; // chop newline
size_t ntok = split(line, "\t", toks, m->ntok);
if (ntok != m->ntok) die("Wrong number of columns.");
for (size_t i = 0; i < m->ntok; i++) {
if (*toks[i] == '\0') {
x[i] = NULL;
} else {
x[i] = svec(m->v[i], toks[i]);
assert(x[i]->vec != NULL && x[i]->cnt > 0);
}
}
assert(x[0] != NULL);
double logx = log(((double) x[0]->cnt) / m->n[0]);
for (size_t i = 1; i < m->ntok; i++) {
if (x[i] == NULL) continue;
double logy = log(((double) x[i]->cnt) / m->n[i]);
logL += logx + logy - logZ[i] - d2(x[0]->vec, x[i]->vec, m->ndim);
}
}
fputc('\n', stderr);
logL /= nline;
_d_free(toks); _d_free(x); _d_free(logZ);
free_model(m);
msg("nlines=%zu avg-logL=%g", nline, logL);
}