-
Notifications
You must be signed in to change notification settings - Fork 138
/
Copy pathpredict_v2v_control.py
294 lines (256 loc) · 12.5 KB
/
predict_v2v_control.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import os
import numpy as np
import torch
from diffusers import (DDIMScheduler, DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler, EulerDiscreteScheduler,
PNDMScheduler)
from omegaconf import OmegaConf
from PIL import Image
from transformers import (BertModel, BertTokenizer,
CLIPImageProcessor, CLIPVisionModelWithProjection,
Qwen2Tokenizer, Qwen2VLForConditionalGeneration,
T5EncoderModel, T5Tokenizer)
from easyanimate.data.dataset_image_video import process_pose_file
from easyanimate.models import (name_to_autoencoder_magvit,
name_to_transformer3d)
from easyanimate.pipeline.pipeline_easyanimate_control import \
EasyAnimateControlPipeline
from easyanimate.utils.lora_utils import merge_lora, unmerge_lora
from easyanimate.utils.utils import get_video_to_video_latent, save_videos_grid, get_image_latent
from easyanimate.utils.fp8_optimization import convert_weight_dtype_wrapper
from diffusers import FlowMatchEulerDiscreteScheduler
# GPU memory mode, which can be choosen in [model_cpu_offload, model_cpu_offload_and_qfloat8, sequential_cpu_offload].
# model_cpu_offload means that the entire model will be moved to the CPU after use, which can save some GPU memory.
#
# model_cpu_offload_and_qfloat8 indicates that the entire model will be moved to the CPU after use,
# and the transformer model has been quantized to float8, which can save more GPU memory.
#
# sequential_cpu_offload means that each layer of the model will be moved to the CPU after use,
# resulting in slower speeds but saving a large amount of GPU memory.
#
# EasyAnimateV5 support "model_cpu_offload" "model_cpu_offload_and_qfloat8" "sequential_cpu_offload"
# EasyAnimateV5.1 support "model_cpu_offload" "model_cpu_offload_and_qfloat8"
GPU_memory_mode = "model_cpu_offload_and_qfloat8"
# EasyAnimateV5.1 support TeaCache.
enable_teacache = True
# Recommended to be set between 0.05 and 0.1. A larger threshold can cache more steps, speeding up the inference process,
# but it may cause slight differences between the generated content and the original content.
teacache_threshold = 0.1
# Config and model path
config_path = "config/easyanimate_video_v5.1_magvit_qwen.yaml"
model_name = "models/Diffusion_Transformer/EasyAnimateV5.1-12b-zh-Control"
# Choose the sampler in "Euler" "Euler A" "DPM++" "PNDM" "DDIM" "Flow"
# EasyAnimateV5 support "Euler" "Euler A" "DPM++" "PNDM" "DDIM".
# EasyAnimateV5.1 supports Flow.
sampler_name = "Flow"
# Load pretrained model if need
transformer_path = None
# V2 and V3 does not need a motion module
motion_module_path = None
vae_path = None
lora_path = None
# Other params
sample_size = [672, 384]
# In EasyAnimateV5, V5.1, the video_length of video is 1 ~ 49.
# If u want to generate a image, please set the video_length = 1.
video_length = 49
fps = 8
# Use torch.float16 if GPU does not support torch.bfloat16
# ome graphics cards, such as v100, 2080ti, do not support torch.bfloat16
weight_dtype = torch.bfloat16
control_video = "asset/pose.mp4"
control_camera_txt = None
ref_image = None
# 使用更长的neg prompt如"模糊,突变,变形,失真,画面暗,文本字幕,画面固定,连环画,漫画,线稿,没有主体。",可以增加稳定性
# 在neg prompt中添加"安静,固定"等词语可以增加动态性。
prompt = "一位穿着合身的白色连衣裙,带着细肩带的女人站在一个铺着木地板的房间里。她有一头深色的长发。背景是一个放着各种瓶子的架子。灯光温暖,背景似乎在室内。"
negative_prompt = "扭曲的身体,肢体残缺,文本字幕,漫画,静止,丑陋,错误,乱码。"
#
# Using longer neg prompt such as "Blurring, mutation, deformation, distortion, dark and solid, comics, text subtitles, line art." can increase stability
# Adding words such as "quiet, solid" to the neg prompt can increase dynamism.
# prompt = "A young woman with beautiful, clear eyes and blonde hair stands in the forest, wearing a white dress and a crown. Her expression is serene, reminiscent of a movie star, with fair and youthful skin. Her brown long hair flows in the wind. The video quality is very high, with a clear view. High quality, masterpiece, best quality, high resolution, ultra-fine, fantastical."
# negative_prompt = "Twisted body, limb deformities, text captions, comic, static, ugly, error, messy code."
guidance_scale = 6.0
seed = 43
num_inference_steps = 50
lora_weight = 0.55
save_path = "samples/easyanimate-videos_v2v_control"
config = OmegaConf.load(config_path)
# Get Transformer
Choosen_Transformer3DModel = name_to_transformer3d[
config['transformer_additional_kwargs'].get('transformer_type', 'Transformer3DModel')
]
transformer_additional_kwargs = OmegaConf.to_container(config['transformer_additional_kwargs'])
if weight_dtype == torch.float16:
transformer_additional_kwargs["upcast_attention"] = True
transformer = Choosen_Transformer3DModel.from_pretrained_2d(
model_name,
subfolder="transformer",
transformer_additional_kwargs=transformer_additional_kwargs,
torch_dtype=torch.float8_e4m3fn if GPU_memory_mode == "model_cpu_offload_and_qfloat8" else weight_dtype,
low_cpu_mem_usage=True,
)
if transformer_path is not None:
print(f"From checkpoint: {transformer_path}")
if transformer_path.endswith("safetensors"):
from safetensors.torch import load_file, safe_open
state_dict = load_file(transformer_path)
else:
state_dict = torch.load(transformer_path, map_location="cpu")
state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict
m, u = transformer.load_state_dict(state_dict, strict=False)
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")
if motion_module_path is not None:
print(f"From Motion Module: {motion_module_path}")
if motion_module_path.endswith("safetensors"):
from safetensors.torch import load_file, safe_open
state_dict = load_file(motion_module_path)
else:
state_dict = torch.load(motion_module_path, map_location="cpu")
state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict
m, u = transformer.load_state_dict(state_dict, strict=False)
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}, {u}")
# Get Vae
Choosen_AutoencoderKL = name_to_autoencoder_magvit[
config['vae_kwargs'].get('vae_type', 'AutoencoderKL')
]
vae = Choosen_AutoencoderKL.from_pretrained(
model_name,
subfolder="vae",
vae_additional_kwargs=OmegaConf.to_container(config['vae_kwargs'])
).to(weight_dtype)
if config['vae_kwargs'].get('vae_type', 'AutoencoderKL') == 'AutoencoderKLMagvit' and weight_dtype == torch.float16:
vae.upcast_vae = True
if vae_path is not None:
print(f"From checkpoint: {vae_path}")
if vae_path.endswith("safetensors"):
from safetensors.torch import load_file, safe_open
state_dict = load_file(vae_path)
else:
state_dict = torch.load(vae_path, map_location="cpu")
state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict
m, u = vae.load_state_dict(state_dict, strict=False)
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")
if config['text_encoder_kwargs'].get('enable_multi_text_encoder', False):
tokenizer = BertTokenizer.from_pretrained(
model_name, subfolder="tokenizer"
)
if config['text_encoder_kwargs'].get('replace_t5_to_llm', False):
tokenizer_2 = Qwen2Tokenizer.from_pretrained(
os.path.join(model_name, "tokenizer_2")
)
else:
tokenizer_2 = T5Tokenizer.from_pretrained(
model_name, subfolder="tokenizer_2"
)
else:
if config['text_encoder_kwargs'].get('replace_t5_to_llm', False):
tokenizer = Qwen2Tokenizer.from_pretrained(
os.path.join(model_name, "tokenizer")
)
else:
tokenizer = T5Tokenizer.from_pretrained(
model_name, subfolder="tokenizer"
)
tokenizer_2 = None
if config['text_encoder_kwargs'].get('enable_multi_text_encoder', False):
text_encoder = BertModel.from_pretrained(
model_name, subfolder="text_encoder"
).to(weight_dtype)
if config['text_encoder_kwargs'].get('replace_t5_to_llm', False):
text_encoder_2 = Qwen2VLForConditionalGeneration.from_pretrained(
os.path.join(model_name, "text_encoder_2"),
torch_dtype=weight_dtype,
)
else:
text_encoder_2 = T5EncoderModel.from_pretrained(
model_name, subfolder="text_encoder_2"
).to(weight_dtype)
else:
if config['text_encoder_kwargs'].get('replace_t5_to_llm', False):
text_encoder = Qwen2VLForConditionalGeneration.from_pretrained(
os.path.join(model_name, "text_encoder"),
torch_dtype=weight_dtype,
)
else:
text_encoder = T5EncoderModel.from_pretrained(
model_name, subfolder="text_encoder"
).to(weight_dtype)
text_encoder_2 = None
# Get Scheduler
Choosen_Scheduler = scheduler_dict = {
"Euler": EulerDiscreteScheduler,
"Euler A": EulerAncestralDiscreteScheduler,
"DPM++": DPMSolverMultistepScheduler,
"PNDM": PNDMScheduler,
"DDIM": DDIMScheduler,
"Flow": FlowMatchEulerDiscreteScheduler,
}[sampler_name]
scheduler = Choosen_Scheduler.from_pretrained(
model_name,
subfolder="scheduler"
)
pipeline = EasyAnimateControlPipeline(
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
vae=vae,
transformer=transformer,
scheduler=scheduler,
)
if GPU_memory_mode == "sequential_cpu_offload":
pipeline.enable_sequential_cpu_offload()
elif GPU_memory_mode == "model_cpu_offload_and_qfloat8":
pipeline.enable_model_cpu_offload()
convert_weight_dtype_wrapper(pipeline.transformer, weight_dtype)
else:
pipeline.enable_model_cpu_offload()
if "v5.1" in config_path and enable_teacache:
print(f"Enable TeaCache with threshold: {teacache_threshold}.")
pipeline.transformer.enable_teacache(num_inference_steps, teacache_threshold)
generator = torch.Generator(device="cuda").manual_seed(seed)
if lora_path is not None:
pipeline = merge_lora(pipeline, lora_path, lora_weight, device="cuda", dtype=weight_dtype)
with torch.no_grad():
if vae.cache_mag_vae:
video_length = int((video_length - 1) // vae.mini_batch_encoder * vae.mini_batch_encoder) + 1 if video_length != 1 else 1
else:
video_length = int(video_length // vae.mini_batch_encoder * vae.mini_batch_encoder) if video_length != 1 else 1
if control_camera_txt is not None:
ref_image = get_image_latent(sample_size=sample_size, ref_image=ref_image)
input_video, input_video_mask = None, None
control_camera_video = process_pose_file(control_camera_txt, sample_size[1], sample_size[0])
control_camera_video = control_camera_video[::int(24 // fps)][:video_length].permute([3, 0, 1, 2]).unsqueeze(0)
else:
input_video, input_video_mask, ref_image = get_video_to_video_latent(control_video, video_length=video_length, sample_size=sample_size, fps=fps, ref_image=ref_image)
control_camera_video = None
sample = pipeline(
prompt,
video_length = video_length,
negative_prompt = negative_prompt,
height = sample_size[0],
width = sample_size[1],
generator = generator,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
control_video = input_video,
control_camera_video = control_camera_video,
ref_image = ref_image,
).frames
if lora_path is not None:
pipeline = unmerge_lora(pipeline, lora_path, lora_weight, device="cuda", dtype=weight_dtype)
if not os.path.exists(save_path):
os.makedirs(save_path, exist_ok=True)
index = len([path for path in os.listdir(save_path)]) + 1
prefix = str(index).zfill(8)
if video_length == 1:
video_path = os.path.join(save_path, prefix + ".png")
image = sample[0, :, 0]
image = image.transpose(0, 1).transpose(1, 2)
image = (image * 255).numpy().astype(np.uint8)
image = Image.fromarray(image)
image.save(video_path)
else:
video_path = os.path.join(save_path, prefix + ".mp4")
save_videos_grid(sample, video_path, fps=fps)