-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
Copy pathprobability.py
870 lines (682 loc) · 28.9 KB
/
probability.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
"""Probability models (Chapter 13-15)"""
from collections import defaultdict
from functools import reduce
from agents import Agent
from utils import *
def DTAgentProgram(belief_state):
"""
[Figure 13.1]
A decision-theoretic agent.
"""
def program(percept):
belief_state.observe(program.action, percept)
program.action = max(belief_state.actions(), key=belief_state.expected_outcome_utility)
return program.action
program.action = None
return program
# ______________________________________________________________________________
class ProbDist:
"""A discrete probability distribution. You name the random variable
in the constructor, then assign and query probability of values.
>>> P = ProbDist('Flip'); P['H'], P['T'] = 0.25, 0.75; P['H']
0.25
>>> P = ProbDist('X', {'lo': 125, 'med': 375, 'hi': 500})
>>> P['lo'], P['med'], P['hi']
(0.125, 0.375, 0.5)
"""
def __init__(self, var_name='?', freq=None):
"""If freq is given, it is a dictionary of values - frequency pairs,
then ProbDist is normalized."""
self.prob = {}
self.var_name = var_name
self.values = []
if freq:
for (v, p) in freq.items():
self[v] = p
self.normalize()
def __getitem__(self, val):
"""Given a value, return P(value)."""
try:
return self.prob[val]
except KeyError:
return 0
def __setitem__(self, val, p):
"""Set P(val) = p."""
if val not in self.values:
self.values.append(val)
self.prob[val] = p
def normalize(self):
"""Make sure the probabilities of all values sum to 1.
Returns the normalized distribution.
Raises a ZeroDivisionError if the sum of the values is 0."""
total = sum(self.prob.values())
if not np.isclose(total, 1.0):
for val in self.prob:
self.prob[val] /= total
return self
def show_approx(self, numfmt='{:.3g}'):
"""Show the probabilities rounded and sorted by key, for the
sake of portable doctests."""
return ', '.join([('{}: ' + numfmt).format(v, p) for (v, p) in sorted(self.prob.items())])
def __repr__(self):
return "P({})".format(self.var_name)
class JointProbDist(ProbDist):
"""A discrete probability distribute over a set of variables.
>>> P = JointProbDist(['X', 'Y']); P[1, 1] = 0.25
>>> P[1, 1]
0.25
>>> P[dict(X=0, Y=1)] = 0.5
>>> P[dict(X=0, Y=1)]
0.5"""
def __init__(self, variables):
self.prob = {}
self.variables = variables
self.vals = defaultdict(list)
def __getitem__(self, values):
"""Given a tuple or dict of values, return P(values)."""
values = event_values(values, self.variables)
return ProbDist.__getitem__(self, values)
def __setitem__(self, values, p):
"""Set P(values) = p. Values can be a tuple or a dict; it must
have a value for each of the variables in the joint. Also keep track
of the values we have seen so far for each variable."""
values = event_values(values, self.variables)
self.prob[values] = p
for var, val in zip(self.variables, values):
if val not in self.vals[var]:
self.vals[var].append(val)
def values(self, var):
"""Return the set of possible values for a variable."""
return self.vals[var]
def __repr__(self):
return "P({})".format(self.variables)
def event_values(event, variables):
"""Return a tuple of the values of variables in event.
>>> event_values ({'A': 10, 'B': 9, 'C': 8}, ['C', 'A'])
(8, 10)
>>> event_values ((1, 2), ['C', 'A'])
(1, 2)
"""
if isinstance(event, tuple) and len(event) == len(variables):
return event
else:
return tuple([event[var] for var in variables])
# ______________________________________________________________________________
def enumerate_joint_ask(X, e, P):
"""
[Section 13.3]
Return a probability distribution over the values of the variable X,
given the {var:val} observations e, in the JointProbDist P.
>>> P = JointProbDist(['X', 'Y'])
>>> P[0,0] = 0.25; P[0,1] = 0.5; P[1,1] = P[2,1] = 0.125
>>> enumerate_joint_ask('X', dict(Y=1), P).show_approx()
'0: 0.667, 1: 0.167, 2: 0.167'
"""
assert X not in e, "Query variable must be distinct from evidence"
Q = ProbDist(X) # probability distribution for X, initially empty
Y = [v for v in P.variables if v != X and v not in e] # hidden variables.
for xi in P.values(X):
Q[xi] = enumerate_joint(Y, extend(e, X, xi), P)
return Q.normalize()
def enumerate_joint(variables, e, P):
"""Return the sum of those entries in P consistent with e,
provided variables is P's remaining variables (the ones not in e)."""
if not variables:
return P[e]
Y, rest = variables[0], variables[1:]
return sum([enumerate_joint(rest, extend(e, Y, y), P) for y in P.values(Y)])
# ______________________________________________________________________________
class BayesNet:
"""Bayesian network containing only boolean-variable nodes."""
def __init__(self, node_specs=None):
"""Nodes must be ordered with parents before children."""
self.nodes = []
self.variables = []
node_specs = node_specs or []
for node_spec in node_specs:
self.add(node_spec)
def add(self, node_spec):
"""Add a node to the net. Its parents must already be in the
net, and its variable must not."""
node = BayesNode(*node_spec)
assert node.variable not in self.variables
assert all((parent in self.variables) for parent in node.parents)
self.nodes.append(node)
self.variables.append(node.variable)
for parent in node.parents:
self.variable_node(parent).children.append(node)
def variable_node(self, var):
"""Return the node for the variable named var.
>>> burglary.variable_node('Burglary').variable
'Burglary'"""
for n in self.nodes:
if n.variable == var:
return n
raise Exception("No such variable: {}".format(var))
def variable_values(self, var):
"""Return the domain of var."""
return [True, False]
def __repr__(self):
return 'BayesNet({0!r})'.format(self.nodes)
class DecisionNetwork(BayesNet):
"""An abstract class for a decision network as a wrapper for a BayesNet.
Represents an agent's current state, its possible actions, reachable states
and utilities of those states."""
def __init__(self, action, infer):
"""action: a single action node
infer: the preferred method to carry out inference on the given BayesNet"""
super(DecisionNetwork, self).__init__()
self.action = action
self.infer = infer
def best_action(self):
"""Return the best action in the network"""
return self.action
def get_utility(self, action, state):
"""Return the utility for a particular action and state in the network"""
raise NotImplementedError
def get_expected_utility(self, action, evidence):
"""Compute the expected utility given an action and evidence"""
u = 0.0
prob_dist = self.infer(action, evidence, self).prob
for item, _ in prob_dist.items():
u += prob_dist[item] * self.get_utility(action, item)
return u
class InformationGatheringAgent(Agent):
"""
[Figure 16.9]
A simple information gathering agent. The agent works by repeatedly selecting
the observation with the highest information value, until the cost of the next
observation is greater than its expected benefit."""
def __init__(self, decnet, infer, initial_evidence=None):
"""decnet: a decision network
infer: the preferred method to carry out inference on the given decision network
initial_evidence: initial evidence"""
self.decnet = decnet
self.infer = infer
self.observation = initial_evidence or []
self.variables = self.decnet.nodes
def integrate_percept(self, percept):
"""Integrate the given percept into the decision network"""
raise NotImplementedError
def execute(self, percept):
"""Execute the information gathering algorithm"""
self.observation = self.integrate_percept(percept)
vpis = self.vpi_cost_ratio(self.variables)
j = max(vpis)
variable = self.variables[j]
if self.vpi(variable) > self.cost(variable):
return self.request(variable)
return self.decnet.best_action()
def request(self, variable):
"""Return the value of the given random variable as the next percept"""
raise NotImplementedError
def cost(self, var):
"""Return the cost of obtaining evidence through tests, consultants or questions"""
raise NotImplementedError
def vpi_cost_ratio(self, variables):
"""Return the VPI to cost ratio for the given variables"""
v_by_c = []
for var in variables:
v_by_c.append(self.vpi(var) / self.cost(var))
return v_by_c
def vpi(self, variable):
"""Return VPI for a given variable"""
vpi = 0.0
prob_dist = self.infer(variable, self.observation, self.decnet).prob
for item, _ in prob_dist.items():
post_prob = prob_dist[item]
new_observation = list(self.observation)
new_observation.append(item)
expected_utility = self.decnet.get_expected_utility(variable, new_observation)
vpi += post_prob * expected_utility
vpi -= self.decnet.get_expected_utility(variable, self.observation)
return vpi
class BayesNode:
"""A conditional probability distribution for a boolean variable,
P(X | parents). Part of a BayesNet."""
def __init__(self, X, parents, cpt):
"""X is a variable name, and parents a sequence of variable
names or a space-separated string. cpt, the conditional
probability table, takes one of these forms:
* A number, the unconditional probability P(X=true). You can
use this form when there are no parents.
* A dict {v: p, ...}, the conditional probability distribution
P(X=true | parent=v) = p. When there's just one parent.
* A dict {(v1, v2, ...): p, ...}, the distribution P(X=true |
parent1=v1, parent2=v2, ...) = p. Each key must have as many
values as there are parents. You can use this form always;
the first two are just conveniences.
In all cases the probability of X being false is left implicit,
since it follows from P(X=true).
>>> X = BayesNode('X', '', 0.2)
>>> Y = BayesNode('Y', 'P', {T: 0.2, F: 0.7})
>>> Z = BayesNode('Z', 'P Q',
... {(T, T): 0.2, (T, F): 0.3, (F, T): 0.5, (F, F): 0.7})
"""
if isinstance(parents, str):
parents = parents.split()
# We store the table always in the third form above.
if isinstance(cpt, (float, int)): # no parents, 0-tuple
cpt = {(): cpt}
elif isinstance(cpt, dict):
# one parent, 1-tuple
if cpt and isinstance(list(cpt.keys())[0], bool):
cpt = {(v,): p for v, p in cpt.items()}
assert isinstance(cpt, dict)
for vs, p in cpt.items():
assert isinstance(vs, tuple) and len(vs) == len(parents)
assert all(isinstance(v, bool) for v in vs)
assert 0 <= p <= 1
self.variable = X
self.parents = parents
self.cpt = cpt
self.children = []
def p(self, value, event):
"""Return the conditional probability
P(X=value | parents=parent_values), where parent_values
are the values of parents in event. (event must assign each
parent a value.)
>>> bn = BayesNode('X', 'Burglary', {T: 0.2, F: 0.625})
>>> bn.p(False, {'Burglary': False, 'Earthquake': True})
0.375"""
assert isinstance(value, bool)
ptrue = self.cpt[event_values(event, self.parents)]
return ptrue if value else 1 - ptrue
def sample(self, event):
"""Sample from the distribution for this variable conditioned
on event's values for parent_variables. That is, return True/False
at random according with the conditional probability given the
parents."""
return probability(self.p(True, event))
def __repr__(self):
return repr((self.variable, ' '.join(self.parents)))
# Burglary example [Figure 14.2]
T, F = True, False
burglary = BayesNet([('Burglary', '', 0.001),
('Earthquake', '', 0.002),
('Alarm', 'Burglary Earthquake',
{(T, T): 0.95, (T, F): 0.94, (F, T): 0.29, (F, F): 0.001}),
('JohnCalls', 'Alarm', {T: 0.90, F: 0.05}),
('MaryCalls', 'Alarm', {T: 0.70, F: 0.01})])
# ______________________________________________________________________________
def enumeration_ask(X, e, bn):
"""
[Figure 14.9]
Return the conditional probability distribution of variable X
given evidence e, from BayesNet bn.
>>> enumeration_ask('Burglary', dict(JohnCalls=T, MaryCalls=T), burglary
... ).show_approx()
'False: 0.716, True: 0.284'"""
assert X not in e, "Query variable must be distinct from evidence"
Q = ProbDist(X)
for xi in bn.variable_values(X):
Q[xi] = enumerate_all(bn.variables, extend(e, X, xi), bn)
return Q.normalize()
def enumerate_all(variables, e, bn):
"""Return the sum of those entries in P(variables | e{others})
consistent with e, where P is the joint distribution represented
by bn, and e{others} means e restricted to bn's other variables
(the ones other than variables). Parents must precede children in variables."""
if not variables:
return 1.0
Y, rest = variables[0], variables[1:]
Ynode = bn.variable_node(Y)
if Y in e:
return Ynode.p(e[Y], e) * enumerate_all(rest, e, bn)
else:
return sum(Ynode.p(y, e) * enumerate_all(rest, extend(e, Y, y), bn)
for y in bn.variable_values(Y))
# ______________________________________________________________________________
def elimination_ask(X, e, bn):
"""
[Figure 14.11]
Compute bn's P(X|e) by variable elimination.
>>> elimination_ask('Burglary', dict(JohnCalls=T, MaryCalls=T), burglary
... ).show_approx()
'False: 0.716, True: 0.284'"""
assert X not in e, "Query variable must be distinct from evidence"
factors = []
for var in reversed(bn.variables):
factors.append(make_factor(var, e, bn))
if is_hidden(var, X, e):
factors = sum_out(var, factors, bn)
return pointwise_product(factors, bn).normalize()
def is_hidden(var, X, e):
"""Is var a hidden variable when querying P(X|e)?"""
return var != X and var not in e
def make_factor(var, e, bn):
"""Return the factor for var in bn's joint distribution given e.
That is, bn's full joint distribution, projected to accord with e,
is the pointwise product of these factors for bn's variables."""
node = bn.variable_node(var)
variables = [X for X in [var] + node.parents if X not in e]
cpt = {event_values(e1, variables): node.p(e1[var], e1)
for e1 in all_events(variables, bn, e)}
return Factor(variables, cpt)
def pointwise_product(factors, bn):
return reduce(lambda f, g: f.pointwise_product(g, bn), factors)
def sum_out(var, factors, bn):
"""Eliminate var from all factors by summing over its values."""
result, var_factors = [], []
for f in factors:
(var_factors if var in f.variables else result).append(f)
result.append(pointwise_product(var_factors, bn).sum_out(var, bn))
return result
class Factor:
"""A factor in a joint distribution."""
def __init__(self, variables, cpt):
self.variables = variables
self.cpt = cpt
def pointwise_product(self, other, bn):
"""Multiply two factors, combining their variables."""
variables = list(set(self.variables) | set(other.variables))
cpt = {event_values(e, variables): self.p(e) * other.p(e) for e in all_events(variables, bn, {})}
return Factor(variables, cpt)
def sum_out(self, var, bn):
"""Make a factor eliminating var by summing over its values."""
variables = [X for X in self.variables if X != var]
cpt = {event_values(e, variables): sum(self.p(extend(e, var, val)) for val in bn.variable_values(var))
for e in all_events(variables, bn, {})}
return Factor(variables, cpt)
def normalize(self):
"""Return my probabilities; must be down to one variable."""
assert len(self.variables) == 1
return ProbDist(self.variables[0], {k: v for ((k,), v) in self.cpt.items()})
def p(self, e):
"""Look up my value tabulated for e."""
return self.cpt[event_values(e, self.variables)]
def all_events(variables, bn, e):
"""Yield every way of extending e with values for all variables."""
if not variables:
yield e
else:
X, rest = variables[0], variables[1:]
for e1 in all_events(rest, bn, e):
for x in bn.variable_values(X):
yield extend(e1, X, x)
# ______________________________________________________________________________
# [Figure 14.12a]: sprinkler network
sprinkler = BayesNet([('Cloudy', '', 0.5),
('Sprinkler', 'Cloudy', {T: 0.10, F: 0.50}),
('Rain', 'Cloudy', {T: 0.80, F: 0.20}),
('WetGrass', 'Sprinkler Rain',
{(T, T): 0.99, (T, F): 0.90, (F, T): 0.90, (F, F): 0.00})])
# ______________________________________________________________________________
def prior_sample(bn):
"""
[Figure 14.13]
Randomly sample from bn's full joint distribution.
The result is a {variable: value} dict.
"""
event = {}
for node in bn.nodes:
event[node.variable] = node.sample(event)
return event
# _________________________________________________________________________
def rejection_sampling(X, e, bn, N=10000):
"""
[Figure 14.14]
Estimate the probability distribution of variable X given
evidence e in BayesNet bn, using N samples.
Raises a ZeroDivisionError if all the N samples are rejected,
i.e., inconsistent with e.
>>> random.seed(47)
>>> rejection_sampling('Burglary', dict(JohnCalls=T, MaryCalls=T),
... burglary, 10000).show_approx()
'False: 0.7, True: 0.3'
"""
counts = {x: 0 for x in bn.variable_values(X)} # bold N in [Figure 14.14]
for j in range(N):
sample = prior_sample(bn) # boldface x in [Figure 14.14]
if consistent_with(sample, e):
counts[sample[X]] += 1
return ProbDist(X, counts)
def consistent_with(event, evidence):
"""Is event consistent with the given evidence?"""
return all(evidence.get(k, v) == v for k, v in event.items())
# _________________________________________________________________________
def likelihood_weighting(X, e, bn, N=10000):
"""
[Figure 14.15]
Estimate the probability distribution of variable X given
evidence e in BayesNet bn.
>>> random.seed(1017)
>>> likelihood_weighting('Burglary', dict(JohnCalls=T, MaryCalls=T),
... burglary, 10000).show_approx()
'False: 0.702, True: 0.298'
"""
W = {x: 0 for x in bn.variable_values(X)}
for j in range(N):
sample, weight = weighted_sample(bn, e) # boldface x, w in [Figure 14.15]
W[sample[X]] += weight
return ProbDist(X, W)
def weighted_sample(bn, e):
"""
Sample an event from bn that's consistent with the evidence e;
return the event and its weight, the likelihood that the event
accords to the evidence.
"""
w = 1
event = dict(e) # boldface x in [Figure 14.15]
for node in bn.nodes:
Xi = node.variable
if Xi in e:
w *= node.p(e[Xi], event)
else:
event[Xi] = node.sample(event)
return event, w
# _________________________________________________________________________
def gibbs_ask(X, e, bn, N=1000):
"""[Figure 14.16]"""
assert X not in e, "Query variable must be distinct from evidence"
counts = {x: 0 for x in bn.variable_values(X)} # bold N in [Figure 14.16]
Z = [var for var in bn.variables if var not in e]
state = dict(e) # boldface x in [Figure 14.16]
for Zi in Z:
state[Zi] = random.choice(bn.variable_values(Zi))
for j in range(N):
for Zi in Z:
state[Zi] = markov_blanket_sample(Zi, state, bn)
counts[state[X]] += 1
return ProbDist(X, counts)
def markov_blanket_sample(X, e, bn):
"""Return a sample from P(X | mb) where mb denotes that the
variables in the Markov blanket of X take their values from event
e (which must assign a value to each). The Markov blanket of X is
X's parents, children, and children's parents."""
Xnode = bn.variable_node(X)
Q = ProbDist(X)
for xi in bn.variable_values(X):
ei = extend(e, X, xi)
# [Equation 14.12]
Q[xi] = Xnode.p(xi, e) * product(Yj.p(ei[Yj.variable], ei) for Yj in Xnode.children)
# (assuming a Boolean variable here)
return probability(Q.normalize()[True])
# _________________________________________________________________________
class HiddenMarkovModel:
"""A Hidden markov model which takes Transition model and Sensor model as inputs"""
def __init__(self, transition_model, sensor_model, prior=None):
self.transition_model = transition_model
self.sensor_model = sensor_model
self.prior = prior or [0.5, 0.5]
def sensor_dist(self, ev):
if ev is True:
return self.sensor_model[0]
else:
return self.sensor_model[1]
def forward(HMM, fv, ev):
prediction = vector_add(scalar_vector_product(fv[0], HMM.transition_model[0]),
scalar_vector_product(fv[1], HMM.transition_model[1]))
sensor_dist = HMM.sensor_dist(ev)
return normalize(element_wise_product(sensor_dist, prediction))
def backward(HMM, b, ev):
sensor_dist = HMM.sensor_dist(ev)
prediction = element_wise_product(sensor_dist, b)
return normalize(vector_add(scalar_vector_product(prediction[0], HMM.transition_model[0]),
scalar_vector_product(prediction[1], HMM.transition_model[1])))
def forward_backward(HMM, ev):
"""
[Figure 15.4]
Forward-Backward algorithm for smoothing. Computes posterior probabilities
of a sequence of states given a sequence of observations.
"""
t = len(ev)
ev.insert(0, None) # to make the code look similar to pseudo code
fv = [[0.0, 0.0] for _ in range(len(ev))]
b = [1.0, 1.0]
sv = [[0, 0] for _ in range(len(ev))]
fv[0] = HMM.prior
for i in range(1, t + 1):
fv[i] = forward(HMM, fv[i - 1], ev[i])
for i in range(t, -1, -1):
sv[i - 1] = normalize(element_wise_product(fv[i], b))
b = backward(HMM, b, ev[i])
sv = sv[::-1]
return sv
def viterbi(HMM, ev):
"""
[Equation 15.11]
Viterbi algorithm to find the most likely sequence. Computes the best path and the
corresponding probabilities, given an HMM model and a sequence of observations.
"""
t = len(ev)
ev = ev.copy()
ev.insert(0, None)
m = [[0.0, 0.0] for _ in range(len(ev) - 1)]
# the recursion is initialized with m1 = forward(P(X0), e1)
m[0] = forward(HMM, HMM.prior, ev[1])
# keep track of maximizing predecessors
backtracking_graph = []
for i in range(1, t):
m[i] = element_wise_product(HMM.sensor_dist(ev[i + 1]),
[max(element_wise_product(HMM.transition_model[0], m[i - 1])),
max(element_wise_product(HMM.transition_model[1], m[i - 1]))])
backtracking_graph.append([np.argmax(element_wise_product(HMM.transition_model[0], m[i - 1])),
np.argmax(element_wise_product(HMM.transition_model[1], m[i - 1]))])
# computed probabilities
ml_probabilities = [0.0] * (len(ev) - 1)
# most likely sequence
ml_path = [True] * (len(ev) - 1)
# the construction of the most likely sequence starts in the final state with the largest probability, and
# runs backwards; the algorithm needs to store for each xt its predecessor xt-1 maximizing its probability
i_max = np.argmax(m[-1])
for i in range(t - 1, -1, -1):
ml_probabilities[i] = m[i][i_max]
ml_path[i] = True if i_max == 0 else False
if i > 0:
i_max = backtracking_graph[i - 1][i_max]
return ml_path, ml_probabilities
# _________________________________________________________________________
def fixed_lag_smoothing(e_t, HMM, d, ev, t):
"""
[Figure 15.6]
Smoothing algorithm with a fixed time lag of 'd' steps.
Online algorithm that outputs the new smoothed estimate if observation
for new time step is given.
"""
ev.insert(0, None)
T_model = HMM.transition_model
f = HMM.prior
B = [[1, 0], [0, 1]]
O_t = np.diag(HMM.sensor_dist(e_t))
if t > d:
f = forward(HMM, f, e_t)
O_tmd = np.diag(HMM.sensor_dist(ev[t - d]))
B = matrix_multiplication(np.linalg.inv(O_tmd), np.linalg.inv(T_model), B, T_model, O_t)
else:
B = matrix_multiplication(B, T_model, O_t)
t += 1
if t > d:
# always returns a 1x2 matrix
return [normalize(i) for i in matrix_multiplication([f], B)][0]
else:
return None
# _________________________________________________________________________
def particle_filtering(e, N, HMM):
"""Particle filtering considering two states variables."""
dist = [0.5, 0.5]
# Weight Initialization
w = [0 for _ in range(N)]
# STEP 1
# Propagate one step using transition model given prior state
dist = vector_add(scalar_vector_product(dist[0], HMM.transition_model[0]),
scalar_vector_product(dist[1], HMM.transition_model[1]))
# Assign state according to probability
s = ['A' if probability(dist[0]) else 'B' for _ in range(N)]
w_tot = 0
# Calculate importance weight given evidence e
for i in range(N):
if s[i] == 'A':
# P(U|A)*P(A)
w_i = HMM.sensor_dist(e)[0] * dist[0]
if s[i] == 'B':
# P(U|B)*P(B)
w_i = HMM.sensor_dist(e)[1] * dist[1]
w[i] = w_i
w_tot += w_i
# Normalize all the weights
for i in range(N):
w[i] = w[i] / w_tot
# Limit weights to 4 digits
for i in range(N):
w[i] = float("{0:.4f}".format(w[i]))
# STEP 2
s = weighted_sample_with_replacement(N, s, w)
return s
# _________________________________________________________________________
# TODO: Implement continuous map for MonteCarlo similar to Fig25.10 from the book
class MCLmap:
"""Map which provides probability distributions and sensor readings.
Consists of discrete cells which are either an obstacle or empty"""
def __init__(self, m):
self.m = m
self.nrows = len(m)
self.ncols = len(m[0])
# list of empty spaces in the map
self.empty = [(i, j) for i in range(self.nrows) for j in range(self.ncols) if not m[i][j]]
def sample(self):
"""Returns a random kinematic state possible in the map"""
pos = random.choice(self.empty)
# 0N 1E 2S 3W
orient = random.choice(range(4))
kin_state = pos + (orient,)
return kin_state
def ray_cast(self, sensor_num, kin_state):
"""Returns distance to nearest obstacle or map boundary in the direction of sensor"""
pos = kin_state[:2]
orient = kin_state[2]
# sensor layout when orientation is 0 (towards North)
# 0
# 3R1
# 2
delta = ((sensor_num % 2 == 0) * (sensor_num - 1), (sensor_num % 2 == 1) * (2 - sensor_num))
# sensor direction changes based on orientation
for _ in range(orient):
delta = (delta[1], -delta[0])
range_count = 0
while 0 <= pos[0] < self.nrows and 0 <= pos[1] < self.nrows and not self.m[pos[0]][pos[1]]:
pos = vector_add(pos, delta)
range_count += 1
return range_count
def monte_carlo_localization(a, z, N, P_motion_sample, P_sensor, m, S=None):
"""
[Figure 25.9]
Monte Carlo localization algorithm
"""
def ray_cast(sensor_num, kin_state, m):
return m.ray_cast(sensor_num, kin_state)
M = len(z)
S_ = [0] * N
W_ = [0] * N
v = a['v']
w = a['w']
if S is None:
S = [m.sample() for _ in range(N)]
for i in range(N):
S_[i] = P_motion_sample(S[i], v, w)
W_[i] = 1
for j in range(M):
z_ = ray_cast(j, S_[i], m)
W_[i] = W_[i] * P_sensor(z[j], z_)
S = weighted_sample_with_replacement(N, S_, W_)
return S