-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscode.c
356 lines (334 loc) · 9.28 KB
/
scode.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
#include <stdio.h>
#include <unistd.h>
#include <assert.h>
#include <math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_rng.h>
#include "dlib.h"
#include "svec.h"
#include "rng.h"
const char *usage = "Usage: scode [OPTIONS] < file\n"
"file should have columns of arbitrary tokens\n"
"-r RESTART: number of restarts (default 1)\n"
"-i NITER: number of iterations over data (default UINT32_MAX)\n"
"-t THRESHOLD: quit if logL increase for iter <= this (default .001)\n"
"-d NDIM: number of dimensions (default 25)\n"
"-z Z: partition function approximation (default 0.166)\n"
"-p PHI0: learning rate parameter (default 50.0)\n"
"-u ETA0: learning rate parameter (default 0.2)\n"
"-s SEED: random seed (default 0)\n"
"-c calculate real Z (default false)\n"
"-w The first line of the input is weights (default false)\n"
"-v verbose messages (default false)\n";
//typedef uint32_t u32;
//typedef uint64_t u64;
u32 RESTART = 1;
u32 NITER = UINT32_MAX;
double THRESHOLD = 0.001;
u32 NDIM = 25;
double Z = 0.166;
double PHI0 = 50.0;
double ETA0 = 0.2;
unsigned long int SEED = 0;
bool CALCZ = false;
bool WEIGHT = false;
bool VERBOSE = false;
u32 NTOK = 0;
u64 NTUPLE = 0;
const gsl_rng_type *rng_T;
gsl_rng *rng_R = NULL;
darr_t data;
u64 **update_cnt;
double * weight = NULL;
double * uweight = NULL; /*Updated weights*/
u64 **cnt;
#define frq(i,j) ((double)cnt[i][j]*NTOK/len(data))
svec **vec;
svec **best_vec;
svec dummy_vec;
sym_t qmax;
sym_t NULLFEATID;
#define NULLFEATMARKER "/XX/"
int main(int argc, char **argv);
void init_rng();
void free_rng();
u64 init_data();
u32 init_weight();
void free_weight();
void randomize_vectors();
void copy_best_vec();
void free_data();
void update_tuple(sym_t *t);
double logL();
double calcZ();
#define vmsg(...) if(VERBOSE)msg(__VA_ARGS__)
int main(int argc, char **argv) {
int opt;
while((opt = getopt(argc, argv, "r:i:t:d:z:p:u:s:cwv")) != -1) {
switch(opt) {
case 'r': RESTART = atoi(optarg); break;
case 'i': NITER = atoi(optarg); break;
case 't': THRESHOLD = atof(optarg); break;
case 'd': NDIM = atoi(optarg); break;
case 'z': Z = atof(optarg); break;
case 'p': PHI0 = atof(optarg); break;
case 'u': ETA0 = atof(optarg); break;
case 's': SEED = atoi(optarg); break;
case 'c': CALCZ = true; break;
case 'w': WEIGHT = true; break;
case 'v': VERBOSE = true; break;
default: die("%s",usage);
}
}
vmsg("scode -r %u -i %u -t %g -d %u -z %g -p %g -u %g -s %lu %s%s%s",
RESTART, NITER, THRESHOLD, NDIM, Z, PHI0, ETA0, SEED,
(CALCZ ? "-c " : ""), (WEIGHT ? "-w " : ""), (VERBOSE ? "-v " : ""));
init_rng();
if (SEED) gsl_rng_set(rng_R, SEED);
if (WEIGHT) NTOK = init_weight();
NTUPLE = init_data();
vmsg("Read %zu tuples %u uniq tokens", NTUPLE, qmax);
double best_logL = 0;
for (u32 start = 0; start < RESTART; start++) {
randomize_vectors();
double ll = logL();
vmsg("Restart %u/%u logL0=%g best=%g", 1+start, RESTART, ll, best_logL);
if (CALCZ) vmsg("Z=%g (approx %g)", calcZ(), Z);
for (u32 iter = 0; iter < NITER; iter++) {
for (u64 di = 0; di < NTUPLE; di++) {
update_tuple(&val(data, di * NTOK, sym_t));
}
double ll0 = ll;
ll = logL();
vmsg("Iteration %u/%u logL=%g", 1+iter, NITER, ll);
if (ll - ll0 <= THRESHOLD) break;
}
if (start == 0 || ll > best_logL) {
vmsg("Updating best_vec with logL=%g", ll);
best_logL = ll;
copy_best_vec();
}
vmsg("Restart %u/%u logL1=%g best=%g", 1+start, RESTART, ll, best_logL);
if (CALCZ) vmsg("Z=%g (approx %g)", calcZ(), Z);
}
for (u32 t = 0; t < NTOK; t++) {
for (sym_t q = 1; q <= qmax; q++) {
if (best_vec[t][q] == NULL) continue;
printf("%u:%s\t%zu\t", t, sym2str(q), cnt[t][q]);
svec_print(best_vec[t][q]);
putchar('\n');
}
}
fflush(stdout);
free_data();
free_rng();
if (WEIGHT) free_weight();
symtable_free();
dfreeall();
fprintf(stderr, "%f\n", best_logL);
vmsg("bye");
}
double logL() {
double l = 0;
for (u64 i = 0; i < NTUPLE; i++) {
sym_t *t = &val(data, i * NTOK, sym_t);
sym_t x = t[0];
sym_t y = t[1];
float px = frq(0, x);
float py = frq(1, y);
svec vx = vec[0][x];
svec vy = vec[1][y];
float xy = svec_sqdist(vx, vy);
l += log(px * py) - xy;
}
return (l / NTUPLE - log(Z));
}
double calcZ() {
double z = 0;
for (sym_t x = 1; x <= qmax; x++) {
if (VERBOSE && (x % 1000 == 0)) fputc('.', stderr);
if (cnt[0][x] == 0) continue;
float px = frq(0, x);
svec vx = vec[0][x];
for (sym_t y = 1; y <= qmax; y++) {
if (cnt[1][y] == 0) continue;
float py = frq(1, y);
svec vy = vec[1][y];
float xy = svec_sqdist(vx, vy);
z += px * py * exp(-xy);
}
}
if (VERBOSE) fputc('\n', stderr);
return z;
}
void update_tuple(sym_t *t) {
/*weighted update*/
static svec *u = NULL;
static svec *v = NULL;
static svec dx = NULL;
if (u == NULL) u = _d_malloc(NTOK * sizeof(svec));
if (v == NULL) v = _d_malloc(NTOK * sizeof(svec));
if (dx == NULL) dx = svec_alloc(NDIM);
for (u32 i = 0; i < NTOK; i++) u[i] = vec[i][t[i]];
for (u32 i = 0; i < NTOK; i++) {
/* Sampling values from the marginal distributions. */
/* Can this be done once, or do we have to resample for every x? */
if(i > 0 && t[i] == NULLFEATID) continue;
for (u32 j = 0; j < NTOK; j++) {
if (j==i) { v[j] = u[i]; continue;}
u64 r = gsl_rng_get(rng_R);
r = (r << 32) | gsl_rng_get(rng_R);
r = r % NTUPLE;
sym_t y = val(data, r * NTOK + j, sym_t);
v[j] = vec[j][y];
if(i > 0) break;
}
/* Compute the move for u[i] */
svec_set_zero(dx);
double ww;
for (u32 j = 0; j < NTOK; j++) {
if (j == i) continue;
ww = weight == NULL ? 1 : (i > 0 ? weight[i] : weight[j]);
double push = 0, pull = 0;
if (v[j] == NULL) v[j] = dummy_vec;
else push = exp(-svec_sqdist(u[i], v[j])) / Z;
if(u[j] == NULL) u[j] = dummy_vec;
else pull = 1;
if(push != 0 || pull != 0){
for (u32 d = 0; d < NDIM; d++) {
float dxd = svec_get(dx, d);
float x = svec_get(u[i], d);
float y = svec_get(u[j], d);
float z = svec_get(v[j], d);
svec_set(dx, d, dxd + ww * ( pull * (y - x) + push * (x - z)));
}
}
/*restore the vectors to original forms*/
if(push == 0) v[j] = NULL;
if(pull == 0) u[j] = NULL;
if(i > 0) break;
}
/* Apply the move scaled by learning parameter */
u64 cx = update_cnt[i][t[i]]++;
float nx = ETA0 * (PHI0 / (PHI0 + cx));
svec_scale(dx, nx);
svec_add(u[i], dx);
svec_normalize(u[i]);
}
}
u32 init_weight(){
u32 size = 100, i = 0;
weight = _d_malloc(size * sizeof(double));
forline (buf, NULL) {
fortok (tok, buf) {
weight[i] = atof(tok);
assert(weight[i++] >= 0);
if(i >= 100) {
size *= 2;
weight = _d_realloc(weight, size);
}
}
assert(i > 0);
break;
}
return i;
}
void free_weight() {
if (weight != NULL) _d_free(weight);
}
u64 init_data() {
qmax = 0;
data = darr(0, sym_t);
forline (buf, NULL) {
u32 ntok = 0;
fortok (tok, buf) {
sym_t q = str2sym(tok, true);
if (q > qmax) qmax = q;
size_t lendata = len(data);
val(data, lendata, sym_t) = q;
if(strcmp(tok, NULLFEATMARKER) == 0) NULLFEATID = q;
ntok++;
}
if(NTOK == 0) NTOK = ntok;
assert(ntok == NTOK); //Each line has equal number of tokens
}
assert(NTOK > 0);
update_cnt = _d_malloc(NTOK * sizeof(ptr_t));
cnt = _d_malloc(NTOK * sizeof(ptr_t));
vec = _d_malloc(NTOK * sizeof(ptr_t));
best_vec = _d_malloc(NTOK * sizeof(ptr_t));
dummy_vec = svec_alloc(NDIM);
svec_zero(dummy_vec);
uweight = _d_calloc(NTOK, sizeof(double));
for (u32 i = 0; i < NTOK; i++) {
update_cnt[i] = _d_calloc(qmax+1, sizeof(u64));
cnt[i] = _d_calloc(qmax+1, sizeof(u64));
vec[i] = _d_calloc(qmax+1, sizeof(svec));
best_vec[i] = _d_calloc(qmax+1, sizeof(svec));
}
u64 N = len(data) / NTOK;
for (u64 i = 0; i < N; i++) {
sym_t *p = &val(data, i * NTOK, sym_t);
for (u32 j = 0; j < NTOK; j++) {
sym_t k = p[j];
assert(k <= qmax);
cnt[j][k]++;
if(k == NULLFEATID){
vec[j][k] = best_vec[j][k] = NULL;
}
else if (vec[j][k] == NULL) {
vec[j][k] = svec_alloc(NDIM);
best_vec[j][k] = svec_alloc(NDIM);
}
}
}
return N;
}
void free_data() {
for (u32 i = 0; i < NTOK; i++) {
for (sym_t j = 0; j <= qmax; j++) {
if (vec[i][j] != NULL) {
svec_free(vec[i][j]);
svec_free(best_vec[i][j]);
}
}
_d_free(best_vec[i]);
_d_free(vec[i]);
_d_free(cnt[i]);
_d_free(update_cnt[i]);
}
_d_free(uweight);
svec_free(dummy_vec);
_d_free(best_vec);
_d_free(vec);
_d_free(cnt);
_d_free(update_cnt);
darr_free(data);
}
void randomize_vectors() {
for (u32 j = 0; j < NTOK; j++) {
for (sym_t q = 1; q <= qmax; q++) {
if (vec[j][q] != NULL) {
svec_randomize(vec[j][q]);
update_cnt[j][q] = 0;
}
}
}
}
void copy_best_vec() {
for (u32 j = 0; j < NTOK; j++) {
for (sym_t q = 1; q <= qmax; q++) {
if (vec[j][q] != NULL) {
svec_memcpy(best_vec[j][q], vec[j][q]);
}
}
}
}
void init_rng() {
gsl_rng_env_setup();
rng_T = gsl_rng_mt19937;
rng_R = gsl_rng_alloc(rng_T);
}
void free_rng() {
gsl_rng_free(rng_R);
}