From ead5a55c236c40afe1dea0520195b01a4c3f8b2b Mon Sep 17 00:00:00 2001 From: loribonna Date: Thu, 20 Jun 2024 00:24:22 +0200 Subject: [PATCH 01/66] Add savecheck different modes --- docs/getting_started/checkpoints.rst | 13 ++++- docs/utils/args.rst | 10 ++-- tests/test_checkpointing.py | 78 +++++++++++++++++++++------- utils/args.py | 2 +- utils/main.py | 13 ++--- utils/training.py | 11 ++-- 6 files changed, 90 insertions(+), 37 deletions(-) diff --git a/docs/getting_started/checkpoints.rst b/docs/getting_started/checkpoints.rst index dc38b9a6..bdca76b6 100644 --- a/docs/getting_started/checkpoints.rst +++ b/docs/getting_started/checkpoints.rst @@ -3,10 +3,19 @@ Load and save checkpoints Loading and saving checkpoints is handeled automatically in :ref:`module-training` by supplying the ``--savecheck`` and ``--loadcheck`` arguments. -For example, to save a checkpoint after training, simply run the following command: +For example, to save a checkpoint after the end of the last task, simply run the following command: .. code-block:: python - python utils/main.py --savecheck=1 --model=sgd --dataset=seq-cifar10 --lr=0.1 + python utils/main.py --savecheck=last --model=sgd --dataset=seq-cifar10 --lr=0.1 + +Other options for ``--savecheck`` are: + +- ``last``: save the checkpoint after **the last task**. +- ``task``: save the checkpoint after **each task**. + +.. note:: + + The ``last`` and ``task`` options have the same effect when training with ``--joint``. This will save the checkpoint in the ``checkpoints`` folder. To load the checkpoint, simply run the following command: .. code-block:: python diff --git a/docs/utils/args.rst b/docs/utils/args.rst index 528dd912..a404c616 100644 --- a/docs/utils/args.rst +++ b/docs/utils/args.rst @@ -15,7 +15,7 @@ Arguments - Default: None - Choices: mnist-360, perm-mnist, rot-mnist, seq-cifar10, seq-cifar100, seq-cifar100-224, seq-cifar100-224-rs, seq-cifar10-224, seq-cifar10-224-rs, seq-cub200, seq-imagenet-r, seq-mnist, seq-tinyimg, seq-tinyimg-r -**\-\-model** : +**\-\-model** : *Help*: Model name. - Default: None @@ -236,12 +236,12 @@ Arguments - Default: no - Choices: no, dp, ddp -**\-\-savecheck** : - *Help*: Save checkpoint? +**\-\-savecheck** : + *Help*: Save checkpoint every `task` or at the end of the training (`last`). - - Default: 0 + - Default: None - - Choices: 0, 1 + - Choices: last, task **\-\-loadcheck** : *Help*: Path of the checkpoint to load (.pt file for the specific task) diff --git a/tests/test_checkpointing.py b/tests/test_checkpointing.py index 318e7a05..55b0a13a 100644 --- a/tests/test_checkpointing.py +++ b/tests/test_checkpointing.py @@ -6,7 +6,9 @@ @pytest.mark.parametrize('model', ['sgd', 'slca', 'l2p']) -def test_checkpointing_bufferfree(model): +@pytest.mark.parametrize('savecheck', ['last', 'task']) +@pytest.mark.parametrize('joint', ['0', '1']) +def test_checkpointing_bufferfree(model, savecheck, joint): N_TASKS = 5 # cifar10 # TEST CHECKPOINT SAVE @@ -19,8 +21,10 @@ def test_checkpointing_bufferfree(model): '1e-4', '--n_epochs', '1', + '--joint', + joint, '--savecheck', - '1', + savecheck, '--batch_size', '4', '--non_verbose', @@ -35,17 +39,24 @@ def test_checkpointing_bufferfree(model): # log all outputs to file if not os.path.exists(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs')): os.mkdir(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs')) - sys.stdout = open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs', f'test_checkpoint_save.{model}.log'), 'w', encoding='utf-8') + sys.stdout = open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs', f'test_checkpoint_save.{model}.{savecheck}.{"joint" if joint=="1" else "cl"}.log'), 'w', encoding='utf-8') sys.stderr = sys.stdout main() # read output file and search for the string 'Saving checkpoint into' - with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs', f'test_checkpoint_save.{model}.log'), 'r', encoding='utf-8') as f: + with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs', f'test_checkpoint_save.{model}.{savecheck}.{"joint" if joint=="1" else "cl"}.log'), 'r', encoding='utf-8') as f: lines = f.readlines() ckpt_name = [line for line in lines if 'Saving checkpoint into' in line] assert any(ckpt_name), f'Checkpoint not saved for model {model}' - ckpt_name = ckpt_name[0].split('Saving checkpoint into')[-1].strip() + f'_{N_TASKS-1}.pt' + if joint == '0': + if savecheck == 'last': + ckpt_name = ckpt_name[0].split('Saving checkpoint into')[-1].strip() + f'_last.pt' + elif savecheck == 'task': + ckpt_name = ckpt_name[0].split('Saving checkpoint into')[-1].strip() + f'_{N_TASKS-1}.pt' + elif joint == '1': + ckpt_name = ckpt_name[0].split('Saving checkpoint into')[-1].strip() + f'_joint.pt' + ckpt_path = os.path.join('checkpoints', ckpt_name) assert os.path.exists(ckpt_path), f'Checkpoint file {ckpt_path} not found' @@ -60,6 +71,8 @@ def test_checkpointing_bufferfree(model): '1e-4', '--n_epochs', '1', + '--joint', + joint, '--loadcheck', ckpt_path, '--batch_size', @@ -76,17 +89,25 @@ def test_checkpointing_bufferfree(model): # log all outputs to file if not os.path.exists(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs')): os.mkdir(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs')) - sys.stdout = open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs', f'test_checkpoint_load.{model}.log'), 'w', encoding='utf-8') + sys.stdout = open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs', f'test_checkpoint_load.{model}.{savecheck}.{"joint" if joint=="1" else "cl"}.log'), 'w', encoding='utf-8') sys.stderr = sys.stdout main() # REMOVE CHECKPOINT FILE - for i in range(N_TASKS): - c_path = ckpt_path.split(f'_{N_TASKS-1}.pt')[0] + f'_{i}.pt' - os.remove(c_path) - - -def test_checkpointing_replay(): + if joint == '0': + if savecheck == 'task': + for i in range(N_TASKS): + c_path = ckpt_path.split(f'_{N_TASKS-1}.pt')[0] + f'_{i}.pt' + os.remove(c_path) + elif savecheck == 'last': + os.remove(ckpt_path) + elif joint == '1': + os.remove(ckpt_path) + + +@pytest.mark.parametrize('savecheck', ['last', 'task']) +@pytest.mark.parametrize('joint', ['0', '1']) +def test_checkpointing_replay(savecheck, joint): N_TASKS = 5 # cifar10 # TEST CHECKPOINT SAVE @@ -101,12 +122,14 @@ def test_checkpointing_replay(): '0.1', '--lr', '1e-4', + '--joint', + joint, '--n_epochs', '1', '--buffer_size', '50', '--savecheck', - '1', + savecheck, '--batch_size', '4', '--non_verbose', @@ -121,17 +144,24 @@ def test_checkpointing_replay(): # log all outputs to file if not os.path.exists(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs')): os.mkdir(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs')) - sys.stdout = open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs', f'test_checkpoint_save.derpp.log'), 'w', encoding='utf-8') + sys.stdout = open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs', f'test_checkpoint_save.derpp.{savecheck}.{"joint" if joint=="1" else "cl"}.log'), 'w', encoding='utf-8') sys.stderr = sys.stdout main() # read output file and search for the string 'Saving checkpoint into' - with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs', f'test_checkpoint_save.derpp.log'), 'r', encoding='utf-8') as f: + with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs', f'test_checkpoint_save.derpp.{savecheck}.{"joint" if joint=="1" else "cl"}.log'), 'r', encoding='utf-8') as f: lines = f.readlines() ckpt_name = [line for line in lines if 'Saving checkpoint into' in line] assert any(ckpt_name), f'Checkpoint not saved for derpp' - ckpt_name = ckpt_name[0].split('Saving checkpoint into')[-1].strip() + f'_{N_TASKS-1}.pt' + if joint == '0': + if savecheck == 'last': + ckpt_name = ckpt_name[0].split('Saving checkpoint into')[-1].strip() + f'_last.pt' + elif savecheck == 'task': + ckpt_name = ckpt_name[0].split('Saving checkpoint into')[-1].strip() + f'_{N_TASKS-1}.pt' + elif joint == '1': + ckpt_name = ckpt_name[0].split('Saving checkpoint into')[-1].strip() + f'_joint.pt' + ckpt_path = os.path.join('checkpoints', ckpt_name) assert os.path.exists(ckpt_path), f'Checkpoint file {ckpt_path} not found' @@ -150,6 +180,8 @@ def test_checkpointing_replay(): '1e-4', '--n_epochs', '1', + '--joint', + joint, '--buffer_size', '50', '--loadcheck', @@ -168,11 +200,17 @@ def test_checkpointing_replay(): # log all outputs to file if not os.path.exists(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs')): os.mkdir(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs')) - sys.stdout = open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs', f'test_checkpoint_load.derpp.log'), 'w', encoding='utf-8') + sys.stdout = open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs', f'test_checkpoint_load.derpp.{savecheck}.{"joint" if joint=="1" else "cl"}.log'), 'w', encoding='utf-8') sys.stderr = sys.stdout main() # REMOVE CHECKPOINT FILE - for i in range(N_TASKS): - c_path = ckpt_path.split(f'_{N_TASKS-1}.pt')[0] + f'_{i}.pt' - os.remove(c_path) + if joint == '0': + if savecheck == 'task': + for i in range(N_TASKS): + c_path = ckpt_path.split(f'_{N_TASKS-1}.pt')[0] + f'_{i}.pt' + os.remove(c_path) + elif savecheck == 'last': + os.remove(ckpt_path) + elif joint == '1': + os.remove(ckpt_path) diff --git a/utils/args.py b/utils/args.py index c102f8eb..3a47b33b 100644 --- a/utils/args.py +++ b/utils/args.py @@ -119,7 +119,7 @@ def add_management_args(parser: ArgumentParser) -> None: '2: Use BF16, if available.' '3: Use BF16 and `torch.compile`. BEWARE: torch.compile may break your code if you change the model after the first run! Use with caution.') mng_group.add_argument('--distributed', type=str, default='no', choices=['no', 'dp', 'ddp'], help='Enable distributed training?') - mng_group.add_argument('--savecheck', default=0, choices=[0, 1], type=int, help='Save checkpoint?') + mng_group.add_argument('--savecheck', choices=['last', 'task'], type=str, help='Save checkpoint every `task` or at the end of the training (`last`).') mng_group.add_argument('--loadcheck', type=str, default=None, help='Path of the checkpoint to load (.pt file for the specific task)') mng_group.add_argument('--ckpt_name', type=str, required=False, help='(optional) checkpoint save name.') mng_group.add_argument('--start_from', type=int, default=None, help="Task to start from") diff --git a/utils/main.py b/utils/main.py index 33415d7b..42dee14a 100644 --- a/utils/main.py +++ b/utils/main.py @@ -115,15 +115,20 @@ def parse_args(): if args.seed is not None: set_random_seed(args.seed) + # Add uuid, timestamp and hostname for logging + args.conf_jobnum = str(uuid.uuid4()) + args.conf_timestamp = str(datetime.datetime.now()) + args.conf_host = socket.gethostname() + if args.savecheck: assert args.inference_only == 0, "Should not save checkpoint in inference only mode" if not os.path.isdir('checkpoints'): create_if_not_exists("checkpoints") now = time.strftime("%Y%m%d-%H%M%S") + uid = args.conf_jobnum.split('-')[0] extra_ckpt_name = "" if args.ckpt_name is None else f"{args.ckpt_name}_" - args.ckpt_name = f"{extra_ckpt_name}{args.model}_{args.dataset}_{args.buffer_size if hasattr(args, 'buffer_size') else 0}_{args.n_epochs}_{str(now)}" - args.ckpt_name_replace = f"{extra_ckpt_name}{args.model}_{args.dataset}_{'{}'}_{args.buffer_size if hasattr(args, 'buffer_size') else 0}__{args.n_epochs}_{str(now)}" + args.ckpt_name = f"{extra_ckpt_name}{args.model}_{args.dataset}_{args.buffer_size if hasattr(args, 'buffer_size') else 0}_{args.n_epochs}_{str(now)}_{uid}" print("Saving checkpoint into", args.ckpt_name, file=sys.stderr) if args.joint: @@ -163,10 +168,6 @@ def main(args=None): if not torch.cuda.is_bf16_supported(): raise NotImplementedError('BF16 is not supported on this machine.') - # Add uuid, timestamp and hostname for logging - args.conf_jobnum = str(uuid.uuid4()) - args.conf_timestamp = str(datetime.datetime.now()) - args.conf_host = socket.gethostname() dataset = get_dataset(args) if args.fitting_mode == 'epochs' and args.n_epochs is None and isinstance(dataset, ContinualDataset): diff --git a/utils/training.py b/utils/training.py index 46815172..03abc574 100644 --- a/utils/training.py +++ b/utils/training.py @@ -328,9 +328,14 @@ def train(model: ContinualModel, dataset: ContinualDataset, if 'buffer_size' in model.args: save_obj['buffer'] = deepcopy(model.buffer).to('cpu') - # Saving model checkpoint - checkpoint_name = f'checkpoints/{args.ckpt_name}_joint.pt' if args.joint else f'checkpoints/{args.ckpt_name}_{t}.pt' - torch.save(save_obj, checkpoint_name) + # Saving model checkpoint for the current task + checkpoint_name = None + if args.savecheck == 'task': + checkpoint_name = f'checkpoints/{args.ckpt_name}_joint.pt' if args.joint else f'checkpoints/{args.ckpt_name}_{t}.pt' + elif args.savecheck == 'last' and t == end_task - 1: + checkpoint_name = f'checkpoints/{args.ckpt_name}_joint.pt' if args.joint else f'checkpoints/{args.ckpt_name}_last.pt' + if checkpoint_name is not None: + torch.save(save_obj, checkpoint_name) del progress_bar From c1f3e94dfe0152744f6da324eff5891f3eb32e8c Mon Sep 17 00:00:00 2001 From: lorib Date: Fri, 28 Jun 2024 13:59:14 +0200 Subject: [PATCH 02/66] Add test environment initialization and debug environment. Minor fixes. Add tests for wandb --- tests/test_bic.py | 2 ++ tests/test_ccic.py | 4 ++- tests/test_checkpointing.py | 3 +++ tests/test_coda.py | 4 ++- tests/test_codaprompt.py | 4 ++- tests/test_code_optimization.py | 3 +++ tests/test_cssl_support.py | 4 ++- tests/test_datasets.py | 5 +++- tests/test_der_example.py | 5 +++- tests/test_dualprompt.py | 4 ++- tests/test_er_example.py | 4 ++- tests/test_fdr.py | 2 ++ tests/test_gdumb.py | 3 +++ tests/test_gem.py | 2 ++ tests/test_hal.py | 2 ++ tests/test_icarl.py | 2 ++ tests/test_l2p.py | 4 ++- tests/test_lider.py | 5 ++++ tests/test_lucir.py | 2 ++ tests/test_pnn.py | 2 ++ tests/test_regularization.py | 4 +++ tests/test_slca.py | 2 ++ tests/test_twf.py | 3 +++ tests/test_validation.py | 7 +++-- tests/test_wandb.py | 45 +++++++++++++++++++++++++++++++++ tests/test_xder.py | 3 ++- utils/loggers.py | 13 +++++++--- utils/main.py | 17 ++++++++++++- utils/stats.py | 2 ++ utils/test_utils.py | 8 ++++++ utils/training.py | 2 +- 31 files changed, 154 insertions(+), 18 deletions(-) create mode 100644 tests/test_wandb.py create mode 100644 utils/test_utils.py diff --git a/tests/test_bic.py b/tests/test_bic.py index 8a20cd00..91b929b3 100644 --- a/tests/test_bic.py +++ b/tests/test_bic.py @@ -2,9 +2,11 @@ import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from utils.main import main +from utils.test_utils import init_test_environ import pytest +@init_test_environ @pytest.mark.parametrize('distill_after_bic', [0, 1]) def test_bic(distill_after_bic): sys.argv = ['mammoth', diff --git a/tests/test_ccic.py b/tests/test_ccic.py index 9b6ef49a..07898bc7 100644 --- a/tests/test_ccic.py +++ b/tests/test_ccic.py @@ -1,10 +1,12 @@ import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) -from utils.main import main, parse_args +from utils.main import main +from utils.test_utils import init_test_environ import pytest +@init_test_environ @pytest.mark.parametrize('dataset', ['seq-cifar10']) @pytest.mark.parametrize('label_perc', ['0.1', '0.08']) def test_ccic(dataset, label_perc): diff --git a/tests/test_checkpointing.py b/tests/test_checkpointing.py index 55b0a13a..2524cc0f 100644 --- a/tests/test_checkpointing.py +++ b/tests/test_checkpointing.py @@ -2,9 +2,11 @@ import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from utils.main import main +from utils.test_utils import init_test_environ import pytest +@init_test_environ @pytest.mark.parametrize('model', ['sgd', 'slca', 'l2p']) @pytest.mark.parametrize('savecheck', ['last', 'task']) @pytest.mark.parametrize('joint', ['0', '1']) @@ -105,6 +107,7 @@ def test_checkpointing_bufferfree(model, savecheck, joint): os.remove(ckpt_path) +@init_test_environ @pytest.mark.parametrize('savecheck', ['last', 'task']) @pytest.mark.parametrize('joint', ['0', '1']) def test_checkpointing_replay(savecheck, joint): diff --git a/tests/test_coda.py b/tests/test_coda.py index 1066e869..7789ce93 100644 --- a/tests/test_coda.py +++ b/tests/test_coda.py @@ -1,10 +1,12 @@ import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) -from utils.main import main, parse_args +from utils.main import main +from utils.test_utils import init_test_environ import pytest +@init_test_environ @pytest.mark.parametrize('dataset', ['seq-cifar100-224', 'seq-imagenet-r']) def test_coda(dataset): sys.argv = ['mammoth', diff --git a/tests/test_codaprompt.py b/tests/test_codaprompt.py index fef858e4..fcc8b4a5 100644 --- a/tests/test_codaprompt.py +++ b/tests/test_codaprompt.py @@ -1,10 +1,12 @@ import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) -from utils.main import main, parse_args +from utils.main import main +from utils.test_utils import init_test_environ import pytest +@init_test_environ @pytest.mark.parametrize('dataset', ['seq-cifar10-224', 'seq-imagenet-r']) @pytest.mark.parametrize('code_optimization', [0, 1]) def test_codaprompt(dataset, code_optimization): diff --git a/tests/test_code_optimization.py b/tests/test_code_optimization.py index eb03a552..42a0ba87 100644 --- a/tests/test_code_optimization.py +++ b/tests/test_code_optimization.py @@ -2,9 +2,11 @@ import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from utils.main import main +from utils.test_utils import init_test_environ import pytest +@init_test_environ @pytest.mark.parametrize('code_optimization', [0, 1, 2, 3]) def test_code_optim_erace(code_optimization): sys.argv = ['mammoth', @@ -39,6 +41,7 @@ def test_code_optim_erace(code_optimization): main() +@init_test_environ @pytest.mark.parametrize('code_optimization', [0, 1, 2, 3]) def test_code_optimization_slca(code_optimization): sys.argv = ['mammoth', diff --git a/tests/test_cssl_support.py b/tests/test_cssl_support.py index 47ea91b6..b0a6eb9e 100644 --- a/tests/test_cssl_support.py +++ b/tests/test_cssl_support.py @@ -1,10 +1,12 @@ import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) -from utils.main import main, parse_args +from utils.main import main +from utils.test_utils import init_test_environ import pytest +@init_test_environ @pytest.mark.parametrize('dataset', ['seq-cifar10', 'seq-tinyimg']) @pytest.mark.parametrize('label_perc', ['0.1', '0.08', '0.5', '1']) def test_cssl_support(dataset, label_perc): diff --git a/tests/test_datasets.py b/tests/test_datasets.py index adc6bfb1..d81b6306 100644 --- a/tests/test_datasets.py +++ b/tests/test_datasets.py @@ -1,10 +1,12 @@ import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) -from utils.main import main, parse_args +from utils.main import main +from utils.test_utils import init_test_environ import pytest +@init_test_environ @pytest.mark.parametrize('dataset', ['seq-mnist', 'seq-cifar10', 'seq-cifar100', 'seq-tinyimg', 'rot-mnist', 'perm-mnist', 'mnist-360', 'seq-cifar100-224', 'seq-cifar10-224', 'seq-cifar100-224-rs', @@ -47,6 +49,7 @@ def test_datasets(dataset): main() +@init_test_environ def test_dataset_workers(): sys.argv = ['mammoth', '--model', diff --git a/tests/test_der_example.py b/tests/test_der_example.py index 048b3f0c..bbd60cb5 100644 --- a/tests/test_der_example.py +++ b/tests/test_der_example.py @@ -1,11 +1,13 @@ import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) -from utils.main import main, parse_args +from utils.main import main +from utils.test_utils import init_test_environ import pytest @pytest.mark.parametrize('dataset', ['seq-mnist', 'seq-cifar10', 'rot-mnist', 'perm-mnist', 'mnist-360', 'seq-cifar100-224']) +@init_test_environ def test_der(dataset): sys.argv = ['mammoth', '--model', @@ -38,6 +40,7 @@ def test_der(dataset): main() +@init_test_environ @pytest.mark.parametrize('dataset', ['seq-mnist', 'seq-cifar10', 'rot-mnist', 'perm-mnist', 'mnist-360', 'seq-cifar100-224']) def test_derpp(dataset): sys.argv = ['mammoth', diff --git a/tests/test_dualprompt.py b/tests/test_dualprompt.py index a9963c70..e045d04f 100644 --- a/tests/test_dualprompt.py +++ b/tests/test_dualprompt.py @@ -1,10 +1,12 @@ import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) -from utils.main import main, parse_args +from utils.main import main +from utils.test_utils import init_test_environ import pytest +@init_test_environ def test_dualprompt(): sys.argv = ['mammoth', '--model', diff --git a/tests/test_er_example.py b/tests/test_er_example.py index c09a8ab1..62db0a2a 100644 --- a/tests/test_er_example.py +++ b/tests/test_er_example.py @@ -1,10 +1,12 @@ import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) -from utils.main import main, parse_args +from utils.main import main +from utils.test_utils import init_test_environ import pytest +@init_test_environ @pytest.mark.parametrize('dataset', ['seq-mnist', 'seq-cifar10', 'rot-mnist', 'perm-mnist', 'mnist-360']) def test_er(dataset): sys.argv = ['mammoth', diff --git a/tests/test_fdr.py b/tests/test_fdr.py index 5950d36f..14a1bba6 100644 --- a/tests/test_fdr.py +++ b/tests/test_fdr.py @@ -2,9 +2,11 @@ import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from utils.main import main +from utils.test_utils import init_test_environ import pytest +@init_test_environ def test_fdr(): sys.argv = ['mammoth', '--model', diff --git a/tests/test_gdumb.py b/tests/test_gdumb.py index fabbf495..0e6afabf 100644 --- a/tests/test_gdumb.py +++ b/tests/test_gdumb.py @@ -2,9 +2,11 @@ import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from utils.main import main +from utils.test_utils import init_test_environ import pytest +@init_test_environ def test_gdumb_cutmix(): sys.argv = ['mammoth', '--model', @@ -40,6 +42,7 @@ def test_gdumb_cutmix(): main() +@init_test_environ def test_gdumb(): sys.argv = ['mammoth', '--model', diff --git a/tests/test_gem.py b/tests/test_gem.py index 78a7d076..f5ac47c3 100644 --- a/tests/test_gem.py +++ b/tests/test_gem.py @@ -2,6 +2,7 @@ import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from utils.main import main +from utils.test_utils import init_test_environ import pytest @@ -9,6 +10,7 @@ def unsupport_quadprog(): return os.name == 'nt' +@init_test_environ @pytest.mark.skipif(unsupport_quadprog(), reason='`quadprog` not supported on Windows. Good luck.') @pytest.mark.parametrize('dataset', ['seq-cifar10', 'seq-mnist']) @pytest.mark.parametrize('model', ['gem', 'agem', 'agem_r']) diff --git a/tests/test_hal.py b/tests/test_hal.py index c94185cc..ddc21d87 100644 --- a/tests/test_hal.py +++ b/tests/test_hal.py @@ -2,9 +2,11 @@ import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from utils.main import main +from utils.test_utils import init_test_environ import pytest +@init_test_environ @pytest.mark.parametrize('dataset', ['seq-cifar10', 'seq-mnist']) def test_hal(dataset): sys.argv = ['mammoth', diff --git a/tests/test_icarl.py b/tests/test_icarl.py index 051f3528..3f22dd54 100644 --- a/tests/test_icarl.py +++ b/tests/test_icarl.py @@ -2,9 +2,11 @@ import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from utils.main import main +from utils.test_utils import init_test_environ import pytest +@init_test_environ @pytest.mark.parametrize('dataset', ['seq-cifar10', 'seq-mnist']) def test_icarl(dataset): sys.argv = ['mammoth', diff --git a/tests/test_l2p.py b/tests/test_l2p.py index 706081aa..d15ca098 100644 --- a/tests/test_l2p.py +++ b/tests/test_l2p.py @@ -1,10 +1,12 @@ import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) -from utils.main import main, parse_args +from utils.main import main +from utils.test_utils import init_test_environ import pytest +@init_test_environ @pytest.mark.parametrize('dataset', ['seq-cifar100-224', 'seq-imagenet-r']) def test_l2p(dataset): sys.argv = ['mammoth', diff --git a/tests/test_lider.py b/tests/test_lider.py index 2e590d97..85f6fa64 100644 --- a/tests/test_lider.py +++ b/tests/test_lider.py @@ -2,9 +2,11 @@ import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from utils.main import main +from utils.test_utils import init_test_environ import pytest +@init_test_environ def test_gdumb_lider(): sys.argv = ['mammoth', '--model', @@ -40,6 +42,7 @@ def test_gdumb_lider(): main() +@init_test_environ def test_icarl_lider(): sys.argv = ['mammoth', '--model', @@ -75,6 +78,7 @@ def test_icarl_lider(): main() +@init_test_environ def test_erace_lider(): sys.argv = ['mammoth', '--model', @@ -110,6 +114,7 @@ def test_erace_lider(): main() +@init_test_environ def test_derpp_lider(): sys.argv = ['mammoth', '--model', diff --git a/tests/test_lucir.py b/tests/test_lucir.py index d524ec49..791bf591 100644 --- a/tests/test_lucir.py +++ b/tests/test_lucir.py @@ -2,9 +2,11 @@ import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from utils.main import main +from utils.test_utils import init_test_environ import pytest +@init_test_environ @pytest.mark.parametrize('dataset', ['seq-cifar10', 'seq-mnist']) @pytest.mark.parametrize('imprint_weights', [0, 1]) def test_lucir(dataset, imprint_weights): diff --git a/tests/test_pnn.py b/tests/test_pnn.py index e8d050b3..0a6b8b4d 100644 --- a/tests/test_pnn.py +++ b/tests/test_pnn.py @@ -2,9 +2,11 @@ import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from utils.main import main +from utils.test_utils import init_test_environ import pytest +@init_test_environ @pytest.mark.parametrize('dataset', ['seq-cifar10', 'seq-mnist']) def test_pnn(dataset): sys.argv = ['mammoth', diff --git a/tests/test_regularization.py b/tests/test_regularization.py index df2b5edd..7fe28836 100644 --- a/tests/test_regularization.py +++ b/tests/test_regularization.py @@ -2,9 +2,11 @@ import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from utils.main import main +from utils.test_utils import init_test_environ import pytest +@init_test_environ @pytest.mark.parametrize('dataset', ['seq-cifar10', 'seq-mnist']) @pytest.mark.parametrize('model', ['ewc_on']) def test_ewc(dataset, model): @@ -40,6 +42,7 @@ def test_ewc(dataset, model): main() +@init_test_environ @pytest.mark.parametrize('dataset', ['seq-cifar10', 'seq-mnist']) @pytest.mark.parametrize('model', ['si']) def test_si(dataset, model): @@ -75,6 +78,7 @@ def test_si(dataset, model): main() +@init_test_environ @pytest.mark.parametrize('dataset', ['seq-cifar10', 'seq-mnist']) @pytest.mark.parametrize('model', ['lwf_mc', 'lwf']) def test_lwf(dataset, model): diff --git a/tests/test_slca.py b/tests/test_slca.py index 456985dc..130f245e 100644 --- a/tests/test_slca.py +++ b/tests/test_slca.py @@ -2,9 +2,11 @@ import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from utils.main import main +from utils.test_utils import init_test_environ import pytest +@init_test_environ def test_slca(): sys.argv = ['mammoth', '--model', diff --git a/tests/test_twf.py b/tests/test_twf.py index 04df890c..9650ecb0 100644 --- a/tests/test_twf.py +++ b/tests/test_twf.py @@ -2,9 +2,11 @@ import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from utils.main import main +from utils.test_utils import init_test_environ import pytest +@init_test_environ @pytest.mark.parametrize('dataset', ['seq-cifar100', 'seq-tinyimg']) # , 'seq-cub200' @pytest.mark.parametrize('resize_maps', ['0', '1']) def test_twf_random_init(dataset, resize_maps): @@ -54,6 +56,7 @@ def test_twf_random_init(dataset, resize_maps): main() +@init_test_environ @pytest.mark.parametrize(('dataset', 'loadcheck'), [('seq-cifar100', 'https://unimore365-my.sharepoint.com/:u:/g/personal/215580_unimore_it/EeWEOSls505AsMCTXAxWoLUBmeIjCiplFl40zDOCmB_lEw?e=Izv0jh'), ('seq-cub200', 'https://unimore365-my.sharepoint.com/:u:/g/personal/215580_unimore_it/EV7I5BpJvURIhMMk95r3x5YBAZKch-NPFEJ9hhPQghcWCw?e=dt8wp3'), diff --git a/tests/test_validation.py b/tests/test_validation.py index 3e2b055c..341fa628 100644 --- a/tests/test_validation.py +++ b/tests/test_validation.py @@ -1,12 +1,14 @@ import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) -from utils.main import main, parse_args +from utils.main import main +from utils.test_utils import init_test_environ import pytest +@init_test_environ @pytest.mark.parametrize('validation', ['0.2','0','20']) @pytest.mark.parametrize('validation_mode', ['complete','current']) -def test_validation_classil( validation, validation_mode): +def test_validation_classil(validation, validation_mode): sys.argv = ['mammoth', '--model', 'sgd', @@ -40,6 +42,7 @@ def test_validation_classil( validation, validation_mode): main() +@init_test_environ @pytest.mark.parametrize('dataset', ['mnist-360','perm-mnist']) @pytest.mark.parametrize('validation', ['0.2','0','20']) @pytest.mark.parametrize('validation_mode', ['complete']) diff --git a/tests/test_wandb.py b/tests/test_wandb.py new file mode 100644 index 00000000..35bedd25 --- /dev/null +++ b/tests/test_wandb.py @@ -0,0 +1,45 @@ +import os +import sys +sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) +from utils.main import main +from utils.test_utils import init_test_environ +import pytest + +@init_test_environ +def test_wandb_log_erace(): + sys.argv = ['mammoth', + '--model', + 'er-ace', + '--buffer_size', + '50', + '--dataset', + 'seq-cifar10', + '--lr', + '1e-3', + '--n_epochs', + '1', + '--batch_size', + '4', + '--non_verbose', + '1', + '--num_workers', + '0', + '--seed', + '0', + '--debug_mode', + '1', + '--wandb_project', + 'mammoth-test', + '--wandb_entity', + 'mammoth-test'] + + os.environ['WANDB_MODE'] = 'disabled' + + log_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs', f'test_wandb_log_erace.log') + + # log all outputs to file + if not os.path.exists(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs')): + os.mkdir(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs')) + sys.stdout = open(log_path, 'w', encoding='utf-8') + sys.stderr = sys.stdout + main() diff --git a/tests/test_xder.py b/tests/test_xder.py index f01d06bb..e449c9df 100644 --- a/tests/test_xder.py +++ b/tests/test_xder.py @@ -2,9 +2,10 @@ import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from utils.main import main +from utils.test_utils import init_test_environ import pytest - +@init_test_environ @pytest.mark.parametrize('model', ['xder', 'xder_rpc', 'xder_ce']) def test_xder(model): sys.argv = ['mammoth', diff --git a/utils/loggers.py b/utils/loggers.py index d048bd75..3d50db6d 100644 --- a/utils/loggers.py +++ b/utils/loggers.py @@ -43,10 +43,15 @@ def log_accs(args, logger, accs, t, setting, epoch=None, prefix="RESULT"): if not args.nowand: postfix = "" if epoch is None else f"_epoch_{epoch}" - d2 = {f'{prefix}_class_mean_accs{postfix}': mean_acc[0], f'{prefix}_task_mean_accs{postfix}': mean_acc[1], - **{f'{prefix}_class_acc_{i}{postfix}': a for i, a in enumerate(accs[0])}, - **{f'{prefix}_task_acc_{i}{postfix}': a for i, a in enumerate(accs[1])}, - 'Task': t} + if isinstance(mean_acc, float): # domain or gcl + d2 = {f'{prefix}_domain_mean_accs{postfix}': mean_acc, + **{f'{prefix}_domain_acc_{i}{postfix}': a for i, a in enumerate(accs[0])}, + 'Task': t} + else: + d2 = {f'{prefix}_class_mean_accs{postfix}': mean_acc[0], f'{prefix}_task_mean_accs{postfix}': mean_acc[1], + **{f'{prefix}_class_acc_{i}{postfix}': a for i, a in enumerate(accs[0])}, + **{f'{prefix}_task_acc_{i}{postfix}': a for i, a in enumerate(accs[1])}, + 'Task': t} wandb.log(d2) diff --git a/utils/main.py b/utils/main.py index 42dee14a..5c83929f 100644 --- a/utils/main.py +++ b/utils/main.py @@ -17,9 +17,19 @@ # needed (don't change it) import numpy # noqa +import os + +try: + if os.getenv('MAMMOTH_TEST', '0') == '0': + from dotenv import load_dotenv + load_dotenv() + else: + print("Running in test mode. Ignoring .env file.") +except ImportError: + print("Warning: python-dotenv not installed. Ignoring .env file.", file=sys.stderr) + import time import importlib -import os import socket import sys import datetime @@ -222,6 +232,11 @@ def main(args=None): print('Debug mode enabled: running only a few forward steps per epoch with W&B disabled.') args.nowand = 1 + if args.wandb_entity is None: + args.wandb_entity = os.getenv('WANDB_ENTITY', None) + if args.wandb_project is None: + args.wandb_project = os.getenv('WANDB_PROJECT', None) + if args.wandb_entity is None or args.wandb_project is None: print('Warning: wandb_entity and wandb_project not set. Disabling wandb.') args.nowand = 1 diff --git a/utils/stats.py b/utils/stats.py index d3d36a68..9b05d7cb 100644 --- a/utils/stats.py +++ b/utils/stats.py @@ -137,6 +137,8 @@ def update_stats(self, cpu_res, gpu_res): self.max_cpu_res = max(self.max_cpu_res, cpu_res) self.max_gpu_res = {g: max(self.max_gpu_res[g], g_res) for g, g_res in enumerate(gpu_res)} + gpu_res = {g: g_res for g, g_res in enumerate(gpu_res)} + if self.logger is not None: self.logger.log_system_stats(cpu_res, gpu_res) diff --git a/utils/test_utils.py b/utils/test_utils.py new file mode 100644 index 00000000..ed754326 --- /dev/null +++ b/utils/test_utils.py @@ -0,0 +1,8 @@ +import os +import decorator + +def init_test_environ(func): + def wrapper(func, *args, **kwargs): + os.environ['MAMMOTH_TEST'] = '1' + return func(*args, **kwargs) + return decorator.decorator(wrapper, func) \ No newline at end of file diff --git a/utils/training.py b/utils/training.py index 03abc574..ca626b45 100644 --- a/utils/training.py +++ b/utils/training.py @@ -120,7 +120,7 @@ def initialize_wandb(args: Namespace) -> None: assert wandb is not None, "Wandb not installed, please install it or run without wandb" run_name = args.wandb_name if args.wandb_name is not None else args.model - run_id = random_id(5) + run_id = args.conf_jobnum.split('-')[0] name = f'{run_name}_{run_id}' wandb.init(project=args.wandb_project, entity=args.wandb_entity, config=vars(args), name=name) args.wandb_url = wandb.run.get_url() From 2628c43484a5739b877bc33fb4ac3b4958e3100e Mon Sep 17 00:00:00 2001 From: lorib Date: Fri, 28 Jun 2024 17:30:49 +0200 Subject: [PATCH 03/66] minor updates --- utils/training.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/utils/training.py b/utils/training.py index ca626b45..29050061 100644 --- a/utils/training.py +++ b/utils/training.py @@ -5,6 +5,7 @@ from copy import deepcopy import math +import os import sys from argparse import Namespace from typing import Iterable, Tuple @@ -122,7 +123,8 @@ def initialize_wandb(args: Namespace) -> None: run_id = args.conf_jobnum.split('-')[0] name = f'{run_name}_{run_id}' - wandb.init(project=args.wandb_project, entity=args.wandb_entity, config=vars(args), name=name) + mode = 'disabled' if os.getenv('MAMMOTH_TEST', '0') == '1' else os.getenv('WANDB_MODE', 'online') + wandb.init(project=args.wandb_project, entity=args.wandb_entity, config=vars(args), name=name, mode=mode) args.wandb_url = wandb.run.get_url() From 0529fb3fb118f5b45f04adb31f14c8872a2b02fe Mon Sep 17 00:00:00 2001 From: lorib Date: Tue, 2 Jul 2024 14:06:01 +0200 Subject: [PATCH 04/66] Add initial stuff for starprompt --- datasets/perm_mnist.py | 11 +- datasets/rot_mnist.py | 12 +- datasets/seq_cifar10.py | 10 +- datasets/seq_cifar100.py | 10 +- datasets/seq_cifar100_224.py | 11 +- datasets/seq_cifar100_224_rs.py | 11 +- datasets/seq_cifar10_224.py | 11 +- datasets/seq_cifar10_224_rs.py | 11 +- datasets/seq_cub200.py | 213 ++++++- datasets/seq_imagenet_r.py | 13 +- datasets/seq_mnist.py | 11 +- datasets/seq_tinyimagenet.py | 212 ++++++- datasets/utils/continual_dataset.py | 28 +- datasets/utils/validation.py | 6 +- docs/datasets/index.rst | 2 + models/clip.py | 113 ++++ models/coda_prompt_utils/vit.py | 1 - models/first_stage_starprompt.py | 133 +++++ models/l2p.py | 11 +- models/second_stage_starprompt.py | 244 ++++++++ models/star_prompt_utils/first_stage_model.py | 236 ++++++++ models/star_prompt_utils/generative_replay.py | 521 ++++++++++++++++++ .../star_prompt_utils/second_stage_model.py | 244 ++++++++ .../star_prompt_utils/vision_transformer.py | 102 ++++ models/utils/continual_model.py | 52 +- tests/test_scheduler.py | 22 +- tests/test_validation.py | 11 +- utils/stats.py | 1 + 28 files changed, 2212 insertions(+), 51 deletions(-) create mode 100644 models/clip.py create mode 100644 models/first_stage_starprompt.py create mode 100644 models/second_stage_starprompt.py create mode 100644 models/star_prompt_utils/first_stage_model.py create mode 100644 models/star_prompt_utils/generative_replay.py create mode 100644 models/star_prompt_utils/second_stage_model.py create mode 100644 models/star_prompt_utils/vision_transformer.py diff --git a/datasets/perm_mnist.py b/datasets/perm_mnist.py index 2187d5ba..702f378b 100644 --- a/datasets/perm_mnist.py +++ b/datasets/perm_mnist.py @@ -14,7 +14,7 @@ from backbone.MNISTMLP import MNISTMLP from datasets.transforms.permutation import Permutation -from datasets.utils.continual_dataset import ContinualDataset, store_masked_loaders +from datasets.utils.continual_dataset import ContinualDataset, fix_class_names_order, store_masked_loaders from utils.conf import base_path from datasets.utils import set_default_from_args @@ -112,3 +112,12 @@ def get_batch_size(self) -> int: @set_default_from_args('n_epochs') def get_epochs(self): return 1 + + def get_class_names(self): + if self.class_names is not None: + return self.class_names + classes = MNIST(base_path() + 'MNIST', train=True, download=True).classes + classes = [c.split('-')[1].strip() for c in classes] + classes = fix_class_names_order(classes, self.args) + self.class_names = classes + return self.class_names diff --git a/datasets/rot_mnist.py b/datasets/rot_mnist.py index a346a3bc..1b8c43ec 100644 --- a/datasets/rot_mnist.py +++ b/datasets/rot_mnist.py @@ -9,9 +9,10 @@ from backbone.MNISTMLP import MNISTMLP from datasets.perm_mnist import MyMNIST, MNIST from datasets.transforms.rotation import Rotation -from datasets.utils.continual_dataset import ContinualDataset, store_masked_loaders +from datasets.utils.continual_dataset import ContinualDataset, fix_class_names_order, store_masked_loaders from utils.conf import base_path from datasets.utils import set_default_from_args +from torchvision.datasets import MNIST class RotatedMNIST(ContinualDataset): @@ -72,3 +73,12 @@ def get_batch_size(self) -> int: @set_default_from_args('n_epochs') def get_epochs(self): return 1 + + def get_class_names(self): + if self.class_names is not None: + return self.class_names + classes = MNIST(base_path() + 'MNIST', train=True, download=True).classes + classes = [c.split('-')[1].strip() for c in classes] + classes = fix_class_names_order(classes, self.args) + self.class_names = classes + return self.class_names diff --git a/datasets/seq_cifar10.py b/datasets/seq_cifar10.py index 5705cd92..466717f9 100644 --- a/datasets/seq_cifar10.py +++ b/datasets/seq_cifar10.py @@ -14,7 +14,7 @@ from backbone.ResNetBlock import resnet18 from datasets.seq_tinyimagenet import base_path from datasets.transforms.denormalization import DeNormalize -from datasets.utils.continual_dataset import (ContinualDataset, +from datasets.utils.continual_dataset import (ContinualDataset, fix_class_names_order, store_masked_loaders) from datasets.utils import set_default_from_args @@ -143,3 +143,11 @@ def get_epochs(self): @set_default_from_args('batch_size') def get_batch_size(self): return 32 + + def get_class_names(self): + if self.class_names is not None: + return self.class_names + classes = CIFAR10(base_path() + 'CIFAR10', train=True, download=True).classes + classes = fix_class_names_order(classes, self.args) + self.class_names = classes + return self.class_names diff --git a/datasets/seq_cifar100.py b/datasets/seq_cifar100.py index 451f9838..695398e1 100644 --- a/datasets/seq_cifar100.py +++ b/datasets/seq_cifar100.py @@ -14,7 +14,7 @@ from backbone.ResNetBlock import resnet18 from datasets.transforms.denormalization import DeNormalize -from datasets.utils.continual_dataset import (ContinualDataset, +from datasets.utils.continual_dataset import (ContinualDataset, fix_class_names_order, store_masked_loaders) from utils.conf import base_path from datasets.utils import set_default_from_args @@ -158,3 +158,11 @@ def get_scheduler(model, args: Namespace, reload_optim=True) -> torch.optim.lr_s model.opt = model.get_optimizer() scheduler = torch.optim.lr_scheduler.MultiStepLR(model.opt, [35, 45], gamma=0.1, verbose=False) return scheduler + + def get_class_names(self): + if self.class_names is not None: + return self.class_names + classes = CIFAR100(base_path() + 'CIFAR100', train=True, download=True).classes + classes = fix_class_names_order(classes, self.args) + self.class_names = classes + return self.class_names diff --git a/datasets/seq_cifar100_224.py b/datasets/seq_cifar100_224.py index b47758ac..a51d9fc1 100644 --- a/datasets/seq_cifar100_224.py +++ b/datasets/seq_cifar100_224.py @@ -5,11 +5,12 @@ import torch import torch.nn.functional as F import torchvision.transforms as transforms +from torchvision.datasets import CIFAR100 from backbone.vit import vit_base_patch16_224_prompt_prototype from datasets.seq_cifar100 import TCIFAR100, MyCIFAR100 from datasets.transforms.denormalization import DeNormalize -from datasets.utils.continual_dataset import (ContinualDataset, +from datasets.utils.continual_dataset import (ContinualDataset, fix_class_names_order, store_masked_loaders) from utils.conf import base_path from datasets.utils import set_default_from_args @@ -94,3 +95,11 @@ def get_epochs(self): @set_default_from_args('batch_size') def get_batch_size(self): return 128 + + def get_class_names(self): + if self.class_names is not None: + return self.class_names + classes = CIFAR100(base_path() + 'CIFAR100', train=True, download=True).classes + classes = fix_class_names_order(classes, self.args) + self.class_names = classes + return self.class_names diff --git a/datasets/seq_cifar100_224_rs.py b/datasets/seq_cifar100_224_rs.py index 366ba966..213abfdf 100644 --- a/datasets/seq_cifar100_224_rs.py +++ b/datasets/seq_cifar100_224_rs.py @@ -3,11 +3,12 @@ import torch import torch.nn.functional as F import torchvision.transforms as transforms +from torchvision.datasets import CIFAR100 from backbone.ResNetBottleneck import resnet50 from datasets.seq_cifar100 import TCIFAR100, MyCIFAR100 from datasets.transforms.denormalization import DeNormalize -from datasets.utils.continual_dataset import (ContinualDataset, +from datasets.utils.continual_dataset import (ContinualDataset, fix_class_names_order, store_masked_loaders) from utils.conf import base_path from datasets.utils import set_default_from_args @@ -93,3 +94,11 @@ def get_epochs(self): @set_default_from_args('batch_size') def get_batch_size(self): return 32 + + def get_class_names(self): + if self.class_names is not None: + return self.class_names + classes = CIFAR100(base_path() + 'CIFAR100', train=True, download=True).classes + classes = fix_class_names_order(classes, self.args) + self.class_names = classes + return self.class_names diff --git a/datasets/seq_cifar10_224.py b/datasets/seq_cifar10_224.py index 51748e8f..4fb1dd13 100644 --- a/datasets/seq_cifar10_224.py +++ b/datasets/seq_cifar10_224.py @@ -8,12 +8,13 @@ import torch import torch.nn.functional as F import torchvision.transforms as transforms +from torchvision.datasets import CIFAR10 from backbone.vit import vit_base_patch16_224_prompt_prototype from datasets.seq_cifar10 import TCIFAR10, MyCIFAR10 from datasets.seq_tinyimagenet import base_path from datasets.transforms.denormalization import DeNormalize -from datasets.utils.continual_dataset import (ContinualDataset, +from datasets.utils.continual_dataset import (ContinualDataset, fix_class_names_order, store_masked_loaders) from datasets.utils import set_default_from_args @@ -93,3 +94,11 @@ def get_epochs(self): @set_default_from_args('batch_size') def get_batch_size(self): return 32 + + def get_class_names(self): + if self.class_names is not None: + return self.class_names + classes = CIFAR10(base_path() + 'CIFAR10', train=True, download=True).classes + classes = fix_class_names_order(classes, self.args) + self.class_names = classes + return self.class_names diff --git a/datasets/seq_cifar10_224_rs.py b/datasets/seq_cifar10_224_rs.py index 77c2e817..bd29369b 100644 --- a/datasets/seq_cifar10_224_rs.py +++ b/datasets/seq_cifar10_224_rs.py @@ -8,12 +8,13 @@ import torch import torch.nn.functional as F import torchvision.transforms as transforms +from torchvision.datasets import CIFAR10 from backbone.ResNetBottleneck import resnet50 from datasets.seq_cifar10 import TCIFAR10, MyCIFAR10 from datasets.seq_tinyimagenet import base_path from datasets.transforms.denormalization import DeNormalize -from datasets.utils.continual_dataset import (ContinualDataset, +from datasets.utils.continual_dataset import (ContinualDataset, fix_class_names_order, store_masked_loaders) from datasets.utils import set_default_from_args @@ -94,3 +95,11 @@ def get_epochs(self): @set_default_from_args('batch_size') def get_batch_size(self): return 32 + + def get_class_names(self): + if self.class_names is not None: + return self.class_names + classes = CIFAR10(base_path() + 'CIFAR10', train=True, download=True).classes + classes = fix_class_names_order(classes, self.args) + self.class_names = classes + return self.class_names diff --git a/datasets/seq_cub200.py b/datasets/seq_cub200.py index 07ba9ceb..65419551 100644 --- a/datasets/seq_cub200.py +++ b/datasets/seq_cub200.py @@ -11,7 +11,7 @@ from backbone.ResNetBottleneck import resnet50 from datasets.transforms.denormalization import DeNormalize -from datasets.utils.continual_dataset import (ContinualDataset, +from datasets.utils.continual_dataset import (ContinualDataset, fix_class_names_order, store_masked_loaders) from utils import smart_joint from utils.conf import base_path @@ -205,3 +205,214 @@ def get_batch_size(self): @set_default_from_args('n_epochs') def get_epochs(self): return 30 + + def get_class_names(self): + if self.class_names is not None: + return self.class_names + classes = fix_class_names_order(CLASS_NAMES, self.args) + self.class_names = classes + return self.class_names + + +CLASS_NAMES = [ + 'black footed albatross', + 'laysan albatross', + 'sooty albatross', + 'groove billed ani', + 'crested auklet', + 'least auklet', + 'parakeet auklet', + 'rhinoceros auklet', + 'brewer blackbird', + 'red winged blackbird', + 'rusty blackbird', + 'yellow headed blackbird', + 'bobolink', + 'indigo bunting', + 'lazuli bunting', + 'painted bunting', + 'cardinal', + 'spotted catbird', + 'gray catbird', + 'yellow breasted chat', + 'eastern towhee', + 'chuck will widow', + 'brandt cormorant', + 'red faced cormorant', + 'pelagic cormorant', + 'bronzed cowbird', + 'shiny cowbird', + 'brown creeper', + 'american crow', + 'fish crow', + 'black billed cuckoo', + 'mangrove cuckoo', + 'yellow billed cuckoo', + 'gray crowned rosy finch', + 'purple finch', + 'northern flicker', + 'acadian flycatcher', + 'great crested flycatcher', + 'least flycatcher', + 'olive sided flycatcher', + 'scissor tailed flycatcher', + 'vermilion flycatcher', + 'yellow bellied flycatcher', + 'frigatebird', + 'northern fulmar', + 'gadwall', + 'american goldfinch', + 'european goldfinch', + 'boat tailed grackle', + 'eared grebe', + 'horned grebe', + 'pied billed grebe', + 'western grebe', + 'blue grosbeak', + 'evening grosbeak', + 'pine grosbeak', + 'rose breasted grosbeak', + 'pigeon guillemot', + 'california gull', + 'glaucous winged gull', + 'heermann gull', + 'herring gull', + 'ivory gull', + 'ring billed gull', + 'slaty backed gull', + 'western gull', + 'anna hummingbird', + 'ruby throated hummingbird', + 'rufous hummingbird', + 'green violetear', + 'long tailed jaeger', + 'pomarine jaeger', + 'blue jay', + 'florida jay', + 'green jay', + 'dark eyed junco', + 'tropical kingbird', + 'gray kingbird', + 'belted kingfisher', + 'green kingfisher', + 'pied kingfisher', + 'ringed kingfisher', + 'white breasted kingfisher', + 'red legged kittiwake', + 'horned lark', + 'pacific loon', + 'mallard', + 'western meadowlark', + 'hooded merganser', + 'red breasted merganser', + 'mockingbird', + 'nighthawk', + 'clark nutcracker', + 'white breasted nuthatch', + 'baltimore oriole', + 'hooded oriole', + 'orchard oriole', + 'scott oriole', + 'ovenbird', + 'brown pelican', + 'white pelican', + 'western wood pewee', + 'sayornis', + 'american pipit', + 'whip poor will', + 'horned puffin', + 'common raven', + 'white necked raven', + 'american redstart', + 'geococcyx', + 'loggerhead shrike', + 'great grey shrike', + 'baird sparrow', + 'black throated sparrow', + 'brewer sparrow', + 'chipping sparrow', + 'clay colored sparrow', + 'house sparrow', + 'field sparrow', + 'fox sparrow', + 'grasshopper sparrow', + 'harris sparrow', + 'henslow sparrow', + 'le conte sparrow', + 'lincoln sparrow', + 'nelson sharp tailed sparrow', + 'savannah sparrow', + 'seaside sparrow', + 'song sparrow', + 'tree sparrow', + 'vesper sparrow', + 'white crowned sparrow', + 'white throated sparrow', + 'cape glossy starling', + 'bank swallow', + 'barn swallow', + 'cliff swallow', + 'tree swallow', + 'scarlet tanager', + 'summer tanager', + 'artic tern', + 'black tern', + 'caspian tern', + 'common tern', + 'elegant tern', + 'forsters tern', + 'least tern', + 'green tailed towhee', + 'brown thrasher', + 'sage thrasher', + 'black capped vireo', + 'blue headed vireo', + 'philadelphia vireo', + 'red eyed vireo', + 'warbling vireo', + 'white eyed vireo', + 'yellow throated vireo', + 'bay breasted warbler', + 'black and white warbler', + 'black throated blue warbler', + 'blue winged warbler', + 'canada warbler', + 'cape may warbler', + 'cerulean warbler', + 'chestnut sided warbler', + 'golden winged warbler', + 'hooded warbler', + 'kentucky warbler', + 'magnolia warbler', + 'mourning warbler', + 'myrtle warbler', + 'nashville warbler', + 'orange crowned warbler', + 'palm warbler', + 'pine warbler', + 'prairie warbler', + 'prothonotary warbler', + 'swainson warbler', + 'tennessee warbler', + 'wilson warbler', + 'worm eating warbler', + 'yellow warbler', + 'northern waterthrush', + 'louisiana waterthrush', + 'bohemian waxwing', + 'cedar waxwing', + 'american three toed woodpecker', + 'pileated woodpecker', + 'red bellied woodpecker', + 'red cockaded woodpecker', + 'red headed woodpecker', + 'downy woodpecker', + 'bewick wren', + 'cactus wren', + 'carolina wren', + 'house wren', + 'marsh wren', + 'rock wren', + 'winter wren', + 'common yellowthroat' +] diff --git a/datasets/seq_imagenet_r.py b/datasets/seq_imagenet_r.py index 21765f2a..9a89fb36 100644 --- a/datasets/seq_imagenet_r.py +++ b/datasets/seq_imagenet_r.py @@ -6,7 +6,7 @@ import numpy as np from utils.conf import base_path from PIL import Image -from datasets.utils.continual_dataset import ContinualDataset, store_masked_loaders +from datasets.utils.continual_dataset import ContinualDataset, fix_class_names_order, store_masked_loaders from typing import Tuple from datasets.transforms.denormalization import DeNormalize from torch.utils.data import Dataset @@ -140,7 +140,7 @@ def get_data_loaders(self): download=True, transform=transform) test_dataset = MyImagenetR(base_path() + 'imagenet-r/', train=False, - download=True, transform=test_transform) + download=True, transform=test_transform) train, test = store_masked_loaders(train_dataset, test_dataset, self) return train, test @@ -201,3 +201,12 @@ def get_virtual_bn_num(): @staticmethod def get_n_epochs_first_stage(): return 50 + + def get_class_names(self): + pwd = os.path.dirname(os.path.abspath(__file__)) + with open(pwd + '/imagenet_r_utils/label_to_class_name.pkl', 'rb') as f: + label_to_class_name = pickle.load(f) + class_names = label_to_class_name.values() + class_names = [x.replace('_', ' ') for x in class_names] + class_names = fix_class_names_order(class_names, self.args) + return class_names \ No newline at end of file diff --git a/datasets/seq_mnist.py b/datasets/seq_mnist.py index 9bb5ed2c..3db3f7f0 100644 --- a/datasets/seq_mnist.py +++ b/datasets/seq_mnist.py @@ -12,7 +12,7 @@ from torchvision.datasets import MNIST from backbone.MNISTMLP import MNISTMLP -from datasets.utils.continual_dataset import (ContinualDataset, +from datasets.utils.continual_dataset import (ContinualDataset, fix_class_names_order, store_masked_loaders) from utils.conf import base_path from datasets.utils import set_default_from_args @@ -116,3 +116,12 @@ def get_batch_size(self): @set_default_from_args('n_epochs') def get_epochs(self): return 1 + + def get_class_names(self): + if self.class_names is not None: + return self.class_names + classes = MNIST(base_path() + 'MNIST', train=True, download=True).classes + classes = [c.split('-')[1].strip() for c in classes] + classes = fix_class_names_order(classes, self.args) + self.class_names = classes + return self.class_names diff --git a/datasets/seq_tinyimagenet.py b/datasets/seq_tinyimagenet.py index ac36d554..306382ae 100644 --- a/datasets/seq_tinyimagenet.py +++ b/datasets/seq_tinyimagenet.py @@ -16,7 +16,7 @@ from backbone.ResNetBlock import resnet18 from datasets.transforms.denormalization import DeNormalize -from datasets.utils.continual_dataset import (ContinualDataset, +from datasets.utils.continual_dataset import (ContinualDataset, fix_class_names_order, store_masked_loaders) from utils import smart_joint from utils.conf import base_path @@ -185,3 +185,213 @@ def get_epochs(self): @set_default_from_args('batch_size') def get_batch_size(self): return 32 + + def get_class_names(self): + if self.class_names is not None: + return self.class_names + classes = fix_class_names_order(CLASS_NAMES, self.args) + self.class_names = classes + return self.class_names + +CLASS_NAMES = [ + 'egyptian_cat', + 'reel', + 'volleyball', + 'rocking_chair', + 'lemon', + 'bullfrog', + 'basketball', + 'cliff', + 'espresso', + 'plunger', + 'parking_meter', + 'german_shepherd', + 'dining_table', + 'monarch', + 'brown_bear', + 'school_bus', + 'pizza', + 'guinea_pig', + 'umbrella', + 'organ', + 'oboe', + 'maypole', + 'goldfish', + 'potpie', + 'hourglass', + 'seashore', + 'computer_keyboard', + 'arabian_camel', + 'ice_cream', + 'nail', + 'space_heater', + 'cardigan', + 'baboon', + 'snail', + 'coral_reef', + 'albatross', + 'spider_web', + 'sea_cucumber', + 'backpack', + 'labrador_retriever', + 'pretzel', + 'king_penguin', + 'sulphur_butterfly', + 'tarantula', + 'lesser_panda', + 'pop_bottle', + 'banana', + 'sock', + 'cockroach', + 'projectile', + 'beer_bottle', + 'mantis', + 'freight_car', + 'guacamole', + 'remote_control', + 'european_fire_salamander', + 'lakeside', + 'chimpanzee', + 'pay-phone', + 'fur_coat', + 'alp', + 'lampshade', + 'torch', + 'abacus', + 'moving_van', + 'barrel', + 'tabby', + 'goose', + 'koala', + 'bullet_train', + 'cd_player', + 'teapot', + 'birdhouse', + 'gazelle', + 'academic_gown', + 'tractor', + 'ladybug', + 'miniskirt', + 'golden_retriever', + 'triumphal_arch', + 'cannon', + 'neck_brace', + 'sombrero', + 'gasmask', + 'candle', + 'desk', + 'frying_pan', + 'bee', + 'dam', + 'spiny_lobster', + 'police_van', + 'ipod', + 'punching_bag', + 'beacon', + 'jellyfish', + 'wok', + "potter's_wheel", + 'sandal', + 'pill_bottle', + 'butcher_shop', + 'slug', + 'hog', + 'cougar', + 'crane', + 'vestment', + 'dragonfly', + 'cash_machine', + 'mushroom', + 'jinrikisha', + 'water_tower', + 'chest', + 'snorkel', + 'sunglasses', + 'fly', + 'limousine', + 'black_stork', + 'dugong', + 'sports_car', + 'water_jug', + 'suspension_bridge', + 'ox', + 'ice_lolly', + 'turnstile', + 'christmas_stocking', + 'broom', + 'scorpion', + 'wooden_spoon', + 'picket_fence', + 'rugby_ball', + 'sewing_machine', + 'steel_arch_bridge', + 'persian_cat', + 'refrigerator', + 'barn', + 'apron', + 'yorkshire_terrier', + 'swimming_trunks', + 'stopwatch', + 'lawn_mower', + 'thatch', + 'fountain', + 'black_widow', + 'bikini', + 'plate', + 'teddy', + 'barbershop', + 'confectionery', + 'beach_wagon', + 'scoreboard', + 'orange', + 'flagpole', + 'american_lobster', + 'trolleybus', + 'drumstick', + 'dumbbell', + 'brass', + 'bow_tie', + 'convertible', + 'bighorn', + 'orangutan', + 'american_alligator', + 'centipede', + 'syringe', + 'go-kart', + 'brain_coral', + 'sea_slug', + 'cliff_dwelling', + 'mashed_potato', + 'viaduct', + 'military_uniform', + 'pomegranate', + 'chain', + 'kimono', + 'comic_book', + 'trilobite', + 'bison', + 'pole', + 'boa_constrictor', + 'poncho', + 'bathtub', + 'grasshopper', + 'walking_stick', + 'chihuahua', + 'tailed_frog', + 'lion', + 'altar', + 'obelisk', + 'beaker', + 'bell_pepper', + 'bannister', + 'bucket', + 'magnetic_compass', + 'meat_loaf', + 'gondola', + 'standard_poodle', + 'acorn', + 'lifeboat', + 'binoculars', + 'cauliflower', + 'african_elephant' +] \ No newline at end of file diff --git a/datasets/utils/continual_dataset.py b/datasets/utils/continual_dataset.py index 7289ac89..43d9dfca 100644 --- a/datasets/utils/continual_dataset.py +++ b/datasets/utils/continual_dataset.py @@ -5,7 +5,7 @@ from argparse import Namespace import sys -from typing import Tuple +from typing import List, Tuple import torch import numpy as np @@ -29,6 +29,8 @@ class ContinualDataset(object): N_TASKS (int): the number of tasks N_CLASSES (int): the number of classes SIZE (Tuple[int]): the size of the dataset + AVAIL_SCHEDS (List[str]): the available schedulers + class_names (List[str]): list of the class names of the dataset (should be populated by `get_class_names`) train_loader (DataLoader): the training loader test_loaders (List[DataLoader]): the test loaders i (int): the current task @@ -43,6 +45,7 @@ class ContinualDataset(object): N_CLASSES: int SIZE: Tuple[int] AVAIL_SCHEDS = ['multisteplr'] + class_names: List[str] = None def __init__(self, args: Namespace) -> None: """ @@ -160,7 +163,7 @@ def get_denormalization_transform() -> nn.Module: def get_scheduler(model, args: Namespace, reload_optim=True) -> torch.optim.lr_scheduler._LRScheduler: """ Returns the scheduler to be used for the current dataset. - If `reload_optim` is True, the optimizer is reloaded from the model. This should be done at least ONCE every task + If `reload_optim` is True, the optimizer is reloaded from the model. This should be done at least ONCE every task to ensure that the learning rate is reset to the initial value. """ if args.lr_scheduler is not None: @@ -197,6 +200,10 @@ def get_minibatch_size(self): """Returns the minibatch size to be used for the current dataset.""" return self.get_batch_size() + def get_class_names(self) -> List[str]: + """Returns the class names for the current dataset.""" + raise NotImplementedError('The dataset does not implement the method `get_class_names` to get the class names.') + def _get_mask_unlabeled(train_dataset, setting: ContinualDataset): if setting.args.label_perc == 1: @@ -292,3 +299,20 @@ def store_masked_loaders(train_dataset: Dataset, test_dataset: Dataset, setting.i += setting.N_CLASSES_PER_TASK setting.c_task += 1 return train_loader, test_loader + + +def fix_class_names_order(class_names: List[str], args: Namespace) -> List[str]: + """ + Permutes the order of the class names according to the class order specified in the arguments. + The order reflects that of `store_masked_loaders`. + + Args: + class_names: the list of class names. This should contain all classes in the dataset (not just the current task's ones). + args: the command line arguments + + Returns: + List[str]: the class names in the correct order + """ + if args.permute_classes: + class_names = [class_names[np.where(args.class_order == i)[0][0]] for i in range(len(class_names))] + return class_names diff --git a/datasets/utils/validation.py b/datasets/utils/validation.py index 3f34ba3c..52ec6e60 100644 --- a/datasets/utils/validation.py +++ b/datasets/utils/validation.py @@ -48,10 +48,11 @@ def __getitem__(self, index): return img, target + def get_validation_indexes(validation_size: float, dataset: Dataset, seed=None) -> Tuple[Dataset, Dataset]: """ Returns the indexes of train and validation datasets from the given dataset, according to the validation size. - + Args: validation_size (float): percentage of samples for each class to be used for validation (between 0 and 100) dataset (Dataset): the dataset to split @@ -74,12 +75,13 @@ def get_validation_indexes(validation_size: float, dataset: Dataset, seed=None) idxs = torch.randperm(n_samples, generator=torch.Generator().manual_seed(seed)).numpy() val_idxs.append(cls_idxs[idxs[:n_samples_val]]) train_idxs.append(cls_idxs[idxs[n_samples_val:]]) - + train_idxs = np.concatenate(train_idxs) val_idxs = np.concatenate(val_idxs) return train_idxs, val_idxs + def get_train_val(train: Dataset, test_transform: nn.Module, dataset: str, val_perc: float = 0.1): """ diff --git a/docs/datasets/index.rst b/docs/datasets/index.rst index 412126f7..51399033 100644 --- a/docs/datasets/index.rst +++ b/docs/datasets/index.rst @@ -40,6 +40,8 @@ each dataset **must statically define** all the necessary information to run a c - **get_scheduler** static method (``callable``): returns the learning rate scheduler to use during train. *By default*, it also initializes the optimizer. This prevents errors due to the learning rate being continouosly reduced task after task. This behavior can be changed setting the argument ``reload_optim=False``. + - **get_class_names** (``callable``): returns the class names for the dataset. This method is not implemented by default, but is expected for some methods (e.g., `clip`). The method *should* populate the **class_names** attribute of the dataset to cache the result and call the ``fix_class_names_order`` method to ensure that the class names are in the correct order. + See :ref:`continual_dataset` for more details or **SequentialCIFAR10** in :ref:`seq_cifar10` for an example. .. note:: diff --git a/models/clip.py b/models/clip.py new file mode 100644 index 00000000..225652c4 --- /dev/null +++ b/models/clip.py @@ -0,0 +1,113 @@ +""" +Adaptation of OpenAI's CLIP. +Requires: +- pip install git+https://github.com/openai/CLIP.git + +.. note:: + Checkpoints are loaded from the OpenAI repository. + * RN50: "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt" + * RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt" + * RN50x4: "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt" + * RN50x16: "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt" + * RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt" + * ViT-B/32: "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt" + * ViT-B/16: "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt" + * ViT-L/14: "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt" + * ViT-L/14@336px: "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt" +""" + +import torch +import torch.nn as nn +try: + import clip +except ImportError: + raise ImportError("Please install the CLIP package by running: pip install git+https://github.com/openai/CLIP.git") + +from datasets.utils.continual_dataset import ContinualDataset +from models.utils.continual_model import ContinualModel +from utils.args import ArgumentParser +from utils.conf import get_device + + +class FinalModel(nn.Module): + @torch.no_grad() + def __init__(self, clip_model, dataset: ContinualDataset) -> None: + super().__init__() + self.dataset = dataset + self.clip_model = clip_model + + self.classes = self.dataset.get_class_names() + text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in self.classes]).to(get_device()) + self.text_features = self.clip_model.encode_text(text_inputs) + self.text_features /= self.text_features.norm(dim=-1, keepdim=True) + + self.task_id = 0 + + @torch.no_grad() + def forward(self, x): + image_features = self.clip_model.encode_image(x) + text_features = self.text_features + + image_features /= image_features.norm(dim=-1, keepdim=True) + similarity = (100.0 * (image_features @ text_features.T)).softmax(dim=-1) + + return similarity + + +class CLIP(ContinualModel): + NAME = 'clip' + COMPATIBILITY = ['class-il', 'domain-il', 'task-il', 'general-continual'] + + @staticmethod + def get_parser() -> ArgumentParser: + parser = ArgumentParser(description='STATIC Continual Learning with CLIP') + parser.add_argument('--clip_backbone', type=str, default='ViT-L/14', + choices=list(clip.available_models()), + help='Backbone architecture for CLIP') + parser.add_argument('--save_predictions', type=int, choices=[0, 1], default=0, + help='Whether to save predictions of the TRAINING set after each task') + return parser + + def __init__(self, backbone, loss, args, transform): + backbone, clip_transform = clip.load(args.clip_backbone, device=get_device()) + if args.n_epochs > 1: + print("CLIP is a STATIC model, setting n_epochs to 1") + args.n_epochs = 1 + super().__init__(backbone, loss, args, transform) + + self.net = FinalModel(self.net, self.dataset) + self.clip_transform = clip_transform + + self.predictions = [] + self.original_labels = [] + + def begin_task(self, dataset): + dataset.test_loaders[-1].dataset.transform = self.clip_transform + if self.args.save_predictions: + dataset.train_loader.dataset.transform = self.clip_transform + + if self.current_task != 0: + self.net.task_id += 1 + + self.eval() + + def end_task(self, dataset: ContinualDataset) -> None: + if self.args.save_predictions: + self.predictions = torch.cat(self.predictions, dim=0).cpu() + self.original_labels = torch.cat(self.original_labels, dim=0).cpu() + torch.save((self.predictions, self.original_labels), f'predictions_{self.args.dataset}_{self.current_task}.pt') + print(f"Predictions saved for task {self.current_task} in 'predictions_{self.args.dataset}_{self.current_task}.pt'") + self.predictions = [] + self.original_labels = [] + return super().end_task(dataset) + + def observe(self, inputs, labels, not_aug_inputs, epoch=None): + if self.args.save_predictions: + with torch.no_grad(): + self.predictions.append(self.net(inputs)) + self.original_labels.append(labels) + return 0 + + @torch.no_grad() + def forward(self, x): + return self.net(x)[:, :self.n_seen_classes] diff --git a/models/coda_prompt_utils/vit.py b/models/coda_prompt_utils/vit.py index 412c93cd..73454519 100644 --- a/models/coda_prompt_utils/vit.py +++ b/models/coda_prompt_utils/vit.py @@ -6,7 +6,6 @@ import torch import torch.nn as nn import torch.nn.functional as F -from functools import partial from timm.models.layers import trunc_normal_, DropPath diff --git a/models/first_stage_starprompt.py b/models/first_stage_starprompt.py new file mode 100644 index 00000000..76d58e13 --- /dev/null +++ b/models/first_stage_starprompt.py @@ -0,0 +1,133 @@ +import os +import sys +import torch +from argparse import ArgumentParser +try: + import clip +except ImportError: + raise ImportError("Please install the CLIP package by running: pip install git+https://github.com/openai/CLIP.git") + +from models.utils.continual_model import ContinualModel +from models.star_prompt_utils.first_stage_model import Model + + +class FirstStageStarprompt(ContinualModel): + NAME = 'first_stage_starprompt' + COMPATIBILITY = ['class-il', 'domain-il', 'task-il', 'general-continual'] + + net: Model + + @staticmethod + def get_parser() -> ArgumentParser: + parser = ArgumentParser() + + # Frozen hyperparameters + parser.add_argument("--virtual_bs_n", type=int, default=1, help="Virtual batch size iterations") + + # Tunable hyperparameters + parser.add_argument("--learning_rate_gr", type=float, default=0.05, + help="Learning rate for Generative Replay.") + parser.add_argument("--lambda_ortho_coop", type=float, default=30, help="Orthogonality loss coefficient for coop") + parser.add_argument("--num_monte_carlo_gr", type=int, default=5, help="How many times to sample from the dataset for alignment") + parser.add_argument("--num_epochs_alignment", type=int, default=10, + help="Num. of epochs for Generative Replay.") + parser.add_argument('--gr_mog_n_components', type=int, default=5, + help="Number of components for Generative Replay with MOG.") + parser.add_argument('--gr_mog_n_iters', type=int, default=200, + help="Number of EM iterations during fit for GR with MOG.") + + parser.add_argument('--batch_size_gr', type=int, default=128, + help="Batch size for Generative Replay.") + parser.add_argument('--num_samples_gr', type=int, default=256, + help="Number of samples for Generative Replay.") + + # Useful flags + parser.add_argument("--save_first_stage_keys", type=int, default=1, + choices=[0, 1], help="save text encoder outputs") + + # Backbone arguments + parser.add_argument("--clip_backbone", type=str, default='ViT-L/14', help="CLIP backbone architecture", + choices=clip.available_models()) + + return parser + + + def __init__(self, backbone, loss, args, transform): + print("WARNING: The first stage of STAR-Prompt ignores the backbone as it uses CLIP") + del backbone + + super().__init__(None, loss, args, transform) + self.net = Model(args, num_classes=self.num_classes, dataset=self.dataset, device=self.device) + self.opt = self.get_optimizer() + + # REMOVE ALL TRACK RUNNING STATS FROM CLIP + for m in self.net.modules(): + if isinstance(m, (torch.nn.BatchNorm2d, torch.nn.BatchNorm1d)): + m.track_running_stats = False + + self.eye = torch.eye(self.num_classes).to(self.device) + + def end_task(self, dataset): + if hasattr(self, 'opt'): + self.opt.zero_grad(set_to_none=True) + delattr(self, 'opt') + + # Generative replay + self.net.prompter.update_statistics(dataset, self.current_task) + self.net.prompter.align(self.current_task) + + if self.current_task == (self.n_tasks - 1) and self.args.save_first_stage_keys: + print('Saving text encoder outputs... ', end='', file=sys.stderr) + te_outputs = self.net.prompter.compute_keys(0, self.num_classes) + os.makedirs('./coop_keys', exist_ok=True) + st = { + 'keys': te_outputs, + 'args': self.args, + } + torch.save(st, f'./coop_keys/coop_keys_{self.current_task}_{self.args.conf_jobnum}.pt') + print('Done', file=sys.stderr) + + def get_parameters(self): + return [v for k, v in self.net.named_parameters() if 'prompt_parameters' in k] + + def begin_task(self, dataset): + # Disable transforms and set normalization as CLIP's preprocessing + dataset.train_loader.dataset.transform = self.net.prompter.clip_preprocess + dataset.test_loaders[-1].dataset.transform = self.net.prompter.clip_preprocess + + if hasattr(self, 'opt'): + self.opt.zero_grad(set_to_none=True) + delattr(self, 'opt') + + self.opt = self.get_optimizer() + + + torch.cuda.empty_cache() + + def forward(self, x): + logits = self.net(x, cur_classes=self.n_seen_classes) + return logits[:, :self.n_seen_classes] + + def observe(self, inputs, labels, not_aug_inputs, epoch=None): + loss = torch.tensor(0.).to(self.device) + + stream_inputs, stream_labels = inputs, labels.long() + clip_logits = self.net(stream_inputs, frozen_past_classes=self.n_past_classes, cur_classes=self.n_seen_classes) + + # compute clip loss + clip_logits[:, :self.n_past_classes] = -float('inf') + loss_clip = self.loss(clip_logits[:, :self.n_seen_classes], stream_labels) + + loss += loss_clip + + loss_ortho_coop = self.net.prompter.compute_ortho_loss(frozen_past_classes=self.n_past_classes, cur_classes=self.n_seen_classes) + loss += self.args.lambda_ortho_coop * loss_ortho_coop + + if self.epoch_iteration == 0: + self.opt.zero_grad() + loss.backward() + if (self.epoch_iteration > 0 or self.args.virtual_bs_n == 1) and self.epoch_iteration % self.args.virtual_bs_n == 0: + self.opt.step() + self.opt.zero_grad() + + return loss.item() diff --git a/models/l2p.py b/models/l2p.py index 026976b2..3f50d208 100644 --- a/models/l2p.py +++ b/models/l2p.py @@ -84,10 +84,9 @@ def observe(self, inputs, labels, not_aug_inputs, epoch=None): logits = outputs['logits'] # here is the trick to mask out classes of non-current tasks - offset_1, offset_2 = self._compute_offsets(self.current_task) - logits[:, :offset_1] = -float('inf') + logits[:, :self.n_past_classes] = -float('inf') - loss = self.loss(logits[:, :offset_2], labels) + loss = self.loss(logits[:, :self.n_seen_classes], labels) if self.args.pull_constraint and 'reduce_sim' in outputs: loss = loss - self.args.pull_constraint_coeff * outputs['reduce_sim'] @@ -102,8 +101,4 @@ def get_parameters(self): return [p for n, p in self.net.model.named_parameters() if 'prompt' in n or 'head' in n] def forward(self, x): - if self.current_task > 0: - _, offset_2 = self._compute_offsets(self.current_task - 1) - else: - offset_2 = self.N_CLASSES - return self.net(x)[:, :offset_2] + return self.net(x)[:, :self.n_seen_classes] diff --git a/models/second_stage_starprompt.py b/models/second_stage_starprompt.py new file mode 100644 index 00000000..0b98f179 --- /dev/null +++ b/models/second_stage_starprompt.py @@ -0,0 +1,244 @@ +import torch +from copy import deepcopy +from torch.utils.data import DataLoader, TensorDataset +from tqdm import tqdm +from argparse import ArgumentParser + +from utils.schedulers import CosineSchedule +from models.utils.continual_model import ContinualModel +from models.star_prompt_utils.second_stage_model import Model +from models.star_prompt_utils.generative_replay import MixtureOfGaussiansModel + + +class SecondStageStarprompt(ContinualModel): + NAME = 'second_stage_starprompt' + COMPATIBILITY = ['class-il', 'domain-il', 'task-il', 'general-continual'] + + @staticmethod + def get_parser() -> ArgumentParser: + parser = ArgumentParser(description='Second-stage of StarPrompt. Requires the keys saved from the first stage.') + + # Frozen hyperparameters + parser.add_argument("--virtual_bs_n", type=int, default=1, + help="virtual batch size iterations") + parser.add_argument('--gr_mog_n_components', type=int, default=5, + help="Number of components for GR with MOG.") + + # Tunable hyperparameters + parser.add_argument("--ortho_split_val", type=int, default=0) + parser.add_argument("--lambda_ortho", type=float, default=10, + help="orthogonality loss coefficient") + parser.add_argument("--num_monte_carlo_gr", type=int, default=1, + help="how many times to sample from the dataset for alignment") + parser.add_argument("--num_epochs_alignment", type=int, default=10, + help="Num. of epochs for GR.") + parser.add_argument("--learning_rate_gr", type=float, default=0.001, + help="Learning rate for GR.") + parser.add_argument('--gr_mog_n_iters', type=int, default=500, + help="Number of EM iterations during fit for GR with MOG.") + + parser.add_argument('--keys_ckpt_path', type=str, required=True, + help="Path for first-stage keys. The keys can be saved by runninng `first_stage_starprompt` with `--save_first_stage_keys=1`.") + + parser.add_argument('--batch_size_gr', type=int, default=128, + help="Batch size for Generative Replay.") + parser.add_argument('--num_samples_gr', type=int, default=256, + help="Number of samples for Generative Replay.") + + return parser + + net: Model + + def __init__(self, backbone, loss, args, transform): + super().__init__(backbone, loss, args, transform) + + self.net = Model(args, + backbone=self.net, + dataset=self.dataset, + num_classes=self.num_classes) + + # REMOVE ALL TRACK RUNNING STATS FROM CLIP + for m in self.net.modules(): + if isinstance(m, (torch.nn.BatchNorm2d, torch.nn.BatchNorm1d)): + m.track_running_stats = False + + embed_dim = backbone.vit.embed_dim + + self.distributions = torch.nn.ModuleList([self._get_dist(embed_dim) + for _ in range(self.num_classes)]).to(self.device) + self.classifier_state_dict = None + + def _get_dist(self, embed_dim): + return MixtureOfGaussiansModel(embed_dim, n_components=self.args.gr_mog_n_components, + n_iters=self.args.gr_mog_n_iters) + + def norm(self, t): + return torch.norm(t, p=2, dim=-1, keepdim=True) + 1e-7 + + def per_task_norms(self, logits): + + per_task_norm = [] + + for _ti in range(self.current_task + 1): + prev_t_size, cur_t_size = self.compute_offsets(_ti) + temp_norm = self.norm(logits[:, prev_t_size:cur_t_size]) + per_task_norm.append(temp_norm) + + per_task_norm = torch.cat(per_task_norm, dim=-1) + norms = per_task_norm.mean(dim=-1, keepdim=True) + + return norms + + @torch.no_grad() + def create_features_dataset(self): + + labels, features = [], [] + + for _ti in range(self.current_task + 1): + + prev_t_size, cur_t_size = self.compute_offsets(_ti) + + for class_idx in range(prev_t_size, cur_t_size): + + current_samples = self.distributions[class_idx](self.args.num_samples_gr) + features.append(current_samples) + labels.append(torch.ones(self.args.num_samples_gr) * class_idx) + + features = torch.cat(features, dim=0) + labels = torch.cat(labels, dim=0).long() + + return DataLoader(TensorDataset(features, labels), + batch_size=self.args.batch_size_gr, + shuffle=True, num_workers=0) + + def train_alignment_epoch(self, classifier: torch.nn.Module, optim: torch.optim.Optimizer): + + dl = self.create_features_dataset() + + for i, (x, labels) in tqdm(enumerate(dl), total=len(dl), desc='GR epoch'): + optim.zero_grad() + x, labels = x.to(self.device), labels.to(self.device) + + logits = classifier(x) + + logits = logits[:, :self.n_seen_classes] + + norm = self.norm(logits) + logits = logits / (0.1 * norm) + + loss = self.loss(logits, labels) + loss.backward() + optim.step() + + def align(self): + + classifier = deepcopy(self.net.vit.head) + + optim = torch.optim.SGD(lr=self.args.learning_rate_gr, + params=classifier.parameters(), + momentum=0.0, + weight_decay=0.0) + + num_epochs = self.args.num_epochs_alignment + (5 * self.current_task) + + for e in range(num_epochs): + self.train_alignment_epoch(classifier, optim) + + self.net.vit.head.weight.data.copy_(classifier.weight.data) + self.net.vit.head.bias.data.copy_(classifier.bias.data) + + @torch.no_grad() + def update_statistics(self, dataset): + + features_dict = {i: [] for i in range(self.n_past_classes, self.n_seen_classes)} + + self.net.eval() + + with tqdm(total=self.args.num_monte_carlo_gr * len(dataset.train_loader), desc='GR update statistics') as pbar: + for _ in range(self.args.num_monte_carlo_gr): + for i, data in enumerate(dataset.train_loader): + x, labels = data[0], data[1] + x, labels = x.to(self.device), labels.to(self.device, dtype=torch.long) + features = self.net(x, return_features=True, cur_classes=self.n_seen_classes, frozen_past_classes=self.n_past_classes) + features = features[:, 0] + + for class_idx in labels.unique(): + features_dict[int(class_idx)].append(features[labels == class_idx]) + + pbar.update(1) + + for class_idx in range(self.n_past_classes, self.n_seen_classes): + features_class_idx = torch.cat(features_dict[class_idx], dim=0) + self.distributions[class_idx].fit(features_class_idx.to(self.device)) + + def backup(self): + print(f"BACKUP: Task - {self.current_task} - classes from " + f"{self.n_past_classes} - to {self.n_seen_classes}") + self.classifier_state_dict = deepcopy(self.net.vit.head.state_dict()) + + def recall(self): + print(f"RECALL: Task - {self.current_task} - classes from " + f"{self.n_past_classes} - to {self.n_seen_classes}") + + if self.current_task == 0: + return + + assert self.classifier_state_dict + + self.net.vit.head.weight.data.copy_(self.classifier_state_dict['weight'].data) + self.net.vit.head.bias.data.copy_(self.classifier_state_dict['bias'].data) + + def end_task(self, dataset): + if hasattr(self, 'opt'): + del self.opt # free up some vram + + self.update_statistics(dataset) + self.backup() + + if self.current_task > 0: + self.align() + + def get_parameters(self): + return [p for p in self.net.parameters() if p.requires_grad] + + def get_scheduler(self): + return CosineSchedule(self.opt, K=self.args.n_epochs) + + def begin_task(self, dataset): + self.recall() + + if hasattr(self, 'opt'): + del self.opt + + self.opt = self.get_optimizer() + self.scheduler = self.get_scheduler() # TODO: check custom scheduler + + def forward(self, x): + logits = self.net(x, cur_classes=self.n_seen_classes) + logits = logits[:, :self.n_seen_classes] + return logits + + def observe(self, inputs, labels, not_aug_inputs, epoch=None): + stream_inputs, stream_labels = inputs, labels + stream_logits = self.net(stream_inputs, cur_classes=self.n_seen_classes, frozen_past_classes=self.n_past_classes) + + # mask old classes + stream_logits[:, :self.n_past_classes] = -float('inf') + loss = self.loss(stream_logits[:, :self.n_seen_classes], stream_labels) + + loss_ortho = self.net.prompter.compute_ortho_loss(frozen_past_classes=self.n_past_classes, cur_classes=self.n_seen_classes) + loss += self.args.lambda_ortho * loss_ortho + + if self.epoch_iteration == 0: + self.opt.zero_grad() + + loss.backward() + if (self.epoch_iteration > 0 or self.args.virtual_bs_n == 1) and \ + self.epoch_iteration % self.args.virtual_bs_n == 0: + # NOTE: The virtual batch size is missing `loss = loss/self.virtual_bs_n`. We did not see any significant change with this as Adam will take care of it. + self.opt.step() + self.opt.zero_grad() + + self.epoch_iteration += 1 + + return loss.item() diff --git a/models/star_prompt_utils/first_stage_model.py b/models/star_prompt_utils/first_stage_model.py new file mode 100644 index 00000000..d06c4fd0 --- /dev/null +++ b/models/star_prompt_utils/first_stage_model.py @@ -0,0 +1,236 @@ +from typing import List +import torch.nn.functional as F +import torch +from torch.utils.data import DataLoader, TensorDataset +from tqdm import tqdm +try: + import clip +except ImportError: + raise ImportError("Please install the CLIP package by running: pip install git+https://github.com/openai/CLIP.git") + +from datasets.utils.continual_dataset import ContinualDataset +from models.star_prompt_utils.generative_replay import MixtureOfGaussiansModel + + +class TextEncoder(torch.nn.Module): + def __init__(self, clip_model): + super().__init__() + self.transformer = clip_model.transformer + self.positional_embedding = clip_model.positional_embedding + self.ln_final = clip_model.ln_final + self.text_projection = clip_model.text_projection + self.dtype = clip_model.dtype + + def forward(self, x, tokenized_prompts): + x = x + self.positional_embedding.type(self.dtype) + x = x.permute(1, 0, 2) + x = self.transformer(x) + x = x.permute(1, 0, 2) + x = self.ln_final(x).type(self.dtype) + x = x[torch.arange(x.shape[0]), tokenized_prompts.argmax(dim=-1)] @ self.text_projection + return x + + +class Prompter(torch.nn.Module): + + distributions: List[MixtureOfGaussiansModel] + token_suffix: torch.Tensor + token_prefix: torch.Tensor + + def __init__(self, args, num_classes: int, dataset: ContinualDataset, device='cpu'): + super().__init__() + self.args = args + self.num_classes = num_classes + self.dataset = dataset + self.device = device + + self.clip_model, self.clip_preprocess = clip.load(args.clip_backbone, self.device) + + for p in self.clip_model.parameters(): + p.requires_grad = False + + self.class_names = dataset.get_class_names() + self.setup_text_prompting() + self.clip_logit_scale = self.clip_model.logit_scale + + embed_dim = self.clip_model.visual.output_dim + self.distributions = torch.nn.ModuleList([MixtureOfGaussiansModel(embed_dim, n_components=self.args.gr_mog_n_components, + n_iters=self.args.gr_mog_n_iters) + for _ in range(self.num_classes)]).to(self.device) + + def compute_ortho_loss(self, cur_classes: int, frozen_past_classes=0) -> torch.Tensor: + + # (num_classes, 1, clip_size) + cur_coop_p = self.prompt_parameters[frozen_past_classes:cur_classes] + ortho_loss_coop = 0 + if frozen_past_classes > 0: + past_coop_p = self.prompt_parameters[:frozen_past_classes].detach() + ortho_loss_coop = (torch.matmul(cur_coop_p.permute(1, 0, 2), past_coop_p.permute(1, 2, 0))**2).mean() + + return ortho_loss_coop + + @torch.no_grad() + def create_features_dataset(self, current_task: int): + + labels, features = [], [] + + for _ti in range(current_task + 1): + + prev_t_size, cur_t_size = self.dataset.get_offsets(_ti) + + for class_idx in range(prev_t_size, cur_t_size): + + current_samples = self.distributions[class_idx](self.args.num_samples_gr) + features.append(current_samples) + labels.append(torch.ones((self.args.num_samples_gr)) * class_idx) + + features = torch.cat(features, dim=0) + labels = torch.cat(labels, dim=0).long() + return DataLoader(TensorDataset(features, labels), batch_size=self.args.batch_size_gr, shuffle=True, num_workers=0) + + def train_alignment_epoch(self, optim: torch.optim.Optimizer, current_task: int): + offset_1, offset_2 = self.dataset.get_offsets(current_task) + + dl = self.create_features_dataset(current_task) + + for i, (image_features, labels) in tqdm(enumerate(dl), total=len(dl), desc='GR first stage epoch'): + if self.args.debug_mode and i > 3: + break + optim.zero_grad() + + image_features, labels = image_features.to(self.device, dtype=self.clip_model.dtype), labels.to(self.device) + image_features = torch.nn.functional.normalize(image_features, dim=-1) + + text_features = self.compute_keys(0, offset_2) + + text_features = torch.cat((text_features[:offset_1].detach(), text_features[offset_1:offset_2]), dim=0) + text_features = torch.nn.functional.normalize(text_features, dim=-1) + + clip_logits = torch.einsum('bd,cd->bc', image_features, text_features) + clip_logits = clip_logits * self.clip_logit_scale.exp() + loss = F.cross_entropy(clip_logits, labels) + + loss.backward() + optim.step() + + def align(self, current_task: int): + optim = torch.optim.SGD(lr=self.args.learning_rate_gr, params=[self.prompt_parameters], + momentum=0.0, weight_decay=0.0) + + for e in range(self.args.num_epochs_alignment): + self.train_alignment_epoch(optim, current_task=current_task) + + @torch.no_grad() + def update_statistics(self, dataset: ContinualDataset, current_task: int): + offset_1, offset_2 = dataset.get_offsets(current_task) + + features_dict = {i: [] for i in range(offset_1, offset_2)} + + was_training = self.training + self.eval() + + with tqdm(total=self.args.num_monte_carlo_gr * len(dataset.train_loader), + desc='Updating statistics for first stage Generative Replay') as pbar: + for _ in range(self.args.num_monte_carlo_gr): + for i, data in enumerate(dataset.train_loader): + if self.args.debug_mode == 1 and i > 3 and min([len(v) for k, v in features_dict.items()]) > self.args.gr_mog_n_components: + break + inputs, labels = data[0].to(self.device), data[1].to(self.device, dtype=torch.long) + + if len(inputs.shape) == 5: + inputs = inputs[:, 1] + clip_query = self.get_query(inputs) + + for class_idx in labels.unique(): + features_dict[int(class_idx)].append(clip_query[labels == class_idx]) + + pbar.update(1) + + for class_idx in range(offset_1, offset_2): + features_class_idx = torch.cat(features_dict[class_idx], dim=0) + self.distributions[class_idx].fit(features_class_idx.to(self.device)) + + if was_training: + self.train() + + def compute_keys(self, start: int, end: int): + ctx = self.prompt_parameters[start:end] + prefix = self.token_prefix[start:end] + suffix = self.token_suffix[start:end] + prompts = torch.cat((prefix, ctx, suffix), dim=1) + tokenized_prompts = self.tokenized_prompts[start:end] + keys = self.text_encoder(prompts.to(self.clip_model.dtype), tokenized_prompts) + keys = torch.nn.functional.normalize(keys, dim=-1) + return keys + + def get_keys(self, cur_classes: int, frozen_past_classes=0): + if frozen_past_classes > 0: + with torch.no_grad(): + past_keys = self.compute_keys(0, frozen_past_classes) + cur_keys = self.compute_keys(frozen_past_classes, cur_classes) + keys = torch.cat((past_keys.detach(), cur_keys), dim=0) + else: + keys = self.compute_keys(0, cur_classes) + return keys + + def setup_text_prompting(self): + self.text_encoder = TextEncoder(self.clip_model) + + text_prompts = ["X " + name + "." for name in self.class_names] + tokenized_prompts = torch.cat([clip.tokenize(p) for p in text_prompts], dim=0).to(self.device) + self.tokenized_prompts = tokenized_prompts + + with torch.no_grad(): + embedding = self.clip_model.token_embedding(tokenized_prompts).type(self.clip_model.dtype) + self.register_buffer("token_prefix", embedding[:, :1, :]) # SOS + self.register_buffer("token_suffix", embedding[:, 2:, :]) # CLS, EOS + + prompt_parameters = torch.empty(self.num_classes, 1, self.clip_model.token_embedding.weight.shape[1], device=self.device, dtype=torch.float32) + torch.nn.init.normal_(prompt_parameters, std=0.02) + self.prompt_parameters = torch.nn.Parameter(prompt_parameters) + + @torch.no_grad() + def get_query(self, x): + clip_out = self.clip_model.encode_image(x) + return clip_out + + def get_clip_logits(self, clip_out, keys): + image_features = torch.nn.functional.normalize(clip_out, dim=-1) + clip_logits = torch.einsum('bd,cd->bc', image_features, keys) + clip_logits = clip_logits * self.clip_logit_scale.exp() + return clip_logits + + +class Model(torch.nn.Module): + prompter: Prompter + + def __init__(self, args, num_classes: int, dataset: ContinualDataset, device='cpu'): + super().__init__() + self.args = args + self.num_classes = num_classes + self.device = device + + self.prompter = Prompter(args, num_classes=num_classes, dataset=dataset, device=device) + + def to(self, device, *args, **kwargs): + super().to(device, *args, **kwargs) + self.prompter.to(device, *args, **kwargs) + self.device = device + + return self + + def train(self, mode=True): + super().train(False) + self.prompter.train(False) + + return self + + def forward(self, x: torch.Tensor, cur_classes: int, return_query=False, frozen_past_classes=0): + clip_out = self.prompter.get_query(x) + if return_query: + return clip_out + + keys = self.prompter.get_keys(frozen_past_classes=frozen_past_classes, cur_classes=cur_classes) + clip_logits = self.prompter.get_clip_logits(clip_out, keys) + + return clip_logits diff --git a/models/star_prompt_utils/generative_replay.py b/models/star_prompt_utils/generative_replay.py new file mode 100644 index 00000000..f6313339 --- /dev/null +++ b/models/star_prompt_utils/generative_replay.py @@ -0,0 +1,521 @@ +""" +Adaptation of https://github.com/ldeecke/gmm-torch. +Copyright (c) 2019 Lucas Deecke. + +Licensed under the MIT License. +""" + +import torch +import numpy as np + +from math import pi + + +class MixtureOfGaussiansModel(torch.nn.Module): + + def __init__(self, embed_dim: int, n_components: int = 3, n_iters: int = 100): + super().__init__() + self.n_iters = n_iters + self.gm = GaussianMixture(n_components, embed_dim, covariance_type='diag') + + def fit(self, x): + self.gm.fit(x, n_iter=self.n_iters) + + def sample(self, n_sample): + return self.gm.sample(n_sample)[0] + + def forward(self, n_sample): + return self.sample(n_sample) + + +def calculate_matmul_n_times(n_components, mat_a, mat_b): + """ + Calculate matrix product of two matrics with mat_a[0] >= mat_b[0]. + Bypasses torch.matmul to reduce memory footprint. + args: + mat_a: torch.Tensor (n, k, 1, d) + mat_b: torch.Tensor (1, k, d, d) + """ + res = torch.zeros(mat_a.shape).to(mat_a.device) + + for i in range(n_components): + mat_a_i = mat_a[:, i, :, :].squeeze(-2) + mat_b_i = mat_b[0, i, :, :].squeeze() + res[:, i, :, :] = mat_a_i.mm(mat_b_i).unsqueeze(1) + + return res + + +def calculate_matmul(mat_a, mat_b): + """ + Calculate matrix product of two matrics with mat_a[0] >= mat_b[0]. + Bypasses torch.matmul to reduce memory footprint. + args: + mat_a: torch.Tensor (n, k, 1, d) + mat_b: torch.Tensor (n, k, d, 1) + """ + assert mat_a.shape[-2] == 1 and mat_b.shape[-1] == 1 + return torch.sum(mat_a.squeeze(-2) * mat_b.squeeze(-1), dim=2, keepdim=True) + + +class GaussianMixture(torch.nn.Module): + """ + Fits a mixture of k=1,..,K Gaussians to the input data (K is supplied via n_components). + Input tensors are expected to be flat with dimensions (n: number of samples, d: number of features). + The model then extends them to (n, 1, d). + The model parametrization (mu, sigma) is stored as (1, k, d), + probabilities are shaped (n, k, 1) if they relate to an individual sample, + or (1, k, 1) if they assign membership probabilities to one of the mixture components. + """ + + def __init__(self, n_components, n_features, covariance_type="full", eps=1.e-6, init_params="kmeans", mu_init=None, + var_init=None): + """ + Initializes the model and brings all tensors into their required shape. + The class expects data to be fed as a flat tensor in (n, d). + The class owns: + x: torch.Tensor (n, 1, d) + mu: torch.Tensor (1, k, d) + var: torch.Tensor (1, k, d) or (1, k, d, d) + pi: torch.Tensor (1, k, 1) + covariance_type: str + eps: float + init_params: str + log_likelihood: float + n_components: int + n_features: int + args: + n_components: int + n_features: int + options: + mu_init: torch.Tensor (1, k, d) + var_init: torch.Tensor (1, k, d) or (1, k, d, d) + covariance_type: str + eps: float + init_params: str + """ + super(GaussianMixture, self).__init__() + + self.n_components = n_components + self.n_features = n_features + + self.mu_init = mu_init + self.var_init = var_init + self.eps = eps + + self.log_likelihood = -np.inf + + self.covariance_type = covariance_type + self.init_params = init_params + + assert self.covariance_type in ["full", "diag"] + assert self.init_params in ["kmeans", "random"] + + self._init_params() + + def _init_params(self): + if self.mu_init is not None: + assert self.mu_init.size() == (1, self.n_components, + self.n_features), "Input mu_init does not have required tensor dimensions (1, %i, %i)" % ( + self.n_components, self.n_features) + # (1, k, d) + self.mu = torch.nn.Parameter(self.mu_init, requires_grad=False) + else: + self.mu = torch.nn.Parameter(torch.randn(1, self.n_components, self.n_features), requires_grad=False) + + if self.covariance_type == "diag": + if self.var_init is not None: + # (1, k, d) + assert self.var_init.size() == (1, self.n_components, + self.n_features), "Input var_init does not have required tensor dimensions (1, %i, %i)" % ( + self.n_components, self.n_features) + self.var = torch.nn.Parameter(self.var_init, requires_grad=False) + else: + self.var = torch.nn.Parameter(torch.ones(1, self.n_components, self.n_features), requires_grad=False) + elif self.covariance_type == "full": + if self.var_init is not None: + # (1, k, d, d) + assert self.var_init.size() == (1, self.n_components, self.n_features, + self.n_features), "Input var_init does not have required tensor dimensions (1, %i, %i, %i)" % ( + self.n_components, self.n_features, self.n_features) + self.var = torch.nn.Parameter(self.var_init, requires_grad=False) + else: + self.var = torch.nn.Parameter( + torch.eye(self.n_features).reshape(1, 1, self.n_features, self.n_features).repeat(1, + self.n_components, + 1, 1), + requires_grad=False + ) + + # (1, k, 1) + self.pi = torch.nn.Parameter(torch.Tensor(1, self.n_components, 1), requires_grad=False).fill_( + 1. / self.n_components) + self.params_fitted = False + + def check_size(self, x): + if len(x.size()) == 2: + # (n, d) --> (n, 1, d) + x = x.unsqueeze(1) + + return x + + def fit(self, x, delta=1e-3, n_iter=100, warm_start=False): + """ + Fits model to the data. + args: + x: torch.Tensor (n, d) or (n, k, d) + options: + delta: float + n_iter: int + warm_start: bool + """ + if not warm_start and self.params_fitted: + self._init_params() + + x = self.check_size(x) + + if self.init_params == "kmeans" and self.mu_init is None: + mu = self.get_kmeans_mu(x, n_centers=self.n_components) + self.mu.data = mu + + i = 0 + j = np.inf + + while (i <= n_iter) and (j >= delta): + + log_likelihood_old = self.log_likelihood + mu_old = self.mu + var_old = self.var + + self.__em(x) + self.log_likelihood = self.__score(x) + + if torch.isinf(self.log_likelihood.abs()) or torch.isnan(self.log_likelihood): + device = self.mu.device + # When the log-likelihood assumes unbound values, reinitialize model + self.__init__(self.n_components, + self.n_features, + covariance_type=self.covariance_type, + mu_init=self.mu_init, + var_init=self.var_init, + eps=self.eps) + for p in self.parameters(): + p.data = p.data.to(device) + if self.init_params == "kmeans": + self.mu.data, = self.get_kmeans_mu(x, n_centers=self.n_components) + + i += 1 + j = self.log_likelihood - log_likelihood_old + + if j <= delta: + # When score decreases, revert to old parameters + self.__update_mu(mu_old) + self.__update_var(var_old) + + self.params_fitted = True + + def predict(self, x, probs=False): + """ + Assigns input data to one of the mixture components by evaluating the likelihood under each. + If probs=True returns normalized probabilities of class membership. + args: + x: torch.Tensor (n, d) or (n, 1, d) + probs: bool + returns: + p_k: torch.Tensor (n, k) + (or) + y: torch.LongTensor (n) + """ + x = self.check_size(x) + + weighted_log_prob = self._estimate_log_prob(x) + torch.log(self.pi) + + if probs: + p_k = torch.exp(weighted_log_prob) + return torch.squeeze(p_k / (p_k.sum(1, keepdim=True))) + else: + return torch.squeeze(torch.max(weighted_log_prob, 1)[1].type(torch.LongTensor)) + + def predict_proba(self, x): + """ + Returns normalized probabilities of class membership. + args: + x: torch.Tensor (n, d) or (n, 1, d) + returns: + y: torch.LongTensor (n) + """ + return self.predict(x, probs=True) + + def sample(self, n): + """ + Samples from the model. + args: + n: int + returns: + x: torch.Tensor (n, d) + y: torch.Tensor (n) + """ + counts = torch.distributions.multinomial.Multinomial(total_count=n, probs=self.pi.squeeze()).sample() + x = torch.empty(0, device=counts.device) + y = torch.cat([torch.full([int(sample)], j, device=counts.device) for j, sample in enumerate(counts)]) + + # Only iterate over components with non-zero counts + for k in torch.arange(self.n_components, device=counts.device)[counts > 0]: + if self.covariance_type == "diag": + x_k = self.mu[0, k] + torch.randn(int(counts[k]), self.n_features, device=x.device) * torch.sqrt( + self.var[0, k]) + elif self.covariance_type == "full": + d_k = torch.distributions.multivariate_normal.MultivariateNormal(self.mu[0, k], self.var[0, k]) + x_k = torch.stack([d_k.sample() for _ in range(int(counts[k]))]) + + x = torch.cat((x, x_k), dim=0) + + return x, y + + def score_samples(self, x): + """ + Computes log-likelihood of samples under the current model. + args: + x: torch.Tensor (n, d) or (n, 1, d) + returns: + score: torch.LongTensor (n) + """ + x = self.check_size(x) + + score = self.__score(x, as_average=False) + return score + + def _estimate_log_prob(self, x): + """ + Returns a tensor with dimensions (n, k, 1), which indicates the log-likelihood that samples belong to the k-th Gaussian. + args: + x: torch.Tensor (n, d) or (n, 1, d) + returns: + log_prob: torch.Tensor (n, k, 1) + """ + x = self.check_size(x) + + if self.covariance_type == "full": + mu = self.mu + var = self.var + + precision = torch.inverse(var) + d = x.shape[-1] + + log_2pi = d * np.log(2. * pi) + + log_det = self._calculate_log_det(precision) + + x_mu_T = (x - mu).unsqueeze(-2) + x_mu = (x - mu).unsqueeze(-1) + + x_mu_T_precision = calculate_matmul_n_times(self.n_components, x_mu_T, precision) + x_mu_T_precision_x_mu = calculate_matmul(x_mu_T_precision, x_mu) + + return -.5 * (log_2pi - log_det + x_mu_T_precision_x_mu) + + elif self.covariance_type == "diag": + mu = self.mu + prec = torch.rsqrt(self.var) + + log_p = torch.sum((mu * mu + x * x - 2 * x * mu) * prec, dim=2, keepdim=True) + log_det = torch.sum(torch.log(prec), dim=2, keepdim=True) + + return -.5 * (self.n_features * np.log(2. * pi) + log_p - log_det) + + def _calculate_log_det(self, var): + """ + Calculate log determinant in log space, to prevent overflow errors. + args: + var: torch.Tensor (1, k, d, d) + """ + log_det = torch.empty(size=(self.n_components,)).to(var.device) + + for k in range(self.n_components): + log_det[k] = 2 * torch.log(torch.diagonal(torch.linalg.cholesky(var[0, k]))).sum() + + return log_det.unsqueeze(-1) + + def _e_step(self, x): + """ + Computes log-responses that indicate the (logarithmic) posterior belief (sometimes called responsibilities) that a data point was generated by one of the k mixture components. + Also returns the mean of the mean of the logarithms of the probabilities (as is done in sklearn). + This is the so-called expectation step of the EM-algorithm. + args: + x: torch.Tensor (n, d) or (n, 1, d) + returns: + log_prob_norm: torch.Tensor (1) + log_resp: torch.Tensor (n, k, 1) + """ + x = self.check_size(x) + + weighted_log_prob = self._estimate_log_prob(x) + torch.log(self.pi) + + log_prob_norm = torch.logsumexp(weighted_log_prob, dim=1, keepdim=True) + log_resp = weighted_log_prob - log_prob_norm + + return torch.mean(log_prob_norm), log_resp + + def _m_step(self, x, log_resp): + """ + From the log-probabilities, computes new parameters pi, mu, var (that maximize the log-likelihood). This is the maximization step of the EM-algorithm. + args: + x: torch.Tensor (n, d) or (n, 1, d) + log_resp: torch.Tensor (n, k, 1) + returns: + pi: torch.Tensor (1, k, 1) + mu: torch.Tensor (1, k, d) + var: torch.Tensor (1, k, d) + """ + x = self.check_size(x) + + resp = torch.exp(log_resp) + + pi = torch.sum(resp, dim=0, keepdim=True) + self.eps + mu = torch.sum(resp * x, dim=0, keepdim=True) / pi + + if self.covariance_type == "full": + eps = (torch.eye(self.n_features) * self.eps).to(x.device) + var = torch.sum((x - mu).unsqueeze(-1).matmul((x - mu).unsqueeze(-2)) * resp.unsqueeze(-1), dim=0, + keepdim=True) / torch.sum(resp, dim=0, keepdim=True).unsqueeze(-1) + eps + + elif self.covariance_type == "diag": + x2 = (resp * x * x).sum(0, keepdim=True) / pi + mu2 = mu * mu + xmu = (resp * mu * x).sum(0, keepdim=True) / pi + var = x2 - 2 * xmu + mu2 + self.eps + + pi = pi / x.shape[0] + + return pi, mu, var + + def __em(self, x): + """ + Performs one iteration of the expectation-maximization algorithm by calling the respective subroutines. + args: + x: torch.Tensor (n, 1, d) + """ + _, log_resp = self._e_step(x) + pi, mu, var = self._m_step(x, log_resp) + + self.__update_pi(pi) + self.__update_mu(mu) + self.__update_var(var) + + def __score(self, x, as_average=True): + """ + Computes the log-likelihood of the data under the model. + args: + x: torch.Tensor (n, 1, d) + sum_data: bool + returns: + score: torch.Tensor (1) + (or) + per_sample_score: torch.Tensor (n) + + """ + weighted_log_prob = self._estimate_log_prob(x) + torch.log(self.pi) + per_sample_score = torch.logsumexp(weighted_log_prob, dim=1) + + if as_average: + return per_sample_score.mean() + else: + return torch.squeeze(per_sample_score) + + def __update_mu(self, mu): + """ + Updates mean to the provided value. + args: + mu: torch.FloatTensor + """ + assert mu.size() in [(self.n_components, self.n_features), (1, self.n_components, + self.n_features)], "Input mu does not have required tensor dimensions (%i, %i) or (1, %i, %i)" % ( + self.n_components, self.n_features, self.n_components, self.n_features) + + if mu.size() == (self.n_components, self.n_features): + self.mu = mu.unsqueeze(0) + elif mu.size() == (1, self.n_components, self.n_features): + self.mu.data = mu + + def __update_var(self, var): + """ + Updates variance to the provided value. + args: + var: torch.FloatTensor + """ + if self.covariance_type == "full": + assert var.size() in [(self.n_components, self.n_features, self.n_features), ( + 1, self.n_components, self.n_features, + self.n_features)], "Input var does not have required tensor dimensions (%i, %i, %i) or (1, %i, %i, %i)" % ( + self.n_components, self.n_features, self.n_features, self.n_components, self.n_features, self.n_features) + + if var.size() == (self.n_components, self.n_features, self.n_features): + self.var = var.unsqueeze(0) + elif var.size() == (1, self.n_components, self.n_features, self.n_features): + self.var.data = var + + elif self.covariance_type == "diag": + assert var.size() in [(self.n_components, self.n_features), (1, self.n_components, + self.n_features)], "Input var does not have required tensor dimensions (%i, %i) or (1, %i, %i)" % ( + self.n_components, self.n_features, self.n_components, self.n_features) + + if var.size() == (self.n_components, self.n_features): + self.var = var.unsqueeze(0) + elif var.size() == (1, self.n_components, self.n_features): + self.var.data = var + + def __update_pi(self, pi): + """ + Updates pi to the provided value. + args: + pi: torch.FloatTensor + """ + assert pi.size() in [ + (1, self.n_components, 1)], "Input pi does not have required tensor dimensions (%i, %i, %i)" % ( + 1, self.n_components, 1) + + self.pi.data = pi + + def get_kmeans_mu(self, x, n_centers, init_times=50, min_delta=1e-3): + """ + Find an initial value for the mean. Requires a threshold min_delta for the k-means algorithm to stop iterating. + The algorithm is repeated init_times often, after which the best centerpoint is returned. + args: + x: torch.FloatTensor (n, d) or (n, 1, d) + init_times: init + min_delta: int + """ + if len(x.size()) == 3: + x = x.squeeze(1) + x_min, x_max = x.min(), x.max() + x = (x - x_min) / (x_max - x_min) + + min_cost = np.inf + + for i in range(init_times): + center_idxs = torch.from_numpy(np.random.choice(np.arange(x.shape[0]), size=n_centers, replace=False)).to(x.device) + tmp_center = x[center_idxs, ...] + l2_dis = torch.norm((x.unsqueeze(1).repeat(1, n_centers, 1) - tmp_center), p=2, dim=2) + l2_cls = torch.argmin(l2_dis, dim=1) + + cost = 0 + for c in range(n_centers): + cost += torch.norm(x[l2_cls == c] - tmp_center[c], p=2, dim=1).mean() + + if cost < min_cost: + min_cost = cost + center = tmp_center + + delta = np.inf + + while delta > min_delta: + l2_dis = torch.norm((x.unsqueeze(1).repeat(1, n_centers, 1) - center), p=2, dim=2) + l2_cls = torch.argmin(l2_dis, dim=1) + center_old = center.clone() + + for c in range(n_centers): + center[c] = x[l2_cls == c].mean(dim=0) + + delta = torch.norm((center_old - center), dim=1).max() + + return (center.unsqueeze(0) * (x_max - x_min) + x_min) diff --git a/models/star_prompt_utils/second_stage_model.py b/models/star_prompt_utils/second_stage_model.py new file mode 100644 index 00000000..baabc053 --- /dev/null +++ b/models/star_prompt_utils/second_stage_model.py @@ -0,0 +1,244 @@ +import os +import sys +import json +import torch +import torch.nn as nn +from typing import List +from kornia.augmentation import Normalize +try: + import clip +except ImportError: + raise ImportError("Please install the CLIP package by running: pip install git+https://github.com/openai/CLIP.git") + +from datasets.utils.continual_dataset import ContinualDataset +from models.star_prompt_utils.vision_transformer import VisionTransformer +from utils.conf import get_device + + +class Prompter(torch.nn.Module): + keys: torch.Tensor + + def __init__(self, args, dataset: ContinualDataset, + num_classes: int, target_embed_len: int, + target_embed_dim: int, prompt_layers: List[int], + pretrained=True): + super().__init__() + + if pretrained: + if args.keys_ckpt_path is None: + try: + key_jobnum = json.load(open(os.path.join(os.path.dirname(__file__), 'first_stage_keys.json'), 'r'))[args.dataset][str(args.seed)] + except BaseException: + print("key missing", args.dataset, args.seed, file=sys.stderr) + raise ValueError + + self.keys_ckpt_path = f"coop_keys/coop_keys_9_{key_jobnum}.pt" + else: + self.keys_ckpt_path = args.keys_ckpt_path + + if not os.path.exists(self.keys_ckpt_path): + raise ValueError(f'Keys ckpt {self.keys_ckpt_path} does not exist') + + self.args = args + self.prompt_layers = prompt_layers + self.device = get_device() + self.target_embed_len = target_embed_len + self.target_embed_dim = target_embed_dim + + self.num_classes = num_classes + + clip_backbone = 'ViT-L/14' + if pretrained: + self.keys, self.first_stage_args = self.load_keys() + print("Keys loaded. Loading CLIP version:", self.first_stage_args.clip_backbone) + clip_backbone = self.first_stage_args.clip_backbone + else: + print("No keys loaded. Using default CLIP version:", clip_backbone) + + # TODO: READ CLIP BACKBONE FROM CHECKPOINT + self.clip_model, self.clip_preprocess = clip.load(clip_backbone, self.device) + self.clip_model = self.clip_model.float() + + self.clip_normalization = Normalize(self.clip_preprocess.transforms[-1].mean, + self.clip_preprocess.transforms[-1].std).to(self.device) + self.denorm_transform = dataset.get_denormalization_transform() + + for p in self.clip_model.parameters(): + p.requires_grad = False + + for l in self.prompt_layers: + setattr(self, f'p_{l}', self.get_parameter((self.num_classes, self.target_embed_dim))) + setattr(self, f'a_{l}', self.get_parameter((self.num_classes, self.clip_model.visual.output_dim), + type_init='orto')) + + def get_parameter(self, shape, type_init: str = 'orto'): + param = torch.nn.Parameter(torch.zeros(*shape, dtype=torch.float32, device=self.device)) + if type_init == 'orto': + torch.nn.init.orthogonal_(param) + if type_init == 'gaussian': + torch.nn.init.normal_(param, mean=0.0, std=0.1) + return param + + @torch.no_grad() + def load_keys(self): + print(f'Loading keys from {self.keys_ckpt_path}', file=sys.stderr) + st = torch.load(self.keys_ckpt_path).to(self.device) + keys = st['keys'] + old_args = st['args'] + assert self.num_classes == keys.shape[0] + print('Keys loaded successfully', file=sys.stderr) + return keys.float(), old_args + + @torch.no_grad() + def get_query(self, x, disable_renorm=False): + if not disable_renorm: + x = self.denorm_transform(x) + x = self.clip_normalization(x) + clip_out = self.clip_model.encode_image(x) + return clip_out + + def compute_maps(self, clip_out, a, k): + filter_values = torch.softmax(a, dim=-1) + + clip_out = clip_out.unsqueeze(1).expand(clip_out.shape[0], a.shape[0], clip_out.shape[-1]) + clip_out_a = clip_out * filter_values[None, :, :] + clip_out_a_norm = torch.nn.functional.normalize(clip_out_a, dim=-1) + + clip_out = torch.einsum('bcd,cd->bc', clip_out_a_norm, k) * 5 + + return clip_out + + def get_masked_clip_out(self, sim_act_map): + with torch.no_grad(): + mask = torch.ones_like(sim_act_map, dtype=torch.bool) + mask.scatter_(1, sim_act_map.argmax(dim=1, keepdim=True), False) + sim_act_map[mask] = 0.0 + + return sim_act_map + + def compute_super_prompts(self, p, sim_act_map, start_idx, end_idx): + sim_act_map = sim_act_map[:, start_idx:end_idx] + p = p[start_idx:end_idx] + + sp = torch.einsum('bc,cd->bd', sim_act_map, p) + return sp + + def get_prompts(self, layer_idx, clip_out, cur_classes: int, frozen_past_classes=0): + + if layer_idx in self.prompt_layers: + + pv: torch.Tensor = getattr(self, f'p_{layer_idx}') + a: torch.Tensor = getattr(self, f'a_{layer_idx}') + + if frozen_past_classes > 0: + with torch.no_grad(): + clip_out_prev = self.compute_maps(clip_out, a[:frozen_past_classes].detach(), self.keys[:frozen_past_classes].detach()) + clip_out_curr = self.compute_maps(clip_out, a[frozen_past_classes:cur_classes], self.keys[frozen_past_classes:cur_classes]) + clip_out = torch.cat((clip_out_prev.detach(), clip_out_curr), dim=1) + clip_out = self.get_masked_clip_out(clip_out) + + with torch.no_grad(): + sp_past = self.compute_super_prompts(pv, clip_out, 0, frozen_past_classes) + sp_curr = self.compute_super_prompts(pv, clip_out, frozen_past_classes, cur_classes) + + super_prompt = sp_past.detach() + sp_curr + else: + clip_out = self.compute_maps(clip_out, a[:cur_classes], self.keys[:cur_classes]) + clip_out = self.get_masked_clip_out(clip_out) + + super_prompt = self.compute_super_prompts(pv, clip_out, 0, cur_classes) + + return super_prompt, clip_out + else: + return None + + def compute_ortho_loss(self, cur_classes: int, frozen_past_classes=0) -> torch.Tensor: + + if frozen_past_classes == 0: # No ortho to compute between present and past + return 0. + + ortho_loss_list = [] + weight_loss_list = [] + + for layer_idx in self.prompt_layers: + + p = getattr(self, f'p_{layer_idx}') + + past_pv = p[:frozen_past_classes].detach() + cur_pv = p[frozen_past_classes:cur_classes] + + eye_intra = torch.eye(cur_classes - frozen_past_classes).bool() + + intra_ortho_loss = (torch.matmul(cur_pv, cur_pv.T)[eye_intra] - 1).pow(2).mean() + inter_ortho_loss = (torch.matmul(cur_pv, past_pv.T)).pow(2).mean() + + current_loss = intra_ortho_loss + inter_ortho_loss + current_weight = 1. + + if layer_idx < self.args.ortho_split_val: + current_weight = 0. + + current_loss = current_weight * current_loss + + weight_loss_list.append(current_weight) + ortho_loss_list.append(current_loss) + + total_ortho_loss = sum(ortho_loss_list) / sum(weight_loss_list) + + return total_ortho_loss + + +class Model(nn.Module): + prompter: Prompter + + def __init__(self, args, backbone: nn.Module, dataset: ContinualDataset, num_classes): + super().__init__() + + self.args = args + self.num_classes = num_classes + self.device = backbone.device + + # get feature encoder + vit_model = VisionTransformer(embed_dim=768, depth=12, num_heads=12, drop_path_rate=0, num_classes=num_classes) + + # load pretrained weights + load_dict = backbone.state_dict() + if 'head.weight' in load_dict: + del load_dict['head.weight'] + del load_dict['head.bias'] + missing, unexpected = vit_model.load_state_dict(load_dict, strict=False) + assert len([m for m in missing if 'head' not in m]) == 0, f"Missing keys: {missing}" + assert len(unexpected) == 0, f"Unexpected keys: {unexpected}" + + # classifier + self.last = nn.Linear(768, num_classes) + + self.vit = vit_model + + self.prompt_layers = list(range(len(self.vit.blocks))) + + self.prompter = Prompter(args, + dataset, + target_embed_len=self.vit.patch_embed.num_patches, + target_embed_dim=self.vit.embed_dim, + prompt_layers=self.prompt_layers) + + for n, p in self.vit.named_parameters(): + if n != 'head.weight' and n != 'head.bias': + p.requires_grad = False + + def train(self, mode=True): + super().train(False) + self.prompter.train(False) + self.vit.train(mode) + + return self + + def forward(self, x, cur_classes: int, frozen_past_classes=0, return_features=False): + clip_out = self.prompter.get_query(x, disable_renorm=False) + features = self.vit.forward_features(x, clip_out=clip_out, prompter=self.prompter, cur_classes=cur_classes, frozen_past_classes=frozen_past_classes) + if return_features: + return features + + out = self.vit.forward_head(features) + return out diff --git a/models/star_prompt_utils/vision_transformer.py b/models/star_prompt_utils/vision_transformer.py new file mode 100644 index 00000000..8265c804 --- /dev/null +++ b/models/star_prompt_utils/vision_transformer.py @@ -0,0 +1,102 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + +from backbone.vit import VisionTransformer as MammothVP, Block as MammothViTBlock + + +class Attention(nn.Module): + def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): + super().__init__() + assert dim % num_heads == 0, 'dim should be divisible by num_heads' + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** -0.5 + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x, prompts=None): + B, N, C = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) + + if prompts is not None: + prompts = prompts.reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) + v = v + prompts + + x = F.scaled_dot_product_attention(q, k, v, scale=self.scale, dropout_p=self.attn_drop.p) + # attn = (q @ k.transpose(-2, -1)) * self.scale + # attn = attn.softmax(dim=-1) + # attn = self.attn_drop(attn) + # x = (attn @ v).transpose(1, 2).reshape(B, N, C) + + x = x.transpose(1, 2).reshape(B, N, C) + + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class Block(MammothViTBlock): + def forward(self, x, prompts=None): + x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x), prompts))) + x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) + return x + + +class VisionTransformer(MammothVP): + + def __init__(self, *args, **kwargs): + + super().__init__(*args, **kwargs) + + self.blocks = nn.Sequential(*[ + Block( + dim=self.embed_dim, + num_heads=self.num_heads, + mlp_ratio=self.mlp_ratio, + qkv_bias=self.qkv_bias, + init_values=self.init_values, + drop=self.pos_drop.p, + attn_drop=self.attn_drop_rate, + drop_path=self.dpr[i], + norm_layer=self.norm_layer, + act_layer=self.act_layer + ) + for i in range(self.depth)]) + + self.head = nn.Linear(self.embed_dim, self.num_classes) if self.num_classes > 0 else nn.Identity() + + if self.weight_init != 'skip': + self.init_weights(self.weight_init) + + def forward_features(self, x, first_stage_query, prompter, cur_classes: int, frozen_past_classes=0): + x = self.patch_embed(x) + x = self._pos_embed(x) + x = self.norm_pre(x) + for idx, blk in enumerate(self.blocks): + ret = prompter.get_prompts(idx, first_stage_query, frozen_past_classes=frozen_past_classes, cur_classes=cur_classes) + if ret is not None: + prompts, _ = ret + x = blk(x, prompts) + else: + x = blk(x) + x = self.norm(x) + return x + + def forward(self, x: torch.Tensor, first_stage_query: torch.Tensor, prompter, cur_classes: int, frozen_past_classes=0) -> torch.Tensor: + """ + Compute the forward of STAR-Prompt. + + Args: + x: input image + query: the output of the visual encoder of CLIP, to be used as query for the second stage's prompter + prompter: the prompter of the second stage + train: whether the model is in training mode. If True, the prompts of the past tasks will be frozen and only the current task's prompts will be updated. Else, all prompts will be frozen. + """ + x = self.forward_features(x, first_stage_query, prompter, cur_classes, frozen_past_classes) + x = self.forward_head(x) + return x diff --git a/models/utils/continual_model.py b/models/utils/continual_model.py index 97fcfff8..94d58894 100644 --- a/models/utils/continual_model.py +++ b/models/utils/continual_model.py @@ -27,8 +27,9 @@ import sys from argparse import ArgumentParser, Namespace from contextlib import suppress -from typing import List +from typing import List, Tuple +import kornia import torch import torch.nn as nn import torch.optim as optim @@ -52,6 +53,20 @@ class ContinualModel(nn.Module): COMPATIBILITY: List[str] AVAIL_OPTIMS = ['sgd', 'adam', 'adamw'] + args: Namespace # The command line arguments + device: torch.device # The device to be used for training + net: nn.Module # The backbone of the model (defined by the `dataset`) + loss: nn.Module # The loss function to be used (defined by the `dataset`) + opt: optim.Optimizer # The optimizer to be used for training + scheduler: optim.lr_scheduler._LRScheduler # (optional) The scheduler for the optimizer. If defined, it will overwrite the one defined in the `dataset` + transform: transforms.Compose|kornia.augmentation.AugmentationSequential # The transformation to be applied to the input data. The model will try to convert it to a kornia transform to be applicable to a batch of samples at once + original_transform: transforms.Compose # The original transformation to be applied to the input data. This is the one defined by the `dataset` + task_iteration: int # Number of iterations in the current task + epoch_iteration: int # Number of iterations in the current epoch. Updated if `epoch` is passed to observe + dataset: ContinualDataset # The instance of the dataset. Used to update the number of classes in the current task + num_classes: int # Total number of classes in the dataset + n_tasks: int # Total number of tasks in the dataset + @staticmethod def get_parser() -> Namespace: """ @@ -191,7 +206,7 @@ def get_parameters(self): """ return self.net.parameters() - def get_optimizer(self): + def get_optimizer(self) -> optim.Optimizer: # check if optimizer is in torch.optim supported_optims = {optim_name.lower(): optim_name for optim_name in dir(optim) if optim_name.lower() in self.AVAIL_OPTIMS} opt = None @@ -209,10 +224,24 @@ def get_optimizer(self): raise ValueError('Unknown optimizer: {}'.format(self.args.optimizer)) return opt - def _compute_offsets(self, task): - cpt = self.N_CLASSES // self.N_TASKS - offset1 = task * cpt - offset2 = (task + 1) * cpt + def compute_offsets(self, task: int) -> Tuple[int, int]: + """ + Compute the start and end offset given the task. + + Args: + task: the task index + + Returns: + the start and end offset + """ + if isinstance(self._cpt, int): + cpt = self.N_CLASSES // self.N_TASKS + offset1 = task * cpt + offset2 = (task + 1) * cpt + else: + offset1 = sum(self._cpt[:self._current_task]) + offset2 = sum(self._cpt[:self._current_task + 1]) + return offset1, offset2 def get_debug_iters(self): @@ -264,6 +293,11 @@ def meta_observe(self, *args, **kwargs): Returns: the value of the loss function """ + if 'epoch' in kwargs and kwargs['epoch'] is not None: + epoch = kwargs['epoch'] + if self._past_epoch != epoch: + self._past_epoch = epoch + self.epoch_iteration = 0 if 'cssl' not in self.COMPATIBILITY: # drop unlabeled data if not supported labeled_mask = args[1] != -1 @@ -277,6 +311,7 @@ def meta_observe(self, *args, **kwargs): else: ret = self.observe(*args, **kwargs) self.task_iteration += 1 + self.epoch_iteration += 1 return ret def meta_begin_task(self, dataset): @@ -289,10 +324,11 @@ def meta_begin_task(self, dataset): dataset: the current task's dataset """ self.task_iteration = 0 + self.epoch_iteration = 0 + self._past_epoch = 0 self._n_classes_current_task = self._cpt if isinstance(self._cpt, int) else self._cpt[self._current_task] - self._n_seen_classes = self._cpt * (self._current_task + 1) if isinstance(self._cpt, int) else sum(self._cpt[:self._current_task + 1]) + self._n_past_classes, self._n_seen_classes = self.compute_offsets(self._current_task) self._n_remaining_classes = self.N_CLASSES - self._n_seen_classes - self._n_past_classes = self._cpt * self._current_task if isinstance(self._cpt, int) else sum(self._cpt[:self._current_task]) self.begin_task(dataset) def meta_end_task(self, dataset): diff --git a/tests/test_scheduler.py b/tests/test_scheduler.py index 80af6160..12610b5f 100644 --- a/tests/test_scheduler.py +++ b/tests/test_scheduler.py @@ -32,7 +32,7 @@ def test_der_cifar100_defaultscheduler(): '1', '--seed', '0'] - + log_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs', f'test_der_cifar100_defaultscheduler.log') # log all outputs to file if not os.path.exists(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs')): @@ -50,17 +50,16 @@ def test_der_cifar100_defaultscheduler(): ckpt_base_name = ckpt_name[0].split('Saving checkpoint into')[-1].strip() ckpt_paths = [os.path.join('checkpoints', ckpt_base_name + f'_{i}.pt') for i in range(N_TASKS)] - for ckpt_path in ckpt_paths: assert os.path.exists(ckpt_path), f'Checkpoint file {ckpt_path} not found' ckpt = torch.load(ckpt_path) opt, sched = ckpt['optimizer']['param_groups'][0], ckpt['scheduler'] assert opt['initial_lr'] == 0.03, f'Learning rate not updated correctly in {ckpt_path}' - assert opt['lr']==opt['initial_lr']*0.1*0.1, f'Learning rate not updated correctly in {ckpt_path}' + assert opt['lr'] == opt['initial_lr'] * 0.1 * 0.1, f'Learning rate not updated correctly in {ckpt_path}' assert list(sched['milestones'].keys()) == [35, 45], f'Milestones not updated correctly in {ckpt_path}' - assert sched['base_lrs']==[0.03], f'Base learning rate not updated correctly in {ckpt_path}' - + assert sched['base_lrs'] == [0.03], f'Base learning rate not updated correctly in {ckpt_path}' + def test_der_cifar100_customscheduler(): N_TASKS = 10 @@ -88,10 +87,10 @@ def test_der_cifar100_customscheduler(): '--lr_scheduler', 'multisteplr', '--lr_milestones', - '2','4','6','8', + '2', '4', '6', '8', '--seed', '0'] - + log_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs', f'test_der_cifar100_customscheduler.der.cifar100.log') # log all outputs to file if not os.path.exists(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs')): @@ -109,13 +108,12 @@ def test_der_cifar100_customscheduler(): ckpt_base_name = ckpt_name[0].split('Saving checkpoint into')[-1].strip() ckpt_paths = [os.path.join('checkpoints', ckpt_base_name + f'_{i}.pt') for i in range(N_TASKS)] - for ckpt_path in ckpt_paths: assert os.path.exists(ckpt_path), f'Checkpoint file {ckpt_path} not found' - + ckpt = torch.load(ckpt_path) opt, sched = ckpt['optimizer']['param_groups'][0], ckpt['scheduler'] assert opt['initial_lr'] == 0.1, f'Learning rate not updated correctly in {ckpt_path}' - assert opt['lr']==opt['initial_lr']*0.1*0.1*0.1*0.1, f'Learning rate not updated correctly in {ckpt_path}' - assert list(sched['milestones'].keys()) == [2,4,6,8], f'Milestones not updated correctly in {ckpt_path}' - assert sched['base_lrs']==[0.1], f'Base learning rate not updated correctly in {ckpt_path}' \ No newline at end of file + assert opt['lr'] == opt['initial_lr'] * 0.1 * 0.1 * 0.1 * 0.1, f'Learning rate not updated correctly in {ckpt_path}' + assert list(sched['milestones'].keys()) == [2, 4, 6, 8], f'Milestones not updated correctly in {ckpt_path}' + assert sched['base_lrs'] == [0.1], f'Base learning rate not updated correctly in {ckpt_path}' diff --git a/tests/test_validation.py b/tests/test_validation.py index 3e2b055c..4adff4a8 100644 --- a/tests/test_validation.py +++ b/tests/test_validation.py @@ -4,9 +4,10 @@ from utils.main import main, parse_args import pytest -@pytest.mark.parametrize('validation', ['0.2','0','20']) -@pytest.mark.parametrize('validation_mode', ['complete','current']) -def test_validation_classil( validation, validation_mode): + +@pytest.mark.parametrize('validation', ['0.2', '0', '20']) +@pytest.mark.parametrize('validation_mode', ['complete', 'current']) +def test_validation_classil(validation, validation_mode): sys.argv = ['mammoth', '--model', 'sgd', @@ -40,8 +41,8 @@ def test_validation_classil( validation, validation_mode): main() -@pytest.mark.parametrize('dataset', ['mnist-360','perm-mnist']) -@pytest.mark.parametrize('validation', ['0.2','0','20']) +@pytest.mark.parametrize('dataset', ['mnist-360', 'perm-mnist']) +@pytest.mark.parametrize('validation', ['0.2', '0', '20']) @pytest.mark.parametrize('validation_mode', ['complete']) def test_validation_domainil(dataset, validation, validation_mode): sys.argv = ['mammoth', diff --git a/utils/stats.py b/utils/stats.py index 924e5629..888f3ed6 100644 --- a/utils/stats.py +++ b/utils/stats.py @@ -140,6 +140,7 @@ def update_stats(self, cpu_res, gpu_res): self.max_gpu_res = {g: max(self.max_gpu_res[g], g_res) for g, g_res in enumerate(gpu_res)} if self.logger is not None: + gpu_res = {g: g_res for g, g_res in enumerate(gpu_res)} self.logger.log_system_stats(cpu_res, gpu_res) def print_stats(self): From 5b49d0a8e976b60f838f48993ad4939b7727952a Mon Sep 17 00:00:00 2001 From: lorib Date: Wed, 3 Jul 2024 11:04:00 +0200 Subject: [PATCH 05/66] minor fix load keys. update device set for backbone --- backbone/MNISTMLP.py | 5 ----- backbone/ResNetBlock.py | 4 ---- backbone/__init__.py | 6 ++++++ models/second_stage_starprompt.py | 2 +- models/star_prompt_utils/second_stage_model.py | 15 +++++++++------ models/star_prompt_utils/vision_transformer.py | 3 +++ 6 files changed, 19 insertions(+), 16 deletions(-) diff --git a/backbone/MNISTMLP.py b/backbone/MNISTMLP.py index d39bfb3b..a9ac9da3 100644 --- a/backbone/MNISTMLP.py +++ b/backbone/MNISTMLP.py @@ -72,8 +72,3 @@ def forward(self, x: torch.Tensor, returnt='out') -> torch.Tensor: return (out, feats) raise NotImplementedError("Unknown return type") - - def to(self, device): - super().to(device) - self.device = device - return self diff --git a/backbone/ResNetBlock.py b/backbone/ResNetBlock.py index 56d8f65c..1da7c010 100644 --- a/backbone/ResNetBlock.py +++ b/backbone/ResNetBlock.py @@ -112,10 +112,6 @@ def __init__(self, block: BasicBlock, num_blocks: List[int], self.feature_dim = nf * 8 * block.expansion - def to(self, device, **kwargs): - self.device = device - return super().to(device, **kwargs) - def set_return_prerelu(self, enable=True): self.return_prerelu = enable for c in self.modules(): diff --git a/backbone/__init__.py b/backbone/__init__.py index 09467286..3cdd4ec0 100644 --- a/backbone/__init__.py +++ b/backbone/__init__.py @@ -65,6 +65,12 @@ class MammothBackbone(nn.Module): def __init__(self, **kwargs) -> None: super(MammothBackbone, self).__init__() + self.device = torch.device('cpu') if 'device' not in kwargs else kwargs['device'] + + def to(self, device, *args, **kwargs): + super(MammothBackbone, self).to(device, *args, **kwargs) + self.device = device + return self def forward(self, x: torch.Tensor, returnt='out') -> torch.Tensor: """ diff --git a/models/second_stage_starprompt.py b/models/second_stage_starprompt.py index 0b98f179..164d328d 100644 --- a/models/second_stage_starprompt.py +++ b/models/second_stage_starprompt.py @@ -62,7 +62,7 @@ def __init__(self, backbone, loss, args, transform): if isinstance(m, (torch.nn.BatchNorm2d, torch.nn.BatchNorm1d)): m.track_running_stats = False - embed_dim = backbone.vit.embed_dim + embed_dim = self.net.vit.embed_dim self.distributions = torch.nn.ModuleList([self._get_dist(embed_dim) for _ in range(self.num_classes)]).to(self.device) diff --git a/models/star_prompt_utils/second_stage_model.py b/models/star_prompt_utils/second_stage_model.py index baabc053..2f0f9b78 100644 --- a/models/star_prompt_utils/second_stage_model.py +++ b/models/star_prompt_utils/second_stage_model.py @@ -82,8 +82,8 @@ def get_parameter(self, shape, type_init: str = 'orto'): @torch.no_grad() def load_keys(self): print(f'Loading keys from {self.keys_ckpt_path}', file=sys.stderr) - st = torch.load(self.keys_ckpt_path).to(self.device) - keys = st['keys'] + st = torch.load(self.keys_ckpt_path) + keys = st['keys'].to(self.device) old_args = st['args'] assert self.num_classes == keys.shape[0] print('Keys loaded successfully', file=sys.stderr) @@ -194,6 +194,8 @@ class Model(nn.Module): def __init__(self, args, backbone: nn.Module, dataset: ContinualDataset, num_classes): super().__init__() + assert 'resnet' not in str(type(backbone)).lower(), "ResNet not supported" + self.args = args self.num_classes = num_classes self.device = backbone.device @@ -203,9 +205,9 @@ def __init__(self, args, backbone: nn.Module, dataset: ContinualDataset, num_cla # load pretrained weights load_dict = backbone.state_dict() - if 'head.weight' in load_dict: - del load_dict['head.weight'] - del load_dict['head.bias'] + for k in list(load_dict.keys()): + if 'head' in k: + del load_dict[k] missing, unexpected = vit_model.load_state_dict(load_dict, strict=False) assert len([m for m in missing if 'head' not in m]) == 0, f"Missing keys: {missing}" assert len(unexpected) == 0, f"Unexpected keys: {unexpected}" @@ -219,6 +221,7 @@ def __init__(self, args, backbone: nn.Module, dataset: ContinualDataset, num_cla self.prompter = Prompter(args, dataset, + num_classes=num_classes, target_embed_len=self.vit.patch_embed.num_patches, target_embed_dim=self.vit.embed_dim, prompt_layers=self.prompt_layers) @@ -236,7 +239,7 @@ def train(self, mode=True): def forward(self, x, cur_classes: int, frozen_past_classes=0, return_features=False): clip_out = self.prompter.get_query(x, disable_renorm=False) - features = self.vit.forward_features(x, clip_out=clip_out, prompter=self.prompter, cur_classes=cur_classes, frozen_past_classes=frozen_past_classes) + features = self.vit.forward_features(x, first_stage_query=clip_out, prompter=self.prompter, cur_classes=cur_classes, frozen_past_classes=frozen_past_classes) if return_features: return features diff --git a/models/star_prompt_utils/vision_transformer.py b/models/star_prompt_utils/vision_transformer.py index 8265c804..541d894d 100644 --- a/models/star_prompt_utils/vision_transformer.py +++ b/models/star_prompt_utils/vision_transformer.py @@ -41,6 +41,9 @@ def forward(self, x, prompts=None): class Block(MammothViTBlock): + def __init__(self, *args, **kwargs): + super().__init__(*args, attn_layer=Attention, **kwargs) + def forward(self, x, prompts=None): x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x), prompts))) x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) From 8e12101a97ca020b980ec96e9443f461db92ae6d Mon Sep 17 00:00:00 2001 From: lorib Date: Wed, 3 Jul 2024 11:22:45 +0200 Subject: [PATCH 06/66] updated requirements with new pytorch version for scaled dot prod --- README.md | 1 + docs/readme.rst | 4 ++++ requirements.txt | 2 +- 3 files changed, 6 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index 401e133d..025f29cb 100644 --- a/README.md +++ b/README.md @@ -28,6 +28,7 @@ Join our Discord Server for all your Mammoth-related questions → ![Discord Shi ## Setup +- Install with `pip install -r requirements.txt`. NOTE: Pytorch version >= 2.1.0 is required for scaled_dot_product_attention (see: https://github.com/Lightning-AI/litgpt/issues/763). If you cannot support this requirement, uncomment the lines 136-139 under `scaled_dot_product_attention` in `backbone/vit.py`. - Use `./utils/main.py` to run experiments. - Use argument `--load_best_args` to use the best hyperparameters from the paper. - New models can be added to the `models/` folder. diff --git a/docs/readme.rst b/docs/readme.rst index 8bad0be3..179672cd 100644 --- a/docs/readme.rst +++ b/docs/readme.rst @@ -58,11 +58,15 @@ With Mammoth, nothing is set in stone. You can easily add new models, datasets, Setup ----- +- Install with ``pip install -r requirements.txt``. - Use ``./utils/main.py`` to run experiments. - Use argument ``--load_best_args`` to use the best hyperparameters from the paper. - New models can be added to the ``models/`` folder. - New datasets can be added to the ``datasets/`` folder. +.. note:: + **Pytorch version >=2.1.0 is required for scaled_dot_product_attention** (see: https://github.com/Lightning-AI/litgpt/issues/763). If you cannot support this version, you can uncomment the lines 136-139 under `scaled_dot_product_attention` in `backbone/vit.py`. + Models ------ diff --git a/requirements.txt b/requirements.txt index 5b4f4683..51f9625c 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,4 +1,4 @@ -torch +torch>=2.1.0 numpy torchvision kornia>=0.7.0 From 0ece3530edcdcf085c225fcba02125d9c8961362 Mon Sep 17 00:00:00 2001 From: lorenzo Date: Wed, 3 Jul 2024 12:01:30 +0200 Subject: [PATCH 07/66] Minor update --- .gitignore | 5 ++++- models/first_stage_starprompt.py | 2 +- scripts/local_launcher.py | 6 ++++-- scripts/prepare_grid.py | 4 +++- scripts/slurm_sbatcher.py | 7 ++++--- 5 files changed, 16 insertions(+), 8 deletions(-) diff --git a/.gitignore b/.gitignore index e8b4020f..8517450f 100644 --- a/.gitignore +++ b/.gitignore @@ -95,4 +95,7 @@ logs **/_build/ _autosummary generated -val_permutations \ No newline at end of file +val_permutations + +# Other prepare grid scripts except the example one +scripts/prepare_grid* \ No newline at end of file diff --git a/models/first_stage_starprompt.py b/models/first_stage_starprompt.py index 76d58e13..eb30889f 100644 --- a/models/first_stage_starprompt.py +++ b/models/first_stage_starprompt.py @@ -85,7 +85,7 @@ def end_task(self, dataset): 'args': self.args, } torch.save(st, f'./coop_keys/coop_keys_{self.current_task}_{self.args.conf_jobnum}.pt') - print('Done', file=sys.stderr) + print('Saved in', f'./coop_keys/coop_keys_{self.current_task}_{self.args.conf_jobnum}.pt', file=sys.stderr) def get_parameters(self): return [v for k, v in self.net.named_parameters() if 'prompt_parameters' in k] diff --git a/scripts/local_launcher.py b/scripts/local_launcher.py index a858a9cd..d49aee5f 100644 --- a/scripts/local_launcher.py +++ b/scripts/local_launcher.py @@ -1,6 +1,8 @@ -import functools import os -import random +if os.getcwd().split('/')[-1] == 'scripts': + os.chdir('..') + +import functools import subprocess import sys import time diff --git a/scripts/prepare_grid.py b/scripts/prepare_grid.py index 2707c85b..6f8e8df3 100644 --- a/scripts/prepare_grid.py +++ b/scripts/prepare_grid.py @@ -1,6 +1,8 @@ import os +if os.getcwd().split('/')[-1] == 'scripts': + os.chdir('..') + import itertools -import numpy as np import argparse parser = argparse.ArgumentParser(description='Prepare grid') diff --git a/scripts/slurm_sbatcher.py b/scripts/slurm_sbatcher.py index 7d7c9a57..42679207 100644 --- a/scripts/slurm_sbatcher.py +++ b/scripts/slurm_sbatcher.py @@ -1,7 +1,8 @@ -import argparse import os -import socket -import time +if os.getcwd().split('/')[-1] == 'scripts': + os.chdir('..') + +import argparse import math if __name__ == '__main__': From ef1747d86a17c3b289ac178f59961a49f09e2c1d Mon Sep 17 00:00:00 2001 From: lorib Date: Wed, 3 Jul 2024 12:03:47 +0200 Subject: [PATCH 08/66] More minor updates --- .gitignore | 5 +---- datasets/seq_imagenet_r.py | 2 +- models/first_stage_starprompt.py | 10 ++++++---- models/second_stage_starprompt.py | 4 ++-- models/star_prompt_utils/first_stage_model.py | 2 +- scripts/local_launcher.py | 6 ++---- scripts/prepare_grid.py | 4 +--- scripts/slurm_sbatcher.py | 7 +++---- 8 files changed, 17 insertions(+), 23 deletions(-) diff --git a/.gitignore b/.gitignore index 8517450f..e8b4020f 100644 --- a/.gitignore +++ b/.gitignore @@ -95,7 +95,4 @@ logs **/_build/ _autosummary generated -val_permutations - -# Other prepare grid scripts except the example one -scripts/prepare_grid* \ No newline at end of file +val_permutations \ No newline at end of file diff --git a/datasets/seq_imagenet_r.py b/datasets/seq_imagenet_r.py index 9a89fb36..2deceeb4 100644 --- a/datasets/seq_imagenet_r.py +++ b/datasets/seq_imagenet_r.py @@ -43,7 +43,7 @@ def __init__(self, root, train=True, transform=None, r = request('GET', url, allow_redirects=True) if not os.path.exists(self.root): os.makedirs(self.root) - print("Saving tar...") + print("Writing tar on disk...") open(self.root + 'imagenet-r.tar', 'wb').write(r.content) print("Extracting tar...") os.system('tar -xf ' + self.root + 'imagenet-r.tar -C ' + self.root.rstrip('imagenet-r')) diff --git a/models/first_stage_starprompt.py b/models/first_stage_starprompt.py index eb30889f..f9544a01 100644 --- a/models/first_stage_starprompt.py +++ b/models/first_stage_starprompt.py @@ -27,9 +27,11 @@ def get_parser() -> ArgumentParser: # Tunable hyperparameters parser.add_argument("--learning_rate_gr", type=float, default=0.05, help="Learning rate for Generative Replay.") - parser.add_argument("--lambda_ortho_coop", type=float, default=30, help="Orthogonality loss coefficient for coop") - parser.add_argument("--num_monte_carlo_gr", type=int, default=5, help="How many times to sample from the dataset for alignment") - parser.add_argument("--num_epochs_alignment", type=int, default=10, + parser.add_argument("--lambda_ortho_coop", type=float, default=30, + help="Orthogonality loss coefficient for coop") + parser.add_argument("--num_monte_carlo_gr", type=int, default=5, + help="How many times to sample from the dataset for Generative Replay") + parser.add_argument("--num_epochs_gr", type=int, default=10, help="Num. of epochs for Generative Replay.") parser.add_argument('--gr_mog_n_components', type=int, default=5, help="Number of components for Generative Replay with MOG.") @@ -85,7 +87,7 @@ def end_task(self, dataset): 'args': self.args, } torch.save(st, f'./coop_keys/coop_keys_{self.current_task}_{self.args.conf_jobnum}.pt') - print('Saved in', f'./coop_keys/coop_keys_{self.current_task}_{self.args.conf_jobnum}.pt', file=sys.stderr) + print('Done', file=sys.stderr) def get_parameters(self): return [v for k, v in self.net.named_parameters() if 'prompt_parameters' in k] diff --git a/models/second_stage_starprompt.py b/models/second_stage_starprompt.py index 164d328d..3d70e7f4 100644 --- a/models/second_stage_starprompt.py +++ b/models/second_stage_starprompt.py @@ -30,7 +30,7 @@ def get_parser() -> ArgumentParser: help="orthogonality loss coefficient") parser.add_argument("--num_monte_carlo_gr", type=int, default=1, help="how many times to sample from the dataset for alignment") - parser.add_argument("--num_epochs_alignment", type=int, default=10, + parser.add_argument("--num_epochs_gr", type=int, default=10, help="Num. of epochs for GR.") parser.add_argument("--learning_rate_gr", type=float, default=0.001, help="Learning rate for GR.") @@ -139,7 +139,7 @@ def align(self): momentum=0.0, weight_decay=0.0) - num_epochs = self.args.num_epochs_alignment + (5 * self.current_task) + num_epochs = self.args.num_epochs_gr + (5 * self.current_task) for e in range(num_epochs): self.train_alignment_epoch(classifier, optim) diff --git a/models/star_prompt_utils/first_stage_model.py b/models/star_prompt_utils/first_stage_model.py index d06c4fd0..aafa4aaf 100644 --- a/models/star_prompt_utils/first_stage_model.py +++ b/models/star_prompt_utils/first_stage_model.py @@ -117,7 +117,7 @@ def align(self, current_task: int): optim = torch.optim.SGD(lr=self.args.learning_rate_gr, params=[self.prompt_parameters], momentum=0.0, weight_decay=0.0) - for e in range(self.args.num_epochs_alignment): + for e in range(self.args.num_epochs_gr): self.train_alignment_epoch(optim, current_task=current_task) @torch.no_grad() diff --git a/scripts/local_launcher.py b/scripts/local_launcher.py index d49aee5f..a858a9cd 100644 --- a/scripts/local_launcher.py +++ b/scripts/local_launcher.py @@ -1,8 +1,6 @@ -import os -if os.getcwd().split('/')[-1] == 'scripts': - os.chdir('..') - import functools +import os +import random import subprocess import sys import time diff --git a/scripts/prepare_grid.py b/scripts/prepare_grid.py index 6f8e8df3..2707c85b 100644 --- a/scripts/prepare_grid.py +++ b/scripts/prepare_grid.py @@ -1,8 +1,6 @@ import os -if os.getcwd().split('/')[-1] == 'scripts': - os.chdir('..') - import itertools +import numpy as np import argparse parser = argparse.ArgumentParser(description='Prepare grid') diff --git a/scripts/slurm_sbatcher.py b/scripts/slurm_sbatcher.py index 42679207..7d7c9a57 100644 --- a/scripts/slurm_sbatcher.py +++ b/scripts/slurm_sbatcher.py @@ -1,8 +1,7 @@ -import os -if os.getcwd().split('/')[-1] == 'scripts': - os.chdir('..') - import argparse +import os +import socket +import time import math if __name__ == '__main__': From 6808c8059e1a32bb3b072cbefc2766a39a95442e Mon Sep 17 00:00:00 2001 From: lorib Date: Wed, 3 Jul 2024 12:09:17 +0200 Subject: [PATCH 09/66] Fix autopep error --- .gitignore | 5 ++++- scripts/local_launcher.py | 6 ++++-- scripts/prepare_grid.py | 7 +++++-- scripts/slurm_sbatcher.py | 7 ++++--- 4 files changed, 17 insertions(+), 8 deletions(-) diff --git a/.gitignore b/.gitignore index e8b4020f..8517450f 100644 --- a/.gitignore +++ b/.gitignore @@ -95,4 +95,7 @@ logs **/_build/ _autosummary generated -val_permutations \ No newline at end of file +val_permutations + +# Other prepare grid scripts except the example one +scripts/prepare_grid* \ No newline at end of file diff --git a/scripts/local_launcher.py b/scripts/local_launcher.py index a858a9cd..d49aee5f 100644 --- a/scripts/local_launcher.py +++ b/scripts/local_launcher.py @@ -1,6 +1,8 @@ -import functools import os -import random +if os.getcwd().split('/')[-1] == 'scripts': + os.chdir('..') + +import functools import subprocess import sys import time diff --git a/scripts/prepare_grid.py b/scripts/prepare_grid.py index 2707c85b..1af1a33a 100644 --- a/scripts/prepare_grid.py +++ b/scripts/prepare_grid.py @@ -1,6 +1,8 @@ import os +if os.getcwd().split('/')[-1] == 'scripts': + os.chdir('..') + import itertools -import numpy as np import argparse parser = argparse.ArgumentParser(description='Prepare grid') @@ -41,7 +43,8 @@ for k, v in zip(combos.keys(), c): if v is None: continue -if isinstance(k, if) for i in range(len(k)): + if type(k) == tuple: + for i in range(len(k)): ll += f" --{k[i]}={v[i]}" else: ll += f" --{k}={v}" diff --git a/scripts/slurm_sbatcher.py b/scripts/slurm_sbatcher.py index 7d7c9a57..42679207 100644 --- a/scripts/slurm_sbatcher.py +++ b/scripts/slurm_sbatcher.py @@ -1,7 +1,8 @@ -import argparse import os -import socket -import time +if os.getcwd().split('/')[-1] == 'scripts': + os.chdir('..') + +import argparse import math if __name__ == '__main__': From 9c03dcd888f7593d0f388a991e9d0bfdd818094f Mon Sep 17 00:00:00 2001 From: lorib Date: Wed, 3 Jul 2024 15:08:40 +0200 Subject: [PATCH 10/66] add cars196 --- datasets/seq_cars196.py | 210 ++++++++++++++++++++++++++++ datasets/seq_cifar10.py | 2 +- datasets/seq_cifar10_224.py | 3 +- datasets/seq_cifar10_224_rs.py | 3 +- datasets/utils/continual_dataset.py | 21 +-- tests/test_datasets.py | 5 +- utils/training.py | 7 +- 7 files changed, 232 insertions(+), 19 deletions(-) create mode 100644 datasets/seq_cars196.py diff --git a/datasets/seq_cars196.py b/datasets/seq_cars196.py new file mode 100644 index 00000000..5c3f9677 --- /dev/null +++ b/datasets/seq_cars196.py @@ -0,0 +1,210 @@ + +import os +import sys +import torch +import torchvision.transforms as transforms +import torch.nn.functional as F +from PIL import Image +from typing import Tuple +from tqdm import tqdm +import json +try: + import deeplake +except ImportError: + raise NotImplementedError("Deeplake not installed. Please install with `pip install deeplake` to use this dataset.") + +from datasets.utils import set_default_from_args +from datasets.utils.continual_dataset import ContinualDataset, fix_class_names_order, store_masked_loaders +from datasets.transforms.denormalization import DeNormalize +from utils.conf import base_path +from torch.utils.data import Dataset +from torchvision.transforms.functional import InterpolationMode +from utils.prompt_templates import templates +from backbone.vit import vit_base_patch16_224_prompt_prototype + +class MyCars196(Dataset): + N_CLASSES = 196 + + """ + Overrides the CIFAR100 dataset to change the getitem function. + """ + + PREPROCESSING_TRANSFORM = transforms.Compose([ + transforms.Resize(224, interpolation=InterpolationMode.BICUBIC), + transforms.CenterCrop(224), + ]) + + def __init__(self, root, train=True, transform=None, + target_transform=None) -> None: + + self.root = root + self.train = train + self.transform = transform + self.target_transform = target_transform + + train_str = 'train' if train else 'test' + if not os.path.exists(f'{root}/{train_str}_images.pt'): + print(f'Preparing {train_str} dataset...', file=sys.stderr) + self.load_and_preprocess_dataset(root, train_str) + else: + print(f"Loading pre-processed {train_str} dataset...", file=sys.stderr) + self.data = torch.load(f'{root}/{train_str}_images.pt') + self.targets = torch.load(f'{root}/{train_str}_labels.pt') + + self.class_names = MyCars196.get_class_names() + + def load_and_preprocess_dataset(self, root, train_str='test'): + ds = deeplake.load("hub://activeloop/stanford-cars-train") + loader = ds.pytorch() + class_names = ds['car_models'].info['class_names'] + class_idx_to_name = {i: class_names[i] for i in range(len(class_names))} + data = [] + targets = [] + for x in tqdm(loader, desc=f'Pre-processing {train_str} dataset'): + img = x['images'][0].permute(2, 0, 1) # load one image at a time + if len(img) < 3: + img = img.repeat(3, 1, 1) # fix rgb + img = self.PREPROCESSING_TRANSFORM(img) # resize + data.append(img) + label = x['car_models'][0].item() # get label + targets.append(label) + self.data = torch.stack(data) # stack all images + self.targets = torch.tensor(targets) + + print(f"Saving pre-processed dataset in {root} ({train_str}_images.pt and {train_str}_labels.py)...", file=sys.stderr) + if not os.path.exists(root): + os.makedirs(root) + torch.save(self.data, f'{root}/{train_str}_images.pt') + torch.save(self.targets, f'{root}/{train_str}_labels.pt') + + with open(f'{root}/class_names.json', 'wt') as f: + json.dump(class_idx_to_name, f, indent=4) + print('Done', file=sys.stderr) + + @staticmethod + def get_class_names(root=base_path() + 'cars196'): + if not os.path.exists(base_path() + f'cars196/class_names.json'): + print("Class names not found, performing pre-processing...") + MyCars196.load_and_preprocess_dataset(root) + print('Done', file=sys.stderr) + else: + with open(base_path() + f'cars196/class_names.json', 'rt') as f: + class_idx_to_name = json.load(f) + class_names = list(class_idx_to_name.values()) + return class_names + + def __len__(self): + return len(self.targets) + + def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: + """ + Gets the requested element from the dataset. + :param index: index of the element to be returned + :returns: tuple: (image, target) where target is index of the target class. + """ + img, target = self.data[index], self.targets[index] + + img = img / 255.0 + + not_aug_img = img + + if self.transform is not None: + img = self.transform(img) + + if self.target_transform is not None: + target = self.target_transform(target) + + if not self.train: + return img, target + + if hasattr(self, 'logits'): + return img, target, not_aug_img, self.logits[index] + + return img, target, not_aug_img + + +class SequentialCars196(ContinualDataset): + """ + Sequential CARS196 Dataset. The images are loaded from deeplake, resized to 224x224, and store locally. + """ + + NAME = 'seq-cars196' + SETTING = 'class-il' + N_TASKS = 10 + N_CLASSES = 196 + N_CLASSES_PER_TASK = [20] * 9 + [16] + MEAN, STD = (0.0, 0.0, 0.0), (1.0, 1.0, 1.0) + SIZE=(224, 224) + + TRANSFORM = transforms.Compose([ + transforms.RandomHorizontalFlip(), + transforms.Normalize(mean=MEAN, std=STD), + ]) + TEST_TRANSFORM = transforms.Compose([transforms.Normalize(mean=MEAN, std=STD)]) # no transform for test + + def __init__(self, args): + super().__init__(args) + self.args = args + + def get_data_loaders(self) -> Tuple[torch.utils.data.DataLoader, torch.utils.data.DataLoader]: + train_dataset = MyCars196(base_path() + 'cars196', train=True, + transform=self.TRANSFORM) + test_dataset = MyCars196(base_path() + 'cars196', train=False, + transform=self.TEST_TRANSFORM) + + train, test = store_masked_loaders(train_dataset, test_dataset, self) + + return train, test + + @staticmethod + def get_prompt_templates(): + return templates['cars196'] + + def get_class_names(self): + if self.class_names is not None: + return self.class_names + classes = MyCars196.get_class_names() + classes = fix_class_names_order(classes, self.args) + self.class_names = classes + return self.class_names + + @staticmethod + def get_transform(): + transform = transforms.Compose( + [transforms.ToPILImage(), SequentialCars196.TRANSFORM]) + return transform + + @staticmethod + def get_backbone(): + return vit_base_patch16_224_prompt_prototype(pretrained=True, num_classes=sum(SequentialCars196.N_CLASSES_PER_TASK)) + + @staticmethod + def get_loss(): + return F.cross_entropy + + @staticmethod + def get_normalization_transform(): + return transforms.Normalize(mean=SequentialCars196.MEAN, std=SequentialCars196.STD) + + @staticmethod + def get_denormalization_transform(): + transform = DeNormalize(SequentialCars196.MEAN, SequentialCars196.STD) + return transform + + @set_default_from_args('n_epochs') + def get_epochs(): + return 50 + + @set_default_from_args('batch_size') + def get_batch_size(): + return 128 + + @set_default_from_args('virtual_bs_n') + def get_virtual_bn_num(): + return 1 + + +if __name__ == '__main__': + d = MyCars196('../data/cars196', train=True) + d[0] + pass diff --git a/datasets/seq_cifar10.py b/datasets/seq_cifar10.py index 466717f9..e6253c71 100644 --- a/datasets/seq_cifar10.py +++ b/datasets/seq_cifar10.py @@ -12,7 +12,7 @@ from torchvision.datasets import CIFAR10 from backbone.ResNetBlock import resnet18 -from datasets.seq_tinyimagenet import base_path +from utils.conf import base_path from datasets.transforms.denormalization import DeNormalize from datasets.utils.continual_dataset import (ContinualDataset, fix_class_names_order, store_masked_loaders) diff --git a/datasets/seq_cifar10_224.py b/datasets/seq_cifar10_224.py index 4fb1dd13..f7996230 100644 --- a/datasets/seq_cifar10_224.py +++ b/datasets/seq_cifar10_224.py @@ -11,8 +11,7 @@ from torchvision.datasets import CIFAR10 from backbone.vit import vit_base_patch16_224_prompt_prototype -from datasets.seq_cifar10 import TCIFAR10, MyCIFAR10 -from datasets.seq_tinyimagenet import base_path +from datasets.seq_cifar10 import TCIFAR10, MyCIFAR10, base_path from datasets.transforms.denormalization import DeNormalize from datasets.utils.continual_dataset import (ContinualDataset, fix_class_names_order, store_masked_loaders) diff --git a/datasets/seq_cifar10_224_rs.py b/datasets/seq_cifar10_224_rs.py index bd29369b..39d86fa1 100644 --- a/datasets/seq_cifar10_224_rs.py +++ b/datasets/seq_cifar10_224_rs.py @@ -11,8 +11,7 @@ from torchvision.datasets import CIFAR10 from backbone.ResNetBottleneck import resnet50 -from datasets.seq_cifar10 import TCIFAR10, MyCIFAR10 -from datasets.seq_tinyimagenet import base_path +from datasets.seq_cifar10 import TCIFAR10, MyCIFAR10, base_path from datasets.transforms.denormalization import DeNormalize from datasets.utils.continual_dataset import (ContinualDataset, fix_class_names_order, store_masked_loaders) diff --git a/datasets/utils/continual_dataset.py b/datasets/utils/continual_dataset.py index 43d9dfca..2285ff46 100644 --- a/datasets/utils/continual_dataset.py +++ b/datasets/utils/continual_dataset.py @@ -56,7 +56,6 @@ def __init__(self, args: Namespace) -> None: """ self.train_loader = None self.test_loaders = [] - self.i = 0 self.c_task = -1 self.args = args if self.SETTING == 'class-il': @@ -125,6 +124,8 @@ def get_offsets(self, task_idx: int = None): start_c = self.N_CLASSES_PER_TASK * task_idx if isinstance(self.N_CLASSES_PER_TASK, int) else sum(self.N_CLASSES_PER_TASK[:task_idx]) end_c = self.N_CLASSES_PER_TASK * (task_idx + 1) if isinstance(self.N_CLASSES_PER_TASK, int) else sum(self.N_CLASSES_PER_TASK[:task_idx + 1]) + assert end_c > start_c, 'End class index must be greater than start class index.' + return start_c, end_c def get_data_loaders(self) -> Tuple[DataLoader, DataLoader]: @@ -249,6 +250,9 @@ def store_masked_loaders(train_dataset: Dataset, test_dataset: Dataset, Returns: the training and test loaders """ + if setting.SETTING == 'task-il' or setting.SETTING == 'class-il': + setting.c_task += 1 + if not isinstance(train_dataset.targets, np.ndarray): train_dataset.targets = np.array(train_dataset.targets) if not isinstance(test_dataset.targets, np.ndarray): @@ -267,16 +271,18 @@ def store_masked_loaders(train_dataset: Dataset, test_dataset: Dataset, train_dataset.data = train_dataset.data[train_idxs] train_dataset.targets = train_dataset.targets[train_idxs] + start_c, end_c = setting.get_offsets() + if setting.SETTING == 'class-il' or setting.SETTING == 'task-il': - train_mask = np.logical_and(train_dataset.targets >= setting.i, - train_dataset.targets < setting.i + setting.N_CLASSES_PER_TASK) + train_mask = np.logical_and(train_dataset.targets >= start_c, + train_dataset.targets < end_c) if setting.args.validation_mode == 'current': - test_mask = np.logical_and(test_dataset.targets >= setting.i, - test_dataset.targets < setting.i + setting.N_CLASSES_PER_TASK) + test_mask = np.logical_and(test_dataset.targets >= start_c, + test_dataset.targets < end_c) elif setting.args.validation_mode == 'complete': test_mask = np.logical_and(test_dataset.targets >= 0, - test_dataset.targets < setting.i + setting.N_CLASSES_PER_TASK) + test_dataset.targets < end_c) else: raise ValueError('Unknown validation mode: {}'.format(setting.args.validation_mode)) @@ -295,9 +301,6 @@ def store_masked_loaders(train_dataset: Dataset, test_dataset: Dataset, setting.test_loaders.append(test_loader) setting.train_loader = train_loader - if setting.SETTING == 'task-il' or setting.SETTING == 'class-il': - setting.i += setting.N_CLASSES_PER_TASK - setting.c_task += 1 return train_loader, test_loader diff --git a/tests/test_datasets.py b/tests/test_datasets.py index adc6bfb1..69d607cc 100644 --- a/tests/test_datasets.py +++ b/tests/test_datasets.py @@ -8,7 +8,8 @@ @pytest.mark.parametrize('dataset', ['seq-mnist', 'seq-cifar10', 'seq-cifar100', 'seq-tinyimg', 'rot-mnist', 'perm-mnist', 'mnist-360', 'seq-cifar100-224', 'seq-cifar10-224', 'seq-cifar100-224-rs', - 'seq-cifar100-224-rs', 'seq-tinyimg-r', 'seq-cub200', 'seq-imagenet-r']) + 'seq-cifar100-224-rs', 'seq-tinyimg-r', 'seq-cub200', 'seq-imagenet-r', + 'seq-cafr196']) def test_datasets(dataset): sys.argv = ['mammoth', '--model', @@ -31,7 +32,7 @@ def test_datasets(dataset): '1'] # clean all downloaded datasets - dataset_paths = ['CUB200', 'CIFAR10', 'CIFAR100', 'MNIST', 'TINYIMG', 'imagenet-r'] + dataset_paths = ['CUB200', 'CIFAR10', 'CIFAR100', 'MNIST', 'TINYIMG', 'imagenet-r', 'cars196'] basepath = os.path.dirname(os.path.abspath(__file__)) dt_dir = os.path.join(os.path.dirname(basepath), 'data') for path in dataset_paths: diff --git a/utils/training.py b/utils/training.py index 640efd6c..f2246922 100644 --- a/utils/training.py +++ b/utils/training.py @@ -39,9 +39,10 @@ def mask_classes(outputs: torch.Tensor, dataset: ContinualDataset, k: int) -> No dataset: the continual dataset k: the task index """ - outputs[:, 0:k * dataset.N_CLASSES_PER_TASK] = -float('inf') - outputs[:, (k + 1) * dataset.N_CLASSES_PER_TASK: - dataset.N_TASKS * dataset.N_CLASSES_PER_TASK] = -float('inf') + num_classes = dataset.N_CLASSES + start_c, end_c = dataset.get_offsets() + outputs[:, :start_c] = -float('inf') + outputs[:, end_c:num_classes] = -float('inf') @torch.no_grad() From 4b4690da2ab7c165d9e0d4a2eeb418739f1b869c Mon Sep 17 00:00:00 2001 From: lorib Date: Wed, 3 Jul 2024 16:08:54 +0200 Subject: [PATCH 11/66] add chestx --- datasets/seq_cars196.py | 6 +- datasets/seq_chestx.py | 198 ++++++++++++++++++++++++++++++++++++++++ tests/test_datasets.py | 4 +- 3 files changed, 203 insertions(+), 5 deletions(-) create mode 100644 datasets/seq_chestx.py diff --git a/datasets/seq_cars196.py b/datasets/seq_cars196.py index 5c3f9677..e2027cc0 100644 --- a/datasets/seq_cars196.py +++ b/datasets/seq_cars196.py @@ -192,14 +192,14 @@ def get_denormalization_transform(): return transform @set_default_from_args('n_epochs') - def get_epochs(): + def get_epochs(self): return 50 @set_default_from_args('batch_size') - def get_batch_size(): + def get_batch_size(self): return 128 - @set_default_from_args('virtual_bs_n') + @staticmethod def get_virtual_bn_num(): return 1 diff --git a/datasets/seq_chestx.py b/datasets/seq_chestx.py new file mode 100644 index 00000000..b7365eaa --- /dev/null +++ b/datasets/seq_chestx.py @@ -0,0 +1,198 @@ +import os +import torchvision.transforms as transforms +import torch.nn.functional as F +from torch.utils.data import Dataset +import numpy as np +import pickle +from PIL import Image +from typing import Tuple + +from datasets.utils import set_default_from_args +from utils import smart_joint +from utils.conf import base_path +from datasets.utils.continual_dataset import ContinualDataset, fix_class_names_order, store_masked_loaders +from datasets.transforms.denormalization import DeNormalize +from torchvision.transforms.functional import InterpolationMode +from utils.prompt_templates import templates +from backbone.vit import vit_base_patch16_224_prompt_prototype + +class ChestX(Dataset): + N_CLASSES = 6 + + """ + To reduce the effect of the severe imbalance in the dataset, we drop the two classes with the smallest and largest amount of samples. + """ + LABELS = [ + "Cardiomegaly", + "Consolidation", + "Edema", + "Fibrosis", + "Pleural Thickening", + "Pneumothorax" + ] + + """ + Overrides the ChestX dataset to change the getitem function. + """ + + def __init__(self, root, train=True, transform=None, + target_transform=None, download=False) -> None: + + self.root = root + self.train = train + self.transform = transform + self.target_transform = target_transform + + if not os.path.exists(f'{root}/train_images.pkl'): + if download: + from onedrivedownloader import download + + print('Downloading dataset') + ln = "https://unimore365-my.sharepoint.com/:u:/g/personal/215580_unimore_it/EfmFCiLaGlpFgtAuv0YLpeYBeR54I7YHK75bu_Ex78mADA?e=K8rHpZ" + download(ln, filename=smart_joint(root, 'chestx.zip'), unzip=True, unzip_path=root.rstrip('chestx'), clean=True) + else: + raise FileNotFoundError(f'File not found: {root}/train_images.pkl') + + if train: + filename_labels = f'{self.root}/train_labels.pkl' + filename_images = f'{self.root}/train_images.pkl' + else: + filename_labels = f'{self.root}/test_labels.pkl' + filename_images = f'{self.root}/test_images.pkl' + + self.not_aug_transform = transforms.ToTensor() + + with open(filename_images, 'rb') as f: + self.data = pickle.load(f) + + with open(filename_labels, 'rb') as f: + self.targets = pickle.load(f) + + def __len__(self): + return len(self.targets) + + def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: + """ + Gets the requested element from the dataset. + :param index: index of the element to be returned + :returns: tuple: (image, target) where target is index of the target class. + """ + img, target = self.data[index], self.targets[index] + img = np.repeat(img[np.newaxis,:,:], 3, axis=0) + img = Image.fromarray((img*255).astype(np.int8).transpose(1,2,0), mode='RGB') + + original_img = img.copy() + + not_aug_img = self.not_aug_transform(original_img) + + if self.transform is not None: + img = self.transform(img) + + if self.target_transform is not None: + target = self.target_transform(target) + + if not self.train: + return img, target + + if hasattr(self, 'logits'): + return img, target, not_aug_img, self.logits[index] + + return img, target, not_aug_img + + +class SequentialChestX(ContinualDataset): + + NAME = 'seq-chestx' + SETTING = 'class-il' + N_TASKS = 2 + N_CLASSES = 6 + N_CLASSES_PER_TASK = 3 + SIZE=(224, 224) + MEAN, STD = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] + normalize = transforms.Normalize(mean=MEAN, + std=STD) + + TRANSFORM = transforms.Compose([ + transforms.Resize(size=SIZE, interpolation=InterpolationMode.BICUBIC), + transforms.ToTensor(), + normalize, + ]) + + TEST_TRANSFORM = transforms.Compose([ + transforms.Resize(size=SIZE, interpolation=InterpolationMode.BICUBIC), + transforms.ToTensor(), + normalize, + ]) + + def __init__(self, args): + super().__init__(args) + self.args = args + self.label_to_class_name = self.get_class_names() + + def get_data_loaders(self): + train_dataset = ChestX(base_path() + 'chestx', train=True, + download=True, transform=self.TRANSFORM) + + test_dataset = ChestX(base_path() + 'chestx', train=False, download=True, + transform=self.TEST_TRANSFORM) + + train, test = store_masked_loaders(train_dataset, test_dataset, self) + + return train, test + + def get_class_names(self): + if self.class_names is not None: + return self.class_names + classes = fix_class_names_order(ChestX.LABELS, self.args) + self.class_names = classes + return self.class_names + + @staticmethod + def get_prompt_templates(): + return templates['cifar100'] + + @staticmethod + def get_transform(): + transform = transforms.Compose( + [transforms.ToPILImage(), + SequentialChestX.TRANSFORM] + ) + return transform + + @staticmethod + def get_backbone(): + return vit_base_patch16_224_prompt_prototype(pretrained=True, num_classes=SequentialChestX.N_CLASSES) + + @staticmethod + def get_loss(): + return F.cross_entropy + + @staticmethod + def get_normalization_transform(): + return transforms.Normalize(mean=SequentialChestX.MEAN, std=SequentialChestX.STD) + + @staticmethod + def get_denormalization_transform(): + transform = DeNormalize(mean=SequentialChestX.MEAN, std=SequentialChestX.STD) + return transform + + @set_default_from_args('n_epochs') + def get_epochs(self): + return 30 + + @set_default_from_args('batch_size') + def get_batch_size(self): + return 128 + + @staticmethod + def get_virtual_bn_num(): + return 1 + + @staticmethod + def get_n_epochs_first_stage(): + return 50 + + +if __name__ == '__main__': + d = ChestX('../data/chestx', train=False) + d[0] diff --git a/tests/test_datasets.py b/tests/test_datasets.py index 69d607cc..b286d966 100644 --- a/tests/test_datasets.py +++ b/tests/test_datasets.py @@ -9,7 +9,7 @@ 'rot-mnist', 'perm-mnist', 'mnist-360', 'seq-cifar100-224', 'seq-cifar10-224', 'seq-cifar100-224-rs', 'seq-cifar100-224-rs', 'seq-tinyimg-r', 'seq-cub200', 'seq-imagenet-r', - 'seq-cafr196']) + 'seq-cafr196', 'seq-chestx']) def test_datasets(dataset): sys.argv = ['mammoth', '--model', @@ -32,7 +32,7 @@ def test_datasets(dataset): '1'] # clean all downloaded datasets - dataset_paths = ['CUB200', 'CIFAR10', 'CIFAR100', 'MNIST', 'TINYIMG', 'imagenet-r', 'cars196'] + dataset_paths = ['CUB200', 'CIFAR10', 'CIFAR100', 'MNIST', 'TINYIMG', 'imagenet-r', 'cars196', 'chestx'] basepath = os.path.dirname(os.path.abspath(__file__)) dt_dir = os.path.join(os.path.dirname(basepath), 'data') for path in dataset_paths: From 927264e7681667c4c9939986b2aad7cd72cdd8be Mon Sep 17 00:00:00 2001 From: lorib Date: Wed, 3 Jul 2024 18:04:55 +0200 Subject: [PATCH 12/66] add cropdisease and eurosat. add templates to clip. update vit --- backbone/utils/layers.py | 56 +---- backbone/utils/lora_utils.py | 204 +++++++++++++++++ backbone/vit.py | 118 ++-------- datasets/seq_chestx.py | 15 +- datasets/seq_cropdisease.py | 208 +++++++++++++++++ datasets/seq_eurosat_rgb.py | 213 ++++++++++++++++++ datasets/seq_imagenet_r.py | 4 - datasets/utils/continual_dataset.py | 4 + docs/datasets/index.rst | 3 + docs/readme.rst | 2 +- models/clip.py | 32 ++- models/dualprompt_utils/vision_transformer.py | 6 +- tests/test_datasets.py | 6 +- utils/training.py | 2 +- 14 files changed, 688 insertions(+), 185 deletions(-) create mode 100644 backbone/utils/lora_utils.py create mode 100644 datasets/seq_cropdisease.py create mode 100644 datasets/seq_eurosat_rgb.py diff --git a/backbone/utils/layers.py b/backbone/utils/layers.py index 55547581..9e7bd998 100644 --- a/backbone/utils/layers.py +++ b/backbone/utils/layers.py @@ -6,61 +6,7 @@ import torch.nn as nn import torch.nn.functional as F - -class LoRALayer(): - def __init__( - self, - lora_dropout: float, - ): - # Optional dropout - if lora_dropout > 0.: - self.lora_dropout = nn.Dropout(p=lora_dropout) - else: - self.lora_dropout = lambda x: x - - -class LoRALinear(nn.Linear, LoRALayer): - - def __init__( - self, - in_features: int, - out_features: int, - lora_dropout: float = 0., - fan_in_fan_out: bool = False, - **kwargs - ): - nn.Linear.__init__(self, in_features, out_features, **kwargs) - LoRALayer.__init__(self, lora_dropout=lora_dropout) - - self.fan_in_fan_out = fan_in_fan_out - self.weight.requires_grad = False - self.reset_parameters() - - if fan_in_fan_out: - self.weight.data = self.weight.data.transpose(0, 1) - - def reset_parameters(self): - nn.Linear.reset_parameters(self) - - def forward(self, x: torch.Tensor, AB: dict = None): - - def T(w): - return w.transpose(1, 2) if self.fan_in_fan_out else w - - result = F.linear(x, T(self.weight), bias=self.bias) - - if AB is not None: - A = None - if isinstance(AB, dict): - B = AB['B'] - A = AB.get('A') - else: - B = AB - if A is not None: - return result + (B @ (A @ x.transpose(1, 2).unsqueeze(1))).sum(1).transpose(1, 2) - return result + (B @ x.transpose(1, 2).unsqueeze(1)).sum(1).transpose(1, 2) - - return result +from backbone.utils.lora_utils import LoRALayer class ClipLinear(nn.Linear, LoRALayer): diff --git a/backbone/utils/lora_utils.py b/backbone/utils/lora_utils.py new file mode 100644 index 00000000..7d0761ec --- /dev/null +++ b/backbone/utils/lora_utils.py @@ -0,0 +1,204 @@ +import collections.abc +from itertools import repeat +from torch import nn +import torch +import torch.nn.functional as F + +def _ntuple(n): + def parse(x): + if isinstance(x, collections.abc.Iterable) and not isinstance(x, str): + return tuple(x) + return tuple(repeat(x, n)) + return parse + +to_2tuple = _ntuple(2) + + +class LoRALayer(): + def __init__( + self, + lora_dropout: float, + ): + # Optional dropout + if lora_dropout > 0.: + self.lora_dropout = nn.Dropout(p=lora_dropout) + else: + self.lora_dropout = lambda x: x + + +class LoRALinear(nn.Linear, LoRALayer): + + def __init__( + self, + in_features: int, + out_features: int, + lora_dropout: float = 0., + fan_in_fan_out: bool = False, + **kwargs + ): + nn.Linear.__init__(self, in_features, out_features, **kwargs) + LoRALayer.__init__(self, lora_dropout=lora_dropout) + + self.fan_in_fan_out = fan_in_fan_out + self.weight.requires_grad = False + self.reset_parameters() + + if fan_in_fan_out: + self.weight.data = self.weight.data.transpose(0, 1) + + def reset_parameters(self): + nn.Linear.reset_parameters(self) + + def forward(self, x: torch.Tensor, AB: dict = None): + + def T(w): + return w.transpose(1, 2) if self.fan_in_fan_out else w + + result = F.linear(x, T(self.weight), bias=self.bias) + + if AB is not None: + A = None + if isinstance(AB, dict): + B = AB['B'] + A = AB.get('A') + else: + B = AB + if A is not None: + return result + (B @ (A @ x.transpose(1, 2).unsqueeze(1))).sum(1).transpose(1, 2) + return result + (B @ x.transpose(1, 2).unsqueeze(1)).sum(1).transpose(1, 2) + + return result + + +class LoRAAttention(nn.Module): + """ + Attention layer as used in Vision Transformer. + Adapted to support LoRA-style parameters. + + Args: + dim: Number of input channels + num_heads: Number of attention heads + qkv_bias: If True, add a learnable bias to q, k, v + attn_drop: Dropout rate for attention weights + proj_drop: Dropout rate after the final projection + """ + + def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): + super().__init__() + assert dim % num_heads == 0, 'dim should be divisible by num_heads' + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** -0.5 + + self.qkv = LoRALinear(dim, dim * 3, 0., bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = LoRALinear(dim, dim, 0.) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x, AB: dict = None, **kwargs): + """ + Forward pass of the attention layer. + Supports `AB` for LoRA-style parameters (checkout docs for `VisionTransformer.forward`). + + Args: + x: Input tensor + AB: Dictionary containing LoRA-style parameters for the layer + """ + + B, N, C = x.shape + + AB_qkv = None + + if AB is not None: + AB_qkv = AB.get("qkv") + + qkv = self.qkv(x, AB_qkv) + qkv = qkv.reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) + + # NOTE: flash attention is less debuggable than the original. Use the commented code below if in trouble. + x = F.scaled_dot_product_attention(q, k, v, scale=self.scale, dropout_p=self.attn_drop.p) + # attn = (q @ k.transpose(-2, -1)) * self.scale + # attn = attn.softmax(dim=-1) + # attn = self.attn_drop(attn) + # x = (attn @ v) + + x = x.transpose(1, 2).reshape(B, N, C) + + AB_proj = None + + if AB is not None: + AB_proj = AB.get("proj") + + x = self.proj(x, AB_proj) + x = self.proj_drop(x) + + return x + + +class LayerScale(nn.Module): + def __init__(self, dim, init_values=1e-5, inplace=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + return x.mul_(self.gamma) if self.inplace else x * self.gamma + + +class LoRAMlp(nn.Module): + """ + MLP as used in Vision Transformer, MLP-Mixer and related networks. + Adapted to support LoRA-style parameters. + """ + + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.GELU, + norm_layer=None, + bias=True, + drop=0., + use_conv=False, + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + bias = to_2tuple(bias) + drop_probs = to_2tuple(drop) + + assert use_conv is False + + self.fc1 = LoRALinear(in_features, hidden_features, bias=bias[0], lora_dropout=0.) + self.act = act_layer() + self.drop1 = nn.Dropout(drop_probs[0]) + self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity() + self.fc2 = LoRALinear(hidden_features, out_features, bias=bias[1], lora_dropout=0.) + self.drop2 = nn.Dropout(drop_probs[1]) + + def forward(self, x: torch.Tensor, AB: dict = None, **kwargs): + """ + Forward pass of the MLP layer. + Supports `AB` for LoRA-style parameters (checkout docs for `VisionTransformer.forward`). + + Args: + x: Input tensor + AB: Dictionary containing LoRA-style parameters for the layer + """ + AB_fc1 = None + AB_fc2 = None + + if AB is not None: + AB_fc1 = AB.get("fc1") + AB_fc2 = AB.get("fc2") + + x = self.fc1(x, AB_fc1) + x = self.act(x) + x = self.drop1(x) + x = self.norm(x) + x = self.fc2(x, AB_fc2) + x = self.drop2(x) + + return x \ No newline at end of file diff --git a/backbone/vit.py b/backbone/vit.py index 9e53fde9..47b65fe1 100644 --- a/backbone/vit.py +++ b/backbone/vit.py @@ -49,7 +49,6 @@ import logging import math -from collections import OrderedDict from functools import partial import torch @@ -62,33 +61,18 @@ from timm.models._builder import build_model_with_cfg from timm.models._manipulate import named_apply -from backbone.utils.layers import LoRALinear, IncrementalClassifier - -from itertools import repeat -import collections.abc - +from backbone.utils.layers import IncrementalClassifier from backbone import MammothBackbone +from backbone.utils.lora_utils import LoRAAttention, LoRAMlp __all__ = ['VisionTransformer'] # model_registry will add each entrypoint fn to this _logger = logging.getLogger(__name__) -def _ntuple(n): - def parse(x): - if isinstance(x, collections.abc.Iterable) and not isinstance(x, str): - return tuple(x) - return tuple(repeat(x, n)) - return parse - - -to_2tuple = _ntuple(2) - - class Attention(nn.Module): """ Attention layer as used in Vision Transformer. - Adapted to support LoRA-style parameters. Args: dim: Number of input channels @@ -105,29 +89,22 @@ def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.) head_dim = dim // num_heads self.scale = head_dim ** -0.5 - self.qkv = LoRALinear(dim, dim * 3, 0., bias=qkv_bias) + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) - self.proj = LoRALinear(dim, dim, 0.) + self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) - def forward(self, x, AB: dict = None, **kwargs): + def forward(self, x, **kwargs): """ Forward pass of the attention layer. - Supports `AB` for LoRA-style parameters (checkout docs for `VisionTransformer.forward`). Args: x: Input tensor - AB: Dictionary containing LoRA-style parameters for the layer """ B, N, C = x.shape - AB_qkv = None - - if AB is not None: - AB_qkv = AB.get("qkv") - - qkv = self.qkv(x, AB_qkv) + qkv = self.qkv(x) qkv = qkv.reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) @@ -140,12 +117,7 @@ def forward(self, x, AB: dict = None, **kwargs): x = x.transpose(1, 2).reshape(B, N, C) - AB_proj = None - - if AB is not None: - AB_proj = AB.get("proj") - - x = self.proj(x, AB_proj) + x = self.proj(x) x = self.proj_drop(x) return x @@ -160,65 +132,6 @@ def __init__(self, dim, init_values=1e-5, inplace=False): def forward(self, x): return x.mul_(self.gamma) if self.inplace else x * self.gamma - -class Mlp(nn.Module): - """ - MLP as used in Vision Transformer, MLP-Mixer and related networks. - Adapted to support LoRA-style parameters. - """ - - def __init__( - self, - in_features, - hidden_features=None, - out_features=None, - act_layer=nn.GELU, - norm_layer=None, - bias=True, - drop=0., - use_conv=False, - ): - super().__init__() - out_features = out_features or in_features - hidden_features = hidden_features or in_features - bias = to_2tuple(bias) - drop_probs = to_2tuple(drop) - - assert use_conv is False - - self.fc1 = LoRALinear(in_features, hidden_features, bias=bias[0], lora_dropout=0.) - self.act = act_layer() - self.drop1 = nn.Dropout(drop_probs[0]) - self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity() - self.fc2 = LoRALinear(hidden_features, out_features, bias=bias[1], lora_dropout=0.) - self.drop2 = nn.Dropout(drop_probs[1]) - - def forward(self, x: torch.Tensor, AB: dict = None, **kwargs): - """ - Forward pass of the MLP layer. - Supports `AB` for LoRA-style parameters (checkout docs for `VisionTransformer.forward`). - - Args: - x: Input tensor - AB: Dictionary containing LoRA-style parameters for the layer - """ - AB_fc1 = None - AB_fc2 = None - - if AB is not None: - AB_fc1 = AB.get("fc1") - AB_fc2 = AB.get("fc2") - - x = self.fc1(x, AB_fc1) - x = self.act(x) - x = self.drop1(x) - x = self.norm(x) - x = self.fc2(x, AB_fc2) - x = self.drop2(x) - - return x - - class Block(nn.Module): def __init__( @@ -234,6 +147,7 @@ def __init__( act_layer=nn.GELU, norm_layer=nn.LayerNorm, attn_layer=Attention, + mlp_layer=Mlp ): super().__init__() self.norm1 = norm_layer(dim) @@ -243,7 +157,7 @@ def __init__( self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) - self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop) + self.mlp = mlp_layer(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop) self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() @@ -254,7 +168,8 @@ def forward(self, x, **kwargs): class VisionTransformer(MammothBackbone): - """ Vision Transformer + """ Vision Transformer. + This implementation supports LoRA (Layer-wise Relevance Adaptation) parameters if `use_lora=True`. A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 @@ -285,7 +200,9 @@ def __init__( norm_layer=None, act_layer=None, block_fn=Block, - attn_layer=Attention, + attn_layer=None, + mlp_layer=None, + use_lora=False, args=None ): """ @@ -320,7 +237,9 @@ def __init__( use_fc_norm = global_pool == 'avg' if fc_norm is None else fc_norm norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) self.act_layer = act_layer or nn.GELU - + + attn_layer = attn_layer if attn_layer is not None else (Attention if not use_lora else LoRAAttention) + mlp_layer = mlp_layer if mlp_layer is not None else (Mlp if not use_lora else LoRAMlp) self.attn_layer = attn_layer self.norm_layer = norm_layer self.num_heads = num_heads @@ -366,7 +285,8 @@ def __init__( drop_path=self.dpr[i], norm_layer=norm_layer, act_layer=self.act_layer, - attn_layer=attn_layer + attn_layer=attn_layer, + mlp_layer=mlp_layer ) for i in range(depth)]) self.norm = norm_layer(embed_dim) if not use_fc_norm else nn.Identity() diff --git a/datasets/seq_chestx.py b/datasets/seq_chestx.py index b7365eaa..f9563beb 100644 --- a/datasets/seq_chestx.py +++ b/datasets/seq_chestx.py @@ -153,11 +153,8 @@ def get_prompt_templates(): @staticmethod def get_transform(): - transform = transforms.Compose( - [transforms.ToPILImage(), - SequentialChestX.TRANSFORM] - ) - return transform + return transforms.Compose([transforms.ToPILImage(), + SequentialChestX.TRANSFORM]) @staticmethod def get_backbone(): @@ -182,15 +179,11 @@ def get_epochs(self): @set_default_from_args('batch_size') def get_batch_size(self): - return 128 + return 32 @staticmethod def get_virtual_bn_num(): - return 1 - - @staticmethod - def get_n_epochs_first_stage(): - return 50 + return 4 if __name__ == '__main__': diff --git a/datasets/seq_cropdisease.py b/datasets/seq_cropdisease.py new file mode 100644 index 00000000..ac507fa5 --- /dev/null +++ b/datasets/seq_cropdisease.py @@ -0,0 +1,208 @@ +import json +import os +import torchvision.transforms as transforms +import torch.nn.functional as F +from torch.utils.data import Dataset +import numpy as np +from PIL import Image +from typing import Tuple + +from datasets.utils import set_default_from_args +from utils import smart_joint +from utils.conf import base_path +from datasets.utils.continual_dataset import ContinualDataset, fix_class_names_order, store_masked_loaders +from datasets.transforms.denormalization import DeNormalize +from torchvision.transforms.functional import InterpolationMode +from utils.prompt_templates import templates +from backbone.vit import vit_base_patch16_224_prompt_prototype + +class CropDisease(Dataset): + + LABELS = [ + "Apple___Apple_scab", + "Apple___Black_rot", + "Apple___healthy", + "Blueberry___healthy", + "Cherry___Powdery_mildew", + "Cherry___healthy", + "Corn___Cercospora_leaf_spot Gray_leaf_spot", + "Corn___Common_rust", + "Corn___Northern_Leaf_Blight", + "Corn___healthy", + "Grape___Black_rot", + "Grape___Esca_(Black_Measles)", + "Grape___Leaf_blight_(Isariopsis_Leaf_Spot)", + "Grape___healthy", + "Orange___Haunglongbing_(Citrus_greening)", + "Peach___Bacterial_spot", + "Pepper,_bell___Bacterial_spot", + "Pepper,_bell___healthy", + "Potato___Early_blight", + "Potato___Late_blight", + "Raspberry___healthy", + "Soybean___healthy", + "Squash___Powdery_mildew", + "Strawberry___Leaf_scorch", + "Strawberry___healthy", + "Tomato___Bacterial_spot", + "Tomato___Early_blight", + "Tomato___Late_blight", + "Tomato___Leaf_Mold", + "Tomato___Septoria_leaf_spot", + "Tomato___Spider_mites Two-spotted_spider_mite", + "Tomato___Target_Spot", + "Tomato___Tomato_Yellow_Leaf_Curl_Virus", + "Tomato___Tomato_mosaic_virus", + "Tomato___healthy", + ] + + def __init__(self, root, train=True, transform=None, + target_transform=None, download=False) -> None: + + self.root = root + self.train = train + self.transform = transform + self.target_transform = target_transform + + self.not_aug_transform = transforms.Compose([ + transforms.Resize((224, 224), interpolation=InterpolationMode.BICUBIC), + transforms.ToTensor()] + ) + + if download: + if os.path.isdir(root) and len(os.listdir(root)) > 0: + print('Download not needed, files already on disk.') + else: + from onedrivedownloader import download + ln = "https://unimore365-my.sharepoint.com/:u:/g/personal/215580_unimore_it/EZUaXKQUAVBPrhjHTUdflDEBNu0YiPWrdpAdDhnEU4nD2A?e=GPrCYF" + print('Downloading dataset') + parent_dir = os.path.dirname(root) + download(ln, filename=os.path.join(root, 'cropdisease.tar.gz'), unzip=True, unzip_path=parent_dir, clean=True) + + filename = smart_joint(root, ('train' if train else 'test') + '.json') + with open(filename) as f: + data_config = json.load(f) + + self.data = np.array([smart_joint(root, 'images', d) for d in data_config['data']]) + self.targets = np.array(data_config['labels']).astype(np.int16) + + def __len__(self): + return len(self.targets) + + def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: + """ + Gets the requested element from the dataset. + :param index: index of the element to be returned + :returns: tuple: (image, target) where target is index of the target class. + """ + img, target = self.data[index], self.targets[index] + + img = Image.open(img).convert('RGB') + + original_img = img.copy() + + not_aug_img = self.not_aug_transform(original_img) + + if self.transform is not None: + img = self.transform(img) + + if self.target_transform is not None: + target = self.target_transform(target) + + if not self.train: + return img, target + + if hasattr(self, 'logits'): + return img, target, not_aug_img, self.logits[index] + + return img, target, not_aug_img + + +class SequentialCropDisease(ContinualDataset): + + NAME = 'seq-cropdisease' + SETTING = 'class-il' + N_TASKS = 7 + N_CLASSES = 35 + N_CLASSES_PER_TASK = N_CLASSES // N_TASKS + SIZE = (224, 224) + MEAN, STD = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] + + + TRANSFORM = transforms.Compose([ + transforms.RandomResizedCrop(SIZE, interpolation=InterpolationMode.BICUBIC), + transforms.RandomHorizontalFlip(), + transforms.ToTensor(), + transforms.Normalize(mean=MEAN, std=STD), + ]) + + TEST_TRANSFORM = transforms.Compose([ + transforms.Resize(size=SIZE, interpolation=InterpolationMode.BICUBIC), + transforms.CenterCrop(SIZE), + transforms.ToTensor(), + transforms.Normalize(mean=MEAN, std=STD), + ]) + + def __init__(self, args): + super().__init__(args) + self.args = args + self.label_to_class_name = self.get_class_names() + + def get_data_loaders(self): + train_dataset = CropDisease(base_path() + 'cropdisease', train=True, + download=True, transform=self.TRANSFORM) + test_dataset = CropDisease(base_path() + 'cropdisease', train=False, + download=True, transform=self.TEST_TRANSFORM) + + train, test = store_masked_loaders(train_dataset, test_dataset, self) + + return train, test + + def get_class_names(self): + if self.class_names is not None: + return self.class_names + classes = [x.replace('_', ' ') for x in CropDisease.LABELS] # .split('___')[-1] + classes = fix_class_names_order(classes, self.args) + self.class_names = classes + return self.class_names + + @staticmethod + def get_prompt_templates(): + return templates['cifar100'] + + @staticmethod + def get_transform(): + transform = transforms.Compose( + [transforms.ToPILImage(), SequentialCropDisease.TRANSFORM]) + return transform + + @staticmethod + def get_backbone(): + num_classes = SequentialCropDisease.N_CLASSES_PER_TASK * SequentialCropDisease.N_TASKS + return vit_base_patch16_224_prompt_prototype(pretrained=True, num_classes=num_classes) + + @staticmethod + def get_loss(): + return F.cross_entropy + + @staticmethod + def get_normalization_transform(): + return transforms.Normalize(mean=SequentialCropDisease.MEAN, std=SequentialCropDisease.STD) + + @staticmethod + def get_denormalization_transform(): + transform = DeNormalize(SequentialCropDisease.MEAN, SequentialCropDisease.STD) + return transform + + @set_default_from_args('n_epochs') + def get_epochs(self): + return 5 + + @set_default_from_args('n_epochs') + def get_batch_size(self): + return 32 + + @staticmethod + def get_virtual_bn_num(): + return 4 + diff --git a/datasets/seq_eurosat_rgb.py b/datasets/seq_eurosat_rgb.py new file mode 100644 index 00000000..f3a1e194 --- /dev/null +++ b/datasets/seq_eurosat_rgb.py @@ -0,0 +1,213 @@ +import io +import json +import os +import sys +import zipfile +import pandas as pd +import requests +import torch +import torchvision.transforms as transforms +import torch.nn.functional as F +from torch.utils.data import Dataset +import numpy as np +from PIL import Image +from typing import Tuple +try: + from google_drive_downloader import GoogleDriveDownloader as gdd +except ImportError: + raise ImportError("Please install the google_drive_downloader package by running: `pip install googledrivedownloader`") + +from datasets.utils import set_default_from_args +from utils.conf import base_path +from datasets.utils.continual_dataset import ContinualDataset, fix_class_names_order, store_masked_loaders +from datasets.transforms.denormalization import DeNormalize +from torchvision.transforms.functional import InterpolationMode +from utils.prompt_templates import templates +from backbone.vit import vit_base_patch16_224_prompt_prototype + + +class MyEuroSat(Dataset): + + def __init__(self, root, split='train', transform=None, + target_transform=None) -> None: + + self.root = root + self.split = split + assert split in ['train', 'test', 'val'], 'Split must be either train, test or val' + self.transform = transform + self.target_transform = target_transform + self.totensor = transforms.ToTensor() + + if not os.path.exists(root + '/DONE'): + print('Preparing dataset...', file=sys.stderr) + r = requests.get('https://zenodo.org/records/7711810/files/EuroSAT_RGB.zip?download=1') + z = zipfile.ZipFile(io.BytesIO(r.content)) + z.extractall(root) + os.system(f'mv {root}/EuroSAT_RGB/* {root}') + os.system(f'rmdir {root}/EuroSAT_RGB') + + # create DONE file + with open(self.root + '/DONE', 'w') as f: + f.write('') + + # downlaod split file form https://drive.google.com/file/d/1Ip7yaCWFi0eaOFUGga0lUdVi_DDQth1o/ + gdd.download_file_from_google_drive(file_id='1Ip7yaCWFi0eaOFUGga0lUdVi_DDQth1o', + dest_path=self.root + '/split.json') + + print('Done', file=sys.stderr) + + self.data_split = pd.DataFrame(json.load(open(self.root + '/split.json', 'r'))[split]) + self.class_names = self.get_class_names() + + self.data = self.data_split[0].values + self.targets = self.data_split[1].values + + @staticmethod + def get_class_names(): + if not os.path.exists(base_path() + f'eurosat/DONE'): + gdd.download_file_from_google_drive(file_id='1Ip7yaCWFi0eaOFUGga0lUdVi_DDQth1o', + dest_path=base_path() + 'eurosat/split.json') + return pd.DataFrame(json.load(open(base_path() + 'eurosat/split.json', 'r'))['train'])[2].unique() + + def __len__(self): + return len(self.targets) + + def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: + """ + Gets the requested element from the dataset. + :param index: index of the element to be returned + :returns: tuple: (image, target) where target is index of the target class. + """ + img, target = self.data[index], self.targets[index] + + img = Image.open(self.root + '/' + img).convert('RGB') + + not_aug_img = self.totensor(img.copy()) + + if self.transform is not None: + img = self.transform(img) + + if self.target_transform is not None: + target = self.target_transform(target) + + if self.split != 'train': + return img, target + + if hasattr(self, 'logits'): + return img, target, not_aug_img, self.logits[index] + + return img, target, not_aug_img + + +def my_collate_fn(batch): + tmp = list(zip(*batch)) + imgs = torch.stack(tmp[0], dim=0) + labels = torch.tensor(tmp[1]) + if len(tmp) == 2: + return imgs, labels + not_aug_imgs = tmp[2] + not_aug_imgs = torch.stack(not_aug_imgs, dim=0) + if len(tmp) == 4: + logits = torch.stack(tmp[3], dim=0) + return imgs, labels, not_aug_imgs, logits + return imgs, labels, not_aug_imgs + + +class SequentialEuroSatRgb(ContinualDataset): + + NAME = 'seq-eurosat-rgb' + SETTING = 'class-il' + N_TASKS = 5 + N_CLASSES = 10 + N_CLASSES_PER_TASK = 2 + SIZE = (224, 224) + MEAN, STD = [0.48145466, 0.4578275, 0.40821073], [0.26862954, 0.26130258, 0.27577711] + + TRANSFORM = transforms.Compose([ + transforms.RandomResizedCrop(SIZE[0], scale=(0.08, 1.0), interpolation=InterpolationMode.BICUBIC), # from https://github.dev/KaiyangZhou/Dassl.pytorch defaults + transforms.RandomHorizontalFlip(), + transforms.ToTensor(), + transforms.Normalize(mean=MEAN, std=STD), + ]) + + TEST_TRANSFORM = transforms.Compose([ + transforms.Resize(SIZE[0], interpolation=InterpolationMode.BICUBIC), # bicubic + transforms.CenterCrop(SIZE[0]), + transforms.ToTensor(), + transforms.Normalize(mean=MEAN, std=STD), + ]) + + def get_class_names(self): + if self.class_names is not None: + return self.class_names + + try: + classes = MyEuroSat.get_class_names() + except BaseException: + print("WARNING: dataset not loaded yet -- loading dataset...") + MyEuroSat(base_path() + 'eurosat', train=True, + transform=None) + classes = MyEuroSat.get_class_names() + + classes = fix_class_names_order(classes, self.args) + self.class_names = classes + return self.class_names + + def __init__(self, args): + super().__init__(args) + self.args = args + + def get_data_loaders(self): + train_dataset = MyEuroSat(base_path() + 'eurosat', split='train', + transform=self.TRANSFORM) + test_dataset = MyEuroSat(base_path() + 'eurosat', split='test', + transform=self.TEST_TRANSFORM) + + train, test = store_masked_loaders(train_dataset, test_dataset, self) + + return train, test + + @staticmethod + def get_transform(): + transform = transforms.Compose([transforms.ToPILImage(), + SequentialEuroSatRgb.TRANSFORM]) + return transform + + @staticmethod + def get_backbone(): + return vit_base_patch16_224_prompt_prototype(pretrained=True, num_classes=SequentialEuroSatRgb.N_CLASSES) + + @staticmethod + def get_loss(): + return F.cross_entropy + + @staticmethod + def get_normalization_transform(): + return transforms.Normalize(mean=SequentialEuroSatRgb.MEAN, std=SequentialEuroSatRgb.STD) + + @staticmethod + def get_denormalization_transform(): + transform = DeNormalize(SequentialEuroSatRgb.MEAN, SequentialEuroSatRgb.STD) + return transform + + @set_default_from_args('n_epochs') + def get_epochs(self): + return 5 + + @set_default_from_args('batch_size') + def get_batch_size(self): + return 128 + + @staticmethod + def get_virtual_bn_num(): + return 1 + + @staticmethod + def get_prompt_templates(): + return templates['eurosat'] + + +if __name__ == '__main__': + d = MyEuroSat('../data/eurosat', train=True) + d[0] + pass diff --git a/datasets/seq_imagenet_r.py b/datasets/seq_imagenet_r.py index 2deceeb4..71df22d8 100644 --- a/datasets/seq_imagenet_r.py +++ b/datasets/seq_imagenet_r.py @@ -198,10 +198,6 @@ def get_batch_size(self): def get_virtual_bn_num(): return 4 - @staticmethod - def get_n_epochs_first_stage(): - return 50 - def get_class_names(self): pwd = os.path.dirname(os.path.abspath(__file__)) with open(pwd + '/imagenet_r_utils/label_to_class_name.pkl', 'rb') as f: diff --git a/datasets/utils/continual_dataset.py b/datasets/utils/continual_dataset.py index 2285ff46..cb45304a 100644 --- a/datasets/utils/continual_dataset.py +++ b/datasets/utils/continual_dataset.py @@ -205,6 +205,10 @@ def get_class_names(self) -> List[str]: """Returns the class names for the current dataset.""" raise NotImplementedError('The dataset does not implement the method `get_class_names` to get the class names.') + def get_prompt_templates(self) -> List[str]: + """Returns the prompt templates for the current dataset.""" + raise NotImplementedError('The dataset does not implement the method `get_prompt_templates` to get the prompt templates.') + def _get_mask_unlabeled(train_dataset, setting: ContinualDataset): if setting.args.label_perc == 1: diff --git a/docs/datasets/index.rst b/docs/datasets/index.rst index 51399033..95ce9252 100644 --- a/docs/datasets/index.rst +++ b/docs/datasets/index.rst @@ -40,6 +40,9 @@ each dataset **must statically define** all the necessary information to run a c - **get_scheduler** static method (``callable``): returns the learning rate scheduler to use during train. *By default*, it also initializes the optimizer. This prevents errors due to the learning rate being continouosly reduced task after task. This behavior can be changed setting the argument ``reload_optim=False``. +.. admonition:: Optional methods to implement: + - **get_prompt_templates** (``callable``): returns the prompt templates for the dataset. This method is not implemented by default, but is expected for some methods (e.g., `clip`). + - **get_class_names** (``callable``): returns the class names for the dataset. This method is not implemented by default, but is expected for some methods (e.g., `clip`). The method *should* populate the **class_names** attribute of the dataset to cache the result and call the ``fix_class_names_order`` method to ensure that the class names are in the correct order. See :ref:`continual_dataset` for more details or **SequentialCIFAR10** in :ref:`seq_cifar10` for an example. diff --git a/docs/readme.rst b/docs/readme.rst index 179672cd..dfbcaf14 100644 --- a/docs/readme.rst +++ b/docs/readme.rst @@ -65,7 +65,7 @@ Setup - New datasets can be added to the ``datasets/`` folder. .. note:: - **Pytorch version >=2.1.0 is required for scaled_dot_product_attention** (see: https://github.com/Lightning-AI/litgpt/issues/763). If you cannot support this version, you can uncomment the lines 136-139 under `scaled_dot_product_attention` in `backbone/vit.py`. + **Pytorch version >=2.1.0 is required for scaled_dot_product_attention** (see: https://github.com/Lightning-AI/litgpt/issues/763). If you cannot support this version, you can uncomment the lines 113-116 under `scaled_dot_product_attention` in `backbone/vit.py`. Models ------ diff --git a/models/clip.py b/models/clip.py index 225652c4..6f4964d7 100644 --- a/models/clip.py +++ b/models/clip.py @@ -31,16 +31,27 @@ class FinalModel(nn.Module): @torch.no_grad() - def __init__(self, clip_model, dataset: ContinualDataset) -> None: + def __init__(self, clip_model, dataset: ContinualDataset, args) -> None: super().__init__() self.dataset = dataset self.clip_model = clip_model + self.args = args self.classes = self.dataset.get_class_names() - text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in self.classes]).to(get_device()) - self.text_features = self.clip_model.encode_text(text_inputs) - self.text_features /= self.text_features.norm(dim=-1, keepdim=True) - + if args.use_templates: + templates = self.dataset.get_prompt_templates() + text_inputs = [] + for t in templates: + t_inputs = torch.cat([clip.tokenize(t.format(c)) for c in self.classes]).to(get_device()) + t_inputs = self.clip_model.encode_text(t_inputs) + t_inputs /= t_inputs.norm(dim=-1, keepdim=True) # double normalization if use templates is expected (see https://github.dev/KaiyangZhou/CoOp) + text_inputs.append(t_inputs) + self.text_features = torch.stack(text_inputs).mean(0) + else: + text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in self.classes]).to(get_device()) + self.text_features = self.clip_model.encode_text(text_inputs) + + self.text_features /= self.text_features.norm(dim=-1, keepdim=True) # double normalization if use templates is expected self.task_id = 0 @torch.no_grad() @@ -66,16 +77,19 @@ def get_parser() -> ArgumentParser: help='Backbone architecture for CLIP') parser.add_argument('--save_predictions', type=int, choices=[0, 1], default=0, help='Whether to save predictions of the TRAINING set after each task') + parser.add_argument('--use_templates', type=int, choices=[0, 1], default=0, + help='Whether to use prompt templates for CLIP. NOTE: Datasets NEED to have a `get_prompt_templates` method implemented.') return parser def __init__(self, backbone, loss, args, transform): backbone, clip_transform = clip.load(args.clip_backbone, device=get_device()) - if args.n_epochs > 1: - print("CLIP is a STATIC model, setting n_epochs to 1") - args.n_epochs = 1 + n_epochs = 1 if args.save_predictions else 0 + if args.n_epochs != n_epochs: + print(f"CLIP is a STATIC model, setting n_epochs to {args.n_epochs}") + args.n_epochs = n_epochs super().__init__(backbone, loss, args, transform) - self.net = FinalModel(self.net, self.dataset) + self.net = FinalModel(self.net, self.dataset, args) self.clip_transform = clip_transform self.predictions = [] diff --git a/models/dualprompt_utils/vision_transformer.py b/models/dualprompt_utils/vision_transformer.py index 9dd510b9..f485fd6b 100644 --- a/models/dualprompt_utils/vision_transformer.py +++ b/models/dualprompt_utils/vision_transformer.py @@ -9,7 +9,7 @@ from timm.models.helpers import named_apply from timm.models.layers import trunc_normal_ -from backbone.vit import Attention, create_vision_transformer, VisionTransformer as MammothVP, get_init_weights_vit +from backbone.vit import LoRAAttention, create_vision_transformer, VisionTransformer as MammothVP, get_init_weights_vit from models.dualprompt_utils.prompt import EPrompt from models.dualprompt_utils.attention import PreT_Attention @@ -25,10 +25,10 @@ def __init__( use_e_prompt=False, e_prompt_layer_idx=None, use_prefix_tune_for_e_prompt=False, same_key_value=False, args=None, **kwargs): if not (use_g_prompt or use_e_prompt): - attn_layer = Attention + attn_layer = LoRAAttention elif not (use_prefix_tune_for_g_prompt or use_prefix_tune_for_e_prompt): # Prompt tunning - attn_layer = Attention + attn_layer = LoRAAttention else: # Prefix tunning attn_layer = PreT_Attention diff --git a/tests/test_datasets.py b/tests/test_datasets.py index b286d966..3bde990d 100644 --- a/tests/test_datasets.py +++ b/tests/test_datasets.py @@ -9,7 +9,7 @@ 'rot-mnist', 'perm-mnist', 'mnist-360', 'seq-cifar100-224', 'seq-cifar10-224', 'seq-cifar100-224-rs', 'seq-cifar100-224-rs', 'seq-tinyimg-r', 'seq-cub200', 'seq-imagenet-r', - 'seq-cafr196', 'seq-chestx']) + 'seq-cafr196', 'seq-chestx', 'seq-cropdisease', 'seq-eurosat-rgb']) def test_datasets(dataset): sys.argv = ['mammoth', '--model', @@ -32,7 +32,9 @@ def test_datasets(dataset): '1'] # clean all downloaded datasets - dataset_paths = ['CUB200', 'CIFAR10', 'CIFAR100', 'MNIST', 'TINYIMG', 'imagenet-r', 'cars196', 'chestx'] + dataset_paths = ['CUB200', 'CIFAR10', 'CIFAR100', 'MNIST', + 'TINYIMG', 'imagenet-r', 'cars196', 'chestx', + 'cropdisease', 'eurosat'] basepath = os.path.dirname(os.path.abspath(__file__)) dt_dir = os.path.join(os.path.dirname(basepath), 'data') for path in dataset_paths: diff --git a/utils/training.py b/utils/training.py index f2246922..006962e6 100644 --- a/utils/training.py +++ b/utils/training.py @@ -251,7 +251,7 @@ def train(model: ContinualModel, dataset: ContinualDataset, train_loader, test_loader = dataset.get_data_loaders() model.meta_begin_task(dataset) - if not args.inference_only: + if not args.inference_only and args.n_epochs>0: if t and args.enable_other_metrics: accs = evaluate(model, dataset, last=True) results[t - 1] = results[t - 1] + accs[0] From af23d299d605b7848b1e127f3e09ea7763b23d27 Mon Sep 17 00:00:00 2001 From: lorib Date: Wed, 3 Jul 2024 18:58:27 +0200 Subject: [PATCH 13/66] add isic, mit67, and resisc45 --- datasets/seq_chestx.py | 5 - datasets/seq_cropdisease.py | 5 - datasets/seq_isic.py | 178 ++++++++++++++++++++++++++ datasets/seq_mit67.py | 246 ++++++++++++++++++++++++++++++++++++ datasets/seq_resisc45.py | 216 +++++++++++++++++++++++++++++++ datasets/utils/__init__.py | 6 +- tests/test_datasets.py | 6 +- 7 files changed, 649 insertions(+), 13 deletions(-) create mode 100644 datasets/seq_isic.py create mode 100644 datasets/seq_mit67.py create mode 100644 datasets/seq_resisc45.py diff --git a/datasets/seq_chestx.py b/datasets/seq_chestx.py index f9563beb..accd7ab7 100644 --- a/datasets/seq_chestx.py +++ b/datasets/seq_chestx.py @@ -124,11 +124,6 @@ class SequentialChestX(ContinualDataset): normalize, ]) - def __init__(self, args): - super().__init__(args) - self.args = args - self.label_to_class_name = self.get_class_names() - def get_data_loaders(self): train_dataset = ChestX(base_path() + 'chestx', train=True, download=True, transform=self.TRANSFORM) diff --git a/datasets/seq_cropdisease.py b/datasets/seq_cropdisease.py index ac507fa5..b8b8342c 100644 --- a/datasets/seq_cropdisease.py +++ b/datasets/seq_cropdisease.py @@ -143,11 +143,6 @@ class SequentialCropDisease(ContinualDataset): transforms.Normalize(mean=MEAN, std=STD), ]) - def __init__(self, args): - super().__init__(args) - self.args = args - self.label_to_class_name = self.get_class_names() - def get_data_loaders(self): train_dataset = CropDisease(base_path() + 'cropdisease', train=True, download=True, transform=self.TRANSFORM) diff --git a/datasets/seq_isic.py b/datasets/seq_isic.py new file mode 100644 index 00000000..c78d09ca --- /dev/null +++ b/datasets/seq_isic.py @@ -0,0 +1,178 @@ +import os +import torchvision.transforms as transforms +import torch.nn.functional as F +from torch.utils.data import Dataset +import numpy as np +import pickle +from PIL import Image +from typing import Tuple + +from datasets.utils import set_default_from_args +from utils import smart_joint +from utils.conf import base_path +from datasets.utils.continual_dataset import ContinualDataset, fix_class_names_order, store_masked_loaders +from datasets.transforms.denormalization import DeNormalize +from torchvision.transforms.functional import InterpolationMode +from utils.prompt_templates import templates +from backbone.vit import vit_base_patch16_224_prompt_prototype + +class Isic(Dataset): + N_CLASSES = 6 + + LABELS = ['melanoma', + 'basal cell carcinoma', + 'actinic keratosis or intraepithelial carcinoma', + 'benign keratosis', + 'dermatofibroma', + 'vascular skin lesion'] + + """ + Overrides the ChestX dataset to change the getitem function. + """ + + def __init__(self, root, train=True, transform=None, + target_transform=None, download=False) -> None: + + self.root = root + self.train = train + self.transform = transform + self.target_transform = target_transform + + split = 'train' if train else 'test' + if not os.path.exists(f'{root}/{split}_images.pkl'): + if download: + ln = 'https://unimore365-my.sharepoint.com/:u:/g/personal/215580_unimore_it/ERM64PkPkFtJhmiUQkVvE64BR900MbIHtJVA_CR4KKhy8A?e=OsrQr5' + from onedrivedownloader import download + download(ln, filename=smart_joint(root, 'isic.tar.gz'), unzip=True, unzip_path=root.rstrip('isic'), clean=True) + else: + raise FileNotFoundError(f'File not found: {root}/{split}_images.pkl') + + filename_labels = f'{self.root}/{split}_labels.pkl' + filename_images = f'{self.root}/{split}_images.pkl' + + self.not_aug_transform = transforms.Compose([transforms.ToTensor()]) + + with open(filename_images, 'rb') as f: + self.data = pickle.load(f) + + with open(filename_labels, 'rb') as f: + self.targets = pickle.load(f) + + def __len__(self): + return len(self.targets) + + def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: + """ + Gets the requested element from the dataset. + :param index: index of the element to be returned + :returns: tuple: (image, target) where target is index of the target class. + """ + img, target = self.data[index], self.targets[index] + img = Image.fromarray((img*255).astype(np.int8), mode='RGB') + + original_img = img.copy() + + not_aug_img = self.not_aug_transform(original_img) + + if self.transform is not None: + img = self.transform(img) + + if self.target_transform is not None: + target = self.target_transform(target) + + if not self.train: + return img, target + + if hasattr(self, 'logits'): + return img, target, not_aug_img, self.logits[index] + + return img, target, not_aug_img + + +class SequentialIsic(ContinualDataset): + + NAME = 'seq-isic' + SETTING = 'class-il' + N_TASKS = 3 + N_CLASSES_PER_TASK = 2 + N_CLASSES = 6 + SIZE = (224, 224) + MEAN, STD = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] + + TRANSFORM = transforms.Compose([ + transforms.Resize(256, interpolation=InterpolationMode.BICUBIC), + transforms.RandomCrop(SIZE[0]), + transforms.RandomHorizontalFlip(0.5), + transforms.ToTensor(), + transforms.Normalize(mean=MEAN, std=STD), + ]) + + TEST_TRANSFORM = transforms.Compose([ + transforms.Resize(size=(256, 256), interpolation=InterpolationMode.BICUBIC), + transforms.CenterCrop(SIZE[0]), + transforms.ToTensor(), + transforms.Normalize(mean=MEAN, std=STD), + ]) + + def get_data_loaders(self): + train_dataset = Isic(base_path() + 'isic', train=True, + download=True, transform=self.TRANSFORM) + + test_dataset = Isic(base_path() + 'isic', train=False, download=True, + transform=self.TEST_TRANSFORM) + + train, test = store_masked_loaders(train_dataset, test_dataset, self) + + return train, test + + def get_class_names(self): + if self.class_names is not None: + return self.class_names + classes = fix_class_names_order(Isic.LABELS, self.args) + self.class_names = classes + return self.class_names + + @staticmethod + def get_prompt_templates(): + return templates['cifar100'] + + @staticmethod + def get_transform(): + transform = transforms.Compose([ + transforms.ToPILImage(), + SequentialIsic.TRANSFORM]) + return transform + + @staticmethod + def get_backbone(): + return vit_base_patch16_224_prompt_prototype(pretrained=True, num_classes=SequentialIsic.N_CLASSES) + + @staticmethod + def get_loss(): + return F.cross_entropy + + @staticmethod + def get_normalization_transform(): + return transforms.Normalize(mean=SequentialIsic.MEAN, std=SequentialIsic.STD) + + @staticmethod + def get_denormalization_transform(): + transform = DeNormalize(mean=SequentialIsic.MEAN, std=SequentialIsic.STD) + return transform + + @set_default_from_args('n_epochs') + def get_epochs(self): + return 30 + + @set_default_from_args('batch_size') + def get_batch_size(self): + return 128 + + @staticmethod + def get_virtual_bn_num(): + return 1 + + +if __name__ == '__main__': + d = Isic('../data/isic', train=False) + d[0] diff --git a/datasets/seq_mit67.py b/datasets/seq_mit67.py new file mode 100644 index 00000000..18e5f554 --- /dev/null +++ b/datasets/seq_mit67.py @@ -0,0 +1,246 @@ +import glob +import io +import os +import tarfile +import requests +import torchvision.transforms as transforms +import torch.nn.functional as F +from torch.utils.data import Dataset +import numpy as np +from PIL import Image + +from datasets.utils import set_default_from_args +from utils.conf import base_path +from datasets.utils.continual_dataset import ContinualDataset, fix_class_names_order, store_masked_loaders +from datasets.transforms.denormalization import DeNormalize +from torchvision.transforms.functional import InterpolationMode +from utils.prompt_templates import templates +from backbone.vit import vit_base_patch16_224_prompt_prototype + +idx_to_class_names ={ + 0: 'airport_inside', + 1: 'artstudio', + 2: 'auditorium', + 3: 'bakery', + 4: 'bar', + 5: 'bathroom', + 6: 'bedroom', + 7: 'bookstore', + 8: 'bowling', + 9: 'buffet', + 10: 'casino', + 11: 'children_room', + 12: 'church_inside', + 13: 'classroom', + 14: 'cloister', + 15: 'closet', + 16: 'clothingstore', + 17: 'computerroom', + 18: 'concert_hall', + 19: 'corridor', + 20: 'deli', + 21: 'dentaloffice', + 22: 'dining_room', + 23: 'elevator', + 24: 'fastfood_restaurant', + 25: 'florist', + 26: 'gameroom', + 27: 'garage', + 28: 'greenhouse', + 29: 'grocerystore', + 30: 'gym', + 31: 'hairsalon', + 32: 'hospitalroom', + 33: 'inside_bus', + 34: 'inside_subway', + 35: 'jewelleryshop', + 36: 'kindergarden', + 37: 'kitchen', + 38: 'laboratorywet', + 39: 'laundromat', + 40: 'library', + 41: 'livingroom', + 42: 'lobby', + 43: 'locker_room', + 44: 'mall', + 45: 'meeting_room', + 46: 'movietheater', + 47: 'museum', + 48: 'nursery', + 49: 'office', + 50: 'operating_room', + 51: 'pantry', + 52: 'poolinside', + 53: 'prisoncell', + 54: 'restaurant', + 55: 'restaurant_kitchen', + 56: 'shoeshop', + 57: 'stairscase', + 58: 'studiomusic', + 59: 'subway', + 60: 'toystore', + 61: 'trainstation', + 62: 'tv_studio', + 63: 'videostore', + 64: 'waitingroom', + 65: 'warehouse', + 66: 'winecellar' +} + +class MyMIT67(Dataset): + NUM_CLASSES = 67 + + def __init__(self, root, train=True, download=True, transform=None, + target_transform=None) -> None: + self.root = os.path.join(base_path(), 'MIT67') + self.transform = transform + self.train = train + self.target_transform = target_transform + self.not_aug_transform = transforms.Compose([transforms.Resize((256,256)),transforms.ToTensor()]) + + if not os.path.exists(self.root) and download: + print('Downloading MIT67 dataset...') + if not os.path.exists(self.root): + os.makedirs(self.root) + train_images_link = 'http://groups.csail.mit.edu/vision/LabelMe/NewImages/indoorCVPR_09.tar' + train_labels_link = 'https://web.mit.edu/torralba/www/TrainImages.txt' + test_images_link = 'https://web.mit.edu/torralba/www/TestImages.txt' + r = requests.get(train_images_link) + z = tarfile.open(fileobj=io.BytesIO(r.content)) + z.extractall(root) + + r = requests.get(train_labels_link) + with open(os.path.join(self.root, 'TrainImages.txt'), 'wb') as f: + f.write(r.content) + + r = requests.get(test_images_link) + with open(os.path.join(self.root, 'TestImages.txt'), 'wb') as f: + f.write(r.content) + print('MIT67 dataset downloaded') + else: + print('MIT67 dataset already downloaded') + + folder_targets = {os.path.basename(f[:-1]):i for i, f in enumerate(sorted(glob.glob(os.path.join(self.root, 'Images/*/'))))} + + train_images_path = os.path.join(self.root, 'TrainImages.txt') + test_images_path = os.path.join(self.root, 'TestImages.txt') + + if self.train: + with open(train_images_path) as f: + paths = f.readlines() + else: + with open(test_images_path) as f: + paths = f.readlines() + paths = [p.strip() for p in paths] + self.data = [os.path.join(self.root, 'Images', p) for p in paths] + self.data = np.array(self.data) + self.targets = [folder_targets[p.split('/')[0]] for p in paths] + + def __len__(self) -> int: + return len(self.data) + + def __getitem__(self, index): + """ + Args: + index (int): Index + + Returns: + tuple: (image, target) where target is index of the target class. + """ + target = self.targets[index] + img = Image.open(self.data[index]) + img = img.convert('RGB') + + original_img = img.copy() + not_aug_img = self.not_aug_transform(original_img) + + if self.transform is not None: + img = self.transform(img) + + if self.target_transform is not None: + target = self.target_transform(target) + + if not self.train: + return img, target + + return img, target, not_aug_img + +class SequentialMIT67(ContinualDataset): + + NAME = 'seq-mit67' + SETTING = 'class-il' + N_TASKS = 10 + N_CLASSES = 67 + N_CLASSES_PER_TASK = [7] * 7 + [6] * 3 + SIZE = (224, 224) + MEAN=[0.485, 0.456, 0.406] + STD=[0.229, 0.224, 0.225] + TRANSFORM = transforms.Compose([ + transforms.Resize(256, interpolation=InterpolationMode.BICUBIC), + transforms.RandomCrop(SIZE), + transforms.RandomHorizontalFlip(), + transforms.ToTensor(), + transforms.Normalize(MEAN, STD) + ]) + TEST_TRANSFORM = transforms.Compose([ + transforms.Resize(256), + transforms.CenterCrop(SIZE), + transforms.ToTensor(), + transforms.Normalize(MEAN, STD) + ]) + + def get_data_loaders(self): + train_dataset = MyMIT67(base_path() + 'MIT67', train=True, + download=True, transform=self.TRANSFORM) + test_dataset = MyMIT67(base_path() + 'MIT76', train=False, + download=True, transform=self.TEST_TRANSFORM) + + train, test = store_masked_loaders(train_dataset, test_dataset, self) + + return train, test + + def get_class_names(self): + if self.class_names is not None: + return self.class_names + classes = list(idx_to_class_names.values()) + classes = fix_class_names_order(classes, self.args) + self.class_names = classes + return classes + + @staticmethod + def get_prompt_templates(): + return templates['cifar100'] + + @staticmethod + def get_transform(): + transform = transforms.Compose([transforms.ToPILImage(), + SequentialMIT67.TRANSFORM]) + return transform + + @staticmethod + def get_backbone(): + return vit_base_patch16_224_prompt_prototype(pretrained=True, num_classes=SequentialMIT67.N_CLASSES) + + @staticmethod + def get_loss(): + return F.cross_entropy + + @staticmethod + def get_normalization_transform(): + return transforms.Normalize(SequentialMIT67.MEAN, SequentialMIT67.STD) + + @staticmethod + def get_denormalization_transform(): + return DeNormalize(SequentialMIT67.MEAN, SequentialMIT67.STD) + + @set_default_from_args('n_epochs') + def get_epochs(self): + return 50 + + @set_default_from_args('batch_size') + def get_batch_size(self): + return 32 + + @staticmethod + def get_virtual_bn_num(): + return 1 \ No newline at end of file diff --git a/datasets/seq_resisc45.py b/datasets/seq_resisc45.py new file mode 100644 index 00000000..fa8d07f1 --- /dev/null +++ b/datasets/seq_resisc45.py @@ -0,0 +1,216 @@ +import os +from typing import Tuple +import torchvision.transforms as transforms +import torch.nn.functional as F +from torch.utils.data import Dataset +import numpy as np +from PIL import Image +import yaml + +from datasets.utils import set_default_from_args +from utils import smart_joint +from utils.conf import base_path +from datasets.utils.continual_dataset import ContinualDataset, fix_class_names_order, store_masked_loaders +from datasets.transforms.denormalization import DeNormalize +from torchvision.transforms.functional import InterpolationMode +from utils.prompt_templates import templates +from backbone.vit import vit_base_patch16_224_prompt_prototype + +class Resisc45(Dataset): + + N_CLASSES = 45 + LABELS = [ + 'airplane', + 'airport', + 'baseball_diamond', + 'basketball_court', + 'beach', + 'bridge', + 'chaparral', + 'church', + 'circular_farmland', + 'cloud', + 'commercial_area', + 'dense_residential', + 'desert', + 'forest', + 'freeway', + 'golf_course', + 'ground_track_field', + 'harbor', + 'industrial_area', + 'intersection', + 'island', + 'lake', + 'meadow', + 'medium_residential', + 'mobile_home_park', + 'mountain', + 'overpass', + 'palace', + 'parking_lot', + 'railway', + 'railway_station', + 'rectangular_farmland', + 'river', + 'roundabout', + 'runway', + 'sea_ice', + 'ship', + 'snowberg', + 'sparse_residential', + 'stadium', + 'storage_tank', + 'tennis_court', + 'terrace', + 'thermal_power_station', + 'wetland', + ] + + def __init__(self, root, train=True, transform=None, + target_transform=None, download=False) -> None: + + self.root = root + self.train = train + self.transform = transform + self.target_transform = target_transform + + self.not_aug_transform = transforms.Compose([ + transforms.Resize((224, 224), interpolation=InterpolationMode.BICUBIC), + transforms.ToTensor()] + ) + + if download: + if os.path.isdir(root) and len(os.listdir(root)) > 0: + print('Download not needed, files already on disk.') + else: + # download from https://people.eecs.berkeley.edu/~hendrycks/imagenet-r.tar + print("Downloading resisc45 dataset...") + ln = 'https://unimore365-my.sharepoint.com/:u:/g/personal/215580_unimore_it/EbxMu5z5HbVIkG9qFCGbg7ABDRZvpBEA8uqVC-Em9HYVug?e=Cfc4Yc' + from onedrivedownloader import download + download(ln, filename=os.path.join(root, 'resisc45.tar.gz'), unzip=True, unzip_path=root, clean=True) + print("Done!") + + if self.train: + data_config = yaml.load(open(smart_joint(root, 'resisc45_train.yaml')), Loader=yaml.Loader) + else: + data_config = yaml.load(open(smart_joint(root, 'resisc45_test.yaml')), Loader=yaml.Loader) + + self.data = np.array([smart_joint(root, d) for d in data_config['data']]) + self.targets = np.array(data_config['targets']).astype(np.int16) + + def __len__(self): + return len(self.targets) + + def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: + """ + Gets the requested element from the dataset. + :param index: index of the element to be returned + :returns: tuple: (image, target) where target is index of the target class. + """ + img, target = self.data[index], self.targets[index] + + img = Image.open(img).convert('RGB') + + original_img = img.copy() + + not_aug_img = self.not_aug_transform(original_img) + + if self.transform is not None: + img = self.transform(img) + + if self.target_transform is not None: + target = self.target_transform(target) + + if not self.train: + return img, target + + if hasattr(self, 'logits'): + return img, target, not_aug_img, self.logits[index] + + return img, target, not_aug_img + + +class SequentialResisc45(ContinualDataset): + + NAME = 'seq-resisc45' + SETTING = 'class-il' + N_TASKS = 9 + N_CLASSES_PER_TASK = 45 // N_TASKS + N_CLASSES = 45 + SIZE = (224, 224) + MEAN, STD = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] + TRANSFORM = transforms.Compose([ + transforms.RandomResizedCrop(SIZE[0], interpolation=InterpolationMode.BICUBIC), + transforms.RandomHorizontalFlip(), + transforms.ToTensor(), + transforms.Normalize(MEAN, STD), + ]) + + TEST_TRANSFORM = transforms.Compose([ + transforms.Resize(size=(256, 256), interpolation=InterpolationMode.BICUBIC), + transforms.CenterCrop(SIZE), + transforms.ToTensor(), + transforms.Normalize(MEAN, STD) + ]) + + def get_data_loaders(self): + train_dataset = Resisc45(base_path() + 'NWPU-RESISC45', train=True, + download=True, transform=self.TRANSFORM) + test_dataset = Resisc45(base_path() + 'NWPU-RESISC45', train=False, + download=True, transform=self.TEST_TRANSFORM) + + train, test = store_masked_loaders(train_dataset, test_dataset, self) + + return train, test + + def get_class_names(self): + if self.class_names is not None: + return self.class_names + classes = [x.replace('_', ' ') for x in Resisc45.LABELS] + classes = fix_class_names_order(classes, self.args) + self.class_names = classes + return classes + + @staticmethod + def get_prompt_templates(): + return templates['eurosat'] + + @staticmethod + def get_transform(): + return transforms.Compose([transforms.ToPILImage(), + SequentialResisc45.TRANSFORM]) + + @staticmethod + def get_backbone(): + return vit_base_patch16_224_prompt_prototype(pretrained=True, num_classes=SequentialResisc45.N_CLASSES) + + @staticmethod + def get_loss(): + return F.cross_entropy + + @staticmethod + def get_normalization_transform(): + return transforms.Normalize(mean=SequentialResisc45.MEAN, std=SequentialResisc45.STD) + + @staticmethod + def get_denormalization_transform(): + return DeNormalize(mean=SequentialResisc45.MEAN, std=SequentialResisc45.STD) + + @set_default_from_args('n_epochs') + def get_epochs(self): + return 30 + + @set_default_from_args('batch_size') + def get_batch_size(self): + return 128 + + @staticmethod + def get_virtual_bn_num(): + return 1 + + +if __name__ == '__main__': + d = Resisc45('../data/imagenet-r/imagenet-r', train=False) + d[0] + pass diff --git a/datasets/utils/__init__.py b/datasets/utils/__init__.py index dbf74218..5b84ff37 100644 --- a/datasets/utils/__init__.py +++ b/datasets/utils/__init__.py @@ -37,7 +37,11 @@ def set_default_from_args(arg_name: str): DEFAULT_ARGS[caller_name] = {} def decorator_set_default_from_args(func): - DEFAULT_ARGS[caller_name][arg_name] = func(None) + n_args = len(inspect.signature(func).parameters) + if n_args == 1: # has self + DEFAULT_ARGS[caller_name][arg_name] = func(None) + else: + DEFAULT_ARGS[caller_name][arg_name] = func() @functools.wraps(func) def wrapper(*args): diff --git a/tests/test_datasets.py b/tests/test_datasets.py index 3bde990d..fb47b213 100644 --- a/tests/test_datasets.py +++ b/tests/test_datasets.py @@ -9,7 +9,8 @@ 'rot-mnist', 'perm-mnist', 'mnist-360', 'seq-cifar100-224', 'seq-cifar10-224', 'seq-cifar100-224-rs', 'seq-cifar100-224-rs', 'seq-tinyimg-r', 'seq-cub200', 'seq-imagenet-r', - 'seq-cafr196', 'seq-chestx', 'seq-cropdisease', 'seq-eurosat-rgb']) + 'seq-cafr196', 'seq-chestx', 'seq-cropdisease', 'seq-eurosat-rgb', + 'seq-isic', 'seq-mit67', 'seq-resisc45']) def test_datasets(dataset): sys.argv = ['mammoth', '--model', @@ -34,7 +35,8 @@ def test_datasets(dataset): # clean all downloaded datasets dataset_paths = ['CUB200', 'CIFAR10', 'CIFAR100', 'MNIST', 'TINYIMG', 'imagenet-r', 'cars196', 'chestx', - 'cropdisease', 'eurosat'] + 'cropdisease', 'eurosat', 'isic', 'MIT67', + 'NWPU-RESISC45'] basepath = os.path.dirname(os.path.abspath(__file__)) dt_dir = os.path.join(os.path.dirname(basepath), 'data') for path in dataset_paths: From 03d7eb915aecfae772414d40b12d992659c200de Mon Sep 17 00:00:00 2001 From: lorib Date: Thu, 4 Jul 2024 11:34:16 +0200 Subject: [PATCH 14/66] updated savecheck jobid. add templates to c10/100-224. Minor changes second stage starprompt --- datasets/seq_cifar100_224.py | 5 ++ datasets/seq_cifar10_224.py | 5 ++ models/first_stage_starprompt.py | 8 ++- models/second_stage_starprompt.py | 17 +++--- .../star_prompt_utils/second_stage_model.py | 60 +++++++++++-------- utils/main.py | 4 +- utils/training.py | 4 +- 7 files changed, 62 insertions(+), 41 deletions(-) diff --git a/datasets/seq_cifar100_224.py b/datasets/seq_cifar100_224.py index a51d9fc1..65381242 100644 --- a/datasets/seq_cifar100_224.py +++ b/datasets/seq_cifar100_224.py @@ -14,6 +14,7 @@ store_masked_loaders) from utils.conf import base_path from datasets.utils import set_default_from_args +from utils.prompt_templates import templates class SequentialCIFAR100224(ContinualDataset): @@ -103,3 +104,7 @@ def get_class_names(self): classes = fix_class_names_order(classes, self.args) self.class_names = classes return self.class_names + + @staticmethod + def get_prompt_templates(): + return templates['cifar100'] \ No newline at end of file diff --git a/datasets/seq_cifar10_224.py b/datasets/seq_cifar10_224.py index f7996230..2e1df991 100644 --- a/datasets/seq_cifar10_224.py +++ b/datasets/seq_cifar10_224.py @@ -16,6 +16,7 @@ from datasets.utils.continual_dataset import (ContinualDataset, fix_class_names_order, store_masked_loaders) from datasets.utils import set_default_from_args +from utils.prompt_templates import templates class SequentialCIFAR10224(ContinualDataset): @@ -101,3 +102,7 @@ def get_class_names(self): classes = fix_class_names_order(classes, self.args) self.class_names = classes return self.class_names + + @staticmethod + def get_prompt_templates(): + return templates['cifar100'] \ No newline at end of file diff --git a/models/first_stage_starprompt.py b/models/first_stage_starprompt.py index f9544a01..b7efc6d1 100644 --- a/models/first_stage_starprompt.py +++ b/models/first_stage_starprompt.py @@ -37,6 +37,8 @@ def get_parser() -> ArgumentParser: help="Number of components for Generative Replay with MOG.") parser.add_argument('--gr_mog_n_iters', type=int, default=200, help="Number of EM iterations during fit for GR with MOG.") + parser.add_argument("--enable_gr", type=int, default=1, choices=[0, 1], + help="Enable Generative Replay.") parser.add_argument('--batch_size_gr', type=int, default=128, help="Batch size for Generative Replay.") @@ -50,7 +52,6 @@ def get_parser() -> ArgumentParser: # Backbone arguments parser.add_argument("--clip_backbone", type=str, default='ViT-L/14', help="CLIP backbone architecture", choices=clip.available_models()) - return parser @@ -75,8 +76,9 @@ def end_task(self, dataset): delattr(self, 'opt') # Generative replay - self.net.prompter.update_statistics(dataset, self.current_task) - self.net.prompter.align(self.current_task) + if self.args.enable_gr: + self.net.prompter.update_statistics(dataset, self.current_task) + self.net.prompter.align(self.current_task) if self.current_task == (self.n_tasks - 1) and self.args.save_first_stage_keys: print('Saving text encoder outputs... ', end='', file=sys.stderr) diff --git a/models/second_stage_starprompt.py b/models/second_stage_starprompt.py index 3d70e7f4..ed76c8d5 100644 --- a/models/second_stage_starprompt.py +++ b/models/second_stage_starprompt.py @@ -36,8 +36,10 @@ def get_parser() -> ArgumentParser: help="Learning rate for GR.") parser.add_argument('--gr_mog_n_iters', type=int, default=500, help="Number of EM iterations during fit for GR with MOG.") + parser.add_argument("--enable_gr", type=int, default=1, choices=[0, 1], + help="Enable Generative Replay.") - parser.add_argument('--keys_ckpt_path', type=str, required=True, + parser.add_argument('--keys_ckpt_path', type=str, help="Path for first-stage keys. The keys can be saved by runninng `first_stage_starprompt` with `--save_first_stage_keys=1`.") parser.add_argument('--batch_size_gr', type=int, default=128, @@ -180,7 +182,7 @@ def recall(self): print(f"RECALL: Task - {self.current_task} - classes from " f"{self.n_past_classes} - to {self.n_seen_classes}") - if self.current_task == 0: + if self.current_task == 0 or self.args.enable_gr == 0: return assert self.classifier_state_dict @@ -192,11 +194,12 @@ def end_task(self, dataset): if hasattr(self, 'opt'): del self.opt # free up some vram - self.update_statistics(dataset) - self.backup() + if self.args.enable_gr: + self.update_statistics(dataset) + self.backup() - if self.current_task > 0: - self.align() + if self.current_task > 0: + self.align() def get_parameters(self): return [p for p in self.net.parameters() if p.requires_grad] @@ -211,7 +214,7 @@ def begin_task(self, dataset): del self.opt self.opt = self.get_optimizer() - self.scheduler = self.get_scheduler() # TODO: check custom scheduler + self.scheduler = self.get_scheduler() def forward(self, x): logits = self.net(x, cur_classes=self.n_seen_classes) diff --git a/models/star_prompt_utils/second_stage_model.py b/models/star_prompt_utils/second_stage_model.py index 2f0f9b78..2219e23e 100644 --- a/models/star_prompt_utils/second_stage_model.py +++ b/models/star_prompt_utils/second_stage_model.py @@ -12,7 +12,6 @@ from datasets.utils.continual_dataset import ContinualDataset from models.star_prompt_utils.vision_transformer import VisionTransformer -from utils.conf import get_device class Prompter(torch.nn.Module): @@ -20,44 +19,43 @@ class Prompter(torch.nn.Module): def __init__(self, args, dataset: ContinualDataset, num_classes: int, target_embed_len: int, - target_embed_dim: int, prompt_layers: List[int], - pretrained=True): + target_embed_dim: int, prompt_layers: List[int]): super().__init__() + self.args = args + self.prompt_layers = prompt_layers + self.target_embed_len = target_embed_len + self.target_embed_dim = target_embed_dim + self.device = args.device + self.num_classes = num_classes - if pretrained: - if args.keys_ckpt_path is None: + clip_backbone = 'ViT-L/14' + if args.keys_ckpt_path is not None: + if args.keys_ckpt_path.endswith('.json'): try: key_jobnum = json.load(open(os.path.join(os.path.dirname(__file__), 'first_stage_keys.json'), 'r'))[args.dataset][str(args.seed)] except BaseException: print("key missing", args.dataset, args.seed, file=sys.stderr) raise ValueError - self.keys_ckpt_path = f"coop_keys/coop_keys_9_{key_jobnum}.pt" + t = dataset.N_TASKS - 1 + self.keys_ckpt_path = f"coop_keys/coop_keys_{t}_{key_jobnum}.pt" else: self.keys_ckpt_path = args.keys_ckpt_path if not os.path.exists(self.keys_ckpt_path): - raise ValueError(f'Keys ckpt {self.keys_ckpt_path} does not exist') - - self.args = args - self.prompt_layers = prompt_layers - self.device = get_device() - self.target_embed_len = target_embed_len - self.target_embed_dim = target_embed_dim - - self.num_classes = num_classes - - clip_backbone = 'ViT-L/14' - if pretrained: - self.keys, self.first_stage_args = self.load_keys() - print("Keys loaded. Loading CLIP version:", self.first_stage_args.clip_backbone) - clip_backbone = self.first_stage_args.clip_backbone - else: + raise ValueError(f'Keys checkpoint `{self.keys_ckpt_path}` does not exist') + + self.keys, first_stage_args = self.load_keys() + print("Keys loaded. Loading CLIP version:", first_stage_args.clip_backbone) + clip_backbone = first_stage_args.clip_backbone + self.clip_model, self.clip_preprocess = clip.load(clip_backbone, self.device) + self.clip_model = self.clip_model.float() + else: # use prompt templates + self.keys_ckpt_path = None print("No keys loaded. Using default CLIP version:", clip_backbone) - - # TODO: READ CLIP BACKBONE FROM CHECKPOINT - self.clip_model, self.clip_preprocess = clip.load(clip_backbone, self.device) - self.clip_model = self.clip_model.float() + self.clip_model, self.clip_preprocess = clip.load(clip_backbone, self.device) + self.clip_model = self.clip_model.float() + self.keys = self.load_default_prompt_templates(dataset.get_prompt_templates(), dataset.get_class_names()) self.clip_normalization = Normalize(self.clip_preprocess.transforms[-1].mean, self.clip_preprocess.transforms[-1].std).to(self.device) @@ -79,6 +77,16 @@ def get_parameter(self, shape, type_init: str = 'orto'): torch.nn.init.normal_(param, mean=0.0, std=0.1) return param + @torch.no_grad() + def load_default_prompt_templates(self, prompt_templates: List[str], dataset_classes: List[str]) -> torch.Tensor: + all_features = [] + for t in prompt_templates: + text_inputs = torch.cat([clip.tokenize(t.format(c)) for c in dataset_classes]).to(self.device) + text_features = self.clip_model.encode_text(text_inputs) + all_features.append(text_features) + text_features = torch.stack(all_features).mean(dim=0) + return text_features + @torch.no_grad() def load_keys(self): print(f'Loading keys from {self.keys_ckpt_path}', file=sys.stderr) diff --git a/utils/main.py b/utils/main.py index 33415d7b..8c862d65 100644 --- a/utils/main.py +++ b/utils/main.py @@ -121,9 +121,9 @@ def parse_args(): create_if_not_exists("checkpoints") now = time.strftime("%Y%m%d-%H%M%S") + uid = args.conf_jobnum.split('-')[0] extra_ckpt_name = "" if args.ckpt_name is None else f"{args.ckpt_name}_" - args.ckpt_name = f"{extra_ckpt_name}{args.model}_{args.dataset}_{args.buffer_size if hasattr(args, 'buffer_size') else 0}_{args.n_epochs}_{str(now)}" - args.ckpt_name_replace = f"{extra_ckpt_name}{args.model}_{args.dataset}_{'{}'}_{args.buffer_size if hasattr(args, 'buffer_size') else 0}__{args.n_epochs}_{str(now)}" + args.ckpt_name = f"{extra_ckpt_name}{args.model}_{args.dataset}_{args.buffer_size if hasattr(args, 'buffer_size') else 0}_{args.n_epochs}_{str(now)}_{uid}" print("Saving checkpoint into", args.ckpt_name, file=sys.stderr) if args.joint: diff --git a/utils/training.py b/utils/training.py index 006962e6..f041dc48 100644 --- a/utils/training.py +++ b/utils/training.py @@ -15,12 +15,10 @@ from datasets.utils.gcl_dataset import GCLDataset from models.utils.continual_model import ContinualModel -from utils import random_id from utils.checkpoints import mammoth_load_checkpoint from utils.loggers import * from utils.stats import track_system_stats from utils.status import ProgressBar -import time try: import wandb @@ -121,7 +119,7 @@ def initialize_wandb(args: Namespace) -> None: assert wandb is not None, "Wandb not installed, please install it or run without wandb" run_name = args.wandb_name if args.wandb_name is not None else args.model - run_id = random_id(5) + run_id = args.conf_jobnum.split('-')[0] name = f'{run_name}_{run_id}' wandb.init(project=args.wandb_project, entity=args.wandb_entity, config=vars(args), name=name) args.wandb_url = wandb.run.get_url() From 53c715a1d371c64eaf95d73af658c04039e64f0c Mon Sep 17 00:00:00 2001 From: lorib Date: Thu, 4 Jul 2024 11:56:12 +0200 Subject: [PATCH 15/66] Update imgr,cub200 --- datasets/seq_cub200.py | 4 +- datasets/seq_imagenet_r.py | 85 +++++++++++++++----------------------- 2 files changed, 36 insertions(+), 53 deletions(-) diff --git a/datasets/seq_cub200.py b/datasets/seq_cub200.py index 65419551..9c80d6a2 100644 --- a/datasets/seq_cub200.py +++ b/datasets/seq_cub200.py @@ -53,7 +53,7 @@ def __init__(self, root, train=True, transform=None, self.segs = data_file['segs'] self._return_segmask = False - def __getitem__(self, index: int) -> Tuple[type(Image), int, type(Image)]: + def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: """ Gets the requested element from the dataset. @@ -96,7 +96,7 @@ def __init__(self, root, train=True, transform=None, target_transform=None, down super().__init__(root, train=train, transform=transform, target_transform=target_transform, download=download) - def __getitem__(self, index: int, ret_segmask=False) -> Tuple[type(Image), int, type(Image)]: + def __getitem__(self, index: int, ret_segmask=False) -> Tuple[Image.Image, int, Image.Image]: """ Gets the requested element from the dataset. diff --git a/datasets/seq_imagenet_r.py b/datasets/seq_imagenet_r.py index 71df22d8..13d19ab5 100644 --- a/datasets/seq_imagenet_r.py +++ b/datasets/seq_imagenet_r.py @@ -1,21 +1,23 @@ import os -from requests import request +from urllib import request import torchvision.transforms as transforms -from torchvision.models import resnet18 import torch.nn.functional as F +from torch.utils.data import Dataset import numpy as np -from utils.conf import base_path +import pickle from PIL import Image -from datasets.utils.continual_dataset import ContinualDataset, fix_class_names_order, store_masked_loaders from typing import Tuple -from datasets.transforms.denormalization import DeNormalize -from torch.utils.data import Dataset -import torch.nn as nn + import yaml -import pickle + +from datasets.utils import set_default_from_args +from utils import smart_joint +from utils.conf import base_path +from datasets.utils.continual_dataset import ContinualDataset, fix_class_names_order, store_masked_loaders +from datasets.transforms.denormalization import DeNormalize from torchvision.transforms.functional import InterpolationMode from utils.prompt_templates import templates -from datasets.utils import set_default_from_args +from backbone.vit import vit_base_patch16_224_prompt_prototype class MyImagenetR(Dataset): @@ -74,7 +76,7 @@ def __init__(self, root, train=True, transform=None, def __len__(self): return len(self.targets) - def __getitem__(self, index: int) -> Tuple[type(Image), int, type(Image)]: + def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: """ Gets the requested element from the dataset. :param index: index of the element to be returned @@ -110,50 +112,44 @@ class SequentialImagenetR(ContinualDataset): N_TASKS = 10 N_CLASSES = 200 N_CLASSES_PER_TASK = N_CLASSES // N_TASKS - normalize = transforms.Normalize(mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0)) + MEAN, STD = (0.0, 0.0, 0.0), (1.0, 1.0, 1.0) SIZE = (224, 224) TRANSFORM = transforms.Compose([ - transforms.RandomResizedCrop(224, interpolation=InterpolationMode.BICUBIC), + transforms.RandomResizedCrop(SIZE[0], interpolation=InterpolationMode.BICUBIC), transforms.RandomHorizontalFlip(), transforms.ToTensor(), - normalize, + transforms.Normalize(mean=MEAN, std=STD), ]) - TEST_TRANSFORM = transforms.Compose([ - transforms.Resize((224, 224), interpolation=InterpolationMode.BICUBIC), - transforms.ToTensor(), - normalize, - ]) - - def __init__(self, args): - super().__init__(args) - self.args = args - self.label_to_class_name = self.get_class_names() + TEST_TRANSFORM = transforms.Compose([transforms.Resize(size=(256, 256), + interpolation=InterpolationMode.BICUBIC), + transforms.CenterCrop(SIZE[0]), + transforms.ToTensor(), + transforms.Normalize(mean=MEAN, std=STD)]) def get_data_loaders(self): - transform = self.TRANSFORM - - test_transform = transforms.Compose( - [transforms.Resize(size=(256, 256), interpolation=InterpolationMode.BICUBIC), transforms.CenterCrop(224), transforms.ToTensor(), self.normalize]) - train_dataset = MyImagenetR(base_path() + 'imagenet-r/', train=True, - download=True, transform=transform) + download=True, transform=self.TRANSFORM) test_dataset = MyImagenetR(base_path() + 'imagenet-r/', train=False, - download=True, transform=test_transform) + download=True, transform=self.TEST_TRANSFORM) train, test = store_masked_loaders(train_dataset, test_dataset, self) return train, test def get_class_names(self): + if self.class_names is not None: + return self.class_names + pwd = os.path.dirname(os.path.abspath(__file__)) with open(pwd + '/imagenet_r_utils/label_to_class_name.pkl', 'rb') as f: label_to_class_name = pickle.load(f) class_names = label_to_class_name.values() class_names = [x.replace('_', ' ') for x in class_names] - if hasattr(self.args, 'class_order'): - class_names = [class_names[i] for i in self.class_order] - return class_names + + class_names = fix_class_names_order(class_names, self.args) + self.class_names = class_names + return self.class_names @staticmethod def get_prompt_templates(): @@ -166,11 +162,8 @@ def get_transform(): return transform @staticmethod - def get_backbone(hookme=False): - backbone = resnet18() - num_classes = SequentialImagenetR.N_CLASSES_PER_TASK * SequentialImagenetR.N_TASKS - backbone.fc = nn.Linear(in_features=512, out_features=num_classes, bias=True) - return backbone + def get_backbone(): + return vit_base_patch16_224_prompt_prototype(pretrained=True, num_classes=SequentialImagenetR.N_CLASSES) @staticmethod def get_loss(): @@ -178,12 +171,11 @@ def get_loss(): @staticmethod def get_normalization_transform(): - return transforms.Normalize(mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0)) + return transforms.Normalize(mean=SequentialImagenetR.MEAN, std=SequentialImagenetR.STD) @staticmethod def get_denormalization_transform(): - transform = DeNormalize((0, 0, 0), - (1, 1, 1)) + transform = DeNormalize(SequentialImagenetR.MEAN, SequentialImagenetR.STD) return transform @set_default_from_args('n_epochs') @@ -196,13 +188,4 @@ def get_batch_size(self): @staticmethod def get_virtual_bn_num(): - return 4 - - def get_class_names(self): - pwd = os.path.dirname(os.path.abspath(__file__)) - with open(pwd + '/imagenet_r_utils/label_to_class_name.pkl', 'rb') as f: - label_to_class_name = pickle.load(f) - class_names = label_to_class_name.values() - class_names = [x.replace('_', ' ') for x in class_names] - class_names = fix_class_names_order(class_names, self.args) - return class_names \ No newline at end of file + return 4 \ No newline at end of file From 4ceb7a013009df297e763d499773a86a719ca7c9 Mon Sep 17 00:00:00 2001 From: lorenzo Date: Thu, 4 Jul 2024 14:23:32 +0200 Subject: [PATCH 16/66] updated defaults, minor fixes --- datasets/seq_cars196.py | 6 -- datasets/seq_chestx.py | 6 +- datasets/seq_cifar100_224.py | 2 +- datasets/seq_cropdisease.py | 6 +- datasets/seq_cub200.py | 58 +++++++++---------- datasets/seq_eurosat_rgb.py | 4 -- datasets/seq_imagenet_r.py | 11 +--- datasets/seq_isic.py | 4 -- datasets/seq_mit67.py | 4 -- datasets/seq_resisc45.py | 4 -- datasets/utils/continual_dataset.py | 9 ++- docs/datasets/index.rst | 2 +- .../star_prompt_utils/second_stage_model.py | 4 +- utils/main.py | 2 +- 14 files changed, 40 insertions(+), 82 deletions(-) diff --git a/datasets/seq_cars196.py b/datasets/seq_cars196.py index e2027cc0..4bdb2baa 100644 --- a/datasets/seq_cars196.py +++ b/datasets/seq_cars196.py @@ -1,4 +1,3 @@ - import os import sys import torch @@ -199,11 +198,6 @@ def get_epochs(self): def get_batch_size(self): return 128 - @staticmethod - def get_virtual_bn_num(): - return 1 - - if __name__ == '__main__': d = MyCars196('../data/cars196', train=True) d[0] diff --git a/datasets/seq_chestx.py b/datasets/seq_chestx.py index accd7ab7..f8fe9f31 100644 --- a/datasets/seq_chestx.py +++ b/datasets/seq_chestx.py @@ -174,11 +174,7 @@ def get_epochs(self): @set_default_from_args('batch_size') def get_batch_size(self): - return 32 - - @staticmethod - def get_virtual_bn_num(): - return 4 + return 128 if __name__ == '__main__': diff --git a/datasets/seq_cifar100_224.py b/datasets/seq_cifar100_224.py index 65381242..bbfb17a4 100644 --- a/datasets/seq_cifar100_224.py +++ b/datasets/seq_cifar100_224.py @@ -91,7 +91,7 @@ def get_denormalization_transform(): @set_default_from_args('n_epochs') def get_epochs(self): - return 5 + return 20 @set_default_from_args('batch_size') def get_batch_size(self): diff --git a/datasets/seq_cropdisease.py b/datasets/seq_cropdisease.py index b8b8342c..b8767e5b 100644 --- a/datasets/seq_cropdisease.py +++ b/datasets/seq_cropdisease.py @@ -195,9 +195,5 @@ def get_epochs(self): @set_default_from_args('n_epochs') def get_batch_size(self): - return 32 - - @staticmethod - def get_virtual_bn_num(): - return 4 + return 128 diff --git a/datasets/seq_cub200.py b/datasets/seq_cub200.py index 9c80d6a2..b5f6f313 100644 --- a/datasets/seq_cub200.py +++ b/datasets/seq_cub200.py @@ -1,21 +1,19 @@ import os -from typing import Tuple - import numpy as np import torch -import torch.nn.functional as F import torchvision.transforms as transforms +import torch.nn.functional as F from PIL import Image -from torch.utils.data.dataset import Dataset - +from typing import Tuple -from backbone.ResNetBottleneck import resnet50 +from datasets.utils import set_default_from_args +from datasets.utils.continual_dataset import ContinualDataset, fix_class_names_order, store_masked_loaders from datasets.transforms.denormalization import DeNormalize -from datasets.utils.continual_dataset import (ContinualDataset, fix_class_names_order, - store_masked_loaders) from utils import smart_joint from utils.conf import base_path -from datasets.utils import set_default_from_args +from torch.utils.data import Dataset +from torchvision.transforms.functional import InterpolationMode +from backbone.vit import vit_base_patch16_224_prompt_prototype class MyCUB200(Dataset): @@ -24,12 +22,12 @@ class MyCUB200(Dataset): """ IMG_SIZE = 224 N_CLASSES = 200 - MEAN, STD = (0.4856, 0.4994, 0.4324), (0.2272, 0.2226, 0.2613) - TEST_TRANSFORM = transforms.Compose([transforms.Resize(IMG_SIZE), transforms.ToTensor(), transforms.Normalize(MEAN, STD)]) def __init__(self, root, train=True, transform=None, target_transform=None, download=True) -> None: - self.not_aug_transform = transforms.Compose([transforms.ToTensor()]) + self.not_aug_transform = transforms.Compose([ + transforms.Resize(MyCUB200.IMG_SIZE, interpolation=InterpolationMode.BICUBIC), + transforms.ToTensor()]) self.root = root self.train = train self.transform = transform @@ -147,25 +145,23 @@ class SequentialCUB200(ContinualDataset): N_CLASSES_PER_TASK = 20 N_TASKS = 10 SIZE = (MyCUB200.IMG_SIZE, MyCUB200.IMG_SIZE) - MEAN, STD = (0.4856, 0.4994, 0.4324), (0.2272, 0.2226, 0.2613) + MEAN, STD = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] TRANSFORM = transforms.Compose([ - transforms.Resize(MyCUB200.IMG_SIZE), - transforms.RandomCrop(MyCUB200.IMG_SIZE, padding=4), + transforms.Resize((300, 300), interpolation=InterpolationMode.BICUBIC), + transforms.RandomCrop(SIZE), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(MEAN, STD)]) - TEST_TRANSFORM = MyCUB200.TEST_TRANSFORM + TEST_TRANSFORM = transforms.Compose([transforms.Resize(256, interpolation=InterpolationMode.BICUBIC), + transforms.CenterCrop(MyCUB200.IMG_SIZE), + transforms.ToTensor(), + transforms.Normalize(MEAN, STD)]) def get_data_loaders(self) -> Tuple[torch.utils.data.DataLoader, torch.utils.data.DataLoader]: - transform = self.TRANSFORM - - test_transform = transforms.Compose( - [transforms.Resize((MyCUB200.IMG_SIZE, MyCUB200.IMG_SIZE)), transforms.ToTensor(), self.get_normalization_transform()]) - train_dataset = MyCUB200(base_path() + 'CUB200', train=True, - download=True, transform=transform) + download=True, transform=SequentialCUB200.TRANSFORM) test_dataset = CUB200(base_path() + 'CUB200', train=False, - download=True, transform=test_transform) + download=True, transform=SequentialCUB200.TEST_TRANSFORM) train, test = store_masked_loaders( train_dataset, test_dataset, self) @@ -179,9 +175,9 @@ def get_transform(): return transform @staticmethod - def get_backbone(hookme=False): + def get_backbone(): num_classes = SequentialCUB200.N_CLASSES_PER_TASK * SequentialCUB200.N_TASKS - return resnet50(num_classes, pretrained=True) + return vit_base_patch16_224_prompt_prototype(pretrained=True, num_classes=num_classes) @staticmethod def get_loss(): @@ -189,9 +185,8 @@ def get_loss(): @staticmethod def get_normalization_transform(): - transform = transforms.Normalize( - SequentialCUB200.MEAN, SequentialCUB200.STD) - return transform + return transforms.Compose([transforms.ToPILImage(), + transforms.Normalize(SequentialCUB200.MEAN, SequentialCUB200.STD)]) @staticmethod def get_denormalization_transform(): @@ -200,11 +195,11 @@ def get_denormalization_transform(): @set_default_from_args('batch_size') def get_batch_size(self): - return 16 + return 128 @set_default_from_args('n_epochs') def get_epochs(self): - return 30 + return 50 def get_class_names(self): if self.class_names is not None: @@ -212,8 +207,7 @@ def get_class_names(self): classes = fix_class_names_order(CLASS_NAMES, self.args) self.class_names = classes return self.class_names - - + CLASS_NAMES = [ 'black footed albatross', 'laysan albatross', diff --git a/datasets/seq_eurosat_rgb.py b/datasets/seq_eurosat_rgb.py index f3a1e194..341c89b5 100644 --- a/datasets/seq_eurosat_rgb.py +++ b/datasets/seq_eurosat_rgb.py @@ -198,10 +198,6 @@ def get_epochs(self): def get_batch_size(self): return 128 - @staticmethod - def get_virtual_bn_num(): - return 1 - @staticmethod def get_prompt_templates(): return templates['eurosat'] diff --git a/datasets/seq_imagenet_r.py b/datasets/seq_imagenet_r.py index 13d19ab5..fa3bbcfb 100644 --- a/datasets/seq_imagenet_r.py +++ b/datasets/seq_imagenet_r.py @@ -16,7 +16,6 @@ from datasets.utils.continual_dataset import ContinualDataset, fix_class_names_order, store_masked_loaders from datasets.transforms.denormalization import DeNormalize from torchvision.transforms.functional import InterpolationMode -from utils.prompt_templates import templates from backbone.vit import vit_base_patch16_224_prompt_prototype @@ -151,10 +150,6 @@ def get_class_names(self): self.class_names = class_names return self.class_names - @staticmethod - def get_prompt_templates(): - return templates['imagenet'] - @staticmethod def get_transform(): transform = transforms.Compose( @@ -184,8 +179,4 @@ def get_epochs(self): @set_default_from_args('batch_size') def get_batch_size(self): - return 32 - - @staticmethod - def get_virtual_bn_num(): - return 4 \ No newline at end of file + return 128 diff --git a/datasets/seq_isic.py b/datasets/seq_isic.py index c78d09ca..255547fd 100644 --- a/datasets/seq_isic.py +++ b/datasets/seq_isic.py @@ -168,10 +168,6 @@ def get_epochs(self): def get_batch_size(self): return 128 - @staticmethod - def get_virtual_bn_num(): - return 1 - if __name__ == '__main__': d = Isic('../data/isic', train=False) diff --git a/datasets/seq_mit67.py b/datasets/seq_mit67.py index 18e5f554..0ede142e 100644 --- a/datasets/seq_mit67.py +++ b/datasets/seq_mit67.py @@ -240,7 +240,3 @@ def get_epochs(self): @set_default_from_args('batch_size') def get_batch_size(self): return 32 - - @staticmethod - def get_virtual_bn_num(): - return 1 \ No newline at end of file diff --git a/datasets/seq_resisc45.py b/datasets/seq_resisc45.py index fa8d07f1..8dbd5f48 100644 --- a/datasets/seq_resisc45.py +++ b/datasets/seq_resisc45.py @@ -205,10 +205,6 @@ def get_epochs(self): def get_batch_size(self): return 128 - @staticmethod - def get_virtual_bn_num(): - return 1 - if __name__ == '__main__': d = Resisc45('../data/imagenet-r/imagenet-r', train=False) diff --git a/datasets/utils/continual_dataset.py b/datasets/utils/continual_dataset.py index cb45304a..fd48ceec 100644 --- a/datasets/utils/continual_dataset.py +++ b/datasets/utils/continual_dataset.py @@ -16,6 +16,7 @@ from datasets.utils.validation import get_validation_indexes from utils.conf import create_seeded_dataloader from datasets.utils import DEFAULT_ARGS +from utils.prompt_templates import templates class ContinualDataset(object): @@ -206,9 +207,11 @@ def get_class_names(self) -> List[str]: raise NotImplementedError('The dataset does not implement the method `get_class_names` to get the class names.') def get_prompt_templates(self) -> List[str]: - """Returns the prompt templates for the current dataset.""" - raise NotImplementedError('The dataset does not implement the method `get_prompt_templates` to get the prompt templates.') - + """ + Returns the prompt templates for the current dataset. + By default, it returns the ImageNet prompt templates. + """ + return templates['imagenet'] def _get_mask_unlabeled(train_dataset, setting: ContinualDataset): if setting.args.label_perc == 1: diff --git a/docs/datasets/index.rst b/docs/datasets/index.rst index 95ce9252..a56ef064 100644 --- a/docs/datasets/index.rst +++ b/docs/datasets/index.rst @@ -41,7 +41,7 @@ each dataset **must statically define** all the necessary information to run a c - **get_scheduler** static method (``callable``): returns the learning rate scheduler to use during train. *By default*, it also initializes the optimizer. This prevents errors due to the learning rate being continouosly reduced task after task. This behavior can be changed setting the argument ``reload_optim=False``. .. admonition:: Optional methods to implement: - - **get_prompt_templates** (``callable``): returns the prompt templates for the dataset. This method is not implemented by default, but is expected for some methods (e.g., `clip`). + - **get_prompt_templates** (``callable``): returns the prompt templates for the dataset. This method is expected for some methods (e.g., `clip`). *By default*, it returns the ImageNet prompt templates. - **get_class_names** (``callable``): returns the class names for the dataset. This method is not implemented by default, but is expected for some methods (e.g., `clip`). The method *should* populate the **class_names** attribute of the dataset to cache the result and call the ``fix_class_names_order`` method to ensure that the class names are in the correct order. diff --git a/models/star_prompt_utils/second_stage_model.py b/models/star_prompt_utils/second_stage_model.py index 2219e23e..1ea7d1ed 100644 --- a/models/star_prompt_utils/second_stage_model.py +++ b/models/star_prompt_utils/second_stage_model.py @@ -49,12 +49,12 @@ def __init__(self, args, dataset: ContinualDataset, print("Keys loaded. Loading CLIP version:", first_stage_args.clip_backbone) clip_backbone = first_stage_args.clip_backbone self.clip_model, self.clip_preprocess = clip.load(clip_backbone, self.device) - self.clip_model = self.clip_model.float() + self.clip_model = self.clip_model.float() # force fp32 when used for eval else: # use prompt templates self.keys_ckpt_path = None print("No keys loaded. Using default CLIP version:", clip_backbone) self.clip_model, self.clip_preprocess = clip.load(clip_backbone, self.device) - self.clip_model = self.clip_model.float() + self.clip_model = self.clip_model.float() # force fp32 when used for eval self.keys = self.load_default_prompt_templates(dataset.get_prompt_templates(), dataset.get_class_names()) self.clip_normalization = Normalize(self.clip_preprocess.transforms[-1].mean, diff --git a/utils/main.py b/utils/main.py index 5c83929f..f56911a7 100644 --- a/utils/main.py +++ b/utils/main.py @@ -18,6 +18,7 @@ # needed (don't change it) import numpy # noqa import os +import sys try: if os.getenv('MAMMOTH_TEST', '0') == '0': @@ -31,7 +32,6 @@ import time import importlib import socket -import sys import datetime import uuid from argparse import ArgumentParser From 6621709f9cf78101b10e95172344bc22a32db7f9 Mon Sep 17 00:00:00 2001 From: lorenzo Date: Thu, 4 Jul 2024 14:25:48 +0200 Subject: [PATCH 17/66] minor update stats if no gpu --- utils/stats.py | 21 +++++++++++---------- 1 file changed, 11 insertions(+), 10 deletions(-) diff --git a/utils/stats.py b/utils/stats.py index 2c204d8b..1f69a211 100644 --- a/utils/stats.py +++ b/utils/stats.py @@ -87,19 +87,20 @@ def __enter__(self): if self.disabled: return self self.initial_cpu_res, self.initial_gpu_res = self.get_stats() - self.initial_gpu_res = {g: g_res for g, g_res in enumerate(self.initial_gpu_res)} - - self.avg_gpu_res = self.initial_gpu_res - self.avg_cpu_res = self.initial_cpu_res - - self.max_cpu_res = self.initial_cpu_res - self.max_gpu_res = self.initial_gpu_res - if self.initial_cpu_res is None and self.initial_gpu_res is None: self.disabled = True + else: + if self.initial_gpu_res is not None: + self.initial_gpu_res = {g: g_res for g, g_res in enumerate(self.initial_gpu_res)} - if self.logger is not None: - self.logger.log_system_stats(self.initial_cpu_res, self.initial_gpu_res) + self.avg_gpu_res = self.initial_gpu_res + self.avg_cpu_res = self.initial_cpu_res + + self.max_cpu_res = self.initial_cpu_res + self.max_gpu_res = self.initial_gpu_res + + if self.logger is not None: + self.logger.log_system_stats(self.initial_cpu_res, self.initial_gpu_res) return self From 4ce4f9c70944e0c89cab96a70eaeeea8c29855c9 Mon Sep 17 00:00:00 2001 From: lorenzo Date: Thu, 4 Jul 2024 14:27:45 +0200 Subject: [PATCH 18/66] cont fix stats with no gpu --- utils/stats.py | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/utils/stats.py b/utils/stats.py index 1f69a211..a9846d1a 100644 --- a/utils/stats.py +++ b/utils/stats.py @@ -139,11 +139,9 @@ def update_stats(self, cpu_res, gpu_res): if self.initial_gpu_res is not None: self.avg_gpu_res = {g: (g_res + alpha * (g_res - self.avg_gpu_res[g])) for g, g_res in enumerate(gpu_res)} self.max_gpu_res = {g: max(self.max_gpu_res[g], g_res) for g, g_res in enumerate(gpu_res)} - - gpu_res = {g: g_res for g, g_res in enumerate(gpu_res)} + gpu_res = {g: g_res for g, g_res in enumerate(gpu_res)} if self.logger is not None: - gpu_res = {g: g_res for g, g_res in enumerate(gpu_res)} self.logger.log_system_stats(cpu_res, gpu_res) def print_stats(self): From db0d5656a11e6e54ae7c14f6897ce008a087089e Mon Sep 17 00:00:00 2001 From: lorenzo Date: Thu, 4 Jul 2024 14:48:23 +0200 Subject: [PATCH 19/66] re: fix stats with no gpu --- utils/loggers.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/utils/loggers.py b/utils/loggers.py index 3d50db6d..4bb20e5f 100644 --- a/utils/loggers.py +++ b/utils/loggers.py @@ -270,9 +270,12 @@ def log_system_stats(self, cpu_res, gpu_res): self.cpu_res.append(cpu_res) if gpu_res is not None: self.gpu_res.append(gpu_res) + gpu_res = {f'GPU_{i}_memory_usage': r for i, r in gpu_res.items()} + else: + gpu_res = {} if not self.args.nowand: - wandb.log({'CPU_memory_usage': cpu_res, **{f'GPU_{i}_memory_usage': r for i, r in gpu_res.items()}}) + wandb.log({'CPU_memory_usage': cpu_res, **gpu_res}) def write(self, args: Dict[str, Any]) -> None: """ From 9a4fda6d8c42e7369c6c0571b215b0fe73ce43d5 Mon Sep 17 00:00:00 2001 From: lorib Date: Thu, 4 Jul 2024 18:01:09 +0200 Subject: [PATCH 20/66] Add prefix tuning option --- models/__init__.py | 1 - models/coda_prompt_utils/__init__.py | 68 +++++++++++++++ models/coda_prompt_utils/model.py | 83 +++--------------- models/second_stage_starprompt.py | 8 ++ .../star_prompt_utils/second_stage_model.py | 85 ++++++++++++++----- .../star_prompt_utils/vision_transformer.py | 13 +-- 6 files changed, 161 insertions(+), 97 deletions(-) diff --git a/models/__init__.py b/models/__init__.py index a100ba9d..692fb475 100644 --- a/models/__init__.py +++ b/models/__init__.py @@ -88,7 +88,6 @@ def _get_names(): names[c.NAME.replace('_', '-')] = c except Exception as e: warn_once("Error in model", model) - warn_once("\t-", e) names[model.replace('_', '-')] = e return names diff --git a/models/coda_prompt_utils/__init__.py b/models/coda_prompt_utils/__init__.py index 702830f6..b929ce33 100644 --- a/models/coda_prompt_utils/__init__.py +++ b/models/coda_prompt_utils/__init__.py @@ -1,3 +1,71 @@ """ This package contains utility functions for the CoDA Prompt model. Implements a custom version of ViT to add prompt parameters. """ + +import copy + +import torch + +def gram_schmidt(vv, start_c, end_c, return_in_parameter=True): + """ + Code for this function is modified from: + https://github.com/legendongary/pytorch-gram-schmidt/blob/master/gram_schmidt.py + + Perform Gram-Schmidt orthogonalization on the input matrix vv. + """ + + def projection(u, v): + denominator = (u * u).sum() + + if denominator < 1e-8: + return None + else: + return (v * u).sum() / denominator * u + + # check if the tensor is 3D and flatten the last two dimensions if necessary + is_3d = len(vv.shape) == 3 + if is_3d: + shape_2d = copy.deepcopy(vv.shape) + vv = vv.view(vv.shape[0], -1) + + # swap rows and columns + vv = vv.T + + # process matrix size + uu = torch.zeros_like(vv, device=vv.device) + + if start_c > 0: + uu[:, 0:start_c] = vv[:, 0:start_c].clone() + + for k in range(start_c, end_c): + redo = True + while redo: + redo = False + vk = torch.randn_like(vv[:, k]).to(vv.device) + uk = 0 + for j in range(0, k): + if not redo: + uj = uu[:, j].clone() + proj = projection(uj, vk) + if proj is None: + redo = True + print('restarting!!!') + else: + uk = uk + proj + if not redo: + uu[:, k] = vk - uk + for k in range(start_c, end_c): + uk = uu[:, k].clone() + uu[:, k] = uk / (uk.norm()) + + # undo swapping of rows and columns + uu = uu.T + + # return from 2D + if is_3d: + uu = uu.view(shape_2d) + + if return_in_parameter: + return torch.nn.Parameter(uu) + + return uu \ No newline at end of file diff --git a/models/coda_prompt_utils/model.py b/models/coda_prompt_utils/model.py index 676c1fa7..4c54a512 100644 --- a/models/coda_prompt_utils/model.py +++ b/models/coda_prompt_utils/model.py @@ -1,8 +1,8 @@ import torch import torch.nn as nn from backbone.vit import create_vision_transformer +from models.coda_prompt_utils import gram_schmidt from models.coda_prompt_utils.vit import VisionTransformer -import copy class CodaPrompt(nn.Module): @@ -14,6 +14,8 @@ def __init__(self, emb_d, n_tasks, prompt_param, key_dim=768): self.n_tasks = n_tasks self._init_smart(emb_d, prompt_param) + pt = int(self.e_pool_size / (self.n_tasks)) + # e prompt init for e in self.e_layers: # for model saving/loading simplicity, we init the full paramaters here @@ -27,9 +29,9 @@ def __init__(self, emb_d, n_tasks, prompt_param, key_dim=768): p = tensor_prompt(self.e_pool_size, e_l, emb_d) k = tensor_prompt(self.e_pool_size, self.key_d) a = tensor_prompt(self.e_pool_size, self.key_d) - p = self.gram_schmidt(p) - k = self.gram_schmidt(k) - a = self.gram_schmidt(a) + p = gram_schmidt(p, start_c=0, end_c=pt) + k = gram_schmidt(k, start_c=0, end_c=pt) + a = gram_schmidt(a, start_c=0, end_c=pt) setattr(self, f'e_p_{e}', p) setattr(self, f'e_k_{e}', k) setattr(self, f'e_a_{e}', a) @@ -52,81 +54,20 @@ def process_task_count(self): # # in the original paper, we used ortho init at the start - this modification is more # fair in the spirit of continual learning and has little affect on performance - # - # code for this function is modified from: - # https://github.com/legendongary/pytorch-gram-schmidt/blob/master/gram_schmidt.py + pt = int(self.e_pool_size / (self.n_tasks)) + s = int(self.task_count * pt) + f = int((self.task_count + 1) * pt) for e in self.e_layers: K = getattr(self, f'e_k_{e}') A = getattr(self, f'e_a_{e}') P = getattr(self, f'e_p_{e}') - k = self.gram_schmidt(K) - a = self.gram_schmidt(A) - p = self.gram_schmidt(P) + k = gram_schmidt(K, s, f) + a = gram_schmidt(A, s, f) + p = gram_schmidt(P, s, f) setattr(self, f'e_p_{e}', p) setattr(self, f'e_k_{e}', k) setattr(self, f'e_a_{e}', a) - # code for this function is modified from: - # https://github.com/legendongary/pytorch-gram-schmidt/blob/master/gram_schmidt.py - def gram_schmidt(self, vv): - - def projection(u, v): - denominator = (u * u).sum() - - if denominator < 1e-8: - return None - else: - return (v * u).sum() / denominator * u - - # check if the tensor is 3D and flatten the last two dimensions if necessary - is_3d = len(vv.shape) == 3 - if is_3d: - shape_2d = copy.deepcopy(vv.shape) - vv = vv.view(vv.shape[0], -1) - - # swap rows and columns - vv = vv.T - - # process matrix size - nk = vv.size(1) - uu = torch.zeros_like(vv, device=vv.device) - - # get starting point - pt = int(self.e_pool_size / (self.n_tasks)) - s = int(self.task_count * pt) - f = int((self.task_count + 1) * pt) - if s > 0: - uu[:, 0:s] = vv[:, 0:s].clone() - for k in range(s, f): - redo = True - while redo: - redo = False - vk = torch.randn_like(vv[:, k]).to(vv.device) - uk = 0 - for j in range(0, k): - if not redo: - uj = uu[:, j].clone() - proj = projection(uj, vk) - if proj is None: - redo = True - print('restarting!!!') - else: - uk = uk + proj - if not redo: - uu[:, k] = vk - uk - for k in range(s, f): - uk = uu[:, k].clone() - uu[:, k] = uk / (uk.norm()) - - # undo swapping of rows and columns - uu = uu.T - - # return from 2D - if is_3d: - uu = uu.view(shape_2d) - - return torch.nn.Parameter(uu) - def forward(self, x_querry, l, x_block, train=False, task_id=None): # e prompts diff --git a/models/second_stage_starprompt.py b/models/second_stage_starprompt.py index ed76c8d5..9e8ba091 100644 --- a/models/second_stage_starprompt.py +++ b/models/second_stage_starprompt.py @@ -46,6 +46,14 @@ def get_parser() -> ArgumentParser: help="Batch size for Generative Replay.") parser.add_argument('--num_samples_gr', type=int, default=256, help="Number of samples for Generative Replay.") + + # prompt type + parser.add_argument('--prompt_mode', type=str, default='residual', choices=['residual', 'concat'], + help="Prompt type for the second stage. " + "- `residual`: STAR-Prompt style prompting. " + "- `concat`: Prefix-Tuning style prompting.") + parser.add_argument('--prefix_tuning_prompt_len', type=int, default=5, + help="Prompt length for prefix tuning. Used only if `--prompt_mode==concat`.") return parser diff --git a/models/star_prompt_utils/second_stage_model.py b/models/star_prompt_utils/second_stage_model.py index 1ea7d1ed..1f51428c 100644 --- a/models/star_prompt_utils/second_stage_model.py +++ b/models/star_prompt_utils/second_stage_model.py @@ -5,6 +5,7 @@ import torch.nn as nn from typing import List from kornia.augmentation import Normalize + try: import clip except ImportError: @@ -21,12 +22,14 @@ def __init__(self, args, dataset: ContinualDataset, num_classes: int, target_embed_len: int, target_embed_dim: int, prompt_layers: List[int]): super().__init__() + assert args.prompt_mode in ['residual', 'concat'], 'This prompter supports only STAR-Prompt residual-style prompts (`residual`) or Prefix tuning-style prompts (`concat`).' self.args = args self.prompt_layers = prompt_layers self.target_embed_len = target_embed_len self.target_embed_dim = target_embed_dim self.device = args.device self.num_classes = num_classes + self.prompt_mode = args.prompt_mode clip_backbone = 'ViT-L/14' if args.keys_ckpt_path is not None: @@ -65,10 +68,14 @@ def __init__(self, args, dataset: ContinualDataset, p.requires_grad = False for l in self.prompt_layers: - setattr(self, f'p_{l}', self.get_parameter((self.num_classes, self.target_embed_dim))) - setattr(self, f'a_{l}', self.get_parameter((self.num_classes, self.clip_model.visual.output_dim), - type_init='orto')) - + if args.prompt_mode == 'residual': + setattr(self, f'p_{l}', self.get_parameter((self.num_classes, self.target_embed_dim))) + else: + setattr(self, f'p_concat_{l}', self.get_parameter((self.num_classes, 2 * self.args.prefix_tuning_prompt_len, + self.target_embed_dim))) + + setattr(self, f'a_{l}', self.get_parameter((self.num_classes, self.clip_model.visual.output_dim))) + def get_parameter(self, shape, type_init: str = 'orto'): param = torch.nn.Parameter(torch.zeros(*shape, dtype=torch.float32, device=self.device)) if type_init == 'orto': @@ -128,15 +135,23 @@ def compute_super_prompts(self, p, sim_act_map, start_idx, end_idx): sim_act_map = sim_act_map[:, start_idx:end_idx] p = p[start_idx:end_idx] - sp = torch.einsum('bc,cd->bd', sim_act_map, p) + if self.args.prompt_mode == 'residual': + sp = torch.einsum('bc,cd->bd', sim_act_map, p) + else: + sp = torch.einsum('bc,cmd->bmd', sim_act_map, p) return sp def get_prompts(self, layer_idx, clip_out, cur_classes: int, frozen_past_classes=0): if layer_idx in self.prompt_layers: - - pv: torch.Tensor = getattr(self, f'p_{layer_idx}') + a: torch.Tensor = getattr(self, f'a_{layer_idx}') + if self.prompt_mode == 'residual': + pv: torch.Tensor = getattr(self, f'p_{layer_idx}') + else: + clip_out = clip_out[:, :1] # only use class token for prefix tuning + p_concat: torch.Tensor = getattr(self, f'p_concat_{layer_idx}') + p_concat_k, p_concat_v = torch.split(p_concat, self.args.prefix_tuning_prompt_len, dim=1) if frozen_past_classes > 0: with torch.no_grad(): @@ -146,15 +161,29 @@ def get_prompts(self, layer_idx, clip_out, cur_classes: int, frozen_past_classes clip_out = self.get_masked_clip_out(clip_out) with torch.no_grad(): - sp_past = self.compute_super_prompts(pv, clip_out, 0, frozen_past_classes) - sp_curr = self.compute_super_prompts(pv, clip_out, frozen_past_classes, cur_classes) - - super_prompt = sp_past.detach() + sp_curr + if self.prompt_mode == 'residual': + sp_past = self.compute_super_prompts(pv, clip_out, 0, frozen_past_classes) + else: + sp_concat_k_past = self.compute_super_prompts(p_concat_k, clip_out, 0, frozen_past_classes).squeeze(2) + sp_concat_v_past = self.compute_super_prompts(p_concat_v, clip_out, 0, frozen_past_classes).squeeze(2) + + if self.prompt_mode == 'residual': + sp_curr = self.compute_super_prompts(pv, clip_out, frozen_past_classes, cur_classes) + super_prompt = sp_past.detach() + sp_curr + else: + sp_concat_k_curr = self.compute_super_prompts(p_concat_k, clip_out, frozen_past_classes, cur_classes).squeeze(2) + sp_concat_v_curr = self.compute_super_prompts(p_concat_v, clip_out, frozen_past_classes, cur_classes).squeeze(2) + super_prompt = (sp_concat_k_past.detach() + sp_concat_k_curr, sp_concat_v_past.detach() + sp_concat_v_curr) else: clip_out = self.compute_maps(clip_out, a[:cur_classes], self.keys[:cur_classes]) clip_out = self.get_masked_clip_out(clip_out) - super_prompt = self.compute_super_prompts(pv, clip_out, 0, cur_classes) + if self.prompt_mode == 'residual': + super_prompt = self.compute_super_prompts(pv, clip_out, 0, cur_classes) + else: + sp_concat_k = self.compute_super_prompts(p_concat_k, clip_out, 0, cur_classes).squeeze(2) + sp_concat_v = self.compute_super_prompts(p_concat_v, clip_out, 0, cur_classes).squeeze(2) + super_prompt = (sp_concat_k, sp_concat_v) return super_prompt, clip_out else: @@ -168,10 +197,7 @@ def compute_ortho_loss(self, cur_classes: int, frozen_past_classes=0) -> torch.T ortho_loss_list = [] weight_loss_list = [] - for layer_idx in self.prompt_layers: - - p = getattr(self, f'p_{layer_idx}') - + def _compute_loss(p, frozen_past_classes, cur_classes): past_pv = p[:frozen_past_classes].detach() cur_pv = p[frozen_past_classes:cur_classes] @@ -179,10 +205,26 @@ def compute_ortho_loss(self, cur_classes: int, frozen_past_classes=0) -> torch.T intra_ortho_loss = (torch.matmul(cur_pv, cur_pv.T)[eye_intra] - 1).pow(2).mean() inter_ortho_loss = (torch.matmul(cur_pv, past_pv.T)).pow(2).mean() + return intra_ortho_loss + inter_ortho_loss - current_loss = intra_ortho_loss + inter_ortho_loss - current_weight = 1. + for layer_idx in self.prompt_layers: + + if self.prompt_mode == 'residual': + p = getattr(self, f'p_{layer_idx}') + current_loss = _compute_loss(p, frozen_past_classes, cur_classes) + else: + p_concat = getattr(self, f'p_concat_{layer_idx}') + p_concat_k, p_concat_v = torch.split(p_concat, self.args.prefix_tuning_prompt_len, dim=1) + + p_concat_k = p_concat_k.view(p_concat_k.shape[0], -1) + p_concat_v = p_concat_v.view(p_concat_v.shape[0], -1) + + current_loss_k = _compute_loss(p_concat_k, frozen_past_classes, cur_classes) + current_loss_v = _compute_loss(p_concat_v, frozen_past_classes, cur_classes) + current_loss = current_loss_k + current_loss_v + + current_weight = 1. if layer_idx < self.args.ortho_split_val: current_weight = 0. @@ -209,7 +251,12 @@ def __init__(self, args, backbone: nn.Module, dataset: ContinualDataset, num_cla self.device = backbone.device # get feature encoder - vit_model = VisionTransformer(embed_dim=768, depth=12, num_heads=12, drop_path_rate=0, num_classes=num_classes) + vit_model = VisionTransformer(embed_dim=768, + depth=12, + num_heads=12, + drop_path_rate=0, + num_classes=num_classes, + prompt_mode=args.prompt_mode) # load pretrained weights load_dict = backbone.state_dict() diff --git a/models/star_prompt_utils/vision_transformer.py b/models/star_prompt_utils/vision_transformer.py index 541d894d..5335ee77 100644 --- a/models/star_prompt_utils/vision_transformer.py +++ b/models/star_prompt_utils/vision_transformer.py @@ -3,9 +3,10 @@ import torch.nn.functional as F from backbone.vit import VisionTransformer as MammothVP, Block as MammothViTBlock +from models.coda_prompt_utils.vit import Attention as PrefixTuningAttention -class Attention(nn.Module): +class ResidualPromptAttention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): super().__init__() assert dim % num_heads == 0, 'dim should be divisible by num_heads' @@ -41,9 +42,6 @@ def forward(self, x, prompts=None): class Block(MammothViTBlock): - def __init__(self, *args, **kwargs): - super().__init__(*args, attn_layer=Attention, **kwargs) - def forward(self, x, prompts=None): x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x), prompts))) x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) @@ -52,9 +50,11 @@ def forward(self, x, prompts=None): class VisionTransformer(MammothVP): - def __init__(self, *args, **kwargs): - + def __init__(self, *args, prompt_mode='residual', **kwargs): super().__init__(*args, **kwargs) + assert prompt_mode in ['residual', 'concat'], 'prompt_mode should be either residual or concat' + + attn_layer = ResidualPromptAttention if prompt_mode=='residual' else PrefixTuningAttention self.blocks = nn.Sequential(*[ Block( @@ -65,6 +65,7 @@ def __init__(self, *args, **kwargs): init_values=self.init_values, drop=self.pos_drop.p, attn_drop=self.attn_drop_rate, + attn_layer=attn_layer, drop_path=self.dpr[i], norm_layer=self.norm_layer, act_layer=self.act_layer From af423637b7f9661858ffc26e7247075425f5fa1b Mon Sep 17 00:00:00 2001 From: lorib Date: Fri, 5 Jul 2024 10:12:57 +0200 Subject: [PATCH 21/66] upd cars --- datasets/seq_cars196.py | 64 ++++++++++++++++++++++++++++------------- 1 file changed, 44 insertions(+), 20 deletions(-) diff --git a/datasets/seq_cars196.py b/datasets/seq_cars196.py index 4bdb2baa..96736568 100644 --- a/datasets/seq_cars196.py +++ b/datasets/seq_cars196.py @@ -21,6 +21,41 @@ from utils.prompt_templates import templates from backbone.vit import vit_base_patch16_224_prompt_prototype +def load_and_preprocess_cars196(train_str='test', names_only=False) -> Tuple[torch.Tensor, torch.Tensor, dict] | dict: + """ + Loads data from deeplake and preprocesses it to be stored locally. + + Args: + train_str (str): 'train' or 'test'. + names_only (bool): If True, returns the class names only. + + Returns: + Tuple[torch.Tensor, torch.Tensor, dict] | dict: If names_only is False, returns a tuple of data, targets, and class_idx_to_name + """ + ds = deeplake.load("hub://activeloop/stanford-cars-train") + loader = ds.pytorch() + class_names = ds['car_models'].info['class_names'] + class_idx_to_name = {i: class_names[i] for i in range(len(class_names))} + if names_only: + return class_idx_to_name + + # Pre-process dataset + data = [] + targets = [] + for x in tqdm(loader, desc=f'Pre-processing {train_str} dataset'): + img = x['images'][0].permute(2, 0, 1) # load one image at a time + if len(img) < 3: + img = img.repeat(3, 1, 1) # fix rgb + img = MyCars196.PREPROCESSING_TRANSFORM(img) # resize + data.append(img) + label = x['car_models'][0].item() # get label + targets.append(label) + + data = torch.stack(data) # stack all images + targets = torch.tensor(targets) + + return data, targets, class_idx_to_name + class MyCars196(Dataset): N_CLASSES = 196 @@ -53,23 +88,8 @@ def __init__(self, root, train=True, transform=None, self.class_names = MyCars196.get_class_names() def load_and_preprocess_dataset(self, root, train_str='test'): - ds = deeplake.load("hub://activeloop/stanford-cars-train") - loader = ds.pytorch() - class_names = ds['car_models'].info['class_names'] - class_idx_to_name = {i: class_names[i] for i in range(len(class_names))} - data = [] - targets = [] - for x in tqdm(loader, desc=f'Pre-processing {train_str} dataset'): - img = x['images'][0].permute(2, 0, 1) # load one image at a time - if len(img) < 3: - img = img.repeat(3, 1, 1) # fix rgb - img = self.PREPROCESSING_TRANSFORM(img) # resize - data.append(img) - label = x['car_models'][0].item() # get label - targets.append(label) - self.data = torch.stack(data) # stack all images - self.targets = torch.tensor(targets) - + self.data, self.targets, class_idx_to_name = load_and_preprocess_cars196(train_str) + print(f"Saving pre-processed dataset in {root} ({train_str}_images.pt and {train_str}_labels.py)...", file=sys.stderr) if not os.path.exists(root): os.makedirs(root) @@ -84,7 +104,7 @@ def load_and_preprocess_dataset(self, root, train_str='test'): def get_class_names(root=base_path() + 'cars196'): if not os.path.exists(base_path() + f'cars196/class_names.json'): print("Class names not found, performing pre-processing...") - MyCars196.load_and_preprocess_dataset(root) + class_idx_to_name = load_and_preprocess_cars196(root, names_only=True) print('Done', file=sys.stderr) else: with open(base_path() + f'cars196/class_names.json', 'rt') as f: @@ -98,8 +118,12 @@ def __len__(self): def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: """ Gets the requested element from the dataset. - :param index: index of the element to be returned - :returns: tuple: (image, target) where target is index of the target class. + + Args: + index: index of the element to be returned + + Returns: + tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], self.targets[index] From d12742f5116df537e8a0b01dcdb4a72a0f93dfb5 Mon Sep 17 00:00:00 2001 From: lorib Date: Fri, 5 Jul 2024 11:00:26 +0200 Subject: [PATCH 22/66] fix cars transform. update args docs --- datasets/seq_cars196.py | 8 +- docs/utils/args.rst | 376 ++++++++++++++++------------------------ utils/args.py | 12 +- 3 files changed, 162 insertions(+), 234 deletions(-) diff --git a/datasets/seq_cars196.py b/datasets/seq_cars196.py index 96736568..8cc82e19 100644 --- a/datasets/seq_cars196.py +++ b/datasets/seq_cars196.py @@ -75,6 +75,7 @@ def __init__(self, root, train=True, transform=None, self.train = train self.transform = transform self.target_transform = target_transform + self.not_aug_transform = transforms.ToTensor() train_str = 'train' if train else 'test' if not os.path.exists(f'{root}/{train_str}_images.pt'): @@ -127,9 +128,9 @@ def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: """ img, target = self.data[index], self.targets[index] - img = img / 255.0 + img = Image.fromarray(img.permute(1,2,0).numpy(), mode='RGB') - not_aug_img = img + not_aug_img = self.not_aug_transform(img.copy()) if self.transform is not None: img = self.transform(img) @@ -161,9 +162,10 @@ class SequentialCars196(ContinualDataset): TRANSFORM = transforms.Compose([ transforms.RandomHorizontalFlip(), + transforms.ToTensor(), transforms.Normalize(mean=MEAN, std=STD), ]) - TEST_TRANSFORM = transforms.Compose([transforms.Normalize(mean=MEAN, std=STD)]) # no transform for test + TEST_TRANSFORM = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=MEAN, std=STD)]) # no transform for test def __init__(self, args): super().__init__(args) diff --git a/docs/utils/args.rst b/docs/utils/args.rst index a404c616..72bc43fa 100644 --- a/docs/utils/args.rst +++ b/docs/utils/args.rst @@ -9,148 +9,111 @@ Arguments *Arguments used to define the experiment settings.* -**\-\-dataset** : - *Help*: Which dataset to perform experiments on. +**\-\-dataset** : str + *Help*: Which dataset to perform experiments on. - - Default: None + - *Default*: None + - *Choices*: seq-mnist, seq-cub200, seq-chestx, seq-cifar100-224, seq-tinyimg, seq-tinyimg-r, seq-cropdisease, seq-eurosat-rgb, perm-mnist, seq-cifar100, seq-isic, seq-mit67, seq-cifar10-224-rs, seq-cifar10, mnist-360, seq-imagenet-r, rot-mnist, seq-resisc45, seq-cifar10-224, seq-cars196, seq-cifar100-224-rs +**\-\-model** : custom_str_underscore + *Help*: Model name. - - Choices: mnist-360, perm-mnist, rot-mnist, seq-cifar10, seq-cifar100, seq-cifar100-224, seq-cifar100-224-rs, seq-cifar10-224, seq-cifar10-224-rs, seq-cub200, seq-imagenet-r, seq-mnist, seq-tinyimg, seq-tinyimg-r -**\-\-model** : - *Help*: Model name. + - *Default*: None + - *Choices*: twf, derpp-lider, l2p, der, icarl, xder-rpc, rpc, pnn, bic, second-stage-starprompt, slca, gdumb-lider, xder-ce, mer, coda-prompt, joint-gcl, ccic, gss, gem, agem, ewc-on, clip, er-ace, derpp, lwf, er, lwf-mc, icarl-lider, first-stage-starprompt, lucir, agem-r, fdr, gdumb, dualprompt, xder, sgd, er-ace-lider, hal, si +**\-\-lr** : float + *Help*: Learning rate. - - Default: None + - *Default*: None +**\-\-batch_size** : int + *Help*: Batch size. - - Choices: agem, agem-r, bic, ccic, coda-prompt, der, derpp, derpp-lider, dualprompt, er, er-ace, er-ace-lider, ewc-on, fdr, gdumb, gdumb-lider, gem, gss, hal, icarl, icarl-lider, joint-gcl, l2p, lucir, lwf, lwf-mc, mer, pnn, rpc, sgd, si, slca, twf, xder, xder-ce, xder-rpc -**\-\-lr** : - *Help*: Learning rate. + - *Default*: None +**\-\-label_perc** : float + *Help*: Percentage in (0-1] of labeled examples per task. - - Default: None + - *Default*: 1 +**\-\-joint** : int + *Help*: Train model on Joint (single task)? - - Choices: -**\-\-batch_size** : - *Help*: Batch size. - - - Default: None - - - Choices: -**\-\-label_perc** : - *Help*: Percentage in (0-1] of labeled examples per task. - - - Default: 1 - - - Choices: -**\-\-joint** : - *Help*: Train model on Joint (single task)? - - - Default: 0 - - - Choices: 0, 1 + - *Default*: 0 + - *Choices*: 0, 1 .. rubric:: Validation and fitting arguments *Arguments used to define the validation strategy and the method used to fit the model.* -**\-\-validation** : - *Help*: Percentage of samples FOR EACH CLASS drawn from the training set to build the validation set. - - - Default: None - - - Choices: -**\-\-validation_mode** : - *Help*: Mode used for validation. Must be used in combination with `validation` argument. Possible values: - `current`: uses only the current task for validation (default). - `complete`: uses data from both current and past tasks for validation. - - - Default: current - - - Choices: complete, current -**\-\-fitting_mode** : - *Help*: Strategy used for fitting the model. Possible values: - `epochs`: fits the model for a fixed number of epochs (default). NOTE: this option is controlled by the `n_epochs` argument. - `iters`: fits the model for a fixed number of iterations. NOTE: this option is controlled by the `n_iters` argument. - `early_stopping`: fits the model until early stopping criteria are met. This option requires a validation set (see `validation` argument). The early stopping criteria are: if the validation loss does not decrease for `early_stopping_patience` epochs, the training stops. - - - Default: epochs - - - Choices: epochs, iters, time, early_stopping -**\-\-early_stopping_patience** : - *Help*: Number of epochs to wait before stopping the training if the validation loss does not decrease. Used only if `fitting_mode=early_stopping`. +**\-\-validation** : float + *Help*: Percentage of samples FOR EACH CLASS drawn from the training set to build the validation set. - - Default: 5 + - *Default*: None +**\-\-validation_mode** : str + *Help*: Mode used for validation. Must be used in combination with `validation` argument. Possible values: - `current`: uses only the current task for validation (default). - `complete`: uses data from both current and past tasks for validation. - - Choices: -**\-\-early_stopping_metric** : - *Help*: Metric used for early stopping. Used only if `fitting_mode=early_stopping`. + - *Default*: current + - *Choices*: complete, current +**\-\-fitting_mode** : str + *Help*: Strategy used for fitting the model. Possible values: - `epochs`: fits the model for a fixed number of epochs (default). NOTE: this option is controlled by the `n_epochs` argument. - `iters`: fits the model for a fixed number of iterations. NOTE: this option is controlled by the `n_iters` argument. - `early_stopping`: fits the model until early stopping criteria are met. This option requires a validation set (see `validation` argument). The early stopping criteria are: if the validation loss does not decrease for `early_stopping_patience` epochs, the training stops. - - Default: loss + - *Default*: epochs + - *Choices*: epochs, iters, time, early_stopping +**\-\-early_stopping_patience** : int + *Help*: Number of epochs to wait before stopping the training if the validation loss does not decrease. Used only if `fitting_mode=early_stopping`. - - Choices: loss, accuracy -**\-\-early_stopping_freq** : - *Help*: Frequency of validation evaluation. Used only if `fitting_mode=early_stopping`. + - *Default*: 5 +**\-\-early_stopping_metric** : str + *Help*: Metric used for early stopping. Used only if `fitting_mode=early_stopping`. - - Default: 1 + - *Default*: loss + - *Choices*: loss, accuracy +**\-\-early_stopping_freq** : int + *Help*: Frequency of validation evaluation. Used only if `fitting_mode=early_stopping`. - - Choices: -**\-\-early_stopping_epsilon** : - *Help*: Minimum improvement required to consider a new best model. Used only if `fitting_mode=early_stopping`. + - *Default*: 1 +**\-\-early_stopping_epsilon** : float + *Help*: Minimum improvement required to consider a new best model. Used only if `fitting_mode=early_stopping`. - - Default: 1e-06 + - *Default*: 1e-06 +**\-\-n_epochs** : int + *Help*: Number of epochs. Used only if `fitting_mode=epochs`. - - Choices: -**\-\-n_epochs** : - *Help*: Number of epochs. Used only if `fitting_mode=epochs`. + - *Default*: None +**\-\-n_iters** : int + *Help*: Number of iterations. Used only if `fitting_mode=iters`. - - Default: None - - - Choices: -**\-\-n_iters** : - *Help*: Number of iterations. Used only if `fitting_mode=iters`. - - - Default: None - - - Choices: + - *Default*: None .. rubric:: Optimizer and learning rate scheduler arguments *Arguments used to define the optimizer and the learning rate scheduler.* -**\-\-optimizer** : - *Help*: Optimizer. - - - Default: sgd - - - Choices: sgd, adam, adamw -**\-\-optim_wd** : - *Help*: optimizer weight decay. - - - Default: 0.0 +**\-\-optimizer** : str + *Help*: Optimizer. - - Choices: -**\-\-optim_mom** : - *Help*: optimizer momentum. + - *Default*: sgd + - *Choices*: sgd, adam, adamw +**\-\-optim_wd** : float + *Help*: optimizer weight decay. - - Default: 0.0 + - *Default*: 0.0 +**\-\-optim_mom** : float + *Help*: optimizer momentum. - - Choices: -**\-\-optim_nesterov** : - *Help*: optimizer nesterov momentum. + - *Default*: 0.0 +**\-\-optim_nesterov** : int + *Help*: optimizer nesterov momentum. - - Default: 0 + - *Default*: 0 +**\-\-lr_scheduler** : str + *Help*: Learning rate scheduler. - - Choices: -**\-\-lr_scheduler** : - *Help*: Learning rate scheduler. + - *Default*: None +**\-\-lr_milestones** : int + *Help*: Learning rate scheduler milestones (used if `lr_scheduler=multisteplr`). - - Default: None + - *Default*: [] +**\-\-sched_multistep_lr_gamma** : float + *Help*: Learning rate scheduler gamma (used if `lr_scheduler=multisteplr`). - - Choices: -**\-\-lr_milestones** : - *Help*: Learning rate scheduler milestones (used if `lr_scheduler=multisteplr`). - - - Default: [] - - - Choices: -**\-\-sched_multistep_lr_gamma** : - *Help*: Learning rate scheduler gamma (used if `lr_scheduler=multisteplr`). - - - Default: 0.1 - - - Choices: + - *Default*: 0.1 .. rubric:: MANAGEMENT ARGS @@ -158,151 +121,114 @@ Arguments *Generic arguments to manage the experiment reproducibility, logging, debugging, etc.* -**\-\-seed** : - *Help*: The random seed. If not provided, a random seed will be used. - - - Default: None +**\-\-seed** : int + *Help*: The random seed. If not provided, a random seed will be used. - - Choices: -**\-\-permute_classes** : - *Help*: Permute classes before splitting into tasks? This applies the seed before permuting if the `seed` argument is present. + - *Default*: None +**\-\-permute_classes** : int + *Help*: Permute classes before splitting into tasks? This applies the seed before permuting if the `seed` argument is present. - - Default: 0 + - *Default*: 0 + - *Choices*: 0, 1 +**\-\-base_path** : str + *Help*: The base path where to save datasets, logs, results. - - Choices: 0, 1 -**\-\-base_path** : - *Help*: The base path where to save datasets, logs, results. + - *Default*: ./data/ +**\-\-notes** : str + *Help*: Helper argument to include notes for this run. Example: distinguish between different versions of a model and allow separation of results - - Default: ./data/ + - *Default*: None +**\-\-eval_epochs** : int + *Help*: Perform inference on validation every `eval_epochs` epochs. If not provided, the model is evaluated ONLY at the end of each task. - - Choices: -**\-\-notes** : - *Help*: Helper argument to include notes for this run. Example: distinguish between different versions of a model and allow separation of results + - *Default*: None +**\-\-non_verbose** : int + *Help*: Make progress bars non verbose - - Default: None + - *Default*: 0 + - *Choices*: 0, 1 +**\-\-disable_log** : int + *Help*: Disable logging? - - Choices: -**\-\-eval_epochs** : - *Help*: Perform inference on validation every `eval_epochs` epochs. If not provided, the model is evaluated ONLY at the end of each task. + - *Default*: 0 + - *Choices*: 0, 1 +**\-\-num_workers** : int + *Help*: Number of workers for the dataloaders (default=infer from number of cpus). - - Default: None + - *Default*: None +**\-\-enable_other_metrics** : int + *Help*: Enable computing additional metrics: forward and backward transfer. - - Choices: -**\-\-non_verbose** : - *Help*: Make progress bars non verbose + - *Default*: 0 + - *Choices*: 0, 1 +**\-\-debug_mode** : int + *Help*: Run only a few training steps per epoch. This also disables logging on wandb. - - Default: 0 + - *Default*: 0 + - *Choices*: 0, 1 +**\-\-inference_only** : int + *Help*: Perform inference only for each task (no training). - - Choices: 0, 1 -**\-\-disable_log** : - *Help*: Disable logging? + - *Default*: 0 + - *Choices*: 0, 1 +**\-\-code_optimization** : int + *Help*: Optimization level for the code.0: no optimization.1: Use TF32, if available.2: Use BF16, if available.3: Use BF16 and `torch.compile`. BEWARE: torch.compile may break your code if you change the model after the first run! Use with caution. - - Default: 0 + - *Default*: 0 + - *Choices*: 0, 1, 2, 3 +**\-\-distributed** : str + *Help*: Enable distributed training? - - Choices: 0, 1 -**\-\-num_workers** : - *Help*: Number of workers for the dataloaders (default=infer from number of cpus). + - *Default*: no + - *Choices*: no, dp, ddp +**\-\-savecheck** : str + *Help*: Save checkpoint every `task` or at the end of the training (`last`). - - Default: None + - *Default*: None + - *Choices*: last, task +**\-\-loadcheck** : str + *Help*: Path of the checkpoint to load (.pt file for the specific task) - - Choices: -**\-\-enable_other_metrics** : - *Help*: Enable computing additional metrics: forward and backward transfer. + - *Default*: None +**\-\-ckpt_name** : str + *Help*: (optional) checkpoint save name. - - Default: 0 + - *Default*: None +**\-\-start_from** : int + *Help*: Task to start from - - Choices: 0, 1 -**\-\-debug_mode** : - *Help*: Run only a few training steps per epoch. This also disables logging on wandb. + - *Default*: None +**\-\-stop_after** : int + *Help*: Task limit - - Default: 0 - - - Choices: 0, 1 -**\-\-inference_only** : - *Help*: Perform inference only for each task (no training). - - - Default: 0 - - - Choices: 0, 1 -**\-\-code_optimization** : - *Help*: Optimization level for the code.0: no optimization.1: Use TF32, if available.2: Use BF16, if available.3: Use BF16 and `torch.compile`. BEWARE: torch.compile may break your code if you change the model after the first run! Use with caution. - - - Default: 0 - - - Choices: 0, 1, 2, 3 -**\-\-distributed** : - *Help*: Enable distributed training? - - - Default: no - - - Choices: no, dp, ddp -**\-\-savecheck** : - *Help*: Save checkpoint every `task` or at the end of the training (`last`). - - - Default: None - - - Choices: last, task -**\-\-loadcheck** : - *Help*: Path of the checkpoint to load (.pt file for the specific task) - - - Default: None - - - Choices: -**\-\-ckpt_name** : - *Help*: (optional) checkpoint save name. - - - Default: None - - - Choices: -**\-\-start_from** : - *Help*: Task to start from - - - Default: None - - - Choices: -**\-\-stop_after** : - *Help*: Task limit - - - Default: None - - - Choices: + - *Default*: None .. rubric:: Wandb arguments *Arguments to manage logging on Wandb.* -**\-\-wandb_name** : - *Help*: Wandb name for this run. Overrides the default name (`args.model`). +**\-\-wandb_name** : str + *Help*: Wandb name for this run. Overrides the default name (`args.model`). - - Default: None + - *Default*: None +**\-\-wandb_entity** : str + *Help*: Wandb entity - - Choices: -**\-\-wandb_entity** : - *Help*: Wandb entity + - *Default*: None +**\-\-wandb_project** : str + *Help*: Wandb project name - - Default: None - - - Choices: -**\-\-wandb_project** : - *Help*: Wandb project name - - - Default: mammoth - - - Choices: + - *Default*: mammoth .. rubric:: REEHARSAL-ONLY ARGS -**\-\-buffer_size** : - *Help*: The size of the memory buffer. - - - Default: None - - - Choices: +**\-\-buffer_size** : int + *Help*: The size of the memory buffer. -**\-\-minibatch_size** : - *Help*: The batch size of the memory buffer. + - *Default*: None - - Default: None +**\-\-minibatch_size** : int + *Help*: The batch size of the memory buffer. - - Choices: + - *Default*: None diff --git a/utils/args.py b/utils/args.py index 3a47b33b..3bea48c8 100644 --- a/utils/args.py +++ b/utils/args.py @@ -2,7 +2,6 @@ # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. - if __name__ == '__main__': import os import sys @@ -169,11 +168,12 @@ def parse_choices(self) -> str: return ', '.join([c.keys() if isinstance(c, dict) else str(c) for c in self.choices]) def __str__(self): - tb = '\t' - return f"""**\\-\\-{self.name}** : {self.type} - *Help*: {self.help}\n - - Default: {self.default}\n - - Choices: {self.parse_choices() if self.choices is not None else ''}""" + tb = f"""**\\-\\-{self.name}** : {self.type.__name__} +\t*Help*: {self.help}\n +\t- *Default*: {self.default}""" + if self.choices is not None: + tb += f"\n\t- *Choices*: {self.parse_choices()}" + return tb class _DocArgsGroup: From a6be09bb60dffed042e5321cc202f6ac4abfae8d Mon Sep 17 00:00:00 2001 From: lorib Date: Fri, 5 Jul 2024 12:23:03 +0200 Subject: [PATCH 23/66] add resize to kornia transform. minor updates --- datasets/seq_cub200.py | 8 ++++---- scripts/wandb_sync.py | 6 +++--- utils/kornia_utils.py | 10 +++++++++- utils/training.py | 4 ++-- 4 files changed, 18 insertions(+), 10 deletions(-) diff --git a/datasets/seq_cub200.py b/datasets/seq_cub200.py index b5f6f313..956cce73 100644 --- a/datasets/seq_cub200.py +++ b/datasets/seq_cub200.py @@ -65,9 +65,8 @@ def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: # to return a PIL Image img = Image.fromarray(img, mode='RGB') - original_img = img.copy() - not_aug_img = self.not_aug_transform(original_img) + not_aug_img = self.not_aug_transform(img.copy()) if self.transform is not None: img = self.transform(img) @@ -79,6 +78,7 @@ def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: img, target, not_aug_img] if self._return_segmask: + # TODO: add to the return tuple raise "Unsupported segmentation output in training set!" return ret_tuple @@ -118,6 +118,7 @@ def __getitem__(self, index: int, ret_segmask=False) -> Tuple[Image.Image, int, ret_tuple = [img, target, self.logits[index]] if hasattr(self, 'logits') else [img, target] if ret_segmask or self._return_segmask: + # TODO: does not work with the current implementation seg = self.segs[index] seg = Image.fromarray(seg, mode='L') seg = transforms.ToTensor()(transforms.CenterCrop((MyCUB200.IMG_SIZE, MyCUB200.IMG_SIZE))(seg))[0] @@ -185,8 +186,7 @@ def get_loss(): @staticmethod def get_normalization_transform(): - return transforms.Compose([transforms.ToPILImage(), - transforms.Normalize(SequentialCUB200.MEAN, SequentialCUB200.STD)]) + return transforms.Normalize(SequentialCUB200.MEAN, SequentialCUB200.STD) @staticmethod def get_denormalization_transform(): diff --git a/scripts/wandb_sync.py b/scripts/wandb_sync.py index e443416f..8b267375 100644 --- a/scripts/wandb_sync.py +++ b/scripts/wandb_sync.py @@ -13,9 +13,9 @@ def parse_args(): parser = argparse.ArgumentParser() - parser.add_argument("--n_workers", type=int, help="Number of workers to use. If not specified, will use all available cores. (Recommended: n_cpus*3)") - parser.add_argument("--limit", type=int, help="Limit the number of runs to sync") - parser.add_argument("--reverse", action="store_true", help="Reverse the order of runs to sync") + parser.add_argument("-w","-n","--n_workers", type=int, help="Number of workers to use. If not specified, will use all available cores. (Recommended: n_cpus*3)") + parser.add_argument("-l","--limit", type=int, help="Limit the number of runs to sync") + parser.add_argument("-r","--reverse", action="store_true", help="Reverse the order of runs to sync") args = parser.parse_args() if args.n_workers is None: diff --git a/utils/kornia_utils.py b/utils/kornia_utils.py index 6c85a420..4f974c12 100644 --- a/utils/kornia_utils.py +++ b/utils/kornia_utils.py @@ -4,7 +4,7 @@ import torch from torchvision import transforms from kornia.augmentation.container.params import ParamItem - +from kornia.constants import Resample class KorniaMultiAug(kornia.augmentation.AugmentationSequential): """ @@ -86,6 +86,12 @@ def forward(self, *args, **kwargs) -> torch.Tensor: """ return self._do_transform(*args, **kwargs) +def _convert_interpolation_to_resample(interpolation: int) -> int: + interpolation_name = transforms.InterpolationMode(interpolation).name + if hasattr(Resample, interpolation_name): + return getattr(Resample, interpolation_name) + else: + raise NotImplementedError(f"Interpolation mode {interpolation_name} not supported by Kornia.") def to_kornia_transform(transform: transforms.Compose, apply: bool = True) -> Union[List[kornia.augmentation.AugmentationBase2D], KorniaAugNoGrad]: """ @@ -144,6 +150,8 @@ def to_kornia_transform(transform: transforms.Compose, apply: bool = True) -> Un pass elif isinstance(t, transforms.Normalize): ts.append(kornia.augmentation.Normalize(mean=t.mean, std=t.std, p=1)) + elif isinstance(t, transforms.Resize): + ts.append(kornia.augmentation.Resize(size=t.size, antialias=t.antialias, resample=_convert_interpolation_to_resample(t.interpolation))) else: raise NotImplementedError diff --git a/utils/training.py b/utils/training.py index 9ce4f360..766307eb 100644 --- a/utils/training.py +++ b/utils/training.py @@ -39,7 +39,7 @@ def mask_classes(outputs: torch.Tensor, dataset: ContinualDataset, k: int) -> No k: the task index """ num_classes = dataset.N_CLASSES - start_c, end_c = dataset.get_offsets() + start_c, end_c = dataset.get_offsets(k) outputs[:, :start_c] = -float('inf') outputs[:, end_c:num_classes] = -float('inf') @@ -180,7 +180,7 @@ def train_single_epoch(model: ContinualModel, loss = model.meta_observe(inputs, labels, not_aug_inputs, epoch=epoch) assert not math.isnan(loss) - if args.code_optimization == 0: + if args.code_optimization == 0 and 'cuda' in str(args.device): torch.cuda.synchronize() progress_bar.prog(i, data_len, epoch, current_task, loss) system_tracker() From 2960cce5b4639fe8114746f18f412488a7951b83 Mon Sep 17 00:00:00 2001 From: lorib Date: Fri, 5 Jul 2024 14:14:51 +0200 Subject: [PATCH 24/66] fix gpu mem measure --- utils/conf.py | 54 +++++++++++++++++++++++++++++++++++++++----------- utils/stats.py | 2 +- 2 files changed, 43 insertions(+), 13 deletions(-) diff --git a/utils/conf.py b/utils/conf.py index 0f2fb681..2266b876 100644 --- a/utils/conf.py +++ b/utils/conf.py @@ -29,22 +29,52 @@ def warn_once(*msg): print(msg, file=sys.stderr) -def get_alloc_memory_all_devices() -> list[int]: +def _get_gpu_memory_pynvml_all_processes(device_id: int = 0) -> int: + """ + Use pynvml to get the memory allocated on the GPU. + Returns the memory allocated on the GPU in Bytes. + """ + if not hasattr(_get_gpu_memory_pynvml_all_processes, 'handle'): + torch.cuda.pynvml.nvmlInit() # only once + handle = torch.cuda.pynvml.nvmlDeviceGetHandleByIndex(device_id) + setattr(_get_gpu_memory_pynvml_all_processes, 'handle', handle) + + handle = getattr(_get_gpu_memory_pynvml_all_processes, 'handle') + + procs = torch.cuda.pynvml.nvmlDeviceGetComputeRunningProcesses(handle) + return sum([proc.usedGpuMemory for proc in procs]) + + +def get_alloc_memory_all_devices(return_all=False) -> list[int]: """ Returns the memory allocated on all the available devices. + By default, tries to return the memory read from pynvml, if available. + Else, it returns the memory `reserved` by torch. + + If `return_all` is set to True, it returns a tuple with the memory reserved, allocated and from pynvml. + + Values are in Bytes. """ - gpu_memory = [] + gpu_memory_reserved = [] + gpu_memory_allocated = [] + gpu_memory_nvidiasmi = [] for i in range(torch.cuda.device_count()): - _ = torch.tensor([1]).to(i) - gpu_memory.append(torch.cuda.memory_allocated(i)) - if all(memory == 0 for memory in gpu_memory): - print("WARNING: some weird GPU memory issue. " - "Using trick from https://discuss.pytorch.org/t/torch-cuda-memory-allocated-returns-0-if-pytorch-no-cuda-memory-caching-1/188796") - for i in range(torch.cuda.device_count()): - torch.zeros(1).to(i) - free_memory, total_memory = torch.cuda.mem_get_info(i) - gpu_memory[i] = total_memory - free_memory - return gpu_memory + _ = torch.tensor([1]).to(i) # allocate memory to get more accurate reading from torch + gpu_memory_reserved.append(torch.cuda.max_memory_reserved(i)) + gpu_memory_allocated.append(torch.cuda.max_memory_allocated(i)) + + try: + gpu_memory_nvidiasmi.append(_get_gpu_memory_pynvml_all_processes(i)) + except BaseException as e: + warn_once('Could not get memory from pynvml.', str(e)) + gpu_memory_nvidiasmi.append(-1) + + if return_all: + return gpu_memory_reserved, gpu_memory_allocated, gpu_memory_nvidiasmi + else: + if any([g>0 for g in gpu_memory_nvidiasmi]): + return gpu_memory_nvidiasmi + return gpu_memory_allocated def get_device() -> torch.device: diff --git a/utils/stats.py b/utils/stats.py index a9846d1a..af7d39f7 100644 --- a/utils/stats.py +++ b/utils/stats.py @@ -34,7 +34,7 @@ def get_memory_gpu_mb(): Get the memory usage of all GPUs in MB. """ - return [d / 1024 for d in get_alloc_memory_all_devices()] + return [d / 1024 / 1024 for d in get_alloc_memory_all_devices()] else: get_memory_gpu_mb = None except BaseException: From 8fbf5adcb104b6fcc29fcdeef248e2828ea4803a Mon Sep 17 00:00:00 2001 From: lorib Date: Fri, 5 Jul 2024 14:47:32 +0200 Subject: [PATCH 25/66] add use_data_aug icoop --- models/clip.py | 2 +- models/first_stage_starprompt.py | 6 +++++- scripts/wandb_sync.py | 16 ++++++++++++---- utils/conf.py | 2 +- 4 files changed, 19 insertions(+), 7 deletions(-) diff --git a/models/clip.py b/models/clip.py index 6f4964d7..4efcd581 100644 --- a/models/clip.py +++ b/models/clip.py @@ -85,7 +85,7 @@ def __init__(self, backbone, loss, args, transform): backbone, clip_transform = clip.load(args.clip_backbone, device=get_device()) n_epochs = 1 if args.save_predictions else 0 if args.n_epochs != n_epochs: - print(f"CLIP is a STATIC model, setting n_epochs to {args.n_epochs}") + print(f"CLIP is a STATIC model, setting n_epochs to {n_epochs}") args.n_epochs = n_epochs super().__init__(backbone, loss, args, transform) diff --git a/models/first_stage_starprompt.py b/models/first_stage_starprompt.py index b7efc6d1..3fd8aff4 100644 --- a/models/first_stage_starprompt.py +++ b/models/first_stage_starprompt.py @@ -52,6 +52,9 @@ def get_parser() -> ArgumentParser: # Backbone arguments parser.add_argument("--clip_backbone", type=str, default='ViT-L/14', help="CLIP backbone architecture", choices=clip.available_models()) + + parser.add_argument("--use_data_aug", type=int, default=0, + choices=[0, 1], help="Use data augmentation during training.") return parser @@ -96,7 +99,8 @@ def get_parameters(self): def begin_task(self, dataset): # Disable transforms and set normalization as CLIP's preprocessing - dataset.train_loader.dataset.transform = self.net.prompter.clip_preprocess + if self.args.use_data_aug==0: + dataset.train_loader.dataset.transform = self.net.prompter.clip_preprocess dataset.test_loaders[-1].dataset.transform = self.net.prompter.clip_preprocess if hasattr(self, 'opt'): diff --git a/scripts/wandb_sync.py b/scripts/wandb_sync.py index 8b267375..510a6f06 100644 --- a/scripts/wandb_sync.py +++ b/scripts/wandb_sync.py @@ -1,4 +1,5 @@ import argparse +from functools import partial import os from pathlib import Path @@ -15,7 +16,8 @@ def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("-w","-n","--n_workers", type=int, help="Number of workers to use. If not specified, will use all available cores. (Recommended: n_cpus*3)") parser.add_argument("-l","--limit", type=int, help="Limit the number of runs to sync") - parser.add_argument("-r","--reverse", action="store_true", help="Reverse the order of runs to sync") + parser.add_argument("-r","--reverse", action="store_true", help="Reverse the order of runs to sync?") + parser.add_argument("-c","--clean_after", action="store_true", help="Clean run after syncing?") args = parser.parse_args() if args.n_workers is None: @@ -32,9 +34,11 @@ def check_offline(): return len([f for f in os.listdir() if 'offline' in f]) > 0 -def sync_run(run): +def sync_run(run, clean_after=False): """Syncs a single run""" - os.system(f"wandb sync {run} >>synced.log 2>>err.log") + ret_code = os.system(f"wandb sync {run} >>synced.log 2>>err.log") + if ret_code == 0 and clean_after: + os.system(f"rm -rf {run}") if __name__ == "__main__": @@ -53,6 +57,9 @@ def sync_run(run): runlist = runlist[:args.limit] print("Limiting to", args.limit, "runs") + if args.clean_after: + print("INFO: Cleaning after syncing") + print(len(runlist), "runs to sync") # delete file synced.log if exists @@ -64,8 +71,9 @@ def sync_run(run): Path("err.log").unlink() # sync all runs in multiple threads and log tqdm + sync_fn = partial(sync_run, clean_after=args.clean_after) with ThreadPool(args.n_workers) as p: - r = list(tqdm(p.imap(sync_run, runlist), total=len(runlist))) + r = list(tqdm(p.imap(sync_fn, runlist), total=len(runlist))) # check if there are any errors in err.log if Path("err.log").exists(): diff --git a/utils/conf.py b/utils/conf.py index 2266b876..ac0968bc 100644 --- a/utils/conf.py +++ b/utils/conf.py @@ -66,7 +66,7 @@ def get_alloc_memory_all_devices(return_all=False) -> list[int]: try: gpu_memory_nvidiasmi.append(_get_gpu_memory_pynvml_all_processes(i)) except BaseException as e: - warn_once('Could not get memory from pynvml.', str(e)) + warn_once('Could not get memory from pynvml. Maybe try `pip install --force-reinstall gpustat`.', str(e)) gpu_memory_nvidiasmi.append(-1) if return_all: From 3c0506de79f5cce00edb70b372539cf06b665df3 Mon Sep 17 00:00:00 2001 From: lorib Date: Fri, 5 Jul 2024 15:03:39 +0200 Subject: [PATCH 26/66] add gaussian mode for second stage starprompt --- models/second_stage_starprompt.py | 18 +++++++++++++----- models/star_prompt_utils/generative_replay.py | 18 +++++++++++++++++- 2 files changed, 30 insertions(+), 6 deletions(-) diff --git a/models/second_stage_starprompt.py b/models/second_stage_starprompt.py index 9e8ba091..2e189983 100644 --- a/models/second_stage_starprompt.py +++ b/models/second_stage_starprompt.py @@ -7,7 +7,7 @@ from utils.schedulers import CosineSchedule from models.utils.continual_model import ContinualModel from models.star_prompt_utils.second_stage_model import Model -from models.star_prompt_utils.generative_replay import MixtureOfGaussiansModel +from models.star_prompt_utils.generative_replay import Gaussian, MixtureOfGaussiansModel class SecondStageStarprompt(ContinualModel): @@ -38,6 +38,10 @@ def get_parser() -> ArgumentParser: help="Number of EM iterations during fit for GR with MOG.") parser.add_argument("--enable_gr", type=int, default=1, choices=[0, 1], help="Enable Generative Replay.") + parser.add_argument('--gr_model', type=str, default='mog', choices=['mog', 'gaussian'], + help="Type of distribution model for Generative Replay. " + "- `mog`: Mixture of Gaussian. " + "- `gaussian`: Single Gaussian distribution.") parser.add_argument('--keys_ckpt_path', type=str, help="Path for first-stage keys. The keys can be saved by runninng `first_stage_starprompt` with `--save_first_stage_keys=1`.") @@ -79,8 +83,13 @@ def __init__(self, backbone, loss, args, transform): self.classifier_state_dict = None def _get_dist(self, embed_dim): - return MixtureOfGaussiansModel(embed_dim, n_components=self.args.gr_mog_n_components, - n_iters=self.args.gr_mog_n_iters) + assert self.args.gr_model in ['mog', 'gaussian'], f"Invalid GR model: {self.args.gr_model}" + + if self.args.gr_model == 'mog': + return MixtureOfGaussiansModel(embed_dim, n_components=self.args.gr_mog_n_components, + n_iters=self.args.gr_mog_n_iters) + else: + return Gaussian(embed_dim) def norm(self, t): return torch.norm(t, p=2, dim=-1, keepdim=True) + 1e-7 @@ -108,8 +117,7 @@ def create_features_dataset(self): prev_t_size, cur_t_size = self.compute_offsets(_ti) - for class_idx in range(prev_t_size, cur_t_size): - + for class_idx in range(prev_t_size, cur_t_size): current_samples = self.distributions[class_idx](self.args.num_samples_gr) features.append(current_samples) labels.append(torch.ones(self.args.num_samples_gr) * class_idx) diff --git a/models/star_prompt_utils/generative_replay.py b/models/star_prompt_utils/generative_replay.py index f6313339..e2737db8 100644 --- a/models/star_prompt_utils/generative_replay.py +++ b/models/star_prompt_utils/generative_replay.py @@ -24,9 +24,25 @@ def fit(self, x): def sample(self, n_sample): return self.gm.sample(n_sample)[0] - def forward(self, n_sample): + def forward(self, n_sample, *args, **kwargs): return self.sample(n_sample) +class Gaussian(torch.nn.Module): + + def __init__(self, embed_dim): + super(Gaussian, self).__init__() + self.embed_dim = embed_dim + self.register_buffer("mean", torch.zeros(embed_dim)) + self.register_buffer("std", torch.ones(embed_dim)) + + def fit(self, x): + self.std, self.mean = torch.std_mean(x, dim=0) + + def sample(self, n_sample, scale_mean): + return torch.distributions.normal.Normal(scale_mean * self.mean, self.std).sample((n_sample,)) + + def forward(self, n_sample, scale_mean: float = 1.0): + return self.sample(n_sample, scale_mean) def calculate_matmul_n_times(n_components, mat_a, mat_b): """ From 6ae20b25e684e926ed1d171ccc421a73586f6a65 Mon Sep 17 00:00:00 2001 From: lorib Date: Fri, 5 Jul 2024 18:23:09 +0200 Subject: [PATCH 27/66] maybe fix some weird bug with dataloader workers --- datasets/utils/continual_dataset.py | 4 +--- utils/conf.py | 28 ++++++++++++++++------------ 2 files changed, 17 insertions(+), 15 deletions(-) diff --git a/datasets/utils/continual_dataset.py b/datasets/utils/continual_dataset.py index fd48ceec..cf329d43 100644 --- a/datasets/utils/continual_dataset.py +++ b/datasets/utils/continual_dataset.py @@ -74,9 +74,6 @@ def __init__(self, args: Namespace) -> None: else: self.args.class_order = np.random.permutation(sum(self.N_CLASSES_PER_TASK)) - if self.args.validation: - self._c_seed = self.args.seed if self.args.seed is not None else torch.initial_seed() - if args.joint: self.N_CLASSES_PER_TASK = self.N_CLASSES self.N_TASKS = 1 @@ -213,6 +210,7 @@ def get_prompt_templates(self) -> List[str]: """ return templates['imagenet'] + def _get_mask_unlabeled(train_dataset, setting: ContinualDataset): if setting.args.label_perc == 1: return np.zeros(train_dataset.targets.shape[0]).astype('bool') diff --git a/utils/conf.py b/utils/conf.py index ac0968bc..c910caca 100644 --- a/utils/conf.py +++ b/utils/conf.py @@ -12,6 +12,7 @@ import random import torch import numpy as np +from torch.utils.data import DataLoader def warn_once(*msg): @@ -35,10 +36,10 @@ def _get_gpu_memory_pynvml_all_processes(device_id: int = 0) -> int: Returns the memory allocated on the GPU in Bytes. """ if not hasattr(_get_gpu_memory_pynvml_all_processes, 'handle'): - torch.cuda.pynvml.nvmlInit() # only once + torch.cuda.pynvml.nvmlInit() # only once handle = torch.cuda.pynvml.nvmlDeviceGetHandleByIndex(device_id) setattr(_get_gpu_memory_pynvml_all_processes, 'handle', handle) - + handle = getattr(_get_gpu_memory_pynvml_all_processes, 'handle') procs = torch.cuda.pynvml.nvmlDeviceGetComputeRunningProcesses(handle) @@ -59,7 +60,7 @@ def get_alloc_memory_all_devices(return_all=False) -> list[int]: gpu_memory_allocated = [] gpu_memory_nvidiasmi = [] for i in range(torch.cuda.device_count()): - _ = torch.tensor([1]).to(i) # allocate memory to get more accurate reading from torch + _ = torch.tensor([1]).to(i) # allocate memory to get more accurate reading from torch gpu_memory_reserved.append(torch.cuda.max_memory_reserved(i)) gpu_memory_allocated.append(torch.cuda.max_memory_allocated(i)) @@ -68,11 +69,11 @@ def get_alloc_memory_all_devices(return_all=False) -> list[int]: except BaseException as e: warn_once('Could not get memory from pynvml. Maybe try `pip install --force-reinstall gpustat`.', str(e)) gpu_memory_nvidiasmi.append(-1) - + if return_all: return gpu_memory_reserved, gpu_memory_allocated, gpu_memory_nvidiasmi else: - if any([g>0 for g in gpu_memory_nvidiasmi]): + if any([g > 0 for g in gpu_memory_nvidiasmi]): return gpu_memory_nvidiasmi return gpu_memory_allocated @@ -142,16 +143,19 @@ def set_random_seed(seed: int) -> None: print('Could not set cuda seed.') -def set_random_seed_worker(worker_id) -> None: +def get_dataloader_seed_fn(seed: int) -> torch.Generator: """ Sets the seeds for a worker of a dataloader. """ - worker_seed = torch.initial_seed() % 2**32 - np.random.seed(worker_seed) - random.seed(worker_seed) + + def set_random_seed_worker(worker_id) -> None: + worker_seed = (worker_id + seed) % 2**32 + np.random.seed(worker_seed) + random.seed(worker_seed) + return set_random_seed_worker -def create_seeded_dataloader(args, dataset, **dataloader_args) -> torch.utils.data.DataLoader: +def create_seeded_dataloader(args, dataset, **dataloader_args) -> DataLoader: """ Creates a dataloader object from a dataset, setting the seeds for the workers (if `--seed` is set). @@ -173,5 +177,5 @@ def create_seeded_dataloader(args, dataset, **dataloader_args) -> torch.utils.da else: worker_generator = None dataloader_args['generator'] = worker_generator if 'generator' not in dataloader_args else dataloader_args['generator'] - dataloader_args['worker_init_fn'] = set_random_seed_worker if 'worker_init_fn' not in dataloader_args else dataloader_args['worker_init_fn'] - return torch.utils.data.DataLoader(dataset, **dataloader_args) + dataloader_args['worker_init_fn'] = get_dataloader_seed_fn(args.seed) if 'worker_init_fn' not in dataloader_args else dataloader_args['worker_init_fn'] + return DataLoader(dataset, **dataloader_args) From 9f13a3262fa6c6df8372fc53e2e5fa59f3ad373b Mon Sep 17 00:00:00 2001 From: lorib Date: Fri, 5 Jul 2024 18:45:50 +0200 Subject: [PATCH 28/66] add seeded dataloader to models --- models/second_stage_starprompt.py | 11 +++++------ models/star_prompt_utils/first_stage_model.py | 8 +++++--- utils/buffer.py | 5 ++--- utils/conf.py | 1 + 4 files changed, 13 insertions(+), 12 deletions(-) diff --git a/models/second_stage_starprompt.py b/models/second_stage_starprompt.py index 2e189983..13697706 100644 --- a/models/second_stage_starprompt.py +++ b/models/second_stage_starprompt.py @@ -1,9 +1,10 @@ import torch from copy import deepcopy -from torch.utils.data import DataLoader, TensorDataset +from torch.utils.data import TensorDataset from tqdm import tqdm from argparse import ArgumentParser +from utils.conf import create_seeded_dataloader from utils.schedulers import CosineSchedule from models.utils.continual_model import ContinualModel from models.star_prompt_utils.second_stage_model import Model @@ -50,7 +51,7 @@ def get_parser() -> ArgumentParser: help="Batch size for Generative Replay.") parser.add_argument('--num_samples_gr', type=int, default=256, help="Number of samples for Generative Replay.") - + # prompt type parser.add_argument('--prompt_mode', type=str, default='residual', choices=['residual', 'concat'], help="Prompt type for the second stage. " @@ -117,7 +118,7 @@ def create_features_dataset(self): prev_t_size, cur_t_size = self.compute_offsets(_ti) - for class_idx in range(prev_t_size, cur_t_size): + for class_idx in range(prev_t_size, cur_t_size): current_samples = self.distributions[class_idx](self.args.num_samples_gr) features.append(current_samples) labels.append(torch.ones(self.args.num_samples_gr) * class_idx) @@ -125,9 +126,7 @@ def create_features_dataset(self): features = torch.cat(features, dim=0) labels = torch.cat(labels, dim=0).long() - return DataLoader(TensorDataset(features, labels), - batch_size=self.args.batch_size_gr, - shuffle=True, num_workers=0) + return create_seeded_dataloader(self.args, TensorDataset(features, labels), batch_size=self.args.batch_size_gr, shuffle=True, num_workers=0) def train_alignment_epoch(self, classifier: torch.nn.Module, optim: torch.optim.Optimizer): diff --git a/models/star_prompt_utils/first_stage_model.py b/models/star_prompt_utils/first_stage_model.py index aafa4aaf..697a6305 100644 --- a/models/star_prompt_utils/first_stage_model.py +++ b/models/star_prompt_utils/first_stage_model.py @@ -1,8 +1,10 @@ from typing import List import torch.nn.functional as F import torch -from torch.utils.data import DataLoader, TensorDataset +from torch.utils.data import TensorDataset from tqdm import tqdm + +from utils.conf import create_seeded_dataloader try: import clip except ImportError: @@ -86,7 +88,7 @@ def create_features_dataset(self, current_task: int): features = torch.cat(features, dim=0) labels = torch.cat(labels, dim=0).long() - return DataLoader(TensorDataset(features, labels), batch_size=self.args.batch_size_gr, shuffle=True, num_workers=0) + return create_seeded_dataloader(self.args, TensorDataset(features, labels), num_workers=0, batch_size=self.args.batch_size_gr, shuffle=True) def train_alignment_epoch(self, optim: torch.optim.Optimizer, current_task: int): offset_1, offset_2 = self.dataset.get_offsets(current_task) @@ -129,7 +131,7 @@ def update_statistics(self, dataset: ContinualDataset, current_task: int): was_training = self.training self.eval() - with tqdm(total=self.args.num_monte_carlo_gr * len(dataset.train_loader), + with tqdm(total=self.args.num_monte_carlo_gr * len(dataset.train_loader), desc='Updating statistics for first stage Generative Replay') as pbar: for _ in range(self.args.num_monte_carlo_gr): for i, data in enumerate(dataset.train_loader): diff --git a/utils/buffer.py b/utils/buffer.py index 211691bc..8e1f1b7c 100644 --- a/utils/buffer.py +++ b/utils/buffer.py @@ -13,7 +13,7 @@ from datasets.utils.continual_dataset import ContinualDataset from models.utils.continual_model import ContinualModel from utils.augmentations import apply_transform -from utils.conf import get_device +from utils.conf import create_seeded_dataloader, get_device def icarl_replay(self: ContinualModel, dataset, val_set_split=0): @@ -67,8 +67,7 @@ def refold_transform(x): return (x.cpu() * 255).squeeze(1).type(torch.uint8) refold_transform((self.buffer.examples)[:len(self.buffer)][buff_val_mask]) ]) - self.val_loader = torch.utils.data.DataLoader(self.val_dataset, batch_size=self.args.batch_size, shuffle=True, - num_workers=self.args.num_workers) + self.val_loader = create_seeded_dataloader(self.args, self.val_dataset, batch_size=self.args.batch_size, shuffle=True) def reservoir(num_seen_examples: int, buffer_size: int) -> int: diff --git a/utils/conf.py b/utils/conf.py index c910caca..68f3b15f 100644 --- a/utils/conf.py +++ b/utils/conf.py @@ -178,4 +178,5 @@ def create_seeded_dataloader(args, dataset, **dataloader_args) -> DataLoader: worker_generator = None dataloader_args['generator'] = worker_generator if 'generator' not in dataloader_args else dataloader_args['generator'] dataloader_args['worker_init_fn'] = get_dataloader_seed_fn(args.seed) if 'worker_init_fn' not in dataloader_args else dataloader_args['worker_init_fn'] + return DataLoader(dataset, **dataloader_args) From c895f2d44c96f75e381e4897eb2d15642f6c3c21 Mon Sep 17 00:00:00 2001 From: loribonna Date: Fri, 5 Jul 2024 19:53:45 +0200 Subject: [PATCH 29/66] updated worker init fn --- models/star_prompt_utils/first_stage_model.py | 6 ++--- utils/conf.py | 17 +++++++------- utils/main.py | 22 ++++++++++--------- 3 files changed, 24 insertions(+), 21 deletions(-) diff --git a/models/star_prompt_utils/first_stage_model.py b/models/star_prompt_utils/first_stage_model.py index 697a6305..c01cfa33 100644 --- a/models/star_prompt_utils/first_stage_model.py +++ b/models/star_prompt_utils/first_stage_model.py @@ -90,12 +90,12 @@ def create_features_dataset(self, current_task: int): labels = torch.cat(labels, dim=0).long() return create_seeded_dataloader(self.args, TensorDataset(features, labels), num_workers=0, batch_size=self.args.batch_size_gr, shuffle=True) - def train_alignment_epoch(self, optim: torch.optim.Optimizer, current_task: int): + def train_alignment_epoch(self, optim: torch.optim.Optimizer, current_task: int, epoch: int = 0): offset_1, offset_2 = self.dataset.get_offsets(current_task) dl = self.create_features_dataset(current_task) - for i, (image_features, labels) in tqdm(enumerate(dl), total=len(dl), desc='GR first stage epoch'): + for i, (image_features, labels) in tqdm(enumerate(dl), total=len(dl), desc=f'GR epoch {epoch + 1}/{self.args.num_epochs_gr}'): if self.args.debug_mode and i > 3: break optim.zero_grad() @@ -120,7 +120,7 @@ def align(self, current_task: int): momentum=0.0, weight_decay=0.0) for e in range(self.args.num_epochs_gr): - self.train_alignment_epoch(optim, current_task=current_task) + self.train_alignment_epoch(optim, current_task=current_task, epoch=e) @torch.no_grad() def update_statistics(self, dataset: ContinualDataset, current_task: int): diff --git a/utils/conf.py b/utils/conf.py index 68f3b15f..6a60cb7c 100644 --- a/utils/conf.py +++ b/utils/conf.py @@ -7,6 +7,7 @@ # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. +from functools import partial import os import sys import random @@ -143,16 +144,14 @@ def set_random_seed(seed: int) -> None: print('Could not set cuda seed.') -def get_dataloader_seed_fn(seed: int) -> torch.Generator: +def worker_init_fn(worker_id, num_workers, seed, rank=1): """ Sets the seeds for a worker of a dataloader. + The seed of each worker is set to: `num_worker * rank + worker_id + seed` """ - - def set_random_seed_worker(worker_id) -> None: - worker_seed = (worker_id + seed) % 2**32 - np.random.seed(worker_seed) - random.seed(worker_seed) - return set_random_seed_worker + worker_seed = num_workers * rank + worker_id + seed + np.random.seed(worker_seed) + random.seed(worker_seed) def create_seeded_dataloader(args, dataset, **dataloader_args) -> DataLoader: @@ -170,6 +169,7 @@ def create_seeded_dataloader(args, dataset, **dataloader_args) -> DataLoader: n_cpus = 4 if not hasattr(os, 'sched_getaffinity') else len(os.sched_getaffinity(0)) num_workers = n_cpus if args.num_workers is None else args.num_workers + print(f'INFO: Using {num_workers} workers for the dataloader.') dataloader_args['num_workers'] = num_workers if 'num_workers' not in dataloader_args else dataloader_args['num_workers'] if args.seed is not None: worker_generator = torch.Generator() @@ -177,6 +177,7 @@ def create_seeded_dataloader(args, dataset, **dataloader_args) -> DataLoader: else: worker_generator = None dataloader_args['generator'] = worker_generator if 'generator' not in dataloader_args else dataloader_args['generator'] - dataloader_args['worker_init_fn'] = get_dataloader_seed_fn(args.seed) if 'worker_init_fn' not in dataloader_args else dataloader_args['worker_init_fn'] + init_fn = partial(worker_init_fn, num_workers=num_workers, seed=args.seed) if args.seed is not None else None + dataloader_args['worker_init_fn'] = init_fn if 'worker_init_fn' not in dataloader_args else dataloader_args['worker_init_fn'] return DataLoader(dataset, **dataloader_args) diff --git a/utils/main.py b/utils/main.py index f56911a7..6ada4d4d 100644 --- a/utils/main.py +++ b/utils/main.py @@ -19,16 +19,6 @@ import numpy # noqa import os import sys - -try: - if os.getenv('MAMMOTH_TEST', '0') == '0': - from dotenv import load_dotenv - load_dotenv() - else: - print("Running in test mode. Ignoring .env file.") -except ImportError: - print("Warning: python-dotenv not installed. Ignoring .env file.", file=sys.stderr) - import time import importlib import socket @@ -44,6 +34,18 @@ sys.path.append(mammoth_path + '/models') from utils import create_if_not_exists, custom_str_underscore +from utils.conf import warn_once + +if __name__ == '__main__': + try: + if os.getenv('MAMMOTH_TEST', '0') == '0': + from dotenv import load_dotenv + load_dotenv() + else: + warn_once("Running in test mode. Ignoring .env file.") + except ImportError: + warn_once("Warning: python-dotenv not installed. Ignoring .env file.") + from utils.args import add_management_args, add_experiment_args from utils.conf import base_path, get_device from utils.distributed import make_dp From 58cd143232dc6b012cd1f35d34973ac21fb8adbd Mon Sep 17 00:00:00 2001 From: loribonna Date: Sat, 6 Jul 2024 00:45:08 +0200 Subject: [PATCH 30/66] fix mog generation with nans --- models/star_prompt_utils/first_stage_model.py | 35 +++++++++++-------- models/star_prompt_utils/generative_replay.py | 17 +++++++-- 2 files changed, 36 insertions(+), 16 deletions(-) diff --git a/models/star_prompt_utils/first_stage_model.py b/models/star_prompt_utils/first_stage_model.py index c01cfa33..e1adeb00 100644 --- a/models/star_prompt_utils/first_stage_model.py +++ b/models/star_prompt_utils/first_stage_model.py @@ -1,3 +1,4 @@ +import math from typing import List import torch.nn.functional as F import torch @@ -95,25 +96,30 @@ def train_alignment_epoch(self, optim: torch.optim.Optimizer, current_task: int, dl = self.create_features_dataset(current_task) - for i, (image_features, labels) in tqdm(enumerate(dl), total=len(dl), desc=f'GR epoch {epoch + 1}/{self.args.num_epochs_gr}'): - if self.args.debug_mode and i > 3: - break - optim.zero_grad() + with tqdm(enumerate(dl), total=len(dl), desc=f'GR epoch {epoch + 1}/{self.args.num_epochs_gr}') as pbar: + for i, (image_features, labels) in pbar: + if self.args.debug_mode and i > 3: + break + optim.zero_grad() - image_features, labels = image_features.to(self.device, dtype=self.clip_model.dtype), labels.to(self.device) - image_features = torch.nn.functional.normalize(image_features, dim=-1) + image_features, labels = image_features.to(self.device, dtype=self.clip_model.dtype), labels.to(self.device) + image_features = torch.nn.functional.normalize(image_features, dim=-1) - text_features = self.compute_keys(0, offset_2) + text_features = self.compute_keys(0, offset_2) - text_features = torch.cat((text_features[:offset_1].detach(), text_features[offset_1:offset_2]), dim=0) - text_features = torch.nn.functional.normalize(text_features, dim=-1) + text_features = torch.cat((text_features[:offset_1].detach(), text_features[offset_1:offset_2]), dim=0) + text_features = torch.nn.functional.normalize(text_features, dim=-1) - clip_logits = torch.einsum('bd,cd->bc', image_features, text_features) - clip_logits = clip_logits * self.clip_logit_scale.exp() - loss = F.cross_entropy(clip_logits, labels) + clip_logits = torch.einsum('bd,cd->bc', image_features, text_features) + clip_logits = clip_logits * self.clip_logit_scale.exp() + loss = F.cross_entropy(clip_logits, labels) - loss.backward() - optim.step() + assert not math.isnan(loss.item()) + + loss.backward() + optim.step() + + pbar.set_postfix({'loss': loss.item()}) def align(self, current_task: int): optim = torch.optim.SGD(lr=self.args.learning_rate_gr, params=[self.prompt_parameters], @@ -194,6 +200,7 @@ def setup_text_prompting(self): @torch.no_grad() def get_query(self, x): clip_out = self.clip_model.encode_image(x) + assert not torch.isnan(clip_out).any() return clip_out def get_clip_logits(self, clip_out, keys): diff --git a/models/star_prompt_utils/generative_replay.py b/models/star_prompt_utils/generative_replay.py index e2737db8..0807c504 100644 --- a/models/star_prompt_utils/generative_replay.py +++ b/models/star_prompt_utils/generative_replay.py @@ -5,6 +5,7 @@ Licensed under the MIT License. """ +import math import torch import numpy as np @@ -19,7 +20,16 @@ def __init__(self, embed_dim: int, n_components: int = 3, n_iters: int = 100): self.gm = GaussianMixture(n_components, embed_dim, covariance_type='diag') def fit(self, x): - self.gm.fit(x, n_iter=self.n_iters) + tries = 0 + while tries < 10: + self.gm.fit(x, n_iter=self.n_iters) + if self.gm.log_likelihood > -np.inf: + break + self.gm.to(x.device) + tries += 1 + + assert (self.gm.var > 0).all(), "Variance is not positive" + assert self.gm.log_likelihood > -np.inf, "Log-likelihood is not finite" def sample(self, n_sample): return self.gm.sample(n_sample)[0] @@ -27,6 +37,7 @@ def sample(self, n_sample): def forward(self, n_sample, *args, **kwargs): return self.sample(n_sample) + class Gaussian(torch.nn.Module): def __init__(self, embed_dim): @@ -44,6 +55,7 @@ def sample(self, n_sample, scale_mean): def forward(self, n_sample, scale_mean: float = 1.0): return self.sample(n_sample, scale_mean) + def calculate_matmul_n_times(n_components, mat_a, mat_b): """ Calculate matrix product of two matrics with mat_a[0] >= mat_b[0]. @@ -218,10 +230,11 @@ def fit(self, x, delta=1e-3, n_iter=100, warm_start=False): for p in self.parameters(): p.data = p.data.to(device) if self.init_params == "kmeans": - self.mu.data, = self.get_kmeans_mu(x, n_centers=self.n_components) + self.mu.data = self.get_kmeans_mu(x, n_centers=self.n_components)[0] i += 1 j = self.log_likelihood - log_likelihood_old + j = np.inf if math.isnan(j) else j if j <= delta: # When score decreases, revert to old parameters From 1db01222b404cb6d8953396ad3ac6946b997e467 Mon Sep 17 00:00:00 2001 From: loribonna Date: Sun, 7 Jul 2024 21:31:51 +0200 Subject: [PATCH 31/66] fix second stage prompt without keys --- models/first_stage_starprompt.py | 21 ++++----- models/star_prompt_utils/generative_replay.py | 3 ++ .../star_prompt_utils/second_stage_model.py | 43 +++++++++---------- 3 files changed, 31 insertions(+), 36 deletions(-) diff --git a/models/first_stage_starprompt.py b/models/first_stage_starprompt.py index 3fd8aff4..70758fa7 100644 --- a/models/first_stage_starprompt.py +++ b/models/first_stage_starprompt.py @@ -27,9 +27,9 @@ def get_parser() -> ArgumentParser: # Tunable hyperparameters parser.add_argument("--learning_rate_gr", type=float, default=0.05, help="Learning rate for Generative Replay.") - parser.add_argument("--lambda_ortho_coop", type=float, default=30, + parser.add_argument("--lambda_ortho_coop", type=float, default=30, help="Orthogonality loss coefficient for coop") - parser.add_argument("--num_monte_carlo_gr", type=int, default=5, + parser.add_argument("--num_monte_carlo_gr", type=int, default=5, help="How many times to sample from the dataset for Generative Replay") parser.add_argument("--num_epochs_gr", type=int, default=10, help="Num. of epochs for Generative Replay.") @@ -39,24 +39,21 @@ def get_parser() -> ArgumentParser: help="Number of EM iterations during fit for GR with MOG.") parser.add_argument("--enable_gr", type=int, default=1, choices=[0, 1], help="Enable Generative Replay.") - + parser.add_argument('--batch_size_gr', type=int, default=128, help="Batch size for Generative Replay.") parser.add_argument('--num_samples_gr', type=int, default=256, help="Number of samples for Generative Replay.") - + # Useful flags - parser.add_argument("--save_first_stage_keys", type=int, default=1, + parser.add_argument("--save_first_stage_keys", type=int, default=1, choices=[0, 1], help="save text encoder outputs") - + # Backbone arguments parser.add_argument("--clip_backbone", type=str, default='ViT-L/14', help="CLIP backbone architecture", choices=clip.available_models()) - - parser.add_argument("--use_data_aug", type=int, default=0, - choices=[0, 1], help="Use data augmentation during training.") - return parser + return parser def __init__(self, backbone, loss, args, transform): print("WARNING: The first stage of STAR-Prompt ignores the backbone as it uses CLIP") @@ -99,8 +96,7 @@ def get_parameters(self): def begin_task(self, dataset): # Disable transforms and set normalization as CLIP's preprocessing - if self.args.use_data_aug==0: - dataset.train_loader.dataset.transform = self.net.prompter.clip_preprocess + dataset.train_loader.dataset.transform = self.net.prompter.clip_preprocess dataset.test_loaders[-1].dataset.transform = self.net.prompter.clip_preprocess if hasattr(self, 'opt'): @@ -109,7 +105,6 @@ def begin_task(self, dataset): self.opt = self.get_optimizer() - torch.cuda.empty_cache() def forward(self, x): diff --git a/models/star_prompt_utils/generative_replay.py b/models/star_prompt_utils/generative_replay.py index 0807c504..73e40ef4 100644 --- a/models/star_prompt_utils/generative_replay.py +++ b/models/star_prompt_utils/generative_replay.py @@ -206,6 +206,9 @@ def fit(self, x, delta=1e-3, n_iter=100, warm_start=False): mu = self.get_kmeans_mu(x, n_centers=self.n_components) self.mu.data = mu + for p in self.parameters(): + p.data = p.data.to(x.device) + i = 0 j = np.inf diff --git a/models/star_prompt_utils/second_stage_model.py b/models/star_prompt_utils/second_stage_model.py index 1f51428c..ab3a3809 100644 --- a/models/star_prompt_utils/second_stage_model.py +++ b/models/star_prompt_utils/second_stage_model.py @@ -47,18 +47,18 @@ def __init__(self, args, dataset: ContinualDataset, if not os.path.exists(self.keys_ckpt_path): raise ValueError(f'Keys checkpoint `{self.keys_ckpt_path}` does not exist') - + self.keys, first_stage_args = self.load_keys() print("Keys loaded. Loading CLIP version:", first_stage_args.clip_backbone) clip_backbone = first_stage_args.clip_backbone self.clip_model, self.clip_preprocess = clip.load(clip_backbone, self.device) - self.clip_model = self.clip_model.float() # force fp32 when used for eval - else: # use prompt templates + self.clip_model = self.clip_model.float() # force fp32 when used for eval + else: # use prompt templates self.keys_ckpt_path = None print("No keys loaded. Using default CLIP version:", clip_backbone) self.clip_model, self.clip_preprocess = clip.load(clip_backbone, self.device) - self.clip_model = self.clip_model.float() # force fp32 when used for eval - self.keys = self.load_default_prompt_templates(dataset.get_prompt_templates(), dataset.get_class_names()) + self.clip_model = self.clip_model.float() # force fp32 when used for eval + self.keys = self.load_default_prompt_templates(dataset.get_class_names()) self.clip_normalization = Normalize(self.clip_preprocess.transforms[-1].mean, self.clip_preprocess.transforms[-1].std).to(self.device) @@ -73,9 +73,9 @@ def __init__(self, args, dataset: ContinualDataset, else: setattr(self, f'p_concat_{l}', self.get_parameter((self.num_classes, 2 * self.args.prefix_tuning_prompt_len, self.target_embed_dim))) - + setattr(self, f'a_{l}', self.get_parameter((self.num_classes, self.clip_model.visual.output_dim))) - + def get_parameter(self, shape, type_init: str = 'orto'): param = torch.nn.Parameter(torch.zeros(*shape, dtype=torch.float32, device=self.device)) if type_init == 'orto': @@ -85,14 +85,11 @@ def get_parameter(self, shape, type_init: str = 'orto'): return param @torch.no_grad() - def load_default_prompt_templates(self, prompt_templates: List[str], dataset_classes: List[str]) -> torch.Tensor: - all_features = [] - for t in prompt_templates: - text_inputs = torch.cat([clip.tokenize(t.format(c)) for c in dataset_classes]).to(self.device) - text_features = self.clip_model.encode_text(text_inputs) - all_features.append(text_features) - text_features = torch.stack(all_features).mean(dim=0) - return text_features + def load_default_prompt_templates(self, dataset_classes: List[str]) -> torch.Tensor: + text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in dataset_classes]).to(self.device) + text_features = self.clip_model.encode_text(text_inputs) + text_features /= text_features.norm(dim=-1, keepdim=True) + return text_features.float() @torch.no_grad() def load_keys(self): @@ -144,12 +141,12 @@ def compute_super_prompts(self, p, sim_act_map, start_idx, end_idx): def get_prompts(self, layer_idx, clip_out, cur_classes: int, frozen_past_classes=0): if layer_idx in self.prompt_layers: - + a: torch.Tensor = getattr(self, f'a_{layer_idx}') if self.prompt_mode == 'residual': pv: torch.Tensor = getattr(self, f'p_{layer_idx}') else: - clip_out = clip_out[:, :1] # only use class token for prefix tuning + clip_out = clip_out[:, :1] # only use class token for prefix tuning p_concat: torch.Tensor = getattr(self, f'p_concat_{layer_idx}') p_concat_k, p_concat_v = torch.split(p_concat, self.args.prefix_tuning_prompt_len, dim=1) @@ -166,7 +163,7 @@ def get_prompts(self, layer_idx, clip_out, cur_classes: int, frozen_past_classes else: sp_concat_k_past = self.compute_super_prompts(p_concat_k, clip_out, 0, frozen_past_classes).squeeze(2) sp_concat_v_past = self.compute_super_prompts(p_concat_v, clip_out, 0, frozen_past_classes).squeeze(2) - + if self.prompt_mode == 'residual': sp_curr = self.compute_super_prompts(pv, clip_out, frozen_past_classes, cur_classes) super_prompt = sp_past.detach() + sp_curr @@ -251,11 +248,11 @@ def __init__(self, args, backbone: nn.Module, dataset: ContinualDataset, num_cla self.device = backbone.device # get feature encoder - vit_model = VisionTransformer(embed_dim=768, - depth=12, - num_heads=12, - drop_path_rate=0, - num_classes=num_classes, + vit_model = VisionTransformer(embed_dim=768, + depth=12, + num_heads=12, + drop_path_rate=0, + num_classes=num_classes, prompt_mode=args.prompt_mode) # load pretrained weights From 1216bfaa4339f77f21ec8dd26ebd7bed051f30dd Mon Sep 17 00:00:00 2001 From: lorib Date: Mon, 8 Jul 2024 11:29:13 +0200 Subject: [PATCH 32/66] Minor upd --- datasets/seq_cars196.py | 6 +----- datasets/seq_chestx.py | 5 ----- datasets/seq_eurosat_rgb.py | 5 ----- datasets/seq_isic.py | 5 ----- datasets/seq_resisc45.py | 6 ------ models/second_stage_starprompt.py | 2 ++ models/star_prompt_utils/second_stage_model.py | 16 ++++++++++++---- 7 files changed, 15 insertions(+), 30 deletions(-) diff --git a/datasets/seq_cars196.py b/datasets/seq_cars196.py index 8cc82e19..541e5c6e 100644 --- a/datasets/seq_cars196.py +++ b/datasets/seq_cars196.py @@ -64,7 +64,7 @@ class MyCars196(Dataset): """ PREPROCESSING_TRANSFORM = transforms.Compose([ - transforms.Resize(224, interpolation=InterpolationMode.BICUBIC), + transforms.Resize(224, interpolation=InterpolationMode.BICUBIC, antialias=True), transforms.CenterCrop(224), ]) @@ -224,7 +224,3 @@ def get_epochs(self): def get_batch_size(self): return 128 -if __name__ == '__main__': - d = MyCars196('../data/cars196', train=True) - d[0] - pass diff --git a/datasets/seq_chestx.py b/datasets/seq_chestx.py index f8fe9f31..a9f665b0 100644 --- a/datasets/seq_chestx.py +++ b/datasets/seq_chestx.py @@ -175,8 +175,3 @@ def get_epochs(self): @set_default_from_args('batch_size') def get_batch_size(self): return 128 - - -if __name__ == '__main__': - d = ChestX('../data/chestx', train=False) - d[0] diff --git a/datasets/seq_eurosat_rgb.py b/datasets/seq_eurosat_rgb.py index 341c89b5..2d7be9b7 100644 --- a/datasets/seq_eurosat_rgb.py +++ b/datasets/seq_eurosat_rgb.py @@ -202,8 +202,3 @@ def get_batch_size(self): def get_prompt_templates(): return templates['eurosat'] - -if __name__ == '__main__': - d = MyEuroSat('../data/eurosat', train=True) - d[0] - pass diff --git a/datasets/seq_isic.py b/datasets/seq_isic.py index 255547fd..f325dcdf 100644 --- a/datasets/seq_isic.py +++ b/datasets/seq_isic.py @@ -167,8 +167,3 @@ def get_epochs(self): @set_default_from_args('batch_size') def get_batch_size(self): return 128 - - -if __name__ == '__main__': - d = Isic('../data/isic', train=False) - d[0] diff --git a/datasets/seq_resisc45.py b/datasets/seq_resisc45.py index 8dbd5f48..7335ebe3 100644 --- a/datasets/seq_resisc45.py +++ b/datasets/seq_resisc45.py @@ -204,9 +204,3 @@ def get_epochs(self): @set_default_from_args('batch_size') def get_batch_size(self): return 128 - - -if __name__ == '__main__': - d = Resisc45('../data/imagenet-r/imagenet-r', train=False) - d[0] - pass diff --git a/models/second_stage_starprompt.py b/models/second_stage_starprompt.py index 13697706..42da3861 100644 --- a/models/second_stage_starprompt.py +++ b/models/second_stage_starprompt.py @@ -46,6 +46,8 @@ def get_parser() -> ArgumentParser: parser.add_argument('--keys_ckpt_path', type=str, help="Path for first-stage keys. The keys can be saved by runninng `first_stage_starprompt` with `--save_first_stage_keys=1`.") + parser.add_argument('--statc_keys_use_templates', type=int, default=1, choices=[0, 1], + help="Use templates for the second stage if no keys are loaded.") parser.add_argument('--batch_size_gr', type=int, default=128, help="Batch size for Generative Replay.") diff --git a/models/star_prompt_utils/second_stage_model.py b/models/star_prompt_utils/second_stage_model.py index ab3a3809..9f562461 100644 --- a/models/star_prompt_utils/second_stage_model.py +++ b/models/star_prompt_utils/second_stage_model.py @@ -58,7 +58,7 @@ def __init__(self, args, dataset: ContinualDataset, print("No keys loaded. Using default CLIP version:", clip_backbone) self.clip_model, self.clip_preprocess = clip.load(clip_backbone, self.device) self.clip_model = self.clip_model.float() # force fp32 when used for eval - self.keys = self.load_default_prompt_templates(dataset.get_class_names()) + self.keys = self.load_default_prompt_templates(dataset.get_prompt_templates(), dataset.get_class_names()) self.clip_normalization = Normalize(self.clip_preprocess.transforms[-1].mean, self.clip_preprocess.transforms[-1].std).to(self.device) @@ -85,9 +85,17 @@ def get_parameter(self, shape, type_init: str = 'orto'): return param @torch.no_grad() - def load_default_prompt_templates(self, dataset_classes: List[str]) -> torch.Tensor: - text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in dataset_classes]).to(self.device) - text_features = self.clip_model.encode_text(text_inputs) + def load_default_prompt_templates(self, templates: List[str], dataset_classes: List[str]) -> torch.Tensor: + if self.args.statc_keys_use_templates: + all_features = [] + for t in templates: + text_inputs = torch.cat([clip.tokenize(t.format(c)) for c in dataset_classes]).to(self.device) + text_features = self.clip_model.encode_text(text_inputs) + all_features.append(text_features) + text_features = torch.stack(all_features).mean(dim=0) + else: + text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in dataset_classes]).to(self.device) + text_features = self.clip_model.encode_text(text_inputs) text_features /= text_features.norm(dim=-1, keepdim=True) return text_features.float() From 28dcf645302f5fabc186665cab97cba534c8a8fe Mon Sep 17 00:00:00 2001 From: lorib Date: Mon, 8 Jul 2024 16:17:41 +0200 Subject: [PATCH 33/66] fix cars split --- datasets/seq_cars196.py | 3 ++- models/star_prompt_utils/generative_replay.py | 1 + 2 files changed, 3 insertions(+), 1 deletion(-) diff --git a/datasets/seq_cars196.py b/datasets/seq_cars196.py index 541e5c6e..33b005b2 100644 --- a/datasets/seq_cars196.py +++ b/datasets/seq_cars196.py @@ -32,7 +32,8 @@ def load_and_preprocess_cars196(train_str='test', names_only=False) -> Tuple[tor Returns: Tuple[torch.Tensor, torch.Tensor, dict] | dict: If names_only is False, returns a tuple of data, targets, and class_idx_to_name """ - ds = deeplake.load("hub://activeloop/stanford-cars-train") + assert train_str in ['train', 'test'], "train_str must be 'train' or 'test'" + ds = deeplake.load(f"hub://activeloop/stanford-cars-{train_str}") loader = ds.pytorch() class_names = ds['car_models'].info['class_names'] class_idx_to_name = {i: class_names[i] for i in range(len(class_names))} diff --git a/models/star_prompt_utils/generative_replay.py b/models/star_prompt_utils/generative_replay.py index 73e40ef4..d9c93aa3 100644 --- a/models/star_prompt_utils/generative_replay.py +++ b/models/star_prompt_utils/generative_replay.py @@ -20,6 +20,7 @@ def __init__(self, embed_dim: int, n_components: int = 3, n_iters: int = 100): self.gm = GaussianMixture(n_components, embed_dim, covariance_type='diag') def fit(self, x): + x = x.type(torch.float64) tries = 0 while tries < 10: self.gm.fit(x, n_iter=self.n_iters) From 8ea33ac3f97af86e0877e9bd199e7161502948b1 Mon Sep 17 00:00:00 2001 From: loribonna Date: Mon, 8 Jul 2024 22:41:54 +0200 Subject: [PATCH 34/66] debugging cars --- datasets/seq_cars196.py | 39 ++++++++++--------- datasets/seq_cifar100_224.py | 4 +- models/second_stage_starprompt.py | 6 ++- .../star_prompt_utils/second_stage_model.py | 3 -- models/utils/continual_model.py | 37 +++++++++++------- 5 files changed, 50 insertions(+), 39 deletions(-) diff --git a/datasets/seq_cars196.py b/datasets/seq_cars196.py index 33b005b2..66b2daae 100644 --- a/datasets/seq_cars196.py +++ b/datasets/seq_cars196.py @@ -21,13 +21,14 @@ from utils.prompt_templates import templates from backbone.vit import vit_base_patch16_224_prompt_prototype -def load_and_preprocess_cars196(train_str='test', names_only=False) -> Tuple[torch.Tensor, torch.Tensor, dict] | dict: + +def load_and_preprocess_cars196(train_str='train', names_only=False) -> Tuple[torch.Tensor, torch.Tensor, dict] | dict: """ Loads data from deeplake and preprocesses it to be stored locally. Args: train_str (str): 'train' or 'test'. - names_only (bool): If True, returns the class names only. + names_only (bool): If True, returns the class names only. Returns: Tuple[torch.Tensor, torch.Tensor, dict] | dict: If names_only is False, returns a tuple of data, targets, and class_idx_to_name @@ -39,24 +40,25 @@ def load_and_preprocess_cars196(train_str='test', names_only=False) -> Tuple[tor class_idx_to_name = {i: class_names[i] for i in range(len(class_names))} if names_only: return class_idx_to_name - + # Pre-process dataset data = [] targets = [] for x in tqdm(loader, desc=f'Pre-processing {train_str} dataset'): - img = x['images'][0].permute(2, 0, 1) # load one image at a time + img = x['images'][0].permute(2, 0, 1) # load one image at a time if len(img) < 3: - img = img.repeat(3, 1, 1) # fix rgb - img = MyCars196.PREPROCESSING_TRANSFORM(img) # resize + img = img.repeat(3, 1, 1) # fix rgb + img = MyCars196.PREPROCESSING_TRANSFORM(img) # resize data.append(img) - label = x['car_models'][0].item() # get label + label = x['car_models'][0].item() # get label targets.append(label) - data = torch.stack(data) # stack all images + data = torch.stack(data) # stack all images targets = torch.tensor(targets) return data, targets, class_idx_to_name + class MyCars196(Dataset): N_CLASSES = 196 @@ -89,9 +91,9 @@ def __init__(self, root, train=True, transform=None, self.class_names = MyCars196.get_class_names() - def load_and_preprocess_dataset(self, root, train_str='test'): + def load_and_preprocess_dataset(self, root, train_str='train'): self.data, self.targets, class_idx_to_name = load_and_preprocess_cars196(train_str) - + print(f"Saving pre-processed dataset in {root} ({train_str}_images.pt and {train_str}_labels.py)...", file=sys.stderr) if not os.path.exists(root): os.makedirs(root) @@ -103,10 +105,10 @@ def load_and_preprocess_dataset(self, root, train_str='test'): print('Done', file=sys.stderr) @staticmethod - def get_class_names(root=base_path() + 'cars196'): + def get_class_names(): if not os.path.exists(base_path() + f'cars196/class_names.json'): print("Class names not found, performing pre-processing...") - class_idx_to_name = load_and_preprocess_cars196(root, names_only=True) + class_idx_to_name = load_and_preprocess_cars196(names_only=True) print('Done', file=sys.stderr) else: with open(base_path() + f'cars196/class_names.json', 'rt') as f: @@ -123,13 +125,13 @@ def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: Args: index: index of the element to be returned - + Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], self.targets[index] - img = Image.fromarray(img.permute(1,2,0).numpy(), mode='RGB') + img = Image.fromarray(img.permute(1, 2, 0).numpy(), mode='RGB') not_aug_img = self.not_aug_transform(img.copy()) @@ -141,7 +143,7 @@ def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: if not self.train: return img, target - + if hasattr(self, 'logits'): return img, target, not_aug_img, self.logits[index] @@ -159,14 +161,14 @@ class SequentialCars196(ContinualDataset): N_CLASSES = 196 N_CLASSES_PER_TASK = [20] * 9 + [16] MEAN, STD = (0.0, 0.0, 0.0), (1.0, 1.0, 1.0) - SIZE=(224, 224) + SIZE = (224, 224) TRANSFORM = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=MEAN, std=STD), ]) - TEST_TRANSFORM = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=MEAN, std=STD)]) # no transform for test + TEST_TRANSFORM = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=MEAN, std=STD)]) # no transform for test def __init__(self, args): super().__init__(args) @@ -176,7 +178,7 @@ def get_data_loaders(self) -> Tuple[torch.utils.data.DataLoader, torch.utils.dat train_dataset = MyCars196(base_path() + 'cars196', train=True, transform=self.TRANSFORM) test_dataset = MyCars196(base_path() + 'cars196', train=False, - transform=self.TEST_TRANSFORM) + transform=self.TEST_TRANSFORM) train, test = store_masked_loaders(train_dataset, test_dataset, self) @@ -224,4 +226,3 @@ def get_epochs(self): @set_default_from_args('batch_size') def get_batch_size(self): return 128 - diff --git a/datasets/seq_cifar100_224.py b/datasets/seq_cifar100_224.py index bbfb17a4..1fa26b81 100644 --- a/datasets/seq_cifar100_224.py +++ b/datasets/seq_cifar100_224.py @@ -72,7 +72,7 @@ def get_transform(): return transform @staticmethod - def get_backbone(hookme=False): + def get_backbone(): return vit_base_patch16_224_prompt_prototype(pretrained=True, num_classes=SequentialCIFAR100224.N_CLASSES_PER_TASK * SequentialCIFAR100224.N_TASKS) @staticmethod @@ -107,4 +107,4 @@ def get_class_names(self): @staticmethod def get_prompt_templates(): - return templates['cifar100'] \ No newline at end of file + return templates['cifar100'] diff --git a/models/second_stage_starprompt.py b/models/second_stage_starprompt.py index 42da3861..754e1ea9 100644 --- a/models/second_stage_starprompt.py +++ b/models/second_stage_starprompt.py @@ -242,6 +242,10 @@ def observe(self, inputs, labels, not_aug_inputs, epoch=None): stream_inputs, stream_labels = inputs, labels stream_logits = self.net(stream_inputs, cur_classes=self.n_seen_classes, frozen_past_classes=self.n_past_classes) + with torch.no_grad(): + stream_preds = stream_logits[:, :self.n_seen_classes].argmax(dim=1) + stream_acc = (stream_preds == stream_labels).sum().item() / stream_labels.shape[0] + # mask old classes stream_logits[:, :self.n_past_classes] = -float('inf') loss = self.loss(stream_logits[:, :self.n_seen_classes], stream_labels) @@ -261,4 +265,4 @@ def observe(self, inputs, labels, not_aug_inputs, epoch=None): self.epoch_iteration += 1 - return loss.item() + return {'loss': loss.item(), 'stream_accuracy': stream_acc} diff --git a/models/star_prompt_utils/second_stage_model.py b/models/star_prompt_utils/second_stage_model.py index 9f562461..70c75ee3 100644 --- a/models/star_prompt_utils/second_stage_model.py +++ b/models/star_prompt_utils/second_stage_model.py @@ -272,9 +272,6 @@ def __init__(self, args, backbone: nn.Module, dataset: ContinualDataset, num_cla assert len([m for m in missing if 'head' not in m]) == 0, f"Missing keys: {missing}" assert len(unexpected) == 0, f"Unexpected keys: {unexpected}" - # classifier - self.last = nn.Linear(768, num_classes) - self.vit = vit_model self.prompt_layers = list(range(len(self.vit.blocks))) diff --git a/models/utils/continual_model.py b/models/utils/continual_model.py index 94d58894..f82e261c 100644 --- a/models/utils/continual_model.py +++ b/models/utils/continual_model.py @@ -53,19 +53,20 @@ class ContinualModel(nn.Module): COMPATIBILITY: List[str] AVAIL_OPTIMS = ['sgd', 'adam', 'adamw'] - args: Namespace # The command line arguments - device: torch.device # The device to be used for training - net: nn.Module # The backbone of the model (defined by the `dataset`) - loss: nn.Module # The loss function to be used (defined by the `dataset`) - opt: optim.Optimizer # The optimizer to be used for training - scheduler: optim.lr_scheduler._LRScheduler # (optional) The scheduler for the optimizer. If defined, it will overwrite the one defined in the `dataset` - transform: transforms.Compose|kornia.augmentation.AugmentationSequential # The transformation to be applied to the input data. The model will try to convert it to a kornia transform to be applicable to a batch of samples at once - original_transform: transforms.Compose # The original transformation to be applied to the input data. This is the one defined by the `dataset` - task_iteration: int # Number of iterations in the current task - epoch_iteration: int # Number of iterations in the current epoch. Updated if `epoch` is passed to observe - dataset: ContinualDataset # The instance of the dataset. Used to update the number of classes in the current task - num_classes: int # Total number of classes in the dataset - n_tasks: int # Total number of tasks in the dataset + args: Namespace # The command line arguments + device: torch.device # The device to be used for training + net: nn.Module # The backbone of the model (defined by the `dataset`) + loss: nn.Module # The loss function to be used (defined by the `dataset`) + opt: optim.Optimizer # The optimizer to be used for training + scheduler: optim.lr_scheduler._LRScheduler # (optional) The scheduler for the optimizer. If defined, it will overwrite the one defined in the `dataset` + # The transformation to be applied to the input data. The model will try to convert it to a kornia transform to be applicable to a batch of samples at once + transform: transforms.Compose | kornia.augmentation.AugmentationSequential + original_transform: transforms.Compose # The original transformation to be applied to the input data. This is the one defined by the `dataset` + task_iteration: int # Number of iterations in the current task + epoch_iteration: int # Number of iterations in the current epoch. Updated if `epoch` is passed to observe + dataset: ContinualDataset # The instance of the dataset. Used to update the number of classes in the current task + num_classes: int # Total number of classes in the dataset + n_tasks: int # Total number of tasks in the dataset @staticmethod def get_parser() -> Namespace: @@ -307,9 +308,17 @@ def meta_observe(self, *args, **kwargs): if 'wandb' in sys.modules and not self.args.nowand: pl = persistent_locals(self.observe) ret = pl(*args, **kwargs) - self.autolog_wandb(pl.locals) + extra = {} + if isinstance(ret, dict): + assert 'loss' in ret, "Loss not found in return dict" + extra = {k: v for k, v in ret.items() if k != 'loss'} + ret = ret['loss'] + self.autolog_wandb(pl.locals, extra=extra) else: ret = self.observe(*args, **kwargs) + if isinstance(ret, dict): + assert 'loss' in ret, "Loss not found in return dict" + ret = ret['loss'] self.task_iteration += 1 self.epoch_iteration += 1 return ret From 4cfbf6dbd9df035531132b7a568457cd0eaf15fc Mon Sep 17 00:00:00 2001 From: lorib Date: Mon, 8 Jul 2024 22:44:38 +0200 Subject: [PATCH 35/66] minor change --- models/second_stage_starprompt.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/models/second_stage_starprompt.py b/models/second_stage_starprompt.py index 754e1ea9..0f56ba67 100644 --- a/models/second_stage_starprompt.py +++ b/models/second_stage_starprompt.py @@ -136,7 +136,7 @@ def train_alignment_epoch(self, classifier: torch.nn.Module, optim: torch.optim. for i, (x, labels) in tqdm(enumerate(dl), total=len(dl), desc='GR epoch'): optim.zero_grad() - x, labels = x.to(self.device), labels.to(self.device) + x, labels = x.to(self.device, dtype=torch.float32), labels.to(self.device) logits = classifier(x) From 0ebf08143c5ab0d214f1e1c5cef1d9fd26ec55a2 Mon Sep 17 00:00:00 2001 From: lorib Date: Tue, 9 Jul 2024 13:37:51 +0200 Subject: [PATCH 36/66] removed unnecessary default --- utils/args.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/utils/args.py b/utils/args.py index 3bea48c8..778ed194 100644 --- a/utils/args.py +++ b/utils/args.py @@ -129,7 +129,7 @@ def add_management_args(parser: ArgumentParser) -> None: wandb_group.add_argument('--wandb_name', type=str, default=None, help='Wandb name for this run. Overrides the default name (`args.model`).') wandb_group.add_argument('--wandb_entity', type=str, help='Wandb entity') - wandb_group.add_argument('--wandb_project', type=str, default='mammoth', help='Wandb project name') + wandb_group.add_argument('--wandb_project', type=str, help='Wandb project name') def add_rehearsal_args(parser: ArgumentParser) -> None: From 83d13532c9ce80a79acacb4a08dee161a4cbc32d Mon Sep 17 00:00:00 2001 From: Martin Menabue Date: Tue, 9 Jul 2024 14:05:08 +0200 Subject: [PATCH 37/66] Added AttriCLIP --- models/attriclip.py | 89 ++++ .../clip/bpe_simple_vocab_16e6.txt.gz | Bin 0 -> 1356917 bytes models/attriclip_utils/clip/clip.py | 225 +++++++++ models/attriclip_utils/clip/clip_2.py | 224 +++++++++ models/attriclip_utils/clip/model.py | 444 +++++++++++++++++ models/attriclip_utils/clip/model_2.py | 450 ++++++++++++++++++ .../attriclip_utils/clip/simple_tokenizer.py | 133 ++++++ models/attriclip_utils/model.py | 284 +++++++++++ models/attriclip_utils/utils.py | 60 +++ requirements.txt | 4 +- 10 files changed, 1912 insertions(+), 1 deletion(-) create mode 100644 models/attriclip.py create mode 100644 models/attriclip_utils/clip/bpe_simple_vocab_16e6.txt.gz create mode 100644 models/attriclip_utils/clip/clip.py create mode 100644 models/attriclip_utils/clip/clip_2.py create mode 100644 models/attriclip_utils/clip/model.py create mode 100644 models/attriclip_utils/clip/model_2.py create mode 100644 models/attriclip_utils/clip/simple_tokenizer.py create mode 100644 models/attriclip_utils/model.py create mode 100644 models/attriclip_utils/utils.py diff --git a/models/attriclip.py b/models/attriclip.py new file mode 100644 index 00000000..9f49e93b --- /dev/null +++ b/models/attriclip.py @@ -0,0 +1,89 @@ + + +from utils.args import * +from models.utils.continual_model import ContinualModel + +import timm +from datasets import get_dataset +from torchvision import transforms +from copy import deepcopy +import torch +import sys +import pickle +import os +import numpy as np +import wandb +from models.attriclip_utils.model import CoOp +from models.attriclip_utils.utils import cosine_loss +from utils.conf import get_device + + +class Attriclip(ContinualModel): + NAME = 'attriclip' + COMPATIBILITY = ['class-il', 'domain-il', 'task-il', 'general-continual'] + + @staticmethod + def get_parser() -> ArgumentParser: + parser = ArgumentParser(description='Continual Learning via' + ' Progressive Neural Networks.') + parser.add_argument("--num_prompt", type=int, default=10, help='num_prompt') + parser.add_argument("--text_prompt", type=int, default=3, help='text_prompt') + parser.add_argument('--freeze_clip', type=int, default=1, help='freeze_clip') + parser.add_argument("--virtual_bs_n", type=int, default=1, help="virtual batch size iterations") + return parser + + def __init__(self, backbone, loss, args, transform): + self.seq_dataset = get_dataset(args) + self.device = get_device() + self.class_names = self.seq_dataset.get_class_names() + backbone = CoOp(self.device, False, False, args) + offset_1, offset_2 = self.seq_dataset.get_offsets(0) + cur_class_names = self.class_names[offset_1:offset_2] + backbone.init_model(class_names=cur_class_names, text_key=backbone.text_key, text_prompt=backbone.text_prompt) + super().__init__(backbone, loss, args, transform) + + def begin_task(self, dataset): + self.offset_1, self.offset_2 = self.seq_dataset.get_offsets(self.current_task) + self.per_epoch_steps = len(dataset.train_loader) + cur_class_names = self.class_names[self.offset_1:self.offset_2] + self.net.init_model(class_names=cur_class_names, text_key=self.net.text_key, text_prompt=self.net.text_prompt) + self.opt, self.custom_scheduler = self.net.get_optimizer(self.per_epoch_steps) + self.net.model.eval() + self.old_epoch = 0 + self.idx = 0 + self.iteration = 0 + self.opt.zero_grad() + + def observe(self, inputs, labels, not_aug_inputs, epoch=0): + if self.old_epoch != epoch: + self.idx = 0 + self.old_epoch = epoch + labels = labels.long() + + log_dict = {} + log_dict['lr'] = self.opt.param_groups[0]['lr'] + + cur_iter_idx = epoch * self.per_epoch_steps + self.idx + self.custom_scheduler.step(cur_iter_idx) + + output, ima_feat, key_choose, loss_m = self.net.model(inputs) + loss_main = self.loss(output, labels - self.offset_1) + loss_k = cosine_loss(ima_feat, key_choose) + loss = loss_main + 0.7 * loss_k + 0.3 * loss_m + + self.opt.zero_grad() + loss.backward() + self.opt.step() + + self.idx += 1 + self.iteration += 1 + + if not self.args.nowand: + wandb.log(log_dict) + + return loss.item() + + def forward(self, x): + test_classes = self.class_names[:self.offset_2] + logits = self.net.model(x, test_classes, test=True) + return logits[:, :self.offset_2] diff --git a/models/attriclip_utils/clip/bpe_simple_vocab_16e6.txt.gz b/models/attriclip_utils/clip/bpe_simple_vocab_16e6.txt.gz new file mode 100644 index 0000000000000000000000000000000000000000..7b5088a527f720063f044eb928eee315f63b2fc0 GIT binary patch literal 1356917 zcmV(nK=QvIiwFQl6I)*Z19ZK~vMkwgB)E^SaG(|_PzuTJUep5J0`N~DK81(h@F{(W zxN)TxRpd|fvY8l2bh9uNNe~1;Qsm*`zuHufsU3f;?gfyU@7){Weg+%V)YQIRE$xrC zeq4t3M~}HKs~`QZ|GE9oU+wSve|WU(*3Z-Ti~r@T|LxKj(`7Gim(u>Z7Onkry|nhf z{Z_R9$DcocaOtO_C?efA9V8_G0Eg*J8Fm z+xYK;eN$i5_?`6oQ_=8WTL0%e=^%gKm6r4`|-ox)!xtl zyS;qJALFq1Z|v_Y`?JA*_sK_{?a#`WKW}=D(f)F>zZm>OZ9y*c5i7M`I{VFM(PPQd z8@>1zn|`&**-T$V;DjxnW z?d1PrKW0ncVr{XY>GiM0idQ}CS!VkQ|NWbGc8z^V-+x_gqjfNRQC57H9mUCiw(>V= z>=U&#Pup_5MfwSQPW!%f=1H)h+x++N^Vmnd#eDIVTjM6+g!oVUD(tN_pjLOqz?A7SNq@B_P>Wd`j5Z*(|;>I|L*c;e>mFzY>V5t82B;!h<@sH zoa~it>+E1$zOw!DuUWCdjbF6`yI!VMe8YJwu2|m7)D}-a1Ec?Qu{X8fwI#NfJ1*1g zKk?$b>s#$e9=;5_FYsjFU-KB1IKz0Y-ahY&S6;bnc1IR}@!8k3$3|`bANVyb=W4$; z*yY;&C3~!Q`pai)k5cg}`a0so-pb6ApJ?`D*kKYuZ zzp+O@Y%|h=4Kt0?c|A~MR`D&J8@oTV9?>kpFz9TT_L$|Q`!m>w9G5+QQ0K0~<6>j_%bTsyuI=%?!=uRb z;HH&0Etg6+^cg1wSNi4mvR|{u||`YjttMNZ749c5Qcw z)0O_qc5hiOlT|Z>ukfP%ro{htqDFAKhUQCglW0lbWJ-umcD&Y>{shgP|-tfJszdMY_oPG znVNrq7n=C?mqCuzE?{~2<1dR(zl9%$wYu5L9k{WbOzPwow1-=jiNYzd7n3cT53N;M zeDE4$WBgzpa-}$nb{&UU)gC4{{YRUR&k#GS&|#2;*kFa%i!QnCC$IhH$KOAzH>-X1 z&%5@ku7{551_KR4VORGm8<9TZJ8mPlZ~^Ji!VlR0)nTG#&*r(2HEVG_UcX2K7HyC=FWfmz-hzb#v1K90d^+JL3e9Fd{x6lua`$(;EI)cX*>E2 zEzSTNZccY&{4@JDPWk0_xGh@|7}~PI|EJe^*?&f~aN(u1Grh?u9yomi?9$;@?tv#N z!%ht_wz$5GrTmQ_FqrUORjU&LOM7{m9Zowkl=_SETI{~&ZEX9JF0~s6Tj$>2=#Srg z{-*f!Grur)5M<+Er4;nF+vzg?J&(m`Z}7xzxw{!kF9!2>mG#~c?A{P=PJV4H+}QCY z7P-LS%((Qn(}%tChCjOcG5=2Ci&Njy{;XUuk6%14R8Tc4(pJd2_)V~@(fO^1fwir) z&v~}3KeKtXZ~0OVM{UE@H&b8#neVm7?z z6{{b{*Y5gmp^Ys5gezztmi_ZXuCtzT-68;=aL4ZcLZyc_b_=w0W_C86FuQzu+%m_V zHJz;;@Qx8lsZe0!so%m4epP(iUui(piJNC1Z?^d!M|tRx2aNbtC6XPknY}z82@xUe zmqO&BJsrN}OvX7!S0(%SJ0^Je%y)OAaBMiu`nqkO*ZkD*0=88iwPIJ97`H9=Jj&)b~(xj&pLn2w0*zABH3>!BiZ5pTy>g64w1D*hrJ+7?gH%SATuVbAR025iw?d%ZtB`n0{O9fGhE z>Hqq`PBvj9WK!<>6I;Ozt}kc&i{Ebr5YIS^D~i;$)l;^G+#8qZ`N9j<7H3(+szivC;i=_fQI7sX_DdE^gu2lCfVzTBef2PD=aZob-k_6i;F)C>Ii&DPMZ6yp5a_qN7w zZ1#8Q30j2@c61|Yp7A6-)`9-oqU}n5S=hp*Ksnv1YXB4W(`Jz$Fus>Y(NsB{{uZk+ zFw|Ctt#?^)q`y-r0!T)!^i6l;jKxW21WwLQnSHgNi`5dZ+eLqWtVK3p_Jxgw_O=8) zqTTYrpskT<0Xz^tZ8oLxL*FSO#AZw>3N9lv1?S7Izb zvN6w5b=}$uSLEW1l^sCVB{4FMTch-f$2 z*rinBiqA=Z*6W=gy}5{4cF`QoB;R9~=H3R1ppdX!)8Aih7xVG7XYI3b><}tcv}!}~ zlt0>wN^yQEIA>%ehc`5D)f_df$5tcyZD7k_fc)fb1jv994es&Iq1Eq^g7|&h`%|L0 zGjY1a0lv;i4(@^4*zrhb^UJue3I@wy$)8HM@JA^pfdJ1v%DJo;DE}PJl);T_}HuJVjERQ9R+8=R&AYCiRt|3 zd0W#Ln9jJiz9z}QweZ`Br5fK?Y zcAcP+^iC}LloN_`4braO-N&_WhnzKD)35jqECX`H6}0Ob2*MZ0(JzqimT-G3ciOj* zFa44W@FnSBG3|an;tbk@Pi?Ht4kO0U$nL2-Ae|&jjCHUFT(=?NKC#+?P21t&dhnEN zOTukfz?s|-Z7Oo6i?s#fVs?&R5w6#5No0(Siz0flyKO(;_1w+f{oq`@*|K+L@_c_B z(Lia_lKxuTal>_4j-ncH!F#`~LxA|o%wPa4Mq~VwHp$L(N>}@^pSQ4-TZWbPSQq9V zVf5F0Y%RDkf9uu?S%Zf_woaZ-mkFI)k)slmL~U@oglAguU-t83<>!P>kWdwiZ_j?m znH&*l%QCwwEgK7B%j_mgRY|u%P)j@Jb{z(lX}99*gT<>YJIH*i{9FtP;Y0}2`Qh6m zd+$f>>c~tEUJUkaCZ>}?gJL~+nSYF5PDYMclOnDX(avP=IgYv^i$%7(p8N^}aZ4%B z+S})irQC!&Ic!7Ph5BaU&0@!(wd~1_xJ3j}G%{Nd$HJGzR>jiWAu{F{&UOP(!49j1 zsTQSfi*0T%D-rSW771Ax|I%V@mS_B~-Vid)tN*1EQ-*j*rq?5#gq*qQ`Zm5zcWuTM zH6a{+w_0UBlN;Qw`+?Cm%!2mF#Wp4z5rv>M0!wC5b2ya>$+U{caM$L04uqZUCR(GxGqB>#HwtSwq5$C{R`<+G9H$MQ|DNM5yINk{!Q_S3{2c=_dsOZil;fJ6YS8!RRmDBSclDfw2y1M;JmgbDlTs zQIH3KVDHxmJ>6A_P_TSOE_1azJrm2ed)?YymJ?Ep$jY&KiCIPalDwJHQZZX})q)hy zlz!j-_1eY`;5- zmkwWWCmOYYLH>s0!*|3fx?#}6Q=g;zP4aw!HVbIIbnUOhz^V7H_}J_1%%N%My^ z{kpp|^!R@7B-A37w>JW={7NAZ9GI5%aksr*J?D2Rn?ApP8us%11 zEp^{v*D)m*J8+di@KDWr$$7#D?|>fcdRvgT!Zwr$66R621|=%9{u5zP9LE9NpAJ8{ z^%0rv3SNM>^lg}lab5|Y^mb|o;hqSpnn(uh3DO0`{X^A4S@;4Zv(=e|Wkk-}XMA}> z$qdi1qE2ZK#2^a(z|TO9f}ke~ak%Yjcy@>FHP>sFw~pmGU=1xVGy_{}5v~@>?2#kg zA_6HFi~8&)$VCS#Nn_$rHY)3mroIDOYJ-_lw+P=5AVf6Y(4CgHa$y?2BkMWGVaHaC zc=&!$qyS1mD|FP(AY5CE0~}uV1$Sac2~@&-dx4$%amguD)3R!jKKb4&g!uZfJ7SLH zR^p`ZC2?XHDWm`%#xj`Ov<^V6@!;-yV8T2rIkbnRir7uq{Sm(?=+AH3tHr~I{Q@%`cnVM^0&Vvf9 zT^RuyJmAW-%2js-{K6F)z5b*K5nY zwST0z=~BnD+0x>EDZ*ZZ4WSzgq#hn>Bo{1V$Xhrk|N69GprK4rv>e@&En-16{RT!@ zE?UKpq7s4h&`;$K#^oOM>?_d6^mWaV>`h>x^awO{4IO!LTn98 zCM)fY&}@b)UeEYV`f;-_w!!-7RUukGng31vB68^V>_E*;Zu=T32U$C~Lgp3f;@&DJ znIDSgnBkj~c(GO$pel;vwdcYEc4Jfm_-Gxk!dv^2pa`x?-HR?@j&f&*LSC&*4;XhB zaVspXO1VRS3bqnZSSP-qGt&+rH()X{1QR>Y8Kd?V7LYW+el}DwZ(;wP+K}tO6$l&-kU`CL>6UNqN3TK;o-E9?`f_c$z3w~zg)W;V z(#xLh+;(FwF)?E6s2m^^Awt=%oh*Ttg3H+ulOEFwmpe*dzb;NtY^;l z=34|e9%fG}iBuU$s(e9P#hnd+B9ck{Y~C#cS`Z+0ww4{f6bHK#f$tidWMAo^{20k% zroaVYupL3!RfURB#gO<8@Ra}2G2UZBjJa-#N=T=0ueQ#Dy*kj5&E2GTdm#Q!Clyx6 zxw690QSlq$-;@oF2%XKD-GZVEb_y1KYy(!}ad!{#!{Ucw6&Z5$K`v>D>w{8kdl7{c zngN^@FsA@iR&XJAye|>c$P4Bn>JiR3Nxt9T0U09e`V)S_eP>aT%bdP`dQ%`?fj!U; zx#+jw0PxF7^wU+uP@OWJxwKpnL+*06V~#Z8Zfa0Y=K(B*R)2Vfj}>5DE}lT&B1LEU zy(8A}2U3Jq1aRRd%81OKf+@{gAyfp){7}5p;_LmA9@^@KDSFE6w#=o#Wuh4&4ETTz z)XF|(=h9ILb|uMuX{SF3xiC5-9i1G`2_NDGg!0h`lU+p@t!G1T3~CC>m9vA5mQn3| z)D5glI|q-xO;1w8vxvu{8}fF@K_DUMQb83!7dbkC{o#c9@g_-=QHMplqC_?2xp0~G z)q;$T?~|S%SZ44U2q1j^Nuhs%O#q>6l?z)5neBEw5t&>vaQKFIJ1kJ&qO$R7voj~N zvpMi%=-jZtbwT{B_NNTRfA|tdM99pXNUGg0nC5UabFk)X{?Hq#0YIr|9MNzvI1Jr! zs(LU1_iq`?PW5lQo;WXG3*}0IQ21b90%DNDR9iXuNZyAiB*oIeOSf(e*CU|8-p!-< zXRLqXO4sm4ulTZ|!KJ>T`e-5ayzYq+r)B6O)&=Ht^1E6-k9m=vJ_D{N5fvF&s(c(O z6BDiUlQPYjx5pA zP2}0{7XK-H14z|?Q&J^ueBewsNf)f0XEEY`rw;Ig~iN0`35+)7HY43aQ@f09Giac z>mwz(Z#e^9(_P1F9^jp)#NTc$81L)sP6;q;H%ELD5UgaMG=uSDip*zB{L z-uD#IGiQHzWh|#smEOxNq35T9Rs3geifck@IkwWtzl-fEz8Lm%ZhDd9PBlm`n3eHQpo43sQdxfQldR*^aCaS z>B%EKb42sd1CRNPU$1R219XZygbVB5pQ`ElYMja%C0UV<5VlS8)pLHUg7WajVA>ps@XDsU_b3h2-{4^dfEp}k&^L2PUpnV@*3EY9KC=2 zp*JOR7)&|YzI_$Hc-vXx^*@JyThT|03=cF`e`IvcrLtLKWXk&v!Pg3aCc{XI68fB1 zngbdaRQ>!!w{hsu?{?XP=Y4E}KU<)Cs#jQkIrG+Rv7U%IV>!j&8iLIH25&I077X-L z)DqLv*b9MhA6&LDj3kgG#LT>`ZGuPns6r!$XO98ehW#+Jox+nkW*Ba>WP&>7&dq5@ zD}vsW-Paz)$li~W97bdWJO!DgJ!IqyEePm`kN#{&nx6C2APPIwG_IzOTg2Ks8?vyk z;b%G^;$+HRszK26HRE3>_z$vj&s>aWZlMe|!vc{oFXfS2k^Mh)*2i^rH zmIo6gPd`tj`d%CBO(;A0+;`<;YK5|I>kh`rmOPYd8L7##in4jH0+yZ4LG&^Z8u*fk zt6+u)+2Ce9wU~fl+T_4fr)S8m8D(w-`=a2x zq6lrTsT*DI2LN0)d^#vSD1s+&C+-jlR(*Z(q8*0%lsEsoHtOxlS>$P})QT!;qrH}zo zd#g1P9uS}7>4FXS<~O89CAM*t;ShMhocOM@`c3iaoAmAqszJhH1GcA>(Vn=rC*I_O zd(+y9-sW^7WRZY0EL=O%AI+a`TW(QXS+Wc30V0y+(G33PSrA+uC+r!mXt>_h(2D=> zk1VvKil%{R*=e$k!o9Y|$c}M5(T&|LE>Q$ZX!Rd#x339g@w^r7hi2BjB);W}Yz??a za7}UK=Z!-TxZDGVKAk<3O4}N=a*veSpb0br38&0A-gH~rh^&In-C-wa=Ml-Q*y+*3 z)h-)n)>{10?1BsGrSA%V0241hPhKMSr+Ly72}uegR1H2(4lC7iQziYP;$*qSw#=+5 zl^$BNbZ-})Ki#jvPE>b=y__$t?fj36Pd{UwB3WG9ZRDSoqI0CSm(C1Kr5pm_g&j|K zAoHc{~pv$zw9YV_Dt=AF<>>;<9eiOB#ZK^h4LLu!XlZYA3;=penOdMwV4UPo>6s z@&hi@k=cvu927Rv$37Ct*)JUUQVZH^-6jg6JtEh`okonl=(?zwfy0n0&bIeag|juT zRNpE>?s;du1t?V2*=WP8xag2)zxC#lw8YxU@d=*IlpF?*FC~uAzN-qMn)R-%GLxV7Po%!vj=M* zP;3=mvU?h7KeA`~RE=i7nS#;`W#gr&+BVZEbFp!cD#uMzJ zm>o=r+8uemnnU2XOQ)Ow26;vH(cE!9m<&0z4&JOB)Z9=%48(sdFxpR#MyT z?K(8hqWHckpr{e!uBoNj-)ubvr9ld0+$=N#m9~b-nTH@^@SWSv8qfuPQ2Ze6M4K67 zn+K3xzEI`KDLHExAX6hqMy6&frF;UE)xA?KIJQs7@I(KNAT3EsU1W}!V}NMmIOd#z z1-2LpO$D|@0g#<^6%f4Vkq-jvHLz*D4_C?E`%Urbr|G~XLOo03xfAuvl1%aW@6x8W zfvmOfD3RIOSLy`gr2r1N3yLk4WqpmqrauSrQbA)&^_+yfZP~G~wC0;_?rt+5UyIvZ z`A%%dDGs(fx=~c)#4U|pOtk0Nn$#IC?cYUD}Z6 zLNjy&Ck1vuI!FIdeEz5Og!kN)ht}nu*yB?6Q$BgaoFVdKB4{$%#hp8`LCOsVP&tn| z!Sb35$#;QrZII`>S@ol3&U zzItaflL(Ri`8a`dqJ|$7$P@U}v6nS28mRLq*&@8JiRNXddMYReHHjR@jZ!50i4Szh zAA>Od6JYrDB~=*MP#Q;s)dECI5vxU|n~nYcNbG{PcOJc|V@3ujnnicy)-L9mp*A8X zRwG6O2avvY4sYzr7fT%JdWh(?3F6O=hkxQtiz8 zDYTy0+m_a=7c#Y;vJ6C*`Q{h5R*WW|W6-kJISGgau2vqYOzjVA=6(jR{GCw~ba7_r zK!AW5jiUt0?w9iDj@-+{#{9lmf(+Dqc1zgsr90EXCxl|#>dG_JU3-$8+0c6R5A@5r z$085QQ{z#rTW368fg2x|_`QL@60XB`Awqnxk2;6S%iz|4o@D{28*?Zo?w0orEb`sa zuHVc@oEb}vp|!JZN3_f`2t%{uypDMThA@!m=<(ER%7p;it`x^Zzn};C55lJ#g*(6n z+}bRkK;;|~ZqTn3kxPfF=O%t&gr@_ch3M&_Gl0*^wBC8mP0T3nFaf**0dtdu;sFch z&EW(dzwaogZV7Qj_GSr~vhgw$@`!zlsdvP7quch~k2?T6S$Ik@kYDc0WqZ6p=jfHa z(-e#)E`?x?^++JFzi3iYLpY2xz!E)`OoGeq4Ly^)A4|{w^k4Dl(c#vwxfENWv~^{T zVMt0Z8RW&&Do923J&EhtSpW*xsh}ai4&d(PNeb2igqoBv`N>ytvRZv^4HU3S5^Ca* zB@G@5O!-+X#a+0;ovZK(sO5)>yk)9;Eq-Y9Nwld%eca7*Vve{4Y0aHp%jn&NrB z_CX?^dM}q<))S(To3w6h-vP74js-xoOP5^nRf2 zBt?L=PqfiJcDYnh*xuChcyv@8xuv4MrOu7?5W`7*%ME{-rGDlAK}c{|c4hBUtvb$I z5$HSVZ62!s&TnHhaoKL!2|)$0y*y^xv1m!@bAfcN*}`12G$Vj=0}|x*Sn{5qZDkkA z-=``Ic~HyLl~%PB`?^xR$Wr|$yW(q|!-M>iw1`8XH{h7C?Kz0HH9Fzs9$e&B1tQu7 zUs7-$RR}o2|E)xO{4(#VYdq$Ni<(uC)uTs;L29CqdqF+Pagb}VlYhdUO%~jXB$S46 zGFepq7P{M#EX}KV(DXuY<#JN=g2vJm#d|Y{PD}uo3q81>f3F11vdBQX*ERy)vO^rU z40F^X!tZtmLiWo2H1(? z`Vu@;W}93c^0c>%c1=3%e_s4K{|R<@Bm@xi(!yGt->Da+=^2Y=N#?AE%sN5ciezFZ zP+A|h8jqebXy*Lg(U&Xh??O?d1K*}JRc3{-%7Xzr)^=>Vw0>r*{w$&J48nq81tD2g)~SQRB$3gCS{-0n(LXpf6@jzXnY8iEdyB^)Ftw&Viw zy;UO?*g6^7-;lu`dinp|%~2gSI&V1mr8*COnYfm_Zh|5v%bWvPe4KjziVU03( z*n5akEHEMUG2}jOil*AO#Np0G!|inG!G{w2+&m|GI&z0lxyJ3Cc)|p3ok1&@iHO!A_lzAT*nM3o(}}IwUrg-T@!v4(>3Jxs=fqZ|N;i9LTcE!Z0@K1NC)o zg_{q$-YXS@OMTnuAF^g${Z_f^9j8h$m!)VMJ4z#r?N(yJw+pM7pa{&lpB$xFD)+n5 zn#ZNxPlW|EtRQ!8_e79Aj20#&Y zQI}zew}K}uS~cB)L;+qVWEXE(RQ5^wl^dC6aZW|j`O(q~$qnF(MIb*NXL8OQ>WX}N z=}bg;zs-_wXKgI;d&`4ZScF};amw6^t{2f2pyMracoeVIPt=w}q}1)ZQ1oju(G zDN|jYK_HHDz?#c_r_Nmqn}Ox)l%WY@NF2u~BK{{w@P1hQ@Q408)TEs$uDjcbLvuys z1JE3@%!E~P-!nwffXpm)otNyhz8KZB$=HB05vdl6Le3+C;tSf7V%gB$Is|M{$urgx zn;#`{-j7QJ?v#?*H1vl0I+Muw#~K1!^wwrDc1#qRai#ZYEV1BhonQGBc*+B1M3in< zDrj;-N9H>VwpwyKbD2gysH)h9E_Qt~)@w*Zc$?gqpq%ux&o<8zpbWH6r%0oQ+@3I8 zzuY5wCbFuVH55w@ilTI~zqAgh0E*LRe&Su1W`5Envwl#bR==GDWFP9fOchbHniIl2 zshI6(wJvj)Uetr2_J?{+YaPeG(p2SB7{#Mm;px7C*cj*;DT4m>mq zoD9hl{f2*nIT`vQNNr2Chz&C(XZ^dnQxKXC8VJdG=9FD+Q8vM3+(i_V4DkbfqtN!8 z+4izi04>p=vdV*OyXBPj9SH>%`ANw$dNEhwOPd?(^+03{L6Atlct(F!eExsZZyn*L z<+ajZ)FJ6a0+k~A6n+Nmg#gIE(?UhKel@I9TA}h|3Zcffi~0nOrofBBvi_7)rgJ*O zs(lN+ril)=pM;MVj;@2!pk(0NGGlt6*CH=gv_0RZ=ufJcBio^PsyIo)YJ17?cg_EX z?l$R&k$@drbj8;Cm#>c~3$7u!k8WEWk7pLHKxF7GGj8JSZ~Y7?!2g5a9m+*gL$gPt z>?n7jirZ9P5^timlUnA!g2WHFglg#$VrFY?*|GfD0JFS*qbqiugiT(k1IOk^& zW!SREndk_qNHHfedt82t_f-PHfF(O zaJ}jiZAdaLUT|h`Mu&-LYReR(2c2tf1A_U+xC+ksijT&jc9Htwu8Hn;pTomex$te?_L59TCKn&0x8kRgkK2UYJ&OK@-*4NQ*A)XG4j_7a-bEs`mnuty$fV&$H-{rcvPsZTi(mpBX;8}|m&`e7afd|x z4`jy!SRx**PpQfF)>kLYr5~u34XChMPv`&p#rM7|dzMtJ5PpPsW~eTBVCf*p9Cd7z zqgfgVHsS7}@jYwtZgU;1IYuzPWgxBg)E0D1iZXZoDBL$u3*PINm--B)Le+O8$0<@e zC~yy#=)F$zdB61OBEg=wA8EhndA_!`d4Vi)?vvYmm6$NZdBixZK=}@+#f`-p)FS(v zD4GH3ve0oRDG8oAKlbl|Yn*sHNC-Ke(oQaEFD;_K(9nQHb#<0R`Q*|k%IgRH=X+=8VH(aA#>{}pkT zozPoI*kwjG8`^11(n*XKZ(t1`_qt|*U`1pnP5%Y|7bN*O%?LY(HqUE<;{vB|2y;|Z z1THnNLMxoz77sgV(c1KF*Q-Xp&?uAI|rvJ*%PDv?X3}>sNpKwcE`a=ZpfRhKM-&c!~{JcWOJX+D$WP0RfN6QWl z#v<}eusYB$u$LTtO7u`(-pcwOSrNEAX-~=|D!!lFAAXPN4fnXR%MA69GU_c6H6~&~ zd*T*RFf;CLBF!W4qrB&Hw zTa5#a84bwj2DfpInDvf9;O-dM_PM#yP32KX`IAnz*>1hs2e`-}fzcmoy_Qrt@0Y}5 z4jMzUD#C{|422Vrnr$|{c-d09+6g|bR0^obV9l&)k5}8GE5*j*lHi$q zishH3|B!0q7%~#i0B)#+)~T+Fes=JcoQKwCQDXRj3Pi_RoAt(%RP%a*$0WUJ%_9anaz>UvJqxxyV%h+ z%Vur?q6}!$tjnxQ1rp$g3W`&Ex%Ow%j5q{6u`e+3=g=4Sda@U;EdBh@US{QnTR&!& zd=qkV35A9g-=q1&*<)bG`u#~-)beTtVg~zUXOg1JG-(NqBWo#sRTO{Ca|%({gJFdz z8AZp@)X{$;W{FZpG-tT=RrpA4k*ukuP^CYs!0!I_90dD}hRiuSeYzOSh&~VLIjpUV z`zPtb7(a@@l1O3ld6MG4)1zdz4IE1700Go0!9RWa1^ZTzGfIIYD+i^ePC^K49XUIo zzMgV;{0AELF584tUqz(~Q29R!&Ca0$^tv2#%1v#w4(1Wr-nc<4gHLV zCd1=2>;&9Dv^1U6dy8Ecz!D#eeXF*M_-bUoKWU{C^L^V`5 zFrpt|$1L{yj;l~02&(+TATW7wjvScND|KR3m;qjLYoq>>G)PY6ybj4|mr2Kdt64)v zN8SlrU?!TPH@R@si(WbtvrLmpY}+2;jeO(Fwt$*;;1IbjoBE&+jIU${x1$C+9O_%j zaJDd@6j*ynUj=cjzwb-8un8d$uu#3N$BVJ#>1!3PYY#ChITX-NydVg8B<2s+b%x9C z2zyR>z~2*s$gr+*%d{m&5(si(tKvH3Uqnx|g`i*iJ;=S!B^&3UI-thKV8hIz>X)X) zr6#aJ<-^2hq)?s1H&)3a@FX+ODiR;x(Ekxm4D_bBh`3q#HSM?Wfl^dtI2 zw1IPcSg zeoR71rg@j!*@05u+Dnw?pe6!`k5CbmFI8vEg=AcLpvqBHlw&$689#ZPStqO0X@GK+ zy!Io<_6ccEmmk*D4}Sn*2)YkGP|_r-i6#zibC0s z=`sNANH&#P<3k`%d(29ruT%PmIVMbV!_K8R;w3n>d=mPKiE}NP2zyrThf*{FCq+fB zgOap$PnaBNWI6*ItplFx5yX37tpw?^rac7YhaED&;O9nHH&9WXf;`7PF>(Y_o`QOm-lQh@y`JW-Az_ z>ETYpM@Dw+CpqINte`O@6=H)T(B`RF_2pQaT=2PO@MX(lUo{U@uzODPYfkKeg@Seh zi0-7EKsoHhOel37Hh+&bZHV&(@2Y6db*8u48f3Q1THnz8naSxXHqjb63e^L&!t8~# zuO$i2o08X3Lj;7RTJCNEvnqGK4*kSZpxa1L^1wpU&X9aLE-AO|L32WjV00Vr=i)Y| zyJ!VvjOsp0zANNAyPhmKx2@&lqJ+PU=N+Z<_RO8SDHTXBQDY7zhNz^5Mz?~%qeEvb z9$-WU&jImg=F#uOJo@7|fBLV*r@uZIYRk;-f`t5lxh}-W*W62%7;Rq2N@w$S5*+MA ztY!P!O@1lcl#_wM&0R3*o;V7F{@|6a0o%LsDOF)|6jX-bdz!D7h|@v6&r?4Kdtyl+ zMK@_vqLEI5YqVwdvmZKP`<{lVlNrEXKGmTdf%4#D4P!RJtoRDqOZm!_R8_p^vdvjj z-%}P3dyg$d*Mag~a+eU9qO1`r5pnAPyFpriwgOq+C@~WekiQ+&WgvSU0)Uevt!9*e z2W}8P8PmCYDl+@^5jFLz;y>uK(ILbWf`-xwq0Gh1!U;P;_oxbfbrKMU7%Lo|ZG@gqst)oU)*w$$Dw@q)kwA>>ZQ&ZoDy>WksAB1`EUJ)k%wQwvXU z2T^~TH43XAzEDd{`GaP`v#3NvuMdbBdd)B}98l}`*`~XqUmFg zC0GFw;fw6&@#PsMV#}vz2d|>mtZa}K!}8XU3yq1Y_U%o1mh=%}JEcRL98w7Feb05z zB*?s6t?qmOCo?9G#%C|fZG6suD zW5>9qXzX6Hde1T^SD>;763jVW=@?AVLqjCZOPDMs!k`|AxFdy-R_J!>Fnz?Z?q}{N zxnbH8Zgf)Er3_053T1eVq}N-UMx!PNknN&)O>c1HgSi{Ok+9abA{A7fyg4sc4Hi4y zYlOuF>C~Ejjm{wMCsf$F&_oW+Z;1G@!P8S=3`18PD2`pjxr_>-MKXA(!tuG95B-Wlpk_ znsa8>0y3CVG0qdaL<=m{@f6b{I9sS!Oa}0>>qw44H{v&+e@_+oF5Z2_{35TRQgtz` z)siFE)Ty5eL{hB7q(%!Pe3vzS?OIkA-6)yAu0eiB{xj>NtJL3>_NOHeRn@sE3)}v% z_@V7*6^Cn{a)B`S2;(+OhTj>3Z#vL$i&G*aZ$TFb-8t#{n-9Z20jhqe)ox*`znItG(O~jppDa>lc3{Brvd`m4uKuLLtemUnHN2Vt zgrDpU`ge7p^kYYuIS?eM3dd1HVH{2gT0-7DHZkW}p4gA|!Syv%tJAeACLjQ6JX^UHLIg2v-6LX{@5ja@r zmr;{qpXbc)p{Uh1_2)VbOY& zvdu$w5*Br4^YDlv#cgm#KrEc%tfwhHjD@4Mr3g6!kNfE3uEl84C3ggM zdh!Rg&xRhQzD1hpwjLuy6V8dNbS6Rv9Fdy4VDSzm>g|!pdZJB`ZY$0gqJghG8eorC zlz?%G`t4kuMhdq@2Y*r@_Xs*lk(57#@b*?>oHK=#Zo*Gd+XDefk@3hmp{X-QZksy% zeF$q+bI#?qqMHdzI434|AR=T=dj(G59`l)7@aZrPEryenc@)UDm-~qycRkP4X$g}Y zBbCr96p?k7(y)*yQti>!(dN1-CmU*;c6A&=GnTGOS`4E7CT$f#sADcZKm(7xYIslq zmce=(@@%j<1Qi#(X;c-S7H|fIrF2F^b?lzPNP8jkqX_(1ESd0(CIBI1H8bKAG^^hL zSf$=UbsZ2TRjD}Ix={>|Cf$ABPfTw>*D9iA+R$kR(-vMGO(h5Q0OMDl;Kd<}%7O`j z%sqP8i#%D(kt8T0@2nPHbhphf_j&A0MZ6i@X6P=gPP>!wc;|rBCMJ5YK21pj^|cqZ zM$uO06|Pa1WHn&lX}> z3%=IJ~FU1?lU-rZ;TmF%(xHFOz*>whAO z-fZ_m>ch;%9Woq4t3uP~Z_ceKSG9IwV@QcEPera@EexE6#6(^>A z+X)#QKYRE5w);yezlge#wHRm7RWwk@}dF)D@8$pq7wGirJ0@v0-Y6GJ#Cf zk$uYko~qo^^pA<;0?3QE>SkCGRCGa>!yqy9e@%o(URP&gu~H{3=zCLYRqzZ}U6UL; z-^Xy&4oSv4z>SpLK9FaO0hvM%t;4lBB&C#8ax-U)W2SnT%_j6w_A@NjOEV^1>A8xS zKIl81y|T$weE{sDV1D4o8|7Sp)??~kO%DiMzT+gb)nXk?h`JXW{jtBFPW(HxIys0h zbyP&3remeE>I~EXPmrn`$mWsiy|YBfquF~q&EiCy>lggX=Cq%G`klJ8e;Xd*FA=P# z$tiswY=GNu5t z8#32tm8|TUr|wEMS`}90nx?8E72Z03KiH0f%XD3M^)smqh;-j-NbOG^75Yrpo1+5A309>6tQT;>qc96l;tG z&0AeVBBK7@_loa*j|%56De`!u%SnoY66_M6fP&eERx8+! zQbz4?=P~97y`xrN1!na`0)TtB8DY4uq9mx(#*ll7h9(LK*EbEdfTBm9n&_TZe ztm@~=jP4=&a#ZrbXtX&5A)jlAVF0-HxiXr@`UNM~o}-c~kv-wNfOK}wDY)qKpb!*f z=mGa|5er2!)3h^@O1?hw)1XXJiX1hi?!9Ee{!)$P2#8O*5K;I8!r&465GC9ivFQix zNKjK+nd%QIoI(*goWPyBLIhnfe&W()FyDRl%Pbrl``DK=>BV9mO8sINMdfD}LAc*r zalOrw#ggoyu#a(*N}z@`yChU1x1&l#?Q3+}x9?b5QB&>KYIwqX%$&`PQB|AE^-M_z z+LTn_o-(=62-JM^R+u>yO)4nTjeW-di=yER?tubbI(@AqtyT5@%1}xtuCm z6P20d4|cEx#0cfoNFDn@=*@PP1;GU&Q6#6iTgqMGCmSfgZpTUgwhr;dK2Y$`2MS1x zf$4ToeeY2Yh%VyUqn++~QW}AI54r0hdwL}5uKVv7|1lZfxww)IGYY3dV^I=6C5I2W z;nVCun>mIwLuu<0S<&NEG?eanD2vGHvm+KK^{UXVJT*Hb%J%?|gjR};dX2YyL|K`9 zuZYx+sthSxjac-FJ_tXeXqBEwEfJ~7osDfmBckNQp0f-1J4Lrf``IIpT3BPa;}D`$ zF(ox7utuTmLY(#OlUiXXa#Ky-<+$)NL`yFFofvu<$1{`(mUP%cyO={M{iUdNVC`Exxs-t3+Ws_N3j|F& ziEY$>-rA>q)_T_F`57*k)O!BU;?v*Qok|C9cCeUbL@{Sz2Q{l|J5GiFEC3sd?PM;bry&W)~* z0KkZq{l?iVd$9QJ$1sMOYX4|CMm#)}_2n&2!5qApYf@9w?SbD6Y%pcNW13~-$KgC- zGMK`9yPTStizR7LyWAAI#AiRxaP@3-%#yC<3jRc{2C(B&T@`G~j%x$~$@I_+QORL$ zsi&S4anw~3a@Kuf^ zTW;Pi6dh`5q;n8l%-AD$oz5eNce2OJW6GJ@rrmKduwD|iZ4T&;Ey}^usr=He{TvvK zr4r=@7uXIhs+D4IhtzX`pXKCLkdHB&78rmy^_tDaS4pvqA=snu~%v zPD@CGX8ny=$Mpkn~yxv#}KBXWPr&zWNpSO6sen(qb4) zln@q#9a~J*N+0is60kv|O)E8EMHhNFgKzT!urib+38~gm<&7y2y*5uF-ln^-uap;+ zcsqnzh|k;7b4^|?<3t3EDE$WTTb((CSjjuVEP6e z?iio*IyA*oldn?+MK=9O`vI_22p2k7v&;+(5XHJ9vQtxA#1{SZ7VIo^0Yf9hPhSHL zaadXCpzTo5!9W;45dYCR=Tiv;c|V|Fu8UjrQ4dKr>J6T*=_!RJTsrzJNt%fMvOKqO z;_M{|m8sBJE+~;o!KzX8pU3*tP!I7l!pau0V8Guw+7Emy%_ask8~S3uFFyTsx=*d8 zRa2TylfD|pUG?ksiiE*$B?faqPU<9W0zVKnv6vktJkGxk0=R0TMc%5KUc4#AFWgup zGKoL;;U51QHAW6K^h51YM+$d7|CYU;N=nQ6M9SqPB5}5pRDcLl?BCgg+n?uHcV>yVYmzZaZka{x%X`5F`O=2FAUq=@Zm{e1e z+4l@zVIH*&@X)UMILFdgwa^k@M5P%~81w*lt1UG8;4n*t8qPl``}=SLpJeeclp-a3%cuY<~Flg`dc z?N;=AVXt1GaR#hkXZ!s~0@G*$IBgOnCWS6GZ2g!L?YCpyntVja z1l(ksXJ6Xw)Z9n`7g^w063D5O$ZcWKE+RJpJXa&WU>oXlSPbGwJ)=D8{9jHj#R&Wt zNHhB)lRn4LQM`GK*}|t?Esz`)f`K=X`Nr)Dnu#e~SE^gTP*jf5Q~0AUP6os(Liy{Z zmvTZ_G8B}LZrRk6hQM6%;9l=Vj-(h$An+<54i7zVBBj9*R+kDW)GSw2M))`%ySZFZ z9@{2cc_e<(h2`fbh$&+fH(VYeTZ-rjq>K-`MhppfuGef~ZeY(Hs4~ifBz%M$n zGG!Z)^QVa{!5>PCL1vztR&k1`6&`mBYQbL)-0_7aGC&HBb9T`gOw=VD&yaYl-~8#X ziqHSUR{rokTx-N-Q>+UWgKz^wJO`>*?!4cVNGmL|o4b4s5`W?s7btH(IRs98zwfDE zhvXQ&itX~deY9}=BhOLHzj;S*95It!&=k@+Hdz9|)buiRe1Kdus7tHGp}wk0T2^8OIV{WXgrq4Er!^*ZFHR5Z*?^tuns zB|F&dRSf)b3OS$9=Uw7sl++xkPZ8LO`Fuu5 znk1?Op2Ij9^Id$HGR;8u!gioA0V6!l#ZzcTXUp zI0oPMNBQ$5kbR0((Yp8h+`Xj12Sjc-#*L~8&uz`sD7(=$N zJ!{fBH%B`8Ox?6HW7~%(zOo9Lt&%v+Ok9qIZBAUgCX}!BK|<*TLGZ zy7+@H^zhy=|BfcjXH1`$0^^xFM(v36ADXnDDCoM~k;Pm}h?B7+f7>IA<3@Kahg$Kg2co18dA)st1>XR`x2&H6Y%F6gE`e)}V9%{7AdMaQ=E94DS8bZ&7Qd zNQ^66wa6YT-VRK%7a$Ym7Boy;?ilM^2898$I9nE2HZ9f563CU(rL!Bxt{lpDDSV>B zr*<=ROH`>7E}w=bKKriSt1*>5X@6_s5fz5?R#~O72NZs{i=0w%aB~{0}3nfh?LzLlnG@m`UFYHmCLZ2M?Q5IQSVD0hg0^VoJ4AblQ z3Z({UN1?O6X&NUHpq5Pqj@xs%h}W%2C1C6c76oQMb}hV4zle6%!2Fy*3|3EHij|g$wPDfh~K=wa>Klk zNjCM-$D1d7ofbLFGUjiTjQ`n5pE zwgQmtOU?RQ8Vg@lt`Aq1MOlKp*#T89{hKKf2Y(lABprrCl!|~;cn^?^{=}kgd|BS2 zE$W8S=_ra2X!0lp?U3p3i2 zRR|<+W<3wp697BTVg7G;M^A2y09{cwwVWG^on5zVvbSDqbnMWCffoA=MBK_sb zF`*;YPU8!HIqSVLRa>IS+2MK*S?&tF!j0M~$vZ4XdZCmofIy!{V7VQl3LYgSynbHn zqPS7w{Eqksjd!k~W%pJA-rA1Yg4gSLs0Zjsk5-5M3yd~L;v8~}tjs?-da)spm7{$R z58gn_awoy@ABnlBewi8`)8d$1T!Z|zzV)iBiMU^XXs19!Lt@%8KT~+gnghbcwtRVI z(~3VhD^x)Ui#=^GY;abfGp7gzyw$d&XT#XZ#apt&>_fg~AF`4!3QV)@j^g$%x4p0m zEBqP9wS5G&j1>4T_kP(oW+5tjw;H0ImcCL4kuo_Q;;vo;RDr{7=n<<>E=Zs8fNIhb zWB@P}e+@Z9(lnA&a9ZLb)_z=-Hc;|qqm2q zES|5`GZ2nwE&JoIiqHRsAF3++Kg#JLsjwzh7XObp>|>r-=!Rd}uZA&`84&=O*#4X| zm33k7{yQwrY|c-v^N8Ej1ekJofYp2Ca`zTVU%%vvVaK*N)W%_6rL9HfR6WLofPcvV zF2Zp4jFI=0eO3vriAtv{CuDD+vj(w&ep`>Ij{p-16-dg@NL@ZO6EX^%y2P05qOUwPupx@f7X1A!& z80wTwTgUXQk|PXRc=p4tCktdEw&r<@PUw_@3!yt@G|`;BQh1l5sF(~oQTUtfW<$bG zXDOARq=0MP@F<@QnGy}DO3wx65M6y`DFX#A!H_YJJR$n4)bE-;C+lwA%QS#4c=~gm zja21H?q~%{oh>ALs9=ly#n+_O#QfQcO#w^;;-fWYl>6(01_d8}QCBnl)^~0Kq&;vOmk0BwrdG97O#doXK06`#xmTM#~d!lCqfQOoj#T z75I#~5});(Qyk2Y0}QgPlJ7k`4D-SUKMijB z?pqk{q!8|g8*#k9Jf+=pX*r5K$S`-EuXR2_MU&GKN7~OshJwKS8V$~Dhz75CJIP!% zEyfxanIMEFr*g`Os|EoV^>BH#)aBNkw37*0%k%WLPe0>9*^*L2)&rQ-S=D)~(kzIa z#lt)<2rL;5`>o1oVq{tXkMR+OFt~Wzh%OH}Cg)|jWF6dxAWF)FJM)OIeByZfT{bK1 z7$5hrolvY&z*=?p_cR8Q|Tf-%%(83VhlTBodN8je@KhXNLnUxT<3{;&k$gYr360Vgx#N+IzFO8|LavqN3k@ z)JqWeH#Camu#W6x9hIaEW*g&o2tu;r@SHSvEscBTro|N;`gj0@Ob>$Zx$grcMA!i* zcX3206sp6<`(0*uVeUJROH6vtevW6A+8g$_knhuSbR^p{+Dn$bAF?R)4G_NB_rNCE zV&HH=@l0k#4^P6}4& z3mX+mOu14iHquDQu3%dni^G8_9Pe@ow|0e zE%bo(j(6+VocUp@f&KmP#f+i^-rLpb>#RtfwQC9Ixm{aMauI9Ugb?Ol1ddAXHSbe| zow<}kDf%3*Doh)Ds-exE$)Vc#o68lgnGQLT3S~#-r4dH;srY~&|7-LwF@U1R>0NcR znSCELB(+3T>a%!b+r1=-TR=915|=8im9VZjd|To) z_?jeP0l{xVKx>S_0U(; zoDh0nRqxWgprBXoWP|zoa@0fGqY&#ragKWJk;Kdj?ks;RYS0MhSCK};q*q|y`vOmN^X8C@8pbZl~kI9^(x^58t082p;%Xo5=|-W6Rok1d4laY7bhW*^T?t`4N|EB zkh*4K#w+5M0{kBbo`!PkB=nCcH(2n<>B`(r0vxslLE#!x>zbr|=XrcM%Z@CQfE9L?Xa~3x$vp5UIKGG-ltC>5pzp1GkzbA2( zq^2nd!xEuEG`Twi7I+0Eq`@v$-K9EK!NL%$QzfExXkBP$n>tHWw3W_cd7?{0-v;|M19fK1$2Pbpq&>tOH$*@l-PB)zMsS`7G zux0*KgJu6_j3F54@Kl;1m~KFKSwnGRu%rdGSGO~Ta(`Th0W}Jo>X74zVF94Fi7S{u zmI%HO-*Df8lyNL;^v&U>P7Yhi*9Q43W$|N8HDD z>e8(-;KHZ1=edTt_fS>bg<`47YX_E|f%6|qFsOpXz&DeH07&f|))CS-s+s4r06`mx z^IOVL#j?CU$Q8;hK6xjB@qk%_BB5!&3w5=ZzQ{ard(vM`p_+KDf+W$`7Wj`jYHn3@_us|q6-1I1mh>BaWHhElt&dE4#R{(r1s4x{%BUrUlyN!FWYePFS3sd z^-QIqd?*8aQ3EidkP=CI7nwdAUQmX2s}mpO7y=A*a{N%F^6+q(+< za0+0$`SaiA>=4t49gpNnSV;GSSOZ|qxaoGiSft4v0h~vY-?Ig!=Or5&vs1?~91YA6 z5Ue@rVwqtY%}k-OVvmV|X;R&ySf0bSbfe7e1kk#HaK)r;UN6%*o0#Ns&H!=K?opi% z5hpJe%s~@XsX4t5^rz;3=TKX* z3?jAP52z6NAxJZ;e0TGy@%cnz#Z|>2wZSy(Ga8wxo_s^>sS!TC+9|g>;*A^U)hcMA zq@FppHxwIRM=(S7+|AmQ!iaMdGCDVv^rt$?Ke;xUm-KB@ZtiFxBv#9!ORFKqHm+=n z%GKFAb*^37;>)o0^DqB@8UUCjWzt1{a|`($!eI!rNy`mGO=j;ADMKK7FFuGx$ckZz zjW**tL;uF1L-!v+8n6u!%LNl1F4P4;W!_xwbmcYR z=Eo(~3i~7*!W7X5U%`2C_-|J0Y(fWdOm(f(05zo7F*CHpO@hC4z=<=l5}t~?{{s8Y z1xqlusX7f*voPmcW{IRo|Dd+0=tAv9@8-S}r}=u-rcW_citmz#5IxJB*FJEZGOUy$IG7<$cbLV=HHpr21OJc?ltsfHZ=A57^$P=m7aI!?dE38Q0sZQd4={&1{7(}0V93<8#<3VVbDxuNok5*6%h3e3g%9MuPZxZx1cOmSou|-dZ z`e5dE5^wz(F4A_}Bgx{JJPbVdTvPKuz3fyjV4;SZdInQ(;;4fG5VfZz&dZJ-obMJs z83mYx&UddlYTm8jKqlvU1-#_`{@Y%-XU{5^oPBUgD z{r;k3^72jKNXuCPvy=*rMN@kc@Q5?%0qJ@c@<-S$Qi|DENUl`OdR(#C&n%L=!y79d z`7PqJZy<=<;XO}UfugmDT?he^ftjF2R!afRiA0>y4XLX$D*zC)?58R$h;ne-?LOLZ zwBW#dP=k1Q>dr@}ps&OmB6D-IW$60sr{(|SH^ryFbJb0#v_`{bRmq!FREIC?5|*Zy zF4P{jSHS}d9_(5W-jXMKLv46Eq2rXL5@SY_P{~zK9%K&HU$p-t3GGOlL5mFqH$P&Q zWldUN$*%IoLV#LZc8}9m?0M9YC?Mj+eN%k?7tUqK={kBDAz+7ugFoXEB1 zG6*^TrMJL=wgc%gqJI ztwmhh`&+8An5kFhuihv+P^l`0P5WZdjTdI^5V3sf7#<2%Zd*E;jF7M_S}6*DzxWQu z9{7m^;~%`^oUu|_-j53q+B78Bp9O})vx`(L5>^B)sJtp7KT0Ug*OiQbU}1XtY75=0 z1lwb_tIusmJu&@e(zA5E0bD}=q9ev6u+K2-zeef9p%iIQD|`Ug$J1g0-A@5DO;+)v zf{l=!y65D(QzQc@Jw(!G>0tI5g%+SgNh>MHKVtR>_}kTSMJZTvN|s+^QkF;Tn356+ z+^xJJd%Kmm8CA5Kg+T=Y-R(IpG8llAW&C1aC~KA;j(2+lkEX>TLZ#}aTkrH@^lJ*% zWLFqv*~I<)S~E;Y5-gF@Vnvpir&xy*1=-i5jeUyIf9q?()Rg%MP`m78ase`|xo8X) z#?nh>8Xle%W!tYlAZ>Fbx7%9Y6ZlDm05!}WtkvRR&w{efHcubsm3Ok6-=9W8ZRHL!#9qJ6!=%= z1^PL>_MGcjk9L?dk$MYg%n2m2f#|OVH}urdfDU>;nnZbCq+IuN#xX)$(Hj_r=OiFL zas~z{=YSGDO#MgFgUETqP`-jOl+}YJ&5`ySQz?9ot^1BG&wm|R=do~WCxEIHdgVx@ zJ(M)ahv+ZJ)suUaEVfzD{WQAi=#Lh*I7wI$u@b(af)ep7rHEd;sBk;N!lspryjR#Lp=b6tOs*+DlqI?6^Boqk9Ey`^Y zE5!r?@)c7Xket$qceA2+V~Gw%6V`bMGTk9aOs-vA?ie4Zcxv}ooN>dv;jzpE!LaNj zcv&2f(sw7@`qft&&|OOizO|Swz~OmnN{|$6gYz%FP6GtcH|>Mq+=gWpBeY$cVd=!k zU&=iG6G7&Q<%}*MC{|JnTzWFL(pALyr_rd6xd1@hmLwk;CD|u{qCYSG!rjz5oY^x} zPEWV@8`5Gh- zr(L6~%V|OAC`pZCQTu80z-|P+{gJDEn?lZ_ycMV(g3C^Gh6gqP=Q<$4(9B;Q!keM@WgW>}o zik1IvJO=~t^FSkH6O4V`SlEl^W7p4W30%dqV28nJgaYJjTQ!~hqV+iUq_^wi%xS$L zBE20MALmr56>|ehj@Re|BnCWjV7i~{{vwSIZJe~#eaPfXG|=zhZ4a%?BrzKEz?O3r z0Mxa`4GF}r*an@!iZx4TFJ`v$aFP?L8PnfULr+1_x83>&{ZmtgevxW5KTl;Q2nIKY zup3NTQ_=+De0tRP;yoeBA0KKuPapMn`Y1*Z;*X*AsR=@`g&JQ{!qV)y=RBQNoHd?T zF!tJVHWUfL#gdumWsYwD_*WQ^2L%&52TaH2GzBB5L2PI`5|v!Eu96xVD(_)XgqK>< z6f25upumhQJB`8=qp+fo?HlqGPW4a})|^Cd*+U~;8_s3qIlBWMIv9)|5f>_2?Snh# z!hV;X?VO12g@3H4?p@c*@#I}n_begITjJlfij{78bO@#%<+)=P;Gr9Q@3YD_nuK** zESXLZ2WHe>f^%1%u&V#r?4&pGU)r%jN?iU353L^lAwqm6?8 zLuQ0UMnq;tWlT4Q%9HgVqktdiN9v8dASMC?Nz4;TvvUvrtM^*I*LE-TL^BB&7w1%E zM!4^B4OCaL2iRILkeR~9(R+_UPoZCLLG_F8e)?YZ@%JZ=S5J3L2|aLi9QVhCS?b;^ zBJ4Pkjxm}J!!gi20-UxSrD!i=2NziS+-i`g=x7EF{n5Xs&o^*ODGY(OnhQq;7&vWR z+V-wpvN&^p!Eaj{iq|`J%sf-ibKwkeYY7g4A3@%wh4!^1#GX%o?miM}n*<~;T?D05 z7WBNP&h12&J_5Gts`CmL($g1z`|$_W7yk=%y6g?sR*%z`Oef^yN}*s3E^GLv$7apG zisOwQ9kpN1xc~wFDRcC#Jy1WHC;U{h&yfTchL&I-S=D2rO*nOa)g{yvRh^5CE!Mgj zMV7f8Sp?xP-2E7Nz8bVmfSW*=qDp9L_CjIkkxew8A;#4LU^pd@B#6ms_a#8Wd5x65 zzWPtVF?#oIjA`aFKvdK!VEf=hL3~@gYh7@r`)QhAixwgWmM&5k&qDecpC8id#2|Pj|$F`t=BA3VqlzCHhV7$ugA16;eSrjB6z|Rh0Jg0Yq&VAJsOXyLE{m!kQ;nU_Q0&TKh=z3-dR&+Ex2%uTkc!F zkEwQ;$JJ|w#Y3bKqAu8lWrz3#TT$g*lk=9!9%}H))pxR*SyWL99S5iuvo{yV3Jg=j zADU|kj!-BOT2SCF34;ImAHN-37j+6?(Cw4_dInhV`uV1r%b?19%ScKL;qAv2w-owJ zMCZdb;SxaOx6=~>NpQmRGB$u~Tj|+(E_`FHT)kKFi_B!7rk{#5cv>OWO{q zNW@v32r#LR1XB}OfNV@bHGl3$ELYf(SN1vNwwF3P`Dq$|JBao_bMzZR<%t#z@8BVp zJm;iA+J*yR(IzyZD2nhf;oJ`an`tw0^hVv>{z@_OIB+O|qy%(S0-Ib1T!~A6JwoaN zSO{-$VM*p;Xd=1ssX&v_o0lYZZmnoYE&^}|A<9{%+m}9mIv3PaGJ&|7MaR@9 zBVYm9tg4V5rJ!H19$K<4=s8rWu;n3vN^&6GUa9=j0!T}bd;lOY5c8fTvVpJQK&pga zi+}%Q`|Y2H&SM@iV>5l}FWMKqhLPx&&3Is=Ralt3sFp$t>NnukufBcx-cM~dl(2uP zv$UqC?4w)MCKfFGiq|D)66^s-dvy=Ml{C|Y08F18IZk~W`_NXqxRGS%Id?U1`2vX| zUP?`sL7mU^Whvf?qBTU1rWmeH)wzkkn4UEPBkp?)4mBr~G8Wa|Q2-;8jte#pS_>z6 zrfh&tV@|Kr{OC#?)ILw=@_29I?w+!*L^~n|bdLL%+AFOj`T&a;rw>>0Hd}6dptn=A zFptH$Bgy;1(LBrw<`2Z3==X(Ol9jpvh`T5#y^}c`=Pi_n8tr{aa>5ky(?8RC<WmT-RAWBhjm)*OR%& zb+6E**h#Z%(-#m}U{#+uAZLV^&BesM@hMxkuD zrdt5SH1-3;hqCj9nCyQ!=pP`w<^}Cl??d2U85vlN=hlvdRzFqT?MyJmQ?z z&uo@u>T`lB2<3RfNpqhgfdH6Or(#=K?wGKV(<~c$ia`m%R$#vcuMA_jEEnCk8d5>4 zd_6UG>!CD|KKi4&$HL)R&+d8p@(6My)ZHjopKVb+`Y3_^I2P<) zy$!4v;Z9(UUI4 zqPg&uhZba;f0@sCbgjnfQj>r%^jX>v0EcrvzTyCN=TOd!dkLMtjnce(O;z!QBDeZ& zqp)Gxj$FV-ZLpyW$AQHIw(ElXFxNVTH-83P2V^5vj5Oo=AIV@8i1|I!jkaT@f_E%v zA=w8fopskh50nY1Pa~;bF?C{d7wVQTK!deOfgYt|W ziyE$_0JhV(z_N0%^q0fyb5PABdI&6eqx)h%{WVHPYYctb-K{LS6EZgj3WecTy@u-W z2;F$_fcvTNikb8iOE(pFZz8chSnFL3jRD8vem}iZjFi(VaMT?0kAG8Mrys_CWCZf( zrpK5*V$uWL_F|vYZ!26p{bN}1v+L`Uqa1Oujkfwbyx)1>VIrCy&s45ZCk(8@g}&IIhuwOU&Cf3q@t?C;@-EN8^BX zu=X$>?XveL4$Ck*F5(DXsy2RAPZPe=m$BMU2jonRy+AtrC|NB@z1d<3p5(Q#tHqyk zqW^9oB}7K)_ol8gYL6)fBQ>CgpB<{}qO7z_Glh8fsN3_`)n9vnN=G}rC5)m{VvGZb z2}}ApY<3|(RTnS$s+Botr3I9V$eGx@p8N+MPq9zxK8bMfd`iiZdaS3P9nyhi{(m)lcHKJNXf zZt_MMFw3b@=jQV#nPdeCtqsEx8XzVx;KMP6c7vSuX;EXpIt(M9Q$ zCa60#lPOm#76PUv3%#{5wGn|zwE8-p6e{=d_1Oz8tj6>7Lk9#Mc`wN>K)ao}%V}3v zNm(FyI0)Z3gwR^OHaV^&3r;J8u0zeG{!#3YCS}^MB9ad>mF8K zB!-=`V*8@H?j`RE@ESR!YgO5SP<#5)m#Qz>|0xPcv1CGUz7BH%DzKAypq6kk)E7XK zDbJWJ!!kVc4WpuPbO36y*b2io%+9jc8psDxT>_$YI5;3Z?$8wwu3(BZyjE5Nam$Kr zw(qNckWL1$4|SvofPkLvp!TZ*6JzHmaFF?SgT%TL>oO&#K8W&Y;PB8|2m&-w@zYS>lXGW!pg0#o zGe!TgC(T&&CueF+f+D)_C(?&gK&aQC!3|1Z0RvOC+ycRE^`_Ke8 z^FGZPfQL8yrYCZ2VT?xQT=j6x9O_M1T$G+8AecH!&YMZw!{->TRaO@}aCdnk}L>}D|l%Q96cax_mCVOZoL%zwMPeVZTrPmHRwzpU%9&2n{25h9m z_Nw83i}r zfPmRvwq54tD4Jc&$HkE=hQ``nQ|gnxj~h__A+O^Q5G3H!VAWT5mxh#pZMe-00y8-e%Gla!RK_N$+jye`)Lg; zsUr|d81L>;WmHpAWP4S)YGFG{D@>BT9fYh0RcTz-C-MP?YZ>*4aWTZS3a$>2q%r9S znXyxZWxDWeHDm?%%TdJw*-Ew7E+1I%s07qZaS(P&J`_sMRVorcb>9 zKpJ1JzUHT7P8dLb9~f+PYqs3IMP+MI7H4xtuEI#&qXg13asijtfMlmk`=2c&EBi4JfB02P`ojX+dfc)`$KGG1v=79Uy=lF?G4*?4RVPV9ztD7K`Z} znH-5S4rhB5Qn9v%o}u7iA5IDF#rj&~AOXx-+To=QbYt@Q55%Yy1YnzXmKN=bxpLT6 z5|#EE#ZZ)$fHyH##CN_<1?|ysSz4kxFk`an#z{-aUX!DALw$3AN|7K&%ls(SsSW^8 zW#ShQmch=@Z5GaOsu+KgA-9r{geXwmjr|yYx!g+HvPMv2=q{2452y*C#Dh~#J$b%hbc0x8M z-ek-!;qKEwcugY!41Ml8Q3y8rcxTPkS#)_v4Hb&GYu8&uIckR>P>06YH3LPUZro?d zyBcb*y}z@jo5!|socKe3{JuUUrxYwlSo})$^+s6LqNR0v}(0_(5NN})PK%; zx6RIH;(^}|Dl=o_d14EOpnl?tCPJJ&t@S+_jPmSPCCQcF?w9m+2A^6YVrNWy_RlZ^$(X zC6pCu(N4A*ngodhdmSf$L^_bid#0B$;pNuvw6z=dNwWxbXQ+DHwFb$(?~;OgfTR!u#_VmQ?26$U9nq&_2rf?yRp9&7U1=Bt}d7K-@ax4 zSK z&wiS9sRAAa+u}Odhvy+nzRvIDlbacdMNFa^F4>^~Tq~bhQ62mAAG&|LqT&_`8vQu- z*HYB2CM3?WBX;z9?mW{^yb3)vN~j3LPS2jvy17dmAE(N8tov1EU9BK&dd#itdV21y z{l~c4PWoFA>aZReZO-$dFkJ4_OXl4LzqMZVV>AMH5_Nh~+met7W#GGk{yUT;9B0^F3Vg#@LC`&_bSyn$GR+d@)^Qgn4%8N{ zviq=q{BEMe$rkkCsloEI`>P_trlb8O=SIyjnqBKKS6Sx5;0@KKx@W#!G}gz&I4vJw zR8erHv`RK$VGvzaw|Xx?{7WnCB43xa%jz3;SOdi4w#gX{P-+GfB71@^ z0$aJ5-)+@&#Ox*mI}0sC$`D84cdqh8E9MO=hNn(M@~Hb#h3b8g>j+v%FL*8{OO3?W z*DR}P@9sa&@YHOSE8~Jh(nD(n_4&o0{rP|qq=w5sW_-_ZgjOhi%N4#RK5xar8Dw`~XFwA$ zLA!beOuNw^p*^yzC)aeB6Oqd`9s`(5u{47ixgro}jVgGo^eq7?zf*;WQm8+lTaN{Zkz!#kwx6*C*X76g4{LYcYsOc%hIHhz@4m z1e!^x4zC~|n7?9k)}?uaGs?I#^5U~EAH-_Kug67L+iJv$rPZ5EYzwm$3CmO9>dUR<^OYb{B_0YsRjXhbrSiS|>WGRr>FaBQX z{yF>efr@zSfk2e$y>OMeHV|Or>0zf4#FZwdBbIJrqI08mLdHkmtE|Vo#&V^vUJixR z2Fs!Ml`AIrW`J8BRt!#uDO{HQJ5kXqHW*b@j*+849!JDm(H zngXcY!u|7B49A*V*xC{aA-uY3#d~O#q0aGaJgf3(-3gBp4!d>0aO{inFA>K!M_b zYOf`t(7i~vaZvV#K-xUG>uBybuh`fp!j=jK2#8`W3m~{AHlN31-JiIbLzkrk%h6|! z31=9WA0aJE+%|nZ{jN8J=4BmquK0=!`sp9^pVgoK3;Pl{m;we6beXbHt4jqGruI}A z26fd{7hRq$5!~7;Xe@!30ypla@BfSH)A!O*2eFbH3W4w{MaA7>jlf~R<$B)LF0BdG zu~jxn3tGZFv$P-khARzKzjNpnwBE-7fprMd1P&Av$bigT58U*x^D_qQKoZMEYQ|gV zDqst^D?&chxBbvPN7Mnm6OUT#6zuLRCDu(U8GV!j{LY^c98*Oz9C;{5tB^^!d3?mN z>xwUXEtHEf1PYY|gi`xy)BNf@WlcM?zB`3Qz@8b;2u9k=7R#42>m9#+e^-6{8BQ}S zbK2qw?RYz$>(UfR|06*?6luR>ty0_`)q$$ZtZeb*QC%ZD=M{H9@)vpJsF$EYUk~e< zUTO$?TbQ}k7?hl|?9HwMaG`&>ua1F-v-qaT_FhEZ@3Ly7$$^*&i z2zjJPd>v`dpB++u5O`0*d#_yr<0;y8p|IJ`$91TKcn~B9;P!t2;3Sa~LzE(8Ok_N4 z0X7~IIQQy7BHKC(NJaf(AC4lxYxH<=mWB++MejLx1yK~WV4$#}hN^)=kIt{NXjq`P zpv6~nh2+^~E_DRH7NS|<&4#C9xvtB!L^yJ6Cxpi5sn0HLZNz9C|APvr2NPBscr1Sa zXnMAwCB2gl1V1lnB%DYm3CQo*Wn-EoW|n?v>ka>s{hRuc{7*|(G4-9JlII0UUlPGR z{gZVCb=>;ckk~gyYKFeb%07**Q5X*PaCf;?D`6`TWptz8Lju>_D%2gq$KkP11&3>! z@_Y`u{8-pfLuSlHTJY%}L6~Uj?3X&g`$uDFJDlFPo-MvhFx6oa?xmMp%l)YXMAUOb zw{)7AE)Y11g)0K1B~u87WZc*iaI+~XuR-9u?UDrBc`g9UV0mRb09d+24e;C30@1G- zwmgAS`kGJL&~D!VsM-rw@J1dZ76RvV0dCK86vrVn}xWxw07+1Ji0EUn1IP! zlQdm1&Du3M|3>wdujous?UJWp)0KWua+z>sKS_le`+T=oahu1mK7cg1RfMk@V@#Z6 zXid_6u#fx$wJjJlSk&^F8PwdOO}Ld4pL5;Ey(gNu1~1~+}P)7tVUXCF%k25M_KP-u0Al*Ep0y;+o zpxcvXUZB>m9T63pIwR&O_+RI}cUAZeMfqGvjg4cUbW?@>#Be|M+;wPk z_gh%A4o9OS3B-olQ1UTAky*kPDO@HBH%m4dSNK1naDU)S%N-1~Sk;dixikS2F0y5SnUdbcy8lMysW+ZaBdL)F*XeJjxJu&9_dS(AF{b=~zg||1{Jea!EUcQ+iq?d6Do6+w?u_oc7Ze zv%*L9aP`2&OSwJhj9Bw|etSR_dI~oW{BtZh=)P8Xud!^O0yLfb0P0`(N3iE!YmMV+ zWUVpb(}<0qUk~pEK<%vSa>=M^3bsO6*k>ij=2atoG56&9wA5G2v6w%2chqrhTyJ^X zxXDkvLDopC2USmOfUWKDkPwpcm+I`}A3$IgmTq!u4u;-1L#Cy9N><#-9sp^QkME!0 zpjx|d*SpHu7X70OPTV3e)sK5tAOd*xlzP3=PvEV7Y77T_v_`Jb<{tBs&F3C5wLKpp zS;C#h0f2$K9iZ$O0(-}K&dF^`(`W5L)(FM%E}7@KNouAttiHDWhJ)2MK%5GFrnkXfOugr6vmX;Rwu&-cyho8SCq`cdR| zrPx%J|HYrlT?Njupq3ZgG4bZTRoaSf8j>1PzbBr!|-eOB;r4j+De)>U& zL78BO4rUkvUCEN*%kH+b?a#b`b|KK;_`(1o$S;$F$l`d>MziGr{CeAwfJzFn8#Dh& z_1tHP!6phiDK#rUzR^e;GsF;QBjJ-D?O&=-|B#N8z0o;9{!@&PZXs?+?O0vg3wq*^ z5NX>)8jCN3Rc1MWzGFiJ@amIb`oKMQf#89?BAC7uW2+!y1bDoYCd0OSQ^%Y@UeG;* zpINQk_!O-K=-TI8mSw=lxAls0qtvYT^H|;?u$tpgs_8o0is01N|@6J;Q0oh$ysV7 z_Kguye7ZP5{=$tXe9rypx4JfI3j>T41p!;n3=kv+ic6aiLR&CvPJDIX{XD1u74Gg# zl;%$V{{N`H_7%MzkP9RN=%}N#cO7X)yUyIsMFpz2Lzg$eXA>*Os!jO0tI!1c;jy1)WNL0OWT$RB4F9%@W9)Pi6TSC&phwH!7wEcJf9A9X66i{IR zG`kNChlfZvBlsob0p*ZUr9pLdIk?MEC>6bSQw&ZUObobvj;qRKbp^iJBFQ~3S);k z{9f7NWWSsg0Q~m8&V^gegVY~lO$Kew*J3b;n({SjXOMa|)U5+9>h4&APi5nWZl>Pd zNY@5{M&>md0jhX~jO;q)*+wec=~9sQV59Yw&GSrFU~|NAgQ6aTCx3Vqlda+ymB%xfIwd0y1^w)*A!H0Mam*BvB z)dhA3YMRC_^q4XZt-l0#Rp4c#A82v5~aW8VpZ4RHP`9cdz_nKdV0e%0Ga#HP$TYD@IcE=6f9L z*I=ThVcU@@mKN>qJ)p-I&gcBugUX)QOFLD;V_y>d+cdUP-hx7*`ZxLyLnA{?%nr?- zqgBec`0d>_)!MfDHLvTM>OsYNi=}|KM*+)$cdH<5&lREBXa4{t-83}_MYLND&2u`! z7RTeK)yGsdT+}TkcI{<`yeO3ri-LEE{C8y2XKoxdgPCJalT?q8U0gm1QON`NQU%rM z+^Y?S!yH9)5j__w(q;^7%xSQvT*ApI%Mky&)gP#W17D;uLAN$txTH^{IdHLscTi}a zqW9*_;j@;tCXB}9mgaQfgV_M?&7HPim=MD{q z@0mca)TJsljek*n`j!9eb0~ba5C&FF=tYe+5i9k7{KI7jmGc1pVW<39NgM5+aEDY0 z)rY(aTK)()8&u%7Btf43d+-2>0=Lp+z`SHgbWRN}`_eMlbr8c-50fPSEoWBE8(L>_ z9rcmBLbG$pdJhBX%gS`HvDdsDuf;Df7Euq)8A0aE)(6(TICtvE07@hQtWqt25Y?3a zWCOF4TC$=^f%i#EsuN9@$aor)+&##| zL&mQI%$WrHPtR~<;5;_8^U$5f{xQb4=dPjJSl|>e4L*e2XdvnG5O5FMKv%meEFL9s zl{63JV5cK>2TOkJrS`s;+ZZkaXJ;psulamonj6y}FZ!A_Nm_;GPR?tzhq$_{Ge zP_kR8SBXjzLlqbB9y1HiZuV6p6D(rFYW5u1!(;Uc?kE+^W5PIvR_iG)wo)bLP_`F< zaMMG-&fsTDw{yxgru~>Q4G#91ClHM?9Q#F4_4n1sA1jP%Q>jqodazvx3iLtcApfK3 zsRpPGZ_#Jho3wQ8)V+i@+NIx^r^SKLP{_}7s^s3H#3D-FC$qnvwHKavffB~x%nb+PNGm!sZ> z_ix1r6L1mxt9L(zJE%jO3KgI)o4MY?1O)5Xxk%r?sy_b0Ujy2@Gp0;f(1+sVC2s-= z+d+vjq`&){>f=B70bB#V2iqR(6cEl{{pQx;OZ0-pIqH&37@!Izb<2LA$RJ&zcQyv>ne}&e zOCIyCccxw3_5|u%tjTf9#(qgjxV)-55CG>BT+$C z>mgZ|MksFwZjtP2E}4^Ye(yPAJ;4vtb4oK$uOU$pYZE$MGSPdf9Wmf(^^3p7Z=|-T zUErr4NkiJJdSU8wD}>_^2HDSTUI(p&r(_ibbcX+^kfx!$rxXMenX-Cj6}(Y|NITd! zN<)blOy%|hoA}h=c1ZUNXF4EL1+u)ULwTA-r00CtzJ>2}m4%Nsd7ve?-lUUw^4dMD zbzh@RhO~&UC}={!MXJ5nqYyr|j^{TXm{au!v#mOLB}PiN!lkYA^lhYR(wyz?A^+DN zxdnsn&U|6XcRi5#CBKhX4)BVHm+VYwDH2CB2)$Y%qM-2kOi zPL|2rBUux8ojni17^R=Z7QO?a9NRuIy$41g zrL-R`kOc;RY_L}B6`SvN@B=c5?vq|i)EUdK!w$R?!mOlbH#k9gyyl=ab{3dkH`LZB zDw!H8lQ=I5H`@(7nkVryS(KT;iXG*G7%cq$5#mg%EM9{T+qkDXdP z$&l7x(E*8B={Z{wh@rBq3k#A&GsD&;{qxtp=IeCJTyTx!Ci67)TVT1e6E^?ri-h)) zq@F$O#OU$o;}wLqTeB)*VDoa99rUbJga199>D`Xw1@cT9Vcke7I9=amaSUkXnj_)5 z@{7_4FYdzrB{Zd85T+dOo0N&2x-qEWlF>SCdMuqF?E1 zpWNirXT(_0P8ecmz_ebiEa=kd{_pad1@ivga)<&mfrzr^-k!r)yM)pO1Sl6S-){4) zf(<-$|7RFp4-f_Sgm+vs6q<10z~}+FC6o~p2!Hy%1<0{+sCw)Wj2(Cz@VUkx;WPrA6lSK_&eZq4N zx>S!ipsx^ZB7+USRL8>V6QyW%vp(rSQmb_(k%!WuOg4Jy=e00jOZP7zXB46h1}$zS zoXtq$oZ#!cK@p%(IP^mKe70}Kv3Yn3_(fhQokr~}7(+K697vG_QaZ#TYU?^(m=P+w zx^xct1wd-Y&J2Z=uJ3bP04fr8XY~(r3rGu0;(K&P=|c|mYSw`Ec8uD9P!0l!nw}hl z5CDNd6_)TZz<>*rU1L(3q`8kNa5_KGrUVK8I>o_Uv@(E{6;-UU?Kt&X`g2;^%dXct z!1aW7JA_*hxjfE2x|S{L2~sk081Ue0zs3`IVB09*dvM_kDFOYwLRYt~r&zMTas{{o zxw82s`>NmGP08v5{e4K%0=SYs*>{A~Y`*HbB%zA%F9MU*_)O$3_y$4V7F?3Rr;glS z1q58#6oBKH0@{~4ACfa2qCpQo91wvQ07~4hW3FDkP(55b+CycOMx*pDT8tY)92GWu z86{NuA+FKEV)fyhEC8Yi50ucu95fst=lTv`!(uG8q%1Xj57Go|kHXOiXHx+eiobqr z<}iw=MOgl<%4_lLRy0II2L8@J+xc!|ak>>0(AZgGp2FBcF(Hyk)H%j+sxcrQfo-)V?z>LFCd_XSrW)CqPxe05uom*oo)NVAywy!;k0bN&&sNSvDd&{~%|paxS%6@eN4ot4 z_%JC7{TpYOmKiv5i}7K7SR|N2<`RCmk3Om~M+4=jc%6CY($D?;(;omf26eR0OsBO2 zY|6T)ca6!<>`(f6yH)f?PHzm;r@UcIfshj(A%;{bX>FJ6NE=v zKA(^OCN+^(_3Ex`#-d<{*pCN|5h@COE?9*#)fG&C9fLbS_bp_A9j%39mLAZWR81oG zoPHiZyeFku^l!3>x7Yw^$6YW(XIiu8KDo+JM%dF}i~+bBoRMNZ`S~fotkDrq9(y6G z81RIi6TuMI#)N9L-{>x|_M*|X3BkBnF+n$NLcKLNvX_%@*AAR_zQF0nj&!6WKjGXB zefNrYq>1c?@d*Z;r(m5fSqf=GdC75Q(wmb zfOrZYb-Eg1K&vEB>TCbjC9NxnG2<8KpUls}w zhw91|ydm1xIyw~9p9?x;9-01rK~tZIt+e_l@|j%&sd7-w76lQ6@>{pn=mD0+mpyl+ zLm_lnHDn1x?Elwa!4*}1}k2DAiw-Qq4`q6SL` z|D*aJyfS)oVc*cE4X>u@h(P;|vO$nY;(s8iW_0Kisw59;vx5ud%HLcv9jg>w%hKV~ zkJF6mUubd|ZoX)lozn#~tc+vYv+osjtTkx`bp%JL%T5Sl5UDJ?0h_YP4RfLt!4uOL z7y=7O#cJVnPeQFPlnBAnZw@}yB|<|j$-^BkCb26(#u5GAO^E~5cu5fAz$R=NAEuOq zQf#4t1u-6Xg;h~8GIFa6k6k;VL%-y~!tXx*P8kPg)Iur}0plN^&O}4kH(g=BkzJWhz41{nxAUq(wnS&x{(9ka2#>i;@370RqKRU`!V52jFe5mFRR)cPK)^NeCM7Usw?w76*WsN;Hiee&=F>F#*)rI4s zCLI(<+p&hEn_hY+_BTgBlEqU=4Ra}Ueo9`!0nxB>?gg276`*`MiqSBb>7gQlGv|TI zqW2K0dsN^XyloGag|)jJ;b{W1Z40;=LHy}QAAh2FnIKI!E+B!r>jDyKmFF2}RURn| z6Gy8o^xDtaqWl#@&SZw2MU9+5yS`H;*sIL7%*fv`Rm2b{DVu6YwMzH4RIiM%bap6# zjDcKooYl7{3IZ1d`USTX#RNp+Lkg5C=k&1@?P1Z3wGU-Gq$o~ABec1%_7=nLHCB}q zHYP#60oG3}c8kBy`NCzqwdRfda<5pyM1-z`W8VwcaU-THtiiSd7t)1RIZE%pFOj14 z)nn@=nLJ>y4=4?6bj4qM-1;qab*a@=%QblK0eWPHMRRKg~id zpCJf=``Uo-9JvLc3v0N@W%jT@k+hiKtyCGe#CW9b)Cpq{!7-*#5Nr#BZ1g2fJ5^Zy zD7y?#)H>A2OW%`Bt#w8R<})rdG=2}(j^<;zQSB+qcFpRKlsN21`^ z58XN28$bcSOZFFjByr}@(a^lOw=+W@18q}_Q=tp;3%`P(+Bh^CV5%iBd*j@4Rgbwb z0PO)ApQpU;v6r)#?7{3=n$6N#+3C{RBRi;%mIqyTSg3>!UP3}VpvjkqqPHxO3r)5+ zbgmTnU3(;QOW?m1!vqGcwTl6cS|GuRR9xoMm#c3oQn^_%GiVAiRMTdHj+I=(o-PRW z&Si*Y{06zun@`NgaN4t{(v+}73@}eICkWGZD~pJ)ihJ*l8hPnhcjvcBcyN*D~K(%2#6KCqBixl?% zypsOf*RY4P|4XyE6Q(eN3l7;zv(-W-Zy5ZN(Ugp|X2o+!Fxg?cTmtM~sS({0^~it6 zoNA1aH-L&h-Ml5-fA$||--s&YU2*(h{eMA*O$%Jt`K2fzOmNz4o#TV!w%2(%cl}ES z4kDrT;#9QSe%U{{sNYP*f~}zUJ*p?EeV0DwqJxssi+{F)A5=q>v$i|E%5@yCU0_k1 zaGx(?Hh7Jp*Dj&gkbV!o^VwkwZ`mQdTj~EE-BKTr9hBO_%e+Co!(+xPq*}Lyp3p(~ ztj7*RNNBCd@kax?Ms&M9S`@^5hoUFk3vel6LqnOCR?d5{Z}&CO6BG+kJXEe_jk^?V z|M;Cs|BwO&;(?_t7q34AHCg&?j*)5;3*SXTc_YQ$*G5G zVztttXs3K+}0{TLzpVpZp4(G+0{--`?fTrO58WYS%b)KKX##p9R*|pMtS_73^0Hz;V z(-F&YZzuE0fwe4AMlOX)p|R|*DqdEDoM?evW<4Ro4j&((iC$4R-6@Jz7xBN7l~&g5 zw;n5z?E{_!R0!tIZPKrUAl<9q@+VsNPDoto3jB#eJAVQOj^wAL@mCME9KbuD`K$oq z0jC@4wzO-}DLKAADx0yUaFBH_XZq1}A8-H#o49nVoub(JbYs!`qeOt?=Q3a}Qo|dM z#B6zTNxAGnACXaCPaU3^J=w0wkEoJfAfz? z`A%RtuLUtA?a@9jdS3cWsOHgKgh+TPn3+WVJQO^`Au51O>__M7QYgGOIpTxd5EJIH zg8=EOn|`g;TAwd@)(GwEQH>JC%Mu)<2}=m!uK>%25biMj6Z|Cu`}ems%m$igmb2 ztpy`%RM`kKz=We40)mJL1|Xw&&RIi)D38+H1eOx*k3=|F zfU;jx=rRisq+sd8b58Ww*6`S2+;7P=3Ln&W*YN<*49X(U9c5^ma0bwRZq{vKHs#f~$rP6cd$^gn8jXA)^l|CTkO zol!=F3n41r&Qp4rr#!iT`qsH_U*}wdreeN3eeu7lPd^Fh^3Q>6dnIB>Dwm+YL4wOV ztZ9zDK&?ChLF@MLKNFw*6I^XlQT@`*>NLIBzGT*gc2AaaFZ5D*INvT{WSNK z!l!4IT@%@gHdM|)+-=hN-LLfbfFs|ru2JM^TDAsemDUsDz9l^ppb@V4zA&FV&GkKR z0jaDAI8{Hv?4mT5t58p#>RYJnVJu|9<%7laXA=79ngsY&^Zhx96~EJ!n6nQ5jzZ=e z)tA$uo!)7FgEbEJZwRooSvi1`w0^0@Fd9VJ7koH>8Q6{g3%6w*MWI%f z_SfiaMxZk_*$<$km|YG{&Bj4{Qd+#O!7Z#a%lo|6Z$KG`()go8L<+C#^Eom%6!KGL zlYTR1b3IUi7O<5q-T_sqgx*89O=E{NP($S!Kju;gQ|61G;1+-sTflKN-u`7$NaS4j zqMW53NiXCDsV}J9A*O(4I=TY@j9L zli0uRusnM|RQg5r$>pel83EMJLW|IE$OP3*L8h;6@!fu!9vtX{C5QmH!zp$|U2FOK z$_cEZOHJYeLSI_Sz$$F@l%FV>&@e_-?yqK=1cc9aWNEUL2^5)0RY?0>`*Yl@^L!L$ z^Pt=nWOz!+F8vTXfM?<&BskC!1s_lYi0MTek1xARSpjemnEE&*z%$uELzf^@?Owb2 zJ+sDe5Aj8qAV~4RKGtVPPutI{T}~+XXuCO5aC%R#;tx27Ymi!#cAKXp%#nLSR;)7h zrP==irz#D zWZ=jeEBVGJ+NW#z<39b5mxAlUar{*<>7=EE2fFN-(-Gld4V+{Jh$3KDy$Q209XVwrn~0*YWB>xFj7zS>dk-qR~V%yp1k*1Ffc zoUDAib25|!ibkU~)ZbzCzoy@ZBV$1c)02pES4 zJVZT7*CxhL9SIZz`0|2nZ7lMlEKz@lW)&EPk3XyM9~rmgCs1;?L$Ui;XTRwINn`y? zXZ!fk=U&cJ(c*CHTd-D@1yJ&IXlA3|wcore8;gmHh!$zIE5HnEX{fl*A2iHP+VQ>( z>zjSfNuCmr_u26#+p{U{Ox9?|0Wp`e1F^wc4MLUBGM?oQW&YMm`&mA?mNL;ON^x|} ztOTM4^tLcQ@C;6qX@6luU+^^xWpPp=8~v#3l^%3B3x3!We7<*k@`$dO#a(v0TI$f( z{;CS|4Xc~_40*0h)7!Ju?o6K5LzV;&pQv5p{9$ghfvw?!!0FHnW|L?{Zhe}ydkSYC zKSi$^{oZ2%L3O$z;q?5Jpjmm*tWQV zxMTrghjrFX#6rRnsV?H#zKhSkq;X=lg;=p)fIS4pzE|v@MMaVcNt7TcZnMTxYW=jl z!}ftB`8`KMAQ~v!|6b@A;>Wm+BDO$yd}ogd7<#_bb}^sHKqVH}A1dfa==1EgW^WpT z9$BQv%N}UF`)mA0^_PE{K6#*#<{fw&T@N*n*4_Jkeu~dR^bm)Fn)rj_a*kq>!eN?u z^@a4Dy^2(5QlEeCh&kwY?qILVm8gDQl-Gi`_E`h$U2_vM6MW}aBTXB!1P*><5|-!S z#n&B&6q_jP+o^|58$MJ8$r@BS--G%0eaRi8MAu}292Sb@`DstsvCNjN?emA}MSWW50_F$Prw#C~HO_iy z&Q{miPkkN6w8=ApJ(4|BpAE+;( z`P_G^PhP4Qi!3)7a>r!Bp75yTWm(zk8k9BFee#xVLg93U{a>*FNOPNCQ3K)P(ZjCZ z<-N7YGb1?IKn7;!gI^Ggo9*a(0y!WEN=mPfa^^f=t*y$u#^8d>1@deyFM$Pnk=)UX zobleR?|&g-mQ5mQ#M(G^?O@O1lG$}tETn#GVa zC23bYBdnPdlu^5Pd&Fl=QDN9D|F=+s`0rLiA;S^)F%(`VvfaYfcW#XF8cN4HT03 zg+dVu234~|sO8jKIFw(tnQy|_WTcMN+NJh-lE>N_0>0{Jf9W}alSpsQ#PNNpyItSML{b|2^DMe@v0EP}4q>iw=a-yH(`5fRtaT(Mw>9 zo@fF_gPEe0%#tILeAr zcEXQMou_sDrT!l+QM_L1gl76i^}l(11H|XX&Zx62Rf1kCO|F zmNTJZrvy(*cZGXvODQys5I`)jp~;&g&n%>SJ75*rL22PO$GwX{vSC!-=*fn# zl6SJtEh+E$4TDmjGnkT}PwuhS=2!#Fnw0ljda9;k_osf5pc+R756jvuDKq-nDq`Nr zF8&^qwIRIb5*I`9WTWrHJzyJ|;+`QW5A?Jdsw zF7K*P!H0+m&z?sfv;-t#%cK5Kx$skO^yFcEQ&RM3zwbpc_pz~Lw-4_hcY`-SCD# zHJz6gQ!x9J`hb`O+-fJmCLdbJ(5Tej?y(NtZ=urO9E*j5%+O5KH}62Afm;zInryqe zZR#uUAS&5aYkC~Ilv=UIj3*!z83q>DQ-7~S->wQ`wWEU6E>_Da)5__JI8n**P1pXJ zzCsjn$+*1?+2=wACpc~(6%h;WUE}+oC&?VJ0FD^USfS5eh3R>9c zQ9H5mn~oNWBF|D70`sd7n_$JFW_cCkW0DSSwxrh?1~4kan|rl6G}iG75>RD8_}w3^ z4j_B!w4Oz{&I1wkfPDk1+zJX3e%4eT7Gdr+c(I_*-nF<9B6E65c7x2l&(-WxMkV8v zERnV?&1I(31H5i~+?OCYiu$eWkwe5N=e{NY9AlSpk@hjh8BFZFlR^3Qo;LY8wF>=o z{wMlJe*C_lTIqnt>~ZVl2?WWlfV4Qn>nEao{e+rpZ$}LN&iDj=swnj1$A0%)9-m5n zv5H;^KF6|YvMbC-l+KcsF0ZQOFpcYrX^$E`vjdZvocgar2+%AP={u(6qgMDA zmTT6w?nTGBW|v)*$iPEI_xm5P*~`Fb%xW3xeohvr=N_FJmk zOo%$bxQ_=%23h<{|0ocyc>nDGtBHWLT~*{$C(gSt=zc5hvwC>Vs%h zpXmcSzrY0hcA^QumhLdEw?Ye>u4g-(lbwvTgI16oT=Xq4;u_~O#|ZY>-dwxQ6&dKE zsUEq`bv~F_AaDZITTfZ81Te7?tu?*Z8h;;F+e21K*#XBpWEwzg)XnL6l0%;RB5=u4 z$V^#vF5#0tg)M(Fm}*m;$U?Z|_IF?&CsO;y?zHEJmG)+8wAO>AR+63GR2ztR(G1iv z1D3u{l$R6BO40(aMR|+B{vYXU-D)VL`~3jMC;g$n{rCf51inw4n3dczrQm;H3(&^w z^T!UqmY_f82nDd@r_~?-#^d1&DxU!plvD{}J2%X}A+kqw3sEfq5D8NF0rq)MNg<(` zi36GjT0i$Q)OVMRa(76Yn$pw^xsw_!IsmUX>eZ`_o0Dq^E<0 zBC3#naKPAS2M~P)EB2hJHX!T0&hc;a9$+nx>y*ZY5_7QAK9886TGcksN=+*;EE>zP zU7nB3c>elE^))ga?Q$iDI1fC19@ehKis@0% z{==IKB85-PVRuXfA9X=*2E@tQfb@H*H|$sLnKh7m3FK}Vp+44LFY$ULnyj7+iZhK? zEa9C4AZY#V81psU5>HFJlz=G*NJrW~u}g3cT8}Tk0?VHaGx4rYUvY3B*5d=Q0`C8&-b^f^MDgfTBWBajDd%I z$RH@qzWjrJh5h^w{`+o!I+YT@yU-I>N<$+WM&Y|Xq%m}S4$X!(%=g-Owm3g2dVb3-`sy% ziPx~2e}TkY);JQa>Hmf2RJ~vjOcG%d0kLEM8m!dYt-5JAbXE*cRL&nql!Bn&nadvS z1fUxgdXx;5oN$F^=UYRPX7mG-CF2f&=TIM?wqaez}7kL>4e{w zo&(L7>~Dme($HbnDt#ntr;=u`=G-EA(J*aF{h6=yfYO#ZQR<{T4AH3%a`MlaYA;FW zNzLoc=LjzCBY@Gs?E}hyy(XJ?K?pl60T8GpSVES3f$c@06=+%NRmNC<$Plr*%>^3X zs8wa534h@4fXfNj+5Xnv|MMDw8&fNI%K4M<)M@;?3=8}U1v z!v^y5iWDevsxSVQ!1WOErN$}3mKY!K^Nz1NAp%$`3hRIV2+IH3Vab zU7m=d3Me!dJ%8y!j`!##0JsxZ^A!*^ITvn8ft>&RCHKApd|TRLD0E%3i=u5^MAd&M z=TKO8V6S$jVE=2E;lM89)l1o@gzfASG(l_ro<~?O!Zt!X@mcRkKil)PpCv1vIzkWf z-7DFH0=<0DoXT!ERIVlF&%*jzga0a#-A63%x3+5BdX>5f!nH`FepBSmbh}p{UqDL_ zVHCji-y*)vKF)?o3=Fm;G&MyjMw45Md-x(Gj_T<)9jdCUc9dAl)P4N4zT7y<~J^oNVNNP{(cj(1b`S+;~~2mDpx?@TSeYznvgd$bEPq8h}v z^lb;iuHeAbdPL)l-_h88I^w!L0!55z;)JIK@Bx7LQ7za-9GPk)%va5WS~r2J^JKLF zE)-WoLuE-fC^mioqiq8JKxWcXxS&f<%-9B4LtHxhh)~2xSda7+FbQ#G8qH{DicWd4 z`n2P`%-Of-n4IzyQFGyZ?@DWX!7~rSYK0rnCI!jfXR{k*H~j2;m_LN9HmWvfPEw~p zEcaQ445G`jw05jr7D= zqv3d{y2aG6i-aUzd44D}ThEf#)QK^FuNGxXUTV#|fuPvqd zf?9`=i?!u@KWrt7Gjtp#yQfi{~jiZ^{RyKO(^b z$k%k4CiRXrFj}!l9g4i_7pF$BVG&rWj9Ij5_S$jGu78syS^Cp91YYNr7KPCE8IrSR zp6q~5pmVmX*xsaLzEy9&OGz#*{i0TZ?tN;Z!)n>8tyemRw?0f*`W>7fA8=r|8ykB2 zP$!E1qoCX8_sY73jG^~G_TKIAY7sNocR5@@|E+{?QLiF4M_9*gNR~;5{SRn0{AuAg z*2-iPLG#6LuRi{;{BNJWn|>lOu&n@n7!hm-VOt)ypjo0qhMVSS|LG=sMp3r2OiYEt zbbwzA;+Fq>0Iw9@ED{MnHy0+vm>A6#>dFC z3!e~>@RH*IPt_j{Y~nEdu7m0G-Rh6uPQjABp$COkcm9k26EeyGch&>Td=Pt8S8kND zK@~#z>NL9mQ$Vc0vFDjoVKmUmV_A z=N9t>ExOf=pr=CDrD|kCc6Iuocu?2_2g$@-}+Ydt@K;$LIML~ZG<tB| z@TREq4hU<-uwfw;StIa0@QW}hB6-K(B839N-v_%()f_h<)Ag>KCYJcyk%j7z7@It> z26O?ot#X0Q&a12e!k)u=t!aJ$YY}s`4@!bzkrMfiq8|gWwZL&`Ymi(!h2zHjM5;an zY`HcT+^+*M2L`Ss?GxGY{@(XKLqfoJ_4|u~z!3l3g(tZ$^n=O?o;#5up`~`F?}O^( zw|)ee?cu*JCULDyO9frvl3CNrv~F+c#T}?s{}NdBKT#urOxCZ_7p#Rf!c7B=iHL^2 ziyu2{2Q}E$TYAD->ur-dEnwPR;Nj}vwI?;jlX}^2RF1*#1u8+e)`y6;rBxUC{AEf( zKe9tUg=Nw=y-j~~!EXZ=d441<4mKW|$4yn-?rj0aQO^ka2lXRxSgdhJG1tMOtFaEA zq6dL)D(2Zk2TO33S2qs;SkOw9Z|}2tChqAvcaiTj0$LOPemRz?^VTeDHP(=gvCsJC zH)##D#sX!K?70hdEU!JXKq;tf&FRJOVV=fa1q6BAi2Y>oeHw_cw$9Z5biK<~FTt<1 ziJ9B#o?ez6U}r;0QUu9s=uaMN&Q z8D{%(f1`biLxppP@c!h3iotpC z4;GImENo_QbPJs-FO2}TyoK}!K_u2Roc_G}Qu-0MC&bHpZa)iK68m7F5pfqZ=U#gm zxDnn3>ZGa)B(?33iNTmS16UZP#`>ILl%yKXmXyyKqHE9XPwd{@jQXKq^%vD&_^sk3 zT4S3!?SUW{jLD6fiDH$x7NTq1cU`N|HMf)Dmu7!p+J(v~{b8c1YzcJ%ynPSvi9Sy8 z#$jtMaj(Uas>V{c>XEGnwyxG<2jivsmH9c^jnEp_K#KCE68K4=Lf<=v2`|fEDTdjZ zs5$2pGKmJSzL1-Dk@{|d6u3f}PmukDg7uD`l;7;tH9HX#z*IDu$-4}Igw<3OfeonHykRkO7XDz9GJr%GY+W&RUkU2o0 zbRMo=4X!Az6qRd*?7K(Zdr11C-g1*;1qQOqxv$;=(Y3($pzy4;Ts+zQ9hy@)Lwqg9Xl)zoxPI6(J5!yr5?R&hHbtY&o&;DzVRD}E$i^xZz z5NV~5uohQlC&s<@l#(v&yhiQ!#dkjb+>^>`u|oPd;Mu)u#{e%Es3)O4_2)|w(Hi^3 zdVnp;<0Lu_$j)K%&U=q@xSgsdFWr(|4xlNb* zIK-jk+4#t*uDR^O81UootMnhIz1j{HzDs01GEg*=x3+%QvT&p+O*bXAM#9FWSuoRx zlJlf1R`ajHm$KB_x@|zFbWm#5(dJz+=+_c&0my=Okai!gV1CVWf`MyfWbNA^-?|B@ zlaoQv+>Y4oV4UHnjKCJ@o4-`+=}qv&uU7xfpD2eTp_$z@9ZE-)k=K1t=T^M4DNp+Q*-K`cXMpN5zRDBUEvF8mCWFZeQ0uTfM?_*GUu_dLa{|Oed6nmmBxm!KGZuD1He>4}jWkPj-M?g9D-}fc_qd!Bvws1YVVTU`k}vHe#VF_Y52ZB~Sx7 zl(y;fe_h38I~apjJQ#81BwAWQhG;U|N7S*jCBXX z3EQszn%-{7!3Bqm0{EVI05q$yId}qcM@^VonK9>sgb}eO)jOE_-jmWDZ0bNMpNFHf zNH%+tBpoum87&u`m`iuW80a91It1|0_3%rX#Ee|iNTKz74(j^%{k7Sh{^0R*iiOgS zqWc=1?3QT8d1?Yh>oxMqJ^wYqp?8o%Lt49=u+NYx6}JglU?tgGVagesme}Tua>_wR z2_Gv6^B`0e+?QX7yC(q4_fBv6Ya7V_j#Xc4+-i-({I0ZYu?AAok-DQZjOSzT5I}xcdXAeSNxmllhPW7n57*D=R;xr ztnzf#)5Jv96%o&v#CSJY7|FM_7=yDKp4Ud$ZT0u%O&s2s=$?MlmKiWc*64X|`ge~(~6-^Qh1pYOh99ZQ6& z9B)kj{yz*&a3<57tPmu=WplCawT}td&|Uj?!jNe=>5H0den1bMT>*#u+w?pRr2MrH zX-v1SR*xuSy81+mPs;9W`eKq0^n!-)U5YXY3Rc@;Okca-vmFybFU2~s zlgX){skxwlbTpzUbr&cHpgD7$R(4SU;4A2tR0FNVV{-J=Tirv`(RFq8qu>15LVIZl zlKhxz7)62tdW%w2Pzshs;U*4@e1CJS+( zW|YT70PO?zhZTJo(-#Up{uv5i3JFM@7a)#FOw;qh4o3rxRITU<&Y%tf{oIoYa4>_o-6xFEZc1;pi)|4Nty3)+)kd_<4K{SZ*RE!`G z0%lAx&{a!}NUcU9AQj8v@IO9>m`M%zkQg2rQijpG#p2Ct(1F&ZV?R70`l)-AeD8m0mHhRgGBZpZ?l0JZEnXaeT{=CNhSc9^?X2oT?#Gk`z zW1|naW_?{&FrdzgC1d=&7|Nb4Hz!zyQ=13_#^ePdD=+Y8UyC&{*#wx|Gg81mQo|iO zWcI8pSNk16DZ{P;vVvD7lZSQ9n*)<9RP=Tgi7$+80*%M?1s=e>I6`>4_u<_&1bgHh z`f$)#e`v-yqD;cmUkek-pH`oKqWiL;2SKo(^KT8n!IoLsG;WK`Bnsu{_M@NNl&Y}+ z$3$kYd)H0j%u|z42U5@~MmRZ+K2^|IApI{f4L^5<&>aODNY3tLWphOOL#-y& z>SqNg>L3xhG%>x!4boz>eF6@oTsIt8-o>EA3VXD>{@-4Yf!eTv(D#-y0jnQ`EI|du z`iVL!j>IX^M2HT_Y_d<^@HX6~((w4~ZJ|sU^28~5KE#x%?Y6r`8Yxjcs_p1y5atOrmnRbG70jxThm84f7=%|dH_#xUdxADsw{hzFj9I_V zS*9`zs_hB@miKNR#^$<35X#CV!5?0p1PHe!p73rT*sA^qMYE$Sd@T??c%lCIdN`*K zV!|t4wVeEcplM&7QY_9NE8KV9Q|GN4X z^$j*Ze8UlvS_CF5&AAE*RptP0AElvhhqoId0xuRymJmbCNH0%n-2W40 z(*&R~aWk#{4~wl^c4mT;eENqvRQ`cfl>4qPZ$x>rq(V*mXT^bpCI)pCOk{`&jmfM@ z&*-eOW-Vpm=|ov?v1@#pZvfsFZEf@l{3btx5aHNSu`zGnY1)y0$eIhrdjzF4|ItYq zW;>!`YkZa=@cHP6_b0lXp~LGPss_?+f%q9t1^FLVFs0vUkJx7qkLv7Byw$aLbvhDO zEy@S$)?Y?fxzT&FBUFKXNY3qA6tWAx{qCQB%Nxb+!ycIbYw%AS3JJw35rX*1J85eG z8qUs1cHE_!ZM_2FPF`{p9g+n2F9Xyilm|Hw9)e{UjpKi=zN%cZM*C7sn5jbQ9-c8i zYUNsDnX7l4s0KSoh*9*sM9bGx!u6>mq>0gm=H!+=V3GJ=Jw|j^O}7$|KZ`O5SU_}m z+|zRQ<1g)MFEBdv5I6*{(cX8c0mCT`^>%sE*7WC9b7I-xgT*d;LcN1)P#IIJi8jj? zfkqafg(coD>A0gs0{gsugZ1QDjUeQnJyLf_XXm5MoEVUq$o3eXTG>q=u110DS(9$> z?EI>asdhvY6oD6QwW}1?S{EL2kp%jmy7r-0afCes)UO#cecd`_^PohLc0uA#zx7N9 zmo%%WX<*)U*l2qFGIccby=Mcp*clFa(|^W-OV1>$J%a9XO5~OccagKS)rNY^qZf56 zcCjzK$p~b})?w*D0H0pUnN$le*e~p4Yb8=}Bt-B-iM4oQp46PSVTDC4MEIo9LmSOw z9qO$Oz{7;kctv)bY2=Al8RxCF3fMBduJ@pDGYU{(-)`!XRCpY-?7bz8ai0XnQ0J?q zjFB5IXqdhSUgs*6YWgty|9t0f@}RNS84jJaYBaQ|{Y&8jNQ#n#=)qlquXHxlPC0qK z`rpM{xC(L=?qNRqBSKCChj7bVA|dyx9Wk%-GMO`~Sn+q9(e1@W^!2Z5Wav@IoxPj$ zorQXPl79=$&?CT91;ARrL4OLm8FpCNCjw8V7^U;_NNQRkv2LjiEyO$jxO;b^i=P9Q z7OY*QSS(Sm7c9wPJw2~2zV8}|htpeM{xy>Nr%j-}crDld?&EJjfyX8Q3U150g;fFw zokI&J%LYM;Fe8a?IDPWTdBMzhe5T!YmPnq*g~FGOP7%c)v!2QiP`lhT^M@eWd8U`S zKG6-j-vI-W0vUqDD&>bMWNXIU1Ea{&1p8($Q*ty8q;%9a{5b3p`lq|X(GrA=#cy0f z2^Ir?z|gI*K&?4x`3Qk%H2|0bkICaJ@bL!)_x(#LX9m-YNb^ZA3E1o;5#moAqoUbT z{|)xQO?_ZEUu^d*I!7#kz+#XL_pCB;gZ?wv172%BLgUKo8@26pejn73r`(Iju~~H( zQR;;t;{S9bs zqmCZ4`|mB&Aa^Z*IjXQ)XO4;jDF^ zeu_uJZ5)Ow=e!PnKyB8)pcMM7*AGbNvf4`(P{+cjM^A{bdW5`|+YQg;2Q!L38Py3r zZWqo@!zr0NazO6E!s@7}-)=Is{injgcJ!aI=XU<$4@mB?$o{h&Sfqlu8O`3x3(I5*dGe zwBUTnquUiftQAK zkSiU1{^<`N|GgZ|JV+iZCE|WxeMwm+P4TdI@_~ zUurhb=0;_sM$PYLu>eC@MjlcBdXOV1Zk!A6DtbndX0Ye(ffxX3+=t(sA z6~k`L#5-y-dnT2$1)dyck!_!T-OsB}KZk}8{pfGGO++QcfeOOC9ih0J+Dlv*$2?`p z4K&Y438_&UKUQqVgCBmcLzTde{4<#pJ71t)(YXgMY0Yf)>Y%ILHKg#aWNA&baz4>y zhmQ{G3>#Ma+kWX}<}DS;zw{RQ1of*hUMIK0=!>Oh-i@ z@6V&JplSEawfzNfySUqP+`Z}L7Ul9~NJ;{vb{fp|qcp$;!on~UmE`8SD+yM6R_e&h>L~_JIcSisB zpdeVMZBInsyA$0ib&B@jC}t3-VEC@c&jc0sAX>LqI4!3O{xIHfuYIO~W0hV|!Y(LI zwpkslKHN&ttKS6V!Oq;leK$*Sz8Yr5V5M6p+4SC`NN~+|D!R4OeSn))=4k91eL-;R z`_|0uK`%!+ca`jl-ONLqadrircd(u;BXVp}G7=|y%OhZqwnShOsE^dz1jQPF+>Mj`a{>WIel@JzUO zw&^VFdJZ%O3*Ptvd!)Pd7S=B=U1@ksK|{-n0TQ9%$)a2&A4$3R{C9tZ5cs!h7Ru&O z)DEUJdjwBOAgEBe!<*c*T`X3##$kdu5liCNS}le zTe14+0X(t;5xyM2dfsng7?2@K$x&JHo(ermgG=k}4iQlsH7keN<}604idG51F@-f*_j>l0oWbA zRkyAmF?<@&=(w&`t-2W|KS@c)4+6<&7vUFM%!e{!!Fw&(e&|4uTky`t{zuivA6Z!e zt*I!8u_5*!1I1W;KI{>_UswaKI71rH3;C~q-36bqT7Tfl<{v1x%Gg9=NbF}tJg&7X zut{i)C?4X-hXxZ}t~2cMX1mM0CVtH{ON8tXel`~P!D$!`<@U-x8v3+t3mni768FdJ zs3A+&PL?~K`76xoj6#E=9uCag4y}V++X2=GlPJ0`n6adPJ>|8q6(8vQt;TRiZKX|W zm0nAl*a)cYv3AVeo#uhhB@n-Rc>5)1U>b-C-f#_~PaUduJ#^r#nYR*n;n~|T_{bbz zt|u@nK#7x%%~vYTuwUkROO%b{+oHu+72zIhMm~Bi#_Pkev^>)bD}KbVq1xE$Ewak5-Y3p zjNf9w(e~GVraA!Y!3EVCv4^&o{F3JK23t}J93A_N>_`$Wm*NoJim_@Bm3`}6N zuAz2(&^YCs2nb{S(q((#uFzeiiASwXw6EXq%w)(d{^YFCt8VopM3aX*P;L?z!@QIc zI{Bunm4~2o+TCBWW$lod@%~-^vii%UN?{`Gc3asj2EU8wnmN^E>Z&@s-sze>~-(QHH>1?e1bGu)5~Dld$Z zF`mALY!x-yhE8dUqoiEwG+i*CuCtn9cq;Xzhhk3RZ~ZOy_;wnzw>Re30g%N+D+%bY ziJGd@Tt9FsL$n?UrmdI`vD+Myi6}}4;&b72P2G$(sMdtnH?bt0LVs|k7fgEbP&*G} zAn4D(D;fR{R^fvfgw%VeV@N|S>mFMJ{~f){*l7GP(EJ+`2^lnk=%l^GBkxhg^%(0X z=A0wEWDX%R#<_{T?3nbrDW@pG4wy`OU6O{$5-l0ShIDMOn8tCPI%>IU=2Bm+CbdtR z@6W9ceIx?;OHO@GQ%zWMZQ#)^y&ZZGHPdv|&o@Po6~f;zy-L}_dKw`SWN;?aqSF=? z4CO2zvHKQj>%VReC^> zWd@m5!>eAQ4DO4d(sKwI*2ilUH{_9=f;D)ldwY)(qU*8%&t1e?Wlv_z( zaEL}=1`cuIC%k^)q+sp{NsI?3Y|3T z8!Q6Cyhl@N(S?dfLw{y`=!UZSe%pp>*6{qcK6Shz||{_3OoO`b0Apnu2RK+utBz=j(xh)X0DY7=C%xeSK^8oK)pFJ7E>4Nhk$0E3 zO8Xnrb`5I)aSbZrwiROj5brAz4$M{lRV`339OlR~9kVfo!#uFv)ss`Mo)!STHx<+6 zgP##F9D4OhHi8TU!Y0v6d$?-bBQtDwkS#;ekZY)3pVi>y5+09gk|S+7Xm?919$gp` zb3y4t4L@mhQ*dCMCy@zxrnEhJk=m#A5%Pe3G^+*w&Lgeh2Z@xH#%Vq9%^{~9J%Xm* zbDtDx?NvAoWJc+E?vfqeF&ELirYS^ZF|Z`&y^&Sv*Rm@8`f#j{s(Jw4A7;OuTeNU9 z#>H}sod{W5GG4yg<<}?;JfdKr7}B|rBb6krEn@A-8|H489-MdpQqr5C=^EgiQF>dPUU{%Sn^ z1HbnbtO>Wwkxoo{Ci+cn*8(B4uJLT7HX_T%7q#Ee26}oa~ z*q)y;mhm?R!OY(H?D;-K1G~)Z84BMcOEFzJ0)+ob2{W0hA$_d^`VnB4ENhWI%AQ4B z;CmSPRR@C!Rtx<4OfYN#s)5%kqOt`)Py$jbV?g8cKlo3K)yZ>n$kSeQ7wAfb_Weop zkETW|9L3a6=x*(i&oY&KR#S?vi8kf`^!G?spuTBGiW2AG3m`ENCDF`77JN%kIJHb7 zK?20C?Yt1BlCi7%ETWs;$OsMRybAJl=niHUNbR!tx68cEDe!3E60^W16wK^A&z_SP z;Wgbm%az4nbfll?UMmJs8W)VWsJv|p&ZAu555P}nz(}$NT>+0w-)r<{c~17OfznmT z946VQ49h_QSaMgvkPI49awW(fk5rddsGTvhe5%1`S#H4cW3QbCil@(LPS_p{%vJK% zkmNX~QBS+NfFU5!)?xpU0s`3n1yT|cmZ5)&hF>QcvK@1SB_J?hbz;)k;ozb47J(p_ zf7cIkOEaE^B;`s;aAQcSsjv|e9Y`68*7Y?UK+bgI>>WHrJppU;(8~#|T2mi>UcLX- z;k)kDNAjrT@#{gpPj8uqzz6E7rXJ-Az~^)o9wu|4hlCA5Tt9~L2*Tb1y51dUV%eX=f7Z^1m6sKg-D}^KA`E0|y zAZ_(xt=arD#d9e9^ikVPwquJh z079Ij1EJr0_~eu7lTWA@x9S}9P`D0RD`DvJPz3Qc@+b7`?89A%MFK$pUgR1&dtQBl zyt$$a{DHJ2#^^E8ga9DdS3o_kMUX}pL@gB9zNKf=)BbC#lVa>hZ)C5H>71M%GOBR3 z`NPybUE8SZ!L6peq2jm&2L{D_&fBoC)zxwl@ zGEKM@PW55GyIqzrFnI~{Gz{0Yf$wx2^fLQe$t3r&_yF=ms)EC=FQ}6d!*cq5p0rK?6z7!Hbrr%iUmsGX4j&TC0<$-8W1@BSK}SC|K(Vy-+DS2RnYK?}hDn z0%V3B8_8Rme~Mw%<{|oqOkuqZ$;eyiwgjj2+pq@;4=nO$(%KNycnW61UF{AOiwm3K zLY=S3CUL`6jU)#HO%1Uo8s? zK?ewgp*3vg(CMlrY^Lhrod_>!szGa!P~KhUcgg-z1!A4F;CD|Wt_jqoVF{(6yl8`N zK3_8G)Tf)b1$KDIgsLaNi3>(K0F$A=t(~cY{|r~K=CxB=5sEaB%ME#a8Ls>c$NW2A zDMaiD|4_4RJ^`lgG-=o!eQB^DQYx_wU4(TqDw zvU4I^7uBm;juSkcAcA+*(%!h_SWWL!fB5j3bSuvM^nM{r9Q@;)ATC-d^iXgUovOa1 zkzV#ZT`pjSxpeA8RE(7ek%?KE1drh3(T)IgnOp_-ymaS)Lq|)n?qHMH=~DZll-%7GCLDLcssT;WmxS{4xokLkK=c4yw8(@eC1c&ONLt6$*r{lC$ zdMQj=vCy8oQNBp@Q9%VI;b6T3Q{`yYd$hUy4owQdo_t!)1|g(1ci66i!fti z7iukSKia@)+dgTLFz2xGmFnW5Tf?AXMmB`XD{hkuYo!H0YOS22zUU%FYD40O#b+?l z;jln&g7aKR{tD}72i1}(VzY!Lf%~#(J^{7^`h>#^)>e0xR$nt35d~tXrS(7?n8GvB zz!qQumTsyBB680>K}Nh8!sx}$*ynsoVxkf~L!x+*REj2(=YU>VY&rKdrrNB^ir%K> zE$@GfEY3d3Af1q^dlFIdB!OH(*<)G<1de6xhnGG~$j}&}Odla_>|l)>H9zzJUO5kH>{qaUvo0OHRp3%!hCAaMMga z+MKSTp2`uV9o@T9P10`#kUueNw2uqLXupb{Ee%P%CJtjqxKE}^f~!T|+vM!EJc-E7 z@w@VH>SLbu>5^hrlstAkHKB7RkDC-x-Jsf%WI&O#kqScoaefSOqRBCO$@;_THWi+? z$waSC9!82VbD&VNK&YNupKtxvg(2YYKw` z@7o-#nDG$ShTqN+AahTT;ipL5@?#Z##rSAjT+g0M&F-D;mwqe^X{OXSEMoZApzOLh zXd2is{)gZe7OgJ%)4g7B$Q-4zV6SEiCjK3io|u115jDAVWk@2R%$|l`pyc4c>NZm8 zWd}5H9JpYcam`l)BTV(I8;boXeM_0n6ls@%?RkpO0)5r~r2U^sfh^g!(oTbM!;&igmJh-qZ)_aU(6MZyyhSnzI zK7bpA)BR`f|4G&Ay9&=KX^{(+{EpK9#n_m14FBc<$8zmfU=iSNb?NT%;G~YP@A3z_ z{sGNz=JQk-@Sf^B#xK#g$F#k*C`0Q+qnh|;| z-F4#7GalfzdjT7`B17;H^ zg)OovpI!YhB%@!Y{0>9UQgm6j(&BrAc4=(VSFy;NOSFM<{e@B0SlX_zOBRr!Zn<_58`crFa+>+Bms+Or z_>k-2zg7RupC<_VY`Z}7;EaR{ZVS&_pa#I>Um=xAHWP}Oc&cFf9&Q!7*0OeBk*8kn zvp^jq)xmtyp;mS(%fGLg10i7R>g1;cymhaRD*&YqZm7cga&YKT?&N8Vox4MS)qE0D zyaQHfTCiC+!>%VIBYL0?K^6G$cj%DR=PIMbEm&zS5Ay%9r`qh2qwuBkm1FDaX69~u z|K5|&mikc;$)&b9(FUKAWIFQkEbFiX3r-l@-UX=uLt#}vAp?Mvvw(%1>?8Kl(EuD2 zI-r8~Zq_q}1a;zRi_Ry+Y6!wQDo%3kR?VibEb=C-* z3J>SE> zJjWG;j9K<%Ek@c&EYLp$tX{%r2gAB(aY5)eh0|-#Y1bKPlUFvZ;?rH)?sg$tNKzyP zM&(AJ2{^m}AyG>z{NU7eq(zZcqr2ANnkl5`EXLbq`$9xX$R_A10^g<6V`2pv$v-3w zJ8BXsduq_GpTn3Ba`d{j8!?KLIDz=p*kNRvH4fx8;~s7-|cYC_RK>eZ$mAWVTXa7;Ge>aE|PweClNUC@4ju!&Ahx5-s1RF55sZHb73-l&}T+Oy1pv!KNpB%eV$ zh@oI(v2TrYxz_dgWR{tTrswP)VUQK`bX%=^iO{ga!2{|BudF~xa0GCk_nW}UtZIxANCleK|@ z-LXLSmS0rwlTFVPanSWN(r#M2CR2$XfWaL*QfDuI=E*f_f|f?Drl}>wXBJ=r1rWId zml>DvqIq7eZVIgL{1VV0P2Fo?*+uN=ahCfv%7_vaHD6G);5;dU18igY^Gqj5=y8)} z1h_r5-3r5dt1IZ@r1hdOG%vlg-n872o7Bl~EH)g0A_SGFyTX8_{Q5@KYUJ=Sr`;)u z9mP7@188vW8KUDK1dr4qQ;3c(Mh?j(kKk+tN~;Wk%_DU;6)bhoHdXL*dcN+j)qYia zR0jm|DrGea`JX9~s62a3<`E-qUszt|u6mYuN)@tij!QMx87F?We`K=RamqCMgB+^6 zcU|`*EYG4DyA_cJo_hjt-{_-?#p$-rj;6}DbQx16fmE|N%pW*^k|CDx#)ZO>=*^bQ=fAjD|v zCtz;S{|Ga0W)nag&T#Gwfbbk=XPebzFA$$T_OC>drw7th%4W7|JVi*K8z=Rcv%L z9m~pX%|dMe6eU)DKymKA{Nyq&ksiTAClYx%eM+wed4?s;n0-YLVY{)$ucV|Ck_}xl ze#CAb`!vsgr|rE)9Q4Z+>+Bc>0OWx@p3XNvfB7AlH9rS#9ENUejtx<|6K8Pf!j=eK z*)@qT_<^62i1cwg+Hd+{aKUs;Reek#X#bP;AQg2Fjmm)f0TuFW=rhn92c1XcZW-$^ zpORGV6K(Z7O?v|?&`mG12&#=GVU3UIa6KD>Q>hO_X7U))i>*V&`S{eM>|q2 zSdQ7mxu5oc)z+Eizo0P~k=+uOrp}hXPYdffa8?i6Cp%n-WAVM}=Tu&CP}Ms8P4%~b zs{^#cp23vNA8NLs0pQAo?N{6+%J(X^W7T=)3LpgtOi*3MjLY$TOBU#8IQnCWc=8)> zYv-nP^rc>NwhsWm&dqyIv8(i?sA=XK;XX$mPQTuHk?|$6XdN0L)~+MP&%9*?U8m5e z6^67A-7q@lUFhg@E1uy`-+!roPr|-gg5H7a7PHL`%E0$7>+eLAff&WW?w${1(e+Ko zOxQM|ONMR$1eKt_QAa6=J-H)>giWB3^D{hUqvB1bz5f{aFrStnl4&Z?MJdPG-d6A| zYWjX8@neVnFV%jta7(IJx;ISfh~Y^e-j)fpdRLmUbXZrN6fdp3FKLzMs!g~0+`SRY zffwer2IMvKM`l<)0F+{}Lv7(sc$_ZKnt?mmLXv2EYrzLN{1WBT5G8yTNP}$<8!VnE z9V-hhG@u#}rvh6(P}yGYQR^jpM5-S*&G!kR*pbiEyT%zJ}PqsUJq-F9QZcnP+t& zk^Xy3O-_2re%T{m$|ulF4UM~tZI6jz-);;XF=zX$MM@G|=9AX9TURdy_cOT?`nj@g zp`~bv+kx_54nu}S9{SekjkUpj9}4^HHmE`X@`fHP+;>MJkYJ?k0Pv2?PEaG%TEk4T z4V`l|#AhjO6S`Rp=g)N(=xd>r_0HnB6h7)BtB%kvS~ccj4M<&x4vksy^rS@gZO1jy zS&9Y{zT|CXQ@0o{v3?+RS`Sc&4osGP$QBKir>);6%ILaH@MNfYp<_Bf3tbsct^U9J z;5e#OqinH7yNv)mFY(4?Jkb=2W(7f-zC&0i%`?qg>g<|)OEw{;Yy)783Xb6aX{rqT zL}t)8nR+;eJ>=Xp5GfTz31N4PX`KDkI-j;jp8Hd8Kk0Nm2|Nq895zY4g$4lr#Mz*b z)4%!nhe}^i+-?GCWbr4wZ#0E;^g(^%twAG7VPRI4l)S7g zcXbsVbPT;OXGd%k1hN+)s;FSY3jj+dHGV(-+{yVZMQ&Dr1tni+J7ze5qpkM(f-bHw zKG4hR2i4OBlm&u$mn6k*VXkm{Tf$-*_zr3{4gMsiITR9sDV3PdhFZn8Ha^SsFh`|O zKp;PS--0q5($p1>(S5ZRlY7x-UhL~f81dnXbLy7T&2>MzBcN9KJgciah87~NS5OMt zmWBVZo#-*gfyIk=yHH$3ceWk^hx%aM<$pa|ohe;zR9YHci^vT1PEMb+=m8!8VnCh0 z0g48x)Hz#R*CKDdMm|b=+>lBm#)S!^)ympTmdQ4KZlTu0v7W*MJHrKH>r|dyi9@T6=dMMiuJ4fPd{aeZMhz-+%5lw z^;w2%M}lh41#&sdp|O-jvdVU=h5=C7tai~Hx*OFcPRIi+N?&HFc-o`HZ}+cVF)U83 zdiw;HIFZ^Ky114I*h`1p$c@fOB8srv{rfj+foTW{wn{hHwPu)i`XLN5fB623WSy7t z8n^`7eMC3rs^|SKDEIeXgC-~RDkK+zZ7WJMj`Rc>W^2qc&3<(=3O~e&iwGex1#3}% zIj?%_OUJAu=lU(NO%^qPhg5Y6a4dqril$2W?dug=G1}s+Fy?HashsY;{F^- z?TLyhdZ@G@z{;u<`A$;A8iS<~5X=9M|H78gV_qc3fC+0Bc!ON(JUvk_S<1HM`Llf* z0;hJhDlz<=;f5JZiVvRw;D9-Z6=NlPkr%7L)TChRFWq^vZfP>`snRDr~ZV>MTi1y+*NNJ1)^d zTLY)H7JCLyZI>R&k>8~| zA-YLWqj_leZGbJi0%SgWM%{-K0*YWaG7Lf6_th%IsN#tU!8-BDKF;gmkk`n!JcBzY zg=pM^@TNz}v88(IIwK=VSG%h@Uff|A)p;MXp*$`d}ht~5?RXBuJYTu%xx*CEFGRKZijs>_O! zNn!%XoFxY>`IBK-W=B>PjU?K=?SZXf_TijASY}8-`=txk^4L;l&0rCA0!?_K@Iu2yrfKEH+bgJHm$o;(rykvD6KEvNt?|*Qh0h#)F z^P&ll?;YHcuJ#7k)lQe^p`~N6W^*?gbJ-=ek<_N+;RbqK`pv#T94B5w54~Ymszn@? z717c?3MJdw4;?+D1_06|U9L=cy>>+p%z+})yfBm?0%%BWpS^Ey@WJR z*%O<9+QbpwqW!S2!aIoVAJ&h$ifr%pRv74387wmw25{PNi|K- zr-U{3c~9XkH%pnl$z|(yfxfJN-D{xp;fs$y1o-u6o3pVzbq;ju*tAJd)K3)7l4*bAFhq)dGfTSnKMzpj7cDqxQL>h|%${_-mAK+i<0AC5ir{g2W z8SiXu%8r247jNg1iBbE~?+S^q(}2$@oeq?`F1}m0+_KS{kadj}yuBZQxHoYp0p+N| zU4ddvrQL=7#Lxv5lM@RXYn`RYq7Kl8N(^-}ZD3hnNK>lK=P6+WU6u&?{NumaiR!Sn z^8i1(Y?cQcMT`?^Rp!Ek5oh|VN6XFfsNMfjg>Oq=M2Mz(+OXIU=`1Ib%C_Z0GESJ$ z|I8l6YOCQ~>xZVd+{v-hd~Hm<|FHeZ;<^bQt$`q>S%PqGkkbR?IYQ9qA3y*2&*}fG z@*5&XAu47CQtk}(f{5{~iblI^*ln{y@Kp$esd^`khgrj6*QT@O#wVFp#wE+&5$Wnj z1x|rhqYR8|o5K>@+-}niB}53mCm%KetPv)L&?>fT`hy42u5zq?$T$H{b~Q{uHAXu(VF(FW`{{2fJ;6b*PUF)yeoh6@n6*Y{ue8a zLAwnX##c20fg^;{6j_&G@d1;H9)O>{9biA6R{xbNY1N^6iqv@Rrxcp#nGy=4EI(|S zuRIn*MHS6AKkNz7dvbw($?{u1AZ>^4OB}`ECRqWIc_guLA&uB=@OA0J4jUM^6S?hQ zv9k;=&Sozqr!AoH6XUONM@|wK_28KEe6z&iyA?6sn4cD&1D|yvR~CP zTUVrlFvY5H8>v2;m1s#EC_yK(CgWBE^3bRNnG5kn- zy|rbz+zcUPmL?sGa1pxL7vY$QJ9d zdjAuToQuCN0L0fkE6T3v!5+HB@MD5q#W)w{;3ohQRj5$?*T3l~vL++~FerzNKHTcS ziJ{kSInD;x1gOLKU<3jGrY?d7thJ#SS$a9!M$L>Hw5|yN`siZMm$PX7oyP}^Pfc?&<$5jHZ5>-lu=oWm<7mL}l*_Nne4q7=}%@B#X)djB;zB!y=u9fZPW zGCL0YEm@N=K_TvYi_-$I0Vu|e%GK9!M4TTG?w{J+<%XLJVD9WJQ(!h{A^&Ev)qjk< z1FQgC%&LQ6+BX8aV$^jjO2t;3#?;oIL))b&Hy|b5E88DqI-Y$bv_{@lw;F1i?h5NX zD_g}dYt#su;?-UsE#J_{qV7VAmo*ojW>8NfJSxFKk^LEa&N z#vM`Nh|1~^4>=~&PjeCx-J%!x5XhRcat=gNYgT|Nu7Rk~PptJli5?MdBJvEF%T1TO zY6^0OudF#cVX`UXtk6s;4$|uWtL-YMIW!HWdGao6{K5q zn6}&)s3k6mH?oyL35LwJ>_b5p9OKNMcxUDBJK4#Gkbt-b6b-S+R2qve8InOAt8*Vs zSM(eP@_F}Q%G#bq0ST^{TRON7-FganmSzsNPR8iiq8(71s`KW2#zvUL&Em+rco-D1 zc91vd(v}wuF&eT$R1Xmwpdp1Q5b^}{dh7;+Coc60GbMIY>j43w?noy~Duu?@fm+sq^Dk*KEh|<)X4$dJ$OtV1KEaN z*XKGt+86b#tzy}{bMfM-2}0c-={Kp9{`f%$n*rp@!fl)rKI$zj8g57*U6*XobZJ^V zVMx5GPC_yxwSk8r_uZ~gW@3BZ9s*}$nlivw=N_47>V~3s)3B@UC=?i-3MeKmY5?z^ z^KzxREN-kFH@J~XNI8e_%wj)#d0qp}a|uMly4k7p#KedVr7NgXfcvI%+3kW-t zij}6?>k|XuVLnHHu-+}t35TEtLl(>I8yymWa@0GS0vmU?oo_=@DxpDZ$Y78n`H~EG zn>j@N8j`}&DMNqSbW5m1PePJj03tQ)V};KSHmVRFL}iGVe64!v;*a$Tifj~;$02fU zBw3WGsy5bA^PH5x#=`qk& zS^8Vj*GPA8p`&IPU5&Zx0&u)oAYDt^t2)DHMIX49pE?3rK=4Zg8MTz5{u^ExglXH= zhD*RIB$pSiduarn&YyIeFT&j~HHjtkYr}{&bV(pVi-tLDT5Y?Ye6hx2Ox8i(AqE3C zdbMkCxl-VBk(Ot56Hj?91#R1ys{n&E)Q3#1X(h~Y>O&86A>NRUiRwD2;Pdgri+yI! zS#QA|Kk4cd`+O884$zJCuJh9eJ`12cx|@CY1p%<2C$!0(eW&_PYSBF|@WWc`ki2^4(i3^&lL(jaVWHqzxS`w>fGE&`3>ulcK)<=y zR`8UaXjQ!k>^JPV@BnZ<)|CU8JtsO6|!r5oM2s(u{!ZdZ-Q)_o(h#n+qNhM!BwYs5R zgd?`gK9}cQ9N7|IdXF!#GcFjncIbp^bx)pI;GvVum`C{3Tvsf+c8O#?5Qk0_mdX## zI|W`L?j^)A;OXf{Gf;hjT%l~??!KXkHV~>G$Q;mv^HZ;<{!Zw;*wbwxVn$#RhuoG* zV{yAE`X19BJOB3Jfud}NHx>S9KnSUu;O(*N%UK0D?tS%&%%UwiM8~jFTcT|T%6Lt| z5t8=p!$1i0%Gfd<{<`|>zy51|UMp$n#_`Dg1qUzqVM;ei?`Pc5zwLzH!_ADt7w?3I z^AjT!27JkRadHTyngawXaI*H8YUCo`lwP@+Q@ZK>kNwxIt%AnS4oz|k*$h;5OXcG z1lUytiyQ4wkFz^SXFw&fCfy#hPc{od_;C5u5eE9}iOt z&n(!Z5QSvY?AA?-YSfC3j>M?BI_1{-1T9C~z(-9&fu!xXJvFy*FeiDf=(QvJa)}WO zWmBqO5VC3rbhQ{W0R`gFI_TMH#U+JC+iVp6RdleW@00IeR3HBp61QT2?@O+d=mM;| z^-U*i!gvwop{lk%mCGKYhULtLA{Q7dW=V|d=qFzotMyxg6{J$yN1sC z>0Y-1mr7o8I*_4^P9=fTrt9}o2m;~@F6H(IDKNF85@4F@)-)82sNPWYz7!!D5P2Fzuz=xLKu#2@Q#<~L(8P#|q^jpvb|0GVFe%wpsd0RiKLWM+h&rcPX z!%Qc&;H&S(W_47IJ-1K8x~+aCfwYxNk>!ho-R;O3CwlH!WOL#$=!UnFce{lN;yc+E zPMJ`_iYU_YGfft*lU28%vo%3p&xh-S0k>Vymeb!MhWd8XF>}RyE1*t2Lk)qQcFBMI z?BlP4^pn2{C6{0N!N%U*v5+X;m#h>^uV5ZtyQxj&Azmzds`Ctlx0%_ z_GYZuE}gIO873G<(1;P4Qy7>R%wYpGQ0j*J67yAfP}pG=BnB!oNZ6P16)}z5k}9@Rn8&k%B!g^|@k~?zSb4LKblZ98 zgl^mFq8#xVZC606eU1X#&o%CAnA}P!D+E)UD_Bt5Lxax*$>|d3uU4(zt@vK8h^If| zfqIb3`GN|rjX}^5O}(o!T9Bs~%mTBLroD7-QcX3FZdznR5#x}7S7&JnbkzkfxLqu@ z+mg_8x+Gc!gaZ;-c(*6!9sbmhA*{&eZuK1Pt{H1li!^LN!Z|AMMG-QiC?O3;DPei?IyDBFMQ_jj@) z;{rv6!?^ig0HS@!77zhX1j5P#XXJ#Il%P`|9opox(L_$u$P5@Km8m@62d zYW8Uf=&P4rNtz(y>CEvi`q;iqakGe$nRbdgSmGL1DX{7El=eH$bxXyms1Rtf_#zIAZ77c6(Y0#OE~$MQ$p2eN%i;Xq2_VUQjg35W z*wr>mKNk99Cx;qKKd%z*r|Fl*A{WR)5^p%M2O1NGt(=EH0N152XK}V<+2$5*-oQ~! z{ozEj-YfY3YM1$p$`2eNPc!?^a5(bCZv%uAGMmjs)pdwK+_e0;rB3lS(EfZ z@Lw|t=Kxl3I=brYl5r1ilEop^#XAniwPRbd3GfqidDC05WNr2JgfsG-Eg-H~FtLfC zxkT{^K(Brexv1IhS)JX-Af~NlDt*8cxcjr-pwH}C%0){^f)I37p7Rd8pwJnm z#PJ4E?dm1*u%y2oUfpO_23`oe!nb-BI~m~9mayc%1fah9__?RVVDYVb`qvH!fH2j9 zt>-c8?x8e#<4uF6MSsgd%EikAoNq;9p9PFjph*Y>J_9lA>0!xWIf<+(B&+t4djVW4 zpYHTC@7E;W;XsE8vYzMq=y3&#B|YH((7lKd=QYElx?^QFR}s)=jZ3yV>aN=@bSeIS z9T`$k$`*y}l*g|^;zWnOjGib167Wf|$77%jT;2e8zzxwPOGG>}EpV%!c$Dj-KfSTE z`uJ6P^-n8xoT2;=j#q!{^Zq(($^fb`T8WV4Lu*TfN~#B>8ujB(Dt(cJX#Md}aGD&R zAkIz_Dw;2_zWb&rK{Cy=TqkIAXlbEEG||Kksd6NHS#9oU4=b@xJ@4Tmkv;|Z4#^$L zn>f0xHSCkEI6oe3A&|~nK>5FdQ=6?^SmQm_h9{v(C=A*Iqzl{6Fq8EFqH+yI(MVt6 zqrJ<$11tC`EEAM?k{*#K4oOfl(DKoIrsUSWJDg~1N>isU9F8E;IuxV9B_^1w)+Xy2 zyN^yh^TB>&`5OJySN+fu=M9wLR+qS;;0#MHHO3xr9BmS@l`;im2|@Tui~lQM^bcAm zqBGwO^}8z1Gr}}w;%M$FaL6L6#|yJpVG-XVcO9Fk#{8NLN$h9@EypW7ugedmNzSCa zALV}a@z?1l6DI_@FzHNUuk9Iciz8LUsX7B9U5-0j8m^FVw!6}Xz7r|3k{Qn(pnFd7 zKuRcFE+8_x2A!o3o)RDjv=Q?D+si!FDLp;E8SM2u2Ive02?AR&kl%=Yg7EohStNP5Zzzf4_SFo20k3LRuw#7$DulnaH!y+H$U4b|0D*6ON3tP6-!zOq|5sa#Sr#MXYKH9>#ClxfA-A&~fx!LnofHE5+))lBFN-+&PEz9q_XF&XG8 z7_1a556Z@4=_3yzaJLhY76X@@4=rlCa%SYo4U$dfYqM4(I^(nUFcYLMq9CThj%jKs zO&PKk+g|4LR3A+n5O_Z;cW&&XUNVH=LMix`Z=pdZZs-z!G}exv(QUFUKZJywY8{K`qAmbqZVtz)&4!U~I_?j&~RD*wT?uYJ81a zkptAJ&QKn7uB`k?uE@N}(-Zl0$9Pw2f1ndjl#}H5(1ktae}=Q8_uLQrY5`&tj$lU@ z2?F;G$zlt6UvFfa8FhW-@7XpG{LZu>W?>2+NmwvyDFQ7r*FWde8o*d=^WY4{5=Fyv z?g=(QR!OFwfYUfC_Lo|XFZuzQNH}&L;DH|PVee61tNH+%(FAIz^7+CFBILWnZLe~4 zX9I|veAMM%e@)8T;J%-+2lA_DBb-rBwftitM(f%9vBl~)WDT4BR%ab7Y+ zc&0kBuXdn$)(aW}({%W@GXamt)6h7GL7db*oJ1;aGJ}z=S#kgl5yi2wg zuIFRQU%bU?(Lcs=DYgGXx&9Zi!Fr`7D7`|Usy@|HJE1xZ-MVb`taxKJE4n94paage z2sEuQ_oYas80Od^uofL1NOi-XN`x5rCuN0z9S%vg{Cs-(t;OQsT{7sw$C_RsBS>#E z-HF2wGxRIx8wD%-H_fI(ha8PS%k<#=1}ui2(Xn8a9}99Vw*08M^+eAl`xIwi%#UOv zdM58BgOM9LdaYMheQ(wHe^veQf5#}ORx=J02Nj-~K^xQJQAsJdTe?>7K3`PYyLW|> z99zh8#Y0$_6}}qH`)Qb<=(?o&(+VT^=89P`R8aitL7utbDDwW+FwgnJIf{19;xYhV z$=EG19!YR`_hYdz~D& z!`)3zDdz#MxS1{jSFTGBh*iWk$&hA=akQI*>jR7=O_V$=tFKXkw&(FQv&-Qa7}Cvw z2CLUKM5KIQ{y=|L-~0>xnQoxncE7RE69C{&ZRB>gUrIj07cp1P z$W7}|=5bx~m<1yDwhCfDyzDH1wUPm`(K%=9!cyTwZ5JZfU{d~+O5+QpD?ZTvta|?i z7TXjVnq?>8DRseg-X4``%~3`lL&CqIH_|ilXQJ|YVhT>>!^w9#2noadj3hNQU}yzo zH&5Ms7PQ40%L=`g_qf^{CV%rnD?!h)>SgPlh(^xbhM~zd@tge2!7$c~W{MHv1N^pn z|7#t{h;eyGo%UGk@{dYSw9dgM73gYxra}_%=6qJQU56G1QH0(S3kUkC4!O#L31R2f ztHKUPYo+ShmIyMq6o0ir;8);2wU?j=xxO7zqccDzr4D^Nzp5-G_{6Vt?_g0Wsf>Sk z|3l@I=+1n)&xgyUx?C*Sw{#{~AQ&`aLF;Mlv9H~5)K;?N!%Exty?PC2BdIM8UG}>; zM}r&aE|z*hEHntK!u%NBiUuaWLy3pbTH)NSmMy3gtmY=ng@ITS$8 z!gkhIO*@~zsrcLn&m2=qUmzRw>9WY}L+aiKO0;>sha8_uq5%AD-3Yz3RfbXa;a+tt zSfNS9#Et zHQ)zoo4vjuRKA1*kK8M_sH~VBXw57$OfxjySf8tKkSB!4-zdTW+H6arAkbV}s>fCw zW9YckP^@c7sdq{cW}Z{;I^Rp~TNR=LV-HovV-Hf-426lgn6l2){8MiH`Nw~)-hbcc zDMLRN_&Zx|a4O3P3S?QKIDVXW^dCeOBS$h7KJ>%6Xm~pG$F9Tzp4k6PHBIk*#8D+| z4|2jH_4nI1B(B$u?j*6SlPV#+0b06TPx-J!IR{2qhrVE^VjnFnmskPs10Q;7U|93b|`IA zNHAli02v}tRxs-fMZQ|?9@ISopdb-zT_C=X3$=Z7OYN%!Uyv(3F*f%B z0Dl0_KY?-b8L;Ehzz2~@#?W{7jG~1Z(yqjzTVrR~0;&to!5~CfVG9v(aC6aRzxUl% z**Q;&RHLdE#;Q86scErD&FFVhGx{Bya{vLv`s{O76NCSmod=;)tZKJox7EW3;9CRZ zF|g?PeZkT>#nD-Fi2>h=wp_4K2)58K_fUVC?mc)Zd9^}1Opo$qZwnUxgD2*iQSRUf z2$o99Pkt3v{vqGwsBPa45IYR*z3K@2&Zn<;lz4ek0orYU=qs16ygbk7-ze)%LuE-B zTT%cZ*ed>@MWS0xIk?bH=_gpkOCxz*;Vg^l?Rdm2Cc#-BV4DgHS8X1C`ysM;mRWl? zbdYo!|44Uyg3`GcBQxCBvu6WmR7i-U^H8cpjOo#B0T#H4*F zptj)zs7A9Npi$b)XM5q-cyJbb0FI4O&Lyw$?ww^Mxp4}gA12V$ct4G~S*Y^?#Bd4RMi-w%i5Gh9p$(%@V z8)jQBQIvkC`rowFs@u-V%wC{RVk)a4`=@poh~0*4JcMxJT5|wy@#j_?cVW8tLZ6<`)V^|8Jveo?iOyU1sct5Z) zG&k3Ib*wJ4t0`o*ezM;}Z*D1jk&3B8C~fSH0j>&x+4;d7RAcZ)sJI9H(~m*aB+lb?R3E)yDAWcF`=@A5|9LI6<~1>*|!kdtXZa zg!o=RMlhJy*y0(~7$$)Ioh382?z0M*$Z3GcEw*;rfpQ20`!!!iKQQ3MLNxGlLfBZ~;R^R*!yFlQ8 zJG@CF5!KgyJJ1v{n|c`?n@SQ+=G`3Pv5~CHcCY+C8C&vUM%Om)Xylu zo0*wZ?m!-`77=qNg|wiSYBKtG z%%Lwk!d7%cTU1uyU7_#5nY>p+5ifSt|ut9kb*1Fxicf zdaS+Qj3!ZQ*>#AdD2cGUe0pdZ_DcZp)Z{|WRwml z2psfEE>yxBA;zA-wl5w5u)V(oBfBa*i%0D-8anuzg!0hrX~L}M*$l~SOpZ7=I+%ag z{;TkR-}PI&T*J&1{NLS`MmqO}$TR+^q9@1&`u^_hV8JBgETyU>7yvMY2kns>(d;7z z4gVcIAV zUyBO(=Tz$aw3z83H4$$Zh>4Xpsd$=};~u&v2HW!^5NJ2(XGdcxNuCup0f`wtI=2Xz z%WkvHV&w&3pEn7%kbfk;1N}iSpdnLn%g*Apql7Kpc(eRJE$2GzaR>qo^C4*umgW#J zf^%lU5$w3?xaSgmnX#Vr3}8>v_3mfyE1zz0NT)hWy!@W6VHC76XMbD{M9?t zCzx5@F0`0|2Z6)1?MM%~>RLVx$=AnnIZaVu!BB^9^{`SKoyA(ugr&29Uo+K%IAJ zDl}+QCB>OW=sVqG*nNf2o>Gw6l!~Hy8K;SukIP!~p5kT|ThW z8_3CaQ$EOKCiMICkg8Ap$vUQo=M88$i!=#RMc9+Y62`oxChA2)hsOm?;!|~$?h8GtWd`lYvhehQ-hs}S#Ds$iCA1WsdH^PFppT*=Jrt(UydpE# z9}14e<=+vY(}Ee;x`|x~HLij-pbwn*Cmzt9ua@8^MkWN|r&xEDxUx4B{Zs|= z*Bjrq=xIY!^HD$HChEy^E5S+H4wVO`82gwzDM+ieqi zwG#y0A<8geGYV+N=2PqO=!;;0N2Id72k}biy&S2Iv&AVp!WmxGkR1ZWM9eEmMA`fl zep!7?jrpm*_vNRiTM%~F%N+dS&(mG$Pqxd69fk`a(z&o{ywOua*s};pRJJ^C#tEh zyKB0P3p@htIZj2S87ThoQeD|%mnR}Eif%KH7NC1ij;DNhi*B5w5^ekF+xa|?w?q~M zNEXx69&2dgWctR<(TNL41LzNu27{|a^7PU@!txcYCR_G3hpH-yqdI<5B_k7z91b)` z2xxxzF{Y@PnslQDLMzXrRA;|+cmvCSp}Lz(h@|=bnMO`Yy0@BDzKoy(xb7?PUi|8^ zj{yujA!U2@olm82HG3$xRVayXS-AFuts zV(whG5Z8)*hRdf9s4tH{ss83~)2~)jy0lH)0;|?;Ou2P;hda>g;FM^_S*J!l2T zabstHT&LB-v|5fMK;zlzW#y5bjBrns^M%rowE~Ii%){Q&;b$}C>Do!^ z#~*(2@fU!6V&?rIRwJsWE(J2pVa(1_8leddbyXC=SebESHw*M;GT@#{wxS`u^ zN1%^{YJ!1%$z%o?n*N1)(P~Hct!NHjXrE5SswUbW>j?F6l%$u0p@mh}NM@PUc`6kE zsRpKO){5&Vcst8Q76aOwI%qV*a}4=4>y3G>?uP-~lL+RekYW0n#U4Q=EI91ccor+$ zv4RLK7lE|e+#|oGJP3vFjvU4k$}75^2LRT*bEX=g8-k*Fk$B%R2=g#s@}4C=Eo>6e zcAR#30MF2^&q9a9_oZNogxpWaE>8M}IF`C;@VM1*q(@QJsJ(H*RriC{W?`R(xv@8b zj#ZL^6p@_v5%!vtzKKyrgL6oSHPVh2CFls)tV`>hr<~g{Wtui`NJl1e#zM1YzG|jP z#|#N+cW29xN&*1ypZ{a>KgWnW3Z7u#SteXd#m5ICfVJL|&`gu{Ye}*wBykkf4OGp=x+Ec@vsTqw6D*24v8_OKRw6NZ9QcSkS44*t27~-Lzz; zp}M`kM>h+gS9>>m*8W-0@KLvK>+f&$?EwjmLi^hh#E$za1Z>^D?8qv@?tZCWc9nGa zhpX*?v2@S8C5MR|R;%duJj?UVV|M$5gN!ei1xGG`Bdx+b?0+pagW^>omwH4mHpS36 z4?(Y;D1obz48VxWBN~8iHY%Rvp=DFSTtc6EP>=dN5Cs#Q#VIi}8uEDe)h!+$Ai1GV z&2YO16L z>GNTWrsC2SV;70K=A59y`qi6o$YcTip4IA(uo-|+g9L-bKc7JaOcxAkvyKBWfxDVQ zDCuIGy7eXeN^7PhNi98{U;Crv$U{zw-};uKYkChtHS2ytLptP%f0me=i0ofS!J8tYC75OH86OW zJ|Lifog#N1mXZAc>Ct5JsHrF5z}>B2;Q%cwAjC*J_9_{79MGvQkhzl}%M|ce()jRC zN1oPtOC|C(^}?Ti#(@tTJ?UhJb#dNmy|U^FKauB3)O&Pbw^zvDs_cLl8WfoA#i1y= zs=!#t!GM%i9ez}H#^y`j5qqm+x-a%bpO#n8-PBj_k~H(uvBC*yq~jako<8h^CxWi#y(G&5D&+Qvb7(pvj0GK}sc)Fv7jPrn4!=z)q+4G2zO+n#12k@n_A_mZ z0DT;z(nr6-g8b8$R5Qewh=QVUS~=7^8DSDabJ2K$vV6$(vSZN(DdG~W6oE{Bll_cW zooLQfo@e5;l!H8|M4eIEqLKgTP`}b-v$sGD)y3)TlghPBp4c^^t4KMBv27aG+ni!n zkFL|$hjI!x%cyahBrkxD$l?JS0!jpXO01n}jG|?Qu6^34Nb2D=qfn&l{wF<(c?%&?=A(1-v|Yle?S> z4TX#g+Es0g3{(F-jMvA)+;EF}oz%SS)-K(UD-dB=8ExFQPj@7R6IQWi20J@DxC=Ka zmOui1=rJ^7u5uF9*y%jJ%d3}!k#Z(@!*c_~2nV+%6$zz9_i%+Lhoz7w_B(SUoV?+< zn6|~h@a>WP*Rub7r;0&ly(s z^*s^S{r8SNjE%%KIkKyY2F8YCT6*GE(t4nFabrqGJrgY~);m2|9^%Vo!-o(505546 z0-S=nPxnBN92c+|ZfLWgB`=?Av?jo*oXD14&Anh|0_xwU9PvUa8+F*AwI^MbBy7`V za#;$uaA|%cS_UpYG!1cWz7vq5Z&W~=n~wcNFJnNc42b8MMQ4z@SLnPQ>RX|`k>-lN z;*VU6*p{~*-E|7@`hJ)JXzCMn*B;4JPSYfaRYdgoBYiVCwY7HB;oO3}sC&iH1TuoX;1T#_4<)c@y@Wry~I>o^Pc)ypg~fjSoFi9;uagrXRU&2rge$ z(Xa#V%s#vjupWAFpNXo&LXWU260Riyg(v-I-w4F^F&=?WK0;|Xf# zm1X!mwe!G|!Vj%=fe1@s=$qIxbUyOCH2`tx1F~OeV)hGvy=5s~;gE1m7z%lEwPdU| zbWPEHzhtH;QuY51#Yv0Ck89=Vr#!N2cBpWvdSnSeou>53?f6sK`qM~kTM8I<*@|u##oRl=zMe${2_b1exEx^`c0}5&wHdv zmM+ly8p_zN%k8@xKNCAB&FDd`gS+agu?#F2fy1I|flHb!aHPak0AwV`yW7F%9|i6w ze>hyHK5S@_U`^1?kY3yoko!c{O|MAQoB#UXSFSZgwTqn51u*&?GoY+d56Dv8u)xwL zmP9jsoz_!zwk$0qv@CBrs+EDM;KNJIB+ZBqbWa|49-%PIxn^D)Y);CF5K}y_xjEF; zzQ8#LVgHDjyZ=5(wHg0ox40oyPu$4JeQc9$a{Psy*sT(_f!H$mvUsqXGRNFCnF!bn zEEJ=8GXBWy_!n*1^Py$h{*bXFa_Ezn{FqBP42pGD)+;7Pis4}bUm57mdiJG|I3 zInl{kfoyg9fUT(00*4Q3-oizCs{5d0CV=2B7K%6&I=w0-f}9ofxdnzf;J610c*QgK z!&dzvjMUMk%EP>B-+a!4XfjF3BuIipsj{oI2*Yd3^%5AHp~O(N5(ERw%@R(Gtu&21 z#{t|v5k#!MCU-?y0CiD_5GzcaqFYW0Z4gB-b7Y<;znf5+#`G#5@pU_9<^kM6FTHOp zwDN^FYbu6yn>a8SN}AI`-6#9}ks$J2DuupygpZCW!MZprbM18Y!d$ zCEz2)7_*yPp}D(s7iccPpK2=_>6THfdZZQ;w#!Z(Imf0!f*Fky^gQIXk&xyp$ClY{ z@KJ#QLc{G7R@m5xVJ>JJ&MkFn2;X=fkvz`(7=h=$Hw9oVqWMw^E3+}!0X#m}?1-|) zxY`am9UB9T+c9w_5ge7NoD{a9V{%fu~X)r>-S@B zm#m^4HYjAH>(@{^K(B(~;}dSVc|xaq{D9$KKi;qpeO15}FLgpiiB0%R&Xn9K^}`n* ze+={nS`uwf=&Kdy>>3D{8HxipC}9j@*EE&5wqIK|>Z=_6*%lByG_TG9q>^ZFDCwmS zxZ`ZeWZR}|_e^PhTJ0C3c6=?JV3=~vNqP$N+)e^BS-U+fCtM!@qmtLI4#@}(Afj3T zMndzlp}K~HEM%dz20#1^6GprM62n_}`0jVBzwux}D;z&@KK`zH|Ifa?;MD2CzmCIs z+l!7H5mA!@=#Es)bKE*7Z89_R$APjPbTcaigE3||=N70OLel&`+|=5wccuIvK70Q~ z75%dSgM%^|a{zdMU!1LQ!x+c4&NI@?PAB@C)DQw`yP0-wf}Uw`GrV59OicDBrWF8S zK%c)Zwfve>`4LVbYeKnZ1G4iJDr|+`>;I!c}{7Q7$`zQ5*uWjr8_qKVAVp zqX8jIMB<#T=_Vsl|1ae&|E2G*pJ4=uabJrvIrGtuWOU=Sw3BNNfvD7auNR{IFb+lf z&5}T(iPZ%SsO^48K*Yl?WuqeqG)o8Fl&A|Z80pejpwD)$ZOkZA8KI@JsV+D|2BX6( zUTP^mu+Q(&za}yaMZq=BvwM%SE@e1jcxNGVnC%H!W_GUqn4xzKzxrp~elPt9nx>)0pWta8Z>T8M=t4L?6alGl2*@-@HQ@niBv>kQ(6QQ-ceAxx zG}Cb$MPF$c>SJ+BYZ5n!Qt*#)yV%L_`dT6N0ueNahTm2nf9z+CKWWx+ zF7*n&@MYaxi`h)#(1ldAMcO(39@DuH=P4O_uY{9__QDuy5;>d=&#ZlF$LS@^idN9q zWrzZFIqjyq&0=+;s4Y4YA)oAFGGhDM1nGRKU-j_dIK@VgMx+oW2di)Dp~&Dy5WvI# z3h5muN*SkWS(8J1I84K_*l(JVUIVY5I_&m5(?*O1)y5t=S6Gwac>z;=o$u?tO z`>4L_V+*{$^L9|OiO3B|!Ls``FF>`x?IWP3u)o^gmR?P%nr!L4AD)8)ZT{@fsz3X) zd#KIb{lE(*1V9V@Q|uG0>dx5ar3rhQHcX`k%^5DP%$bygN2b#Q4Y zsayzH{dx80_GTFugnxeZ>)tBj`(ZZD>QW!>RdX!r%pVVcGrBbZJX9wnRNg`r1D&FQ z@o-TzoRPEdz_040KZ6HfxA)SMeyEx}(K|~IxIYn#C{DvbTMEs@@q{>2QH9;5p*yUo z{5~f3CK3QG>n((gOOQ`ac3EhtxB1B@)hC~PqIKxGvS35~;kH(R;{vi){qHSS-}cNY zHE!69xRx|CkGd6_@nfaIkSnwU(2H@g2*Q7($hR!=`%>N6A#AdPOk4MU^k@4+@Aq8z zz2`zV+@~z_4tNyMQ5MbYtbmM}lvsw0Ely(S-kcG-cgtRZAZYadP2YyW;)+pipo!Dq zbtocF7ZDn1m9$q!g>F0h=6mXA3O0)o2yhG)eU;STy%uQFQx5_sQt^$LXz3o%)#OOP z=cF0nIeZ;5iy2nyqMjXh4WoyyW}!i~(z7VOKu$In+JO~nb0ZYJEU)p2>=t$cRv*?G zC_@T^-`;`*MWVai6Al^n8w*+(aOaT}2=3oX`xsy0~ni&WilnPTw`l0wQv2va-;zh2l~C{-wGKYj?{7rv--> z_KMgP7bHg^xjx(Kxkr@^^uyLvBTJi$7nSgOTRTEAW*OSDjb??&+DMEWV*DO$6daqP z$(=zE+pK}~#H=~Na#mtj+MofkMX!p^o)r`<24NASp0z{X;eqoUcH@9wrmW7N4U7RA z85}|j_t4#XaMlFw*t56f2ocVwLf1G-o&`g;zo`B!T|uh22HFFqe^0K?Z6{aTpUTZP z&0%53^{V3!Y9@*^81+ojel7tDXVy#brO@G)bX-th%sEIDmT>JEWC$Gc_%bQg)@XO=dtdt)#d4Mbfn{vZGp-xle{m$TmSM&mq0Y$fM2pnWH@%)ONfP}yLk%|3a;m?cXX2)R_`YCJZ3cK`B9EFzL^#lxV+WzRn z&)VhPfTBUJ!_K94y{jf(bd%rVF?i=^+W9O+Tx|j%L_I(+!$9LA`g#GhL=Ph!qz4!> zN`566NUrF!7S=OetE7HIEzwgW?-^~F5ny6vchX0$r!Y0P#gmw#%YJj+^jLU{_rpMM zA5rw3s+T?T>7kRZ6~?cD*!t3c1xDoh^uTv{6&z8>3Xe5`tRO0v{_b1$Uxokk8+!C1 zECgqf2+a|2ap8-`u9oi!+y&I1i?F}RwJrPfB`iQ7HHkH>L%vrS(yCoqhbZ$C^pI>? z+GR7RjvVTBU$D#lx%?L&M>J^Tsn>}V^6VRfZ~`^LXEI%ZE;&$xFZ$t?ot+q@QBR=W zhw!0A(*koCb&hZolPZ&kGzm6ZZh^U63Bj=?{0Dz7v;0XeaE9$dmm5sg#}iL2-33bp zpgEuz7o&Vyh2@xmsa|RsA!K4cABH(C*rp2;idvAz0+8TtJv zr;(3Pu1plWj^m9dVxWJneXYjEqgS1wR1#qGy+eESz>QKoWdv@`ZteQ%jx0~(Kgo?U zH`ySZw5go~8948vOoiCo&<5~VNV*ksrfV`APS~`cB3oGMo4*jEg!0ZhBc1CBg8~dV zs-(qfIV5;T{!H(%T>)KN$7gqftcduLc(Az|f(n=Ni3!%nyLTQSso?4=^>!Je_ecWD z!BQejvLL|VIa9mydH9{2=0|lBrlwO)jyCkuk}yRs48ahws503HG`O*Cv1{c$ZTGtO z#T_}uD$``({`Oc--rR=-vJ&rssKUY<>I@N>wm+RHEWh=K!qf5G&4rE+%KgA^a*8Xc z^Z`t=0>fa z=%DmK6`%K>sv|2+L^&Q0FlQ zsv4TqB>BzuBj=f-Ln3m3(kAh+>{$|^W3^&xX7Q{Ng}WJVrFdGmLaQ`5N`1DAfwl2? zBw1l|ltS=cdEpuS zTg;Ois=CFoML37WBTGpA&ddt>7)a+9HOW~rgs8Jy_Nlh>omw>>nDTUPtwS6fls37< zKcjL@`t}Ll2vov2x=dH`zLGNfeW=NGvFg+3g-e(>Y>`p;6Bx40Jc|a+7?)D<`3WJE zl1{ZxTh^hWIoX1+yM{#KX^6(`*cXE-5V~~TAP%HRSGBZ9#{TfY3$eP34un2mt;Q$- ze}s+v?4%>IO{!^^JC|n+4a?)s@9Qhtk1ZxVmM*kV?e&lIm*1(rlgt@$5W)fYs{SUW z6$Gc9i909HNF*k{O2Lly5P2(@yDP*lp){cF+NV%%2e@%+7} z(H#ZuC;};0AFFev!HZ^i)ml`8c=N&~E_);dv5=bwK!}hD&sc03%SPLqP5$DGmWACC z6de2-qO`vFsCqQ06P<)P>sJeRT*d^JXIV$L=K*3vX?Sib3B&m;< z0kBknHPyxM9l*Qj@p&W#9@myc!FaysX1GNy*p&;gQV4jrbfxqAa8k`Ut>o<|0gv={ zFVzv7L?frvdLp@|Ag#G7yCk&&S$Cs!yK5X+@ed0$&^o?xbPgK zM$-+1@bGoT;eYJT{gfR(KrBeD_Iu^tP%v~z;i8QOZ+#~Vt)*MhmIz&2!Q<_-Fu+CU z{H1Hp;9~@2&~j38lj1~Ppg|khHTzgm*YLzDJE{~t{`}*=z5hXabb4EG->Y|4S2KA` z;inH%3`*wuRPs0%I`s<>;x&3Hdm}4`LZQcQ#8Hrr-EUxb17b_X>i6vgpsRRPF)rPPeS5)7&9k#n1ZntT z^|~b<+)tQv*pl3XAx&Al@!z$i{@|aJaekp@QZMLr!khjZ%d#NKSCeDo(fj5f{1?jQ z-_UT|vi7LG?5iqrG?wDAP#)WMrEQpHmJKEPL#KFj7@a4(F_rf-5tFqxN7aK@qk|fJ zKFW{6Ufmy)k_k%>_3UXrT!MjqBSFA(9cGTWPle|edZ3cH4tweJ43;sYB#(5;k*YLa z9K)pB3zYrzF&1SGoh^fjT^Z4+;Gp~P!!DdhQ#U0>zBlcoO?*S(l3g9u(P!=8Qb%kUjVw5U|HcY(;u8g2G`ZYM%^K`qCtMlY2byz#BU4fR7cXIeK#Na;rz@y3CJgFOvFI`SFqdCdKU{JES~k#93lO zGc9C7114cq{ICKE)z2F0=N1B-U%&TlXqZi>Ua7!UnvHk`IlcA4*DO7d>c@~p=SRq=n zMLuLq?byUWC&@>>3{{$>I8aFA$XmjH>|3D#<51f7ze}GY)2Zo)ocSEnrkxNU5IwEs1J6IcKkGfRg=vdvA!9u`ss}CRku6qAl z4d;Fqex&Js<00w;BE)jkL+!#*2?2W0xWW!?bmN$3(&BQH?>1M<Te`#-yRlowR@6fYRm0R+qdG3`}@_}b@gV?Uj`swtH*k{;}55-w<Q^0ZU4tKhF!y^826V?|v&?C@$XcQtF;FQNoMt)xdBL z;VEq0d)}_>v~QGeKw+F#*#+2IQnWKBo0@`ppwMsdV)39Z6AJAef&KKXU`SLYxm3s%4?{@^^a)6oJG})Qb$n( z|6ju1ZAX&qx)OZ%uP|zamZ%xF-qk{@f22W}o0+>=xZTPw?&0wupvnFK=}kRPQjtYc zB1KZXv`AKo1TvHVHG8eI*FF|C7>oq4va&KG!p+Xv*L87OVNXmL>o)tM__=|}DK&|1 z_?kc`_H+Oz!DkB|!s(`A*X4w{vWC%*PKkYJ>;*=w8TcwdH}b}>nW?S z48V1JKg!y}i#fW{575iw!Y0rHYuLA2<8|(I)RNbWo*(2(?4Akk(pwF__T@p?5X$ga ztVtTg{b-WQ*r;#z@M;i!vcrAg?hvL{t8W#e-lUk4~Wq+cijuWP-Rzz8Odhw>J^B?ZY zmbC0=XkaxW8IQ33>B%RhxZ|v9u@}iwfgya|h?!gC)>A93ebMCg(GCVk(p&+rt4w6fKnYQq6w^jOPM>3ZMoc5~Jr)Ni+80 z|75jbjbgazyEmTE7RY5!cY^;4H;JZp%*3k7Sf7NoRP(s}QZ{&Gg2VgvwnEg+Kxw79Ed-2e#D7PX5pgf(3H zOi52$Y6sd@TV=e?pwnqFQ(G6(c>{JoXny@%*_!NlX`BQmRpGMOHcLsgQxPxg(X1G# z9zdK2FQt2IwrPjl1hOz3=&}IPi>L_5WblH@CYe>U5Gbv1T3BkZ+Ub#p=y!Yb>jQWL zbSR2X#S1E*VSu<{%#^#NV=&KIl)i_D!5L`8CQ~oA$lZB#rZxvQK&$H(Z!ftnK#*F;3>uuQZwHgPcMW2H8S@ z+mRkoqnFr2ooa`0nTRLJ7Jli*6)6p9zrzK*PSEehTmaXYd|_O{Q_b$O(o9& zy8s;paxhzL8WBuSRiMDJu7N-D5b z-(fr%yBv!K-cMVdCrMN!+7Uh}eW>L_W8&-TQ%RWcbRPV}cO&O(dYh93Py4O`L~YcM z1jEH}Rl?I459IhTq`m?21@`TKfMyBIQOG(3odmjvN2-C9h^QZ9NbuGKs&Z+P(4#LZ z;`yALJcvs=)jp8HWX;`# zrTXsVp(|651~Rxaid?-v`fPWOxS`d7uTz0C?vgz5;u-=pRK}QX)f;ZIBIh)|v*3mg z?@gnVgB}3HuZ}P_7q?xtxOa`Lm%z4zjGDefs-yivHdi~R8D)F7kAOlnFA6?Qz)Kuxt^!lyUXqY27qJzGiALaBpNs>s;{4Mz^tcfa%VDe$|lt@nQnCJoMke%maOg=Kw7$^t&&y%_A8VNlC55X zRIujQVEOM-K0|x|Ws@#QR3f6-K zDWK*sI1D+70gXX^C?&M+{Z;GlV^)IgyG&*79AlzGP$)lJRkom9C1Uim)cr4uzx>PeOs~w5p=J(-39yl;=M<_QgreXSctg318Nd|;)!uUJr*Z+PXxpC)5qB3 z(&tTpeR#*Ak6k!nJ(}!L4_WD~Q*r@M!#*1tI!V8jV$LPq%@fJ6mYn?nh40&{kj-Q% z+!I}j(~E(zWme6A>UREkUlpHz8&}&();2I6AV($vYb#Yk+NkU6;-ZZh`eiJiR^3PR zlcCYS&-I};5H;Y-q#M=ky4}}e_nzS<_$(N^rOuG`acGC&-@F&KQ({`Eub-!9M2}e` zACMq6Pg5u}Z*GJnI}~IDg?#9Jf4v~LL*o;4JGGzfomY8F9wAl-^34^17a!~GOC%(2 z$+0hKln3h$HE2~tbA>(2>GidEJ;*8jPAoS2#fcVjDS+}d3(*D)67(BG7T%h=4pnc0 zW?nnH4HuVJB7=t79J}NI4h@y_Ie>BY755W8SPwF_qu31KzD~ih zBhT;JU~l2oa$uxdhE1#l$HNrrXBf&sJc6K3X{KG4GG>ujfk?5%rw&nh7Uz)v0|y7V zn48`LN0iYyWQR5jT-)hW0$<4&UTf)gy^=Xy;=cywlJfhK@E&c(@Pp;JlTD-a<&y}<&4m) z5$q1WeFqeRJrsHezZ7zNw<0ITGqo3qGupANw?*Sw=m$|XaFaikMc|P%TnSHR(J#Z;idX!A#lICVzZ0&5ubfMI0$-v$I;dh z2>PwXIRpkkP3)bvAA*G$jqO(@q0&|Bci80J560xF2!~-z^54y4qZP2X^}?>s`&JG! zEL8n@@#jbnR=rq)Na&al`@h2|m+n!U+6KEOJ9s_Htv4a_FJgUMaAp)G$sN$D6hfTa z?#)R}8w};aLDPP#nwrphNd9}lq~a<+{pIN~S^_9T3+|mRRWOU|Vs`XZ^l@|Xa1Es$ zmQldtDQ?)Ax&gV{$3Q+U#$pB1OaRP<>o)bPYKvVjOZNx^ns#imwg5I1Q*a!5csq)0 zxN*)CUz!6T%!=k2BjxoSf8!St}M;~er8#M8y`ruuCB z+W_e`s2+!oQ3)SVB3zyXN_LDfA*>w}E1ECKh6-JHa2@0=LY+mSIR;(#sK81YQSV4J9 zT?r-MhiRRaF-Zr^+6&i!E63ZiTf7IW8>~S8931a>Fh*bw_z?=rrg(;g7(MJ#1qx6Hm>{=Yr&sI_&$*nv6auOiF zr8=NpOGx{rXMmP-JbMBME8?e0y~XR)^hk;laba=IysRum41{LVna@OXe4yp&vdw=heO{eUPs-`xJzh! zID88d+;D`Dtg!{aM)uQ}$*JvI{(psjfvW-xoKFF694Rji>C@3&miB)I{>SQzR72Xc zSTd@7ZMdg{+|*Sy#ztFAITwu~I60#|DX+p&|4%!i5DMrg2jNJmlapS=$szE)S&39* zU!Wwyhj|7)PHMZcYI(Sy^ze>Zh0aEQ_DXqKqBARaKiZc$z0>1v;5pTB@fI!iIyVh| z>>wp_EFvE>>a7P<=Kx+FyIXN1yq*R7g~Di3$GTwusogR#aen5BwaR*fD4ugEn^r$T z=g4l^_6R(Za|#I8-{Q|avUa__C?6}nTkCmo@C9^&XSAH5Rf94q)BSfuvtLD#VPDo4e6J|BEle9Nsb?Z`^ z7BsAxOYZZ~W)Z=xv7V!Rlv(PaFO-SC?MCk}=uoY9vpX50QSKL9AO0nbi(k9k!q>18 zyNYB9s6!q0 zn_>qM)+8V-dO8YG^iYNU_^%kF;Q*vG;oO4s5%26BEPY9GW_Nf+ z*-8e~ZtI6_uCOlscIYeGn3@8nC2~_keQ77Z zJ|?QHWRe6;M>QgbcEk*deV2{Sp*7rN59yoE5-JgEDS1PP+urQ%ju$A@Dw_I{PBmMqYj6yS&Q=QEl06#?IZkB zD*@;*>yZRT7L;2V(g)sUSdxyG;iGE((vKNNR&UvvJ{esyxwNDe*zrn&@Qu$$>`ltX zU@qU`Iye&c`gDELjkM|gJW(*6zuLtnF8eF0&aL%W(H+=(^c7~(0%Ssj4w>@9E_wq&s(oerB(m&|iy$iNAXw3!Zl8i*nWGxHYXl;N=@J||8L#T0phh(uk!_C@# zMCqz{_7<*2&*E;E%>r{uf-kJ&o2N#_U3RgxOW?KDL-^UTc&y1izQ7zYD_&D=&yJq< z)gAacUqi)EQpLCJA%Tr=FX?Vqbb%_yDM?GGQ!%n5Aq6Nl(cEBd5Tjm0Vv$=1DmtNz z=!PUsyFhJjIS8LF4QikIkYQTOpbvPeEeD_z`*J%^Ghnx{ztMkc%k0csmlAsVwH&qT zKpQ}LIZyqd#L`jx&l_Z7N77PTYGVDtDzGo43^a5hhIyT8yOJ6%Ama9i+SWpQ;l3>E zl-$`Iw1I9h5Hb+r@T)a3r-Qr9n6U3v*JMUD(YFar zjT#O(B&vKsI@ERkVc1Dq#vik3gI0H zDVYUZD)N68U;hnkUQ_$*hhxSY2eot>^KKQ>{DornBD{3xf)*bZPSCoCco;5wj8)gr z%B=RRzCgMVAR!xd6jhKswNxLJtmtR5B1m2_m6SGtFQA0rXmi8XK#*xI&nnE3|DXIla|;(Y#txT{5)7X<(Al*R!XD3%urpj6;< ztx{aI4jJy*<#6sI^I;e&`_1eq4C#5t7gp{B(c(*;r&xltO?U`a3?d%SmTa5_#g=Z% zrg^k9_r1AAm`4&Z5tIx_%Z1geSVaSZDSv z1>-TjbMj-Z5Tp!4V1=t6`K>!2ww{P6OXt^Pz#s$zdr$6GvR*eV*^kOYl*8F9fDRop zXt)Bwh7C5viCTV`Zv9dQhEmXgy;NqYzL5?`nc zUm&;kZjbwO^lj%*E(CDO%56V|bsXsp?*>kToSjR+@!%$fU{g1TUwRB`8Qah0VmY(g zb#%hK403^q{=acQ zDS3C&*n*}s=i!GPUA2Pt)h|mId!%azs8oUOTN&{jLZsbzkAQ}#k>WWKN*YUZxe&_F zQ||L=h8kLOG<@R9Q#x!G&nW=o@Axl@Z@I8-Rtww_D`Y+U=xWVZR%%|QAz}8v>!@># zu3r+3(==zr${mX^AJ>B;;uVDTwTW{rP7ogq!2^S%@V;AK5 z&iQYc!XXb1bX7|+ooSD7D(c<+ z;3U~Qfnqff>r0ph`Is6@irMSM2d)Dc>don!J}V>es#W7Z<|KMZo(`V(?^y@C0`*eg zWNz%xONs`)DR%echOLmOL<@F9nw+&is-~-hr;6K9#C$lg zt@A;`vMWM!8lBUmEeLjy(?WwMsNRar(oXjCa1mr*Zm{Yr2h5~Pp&2Rq=UZl@VRCK% zCUajeV^t6hcCape32klk?jQdigK)?ds0DIywe-b84Ft_YlPxdS0}dgT>e(-9qt5M2 z#p2c9`R4QcCFoEC%#{SK+CW*J8^z1z)?{D+0Rg@d$Ivj*XCIUta9jkmz%MT4l1eum z6FP|}6mmpStGJ=JB5yzmvU84zfo zVou<|Pnjl~H=Rn-KRIQKNO(JycR0Se5;5keJg|CLHCGOffI)w0=}-ijP{M~&4!J9S z42#*jQ>eWC8&c!~+RC`)U8&^&De#Z*Y&wU|SW*L6n<2!Uhv&h61VfOdgro8NQ<8NZ}NTRl9>4qfQ-k_e@Z1o+6y!H}!FB1c~JoUuNs4#r9L z7XV)>vf4YC))F(t;JDExfmtSGqKJE4_v@8I4tYbAg|z#v{I^h0Lv7mYPb-~91mDB9 z51whlnFHgXxlKiif&k>LBmleYGJM^$c6jjKTWc)OQe*@8WxeDPK4-M=5UL-(iuYTT zbFxsjM#8>G2dl?xzPq01exf}0!vu-xsuMhn!_^hIaj ze13Y;^P?Nzk?1uE$fvvXNU$ffh?TwljQ8S=&3AfUfs=?jd zPeaD?m-JflAIl1pjWYoIh$Im^f^^2G2?ABJJV{NUg?;DT0*U3Hw-r+&u_K##!=&|8{i4wguAYKJmc3-2PFP1%pF~pb9cCMz}yRZJA z6+I=|hx!*gDT%FNHD-DKIW32Q5mBaK*!kxiItWt=`n*;YEA}Y6X1`5FM5UohWS}SZ z%4>Y(^bsuO{!KpjG%xPt4`gTN5*^4alb6&)TC%lv<9o#)zvB?B1M3YBdTox_ff%s) zBP4CD+PEiCX-3aCl!cy-%eQ7ZTif%Z1O3`|M|2mppS@`%09Q+u8|?LPIQpja83U^cvooWB$tZmUPTiH(@kfitcZf;LVe?jNmp}#&&`IN&0l;3IH)2mL!1! zEG6o&hkNOkr%_uPC{mImdkAWzak^&#D3DM{V4GXOO@3>&Ea4_EAru5Dt|p?*O$G!6 ziTP=<79g$#x20A7p5U%yH~5p{)4xJ6Yg9AvlDxO2HOOsjM+?YA@(Ut5(BmQg)}h;# zF%bq;P@}U`e<>c4j26-qq>@CQ>SFLY2L%B8gA9naBGmH(2Yf%`xMCz9vTB#a@E+jA z^dlC|xZf2Yu@br`6ikD)Xj)&N}r||FjP*Nen+|4VvQaPFF?8!dsHXV+Rg1Fo2cS%9_nfyhnJ6%ShWWIEqjTxmIz zTSrCY{HJ*o&mENR({mg0AF7w^l6K7xGpFkZ^R=e>n|flGUcB-X9y7s{6@H|mlu z5@5>eL}cSeP`o!sQUtsE+0!g`tR6l3G~Dja1o-*G1&aCo++uX_u3%xgwXI4_1oT19 zOBtrVR*v5CC;HW=-wK-fTmOmFJ0=pK9~kcKM#)l7+{|w<9tEQ`#Cz?bRvD*h57LXU z;?fZ`wUw2XKGngm@7m-*Hi|DWG+a>WH9Cv03j6PWQe3S?RLO#yGf1!25?jno%+H9q|bt&ovjsz0)3vhvK4AR^G zUznspr42UQ<2t6&XL7)W-ez1DX)wYk}0gC^<-mR9rblS|4C`gj6K#rrfY&;3Vx!<>Ps z4BRJ6HYdgw)HiM8wbjd%i}ImtviZt*baiZSC;ACuFtS&V!*-co!!{K<9HP?mbm(dK z(>ofR1+Y~F)-o1C_QS22EZq7y3IK$Mrfj9;1c#(;uFVqmgnqVE|2|@db~{KA!)s~s z0UrjHcS4)YTJPR3BTz zM@+aag~^+OSJSgrJjnU%#azdcYk?VBlUCH$C1p<~*_*EF^`W7zC3ru&_Eewb@P!`x zOr-!~W`Y5Nj;9OhhogZ5A{MIpGhTVEmCd0Lz+hu zD%lBNh!dO8B9fu)7L2jgsZ#3%^oaFDa_ndk5WM`nWZ94U^{~74fJgUb6vWoWKqN~B zEv}`4&^E#bk4j~Nmq72{n-lxegn`GEO#op1j0=?1yUGnfJvY|$*}HU2pBY%)0Tu9b znXr``MmsQq603k;DCB}^R4h9SG{8~4Pa&6^M(~;K2fR?D@|Es2r|>a37{dH%@u!xo z78;4BA3JGWfb-*V2ZvqYu0trU6U8N4!gdtul|&iFGiQ&1)Fz=y` zrDf@G&=3Fa7ui3;3jAB7#tprMZ=6C%ZJ;>VnjJ+S(GguRdeN)I+{LdN@jltRtfNe{ z3u*5`T%5u4R2d(0|7|(w3ap`@4s=%)q6kTn=CTl{Y2~zMxdHB2C1#z<>zg-KaElRO zm&w8tWKADeep)ZnH)N`EkO@YPu=ZLiOViGP#NXIrDhlPYRu1bVk*-rf9qeEMp#e;t z{~p|xRGokr549GIi(($!c4A|P8(|rSXNS=pnJfW=w#S?#{UuX;4|+@$=p$^xmMmSh zD3Am_l!M^9IR@}YckmS?Gfs0f`&iC->TX4drUU`qzf1oNW1q7ezU=BxF~Z9u%jDsC zwTgGw$Ecus5yf07a0CpR-`TW+qp^8pup+`?XwaVsYXV@lNPYE_U32bAA)w|RmF{8< ztmVNnKoi?@ey3_V9p}9rjN{;36(ajRcg@i?^+nqCigU45P?KC@yiEzTI=?A@x{!kq zO{4)-a18WK7k|oW|NeFkt*9GMb-9b6)ftWG1fBrQx0Se;Ci?JUYL+l(E_YHg6GJC6 z$B;6kFaTnraWLg8cVOZCaxUuA(l%5|SX^i?q;K2IXCW>QbPXUXLo=Z(xL9B*x4V^sx?xu>C3FCRGXF&YV$ z&)JBu2o0AD-2&2gwZg*%y{*_;0uq71wKU1#(D8OtfFeiq5<#JY!)Yu9&Q?^^h{!Ku z0@S4n3J8y`(KJ9SR;grVB>sCx-3=3T2M?lW@YE%>b}}+WZ-u}`AYdKb%qL9AMRX4n zS3-(L>b%ESyaumGB02w#NagTAYd9xYWdq44*Jp`@vnIBb7M_@WQRa;bcUCFa8K(`q z4WH{^^&c+mvZYducoG9Q9g72;E;+(jyg7%UCWT)R zj8p@zE$jC)OR%W==fq_4)jkmOLCL1`AX@XMzQ?P-1bamT*h#>$Y=Vvy0{%9ysA**J zYM~`#EsPV6;TBzw>1|dhM zZ7=3sZ#13@t^cu^QqRAF5?ZQn1gtM*1beb;y0ahu1zjpQvQMQZw^ZTkOmlz<*1?(3 z0>jlpMC^)72|KT~rLDc|51M5tjl&(+Cwxz=P84it66-%JQX0-`VoryfBj&PIrze0N za5k~F7bNwjPV(wjnxyS@K48Cts_Y{BL9|@YgMY7o1yaSl7Me)wlm0_Ym@Zvx!S)OX zJvXJKqW}k7br|kb1oM*l@qJ}Ib8A7<9mb(V;)Ahjdl7#?WLra z1qzX(A%GB07cZdGEg&H8jxlmS0J1;)Q1jKRC5}r53Rvm7?T7K6y%m~y2CyZ`!lv^~ zF|m_tKxhEdHU5J^&jEL++RvxIF8&${$MQ8^w+qkq;86*_%YZuxt3N>*JLasn&|=z( z*LU(1;!>7t%exsybHyrqUr23fn?iZ0TBCdXeA&V5H*g}~x=0OBw@S|xKj}dGXt#mD z7wt|^L%_k&{(Rk9(e3Qdf`WGGcqcZsM_Q`KTO9UL~e~8d5^jfxEoXrK>w$RhQ`wLt%ynWHSeQu z=uGFS3wP26#2KVqXxzY&VovCB3kWoZ@8KaPGX(o-oY&VMc259xa(HBANK>@W{oN#m zZa{uukg953lVFE6L2sG+ov?RJo~*Q2o`FlvkB=rO3sw`NjUe8hmkt)}oyg`6A+5pn#ei99Cmn?K{@Yfb8e1G@eNfQ3>EHzfXwC;^n z5a}mACB0t+=(OrSJ*jfJ?g#uEboqL_i5hdD&y*B{eLX8rxQ=lYgvAvV#p@$zpZ0go zZ1^!tYLj#`5Z8z0119oG9b>Xvq)qjQcOE=&y0W%()eGGh%Ioy9cvmg9MfJTjFBz@m zdc&b~?MHA4$4jsh)K$Q>ei1DVd~pa_^PE#fmEwGY@PmhXIMUmspMzl&E(0R>L{R7f zf8+)GeVC0wdI2V7+JfYL zy0jv7%~n?Zgt?-78164!7E-TDLP)%gSR>dI;SdAcvWji}wuItH4^p|n-$BpU2QL=+ zh$lM6S(FNdiYm*aPl0u9q~_@?p8OQAK$)yq!3l(CrNMEcSH8*H01zZer=r@-&fp>V z#UC;@S)au=nnGe)?!CH(n7>86;{k!8(c;9uNO~AIh9}ER;DiLkMA})fLnI@GM%O~y z!ko-gS2iK-;$=`@p?HL1Mtx-8ZDsM2e)r%w=j}kT-IMo_w#Or+Q!NbSN`enE{nu%~ zV<+Q`MyqR}YEVd;ZYXY=^J-ee0dGd`wlXAjKRPe+MxD}L%Y%R&ujskT5F1Vkoyl%A{nv?ePsj0v>-tKI zy12A2kWO*bkCdWh88UYTq3oY@jw6_-EmFlTu%$jygBr?aonGfOved@UADXS@&*d@0v ztuZ~FU@M+EyR|ViQsJiUmycBW zn#n>O(t%uK^|NrcP~Y%|ankily(gr|Q(vOYvolpHhSI@w^P}BPQ)qf($>0#M!9Lfc zsUeIW>RO+{V7m@b$+wC>^)pJHCo%u_B1m&q@sNZT)QO-z!T8JXMV2;!N<#Xtc81+A z9;4JW(#&_|(e!yA0rW;w$^>)>HcUqG$6cK#Hn-d#|6(R}C@BpPF{y2t*>*nYOT)LI(&-94wgc( zN>9L2-`eztbtUIdp31D8uVH4KzHEZBq1w*~5gig0kDxv0&A?;9zTZMq=bx($e|E2K zu5Iz$g`lL#Nx7uMRn}B}O_#o5(Dv^LeXbnI@a^-nnfob*y}PBui~l|yGJ`m}dzHVH z2ZHk>R{g+Hi;0?AYAAP->V3Kha6%@w2LIx0z7*8O5Cm#`6p`k*EgG6udZFB!U=@u2 zLJ^?`pS2K>1|y7$zEgVA79-}^)+5I?-Y>pUH#RSa${rNea?4B$NG=B-)t14!JO zO3xdW<3J!kYJWaGiMF$vZlj5h4|P#bkg@ZGm`~^`|J+Y{8}-~vS;RO#cGaI1on~f3 z>_pbX9)inqoxf7!_~7eNjN3mpO>%YDKNna2jYaAu2Dq&h#?L?*C@Y`)B8wQ@fSh_F zlnXQir5CABB6)3ZN6FAex9tEuloatt67td3A%Qcv; zI?5Y@T}(=?k;(%~iWj9H``LvS4r@P|;VjmAhHmw`VfCoOqo>bD9|D6JgXc=)u^al5 zFkPP-VcOgc=;51;+lILL92oO6G*#0Jw&LZPH7tQLTj@epeEQdPj4TJ9u467bFU#%? zmBiyXSVWnBha^qkR0+8~ojiNxdX;1LH3C`{ex;Q4T+r~hXawgnjoOgGH{1m)x3*=< zv{Dz@Js27`&n8C2)q6c;yQpg1Es)ul{rHa`z9>HZbNU%@dwi_rlrNt~_w_q{U-iM~ zrcILswXY}*Q#}5wZ@F1C2--QWatDNS@!6h@g|QO8(IL`0krD*(5Zt$S0Fa&3x{@8% z)mpPzVpAnIn`*?l5s_ z9WEw`qMyT9sw`eR>_%!#$ns`?Tk>#WjXf&mG($oFaPeAEiGfya^IsHy@fUyL@6dz) zP!-qZ^yvr1#~*{t)yM$vFgeOfzka=*C_NEGHS+;Do%~8o;+f%#7~0 zg!OoGxK1^)bq5-{$WANaHy}qBgBttOtlmAgZBs5YVSV6(Ey|}ajp*DzaEFHvze}$V zg@#zKc(i$5|2tsTEgszAfjwpqm_Z#p#I&GK_;@IE_zT(j&;?XX#G^j(wPm z1D?fcFS=#)hi=~5Jd$q$hyKBHSAx{M9O0tE>2gy$bU-4@?gzK?vcDdD=yu>nr?cj_ zm~cCeu%C{NjO1|q6y3`z<}w}U4tVaDq?3Rlp)aPut;ovVl9A>VM$5ggPV5;&U9Rph z6%PzZgSG~mTG6U4lLgb=g94{H#Lo^Qe8PeJ8WcUc`at#4p1^K> zST#vjpf9Y{BBwp|{JQ|En9Y3-KPlwK5UVVY4z5=G?Opm5N2;<(O zbOQ_p*u{!f>?t^?3D@dphweYrSrm@@XT^tKr9)Rq^~OGCvfcK0j2W$HkuFw)R&+KMHKXL<|MQF46y+r_uPty_JN-UMY6tCY~eM#1*FQ6k@J2(TUO4@ywyA(nEDC9l~?YK5Ppb=QR4?Q4hjAt#f^S%NEzT$GVv;(=7 zUYb|IlbwPSL+#Vp_60=r+#GOz>wwiLHWyY%L9n*c+frhHBCjg7xsM`%SxYr>uby@q zo2+yIaz@w%)MfEm`u68S3SB);6af}C8xPKZ27Ugw~P;}Nf1l|3@M-zCR$0uC970jx`O~l4ZSWxq-delkY($4AFi@i zs6As$K-905u|bVYn8NsY4^+U)+)wWAwX%<%T2lj1>Mr}3roe~M^york%5BxO%+qqL zm+7zV6W3nWY1AgjfXkRL9fa$^-c}0*lM+mPM~fO75Z$CBWv#ntH$wKUhbO$ciyygrDpu(>#KX)s-r z>uMRvCWr2}31_|JV+;`}W%e=~2|?lugkVAS|D^bnKS|k78*$)fp-7q59Pn#!2QobW zOo}}Fap4U2JRL=Q&?BcH-)&K!uR=^vA5jbp2U1b56O`6u5fOrwSOZcjvQKWcdY}yv znm{uynbWs&D{mKr-dBs2D+`78fxe$;oy`5$BwQ3d7wrS!SWJDc0;bd`DqOiN0xCPlHgOcB5C6+>PWJP(Hi+E@q53+rnjqj9?^##n<$`@eiY7T2M zd+LUn6-rnY8DNm=?&7qSOpp`UN*0eOy&d_$V~iCLka`s)z)E_%YS{G&mD2%N*@SW* zRZaSGCzZ3&nZmXhTVoxIOsXdslHr-M9??kd7KS8VH6}rP!AnCU(P4rRdrzlqAqK{4 z1_*_gl4RHDmrBK42wnjIKPb*l6W36({Hu?%T~J^9CX*=8NI#Rva0e`Jakm1lo!o;E zTLE_mnta(xLmsbrNVg9W8bEb4=z?#b$QBL+Ql?sNQT>69mLp${b!OtMxY7x`qYpL$G({?P|0}14THtZu0}DE@KKdqu_!QB9 z>;^~IZgJM~lofb5JhBt*x?@~cX>w>un(CT<4eZBx8rd3ta>SMWClFB4fwnm0v{;j^@j|*yN4#>m;GS^Sh-_Qgi66@q!?2L8Ra>ITKAF!K!ZLJ zE3>4BbugtofO_BOAz?1se zPKptG*^4)aZCY=x$pWU7H~W-#zhsg%z0e^pqy`8hcpMa}9@^HDGIa2y>OpS4r=$Pz zC!c=w>8Brm4D`bfxNnBQq4$FKA~b&kDcIWsfbprNN$>SA)V9FCX~fs>@8pcLTnU*a zfQ7jX3f%y-6W^h34_NAiw!rQV%#O)K5LP>ZLnEpw-=B9P(4M-H4gDe~7{C<)R>flC zU3~v#@!@AD{@8JI`&6E(A60b*+jFpW>>rT5>Vp=pk-*wecJeAuOYD$6US?EKv$6CF zkk0^94@F}d##HpA(LviaBIgNppW3$RA@87t2Q;qU^a^fMnv8%1R2~$U&`()|)?w7% z1oxq%e=!hrE;m$L*@*=VHeL18E^9I?Iwr(VKR>+z?7dPpv8SI4iBm{f$4ni8NdyKPU#Tb;g0BBH!8qPzik+l56ZCrZ;&d z&g<^6g~I-A`Q}@oq7OO;^m<_O+-mYBCu_vCY=l>gE=;lm8|0%^D7h;*j(C!ReK@0= zb$Ej&+c#@14;fppPE-OrD)zK@4PWiskZ$8)RR?ouRusaWW$yOqnN+nM(0@xwfsfVR zRKr)J6LRDLTD{*Nxlt(EXH*!%jbT>{&{!6ceTp zz6QTQjlb$Z)@=9F*#W$_LBUS&WO`?Gozy47Ft9H1b5r;AT$U z-$`vn08Lt2fBYYXet{v*cq8F$DPB;R*t64dy5grUF>Rs#Y1aeAS-n$WKfM)uXZG<3 zC6CqM%hZl3yMbL@ZOxJ#;k9r=*7eXCrmm``Ni+20v5iUf0`|rU&FK;Oa!_aA!pPQ| ze6VE~;oQSobcM5(PrAbn?S|F$1)O2anYRm(uJVOWm-`UT$U~z z$uJ3;g~x^o=z|#g@FvUB&KSHm9>?ry&3bv|Ou=QDQg-77Sj^|Mcs_kU@Q)yaq&@E& zrhz%URb^iRaUT{clSC#aIsAdOEk}Tbnz_>OBji|IG)i(;U*{s|-gBkq&0Sf%*h>V$ zBmKY^yt%i8^>#5x%qn0gUNMyi@%qyrU~mZGnL}Xsg;gbfnexWv35RosS9jr_P~L*Y z1>C{;#1&|YrL-#`c79V%tdbMM71Z`#iaQwQgOiULmsI)eObF6EyEEp3N#2N$ej`K` zD~PAclwkk|4*x|o&!j=55Bl8?Ulkawfr|`T2rMn002SO0Z&+0lH5WeolO0WbuR2aA zz$Y3Klve0AI>6avGS^(aKvz^MNdNMmi-fUUCh#I;%XZC9vf?#}E!*`_m=Aq0^v-u+ zcj(oee(%qUZ|R(!E9hsIM+p||(#pUXC%DN*>2hp=b6B?YY)$T_GWbR(6n`?+fkR&d zK)tUmCC|&$xW#}S`;l_COoZ)#mmRSENyqtKtSVwaWsL(eP*5qr9NCxVkzrizwa_)fl(t zx6mS)8rZ5@khb%@8pN!524cCB{+aib-|LRQ5U*8mE>(AgaXDS^;m$PMpv zi=vkbYFV2Y{<0k5>GRbth~kaN6mMyE2y(!BqOjEM z@Cciljv%*aeU@tgXc`19D@ULS8N}bCC-jnh+dZ3#w7n5!0U__90p85pwiY7m>F*6q zk~8-^Gu6eV44pV4K&3MbaMS4<#W&N^l``_W*-6V^)xbb^JY~jP@suR_my#s^56=jQ zn0|PdtX-Lm3$e+%adfk27BTBNK6gFZwg@lJH}*_0{a#51krGL7rIX!oL60yJJ7w$X z4RY0%8Uv2CYV;zL z=wWF7sIfnD0jrCU9@)Y%m(R5<+OK7 zob}_)IVHgBaK&{_)0Ch@zEIh%naw>RfRxYV2o$KY8>;33Yd?*-Li1kMPoc{h&Li^_ zrnKWk^9GDo{2GA+Uvaa_MJWVjV~e*8P& zAUdLOoL2VFqLp#}hJ8G!(q0l+5id7K@P*MeG&rH2&yjl(AC_VXM_dD7Xmq-bTAyQ`q=u<7^4hYPUHX zw{^uZVVBj#D8thK6$0W1H^UY9t!I_=p0C-prBZi4@6AGOFQ0B>5ZYiQvE;{?p(c=7 zl%^JlLNi2)uxa3ux1TnIGBCEM>`pX@^A4Z(jxO1hGV+4phsB34xZVs>HcT+{J_AnT z9+dn2RS+!8r9-2t@gHD22{`d)eV-)te2p1I@?K&YyI@w0Ya=o(XTuD@L4pN%DTAaE z8jn^KU>a3sLacqN5$J1GSPb>JI|24g9)6b)fI+uWxjdopb{AUIVGt>#&Yu6XL+l)!6(!Trw^UqFeIDH~R{-`op@myaG#PURmpzL#69I^Mpl%UX zA2*O1wx$y?6)32cdIu9HsFKobE?ZtL+fA*7>7*`-YN4_s4_A>btv+FRQ}}~j-{nU=WjPtE;?uXj#&jeV zV@q~Tv*<}VvF-5LJHV!f{3;dfOE9hk@wb?h_l{`<3IQjeku9>U=%}J0pe*CTj^;~C zL%tFGy?=$GyfDL|-HfN0v}>^E#Wl6~x5SnN!$=>K{qcV&J`Ir`L4&PMAOG*-!#~r~ zJr>QsJ%JK(4{r1fIA*wSTN6sz?={}orVtM8ehf(L+enipPpqw=Ksm74H7(Qs7x*84 z_;xV-3+^DGJx`Rx&6|BKC9vFcpuj=e>arj{SE22H=6YMndSWKSOwjkTGem18-b8aK z;mb9TfrGj|@CZ|L1J&$Jxf1}t^bj8p-`>pq9@616HX=_e&>q zS#SlTHg-}2?9uE=b@E`iA|MBS0yGhvKAJ&=)*nKGnvXJTxIoYoG=$kxGd$ku4<*j% zi%I~DwRMTk#S82pM$3(37agPX6MrUL>aY2`AXI=woc_pBO%Q&vvpR_~gjFxNKkAuQ z(SFKH>a3!4Q5}i#-6KRo>=X3e!FUD*+#+5AOxaXSfBc_z@Ew02`%Y8}xryX)BhBq) ziWcv2FmeF;Shh3|OQgh`r6>YgUBH4VrWXqj^pJIQ>FX}_nX2E}LVf+-}e zufi2x``mcDH3ln4|9Ic~^nHve5*;+bL#X=Tb2}QH2$~#^6_t1$85QX3&XNhRV9%_s z4Z%ylJ(uFOb5<67xoCZr^9hBb^T|N;@EeVIHhSczPpzM8U@`ihzgVH92ws`L86k!m zOwqBP)3z9ciL8y7j80Am`o`BI=2sMjvFrDoM1QhQ7kb58Q8_LF3;9r@7!km)!QUXs zqpH*QI3HB)0nvD}dm0>Qwfgh6&sOeyKGyDXSYK1+1`#MjH#R!Jh(Wz(H zNGw!0r-Vccl{u@LN5kC~mlHQLhn)`XxcM(YHrNR{r3N@HLdU(;zv?DCi6&$8T&q~e^gr90XYoT^!hX)NIp zYmd$i8~(~|{Opc@u1PAMqJeylf`n*;A@MF!$DpHSF3~=nv0*aOT-H=0U=KuBW<5B6qbBIl7x-W zZ=EE}h7RhePk@}#CEQ_ZaE@nAx3!v(W*?_mtzPE|SP=F~2nZ{-&-U%H5wx-f!$5gm zQ3(rGpw>aDx}f|gkCxNtI}YQ0L;z7zY?}}6$z0(9xS9X{;jgbDW-@>WP{}Ob0s*(Z zl1&Kuml0I1bTvI=q{=jEsF0(Y2~Znq$|P>epNnjRy^@%ao^5&5p_s5qpGN0q7g>N)F(#L*{~Pv=>_R zq1{FGuB`^BDxiavw>C3^(gy4g{$pUDXWwq=^s*tq(suS1HsFTR(+5=|aNos2CO3{5 zFc5hruuT$aycC1OE;7he!T&^E?`;xsV;&}Vg&{;dWhy>s%UR`x5qu@alhSM z-w&Qyj(U!-y;!ph-jhWs_RqDbDxI>*;$&IvSt^L6a0rD0u0Bd%+-^-D(-(}(7r_zs zAjYFBZ*?QriSeF%@)(@@;`qD8hhK54F!g(mNOoOA&v+$0W?|%P)6OcKJ1wD01krw( z`sy?^$v=j!K8EEeVXY%xMTVk6|H!&wh6sm5Y_^9F#@%<__^wH2c}}seEJYJxPViI(SeshBJCB zAzQFB5nmmN%BK=gQ*cd?ZrOIBC|acObQ}HSP(Z!0;8G#9LLef_*>~n$82QO6^y7E1 zbH4*aHi^iAdef1a<2xMS?;sI2cX1|2*h>HTd!N3Ls2a9?4}DvYsy$twb!qIoUHroB z%Q;vSSInt_H;p7!M0zPEaYAOz-3b%|!v2zJ(j3rT4nNHhUC_1e&2xdXCL7CMqr5Cu*fJmb}ZnB?H-7tXb$3uRy81qom z@qZQnDgA(~_5nc%u#KzlFHCFKF)zwP7Np0qFYNbocEgBz&yeO4 zYS&$%^a%`%T+rBm!_;$d=5TC4@3cf^=dJ`DlWbcuoUJ*2GmK|&tl1E&8cGV zg=G(JtP6#q62Fv~kjqxkULb}A{;=xUEAMOG^4r<}T(0L_cAOXOAqQt}K|$H>0+F?_ zx1c;udRgczn!_7v<%dQ^m77%wENWENl+Q?3rF5+3;x2Q^@qk?GFhd=!6CT}q{T!BFhXw!P=)k^uG=D`!W~8)(>1Fa&%ZtQKukIWr-Kt&4+S`R&?MTTh0VcI^2__ z242B4tjF^GfIqU2igmI2+XP4Yp*``z(vH^zP@67mA4!$tp=?f=Y7c6!unCK;aO3ME z&TWA}QnmE)^H0Amd?va*3n+@ul#_MQ0z4iEwF1@ap8`M5sa4W>VxP*TBiftZvy>+= z93a1-lh;KrFiP^Hv|!k*`JuHUX9224ovgB|lB(iCGijk2rvF*~+8#)w)WKrVb2(rb zS7@qe+D-3m&+O$z(sm$gdfKy~DmVb_1u^-EN_u;6p|+Igb8yr!Seqz+B(ap5kmV|5 zmRBM~N7Zx<9C7?=j(N?WKvYT5Pnqi;TP8@#Wc-B1gM)U#(g8jOplrHWc0YZyfhW|XnlFtWBBQ#@*a8dky)h9)~2sv(`b>(#n04LuMi z6rK*UJ>a|yF&VvMvpAeNOBtqnCs1t~8l+ILgki{=rAGgoc0AJJk_0rUrs#nz?Gvc{ zIe_#~udDL|Yk_h*V$!o#gEbl`2;Z#Y1MqZ%Tf2sf3EEqQBZl(cP_EJ30ws|G??^PG zl$x*|?I0E?cu6u|l5O(<&AargokHVhyEj!txNb?>%wphoM2Bb-H_Y#pqf=Mt6{HXv zPukt2?;tZ#ly{KS8*-cjx7@$#2+B{c%op%cs&-%ew0<2T^`*bIH|riknq;1$_JoTN z##T$S(QNuaa7%-`20Pd;Y`$oR-A*~qqqOY~O41dFI5QB-neOceIIEWwca3Q3FvBeb#4>RaqOvG7Hu})m#KE?BM0c44jCc znzHYwiXX9Wcr-_YYx{&!u9(Q|@(%$ZnLm3pVRF938WtV{N@0M+B20>Z?ZIwA zXPlBfgr_V&#X+%CzxSsRTK9Fhl-udK<|na%o;(4W55dMnPO2GmO?Ic4B>4elCL4945HXH)GaN8&+ z{2R!v8l5|-Yg%%M_TRk2g;{D58+Z^lZR0f7L)Hz-Eq-<%)8aqi9Q~9veD*}?r`&4q zWf=pi$lQF)d~N9&J~djvb5K$$(Vy$8931ba_vU)K>$bL3FBij=ZYqxsQkCETTx@s4-RCG6m)3pf8-n{@`2V&v0pa>;eLxwl!8CO5KBc^+cQ^>1`#Mqy| zGlau#{79N43p2;zFL~OxJ%nh%1=fO>$a|$}bl|6N72p1reIp#4F|>Aq}v`5k0tEq_ScF3^w2y<<1_>^ zq>42UZl?FL_h9i=^jpi}jQ7p=J`F99v~I=v4eo=VzJE%nhfw9v?0n6Pz^5ve;QiRn07}p8QEXSEc!-4_~3#oBgwQWUPqKSO@w=g&^ga;Tq6>vL77n zf*-g7obmMK|DpKsYpZ#NB%tE8wOxlB*b@tWTZ$G?c0jzN(8hxz;!>!}x~DDiouI~O zD^M2)HwK?sTsQULRWm}fAsW|G___4~xQ;ZMo>4e~wI_jN`!;qO1;QjRT%(&i*X{g9 z2Qr!UF+CKeEmM5m-}(2bW3Py2aWN*<_TXe&C{HhowCXt1jT)5nV6Dg*!dMGamkbg+ zmuRXvB(}Gk;dmZKF&hkX_^GH)fJb>|EG`d)pkl4M0Q>=>>zf7a{{r(L3N5`PfX0dN z06E#==$;Rb57ueG$?h#bk$;n8>Ne@p;^Sy!aTT*k0totN@%7*Ept@37*0OyqLi2dH zfackL=yWm$kSR{2%Zp(GDuRLw2^_>Aq#}$ zZ8*mV>`NEW+d1DBj-DR(crPMg)CU#aBx(`*sAq09BWP@GXpuZ)S9PUtAiuZT8tqyB z`E)qQnz=`RI%VGgtEwpb#wqm#?8itcKi|kyswg1v*l`J6>Ui0M0J6@HwEg@~Kv^_2 zrFY-I(C)|~ZvaGT9k|5UvZNO!a3%J?Q|Qpt%^ZSaPlz8Y?HtsMU>ke@eEh2T^a~3j zsnqk=Uigyv1v)zOl2$^5tHvPHnl?;G&$J?g_*_T4Zp>|N#S2&GR{ay~)+#%XI_vgS znx|ZKXx7-lo%DLv@%~4I#|PTy6Xt2k zjg68xixwv@0OLq&U@u;AJZdsq@@wlGU1*_mt*NvMRNU_$!7d&B$>9RLo~PG ztnlI#rF%DpoI$q8!)nfT&NedRi1$e9%UQ&)4aJ^*ddREwfiTsmCS^tF7j@3k07RU> zNISZUr}ma4LNS?iHa*cM8|PfjdMe3Yes^PjNJ>@u*pF-(W;Lpvs=j=R2QoeFg+7`( z3Wp{OU^W&d=59+{7>Se-#qKjnOf;pdjb-~qSEvh7Ih@s=)sgoX6*TLqy5MhDtQSZ> zw00G*G3C8b`u(*lL80$YSCva+(ctb)tO7GG(8@fGPZR?iO& zTeGaz*!HJ#>&Z8m6l_2L@Ok>*;`lFCLv4WMkGk&n$*x~W7o>HdRUK9SDEdgoduaiWC)Wwk_=87zQ1_j3fXT$M{`nJs&K{S7@G#C~Vcs7;=DV)(!V= z2R^dCk2PksFOq8dalj1I^C*)ZI~s7BC4_TGEd>N?{gvk*+`KI@NZomF&VkB)T91o+ z&}|1&Y;TXqzQCik&JIch+e91dr=RaE1Y_rQ;@Bjgu%Aj87h01ed<|KH&^~*x%IVph znl~xASF_~fxs;v+P}2c^LA#}GTv2K!6+$2@XZ3Jl3ahv4QI1eV8K6`_H6UW#cNQxE za@Xhsw-(uLPyTmpzB6~z5}%S!P4bQRURvx! zJ9AV79RqXO@U!6U_f+tmtUS)n6lf&bP; zu}JX2>FJA+2P^~Us6?I$!iaI$nx}iHOReGW$(p^V1Z2178MP*G zl(D){aV$X{m=|*H;(ANpnebnkTdoQl1gpu4MFN- zO)@4PW$0D!uMN5f-sI8^g5{TWrwO_oi&J7qL3i1G8;q%UVLwFPVyX9?gZEkHW&tDr zQDcpH$^ttxJJuM^ub5lGP)tK+3}WLyCd5L2ZzI;i>qi8Q}y_W%g9= z-Cxo-gIK9bzqE`G2v@CiwVrv^+%tzu*=uc!^Q6KTOas5}eL&%W#kOuJMoz_WS}DU* zlE;JXl5iutHPRE4+)go1Ez{i25#bn;Emoa9x~yGO z_R-~H>FFR4{D3hZg_A=^)fvR$(A>(N#j((h5S3=zkVY;({pj>)&e$GrlQyF@zGwJ` z($oo$EgC2Ydwar-bt{G-{u0Ya5fwBirZIFW_CY6F zyd+95{o3NoG)I{I1CHI9LI~WvT9%))!KYSGg2^2x~VSE6mx2ev~D3Iu#BkC?vKD725%r2dd zd!o0)Ujb7csiI@mRCgp?Bt3NwFk=^SKFjeu*?Tkm`ENWFY#-LE4T%R3hjDn?@$^Gt zMZqk0+X}lEbVdHjT8j=?%g#WnqR?5BxFyEyhl)(r4H{<3#e4Puw6*V0=Mv|@cdBAw zIShwQ)aReR2Xi?7BN1k=Qw~y7_P;3?v@cgO;BHxPa$LKk$==J<2CQzw5@YiN_n#bn z1$PAM8~9y)&E0$tnkt+QJi?GlCu9NT2vq3iDb*DUx3TGR-jsx&dqgwqS$SbRV0J6m zRDw{fNVxHFFGZE8S6NrtjsOxM(ZlH^Xnx)t0V(HfPcfBQB=HQYH87h;VkMwAnhp-Y zg+uM8?Cl44X(Ky}FUc~@vm9Elwbqu1ATdwq@MQIQ^NlA%a@H#XRcui?eGLmF+=g8z zXe-YYL>P2^tA3CAWIi(Kx1$K=%Jt95d)$$zJ79$}au5~|I-Kg|K@h*wbBO9o z?hbInRJX&XTQoYX9(}O(GX%ty?oo^uyTzF?UiDnY00Louaa_tm%sL`s58U42onl3r zj`I{YEvN~~dEz4&1;5>wG5e-vTg2qYD=R^qQ84uUhM;^A!4dgCfB*y^^d~SKU;JjS zBcX37_q19?dUB^V+^eqXWP&{dc#T5ACFm?C%xG#*q2PrwY zw7NlL$3b#n5p0Ar`^*L!Lel&u?CPe+qJaZ$fz#a4vNbVzqiih+)cBYyPmFybb4x<^?65naLb`MZF{l~5QbjlLR|dBRKdBw75thtiev%uTA|fv`|NNx^8QaK?NBF&YfF$<-30 z`SD@6He;W@fVhdn(??mc+#ri<1sN>Ju379UD=zLC3;m666yNw0zm#)S)WGotsmaeb zMqUSjIID4=;mZJxzfLyB-ji9{I1BT5Bj+NWZ)*=gAxR$2$m@3%FOb#HxEb5_^#Bao zEc0yPrAOz>Q(M&0(+`wP>+T`GGTn>V=|4I^=_amFp?oBSDhy@_$-@@Znp;={q~i;B zyDnyD&cFF0;+6Y*F~C0riJQz1i|V6txxD_a*%1|G=9*_|ymI`->M`C_FEx8teIEoexE3U5K zb5PmdQ44u*u0M3K^p4fbQA)X9EAZmKzM3FX!E*X%yR>yO;0`I~Ks;Or0JKpf*VO7z zT*dZJ-{=aR`zjHeM05Dvqna)>E7w`f)H*P%ONh-vSm^S49;UmFj1^IE=#&SQ;hcI(YXvWYX?-Oec;M8U!4VZu6P^|ek7*O8lSh24rof0dhL=QMPMlkl3cPdd0Gttfq5 zT%um{IW0!&R*FSBZj$-6Mgrl-o;@uG3mL%n`zft=t={J{tNY!$Vp0zNy>f68pmO^; zsC8Q-Bzu>IYa*=+>;8ruF(-S zZS&Ml9s2anCkT~vvdR26%cHJh66)4g7GQ*s0zz}IGS87K15|+(+Q^+{!Z~wOV+rOnxub8z5I(>z;6YRoLkur9u9=xr; zrFo#llJ-@7c<&`5v~4Z_Y82Xb+^Sd}B~924<~tP{AB>jU6Wgf}uPv^vosqT!vn?hq z>)`Fu+J^QB--nlErGOCYMCEOCM|iu^;8ul1p99zj0uB@gg>W&CWdaUkkFFk=P5#c6 zc+NabVA~tTZX#fY#AEVB9V8C#A_Y(cSi zS;9g&(kl5Smgi}zVXqHPx9GsWnd0j|e)w(i>8E~mFvmORVQbZdiZh(J)}e&*dEbm< zry}8j*9(~`U=_0j*&37UnRdh>H)2XNA;$cqdmRStTb} z)51fup)|DUqCE!Iqm|mBG<+@Jio6*sUL4127g?+nU@vQRc`c><*I)*%O>ljzTXT+* zb8^&SUoJ;cho(vl*Ggx_#~u3?>8O9v^&A@e?;=rkV8|B2YpVEWRmJ5-cIzvmN@(#lantFBf>jc=iuT zi)!hrTN9%bOREn(sO!{Uierkkni^9}uw#T)C_3L0K`V5S#@S#$)ZA@Z=p9QQC?-l5H{Bi)ju7v2%)=0LAYs{Hli|&-ot+lCqEY%E zwX=o_DZnw9S!$Si^b#cX-6~IwSsGfIUdRqQPt!pvE#!-}WQu{zTGDr_+oGlz?b}-* z^OqdLnAEVcJ_1{j$q|wVH0y`&+o#bl6oLDrG}%OKjYlf(ZIl+fEXj49Y9J?lK5o(f z%||~qsbF%S}G8pX>PN`-cXd}{=4t&NC2#^8b&3Gq1HYz5ctM7FulhAr9a+^ zy1IKpw<#uM($zAW=(WQZNkD)1Q`FxZ|oNk5N`fEJN*I zh@welD+)1+TaCQJzZGs^-N}(< z4Co=#Qs?-ce)U$m0PSbZdh0~7sspMIi$DslhBKlwW;AWrEa_!@`l(queO4USW= zPlho0^j#%ybzs*~ozlch*T=Oj6yv*~VQyQx_5LUCbms6C_|#9Ze2q6USdT>U$}~Cy zQY?%GBXrM!E@=Zz0^?07Sw%+cu`&&72@MN}Cq>9gPKOm#{`HIBM* zS{+62_PYL@P;d0Yv}kgd3wPUGeGHk(81(QyxQFle{G#W&5qxIXpvyRj!j? z>?5fwg*3@1qo_%AklL#oi0+IH*A3}G_7sJ-d)6K{)@y_-=L2QR2f)mBhoK&R4i?%x zKMNK`4_&6p(v?!^z^TjCS5%6VKIS5BP+2p?z*opM`DtFVP;zy}zeIU$?HXW?ea44R zxk)@btmIl{T_B_s@^m%_{B$b}P1uCEXaMOh(fL|QJN2?&T;vY|xq)9Lsy@YnlAix@ zX#ZQi&Rgqg=>fRbjmUEUe2=eiifS9Go5TlD zYEu6(CXIQxdqjAK-{6;wjI=SCTAUB)$8MV!sQ?lr0TQ5ig8))8%S!xL@3qce`*>0k z+gd0TsxmX&&)L^?0Sj@GBloox^5HpZ6>R3x1DOIe9~57}R|KZ9@&nZXnw&hV>54N% z{rwX{#U_kb>1u0L+T=k>%hiSweHd1v%oyCled_>F-3xNiUwsZ3Ti_ey(3(hKGjQk~ zwNN^`UlI|zI$OaC6u@%CY#!~nyOOGWOc>PHVDb1)!g&=-_JpF1NKH!&du1njThGn` z?YfO5rhtJ-xGnM9meC1A7@Ep9OOB;hkYcgsAl}DJIju`Ti~?{pw__Ry4M}BFel`?Q zL4k8AB?;G&9+-9q$INF>d|5Y6Y2R2_pT|dupY-E16zN(mM)5=dA*zMq0m!56sr==e z&Q)e~F_qYl5%bb-Ts+0BD_EOMisMi9NmgAr3=f=}1Z1f&BZrR|l zx@mV<&V1$jkLExo2-MAwZ`8YMIJm${ScI`TT#vBHECu(TV_>$<8|xmSF6{6t$V`D( zbyl_19UAVfN-J9-{kVg^R;?ZOVXyLz{h5}ScIkS5AN?IfgrLkr^OF0J%P1X`$6Ol? zd%4wWWcdY36+*OCsZK5hJgb8Wf`C1@nIg&$R4i1LLOIyO>z8{nTnd~c;lbrJCV_3N zWV|a*0;|*Ta8||3@FZh_{#_>mool5RW7o`0CA0B8!W|di&XB0PyI7X@NdsE9f zfi5IZa3|dI1ymH43_H(i8Q%U5lI~vNG%c9=ZELQHgRcG=FCrHlXUzMjgyMBK0lU zK!r8VGuw8_9JE&ZCI!ss?l%fgOH}r@8%6)2m&t9pM9YYS3<4*vU{%H?RO0s_p+&IMg&+6zj#lZ7)q_X3ewoPGOW?ck_$b{!fwq_gv`{qO;DBTThhp(v{0 z>A^qG8o*c!u6cfI4c{#zx)6^tEYZ5Ud-3RZ9$6bp&`h|$q#_N=;)XT@&k}=Rw5Qc= zC2^X*?SNSl1O?-g+V19z5e#r_K!PryK8ky`ciK+%gtfbM{te3?zQzyf-L8F8bOUXn zKcbEEoFEfEOnLYEZ^dhJ^IDf8mjr3NQCs3wYsfZ7QT8KET|Ux3b(BVO9D&^&qb8)# z(k-jJqGk{0wQ^X}WX#i~-I1#{Rs+ppy6l^C1n-;6CYjVz=->#DyB#HDxEwvZMotd1 zZgqbw1X^RL2dpU8#&p7Ih*uoyLr6VeW+%N`&GQj-Ptw%SuMxEyLBW%f3tYs6&;&hK zpxZHQ&$|d7s7dVgW37Stg0|f)z}(h^i#3kTa2CHTqZo`q1lT{T!wQm*o~C719$78f z>%D!B3;u7e83>@G7pRYg^!Gc=ue`e4?}AWw4F{fmQu3!nLK{Lh?sx~Cv4@%kJNX5Cvv*1h0;l0sZIb=`6Aem2E&M^;GKIiu+frwa*Rp_WgB5VtS;9)x15BE% zBJ9BMQ}nL{r1e?GtQl6qT;v?|YfTq__42j9iLH)e3CiczOg5gRfjO)s#NN(*$RrKP zLPH@B`Ro+73!X%9@&YMj5AznVJ^JUBI<^;-ynauLWfPL6)HVk#kN?3lvYnSZkFnM& zJ7`Qu`UrlP)(OE2|+WR}F90A{^Q8R{HyX0FC$%7%NOm)myd0 zBf8`BE)f@e`F_@|c(`f;1C*g0n|VrFMcT&^VBIIy#MppX4`#QW2B7{oXU?|sYTr(N zok;|@Q9Z=moJlVv!||kgP}2#lzPyN{h2(*?4Vs8t9USd<{EF0+R)K0)IY>Q}J(=F6 zJ(mel_K#t-y2ha35|v&+cOX?+u2qJ7I*&I4_vJjXn3FZ1Y9bxbTDqBmeKpqUVmZ%^!=xf97hckE3dLfHb5MtqeOm# zKXm8`rO~aEyMvV?I?^bWmQl+BFt1%G12tlMpz`*iwoJNNX0&4XL0swaE$asT4nVG# zi0XAqk6n*lp-VKqJv`vaD};2rcfQ{k2(cn)0n7}3jDcC*!u@rrHpyUFYCZ>A z%PQ!N@8|GA@x%0=?NVQwEbeV}QF{FJ5Y5(rK6<9^1l&8*zjCQiZl1xc#x)>;*ME?wuzq#{EW5t62`;D!!YZ5dgtR z_1GdE)nXw1s9*S-;{W!iL$!nSvq01#X7n4SoToO~_t-Dbq`0Y#ZMt^q{xj z+mKf;Q{Jtmd#SnA23*g%3GK`aL4)xm-7E`b@7f-oMTo2$>utw`L-8R2-`mck98-H* zIB7p`tMsKg~b;5HD6-@uy+>0Rb3c&5%Mu|mT|$;O`gR@hs5I2f7| zsx0?-9G3dYR-LImE3L^h?qEZsfq(UEIg^FOj}l|o>N294#o`dv6q&$v8DE>yBN1nJ zkV?u;42MnfR9J~w_j6YDMMD|DsaNnpX;uOOiF?*)1=I?=dta5zZIitS9?Q(A#=6*t z!HeQ^d0~rT8KT1~br>Z_ZFP^Qr8c78FSUfGAvAzIb1 zN%p@;Gz3%ag_ND5JrCG`rdgg{`I3ONP+zjtL@5NJ-Y@}vBlP{N;`Jk14*GKM1WnKb zTQ3K7XYY6TjgA;ogI*}n>XFu-7E{OMcD2rJeQw@-0~Z-6F58@hwX&$rR?%@md`)52 z?AH7QQucjWJU_z4w*mR51dmDSu)Hz+C}uWWCq=UyP{cTtp>s8<&uWl1kKFe8|A&eOR2@$2ZfmU4z6 zr~?E%4!4Kz7k@^hF)Ooj-2!H-9<{Z-C+oWbE%GDu{(ruFS-k(B)&!q24#;kYD^dTh zcujsab`GCZF`VW0_3Vxw&#CZInj3<^&E2&S_*3UjXCAmmEo7Gl4-ZTljD;*iYQP6^ zkCwg?5plw?$PzMiV;d2k#qENko-#U$%-tFR2xBlS^Lh^RKq$I>iX347wHC;+gfvqY zddXOVXD?-@EWcC<@hYU}uMSYHouJmX?kr<7j%OG{4-l=e-8vs8T|(ex!6;guL|bv) zlF!hc0-7r#&A&o98gO(i(zXdp^|%sN&~&hw)M+AicI0BfiX?OjSEsvo8+GO~aGW9N zC;qK1g-E!ilNd?A6O-Ik4YZEebiD~}Sj;52mRPb|FX#fn*Tiz%TYo??)Yq{Gq0FY! zIeS=<3Q|jx0?x;FRSJ;Zz)vtZh4IFhGC^4S9slrNUJHAy6_B4ky2daXblc^I61Qvm z2%u-m-b)QMte&fKYO}P`waq5jD{-C~s;fC8;%Mrs{Zd{Fd3d0WXH?fo4$mV z8b%GLVCD4FrHru(RFroTHxokc7)`btE(O>Qh&6&Z<-rRz^LDwwg>21mCscB6LU~(| z1bzPbumlCz8ca+U5EWc386(n4rT~4pP?6lqs(^*u8mOp(M-#Tk0Kht(u9;JhV~$bDLo-6J!2eza@@+bVk3EVd6;yN#3UG`Sz7zWBNj_cW5|ok!P~b3t z$zw1N9@`H5aBTV9Howu2W!LPq<$#79=N_8x)Ki3u3I03Eh{;0)G%1K>Rg2V%k;9=?ECX)@JUIftlyU&( zY6yawcQfepi?0soJBMJfC1tWaIP80v$8`E|qs)J*u2_@PTIi~1rJsIS`wW=om--x5 zFKMTOkX%ZugGfe>RWMb-Y#P|UJ4VVUx1`LGr#qaolu_zJLVe?bj6{Sp^kaEYR5M*z zyLa)|!$Fd73LeKheiWZ@p}s1^d^ibbgS36)Nv%<{kD9S9)JZ$fEznRJ9LDJEjBh$b zT4z-PeSv!e02&UBU*?fDGazMKx9IX=rV(rq5Tc&5gA#1GV4Zs*FYCV-|NRHb?OG?V zF-y1Lb{|-R_JQ2-rN1>OSP>3YOYIn?yt>}?Z8ODxRElwk@7I3-!Y=|J)VwXv$iE8{ zK(G2}K~;yY!edxUbnNi6mqUQp z8jRseJ)VT#c=@VG=nY!0rtkJdJ1ybNx^{&Vf%V4eUqf0qX|k5mO9KDTiWU#Tpk8SV zaz!_ko{!)a=wa==Y4C`JY`6f{i5IGfDmKQ+4$4|)bPjUph|@10>1oHt9$++k(|wqS z!Xc()863CJASNHx1N(TyrlRtXcY>*vUEd61@V{fnec%jw(FHwcrOYEbR__omK&zoa zmBa(TycL}2yWu(2f`ZFNrpammSLpCvgKKXuqdY@>^IOFa6D4R1H{7!n*qW>k0r3O#Z7Vmk#1>rWH+HRR18x~N zjPB2o@SWuUITrW3h||=|$Hj-9U9$#Y>I3_q&#BW&Istu`%^t)qOL87CX%#kWws|TZ z0o56$z?nFUff8-rq^>nf`=9d~*^X&-h4xTb6-;diA%|_CQA)i(u7!+%=a?n!>>US7ghISO{``(@T5&GvQN*qDbalVzdr_9Hu;G>HkknZ z-6GlUjjQ)9eTzDMM(O7!SLeha?V&8LzH*e0Utd_CbB^7Hq)E9v%?qXbBH57V+Vf`IB!JJnU2c>jY=;YZp~8$ zRa(}*7EA59!tZWAXAkoWZ8B#yMof#-v%BKAwd!AToio z^(RjK7OccGc&bzI!PqZUIDqfOM&9~UI^g)JyOfYGxt13Eg2gzISmDcdt0lL&*>(P! z#e3fe;Z`6{(l;+2{hAVI-#K*|Q{8M%dv-et3drkgHZ)|MNc8Mwn}`*!FtyMm#*+VZ z(muZrFJSxmhUSb$ddM?)M210_mop(T0b;BXW$MGa3oH%rCDQ2y$60lxUG%q3PpY`E zS@G;V5;i8SMyv;>04rhbsR{3tJZk)V*!30D1oZGM>Iv^ry1V#s?AV~BUo*wo_w$2y z1!PC;Xt*7=xywOKXn%p!n#xmDNs3)R{iz*b7F1<@8V*BCkLDfM>Tc!ZoW*8o9kI1k zmGHtdpF<%;jSEN8~j}}7L8OJ-c$$=_^8)-|rDoMD2uyaVD zDRxFZXHn-a=k6d3O=EWtpD@fQR*i1CH^bTlQ19=GON~lhqC^SF6FM z2IUun8oJit(T6Jd(5&H9xMXPBgt70!DnGy`37R9R=t8Xw+FfpmCJ@B3KCQ*^Z2Hv~ zk{y^DXbV|fL**t-9xAa^cm#J`R^Zg8!edoC=LN52ud1N{n8?gE%&=pakg7h7=q;3h z2ri1u3Aho=q31T|U{EMl7?)y}pI0jAjYEd*Xx~AE(Q*djL1Uw{y1VZs6S$xFE6MWa z%iam>Ye+-Ox%P_`Y%Z$Yu4rVXnytl~I&gvvIdFZ-xZ^0ylD|*bWZ()wVDzp8YK3Ih z=Zis2xhy+zKoW-ov0`UOvV9zyRVZN7)p*`eoneBkO)|b4nfR@mnJh_jEfeDOkucJy zc(@qWA8_HO%OQ)FWKl`en*STdB(siM z;R?Scm)Ic-`+*&)Z~o!+o&S9}Dfr)>2g%O^p`&|X*U8l@MjEM6`XU{spaVc)r`Z`H z0ifGp3h3h%Vg2kXTw`E`nM+_Nv0c^40v1JSuf$r~o1WzkVay5Bd22+V^pLN>4z~FR zzbqSkZWG>0xpU8#R=V(knfJ z;!&b~sSc0rV~};{nC4--@1#CE#pok9s$gH612yc&li)WeEDWO2;JCC3B(dO40I_P= zvC?84;{4%Z+Qc+x=^|jBq37Y)s&D&r2)iG9y}`I#4B%t3`BG3@FI^LR#uA3H{#T$qokhJcQY~&xmNG1B=zd38hIm3Q zpkEYJEZFFI%e3AKIW)snBK_v~zE^xNHO|c)0*a+fwC2chkQ9j#ED{LjjZtbYYqmy} zIMAHu{rJdW9wU9kgQ920A*%_=j^J~DQ1d#5MGi6#;24n_Ru!56 z!1@X=tqZ_8bWB?6ygbO&HJMd;D4McN$g%|y%1TW5|If{F)7OP)8SA1XlxlukA% z_7&eCLd%dF97CQ5*g<$huF173{%D^!A~SGh<$UyGg)%TUZPw41VGMSMml;At=o$i4 zr|Av{RQ~(*O+W5~m5t?&t^fswQq0z~938+u2%y$_pJQ>h+(KSwB)ZLiWCY_``KCNJ zAtPu3R0T5>2p|u$UsGvd=I+&>%f|Y1mZQxDYGQFbre33m$epS4Bz5B?D=;3Yh9UF z`h3#Eh+6rsC=@i4YG-=6#8qIZo42Xh!EVYsG0$4tl$3(KvlAA8`Ta+)?+QOos0luL z{V3V&W?^)P0;$hORQEdOxL5ecOhu`7ARW~G?UMe6C#mBKK`2*0vy z7BMU;_f}novnrBZnZ<6-FgczY{C$ArLPFk$UQxkQRl(kzcpr5{zcF)Fg$K` z%yAUQP-84KZkh?*b#NsHI%R;2KTXfNAjlhUNh|w`rDKyQQ^$z4SDaGM4Oe7f(IxBy zNyGsR<>KXMR0p2pM@ZYDpf%*S5C4HYuP_O~t1AbK$GyaSuiPG42+z_d{U}^!a3mGb zpqdqG6F|bCRJ+{CHxCdoA8@{ZZjH;L{8=C44=;brqt*DA1Lc^~jhn3Oz`HtXi~vRU zFi2mTc*W3638Vxh{^%Rg=<|lp8}4w`gkZ1BcHWD5w`lxX@y(B*p<@Y|<238*cRHCI zmnLH+tD*zDlExoPTaW=3kBYi*7lLDZc&b3nd=_*DtDp1()79kAMbQW`V5>m=mP}Tp zP9)h%cZIil4)=v=oN{^9K#ijb+R3o3)EW_1?;JSoy4fI^bKxcylGI5Y!FvyT?LcLq zY|lm-Xq?owh5J(jfwjCvpx|)Vpix*#JgK;z@F<`qr9{3!OCDlN*8^bVm%T$c^%srt zOha(9u)%#%r%HyZcrJWU!2nIt$3sx{Q9_R^L)b9{ykY4GJV9QvNkcTLb`iXk&bQs9 ztAE!LmI?xh^pa3dHT|;Hr8qfZ{7W8XCk{2xYGmc#p{=RCQL9zr6%w~TY=ZQxZw0OT zF6~ja8g6BiS`6K`!mU=ne*I;kUw9g5Y3z>Ymu_5ni7lN}kJmEYUX;F}q!)nLsoXMz zsvA)=k5OHn^U?yuCW&h<380#um|iFB&(}4V)GiK(b}5gdZS|UH5s?Ko9`LHo?G89Vm4~Jn%{=SD zq!56!Dfdw<&3!}G?yVo1V56?>3FrJy!21}Im6(#-ExB4fy{7FPuwg(}qd=UCkPtt2 zqL4E+ik1rum0hPGAGcZff3}Zj@m@XT9TRovQIyh&!-9Y!s|!rb2dlH4gFxEBt%+b+ z0gzm#Z~p*W-x3pB4C}8LgGpBW2G}dydzw1t1gFdftzxQ>cH}?tr+6-;msZ?0W+?|C z*V_?e4ovNIQPNodFqAHgNETE0)E%K+HH!@BIt;HV`(iKbi~Zj$p)e4aS&5QqS@=}=uu^+dFs*-tAf z*_Hw+>*=hq@G?ODYJ%Vf=D(?>_|jjJH@fH1-ra&SUs6lEo=EFK!sPw!Hf2T62fvFC zRAE|WAPy*}WcExXe zg9XmV9Zhd(;~n+coT86W1PXlg1;{H$FO{hrc6k38RF~c!hCg^*@vK*uH~T>Js`V8z zhWCZ+bF4}9*h!Q&rii7@!o55S?` z{EUIBbtG(8I7NuqKw`p=pu8%qL?r4n7Pxz+4hHBhYBOeCm3mi|SCnm5u;|He@0)JT zKzzYa{}hh;IgmQf5(n6+_F^0Fz1c*4F9jnF>;8=dd+&*SKfYrGko75-N#8P&dkzB= zL5daxhdRw{1K1CDJarq7BZS5=Xp?&iuV(s>90l$ul5AA`YHslD3kFy6l=g#6pqMJF zBc7;-Jmkn{K{^FNqP&R&be!cs#KVA$a-|DG`cp%3B}dv-@EP25I#`)Dih6)PTuTeg zbxscx@U5k4qZ>-OKrV2(lfLpay^$zu@Hsr>jqq;o)C`QpLzdvMph;yRFT=0J#XGTS zT#_J--r#mtTMP1z^_gN3UJD&XtPIniU5Z|4=1H558mn3ucnZT_?Oq+n#vqt0%Kwq} zr+1-tE{v-z-gE=Y;;98+r?}=zQap~;j>UyttWxR%mJpr172h^+Q4jOB$mMsTdUgu7 z#d74zS{*0OvfYTCdr2|M3#)l+@_r=N)G52zkXc83-&LGzaZ{^BC--dHg2`+2KDROp z?0{*Hz3q;dtuFSs$GL3SO7A!Z9>c!YKNZxz_ViQ`%F4~Qbu~#vA*w7YHFXXx z#Pj?CL%79fc(gP=HyOSh#Bzcb6{5@NYtCe&y&cAQ9+0du2s+@L>Spu2#> zhQqi_#!$Hls$MrqI#n+oaPWJ;iN-9GWM5^hL*jhJh71z#4`Yd+QPiiZlKL$1`0OV4 z7Q#CzvwtpLzCKJ8#o1LzLCiqLyB?Cww+cXOgekPG9@>iq)QpyhfWpF>eU;n|+^Ny$ z-)^_!*q+~v%}zn6QPfd{F~q96&{gnJm!bH7hztt&E7J`!!&B18c^P6Avq zXC(a87WXZg+TTH825Lcw*_`6f%-L96U!cVTVVGv;GkLUw=1T}<&DtMHn&Z8GDqwYz zcjy|o)=A%ATJ0!@Nq=5S3`NBW1M9Z~0rjNG7$RVkcYe+$yhfwGF+vDq6#`;dsg0pI zh&m}#Owrx?OI++ziFANM&+m5+BIB_O_l8UM+-uToMP(+6hCOdc&SP7mzyHUAX5N*g(N?r0cI|6dzftW|%-;@*p-g(xyDdFst*= z50gdA1S(t*RnCeIeqfpzYxNz|jJ>50kh8rzN(t01M8K>7#`Qg zDo*O_$55s#(mxWN@HMGe0a@tH04QBq9B}E0K9iVafCnqACr_S9N18+VQ?=*OwGg(N zXP|3+p-K0diJ2!_W3cL#dZ|$v6f7v@om~Ru$oUfphX~zrQF;FOn^%eC+$21F6WzTu)y$$V2W|-z(U#z%V!qrJeWr! zMH*0u%W_hfI0nG=xV2sU;E7cF&z^RN)-l%}{6YKO1@hm#zEchG?qCUts5rMo^C2^A zt|mbu*kXOYUr6?pox7A&WxeiXP+mTM{pxLFzDbx3X}YZ}W!UdXU1AJ#M!Qf)b(rjD z8mDpi{- zN-$%dcbS{plI>bCq{whVuuOkpNpAXc zl%Z}H;zy9C)LeuK3dP*Yo4RU>gklQ~EoMSqRc_7nLhkH6(5`#gCaAf?2C)M`)z7Ql z+Y5D|d`EVNb;$@pa#n|X(Td*`FYbFmmqL%zly<>V4DqAa4Yaybj{`=`ie!?2dWM>6 z`mbFFAZE;f{;QXi$87ysX*@ZVRDAZ*!m@KeZF&ys{ce!;?NV1L5628!xI6L%?h^>7 z7H-#c1JoS|61|MvCHd=!QlED6ejqZPf z-|)BDy|u%1yRB9eHmnjFjHa!W>||S)oKduGVC4Fwc=@NpOozT!neC=DQCu&jMMY+9 z&fpXn-xaS3SqfJyM3@LLS4~l6D*Ye3OizFU>Ea?F5{6SR7%6&hnF8y}M}>ajDFDFS zXf9@w6s6;c+kcR0JIAJMNhjP5DNdQ_{wvLhKlhX zQ;h3aNbx^8-616S8?r^`*{X`OrijNm#J^yT7I|-WPGr}>UF!fhyzxLtxVj%$ z+BiSAiG%$9Gx%ftnsi=|XI95hr9Yf6yN-)TM^7HE_P+xEheNZiKOP=7z`*4A%F%=% z;0PF5u#)6?H56R>z-crnAwurs+ogoMoI&OzRlt( zw*a&EnFtK{&BEE}$C#O6@ii2hz|S<@Y7T!^{9oyJvWE|jf~KNa+})LK^6Giss34vh zPf67)@OzjbG+L2^4(I_Rb74>I$zHL&j6UW9@PeSpT948@Z%NC}$|0Z>1X4K96v+~v z`zutt*L;6pf2}n$TsVM6z>?h`_(PoAb7A+*JqKGWVMbiykBXO%pw;pPv|1KAxRQ^k z7>8N=e1ORToTBW1n$MQ{Gv$&eeiz-A2^AixATZNi>1)%(3he^5YwGFwhoR267}IW7`1%D{P%HIK{bZl4 zmcHx=W=pxClMUgTgdWjkR8865B<4BcXG z0z58wV{kq~3Kj&GEdg$D038|5>FZh2I3l!pz0?|4( zYera7bJ&ZA;Qw}IQVBeh6rrNwxX=fv(6@mO73xNaUj^&p4EVmf{4StjH5sXXT_Iv$ z+y$UNmJs%IMius#)cyb?!Yi$Zk@PqI`tOQF89%mau>N1i;7wiT0kQv~!rW0gJwx{X z+K&x%Z|MhkZUdrl1X9GyVp`l5$8o%d_+bM-cl$Acv4qEnj%yEnxmum%88K)}-x-VX zXRb0(9{M+7Fi?|$i@LP*az#2A<)L?T!@HOtWd)?6K{)}>G8M%3tgH|h6AuRF0#3B+ zWf^mq3!q|orgemPl}8kkOS(tFtwUvfd85Rn4o#$G#q6|3OOw(_^43c0Xaao*WhLl+ zYrG@utH7WnYFV?;?Gq|u_Cz@9sN|y&7ib2~-IK>`1%=1DRZk5pMF)H19sMzBJA->L zWee9%bq5-ZdC!7wk_FToNk@;loSpl*R&!v_{K@lS@$5*NMABNewAV!wOTB@^hjvNo zXhxD1Vl`G)UyZ(SEwf-y)nyJ0=&SlPn@$RZG#|C@6{PT!^wWRy_vuqUdKrh~j5F=0 z?>=rsun~r_XjFPC9-#4Ol~PLQ?xCV^Rs;7yZAYv4hG%=w;y+~~&y>Jj7i^}r3%C5% z+*sU_Ye_Y8h&{3pE9bzn!zAinC_D_6CazdcI_I#2)qN}^q|z{1yg6$D10?A^p~Iy_ zGAi67^Vr>@#zL>>d?vK4#3HJmh3Z$95`){%;iZK}8Z z>I@sZ6Te3n5@=yGFB0CePy`7|9$FX++xqgy{h*A@?{uIl+~}BcUU<=44XGd^1#<(m zIUI~QRL^>4Pu!56mTtn9bQfd%@xO~#_cn_%cg}0zN+a$wjCTsJYXjmU`XDMKs2J|g2WmH zzL&nJ4qfcp0FS~*$N%l!pJ*1wv+V6I((B_VJ}(Ag6mX+=#1Ki+b@bn2k4Kj_FV0bK!-n%oXd zNc=-UcuU_68Y`*-`@1}s(fR5_)Hvz#G;kr*HHbHMq#T#m77yi7uivZmtJYnW(v)l= zIpFF7hYTG${nCD@BUcS}duE8BLHN&u!T;kL*k_Jt1wz<}6c4BJrFdvH`?ctY>7&1Z zBFrMJ^tC2(iWYYXX3GRjlV7A0pRykL9XJ*ZbRg2>!~J%)=P`9sH&`l~yn7XeiUvt= zY9C=T=8pHc;|N=ILpL1HY-91%_LLW^VnmZwRgY{9(VEtQe5Nf3C8`hP33VHHb&#b| z$*2wQR~`#GwU@g$Pq7MGtK`-U1J)*>Ho&g=B&0ZY^bDi=$yeA4>wfBGkdjP{0qV`C64BM7tcu)Z|26FO&iY2nrr8YwEX$+wbx~&~##yUx~ zN{{FFp>-Ypzoh4ir8y`0EA}CvS~(Wfx6b&7<&CJtF*J9ad=kSOqc9Z0>Y6!{coO4b zCos`N=iulvG(C#*PVG1LTqAft5N6Uimp+dH0zEps9l4{Vo{JB4DyfQ}!5dP;_U+<> z4^kO$9YxW`7K9$Uf!9Re?o2*AC5d4>*(LQ&E~ZUtQ7)=w;HVY*H>)AiM@Uu{60vy{ zLYThy{xa!Exj+{~L1zVy%7skYbFy?z?>J%*#}>yn@!g&2FeM8Kdpj?`E$kov;-C|- zZjjb3i{^Et1z4w;1Fj-1K)bkHhAz~Z+(ddJpQ;QxNxfwk=BXIm^RDF{>==|WYVHd? ziaE!?$--`U{7W&nYT{lREe;@EvU&2cMA&&F$tmQe^cR!H-WWwKcPl#KEPe8iJ7hPx zYoJGwQYi{LWX$>^QaQj;P+@Mk!%yd6>oxoVyMK%T@+goAr{-rtzA=hDVR7r8Y9n^^ z5el|`!idXDl8cYOILE=yyBz+u_y7xR+G&smC-wmD=y_ij*|FU{kEMOq#>etbgSCKb z&V)Hd-m*D&-q)nRc2xi47B-d|Oz)f&n1^n}I~t6fD{dW12Rq>V%k1%wH~Q@aQ%$FD+)t+U=e!E*+i=aZii# z#x&@2YfRCT=sd=6r(`MMulSysU3R_f>}q2H#tF2h^uWS~Pm%|C$8aV%+!_jvHeIqo zK*oL?D=KY|D-w75u>cXQ>BNTmdgq!AW7>fW0UyL+n*SxhZvCO9yrIR9%Lv#Db!spX zj=_XAUx)GpF@VgbS*8&yXT{ftF<`+ce?dLQupl>zU%&jU;6Fa~Kw}@I^#119G&ly1 zo3SqXq12Qg-Z*0&xD$*zzeWXQ(WFD+z-4TYpZusagVM#iDlcn`HN8I!VEuIfk7rS5 z+{t(qov!?cz!9%xp`P0O{Fa70^VqLCBp~n_{7YoPFH6`>okay3(7l9dNV67s3HJuK zb*Q(!B@Rz~?m8g_-+7*ddxEF43+SW(GmigmSpRhb-q&-P^2E1_@Bf8ABfEr}EkK1} z?BTeVOe;OLs&iSJ$XU{-t>R2}{QJ|DXDKtAsVyXrf=kGk zz%g*gr0MB3;U^O|NNAlM_5AW#@%~fGW94~+fq*5n0JZ{y6m0{Yj?>Ywa>nk>sAIG& zhf64_lvEx(X5M<#)vlfgB6+X_lJN z6p#=B^kxicG}Bx+_6|Mqxl}Zt9bqQQU#`oL+~}rD&{j(R8)v zvFYX8ud>Pwkco*5h#xXzT{GsCU{AQ8vNla+Cm`5;k@Z+Q+_(v-2WR;eJATSGltbI^ zWZ=(5pDM_c<5FUJ2he*NPK6mvjyn$YR{Y#o;AMp>eiW(He!z5tSEZt%%T5WLHH7L0PdAiaX+UyNBVJL2>=D^HkipA?ykDu5*PBW{+P{~ z8(qhQ>c_&x_XNdrnY7j2tsc0$oqP}lK0M|KugJZsC5M6j!1hUxJ9p!yES_RBpY3tG zy`SKp7k~ce>8ZT?=I@J_e{z+Bwx?!ynDi0vlJ@&|;7Ks>M5xm0gbZpteZt_Y23#QR zMEa2fYJVO=A^f~}`7PN>5NGsa9ZjF#rAre0i-((M(0CuAbrwr?Smlc3kI_T8wx9wN z5Cr~9UnfGK-7lDzx&zHxgecsYweE2!b^wFlf|6#(t>39wC53gJ`JbuDODXpmXLo4M zY^}8XCyp~~xNRZeYTs?q2h^x~xk1!F&7VC3MU3>J~$8A^1EvRSUt5sHG;MQ2s9hy5}7W5c_h`^=_Bw&+K zC$>VFi9`woJUbJkA3ktYybz#P^O+)x{6X9t4(e4OA4qytjt+)5hBt5U@YU8IK|dI^ z)LrgSeUiz^7JgStQkP90>M#ycHPT~LmY?O^Ffe5o3aU1if)H4J74%oZ*=T)*_T*QQTb5+NO`YZ5o3TK+gm$XkEmUR*ui&`^#VGEj__x}L3{Zg zV!d61n&&5|6GcaBmM?VE?+~1pR3+?I%afpJp>>!9m0tc?esF*Eb3N^aR&kjC!i&a` zvOW^bWt+A4qx_F3@PGQxbX}=#t|qO+fo&s8-9SbaaFFM*1g=!aimr_KcR4v?TS|1oS8vx-FEx-h! z+#uWM)6w%r9TcI9+;InFF1zMX(`n@MTFD9atZmOdINLc zBhLj2o*`XT?xp(IeX<8Ouc4xqHN7zp|8ep1bC);}HD(F%Xx45cI6WghEEbJc8hg| zv~cIRY+C0mRc;mfc5k!TJaMc98;EnZ3+qQlc%FNjfvs{$fDceDOcjW4!jwZM<$9py zA3z_=n3iIMvArV{C7OB!>efNiD+hH=CwV6LS*K6+fZ%lmupvaF7jXF^mJb<6_<$aH zuzJrbv2KAVXLuz{yNV~|KzlbHgj`ktR-hx|6Rw>Ac01INKpwi*9-QiTE8b9m4eG^8 zj5=yN9Zx$Oic5oWvmG(NHu2?fWE6^QbZ=-Z^V^bwBbJzLh)<5}S0dEDDF(B`$0$I%slXKQ!w+5Fm1 zJ}7?KCGFDq((p?bgl;c8lWBdh?*-CIItsuyR($+wG^~Zfh8nRWICfnFVu>Om=+^pa zFQBe-llCy)BN1Ur03Hp{$G~-Aq}WSZp^Nqu8*MB4=tywHpYat?iEmYmj?g)e;{wL3 z46pi~G2cCSie*6C>|u|j4>`u6Aqij-i?9zJ0!&My3;?z2KjvC3u`HgOhi1olna6cc z&ugj0(#nMZI!Xf(!j1vL%7ShCp-EMDgDEUcBp&>Ok$!N|)EdgS?SgGJkpO#UUvhRWP^xJHebEAP*xL78&Off_;Cs(2P6BUR*@rViB z_Avm~4(3Qc^_GeQG1(@?5_=IRt*7A3QNbr96)|U2L{}i+pbNWT_3SUAxcQ|(5vw^= zfaupZz;(nrm6G;=?@C*zIdO#dMDSmtrvMk=tbP&etKfG*W@*4IJ(;-AWfEpSJR(f0 z9O{Z}za+#oAk8pM$x1Sm9Ki_!d`0o0S69r2vIB`4+ZD`jTS$nVOHN497{(Q|KXHDe zUXICoQ$y;p8Qe@P*$}5co-BtWSk%Y}wP-ZpjXP)&KA!1s&j9>iDjmj~B(AZEvWFAVl2}+2{=-aVT**%yNWhTtOJj$V>lr(IT2mXnrh(1I^ z6=`uG8$9w6(k+_EU2s{OOn4{3&!10#zqX|~9SH7df#})TZFYx?(hy(gIdRjuHKQ|Czy8|%K5zw!3R!WtV&*&KhA3)%IY|sFS_T}Vr zookIc5TWl7o3u7?+T|w-Q29jO?gWYx4KW)ONPZS)(F4)uRMaWDSrBSNdNRqqPh;OC z5|sveyq{x2B5LR}0-g$#rIgx}#Kx}U{mtti#Y6rh3x$_|fhhQolL>_5UkW=9xzm?s zEtL-Jx*oAb@hHGLf2P-|aHD+unAg`V0Q8ZiZAXa@#SWy%>LOC5ecRRBCOs;+eRjCy zxly=c2>!d&Dh6uU`X-GlSyFi#oI_u|q5WuD)@Ekw+84nLc5c81j0P7|#}Tx2d=UG{ zZPXaJfq)uZ+93>ZAQiI^V|x*9oto0b=Pg`JYV2n1bdv{6+?h$&)3QL}dbblGWP9bH zUkM6G%$U6eEBiv}^qc_EL_F$>OiTzvqq=Mr#RPgZg&yh2;b` zKzsPRzbpRE-)<i$V4>Gx8FdQ+X9H-|B0?LP#Bu9e zF4r;>7?6bhRA|0{b!Z2|6Rh>r+Ap50!#U7wrQT_!RH7sdcNbZ)V|<52pliA4yw%M_ z_LLkIvZTagnd3E0lLRHe@Jf>>hyhhH>;j~0O|`N|rOr;p3PQP^XDb2xY|^Y2Y`z(A zHAsYJ4?9OA()-hrhT~a+K&=2(1!)}KYl5ELv$prQiht)SY6WT;z$yHc8KLAmCvfon z1;7?X$qGGi$Fe22rdVWZRiq7l8s>Ir1+|^*Hzy4!#DIUe zW(R4qPy8?{iOor*3gPYnJ1zaNv(UGlebG_*o>+;y&h3gB!TAE3BY1G?BrLCt%Lo@d zfjuX?)0-Rti^Vh0V?R{Ep!Z^kck(Bopx>;dRR#gNzK9| z0U9B4Jsk=mc?min`vU_G&`DC@bsSjDLNy~|6Ga)q=g5vuD{R00jWI@>OSX2YL8_s&stN`feI?ol3}@k4#b%0g1Ud{`~Saij|e->er*8G-VS93Sgku@lX5#VAqXp6 z6^}=cufrQvm){aYUh2}x=ndfcspMG1`Mzkw(`%4@A&D#8uGji(Iwk! zx=0yudxTJkfPkD$Cuyx)8?!*dQUd8d&W*FbBSjX;iKE@^+O1VdUk5eRxzsLi0qQ<4 zw5AqonMxy_a8f{4 zw^`%B0_823Y+z!gUqMtLghlO>cxbdg{oyt;MOn?5`r)FHXYSR$6k0(^sIG{|V)qW} zei6>BY5v5ODY3p5loN9qKLEwcXNLiO;JK)Guk+V<{{2W4fF5>FK3XfK%UNIJ-OFdM zKixAvrxw#7zYx!jYLU|zGDdjWo_blY&4&-+@Hr=6q^Qi$HM?j|MoDx+$Ut~?P~-;@ zI<`bp=_T=0?lp}A{wKLgWbH*?*Tq=r`=q_ciThWrp>bQj`B8cWrA&NN`6mC~V(WY{ z94w=C*@dbtlTo5AYZad2@A z%@=4}4XXEs!c;~!0h+q*2#XiMI2cHL^cr;-R7(9`Ldqna7z@|(3f^FR69|J1#8dw> z#W)2`ngZE=Ql=%FX;AVm{RHx)^GEAs68_7B(730fcV5K)Ki5{HIRtQ!A_3Ks4s{W< zXiEpWfn^;dX+RhhFJbha#vdmkqaGTpZkv13XI1et(`sZ zOKwc5b%()P4^LjIm#Tz**y(5azDI2+s^F5yE^)0$vh+udKN}GVW&Gyt@=cOC)`iIa zxH-9rz$*1u@GE_d1ucWX8e31-2qSXID!Kp{p7V}qE+5(fs$|2u6Jq-6<((SRchH(m zj#o)iB>fl`zMe2+n=r=5!s^sY(E)AT9R2UI-VsCmPEaOmhxUWfO}SeFT`0Wj1<3Vo zDXUWjj1Cm#A;y;!rcK`gr9vR-IZsYvLjL5j@1N}Uxfr_qI$(8iQ+&N4<%*p$bdUr* zT<0xViq}AtcFhA;D*_}jh(*{ZCN}t{QyEmhG3+7|aoX#CL;_ej#D-=a>yqExI;|!` z;KL|%&Y5oHa^g)Ms^}{_g(vtrIe@!ds{QmTfuTM-EWl&?#+Eh~G1Qy@zjt}<<~*)# zULVZN44N@RL?gYRAN-*B!4H0reze>npY0DMGi2`P^TPBQIwS$Q5X=^9JxPr86R}uv z+xkIDEm_68nlV2S8XGg=HkuwH-0z1q^n5V(^hogl;Tz{op3x|&BpD$9;h*Rv61yd8 z08SS2M?%5av1?qxF%%1i-W9XvnPFolTrpOb*t_LgA25%LGz08C!a6aY(lv~9k19h5 z3YTz7nKekPC^&E~xTbYWJW&fS9IJS0fn9OGYnXnm`HcPI0GI9PUr$yhAIDC|bJ2;g z>jPwQHQqvmX1T;>9t&=PcAx_dkKD61Ocm?O;!6x?GlwGsdq(?bxXM8e2LLXuGi z{B4SArU%;HFZ>ybJhk$DRTd9kdSsHErI@PO>BJCGE8h4Vwsnivpj4exFHD$t7j=yv zv2l`TmD>iq{)=U(Gsfv6_+n7qs#>e>`?ZRWOTrdS!UwA{`wX7EnmmR~mv?`kqE*Li zeid-gdRGC{Hg@2rhIAkQ&y_@h&u=>JUly-vJa*Z7I4Ib)6h2pOb>L<+X-sIP{PmUd3KsA&I z%eX{`gAu1ny)oQ<@eUxO05#>C^u|HNWmfer@)}mZ0??%cwyOUl|2inKbf2z$=m#I! zXML-*+YIFrc%a(D}R5}0`?zWZRd!h_hNAG1cDZR&74w)Z z-nD$0E^s!WAFov_5u1|Xf*(Z;?>v?4+@&rfCq2vF1?F0!Exr$j`En26a!{7rC2QG1 zA5?Utj#{#)F)S+J(KhNr-oLY(`;z+U8_C8OumwvnM*Jxt))x;k6h3wBbj{Ruq#@dt zc#JB}8|_VnVA#C50sLs*r4)P7zexwVqlv24iHQo6iDnhbH9gleENnH9COpzkp*ZN#1|u;0`7_-t1HFN?dkA^MdymBDH7xwMv7xTR zpXN$lm3$O|7b}uNqTe1cSGjBn02#RQ#FtlCTdJA6v=mxRA0J~0=zETK=R%Y9 zdZTEWdro{u`6puu#a{x}pwh=4O(ougk6;;(F7lRw&nD;6|Ml_-1Ok8R z0g^V)emtPR51xLUiKPFY9s|(tS$Ku*$2gpKiUw_9$w7L?BTly*%LB~$05IB(I&ZW% z5+b`Bk1TQo1{%h-0H|3kH}ChM>X^PCb~kw_0Q~KCfPvo z%QIqd7t=bv!G8e+7(vggjE5%6&C}HT922BVK---urMEW)c zx?q6@jf^A%@1~y-n$9f+M4eAyaZZn`ZmMp#HQcPjlC9~G+ZKR27vg97m=jPQ`~VBP zhMKrSJYxnzKdA;VyCI7EBen0q%XHU*;oN0+5s+xE{sQqe58o-i^Bupm$76_DTuK%< zhdm_j6l!Ab%AS7LKJasSNUbueE2-+uQbs?!^}GNynqpWlDJu|SN-r8`(I?H5_obHd zAp#l15A)Ig>h%{w(WbEte+ci9PVJcj3Mx2zW2txI{V<=*vUSTYgg;zLJP$aZ%fo^)Wfp6O0cm&{9gz+_b*G^RzDi&mIdxI zWf^r3EX=0HBNs&eNubi@@umZcqjoCEX>LQ@oXe7RRas z{hpRk6Lz4^t{xD6Lhv6qMYz2b|Lr*9vw@mq%?-GXxWNFJ$^7Z$CW?GGE1>$+uH0mUmw{r}V-+%J@yW*Sw zA^z;YH8R-)adtoZ)354^>+(0+S2Sy*#J3re_`*}yQW%WH-Xi+p7j_L z1tN7OEm%EPJ?A_3dEtU)37b0XaKZd-i0cWNb}2%2X+LT^%j^#O`W*PE>9{z$%@0$J z^NL05Tyl*EA+3#493J{U{?Gnd{OND_Q61>!0*v%h?OYi^dJH*qd-M`yt7+vLy8lhx z3~M$##dVsQBVF-_5RiMCF$aY~5RKt-(;&~WC zO7hTN_o>sMzArDV;ZI4-u|a2h1+IC7t56fpqeqLMfrhN5uXWm>mT*e5aLpBN09!XBe|6ul2rS)Mfgkgia9TYuTh5dK2OG zh()$NJ_!pQTe)NcPgBYzCF#%LyLt_FWmyI3I>z(3PuDWAI?pT(FD>;RDbps=5CY+; z(iDT4q#UaQixKz`a7P$^LP*V-kk|&P_8aLh>$+L*UO)QgAByyk^q6RiEzsefVX7;4LL#Mr73eGY z6Y@+=fD3tF=N94l|?IT3AC(A+0wTPC*!Wg;o7G4}$ zM>#6>FtrEH9&iwS1`3!$$+qE!H(JQOdQIR2%BqPw-e)!gEGmw{+<}_wAN_I(4pCMW zBz^OY2Y1`*95lFrD;f4|J@7BQL$-iZFC=$h`U^z?xhnqXn;)tAYR;h7rE)jR~?t}>^cyKwf_UK``A-8^X{X%C(Tx z%bgP3IrTZQYCNRufUeaI1s{kCUfyiSgWu(V; z3CC;5e*0G*=PUuDNm`S12tze6dxv5axnLU>Fl_NYPYF}70PhNr888e$u@U)%prO5j z9hGoF8RBH2C(fgst?2u7CdaIl)^-`-Z{Jv=c;gdiAlT*m;+d$**M1xAc(n5kE-m>c@_w4`fe+K+=er{d|z-A zwRgBj`mP(gJ;X3}fVuFzpS>dDJeK`rZ}vusuA{Da6Ah5K z)3TtHU7Mv0v6363TVMGpso7*E(6@>h>i{Adzy7N5S`zTAG?g1OTd69K+%;PrqKq@ZP*ffJ@^O<-YR6V^^iXX)ZcgZs#u(HM_o^>z=s`Z{KU!gso1BS%@# zys(P>N+d=tLC*^aZxw1Mc-#3K1zdr$7xvPC!%2ZR+3@bi`6S+ehckeBQ>`u-pk)+6ACw6^<8Xu03E*vzFcucM&KIygh zbZx|LTbm@Ol77NFO+nOX&B99{K-63b6s^Lj#Y_te+@)2Qyo6SlFcred4OaFSF_D~t zm`pxLizcFKB+E>KoZUWPX1OJP*dSeR?PV!+3A*%78{K*@@eK35Li6L}yeIvnx!(iA zt5RXvs?-9tbnpZK0ImvJ`>=K#c_S#JVwi$Cc0Hf|h z+AR+|5CcY&mLTn@+IK^?0dA(eh5t)KRGXj2amRoAjR4Ycx^LG57Dpi_j0+J=8vE`i zGI;wCRvy--pY{&uO;=*nt=1ibpECwfxj=`~s`bHXmfTyPAp)!oc?+CHOwjTY_$Vm6#mtjEL%hHUTc|pg7{_F;@C1d9bo*F|_|B5`0) z?+f%BUqCg2G^Jg3%4M|?4>?f5WYJDKz1l3@YuE}X`b7PDxAMiuX4yy;R7V?8^u{i(y&yE+WT zlu{UXb^dhTB*+`3Lp2?o9~(+50w(+$9e1)qWn)SV}9;$ z@JUmHd$IXM2T9Q(su3d_SYSfxMX?84Kzpo*mGTa=OjXL{OCj_Y8+5#BRF!%iP_2_c z?b4o$fr^jKV;+;RvL2$Nl)F(4yy6?%mg%y^V6jg!ZC2;jI@wlkIV+3@5r!?4&b9aa z;A!0|cT5MPU9}vT@p#}6boM?hI&@f1HK0KTqYK!H_dk01nNBlKM%T#Pc#CI+t79Kn z*)3r;w6)*h3Mr~0Hn(8}AF%*#K)w`28SXn-?0oo(r@~Q_fv{a+%9?`aNUt@ZX#6~o z#=@uTk8~-L!R4y3)#$V?TFxgCLx=sKcL*4$eId_N(1?aeR!AD1%RG(|5N3e9b{rCg ztD5$87g8NkXMs&6q_o3bbqpifLL?WV`ur-x-|LQvOFiDS396e0J5b@v`s5zukNZv& zY`Ioz%-}mn5g}9vA4wg~!vIP{A=F7YDo< z9nyCW=PJBIst`zcBtF{XDG(6kfy*qnVjvR0Jh93~%(@_4vBb{^(#K`9d`)}l05kUc zxBs)3UrO29^Tn-=k;76#RF%K{!2VZ!U`^FAX&-3HYVY!pxY+C-z-*ZtPSvcZX&tTt z)LGzd%4G+_10L8)&|BLj7(90pdo5-F%l#H@XfdLwsiG>!V9DFlGBMe?UQfOu_C#Xu z+T5}}(-oE&Rz|l?4M>hGG~I*vm^69(TXhUQLe+lrBYPJ@j1Gu=(}51;o|1@}wexJbtqr9MD~ytYEHc6{(vfi9ln{>hW#7A1WyqhR4YMlI@tS@{Q=%f6*M!44e6!Ql=}hc(WM`A{SSYP$=(@)=qWn~$_8 zbqmg6Bs+l0*0tkP3s()*>5%(g<%dfNEK5#JsKFKw4rj_3 z*b$AHbXhF(d(%76$fP4qEl3txGp?BWivDUj2)2yb9|orKtrvZ6@BlD~H*)sNGIHeY zR@`of#v-Y`x-^s-cG~>*kkUcAHPG1-6( z&53zI&VEgI$}7b|YLX2)B##<*?19slz86paAzHHeT`XlMa#haP8s~96s&KIvrqUi}l;>e5+u$P* z&wW-p9WgnFZ6!W?`ZnKYeeQx7Sc5~l?bMBMcql2I*b20IgAkK6wc$MZPsxDtpOj@9 zNFDpvMdfRshpJG(w)<8*>ya7bJf`U!Q`E@J_-@w3G5Q*V=>>7VA`e?1VUNFFL! z;}@kGFhGY4M-NSVN^qxNK2V!F-8Cq`6oH*b7CMs^6u7cmb3_UWnyqy!TV_oQW@lgI z8q@2ZMfn)QYmZRII<$53X1Y*Tu#c>hG!fhZoPaiOz;#H%4pyU&+BPA=2WYyJa3W_; z*e~QkI5{kWX2W#6Od7WfHeU8{w3xfHAMh(pE}eenzj8Ae?xci+FQFAx+h@U*gV~)1 z`n#4F>&E-x{f}V?2D?wtvJQYoIVOI>PCG_pH?WZXr^!IENtGj@)smM%!f#jL+EvYY zR{p87@=p$w6!WS74O1hu4j$jngwP;6nh=?#N;`jbak}^PZWXI z-=@lAjm09wUF$9OORxhKw)(@sN};Bkcifz0)EHA!_8v^w9<42QN0&Q?V!BqIIWJ$tE@U>!+-Qt{Sq5{5}=7I&-A zO0$Q)q7H#-P7p|zQQY*UZ?k@)w0Tc-*qg)A#^d5FJCa+Pw`jVxP4w=G6^!Lv7fU&U zIT`{>bWqr-i2oP?#xi(JS%}J<#QRF?`KhzvglRFv}yFLEM;GJJ+>Cwv;Q zMh$!mXej0IhIPYy8eGQ`rV%qmV>@R3{h|wCgR5o@GmY*CY(V^tl!8t$a!b)*raOS= zK-`NA>_bn~3lCH{6vh*WpOcSXKLMtX|464UEL5J8bbbk>ql{!}vKx~Fh_SBeNA$k~ z`{g1mrkh?3JxUdPi|9^}B>^~efxPJt-Ui(fE5n`CrN0nY- zCo&~lI$xv$1r;v!0KV6E-u#Ol!#&tQzD(~wefhkAcM>&`#LBYJHpf}PbZ;%Rs~IJv zU6pIO(60QV!_E1fC418Qqz-Yk)9)e*|A>p5=qQteN%${+Tl_8c7_Q`UVu>$7ZTCpg z5S9|y%DV`jF1LaozIF#PuQQ+`|EZ-VY%;UW3^RBNW+-m>t8Y2Db8g(2Y*GptBW$61 zW5)A$0Q`(SGR+Y!;4n+l1; zD*IH?<^>cOwalRxL6|of86C?aAbspd(aJW$m_6iDK?_J#kc?sd24S7l7zc!3LMomE zEhS+ZI_8blLu^Mfv;vShFMKTswCQ7Y*n@WWL}&1h2iX(EPY6vqX7t#U*|4!MrL|`T zjK`OFN2rZ{g{1Y!S$aR|HFix&cy7=hdg)?Rl09tFSa$$g-zV^`l`~P;kJ!1KGxJIB z6%Mbh%X6b}2Eea*OlYBW=x_v&3FD@ZfN=x*ox5jUfR;l5=Nf9S0B)%&ZI{5(91$x{j9@3Px=eHFy#`XlC5BP8SO>_x6hv*TQ|xtgrcU}(34#h7qGBy@PpP54qO zZ=s3tLkI_~Jm<2nyQLwt$fHo6JdAGpVHE<%Kxc>#j2ZGFl~Xhd()NdlR)F5H?Ynx* zGspA{Sno%Hg}@wxB94EhIY{Uzd=|MJ)TtlJ1tWG1eG^E>J?Ob=86M>j37ITMI$$LA z{rvcTBWI+92+_ilt5zKJz&2aB0MZ0c(%CgGf|p(;si6Vkw7AgjiO1A1IDo`2{q$bz zYCJf%vhWU!!*=cY=YF%_^g_Ojdxwyoj5hrT{^1XcAKL%?KUybr9`R0|t!#g`!|qpE+yZ;PDf_ejH`4{6{z~d z(pV|yF58z8e_$FtRgCxIC|ddz&<*?hAfHNZFDVc6*WXF;?6)t!|Gqz8s%`A#H7qD= z9c3?Y#NNA2llcmA?H_Ij7D9vK#L2INDDO3DHGMfcvr&Xv=o~u&5~V@F$N1E9Ei#kJ z%s*h#;0*P zbbwVTzz^30*-|`?%DoQ|JpfDUZUI=;FeFPPr#h9n3$@#40Ww_~j|BC&9cdF@#_IQ8 zAtdT*CZuGdn!Nlp+0}jX54(N8U6R|IqZ{p8J7=H(AQvbE0GD_SnUv(I2C%j!6Kz1c zFr(~BR&VxxtYefwMrb0o*khJ+9(CDa_=6NL?=&NvcUWGlhhDx&n?E1wCpuG*QKfKH z(m*g9*1iACI@H(SIChJD{-|Hs*G})I38Dfdwz4hqv2!k)GVD`sLaMzr;@xM_ zl4TmD2$=$$E`rAR9aj6Dt9k(%)GCctT;`64BPv!_dx1W&5{&CH;7I`|Eo7^Cg1@p| zug_lpE$C+8*u`e=JQqY)>KK!8LRIF?!q16XUqpa+o{K<3^RNs>cNK9D;WDs3 z6_>^J1VJJ1DFkdswmEQLyweFFqyerxO^--7V_u>?*#uplE#qG8h7kfM1SJx+mV+3B zhj+;wZ6@J-N_3j_T+lqiob5mxWvg75t)lFWfBI``PugcuzFxlAqmeKPg6m5c>rnfQ zK9Mc8*+bRh%CpE(F}snyF&XJDeGUprFbn1JD-o&^fK-vRS;g*y68%!OncrtW zI+k(>i^A~%Rqr>$>XJ1El&7*v+?s6KdMh&~x%7POi7VS7Ibq5JG@N`B72ll`p}um4+-_I{6Y%>x?^V$psm z%0+-0ds0`R@MNJ}f*#XGQC&C3ZO5xYJWj_aRgLQAgIvS8$8wRKe89EB+^Dp^ApsDu z(n#OrFN?nn;^*fWFh4&dN@XXNt)pjTQg=}W4qu*41>p%`I!K`pVZw?Lr-*}#gx$}f z-vFG}qCb1$)IP>JvYxQ2I!UCZA49n15^l?jmZHlxXHVAUMolX?ABZqt&c}A$OA?f~ zLIxiLJeOj8W(ORg$Kr&!EtH$c5Of4N0k5R3h?4sbg@HSg0^*8iuK;`tiFM!0Tl|R~ z!2(?eNjtduZs#$c1_cW#eNd$E_?$|%J4sV#b-1JbFvHQKnq}}ywspF`VUDIy14kW1 z%sl*Jm*@}9;^M_SBHr7%tL7ndW@n$?DmGKZ5K*KdlbRK$cOL%}S{%kYvjpbs0+PumixzV`Eae z${NYrgnJX$YHp=(Q7%g&f<%$?F{l<8V4Nf`*aj7B4cajb#Z)U`8B~W5UY+UaH?f2s z*@}8t$o@P>OJoqGb&n=;_=Z^ge9o3&^tBy(xt@+XSgAfBTz9xOkVrVUJ0+oVCcDyO z`z&1dLZot(ILW>C-!MhPaZ8WrDPFMkbiEGpo5_XBY{G#~f{9(Jyno*<*S^4H*^cM2 zeX}s3b?h6_&^*1zDpiCb>sc+5b|Hmq^(MdUPpwu=ALjxUBT2HI3XQaASV`#@;;}k= zKUNg0OiVZzRl*B&aMI)5p5T*v7m|sLR9(}Bc{ub?Zn0lFXUAtN!yrpt00nly{z_yt zP!Q2~pZuo-ex}?~CUwK=660j_)a7FTu#hcteoe!>Cj=u^w+H4jn*&bNr|ub0!X1B#SvB>=A(W*anO{ zRfYr_nagluEIZ2Bx~$m@D3YJXhAzc|wOK4*AN_)C6iGnIzg4anG-zr9SE=hxwXlyE zP3!b~Gi&&`(HlclIP%co=yB>ck_##Y-;INqk1&heq_3wQAxleo~L>ui;;jK@U-0$g}J z{8jN+f8{q|3&0_UFs_=P8E>3@!Su?1#)_vvXQ1DPygakCQfvMBZ66$7N~^20@Yjm! zQ>ZDf4 zxUK}>^DCU}88c~QqTaiw#r_XjH_ao$Gb1YFhPY%_*4UV-CF|#r-qhAFBY+SE0>Xs= zC=sMUvvZ37HG6H}YkL%=fzfzwRau!H?%VfeT@KVY048faq-n8gE^Zq~ca3JhQ*5k? zJ+%)iStyLa-LtBNM9~Kdn(Y6nec>v~W_Uv-f<>+bK_H*TEJbKb$b9IGMyZ|Wdl9&! zzEOj=SOl708zhHo;)O%_3AcG6PT%CsO(in}Wil2iy2T!JB|HBtBpej)& zK|zbk1U*Yhl6A(on7Efs5sny)89&_mGuSs)d2WQwUz27^XKg+dx=J`qryzr}(K>OQ zboB4meqZy3V;>y7fo6vVYYd zy~@i=nP{=2OgQXwo6Z%zVG;T6A4C4-G&Md(0SbsH4tOOQ)czn02^oa*F#VJB=W z1jQXn9~0#y0I7BPGmUSd2y!jz(MdNkB<61hEB1Alv~A(BdbW_01>{ezswl@5DYi!o zIZTk+*;u=Wb6&}v*k%ptVLG3nh!C2L_4w%6aH^$tu(mKt5vuvJo9N>bRq$?H*X07_ z(@h>3zaUGs@k+*3d-Kj`7B!Y^CN_PivLY_Cv}#e!M?pe{I2ew0fFN;xt~MijSdS#JAhS*}yqsOXq_f>~m^c zS;32fR+2+#=E(OxIA7e}OhYeWGh?uwc2iIx7WM$6dQL;F21w8PM2ggmvqO+f2MBI0JwgC*=d+l6Kg$&qyb zdb6K!1r+SmElW~mi;g{QM9hQM-`B5S(Ml`)@Go$w-T6Uf|DM!jhef~S=nrm#yT$n4 zlpC|lt8=E~ZPGynN_lGuw5U|bpi(y4DI%D~i-Si%{!y0kbV{%?C#fAy%ISs{QdK#V zVFO>^1}MMb6`Qx)oj0?ZLv0RISIK^d+>U6%HKxl)gmv#y{vE7#4V?$zm+RLw65ZJh zXy7e-QJ$Q2wm^Ecp8O^$Qbg}asSZj|8ym}QRuzXa%LvoEgz)y}+%`4jIRKk6F3geJ z%&=^7`!?zAemEIFSYAu2>F^(Nmmk{@zSPCCbS=Ne&7@ z33r`Xvy9@CQj1c~PmRYZlpL3n!#}G44yAMqsSR+f*mES2TlklZTG@zjuBHn-(iz}G zS`9%WRs%!IX?C9?MeODmzzyOIXY@2E=>9o`4|PDkD`^V!@a;h1ye8lKnTu@vQHbSt zXKrFr;f|2qS}X181aGR*CjwvUT__79N9meq6k{{*i&u_=S|t~09i>@<6LO`(GxXaF zYP?6;E}LkGIOF!3>Z#ZfmOW8>%#2ah^^<9WEZilz-twwjYB>b%LOgH6rI6e=?f916 zfk_M7cvn|ng{QPP%BzlU_g6_Uu5oFA$+FePn99aT4=5aym$!#v(enX@xw-Elv7>r~ z7f2nUP{{Y4dQu=eR=~ZrQWrX_O7y()x<=2_$+pc@?+0Vs8S}t%=aQjlSS>C(1|!p< z5TIH|b13%~>{UYo)LK}n6>K-iX|@SNjX2=`2N9WK;}SY?mTd@rOwPgWYdEf1RlS1n zNm1nCaNMycP%GK89Ut^3fE1VNCx zH>#uVwxc_`MFzY?6Oe9D zXXM`Fe`gqv&-2TpYxVFah1~lfx;eLUsjPDtPo-@SxrK!^c?5RLFe*xvQ@6L8SP_DW z+?;+CtRIOB($Vw+!HkGHz$6<0{CmGf zZ$6~4*0}PcvmL8Nvl*@NxYlNUnt!(J)Fy65J%fjcEL`QY-X7|_Sp>_a)}A8O6fV00 zv{u@PR>;gcf}|mt-xYDfY}4n>fI3__%s{umF1%E?XlHaqSZ8|!^NuK7WV2o@Z1NOD zrE18c!Eja$1CGR_?_NLSui=M(ftaS=_FWz_7CE5dD6R;7@h6kDLEV)XPZIg7$GgV4 zJYdY*^;oH35&gy%sH@~-X@1pco~lV_qg~HJ_n$!5AE3g;7!B&1x|{aAYHIh%fF~$P z)pr&C#ax*^u{-QDl2hw|KFk729gvmscwr1(06crRTLX70EX;b^qZ ztSbU^0&hUq3d5xN%-E@7l@4uy#_Vb^sGF+5y#FQC7`CZTMG$L2vlqUBF8=YP-Qp4L z7DAKsXq;r%!d~i>I!MU3Zg{khU6zV>yfg6qVeHU@X5~~(%_CfPM^{PO`bCcY!6%Ix z;7+PnaX@ksj<1sKov-nXZD^6|nI)*~ON^dqZpFPOneEdPL+XpI_Tr)dKa&5#kMzI1 zT0CL{Br-NU`@Gt8n#rOgsdjl@^mGb%yPf8PqPkR%rt$;e2jiDqv$?f`tz4>8#@<`VT_? zC-3=*^D(5DojS_f=B(_tLmgQJR+g0Y&+UL?3M4NA`7>_Hv+ifQHHOxhVoR3Y*@^Z- z)(Oj?gRA)xU+mL5AW7=k4ba8^5#Ig1>_VmPVz}pEcc0Qdh~RH4UlbwXg2)2vkq_sQ;sqV3xM1Ewn5i3w0`GGjLKi|pTeJNV>r^~^g5|; zTPsPTCa0L8-dG`e!&(VTo%;I}`?(C3rBK|h&Mg`k>_ zDPogSn9G0@o^^|oXAQM|vjP*En#@BQPp9AiHK1NQ)V|0tlLtoSwe0|-u0lMYb#!kZ z0gkq#YP#MF(E_qDWL4K)AVqS4eIjFnTLd&NycUP516dpt_u$pV9O{L?p}5ar;X|s( zGlU(XOs3+H(O|_aSHH@$WJDKR8NXo&XCJq?KIBTBwu)US&|a5G_V_{FU4ABU>S$m| z$!ObY&{4*W^s3(di8@}Q)%luaWd!D6Yt<(h2zZC8TUY^Ma4@?3qkYP_gC2pXm z05d?$zh@T@rJ-i=06OhSzIxN(7S#~AzIrU&!P?#q6EGB*6Xv>mRRF)a|Cs4VYCH(Q zRAB)Rl}`8EGOOK?j^rZ;HD>!rFE2X%u7RbED>uJd>sUpoR7$Q#H+8$CiXpHfETwokUHo>?GA7Xh7x01IKu}%f7zMC z(F15{biya-~aZL@ZW5|Vc(uy zr|t~A5WUHvj%kHvHi2XoeH0i`h-=9m)=oB}H&NG!+G{7LXwzw7#rU$M^S-EBx+gV_ z8|%uMk@cn(Km`VaH3CtTpklH+pWCNW<(3GHf>@r7Ewn@}hTp>pUXYVg45~1k& zNkz&1_ace&Xb{p_X;hfmv5J({l=GQgNb{{^LnVSirlKzgE()i_>h}ey&dgd-Mny*xd}*_HCcAAiY}I#Z$}gI3lteu65q2czyo%B&cM=8QTTjV8047; z?Vl$0sB>r~LAK!+xp0fu5;0o35VkG=Psfrf`Oq;&Vskn<*>ANRerYeou1Q}y$W*5S zXwQ+)^WrdL6k$ohAUsD2UWkOM%O9@nLTNH{>WZN^eqdkjIUk&^ZZWAzDiq3~r=DNZ z+tYW_njr>vkt;zy)pVNRAw%EK%un?Bbf-RxE(nq@iidprrPwDb*bmKcHe#UgFzfZB z9G*WhIl){$uP{QCHwY!P=*`}j;{LJo1i%`G8;H1?T5}qjeC!S_j!Z&TdIA{jWn;Q% zGb_N}ssFRlejpoTy5cq5PwcdZC!VAp6leBW!swRYZ-(ZNNpZvrpTPJn)as`nw0)3XFugZeau!W)G9E*Vl zDsTibiGdiCZEF0;x*%Z$QXUSNwmuSynxHX7{$Nii(fjET=MIcs@Ezrn`&?qyk&LId z&pd5NH5Z8r15ne+Qgx;;S_|3tkgKoIZ(PI^ zy=Z`6MK%+6aEiL@t=%(ym!i}}&K6FC?qRA_PI=uVn*7P1D%+iY2k6oC9nDjTZT_{r3{s67k6VZ225v2q z`1(9vYC0=op?Prv+>uxnNjN(~tFdQbz314BZZx1+r|q3*$E@yfno{@fh$?#@aWSE6 zCZAevtVqm?B(V>E=M!3flw|1^2f(WkwYjOG?aiHLW+^nhfci;k;7Q0Fb_`ICKGaCe zCc3Vx(T#1Jn$xqb5JURztVppH3nK~e)|M=ANqtdAMr_|YH<*|o;E-PmrWf^_)u2m| z>{7k*>^;HT3jAYV1W4|}IYUbxFwgQLCpFEnlS~CHi9whcv!?MXvD%l>Gb*iD3I#)F z&-ou36U4I?`+}*axW822?KfYhaULLndy| ztpPpmm_B@qzDv6=>fkwM6%h-|pol-LtspgrwFMMcV)u+P33TbH^E0Veu-uVPUf@U( znX?dCFxFj{F%&p@9qk40;W0YkW=416mJZF>EY88s%uXm8s9l48va!n=`h0RgxQ?f> z&7&&@{o;3RzmX&R1KhSme(T=fRq}vLcqyO|plM5KFbX1G(H&+q$8|E~J=+Sdy$`OQf+Y&xb6kn6B4GeNGgYMt2Iz*jC%ZU>5p6gZl-q7T;b{rXnMRw$=k9CN@zz%m-#K+2e9~F!j2I)!vR&kT3e8 zQ1^-qd1_kX2N@mhyp)Rk@t%H@&IgCOTS(8SgXHVS&H=lY5`e-2=t5ULN-F z*BaQ-ZBj(0IU20VF$jNdqCDD!tEmIdPN-VL+H3-Qd$$)Qjp?_LUfSB_)OLflqDiF4+qxDRva+!~!$-oFg*zJ?;R zMTyscf_~sfy42cy06BJ5$!bc#su9gGH2#{XWt4j^RD$q5gUHy!*0}0cG`RdO%PP0F z16mvc&-+IV1sIc6oahm6U}A%MWuA=EYlFfL^{5-@VkI;` zhh;MWSQ;P2SSZWO%Nd1?>z|qL8@ONY=dBVF;XtCZ+h#_Nrve^us|C~ByU5vawxLE225S%YyaxjUMSSR{$&_m-^( zaP=1UhrpSruiCbe)9bvCoJX%rL#ZAH9DTtvs#2i!-Bq5Tg|L%-gdGirA*__-0}hmk zD>(c0EVbU4MH|NJ{ipD08HO+n>IJnwD<`#caZHdt?2hecZ-P{imgZnJc0eoHP1}XL zlj)NAnNkjb2U$zLdZy=Po2U^A?7d^*Et-77Xd=ftC)p5#wAmsi z%*s!7L{ZhnGph#ZX*i*=8$uQ=I_ecQ$Oj0@qPZtKU9dyv#Fk_-WXVYzKy~yhhlCu+ zTwvI}`Uk^IDHU;GZ5ICn=J~3e=jL%&DNh+EE3|$&Jw$=mpD=AMbCE1yl>5yQBo(Lmt(vg zEHY+X!5~g+f@JZqr)H{lU?rVEZB;!~1@6l3VH?`EbnzaPOH!%v{9Ev4Sa`UgHku<3 z(wFbW@?l}u0SKvdQ_$xOIUX3dr_|iEOAp!blDk9`Ei6f z^{DoyAZmbaj{}Fkb9+eJu8+{=Q*+1a-CYG-TQ!t(MS+l1c9U~*Njq_N7CsF;5IhJ8 zI}b?0+pDPJZO?@>n4UVh-6Q3as&J)?TIY?4YdZ8RSG-U14uy=~i-1)Q>nfQTK#vEV4CE?>O(a?Cj)4?n1-}9Se!6P) zbX@gX{o*db>*%&OamU`LK>E zxe|B1l{@&1#C6lTNAIOhh=!R*-87vg&n%YGo!m&c*^BB({sdb#cBdTp!+4SeDst+3 zn8L}~$*slh7$j$ip?E7)B{)-|ebjzxF8d-GW&mHc&{b6t!q^odc|8=f-VU-Cs7emZ zc&^Js!KDllCi|+|Ncr<;g=D3L?Y_506^pgoYCGH|QXR?eR!0oe6u=mkCZAV`)BvV& zC!7_yt9sK3PBB@Knuudc36mqHHg@0Ux_6k0wlGkDz+EawMGeJxdtcT02nLp_;eHT> zM8D%g6`4n+uQ--{51KH6ETqJKtA^Q}0znW9&~5Z+Rh-L8>YI)-Rgl=UWF-iUurAa; zOv~JQdAV(@dsiqs(3@y&KY+KFL0aXr0r4#B??FNiDcVK`JJxYFMUFFRx@AG{p9%pa=`A=jGin7M&`|%AXlZT zX%u510Li?)*kF4%alNNVtwFWUpQHqZWGBH+1vb= zJk{Y)$l_v5AY54Q8&=iR11QLS%ZZgzzz)Fr>s+9*2(S2ch=n4TFx_F&O^|G!u_P?Ven=<^yYqhfFnV)0zp)<37t-p z*=AeN?I;utQ1$E?$6R0ce8NO3scJS?=hmqy=_4~RZ@gHcfQe*7at)W8?&u$&BC!yI z0XKxcO{-oX1tK#CA8`&9GLeR&!v(Jdi}#!6e-3bo=O5@1KE;=p;tEo+^9qn1-J&_@ z>tO;&JvCw>S;2uoS5GKln=RlUzrKh4B)ku2yUIRu z6GC^5qz%=BXl$*J(cU|%h{=kmbuos}wo|XW1TuDtu5g|{X?klLL%r?FbS^>YtVo+6 zNjI9dzNr0npnxeVi!yFSg`MBki{#@3mCD93Bx5ERp=ZXM>khMk#kInLZUHuq;&XsD z15QZgzbVY{>*_n5+s_A0X1Ns2XJ_YFG;>Vk6wc6V8x@}*N9(ksHMN{j684@H`b6`R zO{oeau<8^T@TS4@H8sY+;#JTvvqM$k=mI%dagpS4wZnmP;Ks_K+T}bN$8iX5LOf-! zY&`ynT0X3Sc1+$a?kIL5w|rf@bDoaKcA^J=uWju!^2vrBF{r7oWE94^;7er#+<_I4 zJ-}|!RP2W@@!^dxDZK$xm>FRu*Y|Yd3T+TI|MR}-1ql!Uw?!UV*}$XDKkYT-hEq7n zEjc>6Tc)gQ#KyL>Xy-K)Y9A1dpW4cpa;1I4W0#nOCLUE+itJC(Ie5qBQjiR0W+J#&i`PqqJJuU4^pZu~D+;GP&(w^ocR<18N z6#$Z(1R)DMgAa*)F0Id%3S|GqFJl=AF|aW#OSZS}c|%Ww%m6 zvIuV^O2u}N=mmJMJI#`DnbL?4GJ&#A&op?3?&%JT$&14+(ATr!dEeBtaNO-pdFf@|G;lpJ3o}a(_F1-5=!UO$)o*Q5$qkY|`eoEECdE|gr z%-`$2Uf`{(H=!XNUcayrrvi)FF^1E6$swBuA)x!4?%~chr;_siWTSS>VJM z9|eb}-8!i%2)+=GzJ}(^LuP2IO#V4RgxfF8-Hy~T_`Lf_O?kON7O=*x&}bejY_19k zrUs4A4FeQ^O;CCnXs^42L7L(!sFJ9M`WA;-lV$nYe5`E(kdOiqmBQP4x(4COlbZrq zI~ub#Y2Q%#J5?JVPI6W%U@CeGS07NpXjuU*xtDknYh_ELvDK;QXw$h^fV$PVmcjt7 z3bls01Xe{G?wk&T!xc7vG?{daQia2Locw-$45{pk+crJ1RyPbr7cnp7OyO5OB~3$Yhe9B1%4((-+=yt;)(=vK^(P z*qGwBbZ;Qz5L`a0*PzE7m(L!8>^GRN}tJgMFox$rGoQB;(IuTq}!T2Q`& zFN56C;vvA4MWD$7@?GLe;zz)gy_EgG+K_Bf7Yz>MZj#?yQp8gKU@Wavp_d`;VgshtekAS{N$ZfqkNG=+D9*<)0}@BHbI{Bhpd5LsoxQSkfJ!NQXE+O{zbX zznAP60Jp3UCp(^~XNX#N-u+QL?*c5){h%SHLXd8Vz87H<_(rjTyig4a!Zvw+?0P%r zJX+5GthU@2Ig9 zaXK+8{v0$oK6&?hn=6_~>6L8nST%c=8MZeY96bn8him8UO)C6yPLys(hxTt?f5U<5 zZ}@9I_;$k#q)*^pOQGMNY#w_7B`5Z~#1Tohn2JDp95DqR)$Ao|PX*B8q}ISqGT!Ji zU6xn`^em#oR9#>8dQ<7;&Sl$xtqDH50N+Kr` zctkN9n;k}HXp6EmEsx0E(Jb897eKBMNvPrOoIl#5y(J+g`zCU7b1kVeE<~khS9VnQ zazjGZCMrTP(DWl>uYsQC86SjCCHS7fv0kW)Q!DD0mEI0LSvxu!XXCRSvmLTa`Gr-` znmvhZkNE|9T(2J<2Y}PWBE404h7}p4L0~SWWG@0g;_MX1Cdw?wU$SVVb|FgLc5%1xCwFYDGz0G z*c@`NuVlXz)?yDYj=b|EJ$+~_rX_@SKS}PHoV+(69LY*Zv3frytMUjU^f7PvKgjtuvcEbk0=hgK<$SQ$-RM#WG4^gBl*2)<-n+P${Q~+Y z3J}FYSR<_{w5|j&TpL+N4A*Q-=x#DwPY!f{( zN=R9aY-3Y&hM`Di>MY8cQJ^uy`=a`oDAvoLws*J|$6CsrYvpV&_Kz;uYa(!B6 zs{AWMpCtHZl~mAxjhhS{+K z&Sf*K>Yi$=sqDr`R!*l_OZke6`%K^|JC;MTVb_6FF$Hb?q|-Bpqf=mkv}EX$W`mMO zXdgXZRNre-W&RBZ(-Idn`!qrlv3lSgUt#c|MJ#l=0NnKf)jIb|f?{T?mc4R??H34? zAdw=Q=8?HsWE=s#DJjY(Np?$)Nz=ij@}QzvKxn&ut9o#O|8y;F#OJ`qtCAiTv8Sh?>K3j^ZT!lJ+u$=u!DkNnI+Cq1uE^KWY21} z*WB2#hk&XhwR;^H_9{R#6-iX6VC+3y9cl|}&cThmUq#Y#%Wps4(DK_8O4N^o= zygmVvRptrs*O{5q!q-d&;WQMAeCsJPE103Dm5t= z*6zF30e5#`%e^fr?@Jf;Qj}3P$2BN7y5`o?WMn~n!{J~enO2ZaA7 znRnKw^6C|FH3^DzcDpZGR~%`5aZZRZ7N>B=UWofIl9B@d+jr@fpgPa18m#{$m#4fb zGyv3mcq5mlZc)9(_UB!P zW<+k`QaQ8@yk+c2M(CHwuCwFtGxLJ%eatV91S&ct++ZvfJIzjzS2v43@S0N_2usmX zB7!(VXp^KkdtEy|ZeE;ydIpM^YE+UuRV=q=oiy>7YA^*V9mTLbPUxD;Dv`5>2jjSQ z6uw)CrDwvn9QZ>9Y#$H8Ugn zVI{!Vfn{9*iQROla^ZugW7`)#bc5YhjUBzXt@wlG)04&qyCoFX?2?uZ;2#C!sp4@^t>Remrt~H&ie&#mH zVYXnmaoag|`t{SJM8~GRaElA0a=Gk5g=h1%Sh7$Oou2!C&sJi*tS?^8sz7x_wX1`*1I9C& zpcuN{FDK=Ytq6-4@w4z;(1YInhM)H^sP44Xov7M~qgg^_6<#@>W3Xm`+^%P*5WUsA zl#I;wI=$6~dOYd?nhs{^d+d0(gas}|ob|#P4a`GIoyKd?Mg*9o4UZZl3Ch!|s{u8pG-1%ILVt?JFORmbdBZaxzb=L=(vxMX zL-7{wAQJ-j7hY>qe}GOR_txN5E$YZ>N*2merTt>1j^EUstk`{$ZQ15!=<<`W?KDmL z7CXYT7P8fbq%GCNbD)aK)PeymRT9?iNGJrG^aS$-4)zA%~WdUU4{J7);t;RG3FzgrELMGX9_Dw+g33ykVvx zpUGwM`YUXVtWw}jU8%`ku~Kej+I&`}t%trNp8zbXZHr?DaF@pefYuN6EURfc)@%z6 zz(M*fhBuXBa@e<4lOEX;FY@+!5;WynjAecm;u(2?GqQoaU({r=NJC7_hj^k*!pIW1 z4C~Jy)>Tk{7XIwiKL)8mCpw;&lCb}x|%^-FOQFyxq;r9CC7ebl)k^)a779FFVsR(cBQkX^aRF=PV(*E>6O#nyJv!tV>8^e%FdQV4B)wSIN);r^ z50%S%VENt1);YUyLGgG-$>Uy!Fk>fLr&_zh8qXSnwkDH$t&+hxBX!>-byfY^R$Y>) zxRHe?@+%}o8`DM+HAT;iLX~$N_D2BHzvLcGQp9Ke(bq16JS{@P{FmxbSyWr0m#{zK zMPT$j0C((n{iG#c6_-lkLz9)%5Uk7Z?!{ZPWAc%eiaB&E2HYbA9YCn`gY~qdMGVRy zNKnTXIS_qFO?iOk&}5S8St=MtyS0`FF8S=?9@K719Tdy~IP3zMyLcJ3RY9ak*t4S5(YqIh7Lo=YhFffzO-f3E=gBF1%)KNzr;R!* zlY8rmL#uV01N>~=O_LW@Zk zIIk9%pz3<)=Kgbd{Vf0KuW6qJDt$V|n+uIum*`spEx+Uqq39BDlGw190+?5#@&Jb9YX zCuA9dZGeY&>u^8a-(;;Pxkkf)%wsno*_0nx}KedxeA7HNc zaPc5W_=W?@HIfMApY9yx3}0PFV|0s>Icm6ldCBn$G(x$ckt z)vGrQ5JBL@i0qHTl$@f<6qZ7Y&#h!YywVl<(I%mGIILjf|8euD9mD{#bB@R@OuI|{_ zI)hBtuyzWyR}<(K-Lp3M3eS=$6z^ak;9yELN%d8ARK2Ko-B^5;7qmSOnlVzrSd7cW zc2u`(+D=#e${W&spG<@PbUQSkV2TtU=(gB z)mh|Z=7)(NL7AVHE??Oajg8%Es$kxiR~u4+&FMvLz~28)rkOTb`-mg9kFvg9)A1(w zXW|6EvmdaGD*r22s-5Ny9BuXY$nW9B=Z>|`IqdvOyizm4HmUYLI7OP4TTZfhg4FLy zm9R+A!5i&Lx2j+!oFFyx@j_~SUD-m{{}0DMU{H756ITk^`Okcg{)*sY62ECW_t3xlbfV(pfNt*|&r$%8urJO8m4g!->7`+i4CXnQ z>(ab$lAvg3T~npMfkwvz%?O~)whSD*>{1leEP;PW)cqdB(UjY=(RH5GeUUU&fJNxs z0tsYDflKv0GP-+P`e>;59YvzPvx-w|2Q4BjO_|CDZsg`IbX=SHlTYS&Gn+f1uXnx(_;CmC$w4 zbfY8|NdiuxhQ=MZEn_%8$z7oW{PuP+lC0f)`zlLKH_50~@@?u-B~IRn1#GCJ3BhEu ziE6LqtA4QQzs6ALXaQkcSI*$W^RpTzHl{e;?ng$-%L^N5@Bbgt3-!ZiJ{-rD;1sy{ zxKF9%Q027*1OXtjU6FPc1JI#|UN<>>x)WL58VnQQf=J*%C~Q~6e=7#j&Y2CKx5HOJ z%7#bj`hc4!g|%s{ULXbGs0X+Fxk^R%Li2_cymMTW%QK^2tD;h}scdQ(TG!|a3VGnf zV9Q>~CuNcPp#|W1I_H9`kJd+4A3c(PZ`y~c3wZ~Cpl3(rp`BN$dXtSHHo0(IFa~*? zz37-Z$+R|*D?+JWmr~sK9r^39dk5YtsFVF`js+m?`rN3MjCippIQ!Av~A`k zvmopkPJ|8Br3c2$fG3(&czY&vtd>ok4 zk&2*_a7>>ap_WImkJ!RU1lMaMVu4AKM6%H(U#4Adjxl$)V62B}`whH{?9So+VMyDo z+=I8I#(W@pF=BKk%4g8AO#JV;kY{|?IfsffmY69EMjivO3vf&xZw&HSk^y^VbD#?# zBFxCuSsm|9O>?9``nnLOWeL7}i`L7AfVktXTz&(UJMDEl2r)1s{Zi+njQEoMZpwEe z>{rz{EFg|by@cLGuc!-@a*xvo%=qEpg1g5r7Z!z3y5p#irMIR~AV=SU-oP>OsmC0z z@G9F0T3WY)cYQ<0z(ZXeYbkNysA~%&+@$WTgQv?ZWG-^d6fe$$JyABQf!e^6*_9;6 z@PG_~-ZIK~rG-&slp?{XqK%)ati7d36R5C*?HBp>^@L$E-8Hs*1OGs3C%}K9f=NtH z^FU{V+EMg6-tx@PhEkT8W{M=eqKyP|;z8bjCR~jVJJ<_IwglzWIO|pVp!@v5$BH zXQjw)e1KB988j=!v(qai17gUkWk;uQX75d{<&BG@F7rCo#i1A}HQP^PPK68)G%Bzb zimpYPsiGdrGCeB-$<$6_cm~WHu~+NuxpSeeM$<~GlvJI-NR2g4#1hqrflO}6yD85F zcR=6+?1dU-nslRDH$iRwf6@i4$~Mr}5sr%gq2}+t!56$pHxaUo`jEFG2I~e~pQc8$ z_OojoZt3iyLJkd_3aMoy=gUEO2Z!Oo3)1~~yD!@NcF2%H96*VZW`unyxT za0?z4p!c8bp5w6gGf%c; z0cF#3OUZ7a=~=k+-g;C~iP^x%%m&D^_mBXZZ-mi~ox|pa4txQI?+TAP$=kF+$yP{7o2kvmplw+&I$No?sqbrkIe2G5-Y{Pk zNkdPZySbL7L{F5Mv*_8TUUOxSizjT%lTmF zhpsD+CQ=TA0v87ZiS&AY^9l}Ns=Bfe`t$NLvC@55wq49!#nTQYT92JdO1jG^)Vx?$Z3w8=UqOXT%la1cHL}=Y@ZOuLmXupG z6iI_BYG^|kQ)&Rml|T(J=obC zeJU2R5Po5NuRE`J`p&od5TAW9frBPNF@^^SGID=YJfvddvknvQm67(Xi1Kl_(b2E$ z>Hu`lmHYGwSld_KDN%Uf!kE{tMrshsyaFf2x(i$6P`*hfhgB3!a{8)z4=0-_b58FAoWzv)Y$7{;r6E5yZOVasHXc~pmltJM8`SLagr#g*cS5`Ycq zo0Ndgw4%Ot`fIkmE`9Je>0lGsj z%CRdd#m9`9Jrs!ms2=C29c&l(t5cs2Qe*SfKMs6J6=k>4Dv6vyi9ZsqVO z1uXn%+`K7?!*O5}w9{k}F3ELT;W(Z){UsJjbGb3gE;M)namWkN7`r<~qTyN}dQP%k zI-$C`(w9d6PIpTf6S;p$$_7SuUN&C)hGiK!2#94)hoFx^)tR;n%~w^Sm_b zHf@UM%TXNwPi8Vyfu!c8u#>$!9_n>T!jSdso$Lhl3stvcYJI95fqOUJUA74fU^4tv z$eH0m;+!?4C&Ue-AcJ}-Z?h{vbs&(?>$DlECbeJ|U>z^uCt;9O#$ax-Wl>lwUbd!i zQ|RS~jD2yNrC*(f<_JcDk{rTx#DBem9$R{J^?-S46s~DmURZsKo(F! zqtzcOu8?1$3)iblLS}XR2ElgX=8+B1sDh^@vGQt5k;MHT!-0#=JUGV8YM&rfPvc`S zZ`u56iS7JKZDaXtA6fvR;mF2rtp_mwRw|{gE>r0kZWB&(dY)yQGskE!JgHHP)>c}8 zTMaEa0wFPFJi~9nn)s6PbsiJL=Ay9&LKIqpvT6!}xgW<--!SR_>RqO=o!z}^ka%~{ ze9wFHX@~ful8If+LvC%kv?U7o0lOxYoATus42Rb!Cre81Hfnz_W9ICK9V5EBR}<#= z=H1J?emb>oxwhufZ}txeuJ~;23>D3(4Ev=f2))NkXnXM3p)X&uDA`_5>dt*yCkUUX z47hn?qY9tiyn!g2*G>eMxk2~j*XbacG;%R1>blb-`ut)fGHZx*zN!*{8W(TTjW|U^fe7tQLP!eMZ4{jGZNTY zfB=!CjWmdw=5&}UR1yqe9pfEtRs7Dk5oq{SE3@6AvkR2sQs-Ox_5QEIyD!vQ9%4`K zq#_$jr{FwW(?&@*2%S4vq3M1wW`$M(j;dQ?0tF+N=gHeuCT~GpScgU%?BF^4>lG>H z8WESac$MEKm;w1llz`lO8jlg5<=POj;9yPi#@~e3Tz=-3kl)uSST_f>`;BVkErz&~ zBEfcTwrzXhu1HeyyG+!Fs5pJzI`kH9-D(->H9I}ULQ!9+R!}lw%qKBS2fhkZnHS$0 z%Rvac8#Jz<>kA>B;6hrq-jUFbP1SlbWzO59tplf*aMhHU>kKv{6wA(%t2k()XJuXK zo*zw2!zTeKmKx6?Fy9P!=Neg^`uZIs{)VPnQtU6(zGPF?K1)KSd587`L}r$!o^U-^ySL%BAyx9rxrA=Hd|8q>7(OHtNd@dQvwnm{=V&H3V3l z$Wn(3{rr$M>LsUo{rN9f#-bXHO%_}4KMwDH1E`a`8;?-AmlW3cUtjNMr>q2hw|md$U{`v3w=z|K^Ra5*Tl zh1RV-E+orPTD7>-Dfya3!e9p?Ka-Wa`j&R5pUHpWXBJ=zAE_HT*MK5e?Y#?dkk8nZ=!kAGogUD5tf9hS_(FZPxa|e#Dfj4P?t{Hg z&(7UB1{JriO{)NHh;0ACJ?Q>-2_RX?W08Zg-KSounZG?eymnATat}!wuXHkcfKjf7 z3g8)Yl&R86QoJLBp4|y$Itpoi5FmF)^o+DIfyN;INpykdG&MbnTm;?a(q7uMR zYgG)HT15mS4zH9ZGU6Y%KA>H_?vW8sDm9y*+h-CC2p@l5uANF~Iv^Xj$!0ZTqs#=yah>%ZvtyRE&?NKCU5+&~pyZqTDH6XNk8U<& zyh)|*{V`=-v8ZYat1Lr|-LEe~eBM^Cc}Vo1i(AN@x6D`=ntBFXOWjT;Ts6kIc;W%nN3j)& zLM+Nw%r18AGqxT4C09r~mIZ$xy+^lfRx&_W#Q5w4s9;2Z+J9cM$+0R>o;VX-g}s6I zeC2ppg0w7&oqC8183-uqI1piPP1Jt0UfewvGBLnGXx{y2`7hxAP8W#9RC4CmP05dj z0aGP`1Vf8C9F4-ipy3SINj=Pz+VGe(EJJFZ$j(`HCIBU|>TW-(E5g{8id?WK&f=9P zb(?1~1g#XZ)X@8GX&e|sm!rb#$EZl%hXetmuo+dl)_qj7Uns{7)G5rxbUI0vZmr@5 z8M|9W{O#*M=s@FdVX7#!)0-@b*teAt}Y|&U)CKYd4*gJ=e&9bdW z&k8p;%(LLU2y)B;a9&g#(}(^4SNOjz97El>Vsrxk@L!?J&bfqU*hTkYNSj80Y)d2| zb{NY*J|(N+R9|Lx;?x;3R?3J?&uOWDppd;n+;5SXuqD;$NEx8XG;<*QqH|xN$wO^t zds^Pbot5r-#9Az*xb(QdEmn3ItYgL*sg&#}CCzp+qNls(i!(M`j1*k;h=~qCX;ztqoMV!A>g8mOrc;*&<};d&})o{_t0?ABOx(z6&AM$VyW(%tW%O@{+Pp9wUy6 zwZm%JV!BG=+<9B0szaRG0q}H>yxhoKsQiv9(;6PBXt2OPeN3e6OZbrDpRu$B0>f&x zPg%76^Qo6BuN$#TTu|fXK?rLXVcO~uO#vqbiM&H{rbOhCvVQCKU@D?GO-^d1ewfY_ zmPI~)eS>L(*)n<&haR&XRMm#F$1>m|?>ks!j&}lCwQ)`{6=r!5UHBg0K)3a?1 z$#ERk8uHjx?}hC5<3lzmYO_+lSs7Mo+FkW~nI^CZnh1E^z**l^w%;JY^3%Cdv>sXs!le>?ExT&GD-CauIeD9t`B1sgUKaU2hO-PZkR79b%XV`}0I>G$0Lf z(?V%i?ff7FQv&EC6(`Zz1=IFfb?GhU!ecpGq?@IbQZTvq(Ux{MpVWFDA}@BchX{Z( z$Vm&s{pDZ;*q(e8BVqo5{oL?I2a}?VyoW}88EOybE_iX(JE5REtjBO%M+bRV==e6B4`ZcRQg|BP4m&u}(>vAh;_aq_cs{(+ zAr16#Hc#frA-~b+gfi00Y-oLzUQ%a~nHaAYP!cPW0 z2CgT$^cX!ARNH_WlEAYvk9!U|mCiRMMx+l7r#L>Gzo`*vUX&g8EOC_pdyl7=?m`uk z7wc)9yOIz>09`<$zlX{Iq$&}uzUr#-jE?11?yX4yVx@T>ob2Pu2oFh)N6*IecI)B^ zl^s1*)Cs@|rSiNW@?2n9XC)GZ;@~;L4*;N&=)NMdnTDB8WZ66-e@vCzhg#cJ?H24g zqGfuKeSby9&H^*DC^)3s!tgjPkYP#Kte%;V;84jGNubY+?7z6}LLCO;Fh|Q_(DS?t z-ed$_OzvV%9@_$AU^vupLz>daq4?Mh;mYf8?&KYIOz+>ZMH;rIvHbn?|He4sjN z4|r9hU-+~WNv<5Jep-FTp#`l%7BvO8yCfXu>tCV=V7~$CU!fg6zNoWJWN>*-jJ$dG zG!_35h+;2O|HkP-0`1BLhtxrL;pWAr8BRT+cM0$dNj*|RSfG@Oo_qHY_9jaJD& z!yd&?Gs14}v|yM;JvQ3fWal_Z7py(FtC%V}qsQ4^BWJktC-C}D`TxW552w<^xJ6t6 z(W=X&GhVK{GS&PmDa`Dc-EZx9N$7w7;k(Z`dsR#2&Ccrb2ET`dW$R4vArn!$0v&~S z43m$ed?%V&|ce$o|T(`1oCyEQGi;o=%bvtEl}BZ}jU z9jU3gj=>_u;I@O^H@dzSwNTvJ5!CMB0V*IjgY^pGfQ#}n9SKkVqV5Il{e_!I z;@9Fa__7p-FIly`95?N^ooY8rh4)I~!prenH&j?~ZZ3!cHPhp*B30Ge4yw<7=j+x{{>o+an4q@6Dn!R#NF`&UP11t32_Cq9La16kJ>I7 z$#bnap@wN4IHV&u@Rz+)YN9pw>TanaroSWz5Zbarr`hXJc(ThmV)7_aq6o#L5Q}ak)Og?oX^7;hux0JuswaSR$nI&R@T` z8;jGrEQ4~ITe$H?GU{DOQX-1M@^(3CQuEvVPXhTUM`L)S4lvAaFo}NdLG1-{$1ir{ zj9Dn!dg|)Xx19dSWEdfMu_~>@WB?#2>{uB&Bs=D)z|$zi&~~jm`Kjy%KjNqwmn#fE zvm46FS7FNul`827k@$@N9RB!^EszW_%3kTP)pzxgPn_Yq)?PMz5=Iv}FHL1Fg5~rO zz@X6HS;vT@vz5#6*}%E)rhT)APH2JpcM~^l!~9kiAIf=NAx7@wPo#&vGq&`gwXtDZlQgRws9_6Xw;1@YYPh;v%;~X-)MQsy)JL!AMndb ziBN1DM{PtFKs@vVB<4>&5u+FgW4_dx+qD9)EDxxmAh?3%y8+^`IV=?eNs92|B=wyS z$K^Uxi_W}XEoIK)adlhd+g`l-S^KPPl6Mh?_bcmmiTHU~O5o(y<=3!_>S)jq>kszs zO=U5ui1e^;Zy5JD>R7Ii!)xAy^VFyi2Q)j-5K?Ws3*>~|CK-3z%8?#QoB0iS?^{{> z|B~N66j*WFDP2rOn|OAl#KhI2#R}d0R=<+qVVoT4g+bT@c(b@ns=-3@wq$wL1s8pv zNRE9n5&nrB=!QhDaRNA`O(jcOLp=S*@aOrtFf#OEoOxHeahN2x)=P<3v@)!?=;q9# zvrD-N?vb}p{v3-eb$Ax$wlKKio!nhW03(MhgxGJD$9_zbk??$|Z_I=p^~rWhJeC-~uxhVq(G zx>Lp54$JyLB@mhBREz2nT9kE~2w+K$w%R5HEub*4&9$#)wMNzu)-I6?N#=(OB-$x6 z$B86Fy=bZ6J#2;ujU&+DMGX1bp4Q?R`ZT~#fHI%JJ(~0&d%G~e+bkNZY>J0$ARcE)$q)CXdVedbbd$$>Do(k5n0^f$*58X2c=3yB)A#aL*jr* zq(T#y>=|r<8Tt;0>{r@EX_*RH<0Fx)!=3y_&*f{s`F85iWI%cmxCxV7Q?hlS_sch) zy(xKy;Rd;1TKj+qEFC$PRhH8OLjG*ma@S9+AS;6WAwuR45B8JSGI>8fGcW&#vD!c615AdL5B0lOX&xf%O1CLW!$eY~<%26F%&0-7{Zq!PY%#Y@de3Bh)RhJ8Gm zd4C?PBcrq1OX~)ikxX{IfwJa&UvOCJOvSq*_mX<-!&P<*I=B<2meTr=J!<|j^aJ1l{pIYplwYK^n*rf^fT>j>u>;=CY6$0 zG_*B1>WYYC_*FSGR_Rc{V(&q6;rdNaxPqCO8zxwFhfHKGA}a$nmoIXDFb=zcs0||p zP+vvPwYWJ9Wt4I5cR(&pasno=&vYV!bDm4QB%%Y3sf#ijrZad3(G$=E^9OTtN^eTK zl4Iu}H9ce31R)TkE+2eK;Ds*NEvV zwZ~}c5^+;45tU$??s9Z`@IB@6O5K+8yobZAR;3aj3bi?!#XYNf)v&ifqOe0|n|mu}pyRh=Uaas!UG)V!3F>D|c)Do}3)^g|xaBlGWLeOeoXv#hZ3I{oyg z;iqJ!_G}=fS<333l#$NI?RQyqdwPnTaqZHT`ggc7B_TCs9*MfVRTxWA(;a_krM}@JqJAW zQ7+MHx8$S?H=WiP4~|@~O4Yb5bnKE9j0gT^8l<{qr{$WC9&pOveh_}Vp--`LY__IU z=#du%&iZIY9s(Rq^FKk8O48$70ro3M9xi7ezWz?Gf|3h?sDiP(-QyD`NX(HTx@aF^ zbK%{ZlM1A0WHV|%-tMdz=7~MQ%77T&`}^?SKZN{?9eS8cPyN}Bv($&Dtn*kpIV+}i zgR1!2yd@n(&RZ2&G6l7Xy8Y+iOeRVk`lB7;!e^gLxpf4moq;plU`rXybmbgs97v=? zBT?=#5Lm40)hajeP)WjB+fb`Zhp%ru3=y5=m2MT=%5=YJP&WIhM@awhjH4Fy#8I|I z!oBKTK@`ef$-Tm_BP6%kqrXxKp@T6MGbEq@Wj8!cmNdW+f;Lq^n3e8D++rT{Q~m;j z3!=V5Dc<%hIrMj+;Qrmauk>;|74e&X2R@`u75VY-VjK+vrFXgwTF^SQQa=GL9uHe6=5ZO&d2AGqH; zU~+{ZcO!mWLx5e`a+ftOaIvq&ZsJ*P6T77;__yLn@0``r`@oSo~$E=I+Tb8W72v5t5L?ZZ-cy8e-R* zQVaLq!+XR4_fZu9QVYiCgHT15=R|;AETry`Few7*<`hx^WA7P$eCh}UMmCsNphfGV zI1Q!nj1j8*Xa5X{{>ISQJEj;O5~PvO#ZM~nY6q{C^CCbg$_+Y#_X`CgB83X9e&5jA zby0~`g@tW8Fu~_*plab0Ss9Y`Uy1+PZIYlg`Si@;eEuNVZ?tSG9qt3lPxax{vP`qT zd`hEw&?50~^3Ma@1;UjV_w-uWBufvqtB;^GNQkQ-K)iSuS1m%@c-!r>KG>ex#=K{Kq&@~YiFfa6FHB*0aVSrn?%{C_~Zl9#2n+H7=`4(8YOP_ z@#HpDS1mU9U10SB6k(cCcez`P`USNYWYs;tt#bj%EQ=*O#ya8HR4Sw)Tb;rSP%F3e zT~R(1@_|3`juCR(Vf=)XzfJC$wyShBbPpKMQR!}R)?SFMy*2{;bTlfq3|*xw@033K z!Vuvj_ud?jx?y<|`OoMh-HQxd+#86Ij&{ukb%c@~bcKAir3Q_67BNbaodoSqHlhbK zA5~{hetwyhIC^954(NQ@ldURV5$YX2P~}3Yjod5n6Wi(r!-)N*+z>69`$>#X+hhr3$hDFp8y2J*^J{ zn&ARqamZUvO&7tHW6O3`$zhj@x(5RN!7`w8XG3x-nCePcXMB^Sd+s4jGh1HLP-Rzk zpHzZW{sP>$SA5NINIG;ljn1kbPTMlmr6|#64ktvi7B_Zyd06W+UqYu2Wm?-Q8fr)< zbYhEzs5k47UuM85SWwLJFi`~-yx4;f5rwQm{`R192C7oX+JSb*NwVcw{R6iKzL{Dy zTY#wYBtPR}_1ma+F%Zy%cATScHBH4lc=z}iuShou?U$vi zAB8`)BU`)4EH;_r<-=8nGImy^$jgK>9d781K^{?w5ppvDawx%UZI{?IEdaD$7Ro;7 z6b9wN02o_jZ%SQrdW!XRnj_=$ua+7$g~BL#3Gdz z+6^(CnK*s;hrfLNm;C?X_y@&;!BV#jG-Y$!eD)sXiR;w;34KnfwV+LEOuD4T)s$$! z=&N|hN_weo>l-9Ubi9<`q%t{3Df=&f7do%V#2n}axy|e8rq{7#Flz5?iKDhb`<~-!I7__2 z*l<1wNQy)wHP1PXoXo(+cF%7BU0#l%rKB4|!P;6;^M}98h;f|#w|d{d(s&^IgL#aU z#fMxHHVa1CzFYNqKxzYMju;$bzs%KwhSw6k{pcIK+s*B4iuMN+D*97(b8CVOhJ zOHMDzrEMth@pE*w#%j_#CO_Liu;I*X-iS7zl6LsZOig_K3_3}tC&ElQ!4~^CQ1oNDIM`eOB3IY2V87s_5i^Ot+@rOIQmyeVM z#PVN`h-)2zy_AK76|`BAC8+qby4At=2uKRJ1~7O;rNfxkEr%Rnl~Z!D_o^)tLw7yY z?1nDIP?_E+0obdj=b@aCyuIlznhtP;P#msYvq}*cXoeJ^yPO}1f%yk&&Fu`3)F&-} z{En#rc*luC+3uEBng%*5B=co{ZOP*F&|DrkMY%B>Nt%$pNU_Q;Ww_Zrr-MX!^{CJ! zrm8Ch2km!~+LTSN+8UK%N-of0vuZ$73`y%Hw`N0%v~JLVNC!V?0;gG0$@VnXIH=rx znN!huT_<@d-epl}!jeObj!7U%Oj~W45V+z`-+Bn8iPRvp(-a=c8%OdF}_1C1#P(!gYyvZ@5 zJLCtTHQIT{C%rtNlh!GDo%m0=VRhg1eI$emVR|h<{y9`erGcx|T4;4QxQGI(?dV;V zb5vjS>v{n;iaNDkQ=k#=XbkY;rBv^9DxprL9n76_Qz*Y6C|suZgX=Dt#Sq$hY!?FY z!q~rR>sfkX!!0+|+YGgM*d6<3olRV(&RD2!k9c{WS{&Hj6X~i8WHw*8& zd~2Z_LIL+$8E3u|0VLT^H|2c3*ynHPHMt^9&T>=>)S+FbJj9icc!^IAE00<@$fpBP zin?WskLk44+{O&jSwu9_^@oz~AQVV5_RLZ`L?Q-XCyWk1Iw zaYDKOjC|^dNH@8zhMd?r!>(o@fNJhR#fDbL_7%~mk!EfSaB^%9WV@r1HsAPupwY57 zn$|!tGTG6PawPd1?ilFT(d}F$Kk|>Rt~K+aK_9!djGDk@FY~S*_BhtL!4)+);%sv@ zCs|o|K*p1niJU&OR}H~D13yf zfLvo@C8%@qix;8Y*!9q#nHU!!^C{&pO^(khDF)4$2r-kw0>GTL29(E6Y(#ooJhxQU z)^@wZ4|&)YC$&MJJVsyn&K5|Wq1n~j?&}$c`ub>2lG7UUAtf}=H2aY)zXNPN3@RE4 zai-w4sLnL6=|C!1-2%jFf@{aHGntd59D5w%;anGF&2$0E7Vks{L11Pp-hIe-v=`w> z$PvuLUM;usQAkQivR(e8AK3s{s-Hjn_xuCaK;nNLTxdp*oqOAi;Vc33P{%9R*`7@g zzPiHVCE0NhisGiA(dAmet4gdRuDaI2L|2p9`@j+4^W-(&91aq$Pp0ux;I7sZ#)V5)BMBQEU zF2jSx89>qxW6&#ZU;45v&B0V~EiEND7&)5gGl=X=pttT^k7KW@jedzq4gS}!zhb+h z{5~B2V24rSk2_MR^o|KvZYe^A)GkGsq7jM@ExP&C>-}!U*Tapbq=c@oCEMsS{k9Hg z!^DB?Y;21zj=b?{fjf}vHk(c0nJ2|=LgEL3^WE@oGGwIkmWv%0WE`Q4=D z@;^OI?WhmpSZBYZQ|LQemdX1B5Atgk$+>CmG*4PL6|IK`RuU_4yhQ_alo*q@*hqtL zmTGx(Xc1zdTC}o$t#!B|E>s5sMKphiB-!vWlW53BGU^sWLs0)+)jG(8`O%M+>kL(j z!S|HCaq7qikN|SYO>C;~!d_@{JCP=x6)4OS4aSK9H7z7 zR2N_v+*-|P`9qLzKJkz~PO?78(E$>$Qx{}IOLlqW>n~GP`M6GAYi2ceWQt#}!O8x6 ze<_nSG`e61%o)>=uP90}s2?A&Dzfcd1^?=bHA6zhJh6IKja^$lps-x%14ixYu)VVf z=nY-@;n4rbEs_QnQ|JyWe(Hcm`kcJirA67o@*S-eo_9F`7zRL{wmWvgzNXi`{D!|C z{x!U2rz?fQil}i)KqK)LF`8+u5o?j0n3vgi#8Kj1CmuyuNSS!eWjAQ@>wOr*faUgmRnX6%B_;P z6Hc)=AVv}uBcumJpG0ad*A^6RST)~g~8j{U`VU;Xelt z$s)LUMTW;@k|Gs>fLQ2GnFO=*fsdFV`(DiX(lxY?Q+20M04!CY&`PhltOKK!fBDe| z;YrmgXp>p3r-K?9+@%6~`T6T$U2ely$f-`ftZn5P_)|O_>{|OBO;R;F$Sq|8O6L(= zMa-e!TuBgi(?H09>0I}O_N5UD9DD<+P8_Ukebr0GXRdX zPSjPYZTCcJ-?mu0$o6Ogl&i8WxTDZ&OvCTCsRo2cuie)NxpWY-h7gZk@=%!v1g2H3 z`9;d&to-jG8I)+dt|Y6G+)(>oP!@ScLV!{qykhkh`4|%<1V9OO=#;la&iWVnq!m(g z)-cnxm@r?ymg}bXk_$ekZnF#o&c#|F5jgMspxl~PHA`TmI?e4=SphNL52O+wb+j&K zuE&@Yse2bX%V6c`VuY9f{s|oiyFy9U|AmEhkZZl~&^q}JaKu#^RD%wjcL%TFa{d-6Vbv#jmPIi-ReH&z$1S%;$8D%>k^Fwvu<$w< zDhG!iqL}riY%lG)^A)BTEQH{iP5oHRtDQyDII>a&Ze1ah&C!bz;GUsM zj}hynrW*%)t84I%iW^DWP4X1M(mWK^!@y0J_PJH*(ERpbD#ME^LLf;B*sEw z$$-cWo(6pe&p8#;yrC#gHU;Db9gUma-Iqn>S!xK`_vW&-W}e<+xtt1yIO42I_ik$+ z({ArsGLrr=yID^*m6c$$>2j9NM-6dAxePhif50MZ&)sx(;*c4yDf37uJo`%=^KVVX zJF&r$yt;^s>QLmj=fl|*5Fr;omW&O7?n<2Bxd|hyPfgpP>FiB4Hv?U53+&-KTE%vg zTZ*c?#5Ai|*bJfg48J`hvi`fGMB47uLC!sa7W#2`{ZL1L+5|Y*(!Lx%=!itlM(>5|8=I#i%V8{5)22e^ z?3tR3fLjNz_CXn&T;Xe&ISK1E;MjRNWL5z3NSeWx9RialoXB|h%21?Nm~V8=r1X~? zpC_SUa8nV~@Qu1fWT2duPiPJ}O&s_^3 z)?ZSmny5`Nwn8?_YvqFJH__F|IOS7JN0)9T>_}<>S)ArTjXEzjMa=JU0vpMm(ZLV} zTICP!`F+eD6;thDrbpYRK0*Bdgc1{#i(ISetj=_~3{pp;tRE(2MqxkJeI{?YFcoPS zo4PH_F7cLn>bwfIt`JKt>!;S!`FuphegFE|TZz3!aqK3tNExO@5<(ycVVA6g**hxu z)fc&;|B@uO#xSCW0VT<&WETk=O63!6*AHAqMUXRp5vC|1tJv zOR^+Ymgu{Gg;LUTfs!hCr$vhXk6V3HY)~7*Z8|o%hljM3+@kses@`tDH6+QDKtclv zl|UjAC-T2~udRD+wL^D{TuLfW#5ob}=4Pr}_pk=XISyb4up_X5d7IV-q%GyB^F`6W z$nCbN$#Nk9Z{v{RW>6`DJZwaMYEO0h zU;^P*VBa;tONq)&w5hT4-)eB3PTJdYiji*TU?X4+OV7*30!t2dAI!+n#kxT5lSEY= z>FPw#);l;Q-nyJoulr_9QrzRAs6Sh*uEn9?ug~P5z@V_GJbc*_EW^7CXr(q;glaz) zAk_vA1_1f1n|dW$3r<)83w629^%@UEszCj!y}%OX|%?J4>jVU&@_-56%Gfe6({YnK1y^=GK7 z4i&(_`>e3^7&6$U1snl=NwAx)rxyF?R5-$z8Y|kBq){cM_sL)3dCECatK2YDFC=Es zaH&uYeY3IxXV(#DvMDV1Cjs5m=I5!_dcv!@6ahaySY{TCq8hl7*hM& zD|BGEF9Cjq;LcfRaDf_tscvJ$R-A^EbLPw-!6DfSw&0q(Wzfui*d~KeD+g_HEa5G* zZD&<{J?7C}u>~^erXwW#5ypwJdr?i64bo20k4I?bf@+)di_V4nz_5!3f4UV&AvA+X z&L>+XfoySnm84{zLV(ypqHe8;C+mdDj*VGPOViYxcz$SKZa5S3fP!73FJdWejq`Yf zXCJipY74@cT&ruC>EIcVSB1e8KAZRB3aL*{NRk(1nV-`Zz4>wjKw7cqd7HORdTDvF(13ChB@r@lSb zEOD$d_4H%gAK8^TjtJNcTGym%e&r3&*+{8yuXzWqO;$JnP_1N9_Uw{byS2FUoFNT6 zPSl6)2(EiOflbf#D*p?SsxY2xZHnZ{*x+UDabC~Up4(zl8GZ5B`u+YFwnyXmp=-uc zfE}yMCQF;&|NQMouYY*|DJs5{_wGf1*QDxnRWmv(n`SIhV@#Eq5`3*~s zbSsqiob4&>!#?k-nZ)AhF{;vkrSRA35?>+`LZ1dt=aXo2(uXQAr0^c0#5j07zsK+x zVHf1*11BluxhPZG@;<1~_Nnk#D62F}g{|sjB{eSEEO+q|w(gxDB5fZNxv8i)E#( z+>ckiLO7B@w(Qbc*FxP+y+y0a+n!hy;YH=-Nj8*&4eeJx`vwTV500b(Vk4Ymeaa^3 zr?wCz-`~36eU2&IA|*xR2OhUiQXch{{H_1nYN-8Oo`q^jdFL3C-Xjx!mKYK=ZDF9sO784 zAL1C7%X(xL<=V-M6Be9yArOZKLbsaL8$f{{9nNc9<^$Z_v3>@-D{8ky?p3??<3@b* zq>dxWDdseX{L`yxE&s_HG=DN(a}X}cUU=r*KlMpi6V}B;l3YE_5Gj1pwYflj1@N3f zUT5MD8-rkUE^8)b+5l6@CzK{|b+->agPqZ?#Yto9Z^GZWFXeC1;`$Lq(+Z4@P|ZjH z0XvELDsZq_J_}qI6;4G8X3w_*0qrcV2Q-;_1s6UnmApgeCv)h|m zEXk9zU$fk#{N1V&nLHD?jL@s}vW!}p;5_l@gM#KnNvfH2o3(%8v~aE+ZBgOPtIXv7 zR``07jF-s%;%LKDFB-y;EHVJsNk6QUMQVe=9A|Y8vAVd0tbes2H8_#$x)}sui@(Wa zmz(FuZ(oM5{uzC%gVWemYF+^4_oE_fOovuVH`!f126Mue$Gurt;}ADHsTY#`S4dTo zzvg~wCk5N>s!0*e(0J1tkgV6lM@hd74|ll*7XTl!Yk(G9ql*UsvPno+i5rG0xOaE# zh{j9S4QaTC@$NR}TYS*qZ5r4%0*Gkjkvj)qMM#>I^x%RA8lD?4TXFS|X z#~CU3LGHpSPNMVABdHsnGDZmz86e zhse@9HvwHWYb?NN?d?Y=3pRcuK^;wUgUx+6{9TTfKZSaWc?za2GA0x}C51=i{d;rJ zGV(z)3Fw5%y}uM^O%Z4=dR5*IxpgPUwB+$>41JZa!JkS zG`V^lk&B%ZSadLNJ3;lhYiEd+&UBYD%BBIcN-0}yeUhHrRLkQb`=SNj&35_qtYJ97 zB9zc0O%!`6&@4wRQTW*Km8Kqr`hD71i#B|C>WVRrmjtB%kt%u@ZrdFd4x!09i$Vh1 z(hM%uUF#SvK8GaGrE$yYCqqCWu_Or5zq@ro9`yyj!s7s!WBp=?bx8W|Gd4WTW5NV+-C$4asCUT;=abrQF1M2Y^let;_xeV%UbYS82!!!agOcd?hX3iox3+JCisL66|%1M6@=aN zn|eT43e>CWVFiyw76&4=qp4;?-ha zfe{2lvx^>E5is^`Hmik;gg&fQso#Fc$rfjHZIH9C+gXtS$EZu*PEj34f#jIx)V1KQ zLLQE07j`Yh>LhF*Ne24LhtkE8P^0#6ag};*1FXHu_2hd$4Jmaz3k#hb!0d0n8NT%` zi|l=S=HkjaFVx#4#e-TE40MK)lc7;fah2YA5H(A)c@Fp{m=$z|n@5p&q;qN_gyG^_ zuCBF#x#!}UF)E)axiiv+N7G(f#Uuo@9k=ReEjJGC!E#psQnF93z3hj5=#vm0Fe|q> z+*k}K&r{*rX_PG)<(Bog)?RJgK?hKj0Iht(0@S ziam1=R|Mv|a8a6_VDLq%21u<|2N0UUpy4SYfdA!oDFCxZ9nJf$1+}dd6y}}FX~{Y? zPl+Z$mB6e7C))6IHg2_n=+ePc#4UvX*7EUDEmHeQN1CYo=^F-xI~!rDF^-}%Z7KZM zV5r?XlIm9zV@o4I(!xro`rI;1WY@+b{LLYGZ30!^DpnA#`;t_u86lB+dlwpRso>C? zVoV>oUu&-cu=P)_&NeV7IBCa}O!fHOScum(L$DRHmmHPI5f7IyP|v73pq;g4!MM@h zZ6l2m)9%eSWy)xuB=Gl&WiOb0>ul**lhUy)U`7&^HMhw6yt})s8l58q0CE4!t!$m6 zBxSetHQ|A^p?3h2K#P-{=iye+906dPns*AbR6;k#(9tf_9T3%@%0Bu($o~TVBl!rc zAz8G_M)ssgO3FbBQ(LlNOx7FbzidC;k$nMTYRev86wrXgbhK0tfIe%SL56`QIFeou zvmQFOw=;`TY8>m@YF?^Ma63xwlhU`-bMM?Tp`t*u^5|?BfF?GWZV#7Kogj{uRhDSq zE~^o&IM+AP8FC`kQ+JLnd9=^yEV#8tRz-PO9dMg_sp7NgBJ5F(Cb)#NrbBrBQYX%t zTAa2CvmO;9wtsmF?ZwEB324Kf3IsI)qO;qO?9bSfc*%&~YwE|svcfju14#HD(Wlka zX@$lswAN?JxfIKySz}8W`|85ImZtphLnyDR(^!Vyx@d%Ach)S|A@QJkFaP)5rU2t1?0L!B*Skn3t79K&2d_yrvC(?APDv8x%iFgu?LY?l5wfl^i{J zPOEK$V_JG~_(KgWC_f3We?YQ^0l#a0rYLc^yH)E}mM}7}uJm_SGckLvwM%`Y2Q(lu zx@->>%$qEvlB{8e^9@A&%+KMcufH?^p`7P)hA1@su%D&#p{zwo+fgzyV&c(qf(qKE zc87Ye+rtmo@B}LYpfD9>rioViH)Y8CkaR3+@0PYJ=ERl6!p%N^cUYj6I$?$J$OhGsi>+wiWyeS&EDnm^1p;BWz%g~CQXl5MJ2e(a?^*NN&wbLs8cuP$XI#ZP@n!i|PmQ0YcmOJVX!%FINY;Hwk|7MA5R$PLX{-FL^# zn7VjEcvnJ|d{!G|(1x&^Q%4=2OTmoj8sD7alUj&l)nKSX7Y!H`Vs=;XBed`fYP`ig z53aA4`nr3O5gXixRJ%V+hI;0a72U;SwzXR=m ziy+MZ3iU>Z4V)TlegM1Gk5mp|iL!k(^;egI1BzE}Et{+FY~_thD~n>W7eS71>m78y z7r2D018{o$_$(!+3QX8gveJIQAt|=CvdWe#jh|%M;QIT3$Z9D`YO?Qf@t93TP_mOJ z3WjWesRJes)gddg`^8_Q`gts{Mc5q$x=Pq^*(O*DQs43#_DKblm<2E3uFXl%AF`?K zWtj{Lgy@tM#l3y44WnaIktNremDm!^-!gsQ&DL!`kySqC1(PEPJh?JJy4t4%7BaIi0pHe5~Wiu#XO zsFOukQ{4frD}U!CJ@pqATA~o7543@kYGff#a?nPVY_ZicjG-wUb}q*li#+gIgj%cxJqFWBAB7GF_GQdC~%3cF!DttVr&8@;IHH>!Oc+>6l&WfsB?Mh zjO|VkfG`#1LqPxYY2&qkD9WhQC0l+o4ZEtdduCZ^Hy+2oEk-cR(x)jTQfFPH@z{C@ z@##0Q*wnrL@}Ogm3hKBAhHHsy^ad;{wL?~ zNiiM)BxhG09oTt>!5BwG!%!&u&t>n9HhcCyd^(~d4O_|wQ1g>q%1qjgZSN#iy7E-% zGeETW*=W2ecGG(;IJ9|s#!wCBTfb)wQ3p|^rd&8Vc!HZsXb|QFKC6H}LSm6z;{y^O z)|@!pcnZnwoxL02B$OY)Ga%emsWuC4f-WAi@(eaJhm@r~&*>4C8Ym4px@@k9yf8j4 z?}pmt(kkdSWYLi()Ev2IU=`4~;q5mTIIPlKR2Lf(R4&<5L$99vqjmwqr-LEaP8V9%mS}N5VX1B^ zqKAB&5Dn$z;jJnD&)vudF+-b%@t z;9D^{Ctz|lZ|F2UAdGsm1p~>4)(L% zl{8ATLy)x<+$bdmbUAtF+4|{5<6evPl zD{l*LW%)~@%~r>f99!(T(y zQ|Seso2^fXT&L^CD9!xBRa4p8V0WTEYoIaQFF0{6|47p1mln1sXx2z5dd%EiH(@GzP=O#@Pu~MNYW}nwxIjk67P^GU)b=0QLcNeYd#1)V79H* zmCeo+l?;?K^XyEy zsA{0hz(bf5o&g+GsqzVrVhb)k2ejIFVz>fR4lN*d0w7)N)l?bR)(^e+|NZrc;qBio zGW3{%drM5tcsbfs^jD%M3mBN5V3MALdE@~g*(}Sb{ZOdUG0bTquyuG4lEPn9)?w0) zkYi?7#WPP)5iPv5dn~}mRlb5nb&th^oG`?LfR<}By#~!H)w*(I3Y$as^zS5J1S|@Q7DN;|J6UA)oC8Z^`H~S3pLyO z+;U9*C0@cNgt8COF?-}ly|_9grUE3VrTPN}I3&&5C@{Q3coJE}15O$#qgj- z-Za+2bB>Y+juiip9!DtMsm}356-F<0Wq~h&UTx^T2Z}jvdmfm7EBsSh?xpqRN1$=7 zC88G5D99wB!7`>e!Sv+`j*mRJL6Ke}(0`>jWcB_8uGjwiA5k@54tQsZK*$BJ%rCda`Ci z{e)S-DgnydMd}B|Vfad%CP#hWvolVr=!@I{QeE3DoRGTVkIT@Ow3%*U`sB=o6%_h{ zpdr29VZQ2j=dbsma(=0wcSCYIUI{NoSeumIhkBv~B7Y&_Jl!7=TJEc6$4XsmCt zMb?6&0X1R1yP0b;;yRMw?4`de80WoK>mX1zY%QuD%PH*o^3gt@Xl85PO2E^RD12yzyiMc^r&Sxet41NFKg1n>T z3Izm1m=bJ3H91$jZ_fHJ96|_ro#zfjeA&j1_z3lGV_ZRNk;$860p*+f2Ez~liP(-e-3e)NW z=(yz0QYy>2B;Bq7042(EV<5}vi-yCzhA@HX9G``Wc8PRC7MF_bpHL<*!Iiv|v~EWR z#UUrDVvOuGug}_k65CXuo}zPw>Xh25qJa1`Kj+rR)6CkaR|N$7HDhwfx~fks@3=c= zDv2_Ue6aTpehlC~c&kaXkn7Cc57odBwRn9=uy?@ANgcMFfkGXUE?@Jwd5n9UjW%It z_haAy4!{KnukC1cCH?&@!G#W{!3Aal)wGvv`G*wXGo^K@h^Gc~k4V8NNzvsp*WBoO zc$ehX&wA3PiyR$5hVo&!tmn)qWp@n5y~8e)J0XV=P;xlSY|`tQiFfF&oN!<*+Qm|c z+XCH@Z!`_47k1zjA*zuSG)Y?Jc4M3_+l#G7%Q7%`qq0;|UU~go$K~){r)F5`0y~lp zou+S<7VP@vbI@n|%$72kHuTz>kKB6 zEE%>%;++G=BsFN1TxkmqMTc4nCeH=eR+e>GTxu3>6^6fd>)qdEnc{)Jrgl{O- z9d3P-J~M!`VJjY|`B{cQVX_K!;b4bZuLY?jh?vd~D*3!V79!jsHB7_x?-zjnPi_PXsNE9Qoi6ao1VCW!PK

Rp5@H-63rPkl?5M!`%e$q5M^(XmdeOwiW zW|vmGE5kKAE-6r%tM7^P*A;VW?H%bOf752qV_m&Nekhx1rnkn;8dzEqK*B_d-#M6ZDSLGYoS|B_wYx z;8qDgjM$9w=+*E(m<;?*#~}F*HokA6GJ8#P8hQJbp5HLNQa82*-V-YJ31gLJ9|0%h zRiOII(ra?Kp_vLeiR#UI!YdU&>FNQaLbj(RL|l@xzfarcd)=DcitVn^s?da)fpv9D z-kT*9%k-#H(Dv>L3yRd5v$kw7>_9~)zV|gDP0ltw5sG5kHk8G767T3$bJ&jBjYjhOVX_haPixS{t7!8AbP@HJL;7 zHp~Zm_Z;ZTn{25kI=$3X%^VjXT8-z7IcegUdyxVmi-~GyK2PeD1`xu zANiQ=scEboc{_|N(-Q{a8U20T)~(f&*M;PXT2=}bnNdP)seRanvOg#sK}TH5+5oma zV}p2h2=0t6&`qN1gGzI1XnyDv32g-H#iM^)XUZ}rAh7cV2OrK9NTex}1o_U;pxTv~ zX(8oN!&8{yIEjfMJi~qmU5FN78#~D)GkTJfcVsIjoh@Klp>+JY=>mQIiTugyzepYn zs<_;hEUia!wufxF1Pop*xcCiItw+o-b+Diucv{aFop7yiP9muS*#3sAv+}tUrWRLK zAAk{dy2wvKhx{>Uybybd3I$l92n!*_v)aQ5j)LZ%pd)o0NOTnIs7u;1NYaBBmOJdK z`Vm#pdZ6@X(@6o;#>#3U3=pkKg8+k^P>^)42!%xE3t5e{=DJfYIvgR7C*=k8a=fzL zcgq6RkFh>DO_S5evFG@jXM1Q>hh=MV>$=(bg8^F7wL|fDl3syShE8~4EP(1~h)*{nIa?-oZ!oLHcn;dteez#>mamw2iVcu7F zjYA^L{wD@`Ta@pRO?yBLXJJWK=I01jLRr5TZu^{2pVJ?t!8%7@h$cRT{U zam{L;$u823CJ}1q*%hLHB0J*`;pOFcq8pZ5Q3zc7oC*Y2A0r%tDk{WrrxRi z&)MkK>H3(B$FGt*Dg46TK0GyV(D9AsvRgk^UhLcgIR}F{Lk3FG`MY2`&kxm}O8>H3 zJIpkfhs)GKf~70v_^Ruyt-4Hy8Urj)F|lEYJa2jC5K*_95M4H3CP-hGthQt{juU?X z(!2chu1bA+xL~47%9E&A}X7G(Zc`0J100`ih;joyJdE%as0)*NPP5(T>q z_>iQ>M(S{?@%lu{Gk`qR7S@VeNbz#{R}R63Pg(n*ke9xhP3gIOc7q8RZnJ(V0H$}z4Zph8FW zUu$-B8{~YkC%9OSnHQq-z=RQq%lTvD5rOU7Yx z#CK3))3?_+c_2jwqb(@1cMhu?>g14`-MVj>&C9{63f_fp89i{(X;+;j7H=uZMSV*2 ziR759OctG4pouip8BeQGNzUgHlfcs{qq>xBB*HrJ-hD4`yA(Bb_C8m)^Qp>;p=xhv zOf|{!$@E9zzh36vp7NxMI+JVcHBiXXkvu1+$lk7v4Z=GgLTs+5D$6Sno_zrAcMFUR zHy5p|4_QKe%(9M?`}jfpVSs2MtswMma<<*6?UauFj~bH&y{&FcM%|=2sUDLzGmLqnMtVw3Dq0=gsb&`o>=(y=xewJ;4od-D85QjI-U$sgp;F!WO7vF_0is9k_CfWyU{x{UW?r(Kx6l(&`Fu13Va5S?!}g6-j8YeAAsE znskD(i32vmENDX~_Zmr^84-<2WS8fPy^?GBP@GnfG; zfeSjNQqGiRo}Rzg_(N~|bWxAd=)gn*qBuxlf5Y^eRgm#DY_jZjGwf{CYR3|=k( zg7yqSxr>8txlLn}VYRoQ!5ah4GyMiWne-x&*Kl&Vgw{J@Sn`@HfXdZDuEhM@35~^m zy-Ga|J!wd8+e;jw-$yO*4er|Ypt#9hO-|&9QgJH2JrLk_!v{@yovOf=}!c8j=$zU`%fffS9ijzJq+BEVX zc?uU5gEtl_`*9cv&n>D|P^|2vNC+P@ppg`DyugdhAv#hAu=_FVnB5p#hlNpjJ&J@> zmWG{i)56hm_8=?(@4{)cp{8sfDly%u2 z5&ByaK#j5YJR^=%2+GxX?{H2~uvL0vtt*t&r%?}jfp@$0J4jHM*){Kay*FEmm=h+m zLh>sii(~c8*Pp(ALeT+G*Knqsz%v-p*CZb{nCfhkoU@Y0VSu(#_7!3qKCj&5^}kp& z9FNpd4nw>6YqHZ5GO2ODAh#?tH4_Ita_&~5lD{2^{E#MG7Gj9M{w0*d)?@UMha9S? zN(%xDRcq7$Eq@>WJ_(T?5*IAtLN~i+?-b!@cOoZ-c$V8^0*2ABlT9G64U&sM^=|bf-TUj~5;%M`(7aB12 zaiP*=!WOjQzNkGP(0mU!6zY1&Z37HSAld3B4X{pKTW}%zTG2W3iqXw7@eAZZ5+48h zPbyi7dRCTJc~dcQd2gn04-Ewt*C>&L>JQkOkgDb-Z=2r&`3&&*ZooAqwF3W|K59}D zQ>D31)!n=F1I-)SINrdcxK6A`w7Y{B!)vHjjTn{!>KExU zU%D(_y(PbhHECN>gqi*p=+ zBWZa)vzJOv!J9=%@3O|_#GcYN#*Q)z{TI&(WO=S>QUV!5Z$JPYrA*JzWRK=uMFEzT zPYd3xa@`9hJ$Dwx)9JNxoWy3iUmj%;Dfv+Vf~`wKwB5xDT0 zr!;^K2x93QkOo2z6!!=}NqZVYClN+R377~ZwRroQ=A9@FG6ue& zx>7aC`l1B{9Kwm{kEXE>cI;%EzP_G{CqmNTi<-9ahi`v*``FQV{&P70CheouD%W8_ zNK{ceB}K%Si)6ke3~brOsM5S^@+g3E4Pk*g6kl3v80gF@#Z9ZJD1eVepEPWkD*D6X_+3 z48$&UDk7&-2J1C5al9#b%sWCYTwaZ91QW|reM<@eDhld&M@WSy$4r~|)>^!U+&A0O zDn+zZ4eb#X5l0?*^w7pf?35A*Z@zRQV3b?rv*EMw_6brSuynxX9}X4UaO*(;hdBPm z-XjqiJ;d~Rs~We%zIrSntWkTrRY^}XnF&xz!9xDMoJZ-G#E|wu{i>rpMRKXMtYeEB z@V<<$1TFi!WNV6oQ39Qlll$6pFnKo6(5M{`ti#T*^H5tAJNO`909~J^hScFqw6ZEV zxVhn?oMC$=*cYHIqz9y496GQ}TtJ%4>okVI(BHiNYr3v*wV@Zx(D>yKIr%X{!Z4su zYv4(C-#EHF6YN-&fGTBK6BuD-UB>iM8^|(KiSx<^eBn(hZC}$Ca_Ew4Af}@W+b1<1 z$1_(@2UZu4S+pPUcyPwmrv^bW$kwti>dN+VvY3JoJ&Y%|_$)Olb0UbnFoD%}`|04m zcC`_*Z$w3_T#>a|A(BM*i<-6sYQvH)0B+^5#8hf{U=0l^5^p^wNm4|Gr!ZJ6d;wzB zvM55zsSEat^yJ5o3BAgQBP{{;W(gSTxKLQezO>9TTU^SM>;VUT!WMO_Idp_Hi8H*_ zm&953Hb4I;B$7a~n1GImwczfk*v1{}iO=?m9Ks^E*UvY(UL#Bb;W$9$bm-Uzme1Ui zfVtMFdwA&>ysAqN-R{Mls=GCha z8D)(pjZcA59&FufObTx~!_uCuAIXk~*JQ4CDqQo4I_4 z)~)D!GzMW(h=d{}0>H)@YYZMlx_VIRqO)^xz7BMx==VyiX~RC;{JlH{Lx90wES8Rv zSAFpUlaI7>&Kx46rT)}hDqerb2&)t;BUT|UOoPQ2Xzc)x#gxvd;^0Sis&fQEfC$vCPpq2y1Ym?Mhy4W1m}S5fmD&@r zq|$~fzi5jmAU?z(d!mb1r;5mFZvHY2>UD6VE$>w&)LI9FH;Rs+>m=`nSlGw`^{Nz8 zj=ar5IU~uNZjp**?@rag&gM$0DBu1P_(LiPz6gI~H*xe?&}==+P|R>IOzTCv{r9dm zlefe2UHH+t4d!Zjhr)voP{?bz3P5hylYKCwYMnMvkYZ6!05%AKt@lQ26Sl&BU_a}M z@N~Hn=wGS{@`Eo(cB53(wo+R4;6|9{viykyMDnt%}^P~aN?k{UY3(urAA$jbM7-z0VrnEW0TZ>M9w<9 z2KgVt>o4qCht}{2Kuq44K1n!Mc|VITA*P?CJWoHgz?M<_NSAi)GQoYKi{b)gqG6JBt0iIlF@-1G|I zu!X=nngU6@qcABNXot0FVQ0OB@9Dy0nN^mnLnxYjI;R6*7;NT9Q6BIYc;7Xi?2&ECSG|6AMizlYZ^;3wUoUz!G`DO z%6=%B%NiY(F1Pb4Bsq2syZn!CaoeKfTg#lG`bpyXBUdYB;kXGuOUtCrAR-Xvg3R#fvI4SOw0OQGehVUDte0xa8Z6xubVbqzU zsl;dbiyfu!uCYTEgl$DTefXA-Vn{v6@`ifhsH_Z02VPfS2hwoTaA!*016J^cN84KML|I>fLR1p3=t`1D$zBcspg>NH(m05FK{iz%1knL1Yf~ z_whiAlx4Fk)$v`3H-;Sci#$7Ugt8s2>96! z8Y>h(MmXQMh>m~>u*w%1e$mXEU87h^adsnByA-f;jD+643a_6ggJ#$(+JOQPDxXR( z1+BeA2@wOK4BOnV@cR28X|2Fx6%bJ)k$7_ncMNT;i5u0Z zgndecCi%Xrll~^?i(^PkD|=}DvYjQNe^yDL%Q4y6*+{X6y?m#5ZW-1K2E!C`?p&PP zCHT+p?azEaHesui)8&}SFFKdu+a9~{0n4ay@`?$eLF>*M6SbmFY3;5l;z|@oe}yCi zh&5UH*dWUFGXy$Lur)Xo03wN&{{?E-k_^jw{6YBozZxy}013q&nsPXEz5*KA%CJ?C zU?NpdpNL^$RNN^^&v7(ei}OPZga~Y~_w| z4ViJ42mJdg?`$CpT)FdZ(MRBk-=WRVo7E##H)!J;7WM9@0bgObpP!Sw_+%;QmbABA zcs>t-mM$MSDs)HYz)khbE+87wR}SUN@{ax%Uem_d$6BREY~@y2y=8%E4t4mX=2YOt zEX#Rgtpo~%=LNXSiH|*GRUR-QFrO(cC4H!&!l(qVX-11ZV?U=`31>}*>_34-n?5Cm z)k-dTFBIS_7Ufp6KPsii8FZmH`ukumYS<(3#%PPq$g($1THPOxfgfQa~DlSZz3+S@P<=fe;_($@u7Ud9*6$NmYc&pinO$g&Gdo_lqU2?~5mGw#T$P-bT zm~F+2>Mt$w1Owj-$e9G2>$}+;v=q70)Hi^c)Ltlx=PhmJN&a^n+bV) z1w-=w@SUt}BcDoX7H$F+=?l@EmvadD!XqKz0a~*gMdC7Y)>J{?Zt<+KoF<2KMl6N2 z;Im5!TB;cO^B=TmS#e|{2~>9{x}VVe2XZC0K%}OWEMkTOV&O&zgT$!TDMjc8F32=w zrQP#1W{!J8NLgevozx_O*SqiP%^^&XzuY`;1FQkHGDZ%!OT>UHcWQru_4Nf5-hLY1 zet7|MdcUlDj|A8~$Q9psg>J2T9*qE!Ow>jKMwHhJGbhZIdvl&nCyv2vXR>p$ZPVt7F13JS>$x2$2YugA#t>M@rpu+5y z^GhPd!c%;PiamrAFmtl(aYW8w+-gcpEPyG6LVMy=m*{%bEunF3#!_A1YUHJV2(QVf zebI>n!B@8al71%uA|qZ15;A)qVRo+~DWO*YA%TcQB3An&ze^;r-$)>^*}X!AFLN6g zG_)D8l|m1UHiD=`Ad4(R_b}Yb1DIGF14i)NX=0%cZ5A>iKcRB zba6mkPfKM9iTl0Qw!Ac(wI3ywunCq@#%+FHgF#%n&~>4O`+3^)6`KF{1Ak3VcJHt2 zrY_srBoPdGr!)fT!K%;|Y~WNB)Mb&1Ts4t7Lm_`_K*QRl7}PSldeT#$+Sf>AkjF@B zv=JqQe(;%0f&&t7eNX_1R~I!T5&^hHy3=LxK&bqu59*K9y?a;mM>T(v^W$`U$W>DI z8Ki@ zB&u2McB}G$tiMn@!w;1QCO?+j$6W{TQXRvJ zg&P7iYC>$}-9ryas#}y+X}j6022$AP>V2*1wG(x!*hfvCWSVa@uIC*64M-jI9P}j+ zvjQbW?RxvPtxXtr0-3ZOXh|h@wQw zl-6Wol~Arip=E~4Pyv`SGbba3`@V_9`K1MF*wtDNh5||tzu~B9pfgX7(CedGKhtY< zIkjC-ILr=$>3WCWs8P-ql7xvVn0&Ci$p}0>0F_zFaM3ral zx2$pew8fr>rl4wy^ewAxpcqs@L=K!W^e;?w%-chHa&4nV!9s0 zWyvZjIUnw_bR|KN6ne+YLBq-0ITFJRiMA0CgjW4V)+1y$a{K$v)|UEsuu&sH=Gjx@ z3Od4z+Kh9O^!2B2e+jRtp`3hH4tb^bx?%V9(6*2L1~eRdV@JqBKoA@T62qWVYpMDr zG<0=?HtT9hmP_U;qPSJLFh1k*AESd`(WN!XJ4ssY86bgI-o^rm=Z4Yt;076chb$X1 z(@2;yYH|YR&%Xi+`hlqv;75c)YcJ_gY|gDd6zgZPa2nkx5hnL3zrnfzmIX(xQfZQfhf^o(} z)+w>0w?%5x?H~vYO$ABmFgUlBgsG?ekyh$2@G=GNzS$wWlHQ_kxejPEYm>r&oBo{` z7pHIj7$xc>!Vc7>b$5wLz#3Lz9ov)ms|g8#jUut>t^!U=GrsN zjwMnfK`+Km?S9G?Tp>@0TIL5aWD?;KUgVgr*n3)1!?6YueYX$`w4!$|f$@rtNhl{Y zhfnI@TC*~CDQslHWc6ukWgV6!fgn{RFMdb9XdJL=YPbSxH3DJ#;09$5V@=`&vf-)9 zjBhnNv`>l#f`YI-*R%=;uuV5hi3x4oZTtsw6*h|~qQ}PHa*{ZmRq6v~K*es&ABi(B z>LhGCXu=+6>aj+=?#``VR@egI=!;gUK6RuNq`IE>`FG(T{}H{q#$iROk#8S6!KRV) z1z8umKiu#G+RB#splU7mt0^g6udd8h@2aK^62|PEroRiRSNoXYoI^7lB)Fbku61;e z=mkI#v)bNKDH{Bc(z<<(tXX~6Y^ZDG!mT^W%If?LlaXgt7eHCN*wT1`D58R9Ot9!0 zT!~&n85JK;JEqrj4O80hk2XxV%M3R(UylQEflr~d(;b<|%%DG_b$ThoVEyl^ItzG2 z6`#h?vW0uNIwz+O@os7nC@5mOtk&s~Y$K!2)&X7(bY2=Etuuf_m&ED}!kx?nP!3FY zxI52|-Ovz~Gch=21R|TkakC+LjUbav>m&#rq(f6}W+TL-z~IGivrzb!Yu)Hr9;!!a zm$g1rgx-O?{(VvU9y7d+Cdf+oO6_~N7di&@rrdDOle!GVXr>8|rIduiC27)Dtu^(m61FJc*QP- zeZpKLy-%vjiYB)@Lf+K%M9+GVYq8+*V62GhAECA300K?ZjqY24q7#zYDRUfx{yFkX zaVbmLr%kfNZ2< z=sea`1Odadr-FE8jbU&-nP~6T3Hp^pXR=_n9Q*x_ho-t?cIzrx;)&{?;f@pDK7RYT zjv{cPc76|#f0vUn?I0}sXIm4fj!>mrIRbdOZ`yLgN?@T?Xa~%Nd!v3y4o>gdjS1Pv zQwwH^EMjlSzb%=Bkz-t}^^XpiO@gp6(*sB$OCC}~RG-%09AcKTQx*y^6bfTVpFA3{ z8?GUfq?l-XZ$Y-byw|$dM$u13OLZ7Q3SjcDr$GL@x8J)XNxCbLwomM&rEWa_%twf% z4%RL83AJB3oNX~w+qZv}eg`mq&Pzi2oQ70>sY3huU8M|#F3JcbKjvAMO zy}TtJH%mJk9mK;MqD!Z!SE)Kw4M!(T-WI;rYCCD?XH=b{sbk>;55rZCEWlW6T4bnU z)aaWtWH{MCzPJLWYiIyxyc*nH-n;-OLgclUVifoK904OVWV;KB{MSM4+|4#b>crREJxKl(%?Rg>gI=E`-5`Oji zm)Ads^h;v6y!{qKu%Cq2KPC$cHZoL1lV|O`FYsr+z!aIwVXl)lig&hqm};i4`CqS} zhqr|GdO@0(+zcJyk!NcswMGE#n8WLl-e0~QzWr@;8phoJnAAKnJeHh(ly$E&AX8DC zRhERVxOdDEsCbiXleN~CB0yF=rOV~;n&ExJp5GNc469A|9$_Olnu>UUpTAjhb=Z3u zCT-&b8}?)@X<{@$n=(P`yM}(~Bn>lTv;5wpW?F{|CdG)rZQd6m$Y$hqR;?(ho5J3FQ8)=B1+) zRnPIq)4&w?mYy}<;x(r>x|iq(aVTHjatr!73r>Qal`9-!QOcZH+GZg$HA2OA%x2TKKY9e{`^b*MZu^!g7t_D@RLri&MwAN}Kym-}G z)P1*eT;!^V3Uk0JW(|8_*x}A&X{o46icbv6sgNA7AgIY*-3sl=ZnnFgk?z<#1Gf>h zRKpKI6{xS#pM#_*22?(u!YrBOHI+oRl`kvX+7P3a@K8)1In-QXzY$hdWN)qI(1xT=IT1FH~bN9H;Tb@BfU%H~Aqwnr6xJjVi4p&z-tYK$y1}%Mcl@OUbF|iyrM~ zW1N!0B07R;G5>p@1xwGN$e}G}xzmu2NksMiS>6n4r}W7&r=fDjL&31MGZjMD$dOcZ zXD$6!SD)(`s15aB5p(8I1gL^IJ$PQC%cI>PNcFN+VF%@XpinVhQ-$EYx4U4i!3?;Tq2>~w8N(Y;wq`zX~`Um>zs<>_$~X5vC2DeLxz zDk*F7HM=Wj!0fxM^RThal(Q>lqUq8xjX!EYft#~n^$I(N(YuN@-I^*);*fA^Eqh9O z|0PID@d)IIZMABLxjusPryGZQHVfP{vuf~53{W#qd#`<`C9YWeyFb#Zg>=Yi?|^AP zEtq#3=)e%=$t3}-1ld6Be4pp{S4fxCK$YH|Xafwt_s}qTlT&mbW|}xiW`wu^<6%zc zT>u`2n0~62%Q3&7g)57RsRTN#J|-<{RQ@BIK9A1okole86O21H2bbXj!s;rtlDfL` zcQU(7KbAyW0UINwIK{U21OO)$g$M$&z2Iq;t8$;HN+oHv-=P?6FrB2jFW+j=pMzYK0cSz@g^TeZ)Yg9Ow8c&Zho@v4+#a5VtDqjE98u=Jg}d~3Vm$k@>C#*u3@e>nvAW=X(1V6 zd)et-xoYo?K9df`I#+a{OKXMH~|2dq0!;`Pv2RlHi&YD%XVW_&xSwovCZRGP@PDX}l z*`+*51-P3FjvEYP?a&@E=VSE`yr#3pfYnuTYX8FhMv_8y=3VlfVvaZ)ON!!U-GFI^ z&=PI4Zgs5=n-bEyxy=S-7}r}!aObLZOI@2?ZA&1)?=otQ(#&Qq!ag@`>RbU0R&qicIH3v|_6RFXT`_*q=x%7JU`o*lKkpL)#Bxiuh+Y_mxU z=!GpfJ>``FUU~c$_rCrpynTjzE#A0bJ5tM_u65%Ce^WI^&j}vcKnAgB!7By8jCK&qYoB7>&UrfN5a2z*S)m0B$a|st9|}H22!?lZlrR*$MS8 zS=(!LjqP0xZ@p4$Iw-f|@=8^$u;gaLK;U7Ic&}x}U>r@h;F_y2W&M;pQPzYUsDVsJ z77R)R>M|T?k8INu%qsZjcF1Kfy+}~$f$(C{`*xf<{t&ROB9j=(@6A3XN0B?=q_L`? z2B}RlD7Fk+%*@=K0`$OfwG$vZf;mQ3U#1h?(}7gwyf~U!PKpy!qiiQnUNB5U!MelQ20M zct)NQ28RG%o!MqUrLfS8pjn;Z+n>?s9Znj*O*`TaR&@;&JjDQ{sx+*wqvoYT@AXkq zvgJj^R;{c}3e)J|@!CUt&}3DX?@LYdnHC8Uvpz(+E{AOVdmZw0ZU#QukfPM`Cn`J| z3>x5f*a|~7X#5L+&mHR{)o_)?oPqIl{BEuxL9YWEF=0#R2{SCYKZ z&he}SWd0k>sjSnYJ@l0+(&C`9>y*{Qp65DY2^^PRKQorWaZwhSf<`1}K#5^gN7#(z z{4;o4cY6hWn38A{!|5pT$%c9uZ+!`^N}NngFS5JA;cAf}J=t18-^`K^xsqkJe>Bfh z&pqeiQ4MZWx_6kJ+20!usGEMU6Bk;lrlsRGD*%%0#D%>&n~4A6KLiuF-=(s-JlErd z9*WHyVKcU#zzlnyteO{1sp>mtif2V(N0{1=4e=^3!Ar01gz*_TwgMB>Q#Z&hWO+1Y z9I$&BmtEFNAt6e>pmnnu~QTkji+LLExOOd;89d2D?` z=-!U?UZUoiNGfmY+Nt>%`d~m~aXngPNaHvBBUS#3?l%TpXQvV+XcMqEDQnjjQN59p zga(UUe!c87Wt)^ZH6~anKT|^fQ9ANTmJc3+jvijHVdh$mcjZ3ySR%t5!-otofA8-5 zxw-pNc|QSawg=#Vu(~9aSV~-|6j>_zXb<^FKxgLUc+zn=)KPgGz8Y1IeLh!~A~c^J zY(O_IjJLn&3LQ%1r6pUKaK0`>yL4JB*+^wp3oig5pbOvkI+JMQMVmG#?w~KkfoBu$ z)KF9<5(5X)5LuPw)BmsI9o17DJJ3nB#oF)ic{m_wH9-=8Jb9U-<%O*JAmgc28D9&G z(-Xo>p8?fB3qG!e)OOauLbTGn%-C?ZV6ux4{EFanPm3JH)(Vj2s21)UbT>ItEH&o& z)cEU9Uw`7}9gwZE(28FgSTjIL~-t1LIs6CRpxu52)_>ExCZOlFsj9|bhSq(sRFc78p%C3NRAnZ@}&JZ zOl~={S31(Y!X`6NitHf)J#C&FJc!K2R2%#`*+PcHsY$&l7;K&7IBb9{8nfQZt`666 zb%rD)>?941+L}_yN20EQw8etuO1oa!g`VBkLEe(m@7*6vw$3_3y4D4dFmsA)yiqW+ z>S~x0ZI8~;D&~u7h#!NY041)b);>+%(6LYBqPsB!7QmWyM;jKe>HhCAgSK%-TAywK|k_*vFH+3DD>_@I@qK zOQenR{|6WwMuiUEa`Oef_FWEw8(iVi`bG+8cL9(UA%sfphi!(fS)BA7A=Q~-w{NO5 zq`LOqDUZ^wkgFya{VsXztqUFfP#5QYVf)=rE39wi z7?7cpnYBV`jtcx6n+Xx0+6}Sie8w;Gd*R>z@U)P^+y773yERFYTxVkM`70cx*@~b< z@Ex)h^*`2Dw77UiMrGVOE}0c66OACaZ!#J8ZMkol3kJXp1~a&0FaXS|YW|nbcl>ega1rAV!BU+Dknr`hD- ze^wg~Yn(oZ=Vx;?n+`TPLzt-kj~Bw(hEU=`+x3T)yE~+X9HMURn>KT7Xn7C7+v7K_BJ=Wl;f@ zS8Q|iel7w`wvWU7GdA)v5atV}Ezm9*J#uOL-OgwQ4;F0k*SJcI|1hYoAZuZ3et>k7 z)Kyk9-r5+R*b1MotT&Pk@~PlV=1~JdVE3=$EEzl7WRDtmHo#b({KAV|i zfI-Kp*OT&FveTy`rOt;T_C>8oEHrOb9$&z~%V5E>4|E6HLARmOKsV-aQd@5Izx$FQ%EJSt#P$y}tZLNR$r|?hzWcNcy zLpwwvo{H%-e%pXcB@sD!nRaI>7jWv8+xBFKY`Dm;bVaglI@41J0l!C|n~JdArcQ@u zxE1O-{js)FKz>gM{#p%u(%3JTlAnfeet>xi8taZtD=AfcNuQf14^z`Da)A1Jq$6HQ zGtPP5{mv#Xx}BdLe6Z5D6>u60^QK3Z{<{OOYh8!?ICq#&oHy8eqGMMkL}Zz5xlHqq zJ>VH*MDT#Dfq)!>WUkJASc)qBM|=^;Ee>I)ln9nf2ELE!eqL~NA*Hx0^)cANYM;8* z%-be#mq7IyatNcZqu!bFv>i|bi(J&X z^?kRPghwCdO*YaPQidpjMmytn(f}SW|7FLTQu9BUuNAh@v=i9#U<2KW;k_6eaANKD z){E@{OfVr^!APO@HsAt=_YH-ABd2xBuwZ#E=l)PwK*1(G@4g2l)tu-ku=L4l8rT_l z4xP@JCoonxH_YUuGQdT4dFx_qSBD0nP?T)tJw+rm1-rN+Jr1UXd?m~d$mc>5<`xDK zXO-n!**{fiHdKh&IaXC%>qz75Gm8`Go6iS-mEVVChZR*qqtTAJH~WnE9+FdcTAy-I z%r-OvFnVP|hcp(&)|vf$B*rZjLKD1gF{bDuc?S@{1Jp2dWRO-i=6+X5XhokzToF3c zt$|Ihq6Hvu&hh*P7_{}a81H z3@vEObLu$`$#knAIiwgj>YkKbAkzeMew{*5a0X4!|7^EsV zA-9TXEL5y9D_OM}{e~TqHBu}1Zc17^;Gg7}FrJ#d2QGKb&vb|sf~hEEqJlV!_dS8@ zv!kM6QZ;U&K0zn++Ol_%)m3_^!JQ$)&6Y$d3m|>>pRFlxg}|Q)xcW1{rdJ!G7%4#z zBX~n>?#K}B)%NU6Bf0uOGhQTHFJEWOh5vB;-cE^m%{kp_{4XRKSNZs`4;WTRMPC(= zDd`s`<=G%G-*?CqkewD?P75697LqwWAA`et9|)9?*IF)FSk++Ebuj7v%H^6~KYsZF z*0B4=!#?S+bECur+JaCbWl)hb%2rU#C+bbe8l_pFWI}|5_{{p{Pr*n?tCZga$biP` zXBK-0>N_NLD1lE1n3r$a?fjbUSKORk;_o7L8%FrBAU|CJ12U#&#mEDl|44xwS>;FE zLK#)x1Cnb}7%BnS?u3f(QTB1`&>6FJ-SuG@TNY3%n3I)GqV~6HyfBA)@~s_eum6sj z*uTI13`A*Q4{TF|)osOq*Dq*DM$6$Ai52@Pd7)y8H|JBpdfhdSl==w?Wp)xZ-?*^@ zaLX2Biv-Oo{tc<)x@9F<2?;wyCDVn1htR^N5+l3YiCh6BAjD16BHRxTPsE0W=2eh(LDwU7wgG-*NerEPa zP+^Cxlvm4M13u5%Dhs9xPOrp?VQcpZ)4yCm0jQQ$v?DshwkLHx{zO8##RsHn5Q|5} zk8WnK3Zb)9n|)T-k?_?jE|7zCQ`kio)-#VUvHC7h5v=D?)nrY+2;I(lA0(-^BOJ}Z zq-`Ug68Hl4{`x z@BvpzAXkdiOhOWgu-xyFLEMV!;u7pRKW*>(LIb7VI$BhUU#WfNAd$WNWVJ7pPf^1o zaj^UV0(@?JcXM>U6di+&%?_{JXQX}iPBZcohrT9 zjoN)VZ`ON}`zt|ubeUYZ5!ojH&*ryeVe*Uj$Bif4?h%QXGDv=g7ijg!Sn zuc={bC-;x=#j>nGxoshmBX#P`3pW&gPOf zqjM}tl_y#dAs-d3#k^7;ck5HgpSgwdNKc*%_o37vupKI zCL*M!)AyI~E3e$oBJcnJH**7?w$q;Usz8&) zJ#>{QWM_vYM^-dXXfQZZLCyQn-%N{EeN?<91Fe0nV3Lu-OInWjh7V@h7PLWf(tDSR zUYjP&OS&3Kz`!!UEa`EC&}*k|xXcCe(w3_$viUr)s{kOoBwi&(FqC&MarKJiv#Qo-NOBQcCH=p(jjAtbSImNyDx1&l{5i>8sU7S& zjcatm2HH!29Y(h;icDRvI+15})hianPR}{Hsl!M3Ozev!G4eS|9vx~P&dsna){?D9 zcNmf*?Uoy4H<-c248sSd2$SLRiSQ(#KMBPF`JzI(wytFuIl^oRqCJCSnkD^|F{kha zpF7vV-hi)Pjnze!Au1RpF{<|%aXfexub;ep0z(u){M79od*8P z3|&YcFt?g8LNw5^LwZ;2{3 zl!Y2W7-qei1HC5IyX}1)&0m}0hxJvpt?Gkq1Q7-DLZx}(nnn-LGK>pbCd>5*M*>6= z)HiA^-5i?Vt2T-grnEL-4_sF9c*_k~&;!YIZhRJg-hkd~Jz?A4ZD`pMh`)~KP8+1u zAG%?52a7~V=v!Kt&2;6a^RVf4L0C5)gciDnNtwu(JC7YyXo1-|OP*z05->EI4XAmd z2>>9TSwSz=?Twh`Y9vB$SG_2k+^H&xgI~3eJ*9dK4hLhFig&0Am z?`k>tvVpSG{Ujt~(p|X);Th*X4A219?OITMSKV+)dy2tB%cCr^bVIv1eTzmPkrjUk z{DxoC?TrO4hpCP#47o?QRBptkL1Vi~I(^#F@;X%gney2H$zmtUFP@S^6@KT`zEIV> zb8$lx4Z2)q=c}$%dCHS^=}ICnAWs%~8sWs5BQ!*4=L9b>+qysx6(D!2->H)WpIT~X z#A_(Zk@}Z%qK_*8Y@l95y9pOcpfuVN|5Xc7G*D)ti07z{;=d(Es^s4@j zq0m*1(a~FLRYG0NsT#M={ma)lhRRXG(%LSrl8rN;3E$>x34Q?>c}o>VxCXjhb)Hhp zz>3*9wjQjsNsxm!LF6>3+)3WJfiz6nW`OpZwm7=^Wd`miu_{rko>6s`Wi@siCNpJv@)y32+{+OWb|dwJl6G*m#vA zhxHP$yrhSyF@Pnl5NQUpD@DW=2E=w?Z6wbbROjUvI#SXxO15$zo}jm$evs@yj_{i; zs!?r)llCzH;^{0>@d!UJA&cVr18u`gk}W3zKyKkNd6&y6qXWx{ANnPC#s}f;ixZM; zt9gbUa!*vuf_AT@3k{WUlD>rdAgE!f(=g9)`8mY`U3d=Zq34A<9+U)nYF%6~sgy_8 z`^1RaHUDII8d*}#V=RX28NuNq^&^9`;(Crd{Tv=?KT(_>a!OQ_km8}jD7rb;ie5(7`+%*5#F3c* z6ZGP$%cfNJ!PxF-@!4ByZ;t5gZ+@8G_`lH-;Q z_>lSQ6%*UWCRQ*>(34O})KV^k2r>xXY2hPRJ& za>TTGJ3~D|b$Byl`??zmI6M^;;);^#anqIXGh>bpOmwR*L`G)+>B}$ES4b{AWHoh# zJBnd0$0Oh>XZ?-GDSC=X-ff<8r`oRa+i3Z_Y<;hkPEvU*HKm}o72M0x3qDCqE#+gb zHqHm@po4sN>zrM5e?5B)RnLg&q~Zgp>;7b~v$}{BTDT7`A>PeTRISvSe;_*b6E*OYJAPOq{+K{=+e1ee(mZUg$wNxOu_V z?7FusH-JZ=l%}KFhEfbqlIfXxKE-6Kg705|2Y(YFt&l8Re9gOI7IGip?b@yE9`Kq8770(J)x7$e$ z3cVygv|xl+m&C)4DBDprRkTWWr%8mg&RU~&l(Q2#KLvHh#6(OB`O~+bLwn=1w?Eh% za+0fM!;bKOZE7BU!#lZrqLXg$T8?xgM3?>(luvsCTCz=jnBVlM;GFY?WtOFK5V+-h z$O140SuPT@Riu(>;imrYQIbK76_G)kQ_%{0Wx`J7F`fyr2xt4p+TxcFP}D#eo2Egv zhvsAl=8^dxaYbJmH_j6^2u90eEQ72Z>to9f$5_X1%cw?Ddmvc`L#vEr`vn}E@0)Wh zaj0YKLAFX8RW8&h7rbS-1^}z2PdNJxO7aJ{8}z`o{&b~)rz+B0c|Sgf@p)tvpQyAe zkxJFIxd~(8?4erWFHN#)PUiqR%O`61*g&ud@uFInXlUNi9k!UR0RRe#vI9CdplgP0 z@o}+4@=2{niDjE49qEY))l>8fIkWAXPZ@0`&%GUFNP*6Q;K-Z=y;is|P@OD-qK2f* zegt{K2tPn>w%*Z@sKCXgo_B{cTkg5lOPc<43iJ2l?97RA?A19^i-TGvg1N6@T{L12 z@+GTtWNB#6Fo}>-0P+BY_y;$#P*qGXnKv1e78p4Skx*F0A}o7Q zMZp7}@R#B3rwljpG{%mSU0b(8Dd2!@Nd`B|MrD@4y%3H$SJ^%j5v~eZlIQiOmtTjY z+zNEs7SCnb1aBq%WSp5s2$wnuP?gzza5Qt+P=OE&s$`MS)U4KkA2Ladk=@?~`GYkT zW*s+KDp6G!@Y@`bhj6^H?;;vuTgJK}I2mjmABgSWqMOr218e;^#s+I-=W zW|wuVRcY4rlp2rA^n_P)&4KaEs1FZ)g=$cu=r~5=Z4^ZH&5jfJ1u5 zn+RcdvEQEJ=uisMO-|XpYfCWaHKIc0=0_=1N&!}dTUty1NBHjF=e_VHPZ_!S9{AA; zJLpS7&CGgcs75)%d}3O9;b`1${9pK>e{4{(cJY!3W`fU2yvl37S>COoB%@iU*j08} z!u$e%Xs>TEw1uWObHpOs#9G9D`TFEQ%8y?@4BxW{bx;Kc)CcMOwI5jLswMI`!t#?MiibX5;#YH;am& z;<5brbo0&|_|X%TV50*FVDG4^xaqRm9CIZ}1U3M4%k9cMKr*}`wZkZ7uOe%z=HQMA z6SnYQg}?uMTcEi&uHl$D_kse4;}OgUW+G`c89+C6w&Utr$PpmrCwhao%;t_D+t(7h z9?tZo$aHVn;#m9RI4BciD0D9Q&1=<>U)!WYr>Qy-^K@%oAolnNnRe?dJqhY zasjGaibpfG<}b%{$J!=xu-4l6tl9M3;K81w&Ju0w6dQ~lQ+oEd1{+efcWU%*y&GHh zk~9_)W3NQcT_rEIgX%0f4K#L0x+p7)@mOdUE)e~kLVuWRrA#nZjWJ)3~4{dft+*&o$bz$o#1j z(%7Q9K-em}X5hBN!QFNSSfZ4g?OQwqcL9T^y$-Q^KLE=(MDJgfPBT0tk6)2q`IYVO ztyjE)fwcPIN^9GUDU9MO0PL1`Q|%0E4uO0xD-%p9hzqh0RUFleCD#4;<%9RqNGW<9 znz^h=OYNXOrz0{Ii;@R+55;3cZ3%&{nc#p@wn8JfS?XDEmg4CSBNFGdyl0CfNxCPb zK&#g5z@l5+0X%X$I%9!mW&IH4QX-AF&{)pdrmuilk7RNPLlycs2izEt{~SBmZT=PS z_pg#T>_Vbdf+nNfqns4#zkDOEi6k?-OGyU~>0rt6Wv>C}fb$V1q`Op`Qis}eI20O% z=R`VQ9Q~sK@bX7=H)}uT=?N4r#y=a%0KGpT|IJ!Yt!`6AY2_`DLOTVfJ*cuWT^vn=fcj@0TW8q8ASiI z@`Ie=Q6lM%_7R|TuDS;efj*vA%F@!8Six}Fn$H)A=u1Fjb?ic0nHJ)D&k-UHV;K2NUxJVj_pxN1+NUm@l< zL!cJcRqYAbmArd4i5uiZ7u5{6Hv#8^8mv-Zf-dA*e-Q*so@e4W#VMYIE%Y)_!sa%&rMEl++It0wP_U}0&7Dmp{N)=OAX3&OafT6bHoW>XxX>lF0NAHasS7z%tu zd%DUhwxHZX8nPfoJtQw~1;tZ-DL4xfX2*igach41E*k0|K!cY=TWUkw5TRQq5 z7C-$d_JRI=vkQ=I3dB2jio@imYkl}j6duT=c6v#UHte$FpU|?nbB2bd<$g+DS`hNK z9v&fozB&q?bt;T!Z*;ApzHfnU36-*mFtvr(UFR54wUtqiFx&5RiY^t6ZfBcv`DQD0 z3hOjU5nx^KSzVQ$@?ZsB5reToBG_QkpRtt)~_*3eFB&dlqP0}6-|Ibd#C zo}x|%K|8M(JO-Cz2hD}8`Qn;&#!BmRy#CwEpI-m#+s|MBExe>g>;ucmt;;2=xN~Pd zQC4Xg8-xyM!eo7~*iVVI2N#z36cd>;z1xb`t8I|`MeSh>7boR!1#zd|vB}e7u%kf^ zkUo?%wY10uL#q%kmvYAVES1VuL0=snv$E zpCMwNK7(pBVki0xYJr!~j9it1*2EhD?%O-%0p!`FWw%U)9Z`)7WSs$ewSEiXMzWZ! zPWVUp1?ykLK*LWcD|Fz949()PR;30~9^pZ4uxC&j2RL%5;CezvPDZ%F#VMN|I-ItPs$`RQ?;RGi#UK*-{F z%q!1Wp21m_ktqVINW^ioFtx}sNrD-*{99_UoHw|LsosFQP@w6aF1&_~Ii%O@;Xh#Q zfR=`VEnwSyxf=#1^nH<^6$@K;(~;$Y#T;vxbugCJ5CvY3JWWhFaZp$hF@$5aeIatH za6E@ZXTWPDhxATw3yTjGI&=gxaBV|^^GPAK)4dEOl^v{q^MC$d#Axe4z>Iv;+;VNJ+5C=S8 z>eJrQZSn$Ow;q%P9_#P}2;QQV6VBvBqLe%Ww`X~V=s!4CsGua6dVx9QS!*oI<(Do- zdAG~x!}0~yVo56|$Q@cz*mNU6Qzea_26j5psh>v;8W@31lT*9qJTO6<$2y1?Z9TGw ziB?tNfR$QRCS8UTdId1lS;0B-4c4m59u<4nTwN7|mgesf*Pwjsp8{{Df?rm96}K!4 zr~;Smz|uqI2JBocoP~|{aElc;b{Wy6q$8?Ll(77vAYh@us{#}PYyNI-OT4kglXT?0 zI~E#SegllDz*UJ5V{nhRR)>6ObW)^Hkxx#I8P)BzBC-dfW8_cNPpNU`jljRWe3X6< z#~%*U*E?4tBx+1(cFa=iaF~M%Wq&(GN8i>@8Q!*q>!_o+iKt3U)=a`w?zlBFk|GkM z5dhWz&_dnZSa23)%51D>h>w!CP`ERhK&gC`voA+g^9Lum*7l3-vN|+IvYr@nu5O;- zaPu0cFUdXka0h^;l=^X@V-f^=EV0w=WYOc@rp|cGr749WCk_)jFiEck z3Tzo>L^WjPKa~RCiPF=&2e07$j-X(-9AZq2fjaPrmAqqY&j0@N7EotloVceN+9NC&5pM(Ty$eEy_drQ6DUm|Uu8 zNt+OMD?P?~a2Z>i>Xk~0GRn0hp={KN&M^Z}@v*;J=Mvk-uPtyh(M zMnmARx;|m0aAMd;z&5LLIhgeD?>NpV_TR~~OEZo1Owo%eBn{_{-Q4p4P8E0eJx6Dc z3FaC+Oti?(=56xYN{;9lvwgMF!f?tZ5H=aw5};3Ae8z0V#(*2lPpr3CD-r?ITKc2_ z@6%I47CN}MD6cA8sB@UZ2yPNFFQvR%LA>#h2ek;*MP&*@06cg>lZ=17(+OD&Cvyd2 z`+AKj>1b*1j7+ zBA91(E;p7WS3FR`?y;dy>^W37@FfPmSm*BG+6JC^LC}t{)l9w7s1v1h>)8D)=JmEf z>XB*JO`GTG?!balwvq26H{^&u2YhdWD(T?pWh0pWh4=d5s#bJ%G-*`HMMqNCfHbt+ zCc7$hG_t(}Dj2qPwY;<2t{^5h)Bsk8LcRTrzB5%;7{-w{HrcgV#fE@rwXzKe!WpJk zo2@UY6z$dAsg+{797CFB%H~MZjsOu@C@HxM3GpINSY43mX@;|0P#9xm!~*j zzBEHsrzJpR9F)9xwEP5~kx7*Lj^1o@%OeIOC_}H2I!rp4&T5*mJ7dD^Ik-vZ7a$zX zMDAW;W2M^=QjP618#0>VG{wv%FSmPktp}C1{jI6iz5dtm_EU7*AgUpCjuhF*70WyTKAJ`N?4c3g(p=me|}HBtSTB{B<;aLvSvI1+F~uZSl2p|n)CB^ zJuXDKneBM!&1ku9;(iF>s)aAd#p=LHVE4+6;bskU78i%bN@R(If&drIDYaw?)K^fj zBeej+#Sgys6=s}$xZE=kAUEo#RzahZPCVqyQ{t6@qQG6X^0QL?YFX+8Pm{3cmN*q*pTBy3$6G;elU23ojqMeS$(adjp~U#1J^3 zdYB42{DJhy)1w1JhKa=<8aHuKr9h-tAV%CB0e&m`DZt=5duywaQIT+YGkkzk^=GH` z+4NM3l_%SM2~W_Jdq3doq>rLAP&Y{m+O8++{@BQWqp6aW+fhYOA9pQrLk>}#ax0bW z2{asCY=3~YA9R=@rftojCls-JR`^uGbG!zI1!BBKSU>@jBFbZc{KykXHc8E-3j;Q0*AK0&dE4^s zf5(qKKmy~`vl(=S{)g?;>!5Jt&1q^QRiXpsHj+Ul62JwH*hWUW=&iL)h390!vz5XD zjhJz0{4A1GC1#xM>&H-L{0R^6g7c8xV$swBgkU0S5DFW}z(rcA4~w%s$sKkuob`vD z^@>R;o2NUZz`Xe1Y1C3ul-?pg9rW?bb+Kd>wjp>l$kl9%L& zq^x~qA5)Sgsmlr9gU>;>pu9N{MH1AM6&2+&s;LTe*77_6B4`~nNABK*9U^*1bt_Q^ z<7{wCF%27S30xuhC8-ND?od;|r75=DlR9(G4u|N$TjP<}aSxd$6o-~3*wv+l{1b7` z9c9qure9*3yxGSbE95dZErAV~O7>d@6=B^qvmO29+%kn)qvwMnPE zz;H9*MOjqJ3UJ2$fWGbB6VNV#{$Pa}2#c#6ydarn)x=VLv}0#ID2b}L!j@U1JZ^ZC znqo22=qiv*S-GpO`bt}a@y>r<46+rj#WY%rvrfdgP~KhEvr5jsp7rzv*L0didGIGFl03ehp_%}?JyFAslkdi{UG%ddf#ydfcx z=fIBB!0CpfhP&fE?7if@M%V8<0}DilX&mg<<*F&8(bCorZbPO0b!v^LWq`xS2Obv? z`I!6FaZ`Q$isI1)m{}{OjF3F6c6XvYQdP#F|0rCn&}N~m?isPi;^KHvh>^Y43}bGz zV3Ieq3jvOxXxW{0U2sJ2*-o29RvVbhtJNxCEl{`^0KINJ;Lkpl!1nURDPdO?MMBJ? zMB7TTaJdtNLJtza+8P@6{I4KNT-mn8;93rj2`Qj`juHd*BnD}rx^UCAr*pWfAGC3% zp&tZ34Am$TgE)OiSr}hIzrswPBrR=KUwLp+zq(>tg0tSTD`6kI#KD(z`WgK6m9@Y^VBR^Qk{x0G zv9ilEJV1y_SGiz<2z_bqfrhel#vrJdPPo}%%t89*JtARq^n$yXsa8P?hcV`-1k=h+ z^!<$#Ph}NY+PJa0B%2EauBl9zDi2?jh>ID$vLj`(RR^Og%Gum81#$Yg?D^HH9vO8B z&6$n@Aq|Og*ki?zH6h>>AWM|XssJ7%qt0v~J|(aA6jjibKh+oZ*d_d!Gb8p|RQ=p} zw2ZdsRNd4PcjR0q0|A|s2E*s{`P4^-P2(i(p^$THNg~C_O2ET#Sd?Fcm!IiR&$}r3$1#QSvBEkiFO)>Szg5=SjWI^t0;wF>oU&maf_LNFJuF}2qnjD7}nFGSHs(N zlMC_d&XSaP_vR+Am>%xPKFxVk?_FC`GY9t%7-!hU066KFrUs`OIL%&UD6Z@fR2N_1 zWq1OHT+vLr(6hbjj-*`WHEFr7`ooq*tFUQ$X;c_%q23#khX5P*dmsycnfjy_O9odk zT8d5Y4;r1LkD~@i61&Yd4rCO{>4-~x94M&RxdQ2uFwkEXlQs1pwF$3^AaCy@S*$3# z>XJ|2U*-eW&NMTmd_dgj&}v?N21ysia>jy45(Pz4W2_i>iyktUr3-Z`U<2e%d$$ek z56cnZYRxXZiq~$oEw8)%=Z(q|rJaB&3EGKLEf=eTLV3hsTrniOg^Wznf}!dxxGcz1 z4I?l}V)*PkQnf(R?Hy+{aI@N0XHWdBIsbrY4RDAzy5+(pAfY$$z(me&XMvU8dqoYc zZKkIVNN;CKDN6Qn+d3(lo$o65YFl)mJrkS1u97SS{I_)Mo&{Bx|8XxHt6fv+ae@o3=#$b@{!PZ z;^V3k;v>?v?N)fSL(1hD;jXI2K*|(knSh(y!OrdmWfPikNuFp*SE@m2yQMq;@?W6` z@b+8Pe%vjcTYOBj$gy=h0YKfO_H?E1B-D6PaYzira-f&Ot)-s)5|26X^{i5Fr8gi zw?UuG(0Hh*A&|-Y1O-};LnQ*m%LAm{_@3y4nRkXoE0IvOCNB| zh7yWz1(QkAx-RC^utdvD$}g#X!6A_2ZkANn&fJ@nJIS-V=Ip9-kQ`|G6hB`JCH`fb z$#HhOOI23&47IvS8rmt))J1TxO2^!7?p4+8a=M4Rd3moRfCc<}iRlKWQZb>8D-b)C zzTBBu){J>8HEepDwurNpS@lfy}Y$+Zi0aA;9d zVYSU!r@YN(1=`L}kM@JN-@kkn(wFp(BXXGZnxV)Ay&MjY!uev>ta?g_W@U6>q)?)j zhjV-7ZGhw5nH{e!$s^d}NZoDzpc4%@-lH)GDB^+BjC(=K#NB+u(?7<90jUs*e0k`= z&Q5?*IoRk~PL^F33$tQ5>tUh-h^Q(rH0T?|#k()hq0$#^Hn6;>5&rHDP2K!-pTbh9 zBtq#-sM=`T9T@Cp{Z)lRM9+oQumOX&fjP&(5jc>Z^;mf-Z6#&J9bN#oeO<5X!$P{h~9+eYV0q?%?6@eTMFQ1=u37tFc69}e* zzL*p_A-F%sXO7XJZDZ%Ry0DS<>DeZF_&1=hM|hdqwo!#ZK$i@ec9YBJS)@v;>5bLe zc%TKMq{eaxNxcuLn8(AyhKm)b^!&@$&|yF)#&Mc=N(16VA~>kJ;1Sq$OQ5CaBsxjG z90?YeI~BwPc3-16o*ap>uNSFJR1r1?lm^swwyTaZYl>=O?NhVimGw#=^3mLW~m|`;o$_%P#jJ+>>4EGC zj#E4s8Wqij07XE$zlL)q*!#Wfu)O}e#2&kWqcf0`lWw{L%Z`y=1x)s4$5WkZQjV=) zuGMC5gTNlyHYgRxMT#W3(4I;QM!tp9fs)Hwv=WEjsb&(Pl;bv3Enu?!VU9NJgf6Wv zl7ajOoIkJH;1`I}IZuYVvC6{{Is{y{<*NB;7j`%z%>YVy&8UJ@PHs}6PA4Q{R@IUp zJXX~<9f^g5+?t0Xu%SEw^IJkPs zw1BJBHuAcqnu9q=tU`Za7!6iZZjT4sXFBb;jb7G# z*-9;|E-*2$?G(Wwb&VaEl5n!)53?^5SS$btrBf#AcKmL`v!fA{Mcjo2yaaYzVA;c4 z1!~>f)^F{17Dl;Ht+S0A-&q}&8w zBpa4VghTIoQ}Ah_v9-^(L&*lLqXGpmjZwBJohf3kvIp%Wj}m1ouBX?ZORn^m#4>fW z6Hc$V#e-^FUt9omD2sBl<*syZOPZgY{vpv?B_IZJ%7BI^t3wh{<3^+PCZQ7Q$&sOV zaw!y;dLzxWR2B$IyUI|`C$zDPyJLbd``YDj22#j2ajni>1>|CH#7rD08Y)h6WiPJH zTvEVT=Tp5M=^PJ#ujEZ8Ssy?GHrm6O?I5nPM3ROiI8GKWkSkeJOucIe+&Jq`wstQd z>mL{c)=3_)LT%?oG|to0zyO)MsfUy>B`J0?zTyfB6*bx5iszynQAw*=2(>#*$~(op zV8HQIY@yjs%~+$sx4_{P{p}RDfC!(ojbqt81O!H$E1w|w__6JPIoNJ9 z0P2I4!5Z!tD1A9#rY!->TZtHpP`Ozgp>uI6|9uHJYV4o|m#I9k&78+FnVQTXyG!b0 z;$Q055#{5;<+2JF=(U*kC3;9`hfBKM$lVwzZGifpdMFU8BQ2{x$WmXy_P)B5^|hU^ z=g$S_8=S}TXcdJ{o?fro z{_e|&iAd2JCS^jP>Iw0z4I-{QC1@m3b4^E1IQmKq1n`7W5ZJgwy|AqDt(p_7&)hNI z4bEi2)@3X5s!N%~2MBpo?Md^C+FgNJacZ6UZYya0S)f0#DCY8n)~6gS@DW%~s>z*J zWdZ&HF2Tr=*nvuD+zBh%mP~sqb>?$=`@QKHQYQMR?lhI&8A^1ll91ouICn!cU$2ka zxN;>{Cyj8tPj@k(Cm(elBE{yqxs?8_Xl8XBw0#L6!XsM%QHEu7*Hesyfz&{oZ5Y|Y z?J}Q30wz9?4FV;kfYN#A9ZY@`D!CF=6T#1}B}ura%j#WNtXG*#?!5CThw^gL9lxut zOj#J0V}Wqha41R9Qkl}YP!4;zrPKIBM?GngLJ+1h8q>=c{2KU;9Z9mQ41|0c;k%If zWcR^z{1=_J^#g3bf=cn$|z zxI9UTE-dX8HB=6FQ^PW+e#U5?521H zkxkdW137L~S72H~sSE}hwC!l%%!(c^Nl4=o-Nh{VH7aIRku(QUK3J2c$qY(d80E?q zadkad&Ba00w_PvtPj8>Ue){&~WRdbGb0|}ycTaa}V18>!$mpqqBuNS)#i*@3lqJhq zS^`}AHZ(($2`eYF#n}6xt>NhBqFT=?Rj0s$ zlpM?s9K`8aOf77<+FmE!cD9AH6N=G%UP1dAH6cXOH+s*!KRCNyK*7Gins^H?Sp~ZG z&+OohVSDxihG6h_TRS*{b!ekviQq$T=|S!%cfelRaRW=)bNik)wgk}szpvrje_$6$ z%?s6VtfWvRJmHK>Np}eRIc>qhz>hsyc}nWwM=?7EC~p&F;$0bO-46O#%cPx2-7I#< z0>g853_Q+5husa~Ol%cY6fN+|6RMa(!aLTVaiS8}6y_?`GjoU;tPY32-y`$>8GN>o z#+R_i=}j=y-T*(9jrzm4xXDZP|>j49$tQ%q-mV!xN6&7;+CD)5^2s+ z;=F3#5u@@^RX58_v6}CiDYy4N|z0^bnYHHf2j(vt{fS7fXD%MTfEsBmNj# zGL&-!d)Ct})GRTAz}UMAJdl{gL~5$%#vlt6DkMNy$+2}R1LT^ogAu<=NR_nS zIF-W08c*Q%Uvk~NYwrk(n(RZ&x@m15K5a*?#su8Z!i39aI}Hvxb<&+Va)G`4Zd3^4 zDdz*VZIBpMs5tgP#iG({qf)k>dMPV3slFM1CsK8`Zr{_st!Da}Rs{+PHI;8kPk;UJ z?c-qJsb{7@cc3Zn$oOT^MsypGKvAv0=h!xuj$M_)NhxTF3jHyFNeo~Gao1bQDJsA$ zml%l^koCFgm%&nTz&EYbqWYD>lg4g4DLp&A(D&$Jl6nQb>JmMXZv~eq%&6)OBNm+A zu2U^X8BWq}x)dd42#ZQ`$)n>a=m4kG9V!@z0d>V51#^Zk(^S@ zv%*d+BFlBbd6#k_aKKcSf41_)sJcflYU9~G4(e2tRy5R%io2Pls?b>a7O@e^ltdz; z(v`>5$69W`{NTo>-wA((0HqCKrul1#&jqVMn3-|8!&632dqygkG%o4cr$aRx9y|xo z1_mjkZRac5*J==y5|9o_d;j&*mp_EJPe5W?7ft;L>ezZDzQNgRO;eQj zYmoUKbR;}aoWua2ajGm>>aLO>;Es2DP8I}0Uu&q7-^{&9C zE~%HejtA2aIgKE!%8|n!3PS88NK9CWk{TiBK@%oDh}tHX15B}23xiK+l{4de8k33! z-vg|Rd5|! zrHwGVx-XhL%VyJ8d9a9Xsn2j$0!7hLx3H5ne@tZL*ik)-Uw}UFo}Ly^ssn;fq)UXn zojuGY+t2l*gA1Bb>4${QK|zX+8e@p^<~c|%koA#!w6YDi4BA=r3|v0-6rF?9wT;SA z(O&@kfAE@t7tKYyBn}WOx^Qx%RjZxm>SQ)2jB|!sGeejlEK>yvDG!px!-ozR-w;;T z5?k2}-tJd$qlLt?wRC!$b=6~P%rS>zv0Om>reM(gQrTM(HGj?9Jhk3qsd^(a?M015 z?kZ7&s%CfZ8?Ur&1Z|15f-Kc5$9V&RewWWhBuEQ6%R9pR%0l!E^zt;e#2?+*!z$Je zJsTW|_E}+J+>_ zN+29hDh`T%gB!Wj0Ppd9lJ!-R#ElQmYN}{FN1EXVxfB)%@H}zOO}jdMXT^e%3|}5k zNFCDseg~Btj;Ze9PKJ-7c>ti`6R*%YvQ}+}nSJ!!C@Sj54>r}wQ~o^b)452Zr_hTZ z(Qc}&2D{5illo^s#d@icpsp@~*e}*k1#GL%&DV^B01e9`+kc|zw*{qhxAkR9h9MEo^C&yL^dYT+DQ$hGX0}b9BGt9qPNB~UPB_7ojViSH zcqogkBqdpL?9{2u^U+{}#OVlG=R^!)>vc~=N<}sG+}f?r?Yo1EyGjQ#ub3&!RU}sc z4A45sm0cj8a=2T1UbGHclhd=7L$~dx+|JI^}SOj{t4zh=)Qy`_{^W#t6C@(Y~n;NTRD688JJhM0^3#+4+=gGWNJA zMIaWmmSNqz$W2oZINPWa_$c;z<0M#~wcCPdGPh@oUP_**xBbhXRSqa}IFHu-jxZqK z*du&KOSEh49>D<2UK${$krX<0NWOD85+PY2>%tM#vh~lH_%ISGSSY>YKsAY5zI%#y zUv$_4>4VkN)ge3x*YkOuK9ZjVbFf5Kp9E(xVUH953yYz#m>5vh17ghoHbdN_wbW1zvrHi3!-|GiraLYVK1l~*@!MJ1)JHpYLdR#oN|C&Q3jG(=}=^7F}e?BVMy%?QA0yKI7#YsZ;KYGVuokx_FOZ> zaL9s$DCq{t!Jfu4KrPkPBhr(F@>jZj@wti-&KJ~l!w$~5MR}AsK)c@#!NU7m$kNv6 zM{(!M!+I1Op5rWu4{Tly5UNJ(I#d2{lK-7{H~(1BY~Q-mGFwMTwld&dC-wUVwhtzn zQbr(!fk=!*DY?`&ad_GN=mVRq)y3`J3KRrbPPAH@aM0Y)Kmvxo#|rvLF`csnmU?V* zZP^3+;ikD!-4HE%QYgYACk*ln9DI5>^aZFpY})@VJ8qHiIVZt(~@=cE<&S;$vwlc-v3a+i!;v-J{n`traZlqyiJI;|Pz98*fq<%*5H~!#Z6Spp?%bJi}OSDv#aeO%rb6TZZU-b@Ey4EbiXQ3 zd?DOkk1zzSy%`S@(({4XO{ExAb`S>zqy)1OS4soqO*X(p0WXO4733P8Gh1-E${u&^ zk;{naMl_y0AIn;XuRWVTk~z*N@~t`~B-D5V)|x$_H8f0==p`aYi@ZO_Bn;eB1o&ENkm*0i&8v-;mKEnWs zM$uB+I;v&_PW75}1vNwndFWpRFFiN}OF$#!7&ICOKh+u5hysx0%2*dmrix2AsDgYU zOUS-S36Ek1W+OK(kZn$MQP+3|=+VN5vIdF%?fNV#SV~O};y$WN2`s8Dxy_O+E%_7$ z1T9wbFR};$+Flh?>E-U7Y0~QE*!HE8&Yj$d4>*iuJu`2pc5PQlny>~nh^EPSMGWn8 z>xDTm&F$POfFIGJ+f3gKp01db&>LXvG7=`xwx?kO3!NBCJ!S88rxl(!bu9tJ(SH~8 z`-;W?C6qp_o!BzKWZ3%I3|?3&~NlUuI^sa*2l@8HCx z7^4*Uq2VX`oA4ja_(M_#3*gGFt@v&zJtC3Dz(}0>DUb&0k|D^dPle^8MB-yr{X$9` zbXc$U`~a(pIuLFb$GCyb;FPJ0lFX5~$x>jo3EhhRlo$(7YS%kG@yu1;qh*4$|o*{RN=h=J_{7a#+MmK_nlRz^@8z&t^8joJ!s@{p_xTg@dl9N`u6%|oSvm1NNcD!wec zvJfmg-m*!P)Q&ELAAA_NQv@I-y)fdjR~(cF2fgt^B}*uSAD_X*mDm z{-s2pL%SHXV(nM7gC{u4x+Cn5cGN=5<6G9_Qq(mj14?#&)wDd6P~X;E=`E4=a++~p zRyMuek=J!pC4|a>^=PKVyFei@p_wh$LV%3Et9=V!M0UBa5)|80187O)B<%($h#I+| zxrE7d%zgmr$fP9WFHE{PVJ5}{y$*5+DA@_nadjoOzPVg5d2@Oyszx?+V=Z}ALWvY~ z2-V0NNGYE+3mkFS18;HTxiGgkj73Pyet@xfCYAKT)s9g1eR=2-$;Yu^HE6)>>bl|(#Tg5rtlqFE%EMKni3X)T!lzL*~r4N+G9um?%3406!{*^*CS9 z_J{kmPO?s?+W%6|H1Cildo#W?z-yd#zx^>BO`BAJ$YRv0OeZj}yF>O!G=qHOFAwcK zN9y;IF&#dL)P6N49qFyJttC=_pjA~4>tHgW92&PQTGYqJU@q z!XnY}s4BQOkIb1{`4#XRFxluNv4K^Ms&Z*CR7kNKh}i7H3Y!W{Qq@_kH1l>T%T&zk z^aSLHyaWg)7i}&$Ua?X?T3daRW@MWq&Da9Gk6;EAyuzzc;7JU6&KLfX)av}kPCcon zB}27KPy?lbr{?0PCWfO+LG`q2@DQ#I%wo;>d;re$cYO^SX1h7icn)~!^iY@y9=#He|a zJYd%avIg*mL%cA@JIwz_z?Q7tBZ&{Z(w8-L`Bi}jRyQ;wPJ%I^*qY5i5ddvGL$;O~ zkdMn#lu|EhYQ-8p5+!d9lXvfz*%3BR!HJ901bjfl3RdyD^jOASpH&s-skq43Sb-KL z#ml9wTrW!U*o(ST2AcOSQn1F;4xztv)T0?jSCi$AF6HGkkj|ou}DzR3o6|sR16DmmBf3OsCmbc_8qf>u=R?B_tbqqJif+Jcq@f?``2J33HnZf>>ff<>1ogE|Yf zULz|uaOZGk<~2s;HRvA0e}0Ip=SN%X)|171&QmW!ze+*t_>kP>xj z$qMS*Zp>ZNI-*B^A%H@;2Ji^6<`QQ9vs{%OZp}f-=KJBh-?5Of9ds_HEhzxjP$J&- z8w;&FTf^&?3KSkTuRn#z+s2!`j-|Sxqt8_sRZ9h1tS5?vnv?y<*rV*jJ>2vB0ZC-m zptjZj{qKhF$}jyM?E}j|RBqt6{9f{rAKB*hsnXbX2Rc!m3k2hS*@NmF!8#Wcl#Oj` z^$P{ht{qB&*0PrGh5s#u%gYWCOFNOE8pD29sT4vVFts|$lrn-`Mb+?j!q-S#iySX# zr>5^^g9B&kx>M%K^mi86r2Yf^J^gfn6ucs(R<{+?^Oo=N6d`z^G-GuDUhmG`>?hT) zYTYnQ*WC^)^wHe_H@u5$`bInGtO*L=?m)@(} zendN;dr9JEln6+qZ9hWet8#8ZS2*aTR6-#YFdl0p2m!M`YjV$>t8+{})@L z=z`9pp_LZ*5}1pppuzFI*r=M#W>zn$%Ok2XvXmjP^=g4Hh7zTFXv*`VT4u`0*LGru z4;;Lu*p4Z|ACn!cBQLn4{t(`NchY_{Cc+gzYL`v2r-Z6K0S;f#Xe@mi`+w_a@|9AP~J{(sPi`G>km2QQ9UQw?FzT1;8-B@9}?0Nrl}aFO3ZI;blafq z*J0|A-n9U*NtI3P&fuuxwEfvtksoXlpxBn|Z_YXTyRAjNbC(d>mp+7pSIw1`_JFN5 zLA}$2NGe4qrRS!C5e`CnLY-_GRNA>H-Q!pm%j7Nc>M=#XKj?{|FMjw}1g)aC=?! zBDGJPZbwpU=L{M1->Hq%2tgcGw>Ec0gv_F3AWEbMwyFq9*hp(&u_PJiXS5O3nhe_= zpf~vOh^a!y-C~=fgCB>l8j>F@&kUN-`2-M3vsiYo} z4G5JTi<5d9-iqAhi|S}debS!3V-RS{pG)eXVT5nE+-UxZ{2kk{#RX3arYsLTjHTx7 zxtg>g(7LtrIAyOLC_k8OMrcMFzXY37F0#m0%4$up{w-RAP%9uNC1oW-hkcGZXKxF- z_@Ll)?Ttfx&&mL;y|i=)UHk*l4f5NF2PE~ADJRW_6<3}t`$LTfQzY_(N*6KnLS_@3 zpQrCO;yjIcZ}e(Tp=1E8Y--xj02F+bKGRn;^Ggf#)3={Xj*c&HKYRV`?GM&10o~Qa zVb*{qa(!B6G@*fp?ICqCZL)p3Bzh^IXSXiBWCU;r-{hD6^L_Nt2-dXhbWB2SEhp1* zSN4Ns@_Tl?XiDG><&0hr&X-V&$ed3CofP$Jl}+|^T5;Kii@Xu?t+J0iox3chR)CV} zp>W^Bj$i5JFKDu?n5nDw#B%3E4oHaR^aPDbY8o^;Osa~mz|!ED5GaPoPRNJvD{j61 z>o-4;(CTk>cVx{1aI%4rfK3k<>HS3r$QVj5y5}vk{hN-wpra7%qSP_QxC$zXEm0 zzL5vFxQpeC$6`TIjxQLtT}@`BoHtd=Ho&c_KiHsT1xUYAbEEX}Hw@3VIR^F;r-Jgu?M*6jm@p4L z>Ufn@Apjhk%Ys(HlV%VM5O`OXSCjg}Z-xRJ z9w1mV!wgcaDigxuyOi9Yy!|}=9*#foZ$EzdI*lR|zI0pBBYaR_7A`rE$#O(v%aEY9 zb&Kk)vkFpvAu{mR2U?qZWYqDjez^Hg%^5m$Z@U^fH;_JD!H~mF4{8l(OIx>O70SXt zYWKID4+FyFH1LrqH1ST={xT%N7 zX_b`V9-~7imIidyaA=~Hyxjm7I<9qliq2j^-_athq$p$ZJwx0{f3}V1;7(3(I!~*t)0s@o196Zo zO@omqAC{X1_Hvy3|3y6xs>JDLn32^Rr>v5jI!5}#yJAI5ZD%=ftSnN5fYgfivL!|r z+@33DkQJWi1fI#Ref$OrJ5v()N)IBGBN-<_y`yA1H7rC`D;zinIW3`v<$PqtZ$XXQ zxls_GY7qu4a$n-JMp`0|N=O(r^L|DTydK@MLDUxGxs_PxILy!DcmS;D2NWJy3ZHj+>7i~x`T_90zZ{4Pg?dnB5icn&vZ z3^>KWZLsg?5Yb+{2&_J$6O(%7J328K{Xkn@uq@m05r8XNTZ#)ykiXl@p`*bfT&;rA z%^D6mV*Pq6=j$Zpe95^&(IL5X`c9NJc{xxvrBeOoU)1^4;Is)R+o+Qqn59m{fCC!u z0O~M5DCJJ4kNDT&uT#|jWqA3eZH^`^(3(MCi%eAYCnVt5ABJd%I}ZlC4%@3y?P1~7G4z^H`1 zXOj?ep$AsG*Y7Q4SK*E72226~;5{PP$Ms>Q}`z0yN-AZYVS)x#;vh zm1W)KQF;%o@H1-*?`8jp<9!xu=6&z z6?yms6<50)*?tlvD5ILF@9Ta-u989#^f=q>z>N(GSiW5#435CEk*w{ajdrwbveO)7 z)NN@=jA(0!$1Uq-tD#n#0^9AgFSG*KZE`jvhRfDg3M+YPXV>tLXzbXAsN|+RS(HMn z8vIn?sOOd{f-5-$3GI&x$Q>j$5f3XB`01G>%P@s?%daL+6#pi#Na)5z;Av>EQtzIMZ^EJOp(+TKDH{9@v>o%?dkkmph8 zm}riv{kLFT^a+aTfQ5i$I+0Z&iHS+5x3Xr&nNor1%qmu!Kg#xS zbSX3wFM$gFX}0t!l;h+kZk)?6S4f0s&Gr!{oQ;m$R3C2D-`jj0zk2(W6Om8()t+jk zb*Hi~T%vTsa5nNfnAKvrwhh#rCCdmZoa8Qk1kK5_lpU^CK9uVp@WSH+tgP3fWif)t zoz{n3lgAi zENaKTLA7#LSTyGlNCaU=2w5zO5L=7>V}_ouHIbS|Hh9-9nz6I_Q!5Tu83D}P$-uEl z3$qSBwAE)VUC%gOy!Dkl^+=~$imM)qcFy*wQV4@V^pBF! zpt&I@hojpI3^TAn-BJUWou#99xV|7d1v1^9}i&{0sR;0T9LIgfy;p=df#Xah{=x;Wx7`HaPN; ztyFXv2U&=KssOt|7+~~R@QRU=Giq?Xa9A>HZs8wILdligAPCq17?Us}aNvQIK&eyF zRjHoPoJntf#WeH;H&0m?cQ*Le0$0uf(yTER?_U>P5{`ZS;Wt0@0dW9jS2Bcjt;_*5 z*GcTWnV<+sO7_f_>SEDs%s-my)KqGBk3t=^t5dZG3I`0!=Kk8ZmeMnl?o2SZcT7~z z%3?X^)CHY!m03JpL9n!>w<$to1f<6ztQoHk$1LW4N8h6=*vim{{X1X=4nfNliBc(= zAbOY)d<3Y{83I}n(|_b7^9WO>jAWxCikjLxBBs+0i=@d;Iv6`b*C7d??yuUCr`x15 z36A+Z1Fp-QH15bDsmOX$jSirChML>6ra*ywP}zMGZ>{W{rfFE%Hl$G5Rz-Gi9TR{G zV$uU5*L4QRvi26>c!lYT99{3-#$Ubtg85ST_8-^>f&-5|3*emya|BxM%0ZjT5^@a5 zj;0O@BvZFUeRae6YnJdvUo=dU?k;>dqv9TB5uvP33K~aDx&Xz5=2uLOM_5^Lwo#Nd zIH!;H!8IVq*jG{>Ey}vN6*!l(a2rrAi?;3PiKs9H)gah139G>5-;%qJFcnC1roWs_ z0F)W--3vfuq~3^~H)MyF$nQEXuphu_8kJa_RzQnGtpc}RiL@1QfNIWtYdcTFX4&R| z^0iH6-6!M+1lUS~r8WzJE93R2__Twzf=nRZpV0Mcsn2;EuBdcPN%2N;xLA?cq5aa1 z2=fQtFWqNJ|97~MS?q+GWCM@G3jDt|Yx4%s*PQue`Z_>|uL}>0ICN_E>z#fbOg8>g z7^%gk3EeCKb0i~hO=?>NZI`rzUQqX}-0Vj``I*9zlPc|zKN`**bePdLd@9g&fr@P5 zs?|y(!u((X>t!1xjUO{6TBo5*85>|$WgVS%DV!{3=DwbuE1+>Yk`w}e8FY`3(mo!L zaZsprv7D}uj+r^)Z?^8Bf{3ec2R+7A-J{hvI1`gR%1cl}6m_b>Q-?4NOi95Tn_=)c zT$NTGhdj(Mh4%M611rz3@3BEPZfqNa@G#6s$_e@$R(pSvgbgDDN!dxcgfCJ0u3!%c zP1EjFu3&!H1Bd)}ry^sNI!^8Mg;bJvp_HBbPDiUwGQxQ*ADCm`X2UejI-KZ1>s(Sv z!09TtL)wKVKq@s)Z=cht5>7CL3fwDaxlArdCP79Cc}=7&IE%b^wFNctr4h z3TzCc$wmJwPHm7oT8&ykE&_$vK}@KU8!KDW6;112>#7K`14<`o3D36-0j1b*(khR5j7 z0+Sq)X}Uc66pL?K>U>kN2keI`2Lmq1@H}iY+z=B?%he_56>5xP$@>{<$wuuzN5|uz zLtmM2MAEp3#0b@LzPM2&8jx+_&049ND1~rWG#h>RW~dRC>E_KKWl^T1f`%y0WMbq@ zgT0!!NRaidPFdPZ9Briy?Vv$0YH)l&NlsqujJ#XJrZo7qy$0QCs}`0+wBzp;{pfN+l?Su`Hp{Xt=JLo=Qw z&njyf{gz+#Zy!Klu#{i5xFZ@8xu#pNFTmK_5myK1RTqjC zP6%{EN|$=H97?zP?6PmkcfJ$;;UCgJ?I^>s#6e{{EG-z_8S@g`><-_64 z?mU?8{G{x5^kB0Y5@C}-NrJ(aNDm}`kz@`%nH`<=Si^Zj(`R1&R6oC`l|)IRb~$=a zfji+!1`_t5Ky*&fnSwVl^;MS<3K4CQsbWiX2<8-5u-n&F-o(~A+B#?S2lgJ9jq$qM zcYw!pD->p#>FB9hfJ_oFE_Q7p*0u1H^z>L>)bg@$5#9>Z1k`Nhc+Xfv01s{8w_#pU zNDz4fFw}}`fEDa8mMuX)La<3>9S*T}pGpYW29y~@+>8uBmsY*E;b&M8Wzw(}4Tl&z zoiO1iX1SE0wfmEo?7K^9-)u-rG$JK%b6-?w2XPaQC4?AGI{-mMCit1y6`1-UVSjS{ z7)*U3yCu7t*~l5{^@-bVuOH$?bxekuTAor>8?MUGaX{6!vkI7ur|aFy(gtDEO;6Of z5fh_}R1`2>0IlbKQgxtJEmtba)tHeqkC8Q*oTs?e#(NUwv!xR$LRBtt3TCLQ)pf{G0IlFE1Z{H?R1gzI~`~QzRv|kyQz+_v_#d2w#+BrD9bS|zJ@0-rW zQ?V##LC&N~Rj-t@qJP;^s#oflG@VRsCC*sEOjx2Ud3;t2vn5AOS}9peVF9<&Nro=g z#h39R?p8TI9?!!(`WQAGsInaaqKYWf<11*M_;2W784*OCq9JMz%m)4_t$lHNWlrvGEcCYlc>aj*f4;A&z^XH zvkwV=x}?b#hviDqHr2Vu4*6Nhda_)n6zAZ4o>XK%MKDJGgUcPwyT}ZTt|AF-&QRd^9KcV^d_6z*} z^0V;z(aTpaU+E7&dHv+&589Ob@a=PSXWl-;_uu?L|K!KExbA71C>WGbu*PLt4_jggqT7%e>-T=e(~}X^1(iP`+0c#^XsQTIe+~2 z)9{anhjn9LKqAzWO}{3NSW%CgY;~)}ekM-bR7KTVQE>_MT!|Aw7i*9#jIr_mrR&Xl zWJ#_w!T0zTMt0A%rdy)k386LrV;T^AvGDK=cQ?PjL}cU)8Ui^_^Dt1qNpE7Y7Lrxs zE*4p&ia_41|25}3cD`eNOFaeD&E?+A@NhRfc9w7XN&d*}XSBSsO#u%4(l_ zOgl^#IzF&spWJK$NvB;IP6il9Sw~0voTsQBpnhVsrk#!KHGc+~qbE72wZo#EI^v$P zU8F68XQt$vBzM-JHpGamd5JV=QX2+?*bOEfl6=p-u z43KQLu3FP5Kv!9PLjM%p=4+JaOCw;3krvxVmTy*Stq^tn=$jwD{W|{{@`t>S6z=(f z+QHTo36EdJYgx3Pu}bFAb%>g)g(s|I5nNVS$wd zPFQ`mwX1j|gRezF2UZi68`QYHMb$@*4GhNom@5gorV{|R+Lv6^-LR`IFgxFH9MUU{ zD#^2q2ep{L{LAo{f0_B$%Fql)Y8aSH>nu@0GL9UFo*+FS_ic8ejPMw&QB?2TfYZLB zMp`eC`Uwa-hW&-7vCHTHR;*h3swJM;o!4E>)1-RYSzK%3K0(3F&ckz3)z`{Tu~uy# ztf7j(D{?rHjD);+zBa6}iqDLE775u;k}A4j5*+gE*o;0dfnAdA0uW*ESP2jAg|nSq z1DkGbuP|^(*{rP&`wZQQgV0}SUvB+PAMGB$Kob0I%q&c6fCgw2>Usp1-8$$(*bwZw&E5&Vu>O9LLyvE|HI}7Wou~*m( zHFadetpy^u(y|7I2T;Uz3{MUGhlM4n*H(DEt6g^0eIV!lTX=MT^!BwGJ<0VDq#>D} zran^}Dc;7 zyKhi>x5^GA5Gw!SM;bEf(FpH#=1NHisFv(xysfTR1Zcq&X z>Y`d6$c}mO^2gzac}^N$fNk0EV-oiDap+h4MXt#L5NC*xbQgu4ya zMo=fqU{X;})u43IO!mT!lL%y;aKPQz_JB^IWLwR_O1lBY)CK8K0+HgVehEyJ&4&J` zS+PP+Bhz_-%u6t@3p{2C=PrSaAZ#qnIoz#zg&w_+0$?~??b%=1mT7}FzC;#J6xGUhEgCyH2g?iUUa3wLwI_O&-?7o~ zh;;@D#>zI?-Pa^Y3{2?)1+3cb>?srZ+3RPZqocz8`RPU!04z^)8J?lT{e~cD6Ii)xmIOb+(Iq$JQ8eI` zHOlL`=3rQrE?n!Yb1EljcrYGe^9G8!`6p0CKOg~dVP9rMZC3eQUA6(~XQ6*0Zo?^U z6Tn~Ao(Dl~9cWn>n%OopbO~5h#M~xe+wgx0|0O?ADAE;?okf`sh{I~CJOZQ#P91u> zE(aGX=o4(o1mpi(_-}dV{~=gzZ*kyLHW7bj?@)>uQ{o0Z2Wr_%)mOd!f)R%Za-BRngtZnd0aMvskLY0@N7k zYZ7W5Y{?9vh?Z}B7#oGv8`SHT9vH+)&d?r?^zo{eGd`dmpr^>$B3804WLcs)LzWF3 zC#2nW7M@*jey46`C^|=K^d<><*HHH5?ceh4t0D$JslltM-;_lJImYBBJjrbXY9`+Z zh?=?5w`#l>ALCt}Fb|SVn`???;b8aal0(*EK}iAxB?J0(hQ`y9EhDJ06VV5C##yVy z@`Oo4#htl&{SISN8YhO)Uq-_T0ckdf)$|oII5Lyoz zvMAL+{tYmX!((^zGdWoa%ov@}DW!WBHXIUcGHVNhmj|N8a`gQBO?dr-b$af}FJ$Q< zhki;2Bgl++0M_iJ_R8|vKsrOu%onf{)ibKm(Oq_xrSQZaU}f8Os(|lUkBsd4i9Dq( z99?|oRSG8T{5iErbNc)MN6XeH%+1;d!kff#<5lax-znj$@anc}^@8cl{vqc5H>dai z6bz035?%UcFWC*$&gKa2kIynOQ@pUh%hdfmJkV#6oeSp$%4eWmH04_Y6Hs`F+H%10 zGfSeO|3bYGK^I3Gg;Hg~z@&)80>uBAoTMv+@Y9e9w;I%>ZY<<-`6$zy- zR!wPA&Rn=xvICp^LbJET36&EzE>;3bMfRTAYVp~way=WwH!QA7@@5_EvCt$@)$cx( zsq4@TvG5}@_F{t_sl&g=aP!e6-#Q9vLx#A0WYI*9|iXpxIST{*6vE|NH`ULY>%9GC8) zdL3?4FvugEv_r=piIiLYc-X3ceET`!=;7Pn$nURmsfYkzK%c*R)t4j}0PtQBnUHR= zy(PEl5tSR|;;ah$#YJ-1R1k(~$+93%`>Kij>4`)^vJAY3WEmO|ofHypv$XP;Op^$g8@P^4vaE5sHmV~R+0K6yl3&P#mDDrk~jFA=< zf&#G9f~Z4f+B2q7&7Wnm2R!bY7GU+BChP zdGb8buIr`O?qS~lGg8^fwLMoy_peYzPaBQ6-(`zytAoR4m0u6=o=xa0XTQo(jh=T$ z0?Pu6*fuq&>ws0K(M7XE6^ZOkw4JSh03Kh?*=>gc$rb$4H7*V!Um*Krqg{C8R(zgx zM3lRVjtGf$yO&0Qxg%`=iDRK-G2~NaTi8>t`*p+(a<3-jv0xrp{s7R7MKEt{J)u8l zqs<;IAsCzn04r@FZR95_7sUCqRuQTot?j#>`14f@R^ms`1R6tN)Fzns@Sqfd5*+OF z>H{Pv@)|XsVBd6cgs3r1KIg~q?Qa;?KCAhG20d~m!uP;~H&hS$HjC9l^$g(6sh8wm z{8VSFKHg}(oN!1NIUP8N-|T|m2@HNg#;3KN$Q8}LpC7ubhFlj9Rrb!4lCtDO*c zo$AZ8>cLx#CG>9ID(v>fK?ohvSVI3{c6yM;s^n}rRjOUGaVV#Wk5ufEUEU?~O<P;X6RgGV zX;*LW_y7Vt+faJSFkJWq;584HSj)Y{00T1eH=hCS95c2GGyu=T(6ew|b{laa0L+re z)9LCGfnXtP+T8H zHdJekxfKS!@r4?m4`2b{tYb68aR#D`V2pDGS&YFYof}|%r;-k*bk&@dvIuHYCz}sm zJAEMg)Z(+`BU&jaMHUQox?fx>^h@is6#oah!75a4mkb*%m4ABs^!-1+{zgtQWE0?y zlc&qk2|R5br2Z5q$RS9~OzuL~!Z;a62$!#;9MK2jEUUppopfwPR^GDU4^YfFY75s0w$*Zu@+)BFD?y#DfZCvsw6K`*P5O?fhy zzadIR-d|dZT)G6DMwj{nM%XUrGX*-9j18XfkQy@0pu6Slt2{JQKf*8+(=KhdE=5cs zS9I^c_~r)yxcuz(U%&Zb{?7lvTKpexAD?99o7xMgFx2lkROG5Gkq-LwQ(@?ilBI#k zA?1~`BnS9GuyN6cXUX(${gTv0OWo0p_cEa`G^6`035hWue}PK;UQ<^45(>^cBXxu(rYtG8F91=AKChOgwdZ+37b!G_?YwfZfq~_EAx#bmCY#ov z3unlItU*W=Xvsap=&Hvv&~A=hGFc z30I@K%0-$-F*?NezPU(dHBBl8>K!ClQ|Mfw)l|5ZLUE9|F{C3r_$$a9+9%56LFS}k zUEQU@nuA%kSN&_%ppPitpH^MKmh7yQN zYW?~3_aX0P+sgOq-~k17Ckzu2upn?ETi}Kl04;b>-*m|AUZW%jnf3@x0!aoeHEUoT zbhfjpN9G=SX5O7;VQs=alX?#ZX=nqX0-0{PF->fnRv#;E@01x?bw18}3~ z35Y2rcr`A=nlRI>+yZom8kr^Wdt=qBvY{l8DCV^oKp7#XKXk}?7-T^3INT{)>Yf7) zu&d7JtaaXN3tpa1OFdfCS1_mJb(T|QL7`=PZq<;&lR{OeWlzIgXSLV4R#Ns!LB?bO z!ZRuveN>F@2@^qdkfnR;3&CrtUf}sBxwy8=7jH6+Ak=Y;t)!7?>lnl?g}27zJ;}F( z;FF4o1@&ZW$x5he8c|Ccz$_rhA79Ev4Q%0T==IU%h35~3Mmz=LRC0p|D9~eME@c?} zZ+?((AU3Y;k?xKP-p&eQ2hpcgB@I#`UDZo%o$cg}Q&E?LKzmIMAXy^dp33Gm`hRjS z>L<9N!FJD*H8e%$nF6$EnSH&;_QVX)lW{6{sa&;1%pZZ~d&f)o{nt==TCWc@ zVlPt4p|t@XhzS-t&ndXy6N=uK-X&1LJWV^h4n90mE0z(BL|1*qjM4!h8)^%QW7H*Y zIN^|^ECM+o#mYI{4Zgq5oWB%~11ei*oB_33kvVjS4+8O7QXVGR*rO~AV>g1Ha0dH= z8O08I)&b0jb(>Cw81()Nh}C=zCgW_m5)>~Wcp=ZHA_ltjn%Z~<`Y^hWFFa&kcxSvZ zv+5-Bq#!S=H&yrL9!>Z`6#-qa${?!1Dbt1etJfd#BfTSkR5tFf-ag{Tz)vhpQL_=+ zan%d*ZZ}1c_Q9FdUU&x<-eEaxA&9!_I?N?1FdWS(M)*-*yDGA1 zTc-j($CAZ=1gb*J-{ih4tDYG`BODRme_+AS|jb9Aonw%4hLI^ zy5E|F^PkAB_n$y=Q2P{eCT(a{=6&AP+dIy=23)IUgV#hoSK0atnKwXyQ5)pkJJ=D5 zo-04agPqg^OG>21rQ$#L1pk9Xe^bFD3xE1N0UZNvZtMvhnW_=3z1at~@j>0QZbuXD zflEs_j}DFEAqrs>=p0B7vgWJfK^s(}3hdp3&4qv%pf8@BH!2e{#pEEdhZ9jRe8!Mn z=MWxM9U37Jwwhvhfb{%2yndDiLDesH>j6wB-w2!~DS0u7y)cYuTNS9xRdIn!sb@fl zfE?U2s-8(c#_^~R3|f_i3hcANygKThyuUh(M6iHXL#jx0=)hXrdY7NJ9g!gTH11N= zg0qm@G-{FJt-AyYl||z#&{yaMKLH)SxCUbb2Phin){3;~c3fH7v}Puj_<=FUoc$8) z#$!UWo|K0=%Xa7p?p;s~48&|lu=7m05}m28GqF|498ggaK*U)xW;Y+EBX57?$MEfM z=)bx_DStVsL$=%>ygwDlZ&|kED|;j=+H0-7c+_`!RdFraP`b zJPbZ8?+F?ir0ChLg8(t{=F~4s?DjlA;A4Rt@(btKfM?jbU91GEGnP@uF~f`X4c95g zVhcOTk;4HAQWqbz^wYT?wxvjkWZg^pz(O~eww;*1R#IreIMy=nibw}3ZN3bzzeVqL zWIZud4rP)J5=S4$Jk|r?O^!DRgys`X9hPNBWTol64BEgMXi?E!8IXU1fc(Yj#=+Pw z&#ua+&31T^ONHt--%ya`dQj)xHy&ESwy|p0I^%CNfXvTHEy=j`dpZ|rT?Vk_H@c51 zF+}ZHWR0OhYenv)Bo($B!n3)TV+veAxK>OS@q~@cR-gx^$i%lQPEOG!$}bY<>{@ML z?hzerc`F2>p*Tyck3oUYlfa&ReNU(}x2hvowTFH>G~Le@$FxiBZ}qIs4m5$eWJW{p z2r(SaO`!0=yvad*lqs8~x=S9V98F=g)M6yH* zMgsoaXE|(k%LxQSkJs6^XoNs{6NiR9993FI-$&;{6#GCvVee5LGu#hOp{!JHm}Sp- zClgRE-t)~281r-?1`%hkf1xt-bvOe>D2zM4(aM+g8^F}9GNSpwi994^y8(G4) z3gJVmsn;2w9p)G+$e?k7& zFCIRnx~r%OJo%*Luxf9GhUYjdM{-l;e_7DmWv~Y?F+gqa(6LF26xSA$`pInIdcLOm z0;ngO1&tS{Ap%&TbE^eVFe(ZH9EF;(2-V(EY3-gDNOjifK{}H9?zN)oWLd%ks_W>W z#@+??BnY8x2r05^g*)%8-2*l(hH$efZ3TZF0_EiiS@gjTw}((6w#j<&QEhy;N3{|M zeDw-3LfbhoI6Q2dyUl@aS#z%H&Gl%Dv|ezB^4zaE)84XY-9$bJM_MC9a^s91j;%D+ zY5w%6M7CZ5elhq}?;_&>B(WhiIp}t*AXWiD4)oV0pM?1ld#{KtD*o>`b>uX(-WC31 zM}KyEDMA0&RFwGj>(}|a(5!m>4lSf|rD^x>zB$PrX)oT<_Xh?W86* zx4wNr1e@K(IYC&Xr%^dQ0r7UWLzjegJERxvq`ERj?jZWkmh7){JeUediE_Pgt!x{? z1G9p%^GmAZxb~ZBzottq&wO>vK?|Y6pfC|u`>I{tT#yUmG?7Ynwb;F-XN6g?PD616 z72W4DPNwMxG9E*>cBz$k z#zcH6rs0UJcdn`@Hj?@!z1tHHl&&~^V6F=-rbzunA9(yyzkHDu_foN$i#A+@CR-gd zby$wYSX5XmPXrW0Mp+SCC~WT(e{?0GVu0kk!trZEZ`LN6V(Prbk#xsVSz`^i-}G|0+X(iRZ5a+^53X1 z#^M#x`nA`}+OvoDg3wClg9J;5K=kXnd!Kdz=sLe7{IR)78Bj7g%?^D@epX0T!fT`M zse@v`yI&cI?BBw-zX4tvit1BNoz&`H4i!v~&{VB-P-Frz3V=STVTdG$jZQc%g8lII zt3X&1mUy!Dt=`T;U)+QY63T@Y6Z%Z9OY1M37bT}T$52I$eT*9*F~T*cXQ*k$$G zp(5szoivpi7TT5lG`xK!hxMa0N|p!^lB^Y-a&TV{n0bx+8uwAziOb}Q8nBgp;H-r9 z7|+d)_7Yb&bngHPVQ7eor1oaE(s`u*Wl2>9;z<-4`}VoSXegOkYiB|LLo#eDuCtdI zhr0A&E=wi8MM-%R-R0yYutteI%4~5j8)`b}mLnyqYCvknhnzhR zRkgKlSsFZ_-Ih4QFVPMal?)jn{%FDMx;#P=L6&ciiD)y7K+9^-DwN}9L}+UmVIp37 zN8lcS=CWeEYL8#VDq6S%CZ3eVZV#@0vV5C9u!WHj2p+2H`Bvx z{nhw9YeMc5tkAZn?|taKDzMN$CGWZ_g}!gCF`t#+S$Sd;i0w|9w`$f$4|;ZldVog*C8GpHlA?cvM~*y zP;4c-P!#0s{1T|W*0NWuAq2#~LmMPHnN=Uo5{>nthB%84hO>3g>yP;{eEShuI@U6SJB%7)^YR0P3K{ zWOP1-DHITx95zGMJCS+aAu}3=JZI#u;5+|S3N`2)Oo88 z8qky425-*dY!=TiGahP?w_+_^_}mi(sFE`7iv-lF$_!bq`A@+_Ss;i?*HWqQ_oV?j z)iV3q>vD&ruM!VR&%OX;8h9p(k$$?OqNZ2S`Z+(*fH6&sDRQ`7afpMseIW?a@5^e&4+ba0}fIS2@%PZDPxuNjGG?v>r`)j?s)VY|0e^i`lp^OH~a z&Tz79hQrw}MX2?7&h{j#=As6Sa!OpxN<~&R>s)~J5E>JsMreC>4xt5*pJ7C~*I}!m z7j(y#qeYJb8DX+3n{a{8%Yo7L0psBXa`5>@A1Xq&ST8~nS<3{Z3|MP|fIw{;R0E_Z zV?b$v)p)Qm`Niv(fuEexGq6HzPs@8s!8HoR5{||h74)dl`vc>qS0}pFv8%# z3oJWpS%S@g$4%@HbpNbcw}>>S3?^N(X=2Y|UyZg$QEh?JtM}*{+-%@5l-Ubp4XOK> zYF1tVuSk3_v~WJ*UduC2v**34b#j#ii`~u{^MrlQGO`%u_%axG7#$XG2M7-^OBhq_ zfDs8jn5Y)}K#(Xp)p}AA$pQ!kXcxT-N4DH)sy4FuFcAhSqe2rFBF3(m@^`7gLDepa zR0y0lgs>99nujZ)2#c!u!&#mQ0;m&CR%Pmd*GpbidH@2n=$5i*#A>3G18}xBL5Nm* zzAz3*>T_MKsdnp;QrIC65qX|ez!Lh}Qrl@8W^_l)an~=fJ&?fF6M4jGHz6F7;JrwG zXpJ9<)M)h{M$^9zCi*xp@OM*Tx4cI|Cc=7J{hVCUNEzJ~Lmd{q8#|-qzMiJbfDukn zRges9I$hzaKy0}V|0Fy|mAQ-tqpDfFR!}kzqR!mdI#O2Ob0F0_OvQMQ`ZI~ zJZ^ObOyD(mSZ;v0{<;vGkHezO&N`z$4S4KWYG6K@u}}vxg4g&K6EWH!0;hsO|| z)hL_k!Hj5eP@}w{gNr zqx$D$^2?LDa~E9g-E(f8)D>b~WhZ}D`*{0V;3t5>W$hfT5ZDddIm(BP%t9QBO z*dm=8#nh#c9K4vFt6)JK7CG0`7%us~NRc3M3KXkyzFyEe=|-gX0kpd?_!dV=DqAvbBxoEZk61%qA5ifeh`W!E7Qj|B^7yTb&9Fk_ybB z&`x60bZl*l;4CX)wQp3d2_MBa{u#ZoDn?JAc9Qe-Kk0;ju8oYGb?F}f4z z0QC%V>=eY@t^hK{3X@H&z_S0OQs(C2hI=h>9NFMgW zPO)U^BULff!?{tPKDASJ{gfVbG6R*W9r9yB7-Xr2n_zX!C$Are*Pr4|{yx0@?zBUx zp!YT}#P^*jDY>Y7gQ9~&03e#4?r`5z9%6uUqDyljhl+q3*tNHn4t#Fx+JMFEHkgWK zw-%{3y7Nnh=|JQfsv;VjylFC}Ipb|C!6pilrH_ z>2lw*0~J}o_N1Ts3)&?dYHp6?&G3FUEs!KQ99$FPEW@b=Q9!kTySv80+W$LJ6WeYi zZO>iETfp8r5WSLzL44*&ooT>+4;-U1O{tMifLy|DG4`ko)kfzB2 z-QXzns>FaID6t8L_uvSTa+ryIDyJe0(U~l7OmMj@W z7-e6oJ2h6)aQ?uwqCbzZ& zCAO{YX2D@RpwOkJIlEHRMbXmGZ-hj&NWtp-xK8kV~x~S_lp5%Q2-hkkxOPG{`5X7XT>Pcz$GB zZhkWwK#!T=iF=*4FZ`*e+4DC-_^l?)sbpCyj~%O~yDmR+LidKGKpuNZMJKeGaap)pnL8HUP;f zL%H{sqD0?)T2qaVE47=eokT{}VyD4Vra!DIwq^?)ayfA-L&4g*_~&r3rFoG@OIM{A z*9?E`JV+j^5uqfXmlMic-YR1A*GvI_Ogu&GIW7};fbF2;&X{ocO;gd@%a*+zy^vi@r7T!eF{1%9{T%#2r%=O zBx*iP1a)KJu#n_midPL3`E{P_^sKSm`XZA0x2JtJ6<2ly%o0|Xq4B0K=?<7*{v34! zn=$=)Q}1dHo!TVXCVZ&Cua#4x_qf=PI&pjeA`_J-w)=2N2XY%vinY%%_$fltZCP~A zrn35H_b_gE7&bk?fzUAx#r^8O>uONDH*|*bOCPJp2ddZ89a-p5nP{O-9I05g>_r?4 zSOA;QLxYc|HYp$B7UF>5?HSP|p9T=tTS-#rq{jXsh*&yVK=(KXt8rFW>?=Mb#$4n-JHL?Eust-Ok4F`temcW# zVl)6(uPI@Pv)7T4va+@Q(L*_}FJ86I$~?1aKdo-&*uc^0yxiQcpG zntP`m0?ijvsJ{Of`SAOEZL+lpm7B}t4>_?x!qp9)pb)J1fs0y!!kvncNkZX5g#)SM zvR5n{(R+arS8_)2Iw~|Xf8GQaOO_=0L8-n89v%s*Q&$f=z~n7tdQu6S1;7{F&=QH2 zcqdO+o*WQYZWOwCX$@?;#co*x*33?tC604{XaW?dR97u3suh5G*me5VcZk5eW5&|*;-1+nO#uSOM0gB3Bgldd2W5l~;8E;k_w88A zeXZ4oM&gQAFIOgf14f>LYIaD!FJo4h6m?c|>!OTn6F^64umJd+O=dgi-egidHJN zjW}Oaw{_@j=S4g$m*3J!K|ZmNybSF^>0gXXa7Qi-X6SXs19Bv(;G6+yWD!THhWi&r zKAyB^^i^x?mrIDLm&d8l2a4#zN7ivyb8FoCjltjbex`@J3MqXXTqz}lj;x5Vz1MB5 z)}Y6Cej})YapLm8E#^7^4j12`8emayN+nYR*jnur=<=|t>njf|Ditq~XW>RpDA!50 zz>La1T>`89!L=}PdB^19Ea84{8vlE!^XU;03f3Orm?5`t2&-x$NQKY3lqDsbEnI5L zu&+)4GJ$#mZ_U*rE$GV|R@K<67W6EyUAxCnqgb;XC5O}Zz8C(&4nj*dkss`X=Uh4{ zrbv2?p0xLu-v8fkKMs_<9A(eK7bL5K;66QbS}nJa-DCg&B{Zs1v}7KcDC$svN>Vlo zI()&8;oINH%Ud}RHYwdQkE1(`itKT#NIs0}?C@1^_MOl)9H!N(#s3Rj!8j6P{9Q|I00EB<{?f<*j?)Y=SPmn z0Bxn)aW+2`DGcxRfhls47X`AG@&|N&TvZ>`j=ih^GM_MhMG(8f^~!)iI@qxw4+miC(T(Bav2kr<;{Wf8K0z%hHs4pqqLGmD3Bfn1q2r2kX+-@a!dT~gvxQK*uLzRsZ}_1AEfG$s;bba!G@c%)Mo zHz23yekq5l?8_F~AldB04|<6tJMm*RJTwZ4k&{n*I3O~ONyCt-M9Q9!6y5bmkUckv zpG)cj6+OG$!L4l3k`Kdf9C4Th9lgmUP441JwJ7W-TNG?u=ub%=gX|Z!Ch+5mezvb9 z2Kwfy+FNSMm(9-&5B0^pFXFW;klW{Np#udBIq8}SkVwQ7XP;yX zDbZ!&?|)WVvFcReZ5(zn_0E3v`p2BAfQI%5LIqwTwYX4i?XV$kc!x*AzF_r<@hpWd ziL8sBH?&zqEgc;48gTn2GG)NUYd=seYc!QeXd@EV2HBeY1Ap^3;cx!NLhrT`y{SOQ ze3P^@Tj1)m_UodFf6C__r7RraqkU;O&i7G?r=3?Ja*(9uv`Uz{JPg&EfeH+<3ok3} zKHIFMs;Z@=qX<{uska9ia!U)98wlvTf~my9@lNZ?6~}JbL=r(0)bvelO64k#YL&+- zFEeC+Do6k?jG zL_(*yESk}%scNOdf_BqaSgcVrX^EHuyW8PXIrDAY2UP%9m9v5EnM~!ac!RDAx3u#T zXQYj!FUZIq(cm_hOzq683P?Fg@~D8(03QxAgktLKn^|NMBnwL%VYf>lfjX63s#CUm z0e5IS)ihc4qXQiP_#bf3?WjQ-;3$YCt!pPy?GHtQ=Y2bCPao}iIs5LpouK9Bnk9kx z8=92kj3OI3^}`g(O1B>7jj)&JeQz{eb!63G9?BysyK`BB3#>ZjV`sDupO^ zj2iVIVQ(vD1w7Y{hv%1fkUp0h?|1J%58wR#>6Q>Og4V9f{)Z9#MBm;o22TFmD!t1{s#W`TF;gf?gswX{F=3=$Wo$9^e9kX4uoP{_F z{iI4`Y#*vf?TRpRyxM%Q-XFz5rbY+0J$>gp-wEIQp5$j+xCWXffD3+1<7#t0mb) zQKx-3Qvm+x?a$#ggS`M`eCA1R4QkVCkpOa4+I4T}%sAUi%Q?wuDD)Iyl+lFU{Ysni zu2CMMp^AZ+oH1}G^Xdspm^VAByC5-({bjEJ&0|^oQXSeHzkK_Y_=F#$#nA>W=}w?K z_G`;Nh3Yt!WjiYPtmvC}8jU8XId>O#6iz-mSY0T0-d|okO_dC+>C19OjW+fqqo~_i ze4bUAosHWluZg`V%V+~qk?@yU6}BdTtK{v8wvIgCa?TFPtXqBBx%t$_~>^4o36 zg1fG=S|Lj#RrL-sjD&|Gaj-&c23Qp5slkYi)7vgF(6muG&WBEU^S~^g+(>%ny#En2 z3N&C>wQTU{$W(1{LDpw#RP3z?jMdl$9H3!jtri|OTfu@b0a{xk5KjP_)sd~eI+xS< zp0tQrm26TAM1kcrZRw>{HM9j<3F~MoNOEn!pRk>k zjdtzY@OQl`AXJ@tk#cKA6xPud8*2JgRcbi*{v$xTvhuX-A8mML$%O}_C>1In+XYnq1Q)^OT^)`@=A#_3cjM#Vw_E@z&Lg9d5tLFj)x?^Wn&(GnR`t2EkDu*yJWCLy6 zqiWX`J`{3ocO^TjyWRSwWVQRIRyg@@wiM#oO~EljB6fRLF$_!eC)q(Y>ke6X_p8)Y z5*$ZOt?XsX}Sv`!@6&~s5~xiSyB4;l_s^%FT<+=Jo-7h;_)qa;u{}g zG$$m}rLufs427dD4jnl21RelQ0_)YaOs4gY<`Y817mCW5qMVOVXV^J!-eqrlHiZpr zv)pXtb*Ub_sQ?mkG%3~obxIy9Z=k(Z76$fkVfqC=I2%QPhj8CsqZ&1%nYu+QkuDJm zm!SOZoEw}|rHX}4`;Yc3nv1;U)n|8g`T$MyJN7bvXFbdf9z#+L98H>5xe9q4L?!h) zY~s;+)s9GYXPzVnV%zc@YBBkVgFNIjF9v8Ol$_jVO+F4(uZ|7>3n+;=pVv+29fV>k z3hwk2HI=rb4gMsHWJ()nur+v;tQ9y!$Ywg-1D&ZB3;{OA^vR{+G0xN^kmDB8v>78s z&@_xxUC&QBUiV~hTi7737haEoIS=oKq0-<;OtWP=gJ!TEq z9ZUdi?;55AstCZ90C*|y1uU}S9NE8st#2pC`=7!h>t7)>v9T4`uPXUM)A!OM0X@r4 zR;lDDX_C@4wy<^^DpxE|g+i_FKz5r)_1@grjr>LUph5lu^v1)&Xk+dRurx6vYs?kV z6j)+K_N|;@u`g1Odjlc1%~8oXzp4-PGS5p?TD%Ddp~7|j%k!WdoMwRf$Spl2A3Tau z(`Ph~rPgw>vLbg39jSa0^30xh#A1cI61J`vbn3DdcIkKOuBdbq4kL_1$|ee`XuB<1o{S>MQ9<(-3K1{ zUT9bV0MYSIf}Kjx4jb#OhG|YMQFC<1Xa6p`6{eynpA+PHBl=jLDHt^<)SsR zsHU?d^J!eQvor)7sB5%ImFmc<70kwCoQ7I}!%=O=Gvw;TIXaIR~0 z2UOV-^#y!(`;Gfh&Kg;McLn{sWLCR`Cscp6&;4tS2lh;EN-^3)V^wa1qS6}Or5+%% zyyRd{aZ1R}7XCD#Q_m7+SGtNI!1pc&@Pb3v5T}464D6#q&2VwIT|_K)@KrzS_4im6 z8Rwc`CplJr09PH}H1Owg5mfc5x};80Mb-RqU!t~RpYItxyB=}XSt_#%T-)0Nm-{3K z7J>Dl9!|>U!~hLJGo7{PbuH5Fn0iFzqR9F~4+?h4Npd)lP)LT803czVxZ9=9uFOur zkQY_6nu8C#F{7~U(##cm&cdE6=tJuXrea_PTlj!Y)x$Fi*T?!UN_s2m(ekaPC)zjK z;nLwGnNk6%b;w|c;>T#=8d?c^wic8F%f}FsD^(SR(_i-RlB4GIK=Cb!?aH zkb%p1g)NWj5dcB3-O+R;t_35$Nre{c#H0C0UKv4bsfH%YHrtt{^JDgWC1E4yvgHm1E1w0RfxF*VMW#HyK*dF&sMblb=N%3Vct+0Zy`?5c zCIwSUly2(KQrh!RuX#jq>(?FImGf3myU|-&Rcz5xp*GwNis?GG9UEFoF0|!DL z*a?%~NJc5ZwV+X>Q?C+9F4tnbvpoZ+^_j{CT;vT9OTuW^W*KhKqom7cAH z?|g^jHmFv!1H6J?{UZt9+p5YQ9jt0>$vhV2h)RYvW#{KdsUq)TeB}AW3N-YGY%)JuOUsS@NI5OXXV#umB3GXtJJf<0G_m{JQk+Ib2Cf3^PP)fgs=Z?J7He@3eKZ z0<4Zy8aK7ummQBVGH>hBI(wYKxW5SAwZ&A>lsdkqWXIR1XGr+Gt4Z(=So8pQJ8370sq!G})u}*0k`a&lLv35ee=(*;g`nma$g0lp@ z#H49~X5#V`KU2SD%8SVDy#+4>*Fc@822wVsIu|_~)d^{V1J{|;mIpf$_b`Yxb$r>! z+G@Gj?|hQYbnS^oU6B}g$Md3gr0iX*C_D`uXufk#p#CXS=z_a*#vGN7_iFT{&b=-h z1;w9>A_s5YB|vNXaZ*pXe2w5)!OU!u+M{|RbO0#Fm4?b7aL~M`(=?h^)jg^skf`7a zjkA|Y4~k|kZYWGeGCWjO%(|bSzWo_2>W^Q)lKrCIb(VypqLqw63SO$~sc##4chM46 zNmFc8sIpqjud&NX&}@T48BkNhw7sZ~Qg|azL*(fJe(i_YH6lVziRim@)jE=y8^E?DvQtMI?u;k>cs30n}jOFyvaeTp2Y^{wsI|x-k9kQz3d;U4OI=kk^%H1L z;MDhCrZr2C{NKrD5^)+$gczCLfA;#>+mB(L{rYn(h2OvZ{{3ff zUmA7tPKoq&40KLklt){{DP>7F+M*%`dqm6U0lAS~V(g;g56p$1AW0cP@9r^L$vzMU z>(M2@sFvWUCflAt*PG72Ol9)Z{|R7I|Je(edKQ51kd|CQ3fhwPH`Y6P^RdEyOn_;j zny@#d)C?f>JBOZ7_8U^~EW%|&sftN386K%)k zQ)o@u7?iH1r@a2O?nMLyB>ViRo&iAv-1L^zG8hReoFd$^RHfDWs9`rJ7jaj)ETRb; zYfNkUWt>cH_g;NaG=*J-po{H&hw&2ovmIiIqy(q-8cYPinr20dS)%j=@CCNSPN?dw zY5<9o00a>|*cy0aM4r^s4yrX9B|Us);EC5rG7qv=Ua4~CV=&Gpd{x+wa@K;*Nbbr4 z$^aN&oOZzf$4b=hL38`6s8pSo9tyFWBc(3#s@iVEK-DUmx^fAz4T4npfupx3zklIu z3x*$VmM%$N{_eXyLQw83>7}(^c2#%=;OqqhdnN9Mn9am{J9pAu)uRc181}L#BiG$hc`G?N4iGOE}# zgj<*!wg40Yq$NSy>jHW<8mb%W|8pYh-wJfg=c1Z1_)!d~J5i@OrKBhA2=224J5+Em zwyXvmh~y_MMRX-Xw#NGs(4DUR-ggxY8Y*}3c$Q*l@XDcu(Rj=fLb3b6eFIeITK3nY z4wG4$59kuvT9|euuokT`1j=j-yMi53yK+2Q&sL7%eM9T^f*foi!m@{KKA$*qr+VR` zD#!X1drhFEWP=M_Lqk}VmsiK)LgI%l+&+8@{43u)S4h1aX{vdIOGL&23{(qIkOpCL zhOSWYPEl?%7bhOrS@P?d#vRxy=pb>yZnA`6%W7Xt4#yw8=kaxiVo^n_uU>i4pnjID@009>uH^^;gfg_bVqKijO0~>-JNsm(PkP2{dewg+-ByKf~7)Wt- zB31FrKo`yT|MK=n>O?;8rJ&<#lFRML6D( z>NcuHV}7ZqkFIHasta0-Etw~@1Sd4Wdv86}ioq_u0_+#4Rm__Yv{A*HK%5`8nEvKM zE|c=zed9?D3-S$KG>1iZ8ptOpbQ`7SH-cww#_htF7npsZA+bDyI-~)`+6VD-6{%7qjgEzm!#ge zf|O_q8UgZ>k|Us1cd9ii`CtlKlj#*$biOHiN@@KJWc zCF#nWw@pCvS@DBbq~gpuzFsQ1?cN2$pw#Y#I#ii@8)!D}a0Spp z?MA-IQA88OilBU)Ej76tkWD!k2kpW!r4tHrrRdtzlw1kI5er6LigYJk8kOwn!M4Dv zLozr#V5c)()M8#$n-3?%Z^CP?!{2}M`iJoP+Z^?FXD^$qmF+pKCRV1sg14;}hIvQ+ zB&s9wGN~yONN41>4}mi%2G?uvw34fw4GM|o`uV`m189S_M)cd#S&sU1QDy^n@Urks zX)gPf3Qw8#CUqBEI@OTXYBp{Rpm~s2rtx%_Fl^#eS7!Tn!hT@^Kor-8O}g>?I0&go z_yLN9Z#ONyy!C3(@~Ucl014%16Eus%tP%hydJY7mP#u7PoyX{^QCYh7fS;HFJb;3| z+X`Ybi7hopP##f9wP>n1zv66>(Uy~%&S>`#6KW~QfXG%bKa#Fq{n%9oepNr6EZoDA z@QRrxaxI(F;yCx;3^7jG$d}%A-XN=K1%BTFJ9D4ZsN5O7XB2%d`Nig4M&n7TO!ygM ztfOg|8p>mxUNWKLAeOIV#$qXk)(s87|lwiTwLI(O3yI2W!}jv@D!Ir3%_=QLMS=je1+pA)`~ z%IjIk4VprO0WvXJM8lF5sy5dbEfW&7;#);Af$!4oakI{ZJcFG9)W%r9|4{vCb2U8l z8oa?#@2a(we+m4+Fjra7}!f>W|IBOf=1;%6mjgfy1Oz-U592m{huL|^YM3b+QFzlsc%R2Y7Qvb(Fof7+^* zE$&s7t$5}R7%p9-Vgi9mfmGbsyPDurrPP!injEB2>-FH zx?hCXKcmK%e}0Z1ge)w2qkVu9aml1+m)(GH>&)X3>Y`Db z9EL+0YZ#TuB3|g2^+#)U@2*LDRrZJkdpS?Fzvlh#&eP8TNkF#06*XhAGt)F~jD7Za z0oy9=1BBv9=zv@ak0oV!LEy_OP{;>Szz+IR&`EIgC9o4V{2mTM<#jHR^G`|Y=7w-n zU+Ho`yIY(@pa-yG>*)isx%?X%{YG$TEeK&q1KY+;NupSj*GUl=j9D1ZBw(RhG9J<9 zkVM8=RU`A;C9wEkytRb(&PvrQIF1b`748ixK5a*17>!r31_!)=Zl#nX!%%g*l3?w! z7aLl|=W`m4pi37KzGpAo{M&YDyVTS!hZglBkFU9c*blsCUI$TK2IB3?3Uj#(EPjFlP#YcAO?Gel@S2MY8-4FfQ1a=#i3fWtwfuB>6| zd;j6|5-jIK4c0o8LJBp9SVP;vbnmb~rZQ3oDi|l!1D+@ykZy9cn|LYKOuqkDv>nj= zMOpzoo3_voJ#aLFjRDj~Y#%k3v)k9p@;1=kIS||+l`j#|I(Z>xW-ShgY79gRzk2Y+ zKVZ~C0*KV(hIfNN4C4m2qz$-v3Y>k$EBojyn@KA2z~&YP27MW;SL(dr#AQfC{r2?! zA74Lv|Bt~iNb5EbV6=|v^qB_lZc2eChg2aNp(~PyoV$Z@&u$GjK$h5Tz6o#az`2nd z$#K=cynP7~x%=#zCJKX9+>Bx zRb>>G#CLZngNmt6AMs8H_YSGpRDs;PoS(9En5`muaT#ZgrPEVrW}U{yBQ*?jwUXe~ zvP8~)=dwy~l^6T(!`sgtH=kd1MkjWwntiBBU-@c9@U;*fE=do{iU`brbKVy2gu@v| zB$Alf0&XfW6${`}?qe-)eTG7+JK$jmcHt0P;UX3Q;4BPS^w5t5JbZ^-MmFb>oTYcX zlY)tDReQc6VHa+mAbXX3j=@8IToNUUo^4LHQfJ~gHLgJ*8^i8ty2Me-JC(@Q@4bZT z8IVUkO1VZ9ALMGEU?;=n*YQ*mTBoA}9#c+dS2;|m{z65m#fpYLF>0mo+y{8Ruz&*G>8M=$vd##Kn25hz#kf(2rvv;o8~ zbpKox1oS?7GAN2UTpsP>Ax=&xPlPp=Y^N1?={R{6w4ej%i)M?Z`G*mVqbscQ7iZ1v z{Ny&X>rNLDcs%u@hm!=zlGA|`d{Dmm&D+n(D)~5n_a9z=2ffzc%m2Ryw%)`-E>Q8k zR173{wIw&%wO-z&#G#8*j)H;rvuuVPLq0TVm^E^a^ULzpufp4J^81$piFJLx`x?>R zEDJ62EmDXJEEynZ9Sx71&&Ggg?2VG#YNQ$uCHFNm*)AF5mM<6>)j6JYj%*_i^`UO* zcam1lCuLo1==2P#^5_U?Xi3Yxf5HnI&u7-?zGGzu+c>i!xJnyYnnq45#U zZ=_2gkg7)gDHE62gUZ7QgxRg4&L%KO?xnF#IGa~u?WK^yz`>w1i^@R4Rqw$IoM4vP zln!W`GEaaBA?%;qbW*QXr~pna6!#=i-0CPb1rHPi@cV$%1t;xMSdOLvUJsMvUkcEU&|84n3S_MjD`0a7Z=vb zO&TyQM{0}7I|O=u88Ud-hJkXrl&-+0IemVMP_5On)k)$uShwhgcwc*^mJ$xwYo9=!Atux?t@&Q{e0^$W=mICwK zrfDzD*hcXncEBwVcPuW7N}{3R$B*AWdHWKgbgw@O`r%^)LBayJeN<%=Vyd=7nsKS# z?ZKguig`>vO2IMW#~h5pvA4~aBzLCbsX5osb$Yl?7~UpNjS2#xb2^ksKYjgIN{Iea z(vh>QhFHofiA83EnQlQ1`0`hMcp4*6;di9V7y)wjtB3O%vv!fB*c-b8WAL(Sf=AM} z(}xe{@CLVATXb@DCIlD42E4K^aYHQLSpn^RgmL()O@=tE1Xf_w;fYX%!2^IKeb^yn zfg2`U&g{5WKJL~4dTNXkv0d87x09&1&+^i8IP505P_4Y_k*FXf9(LNs`M|ca!|IzK zD9gedyLY;Rf)&bdqN(jND3$VP?AJq~p+}I-cK~1wmcm!IkRa0z@|4R}Xez)C11z+* z3UIsAEkW&~GdlMw*Gl6cNs<8u^nfw$KoHumpF(n_S64%=G-{QkQTgdbfw3?-|hw-8dov4$kG-EE}YzF3ItA z^I~1)ta~LE^I5`9?R55**tyEisPS1ANJF_JQ%bi|f%4i?iHApJ3m({IiViO|3X7LA z_fZ5hn{J9>3{aUa;_wwRE_ml9Op%!_4V43#E2_AkD>r(4vYlq!dRtj(dW_!7lLSx; zn@fKKOwZaHn2lPEJ;NvFc9i*RZBp>mkE4|F@+TUA#eC%q*F9Ak@wX=#oHJpeN{Jbc zu@N8*JfckRIp=Sez|pa!!f1Q4IF!VFKdB4XU^!`>kq-HH{ng+7UHH4dD*O0f>0qh2 zr5ypRSa+^jRGZBW@IvKQE_7?}-K0$}OJ@r?%HDK1lI}i>KSy;waCJ}EvoD+pLmxt3 zT<&ZBdcW5DsxYoV>*>9g>~||5*7dS)1*tHjPaZc%GYx*lX+Yj*k3|Ys$eZ^hxn_|b zv_A5$c~tk{=>B`JE&Y6fFnyAT56fN~?J1IoJr6~a=m-FujZMyG^T|tU7paaw+Yzt~n zE!+ImyqR@^I1{1XQVVGHnhsj{%4~l7Jr_JMAX%{*(=tgzoWZT;jBNvBZZrmc6Cu7? zJA8K`1So+4Q`lC(;b;x8&K1z{73&fynl|g!d9V^v~Fm8C48HnvEJuuRgnB%#l zL@t+G0WXt9xi)W-h6CjwpI0F@s|4zu&6+h+2-Pm^#R zj!Z;);T-f7nuF0e_Jj}K3gj1M+^J{N%z4L>kSWc$4|+n zbl{1zLX*vZz>uLvSan>V%k+0rvtW8;;PVJd?l6Fl%Ny?psA}X7{GV@WL*WW|JkjbG z0iFjELO#t(=a``Af(LkyDog!nVYJcsZOdUKSjDz$lKlR zIZg5;ugD1O@C=WK9axgqLfWr2pPd#Mn>;SaU3FM7^|Iw*_f1_jw3PGc(?UEzrX3e3 zq~Zo5NF{{8m5#vkbzf)nyICM(RoN=-TUjM!%BekhUKE1^=ptVq7$lAm8659@@UHP1 zv-1-BE%PAx-){AfF`ZlzP1mR5gAd+-5=Iir;Dxv-fM_CkKvBbntK2l612-2KR!SV@ z2vC;5k`6K>t6-_~60R$PZ9|pHiHdJJ@{@ndfb^2`e6R7Y zB3|xJ=sw`e&MikS1Q8$WLBLD0SyyPLbS|yd(qpm0$Sm9sG5ZeYic|hD56`_1HTz9H z2ZjnA^f9nnoTz#xY>#>eB!M?2K}G9_Ts|CZA5hK_Lf@tx-QT*hv2t!D$aZC`QqBU+ z&8>$Z|G9PT?!Y5Sif|&l*nt7YBa?}>I>+sCsG#9wdm1ELmOQ{ts9v6#!3DLSwb-Bp z$ghPCndpe;2M;{g>nFkFM60WvM7I0{d_Sxag@tBENSHTi6a~sl8n0(TDFTOuwIHN&Sg4XAv9-e z{wi6dwume}e}bfdAE0eK@T$;LhEkC>842FXRhI=WkcQ>RL#w%A9;)i07_8UHB(i=U z-fS)wy$`e3QkJrlyT;+BDPndMP3}At8FJ3yZg3PA^ZkDKi*K8qu+R4A9D06w`oHuq zUagAMQ3n}LnUAx07K4uYIqrdj#&ZSVY?~@I4~!)21}x~^E3+y+j_8vDsiO_oQ&?T2 z!K@l9CssFf^ICV+pmpzFc+K;Hj8My|Q%ifnE3$=vkA5+d1nhh^N{@!T6f27VZoT5% z)ra5~7{miwbgOdyCDj?#8JTPh9FR$t%%FGQyc1wqK<>|kJSeKjptr*JvFLS3#d|%y z|5c z_cU0|_nq&A|CG-TZUfi_66*Mgh}#QYtkedt~5G^#o?6$ zu;fgOi6Uj(zf$O~Z0z;LIB;=&<|TRS9jHlz)$RwU9dvxm;{$y=c2Q(?8W|3ND@jnu zafKJA6?$O0Y|j22Wlbx3w`Z@is#ln3u&y-hFev>fktR57h(F~7jZ%-6bEzY4REL&Zc0b;@2 z4`|+yw+q-?OZb%B+MDcnWRf<9kiR}c$BQ@2*I?uZC!i&K)k|jV-qpj=01AlJr9xqV zRCC^Kq?6X{AG^C@ab5B4NIn;?Wm(%3lkg?Y|D7)B z;5U825n}bjJ#1>%rej)Kx>S$s$|qNjJ#6Pj4c9|tqT0)2#ND7sV6DCN9Ojk}H{$|< zd%YjK|M7;9S>iiJbX&RC_1=W0$AGzU$vRC*3^6tAY=faEwHE&OC}q|O9v&=8)V3Hx zQg(6$;D1l|%^o$Rwc@6|Oy?v`EeQJ9oK&`HF@5=2IbZqn zA^5EGA?XXq$#xVzIA&I@QJi|6jXtmE@JMuy$%uK)PXYO3uHE`s2s z0jbv0P3Drk2ybw{8u>*c!i!3ma}Ft4e6&j8?s9!NWz50DzpgJPMW?MzYmcGP=vqG$ z&?JP6kNjP|HUO3~iKJ^qs|95KopOU+F?y9>!$Wsbv|#JcHrp22rrkr5^T+PTRwx>3 zJvkzY32wX_ds$_d0woj)Gc7NGa*YUKn?YU4#uq$wEdvz>VW~U_Zhy6jw z%-Tr`9MbdwVh&JBDpHw5;vX8~DW@L=5u=o#AafSk# zO{y~y6fJh*exJj>O2P?xTIF0Csbmxm+i#o8g=Ipt_XD$$5k`mPRLVZG9Il(#)Wnha zq7!6WfM?mn4eEE8`(U_|%Sbq`^==ENjk!ufffRHPu09Z(nX9jw$arhY)%?eeX{6@& zRm06T$r{><9_$6Uv`7#wWLI`KSZcDWseYdA2?o?p*4vf`?dZ+afCSmlr+8l+Yk*4A zE)Vihk>Ix7TUC#72GEl`V~MwHKQg1(wFSNhi=-U}QfEjJb_4uAw$}yk^lCe<+;E7VK0v zp3^les%Dx^K==Sm=d0$0o1DK=5I2NmK$7ojkrK3H+Sq_q11A&=et6Hr-OeW%Tr5zJ znJ5w)?g@laB+XhqaFsXi9HvQUpeDSE>}Z?X-u({)kisEJR+O6w`K?8`kgjMF8IBAl z2w^_Wdqk2a>vMqmSB@$X*}*B>Vbg#kIrkL?3E=5L3_LAf!C>&d@oYPT@7+m-IF2fMXp#@!?4@LsY6`33Xns{KBW!-B!U}3~ z1#O?%VfTg(KM)LFKXJV=B**)N_9^nI()xhMs`{jvRvdzQoK(D&#o`by)`;3M%buY8 zyTGn9&X-`=WXUc{@YmuK0~W1B=$NP!oQ6Ep;p#4_`y^!?D3yLqGjsDbRkOEs6?|et zZQ#J*%CWRpU5P z6Gi3F*0s2$AX}EhGdNTu^v{w=HW>LvZUJ;gOoaKPx36Bm3i(6+Grvc7{+gu%Eoy&b zo>+BhXf-kD;4r}HjpRUQ%UTw7C~oDI2nf9OXqH9NH8R?TUZm?qHCHTjNm}Q!XG_#! z9pON_k#kc`X;)JG5HSVfnPaShFOmTA%@1v1XepmFNQmo6GNk>JPAelTY0|t8W!OGR z2KWN0ExW7{HNi>oZk99p#05&-JwMA&RLz!($`LxRSk6)=0Lx}cXs>4VowBDb)YNv^ zNg$+~nZ(O?dtx`vG7%KJ%=O=Y^v&N>f(*@6NwGE+K)*Bh2xpF}eQ-4*{Yggs=m7L( z2GvOZ+qh&tlT=AX7A#VAX!dbch1$}Z_aG=fVor?TzJPQoSe5Wp0~_VuudSu-1hK^n06c1(a`tK`?nYB#(mNX}C_e9<#yo~=1!?=!6Pq7!Ub&?~XU z`4rrzPqLoCGGa=N@lxxEBM@(w$&HDI-ip?$_p#HV@3NxHd1h_4N<8R2zMidNj?k5* zx~#gMy!u6OT4)rYcEA)BUI5CgP~e-eL)OF8;d_CzU=&iRqt8{MHHzp7%?vW#U4TjF z=^T~EMNPJ1tH!$MH9NeKsc*Ft3cp?>p(S!>YKFvEs*bS^&8c5ygUc2>U4rWyK{m;u zc}YU=nJqMpnUsu233A0daUUDZLuDZW1vIXpmfhG84iL7;&mhBxA*eA$W?{GW9zIgk|+t1&B{`T41 zM?t>$myD$N90p;ktOVRMlPFDmC-h(w_-yF8T6qWLv3&p_3lJqVAw3C3ni6t&lQxjgqBr zTaP-he*zhW$Yv#r2M+F@?X#=G{9W;&_ib-vg|BFU`MJFwJm4&ehguR4#1-TdH*VZ; zb$9HkLbn4z{xUyZUC=ET>!COZNujBnB|e+* zWM+~P88=&_NwY;3IGS=UQnsAYQqTeqAi!NsSi0(kGv#W>VAE0*unIo#*n0i=^-C`& z4$|HqAMJ8+qSSTKzLO*=aS8(UG+F#(bB)2ZCm-$$;&zA5^}+sNcS9Zl$5kl!&|0iq zrB0Fx2r?GE7Nk9~qcX(ot zCqBoGrnM})o+@2v2N}~C%jqwf%$_wZCt`pV7@V@6V5GrF@3JbHoyCC1b zMaHr_qgsXbl^hN@sulixgIYJ*Gu&h_$^oEvf@shH5{l&d(5Hs71f!sd_Iyh9o=^EP zzc+<)XsI>#ksY`7u4FfRsvBbnX87Rj(8n#@o0H079JzF|sBT8Cc8!jvk~HJt#HM=D z0iZ%_KQJi%>_aIrG{+3olTRo+3u+{~#!A#<=G3cdAa4wZ{(yC&fpc*Mk*NY+Q5G(F z#ML0F1`Ri54b;1OGFP}U)DBYfa%M?O^=*?@*-SlUVHPcsA%f4DN{>lLSJR-r2Lg^g zuO{1x7`B<^5~{D?(Um1V{#@s}z0t z#Skyollq~t2!hIE58U&G_QvxJdD+$pl5*dGNoj*@1yje8mprGm)y&(V(V{JRc8pb^ zI^TCtoFw-{YV0SS&ORcz48&7%+CbaGcOC)N!+=&_j?`vUMf;tAP0l zKE)Kd9Oa0U*RRwlAwQQf;(htEr)b5KI89N7fj`*p_1*ZZv~=|4DfL zS`Jh<%K{{{<75`ZpZ#=gIdLk|1&WLw(Li<(F7A0z?d0hc$N5t5V{$C9F)=9v#L@Z95EXc`%s%?s6xwCi zB&#uIKTyj$FmEUR1}f#XK@VZ#+3v*bpc!M{gqS>9!2`g0kD$#?IJ!izd<@zxWNHJM z*V7baTLK$I zB0>zE-Ka|`x3{}aQ@t*f^AF?xE-D6rg2NL!Ud*$kG`pk;NG&hFY(mhW$0ccBbJ-#1 zHJ}53pBM_{Y~28VfD^I<>Tz@()*@z;79zeEzWZHn=Q>L_qzKKzemzhm zXL-kCS*VaeN5&1U)fHJAejO7V74TEFE!#?RGV8%9aTQs7nHE7v$NCqNynHU_%Uu_B zry5{X&>s)3ViGJN9c@7ak?X(_h`XH~z`A+Yf+##iL|DZ>NcgO^A>d;-xuYb+yQbFm z|B?14OV%XUdEov&g+pyEg6bx<*I?9p&?H(6ej_4pOcleu8Mz{XrPwlYNA5s?g{ndo zh@rp&0Tc>mnThx6^Bq6m@%SNO(+!FB-~5Nn7~K6#-;gwmrda}XSL>-2pE1c8Y2r4w zIx#Y{bMV`|ImO&hgDF8zb?%&Q&!JUamkbczbgEKR=ClrdW^(zUM8-j%%DC8P^^0Nc z0*PZ;Qxhj!O-p+?)R_~y7@n>w7o{=2dedq13`+A5sDhtg1MfCY-NQ^l4>>I*3s&rm z{RYG|T{5&79XoZOoT?;+0Ky0xmQuPjg<8&JPqW)26hI%~$cUTzl452VpHEi7K*Cb3 ztS(|p`AEx7e#KvzuKX%JR7^i7f1;9%6~nY!YZsL}m5{S(#I(5{{YX!y>rN@iT8UsO zeWWJ%s=y>nZ>7L39H0O{#lDboytckLup9ETZQ`SR>X3lD_C8&t6bgL)T!F6(lac?m z8|8v>*xnGfV?RTYZaR$|>!hshWdho3CPXFYR)69sw@eG0?z)9$XC2by^-|w$PN)5I zW*NhDNFBk^%>XS^IR_lS40{ys%bmc5C7Q@PHYcRhi0;~H_`R>8vF?=`n@(dE^g(9* zP**uS1E##K$81Ets_He9Q8{8y#=Q~(3XU9XjwQ!gMD5~Kb*L%~ z`RE=Z>6T9yaISKMRvj8l(=q||iVBg-0dAWUH}PZKCpc;hT{XL}?Kc>=GR4vcFl+kxA??vw(7+s5Wlfd^`rteyi&`AQ-jE>WAdw2_CQ zHP^ZN2H49fZY@WEB{qpBylm5|>jKnvMxAnIw#FEPbDt@P48;N6$*4tcoW7gTF=vW) zT*|w!;aPm*5eGuGli%TjWusn5TU}}F5f%2(q&A_Z>osJ*(~$!->7t9CCsIExb#icD z94v0sJc)GA&~L7F@aT1r;`)7T*%nC!j8XvD3hJo_L8q*+Qw-z^?D7;^8$X~{gPyQf z-7xm;w7j{fW%cC=mpNT+;eiUfU7$vI(gTR$32I4>H!oD(iU-_J!~d-xk!n)BShoJ7 zPyxT(8HUiBe9OyI7Qe?=vY)xaK2`|zz>y-60ci(wydTq*)3X9EjNNYi@uI0T@ERhCV8G&_jz)sb@1J7 zZ#{=+IiFP-X&UBfb#BNMhT+gW;$%93slNdnB6J1_FW8n2#1%S4^_)X)>}9V-a@f$` z0d2J~hV03U1;q&eA9&wEPn2C{(qV%nU7+l8Y-sDQG>#^H6L;r}>2?>-)gVPtK+5q_lfaPlE z!RUaso!KZdmavwS0m?$aOW&1ujhLf-f3B9L5nR{uCO|9gx#YzRQE2(hm7j}93(d)m2*Dn;! zih<+zUVmksd_9Ekq-CNNzjN9ND8osGTOLrOt?#Rf+ZL25QHu$wp%)r?GB4b?zA@#e z_@NYZsG`wrcVm z@!1ZF9sVd#T399H1JRaTx317+A2;N=l;ZHZ?9r{u|Lgbf^Vh%+-1JQ(=~rGEIry~O;NTFL@KE$AY1PkF@1&R z#=zqTnjq7TUMXC@ZT74JSFQpHk}1)Pt0F!)flG2Tb}7gpkqqvo@>G2wwM2=Ow=CBp z|ECp$I|c!{AX!$Ev1t`$?$p%JIx}*_8Awes*e;ay1~toaII_7KZOn)3wOAy$cL-2s3e+M zZ)TLF`M8|?1-2+>w(Fx$*-?1dqpDciJzxsmu){OYFx;{4*e!cazs%aD&?cC2X5jRW zwz=mpa(S{4d|0)#6N4o%rO_vhQz?5pZN@najl?SjWyvc8ToGZkpa|0GkWZ3p4|)yH zDh6Q>5U8|kapIcFw^XV)$9=Ge8^Md94Na%nUIF(V^OY^U)%B3v)i4j{$I@ZRfG(0? z^%Vdmv{UZQ+>D30A?h1|$0R8OF6ZpYbBRe?5!H`tc&naPQU(4U@}N(H{O3m(?Hv+V zjcF?zXFE>WCwc-YhccU&B!9!V&%^KkT0x29sC**os#fjjYCit`EI=SWK-Ypq$rb|| zTQ~){QL?oT%e1(5Oideeq+g0F;*cd>FD6`K-(Wf^z7%2-ThKo}q_? zd#7+=7!}5@^xDBz9aMD6nKp^q+Qnu&x2c4J5HGh)P`)@XeLq$A2R!8Q8 zT{id-Wc{dz^v2!WaI8j$RmaLb=uq~Beh!ZZC2bUVm|cSuw49z@I^p~+Ucos`%SMq4 z`3O=jMlJwl2Tyfyd}Vo)H4oB3U868C=H(a5|yt65rFmn`$?GeW>Ft;%9)5slGlt{>F z05xt|5)p{>o~`{A>$|IqbQbKJ1xp7*VySuFd0S)&KOK_)Z4Z)BIyI21FHI}eY3BpZ zYY)+P2^oBNbL<+e8%WK?X=*Vwpjn@>+DxIBFp}Oc3HAXJX8jp z64^IyO{sd#MXgq4>D~|MD{MH?2$%iIS)O4BjsCJ7n8~|f?wy*O6CUZ}$-@HXib>Lw z(w+);zG}5ru}7WMx#dWb1!Pl#WWz}N?=?@jp$0FE}e~}>%{VBC9VK|Kt2uz>JOhTNZJeE+I&Ou3cD>&(<8X$ppbG4HVP>0)8x7#=C^?gZ}RiciV!Y=aPV~ zj`o1p(wN_2uV$`FRB-we=ID-!mSm}xb3DR!hnYU=uwDmdF-zCV7QjA?*&qT=)V;yT z253-ugR+k&)Tr#h!J{Fp7MMv&onN=?B0yD|OdwPX7c-8}C-zUn>-V{Sz5rnB$L~M9 zynX!sP5Axa*x4z$c|R4_Bi}P(98+cWy|70xD)E`a8Z>fz28Q7l$@g`wsg&IX`(kxB zPHTZqP1(sSvy#3TZ*o|}K!mv6hb+d85>}9dju&LM#gU9B_DoWS!RS4B1_>=j*q$@G zfj}ZJ4IELxW0fu7V56T06K{JQegH}4xD*ex6w#6&T}7^!MCu7Oon%$NY^(4p^>If-qNv9)TAq8) z#Hm~*aWcq(#C@w%0OykYye) zqwsRbT00O`Yn>Y9mC>uQ=0#DG>6NJlF)>hze7%x|*M!w*M18EA+?$Ux)-F}P)u&5| zSUA5dcD(?DkwSH`@}PLM6ZBc0UHS+djgTi_ll#`Mvm|{4xIjhCS|Z@WRLBA45rlN^ z@YtE#Q0KX(fo}k)o;algbsAyW_**zO4}bhMs6HF>b@hM9iWctVk&HZ?rU>%DvIA7O zuWs7(I~*rphu6=LJACv0BPYY>FYF!(LWdA9KNTv`XOZb~*2U_Ec`;+}#AZe2b)_&v z3A~;_8g^8DvIkBN)Jxp`MdD`GtK;zT8b)v({U@>G+B7G1N2@NTfsB>?71<3 zHoennE!_9mZ=4ST)`G?rMi%q++=ok_}Oyh4#?w@I!AL zRn%Yy9U7sQY({H6HQ-!9?R;UBhc|@O%xThZZ+*=A_VC0;lS5g+j2%YMshA{<+S*GO z*Tbujnrc$Bp`)H_yWva08aBzIT`=yhc@wxlf92*e#P#tUsH_cT4BXiE%yklR1Y$$fd2OE*1+ z2WF>?K7%ajv_BfPcW{C+v_)($OTOlK)*a(`Y&nwH6{-o^Z&tfk1)~686rYQ(H?>*R z_ICOWxOM00Lhm`2>a$Ix0ijV0@Ms*S+#IZr5$-!lPmMYqkT@`8{r`OZipGg>Q2gfY z@817OvnV*T*n&q=w{ZTHeu`yvuv9VuxfY2~B2rHW1c2!q{{#Kw7ZYaN_I0KGkes~E zFI}NZF>rhUM%Ok;rVzE^KpbeXDZ|t%xi}{BkL33a2o4DmSJ6 z`%Jy$@Kdk%E67P(F`j?-pXCABuLMD+$t)(scZ-Z_^l1A9KF^} zVl;Qji)tyHZAMX}tLm##)e!wTexYIv@BjM0{x|%wKhVsgBIFz~BfyZy*m3Du+ z_!50b`n||%XVvoXz@ic|*~?&cp-;*6AbkSiJBjKIqYI@A<1&?Qiv9M<>%YAIOL+U? z`_Ckwo1rIj&~ZieB+~|qO=|D6(Q@OoK*xMghE6}a!JvW*-3_XMqlBBfm5FLty-<~3 z)!5S;RGZC94P;@4n!SB4N$*#0pF{NHH)!Omw0%zdC&~2@bYV;~OsBl&F!K+NDsw=8 zQAnVi%m-%Cxq+4G-$YJFt#o0xBr!z0{*vjnA4$~fh-E9gsGNItTOuo|1Px^ZuN&CH zog~G-AgfJ^V%GF`t%a(~J=BIKoEO(X0Q&{3U?>7dNLKAc+0`f}AqIT{xl1|>gv<9;iHrmiE|0FvRq)bl^!7aGnW=t;!;b=awqOL4keh@*1rRtkG;GpS=h9w zj%{w06nr6HX249k++AAHeNU50ozWDEVJsWF@as|JgK9#Q5`I zAAZDF|68|&IfXMuGlaF@%7-7zum57F_NFIC&+VL&^}3@i+&U`^&@I3qKtS2m6=TDe z2rgns#vSyWMdjixhc4Bdw8ZJwLt_2?=NI|08jB6g7_M2a(Mly&n&=w16P~W z_Ro-}l?I5nW5T%1&XQfj-P+`m!8O@Ro&IfT$51kO$K1Ek-ZeW{oYZPNW!BANDjMiY zSvWbelg?N#;YG?q6(dYnq^>`Hib1;FG0@AZvZbltWA9QPUMXpl3q#>t9|1Cbi9JOe z6UPu>PM1@tW1ktVIy3_aw2V+2x=Kj3U{@(@5uG?IFC1+>?t>zstzw7lZG!96Ns!UY zkqX3u@dC@UjVayLWovbH1AMtyvkpT4oOy=4M4)z`bf;}Y-=Y`H@H2OlH+2Nxdyiuk zTDgAs4RiL9uR>YsduiIsf42Vxez^SkAN();;cr|FwyS%T@^ma6_KK}?J7OoV9N z2<00f2lbZ=M1F`)ZMC1y>1B9Qq|pS+Iq=vBl3ex%qwDTPYD4;$*3Lfyi$qd%iRx3+ zGS>CQO8^Hf{ru0~KU2Y0SU&g6I}xx=`eQZD);gk<+fMP+%g1hCxcugp+{|ImLWocM zP=aX07_V{zPK}VV2E{bc(t!#CQe`-nQI@om(Kero7GcUNX%x%t5N@mkJ+)z_(F$xJPok|3Tp8~uy(=M=qN z7z?9Oi9po?Cie<_x+%AlP@mEZ;P*K)R_%OC^3;3$58{*m@K#A$a@f7>om z&(ar#=X7nDhf7p-L_6*b70{o(UJ-b_V8dA)q3zIN^qOwuz=G?XF9|1{Wz6}tJ>Wad zwbNsi3OL0@V9QtPnpEmRlTG|!mkfzys#@b@Sj$V)obuEd8 z0BEAha>jP{-8%g{_AsB6fX(@dT08J(ODbp0nv{-)*RK`u`T9e}+$1khmJ{+8fn0Vy zY00dplZ&Z9$A|atY^EGCe>g<%H*`N>WhHocm zXaL8UkJY(316>|#WKECByVffy(|JyXF zWU?`-Y3;-et#AqbMblur!?#`LUZy zcRFYsVMA_p?o|z%Z2ovysTQ^m8}GYye5)Sw&cAxP8sBzITGj(>y^x-4uW=h77 z*HGF#1yszDw_`*T214NOnK0c`z0H35nQ!uXL7ARKKVl#Wg*qw!Yysv5uu<{Klm#1-Pd9qGO z$3FygIV`RwN7xt2(S)KEcq|Z|1CUOIs$8c^ZK*ot^{NUvj)aV~PvyI@<)zlQK3M1m z;8$)P`IU2z)0>F5{Uoz}k4mAn4wL)|ej-d_peE4`UXcT_YELz}Xz(i-AP=Bq-MX@{ zReVGLjia}2ULRmIBp8ikue%>V>VtKu4%FfbV)wIpEJ|0y`X|DwbQ3!@a($@I2Ad}n z`i!m;3YmG?Ne4PfgaBDUroR)6Xg!fbdXwZgE5OOak_hFclM~0qy^yEI>u0Kz83{4 zOKMeAl7Z&5=_v48TAu$l|LCLoiuRbIM3Ns%e23d~OU~*i+&NJPP*sQt9ZLgY5LGhj z@M%|at$d_od~m-*NnFwCk)luauumCV)p~7ILW6lN52bnL)a^x|QwJar*S>?N4_f)~ zMwqENcEyqX(&1GsJg|*F?OX=c5eFt}guZ3r%yfC`V8|E`1?8BnYLwU1G7R&4QWauR zdX<~OaTE!xsSlRx7^YgN1Tcb)5HJ)CC@y>J7vc3A3o5QOJ40R;JX&V>Sg(MGtT48A ztjkbo0@of{WXjZO3OSxzM_9+j)x3%wp!MVOjNz;u63}LY6AsSmw(t%k50PO9pvz_` z@By=d)&b*S7WqkWB@e=I0Q+eQ27IT&ncgG-^CLYzc9T@b9sQT0p;=qKBc$1@d&bbw z=@km#vnAE+@IJOzSF2&0bNeJNe?Xt_qnujqaFyi5(s2X3&~+v0cnfaVp5cTbadgzN ziR0ZTGf0x)YSuf;LN#eAGNU~Niss4(QiVSyRrpi>nh*E)FBp4h^oY%;Vu@;b4Va*c z2?8Jl;LS^?Cb+Z+X^Zs#LW>O5)+!vPS4(tOY`T|&E8a4XMTOy+wygJLtQ(Vg8Jij- zG^&W~0*Sog7m`f5ut*v)$pbg*?poC--#!NM;7gckIq_rNQ^8K~=@bap!9Ck}VL?rX z5^b>#Vo&%IbQMiVh)VWmC^8KiTvxJzzh1?*VgC9S#H;e%W= zeMHi&xi`Z@2AfKPlu+5WDrybKd9HwI-zZ1#0PW9{S!~2XPg*UA|0m_?UxnZQ^*QmZ z-IpZw)?If`R>LqmEpRL{MG&-CtNyxRPHHV^e@MQY{VC807)?2;nQfMyNa9`>s zFU!~8>bRCF6LP+}$o{w{6>Mfr9nf%`dajUt;>9T@hH8PB<#s;5>6UQ6piM`7W60dx zIzr~vXI1EN)B2}?$v{4_3qBn=QfN}VgJ#;fA2{%KsOB%YN?DgzPl*MXOeS$x^&>)@)bVmpbyR2nqRGBjQ8l*g)ZAeQ!&V3o&Vx4}f|S`s z18e#N6#pq@arX$@ESkVV4a~mnJ{V_N)hx2Ig480UxPt(S7XIw?^QmO3ygzHtcCLlh zD62YM_XZlIb|TrO(!l6kh(EyA4ii*NvIS?y<;bo$tjrE}d0Ur*O zQR_20fRM@4LVieVoemW#Mg9=o?Npob14M>mAa0n6our_km&kLW-Y8m|l1xvOHkHR| z5o7@O@`G?*R1m?G-==R9Ky5_N!hwQ00x*(XD-#Z0iCf4<^q1kd+(KgZ}E8T1tS$n9ks0uWwP-*V+=%l5CRvxYC`WzpOdw01j?@e+ssdPu{|BpDY zhlH^V++UKp4yQT`Af-`)p0`p|1iruEdNP$@iwczXEF1!H_F$fUR*$X#F>rBXYBS)Z zo=IGRKZfO`OxV3^;61C;JW(+&+H& z8vhM)cFGYd7iV%}J4Vp?Q6|iGBdc_Gn*o#FPmlD*MXpJM{8Y>|GAa44qOv(oIQG%(jDlRC6Hs;8y zb&Jxpp+hhLYYmf_f5iCmo)4~2M)&9JlEKrDlzeA*Hu zFqP`?R1Ce^h1vKXO!YA>m0tz}YpUkY`@dRvRWi88wrPahbc7fwHeTmrk)92>D=9YM zlVNbo;1{80+o7ZpP}88hDvndh78_)9Bc4fZ{IBBufi0 zR(6qpcd(NqyOpigWlnc0XJrc#uPCqCA0Z0=M`0)D4U%_s{84kYs6A3JjCNmBf1-$_ z^v*CQ*H&e2pWY?yv_y8ohS*03#e5Wor`D8DQ~^CjU(9<6YaFH(cmfu{12f1zcc^aD zTA}DN@eY{Am}U^kG|1owt-?$_RV(y>|E7qF$$4lfcL2zog38?FMKWb5B+%ariN(HT z6rsEuEB>L;5A|aAKIYH`(AAXcraM;-n1oN{H!lWZ242k+!sLDJmz$(3Rti=M?*xg! z#h(5LRRng$+pZ5=-V@9N&@^eI%PWIaEjg<(mXHI&uZ$CFcO69VyP;Qq!Zab3lS-&B z=B_@~K?TJSljd?BS|x%I{LEOre(&{5Duiy6`Zp_(l&2GJDQ0~;)#y|6o$97kjp+&k zRjnd2K88@-G(4giPjEYDqp;mxM-y`br^wQ2zdW!#cs+n6P=Q{}V7nLffwiVSMu{CC zqU7XmhSoVkA6wr3dXv;kMoyOFkcO*)!u8}mKbXVi1vlq`5H!sVhYFKj+fu~~!?OfA80%uLqRKm9 z5abkBvZBZ66D0%`+YhNB@rfKI1(fO6?Scuq93Gf?D0;F{qX*lbz10&Ly_G@IGp7I;=veL2LaoiQGid}# z)Xc40Ir7AoLT_3n99|}gFD^Ivf*EDHlD))y1O4gSW!}+k>s&S+1K22KoNUn|+hfW( zDKR~hdSKp#qVx1XS|4EO^u_SEk~I;bsLxNAxcY?+l%3yo1}(+3wM^yVFl@qNLQ>ZX zN;u`l-M?-Q=|W8;NfNR%d)aOBM5Y}EPJ)uGffF`&47PBvZ17`V9Jn@3mp>1GnJ#}) z%rLOGc003_g6b#8%5O~im-OC2RAgd5s%mw5u2eZwm5Km?I3-Tn2^OEjNoM{h;r(-9 z^S*-N((6CIe-j|$1`RjZVm5?-r(K}7tY%F>b+PSwQf`pC4h7}f-GDi|5h@qhPlad9u7)9a`!D8SP-06{Ou!uV zvc22UTl+I>;>mtcF;8U9Jk#WTxSBxMfb+W|`pl%%bvWdeW7h8_*W55Iq&xMyc03*G z+-H4i^vFB`X_Q{VK-WVe+}`AVcEPDsRGUqcO3MEAw2NqT8U73JN0Q{aI1mf$$n9&b z#1(E6N%VyfmU}A#@kC)Sj7U1HOTg+>!N!&#PznT~Uil)Ts!`OP`EL-8MQE$a$S5@e zN>+KkbX=b0Km<9EsNpM$Evf)@ZU-m7i2!R2+C-XX5WNA^kTG=a#Ec8j@<>$i7tHrAwyVM1n~kVsw{l??S>ge6L)uQz4(Q8*ZmJ>jF>5SlyM73OyAt}ob9 zGZNcdCP86*5bslu&b*8L-a^&eh18*mavstb9qB_=EKXeLs8Rg(MUbTckym+dK6aT@ z$7ht2M6Pw(Q^NBU+EQyUHHHLMo)r53GyFw9CVov0+pjHUS}=1pz38J->E`rAMyZ62 zBqnLvoNny)&{E4Q!j+LqeUBepJy`Pws#eA!Lf-}Ge{YA+|@Cru1IG(&BeB{90; zJbD&X!#kaeFcwCJNJ)lavksCv3|L0+1ROPmv$bDX0+KGfgmz(f=orBEMOFxPbKtUN zDHe)7tvZfXO{x^cXp3A{C@QC95mQ69xg(u?(~Twt*SahDeSzu|A#l@dI}7k$iBd|R zmC#sC%yHB~#dR`2e*G-zWWpBkVqC<{wmF+WVV4;GT4QjP|y zyO*}=>0yIPbxZn@bSp`saTZapVKd&I%ZS{e5o2eg9GO5mZ>~Vq%58&%x!P22Z68PYxu+8 z(0`yKr|`jGXzMmr=uN)qh(uDO+u{#OY_aJ{(wUUidqq#xq)<;4$ycye{QmpbuZiIC z;+i1O@ZTLh5xJ{tkcR3!*ay=GCImY%2o<4eGv6>doXV9mydO{?k9!xgK3bKptglPt(^I zLL{d>L#;<35KOBhJlh*qlX&RxRTj_yg-&HDs#1C7diS(qYvRe!TM0MrcL1jz>u4v7 zo;_iid+$=B`|7#b;2y$HcmZo_dGaS=Am62)MAuLBk_Cm2#(g!nhr|#cb49g@wruBy z$4{u=&4>L*vYk@-FbgItRJfq$mM(M;I~7G*D;6Lh;Euztx{dmpKqTmf@i0@McW$?< z=`EYcn7%hB6o+<^BjUPT#pOSSWN`P;j!!zY_Bn7aJ!NITDwGfERR-Fn0KDr{b-*%` zZd*S4bnL-07$6D|7}d761-^4LS)wN#FBWck_g_uJu#==swM)FE%XY8DdQRP*08Aw0 zAheQ=%AHy2{6kb0$ zZHlu-!Ovg6@;?dhKeh7*1$9L$E2XDeta%t7a;QMpu$r*Lwj$(gbaJ#c5*_DqxMY8^ zt7cIi?V!HnJH1Oy1x5k+q-yKneaG4LKx7wV$lcMmv_;F_&nw_YHYxF~9Sp#Qb*Z`} z_m}s*0tgP3IgJ^Du#qXcsSmXpToy}4J4g}OI*xQe#Vt93jc@kQ?)GG!;-#srvr^-z z+F9aC@NiZej40J{DgUV)351vzZa#SIfynNFHg%gEn4roZ)fqCiH9L6Hz>6xCFf8q1 zw*i4jIzfRegxb~e6-gzzmp9qAheoBL#K!KYEjzK6veAn}9-4&-2s$jW>bsffj}Gm4 zumj+Fn4bT}L$Fp{jzrD77L`rBJkCP?@H&^rjU#U*3SCa=t7pCF>H;ReO!n+s)flxU z(1GE#GI6uio|4fMOpefcLiR`823F3mRoNcs4^?%~od*ttqtMmkQ%!C+r9mK^Z!gIL_j@U7-6_v8l6Ywniu4MNYOi#mN45l+S-UQ$AIk^yeuE?VFk^q}PqPtP%FKUFOof=zjPiV^DkTLPR8>M=5G;_JY=@V0HN>=po26Q)1Vp4KAK7e9O zmU&t>75XOd3kvDSA(pTySzBygKzfQ;k-Fjd9x zhS#6UT0SOZ+ga#Db8k~3E{-+8A=>TVA!T~1_$NK8XkxQ75w60+TIRi?V$$a_u)cwA z35s4&AF2~Ls9BL!>G1! zm9*Veh=L7w&>6DqxUD#lvR7-; zAP1Z;4^8<(>y0}UNt{|gVupXJ>0`QAVAWi#ipa!Ubi91m!+D}+qovkXpv_h**&q%# zfmkTW3UIVkt8O2&!@AmF^btO(gATeTZp3UqGG3J?N=#Ct0&_mo2GMPh)QQ1ZtzNg> zseb)L$@Gd<`xLO5I~y`<4gX*^OXW0`Dgq|#a;ix901w)Z>5jT3F`Hdhdv>>yLI+!3 zLfx}07d%qyS?{&qg)Fn+;xvndo-lfndPH+k$SeQ z+{P+h44o~${q6AWZ-bi$kZ*R*-Do`rKN~_kC-3#)@lZ3hTI3*5$3`Mk0cMyU(fcXW z&ce{panSknsRFw?-V{b#xz1ACz)@V?Z*4hQOHatuOO(ntbOUYxD$TP$20Ti>8}|L1 zHpqr49^S*lPlv3DtLi2Vd6lw$mbwqRVsUoOmek{6mR2cw1thxyGeBbP+Q3$A8iM@( zZ;bQ$A8dcOM;M=NedA_L`=tms$M!_bRv2P>^z`g;R-o-lIb3YAiI>~CQ={@rAdGo6 z0jPF$!vQ|JAUf(fOD$kbq1|A0_mKTGhsHD3P91kUhPG{VV0fdnessRzP+uv>o;ZK6 zh84@LYM&4`7(q?m8J-8JXCK}65*PPc8TMpWN%eKf4Yo&mMvy*Bi}62%|HP-p@FJ@g z5_FOJ0P;j^kzEgt%T%91YMF|<->qUQqxW~C?TQ!7y;dHOz&gjiBFXF_sr>_^A>(#! z2%UAGne#@D|Y>ly_o+1Zr8VaG4jTnjh+U{^Io~wiq#aAkzm=5PqG43gPh;)23h0@p#RR<6c9|-^wh?Izr!fzJ+)GX> zfOo&bx?X}j(1y1FHCMve>Uht&LWP`VmVfQq3vy?Ygq9Oe*Fx$KsX3)|EZ~z|wH5as zO<(^}{rx^huK6o`brkM&1I(2hDrr%El|{X5y`p+KQ&qN(ic~V}gx$bz|9d09w;zEP z45K#CxHlpMH*M0W6bA>+3mmMtaz+a5gJL?Nc~AJ!2s@_L7JZzZYEAf*u_sTxK zCyl;qbh=JA0{Tbd7}=v$T-{4g9?kvqV8i>bF<-v>mRne(F0pY6=nQc^$wY6gT)eAy zLt|M#0e}<9iMm#S7J@+%=7p_22%(&&-oJkT4aZrj)hl_$_aRxoO>)5QJmHH(knJJS zZ*K^IkmZ88ez$?VE_VyPBW5aBq;+WleH*gjzc8=}%5nQ}xld4v>#kdyBsbEtQt1!5 zQ?95M0#M+muIug=MhHMh;fd{Z4X|#{2G|cdoD0I_yg$`r{6Sy^o=QMm%3|5gRLf)D z71fsxjULA%vb~E33ftd%QB` zm&zf~T@g3rRLIuc5!BNFMdP{16}l?+DMoz)SE(!b1Hp%o<$a0G z$p)oHZY3G;ZilVpPb#Jj--H{Bk9!hnv_nYN?oEy#NZA*I3Aw(soGkT74u1QXHO@o%j(pWUCUih#QD%K(8ILO6djl0d77kV5^pcfOdF8*YA_Je|Y~P zI)7hi#h_6MX6@|1$&t&|h1caJ<5HXiSHLu?c$$xs{K={*zdR&IsnF!;m*`LQ>X7Sp zZZJrmc4fzYw5ykfB>*_ox|IX@HS>|zh$Ok-%wq<3n_wd>CMZO(2lvQIS_dZ?n3Z>& zHUW-knY5(*C)tt*QpV7d_>2hdE*?Yjo1_Znj+ItL49H-SG)7q4E$&-|85jag>0bt> z$&xmLJ0S-SCmE5Wp5o;t<5`)*d<}fay7^S>a00fhL0L%>^qzOA(J}U6`M%_KP4ftc z?e!}WZs42%iOE?O_SK@G_0->dbP6O{{bex&+e)>?==i|kqfL(mu#Ju3m43fxb_l{1 zTL+b87;90R%a=4)| zqR@`IMMy3o4x*jf z)a7(wxuTAr%4xbeHL{dPXMi}>RML;np(pZi(H`apUX-%53;_f?6qr{wk%zVhIg)Rc zN)UYhkF*16g%k_`3~nlD%M8}7ev0+1D=CkXBkvN+-QLxwd}*IvlC8?5rs5I>d)L%9 z2lzZ7gse|GXJ)iQ($j*%j<0;ce%LdXm>>7--KIS2RaG^#X2wXR*yZwF!o3C)vM(;M zX`P@JnNCgzh|~u8+Ta^E^wRR2oChM zM0#4Gxid>*B$=Q!+B7kcm)TwhHVP#~2Iw6}RY)f&w@bpOZQ;D8riHg@Q77n_OC5u! zkf$;5BAEstEsThzz2Dz|2i5*pREkm38w5g$1DCw=*;ImXVJ%--|&`qf@O3Vc2P1ad9Ay+bpdFfwUL}eTUuW~^n8XHNVJnNxuo#S;nDe| z0f@qn%@(kznd?I0t6`41s9cjBvCxaPqeeZqKg5M=qrzITtt5AL@GQD%<3toVM6`7B zpBxeGMJtQ$0vapoR1EJZWHbUWWfq#q=D zU`Dml|D&2TD)WgVK$TFzR&y4|<@F^A`-MVzELSbuQbZ-P>|&-K43Q?17>{zgp$^Rr z$g#8*ikFu>feR=#-NPl6J{Aa&9Oecq+bTZ3BPo+)2^awjaSQ_h+s&>n@Pdn#79w-lj*%()g&jO#Q)gY zVJTZmel$ALte*Q_bIco1J;?#xl#C_?0<&S-bT{YKHAZDT_y>! z*LYDA(LLi>qrb5Bn00PR`%d6Nvs=(rg#>8cUKQbqAV_qNmk&12SNxTm=d1juU%q}~ z@JJ;6*A6QY1l2|kW7`jdCariq>qcu}Kxlm#KBA6E#%aIPkOPh8%{XD0V-Q0c2O5pM z|0;d@*YIu%i#xS=Bt^eD#Y92~RG-<7fs^<3N}uP@Sz3j@5jYCu*;VwJTBbBTACjrM zBI3|F{6oNJ`8~M%F{kDlM8#>I| z4lu*oolPbaKz1_IY1x;+ov|@$tVhi11N&}~ z9kG>~`AMk^syPz}+hdXxhoSnaN^g5p=4?Td?8zZA4NmVib6w$;WGh|W$8Zsl8Pwk8 zlDz=mzIgvsF#>g_gWD)SbC&E!mc& zR4#SZ0Z#GENC$2ETQ{!B`aL~`en&v4Bum$9r6dUh)5ko^dH*uJ|1kA<{yx0^3dJrv z0HB%>2&gA@IuiEOCSqG7;frJ+Uzy$yG54P$6_H^mKVRgGva?^ZSsGY+`doqnYv(Oy zAjJk#(Jw6-R511sDQ~kDVVaA*_h=WMveA$HTVNX0C5O$KtkPFEY`xU6hbCt*s@x&T zzx+?f-Hn^MVn)Atdo;CZ@&NKco5?=QY1zX-Jy0usf~FRbN0GeAVPCx7yeS2U{=|iP zxu$gs{7mbhMS?b1KFV__r^EfT-adW*0eYneJW?2aMsJ<0&%upI7lRqCw;&mt1s+G; zt_PH;VAVpO#6tZI<7Movi_GEjKL7Up3&$*ET#qCqCt&l5(-x|s+)eDpnE#I&6 z_EZFK9NnZPd0|#zpIkm%HQ6dC%oC6p+J(%H(6I2skEO)dkO)a*bpgV+Qt4}}nV~~q zD+4-CoT3eSPImPL?x|o}SgTa3vkWQiJ}?M?I4XwjdzR)cRr#NA_^EdsVA)Z`8c>lF z7F(W_<`!F<2!On8b&zXK{X++omnGa>i>f6HN6v9Wh?Vxv28aL|m_IgI0qrS5exh|h zmGT28x<(E{w$J9dfE}75zN;`OgMuAS zW)ftMKy42IkV?5Ut=$=DjuFJ*^o$_SNyr%b$y+4MK00Q+QgdNhE;t8Ok(w%%ae*Sc z{E4+>S74;Bm!dpa>c4&e_uqa0IlT$<=kUk=fI+2kUC{M_LW(Pms=VE}`R&2QwM)Z12xm?ppPua28>Y5u3 z-!tzkxMCT$ag#b-wHbjHBJ4t2=`h{A=9U6gnta&tP{(8wd{ozL?E|E*!)&K?)Gmp& z@Y+d*^khj`bgrPq1<645Hk@i~8(Mi_Kvmr6S0tCPX+PUL^jS6x4nDHOEgnsIW`-Ga zOOi8m^&l0T&Mc{mEz3Zxb-p!JFvkLk>|IA8=pZ6iNp><&`dj%&pu$3rt55>GSz_Eh zrmV&8gWtr4Hq;S%o(Rb=FNcaKGX&uc?AI%CR)sytBEh%NQ6ZA(d#OG9Xp0RAPqc5b z9@`NrFIX3lYAJxbx~j~g;&lboxXO#F5jBo`dg{Dc)rOTWqGN{Z!M*%a!|a*jrP@k` z0*D;C)CqX;=`834a-CBDceb7Hpa}GwX~X8yx!c;ZcC!r~*?gummpkwV)_G~t**uaB z1o?W9!iBxYi>kJk;)TrFYfg+tN6B(GOSkm%=j($-s0r&tTx^t6-}x*&8EW;KcxXW)a}8u=svp zQ^h||4HRptd{+tqd;fB3*Zc@XH?;4wUAyA?p{o0g7OjQKDyp~8k{L2hw<#*9z}%}p zH7AOpR3%c@P!%^VCZ)1g*2#@w7ijca(`1%-x^!5U*z?!k-ZP}XxvgXA=&0(H%`mxn>@wZBbPf ziEo31D8M!=qi{-CwT*B+S-M15YXo<(oK}A$m8w**vHz#x-=)jQLqC9zCBwV(^#kzL zbJhYNTs<`xa2o8Q-aeO``ReWS-~Tnx`#*mF<@=ZN-yfKqK4iD^7FZ!c2=U)7xgA;6 z186O`0q|yWdA$6wyWQkHcBU(HJ5HuMN#nB4mS~cy;CVKD7Zsa=I_1dPDBV(@I#(q! z)$3_g25?ilunxesYI1<_fTo4#d??lvfE#Ugn@wbqi@r$Y0rHPz^Y;Z~oh0Jme@Vq4 z1)Mb#n+f6tBdpw2Z_w@v9J`TP%1&f?32_GAdsBf{yLJq3?Ko9wnRQE9pZFdU!JO9Ity?KMSwYC=|Q?~;G*$TOQi_1`4r)R_+FY&I6+ZU)Gu{F6XOcDRmOjJ`?|L0)B z#B%aln*s{OCu!pupYn+|^~W%G-Y*&?rM;fW-8bcvBsj-)*$o^B8jn1xieD+P4k~)3 zA4tGYUXn*oM{&K^Pe2R%{PicVU#H*spOgdF7MK;oTW?EfI(Z&q&NfrisV=r6CCxkn zv6O@L2C8r`d5UBO4Yc;|leGbG3bczQL;B7TIzkBlyrt~*?An`Ty#4W9czzFv367?+2xSVktjZMSSl;_ z$YxEFQ5m^x4n4}XIc}#aeJs>UlAa#W;(X-Uy*ApX>qYhLAya^JQu0U+k=cb+benCAh1pdgoai|>2--EhWG44FI&bJPFdM-NP;aEJK#klKN7~P zHXz-r0NF=~1)R!{b(eY%x|cSnXu@pOOiXB8V6Xk*V%o>4m|6%!*)CoF3$)|pkvyi{ zBL%4oW`QqGH{8QKC)1m0x>??|QRyNLn(#1RykGwmZu@Xim3kXjp#I!-^n)j#frRSn zk~2*$bkS6^wFu30YcEDcmZ7V}n(qL#hQc^Zz`#HOm@O8Ko%aho_{P%;H~x0-`XCtk z;&8~Jfv+2}!2;w}VLw(Hgrk@L^fu}WLpqIN$;v3B9+Xhy;uvHOt95OkLeZpq!U4s3 z2~d*#q}@&J5&CXcOFJ*`p$y#RWcE$HBUOtqfxI)=S*40HZ5z*Evdfe+%nLn8^mwCS znA&hnO^n+JFrP(%Q++#>uxF!#g^%O@P2;7!Kwc~3!3U?Q1?wy}_?QsZ$reK>GZnt43g`fw- zM$!fk5puq5j3*$UxgL@v^cFYvR`cET1r&lzMPcup&s3|%F#CR>3b`7R6i25qp!1Pb zVSt`kNDMfhC?HR%ax>{So&cXo8%82>UAyGc5EkQhy?q`aF@HJIBXfo6M^s0>pbT%d z=_4kr(+N6Z699Y?JqBj6GR;zR;ZN*R31lnwmQYO)8?gxlrG&!gH^yVYi?y8PSlC$@y;v3|sl6{`q{ zb;z4$o4a%9;52VZ&?WiZdnX5$wsqtzB#lgmq9&$o(OIu0ZgEiwUPrg-T%adysV9B3 z=x3LFGPKk$`D^&Y-?*%*(4S49_KG7vh)@=l9IpxS0AJ8WY9om+j^9(A|Exn+XpR$l zR|&?3v^}z7*0=EJ0s3l0utz*oB*smijciA4W!k7y9v9~%qnbJ{5Kc#KYh4SiFg!r0 zzU*|q?caU~soqEY;IiuMj9l?aMlaM{i=2=+_55<{! zCL#ZZ(z8*2nZ@;uI{YOy7N}WnK~w|1T<$oI60#SzAejyQ_JX9_G(k-MbAH%h5=ZibL|YA#QQ~?^{YCmse-FFZ?1_cb8hWmuC;6R zP`X@A+d(*p&114^OG2 zvi7>p-N`Z>K(CQFyZKNcbXN;o^$t4vLV}p$N`Oeqkp|>wHYcu96#jdQt8br%_s={* zlm}*SF_|YLH;~K;umGyM!=pN0VGm8BJfw+$na7!I5Z@nzn@Zh~f24GPFzU6Df2pWZoF!aSQs`AsU$LIJ zWDoX1Eu*-ABx(jv?*J;$e!Y1-BAv9VzNx*=0#g!WK&3~Et9Of zgji9hC3`;)40Y^S@3Y$pS_%huuD~;tc%-r6kpb?{O-^Y)MYfi&WZylUZ#7qW{~?kB%eU!r*KbuVPb+|B`^oKXr^4F$ zw(=0ca=zR!A2!Y^8b}6Etd*2&$3s|47zfzv1gy-}b70Z(CH{*^g1T^HEBxyH2f86% zKemO7zNC%I;=|8nU^=*UF|pH!?s30ZaBL^V59-`acNGzUW;NXwla49hgCcPykoU~U z)*?KPxG3DL=sj?Q@}L%dFCBNdDpN^NLUY9yt~$X}d=FB_6}@?&F0X>27fjJtnm=v3 zCV+%v0yzuKvj){g`W;=o3!IeLH;*$~tk(1#R^p@O=7-K+OK5k59ZAvwQnN_mGZB9H z!(Z)66_vj85k7(x-fE zBcL0KB+Tan$14n_fF811M@a$oG}Vm!$Eh6!kTqJ|m$x5-S+f;wa*bJ|n^jH7kL1Tc zO$1ZB206wC+s>3j>L^T6<0C0#T_Jf$%LFt{vRZ{gq)tRQb>Z1L2wnJk6t3_w>0z7H zW7q65-#R)PB%aJvSzNGqlzX7{YX<=j7=czNy~`)e6AH%8VY*w_4IRXKeR%ED>{J(R z(8gHk^`&OFRL{j&8e0jmzxY~tgZ}^tlfO6H4yjlhLlNqr+->Xi++N$s zrC14|f#6lLX_knOfFGU+zj41qDW_3P8Y0ed>XkN{ICmc)j{=*W$!*4uX_fc0FZShr zBYd3T;&3Yt+)7@MV8GA3^Wl2 z!ZB4T63^rkVSxw}%s~w%Y-^RhW!BJ3g!ugsoUKBKTuH<`*SMTlpTR7uUX;V3l$As9 zFPlR4qbc`>Yg$83aRddT+&4dhN3Jil$sn$rZOhoKmPgc#ZpVl?nf~c)-@bDliyB5o zFnzP#46Xh}%`GF6cYC0}PR4O zgdMmV`pXL&Mka6Ijb5FEXg_~+3BWJV&Y{Dfa*+x3SB08V-pO&Ks|2yiloz@l*s_HM z3Cg0!;UfY0cFg2r^vU89yANRZV|Lt~7+2evbQJ7eO^cd~(xzT5C-*hqtgSJfj}@xy zUHc$DoVU@&~4lCG{_$53inD#ypsyH5Q+OxtBzP@1jZ*hjGio9V5T(zN`VHT zip<+iS%Pa*CF93bR(xg>iHTOdNe!`BGa@|L!46eLw}|DmXKqE3d08bYIJu}B)Rm>5 z;nc;byAgIbDcu-4!j>C=d`D1nmi{YRS^NNi*`HJ-d&3K6&Wq&haF%fSGQ9s20`{+8 zf9<3mSj?n-fyxBh?-D`o9%@llIJPBx1Rer)fRg!A+WFlmOF>0_IvT!1L!L#;)5O{x z{zCE&CrGXUR6wi0+X(NmmNrj>w9`!zJm`1dRps(l&~UnC1(rW4O_PXEw2yHq0K96?TpxjAz$7 zq@-;2146B2go^lO*S%R_Ol$A)3fokP+t)Cd4*&+UGXbv9?cE8#AWtLp6uyQYowZm- zcQkq0v+T(eo^S>hjG#yH*e>?wB$;a9s~-@B^@GdX=kK4xQ1grT-@X3g@}j0^12C7+ z2efj!3$fDah@>T`8M~7?$7AHC1nXk*38)&i*ujo8ty3(g%Zw=J-gc5CK5{c4u|k^G z+Q5)dI_Mm0>(X@)#J7FFz&{WfmYzkT}zc6=sM{_*>df=U#|n>RAV3c^TL${&FDl>R;_*OjeZ$kzqu&rL}TDGRfI7} z(J4P*vjyPV_G{K~USW~qb0`h@+P*QhYK(5JEf#ToDY4C!xXPSWM51-Qsv$GjBCAJ9 zG`i{ltfjI3+DjzE_ zbay)*7j%23p1a_oSf2|Dy}5Is1iF@K(F`GvL<7CDTm+_7s+$H|yTuX{DrfhW3p`D0 zp1aUh1pbWN3W-3Rr)|{2m{G#!j>Z6!-K=C{fc*3vZhSQc0J)+~)9$t_)Qj?hMk{Fh zTWe3RSyYh96}&phcojd>-PxJks9|wLx+s*BO6V{|Le3#lPk#Yara7>vAP->gJ|=Z} zTNn}#<<3*q4jve3%)m>_*|MQFmCPT-HOHATtj?ucH{Mk0Cj5IVq87p2 z4e!6S@TcwCjpVmZ^}CVjXSEEuIctQVMcY#?J?Wp0mzHQ(r0`2zaX=AHT6$9fDaZTA z>1(LU!U6hb-x(lHRd%u#CPs-88|(^h`q!WK0ZdJn z^UZ|Q!;8vN711&f8Lf_Jl%(sH8cg=hUx4T0roro#I6V0b6qOKsW|ll71nAVx5H+=x zUD$c}blW&tLqKUc_Ug(_R>E;ciD8saeL#6Ted{cyAt!0cluk*iWZZ30ZSS*i=5FTGE760RVv3jw+m?_$>1GyBB+5(f#~B&0u}e}J|@dt4?a7m zZ|hzr|AdRhc-cjcHrg^hZADe4_H&kg?N4Fy*oP{KtvCQh7LwFP)iIJSpv&pWJqDf% zU|1FLT2h4!14FMR5-yNbHJ!kBI@5Xor50cRcrL+g%wtm?U^#57>U`!j$X(*oepe|t zj%A5UPGlzAjI#Y8gw3bbbQ!?c6h=Icl=v}P;C0-@24^~Gy|X;t|OD>4+f zWjYU1baPrapy}%~p+@Q+v+{;;T5_j{*C%%XoV90Jd$lIb0D1(6u*yM8%_>nKRFaCrPidwO+zFOrMRPE;sf$W!Z()#Radwe0fsM3t`* z^$gG>@%i#C`(H@E*bf^{K9z8jx^y^x+|MsO+oxex^>SIg#ZC<%5L%G4_KC@ocIrb5 zX4^hD=(drbtg4Xi8xUr6^tx?_vePtsQ&kf7xj3y(-aCkT68l?EzA?)8nRz)F6jQao z;>wvEWV4v=t*VtXx5Whtz0)({BQI5c=q;VNUi)-iiv@al6wsg9M2*ETpg%JSgWO^#AoMvD|VGlfSV2-@=6=cH&D*# zs+U_cK>)}z;g~pZ5?9&w1YVOuF$f>xNdwZ zdMXk_*4q>)8@ytpPR|KU zH9xJ4RDy>=nN;n564Ec}*kHBl7+ODi`{=tdR2bqi)l)S?_MFcCswwOUf3H74QT z5Qsf#nyyJLYL0Gb4Btfz$1n&cD`|)|gmYrrxcxMsWn=r}D(N2@RDTHRs1)?zaugL= z_ozHdJO`jAhGSC61O6k)d1ChJH3Wt+NMJuR)>^C&99O-|k0n*LgV_E8Orp$5_*(OsP#2{p~@E{pe2EXODKBrO9ep_V6+t2gI7m zOeN@HBXtIudd$$5^GaX!#@Ov>YP?pG`_$TTah%Vn&SnzlI+EXIIRNwKK7VBdq(DRP z)v;lrHc>`-BrmLC0FZ9d^jnHa(2^dPHqL6h2X|#CPIjkxY7J?%Y0fl1K-M-@V_McT zxJaLXq=2%!(RfO?g37+w)IP^Wh;@)jbedF;vN$Clx=-$LF`~z@TyF3rXf8MC@=(=b znE=%o71%X;rU3~9{Ut@EGo%%vnXc~&Cv^4-XfK%Q!?=N~L(atJJkkMfGL2*;*S)4m zbOhZbj~ewEw&rgGSQrlr*s4hyLL^@g ztn@#k*{g)IeP*j3;Q~VgR!S!a@KUwBZRH+XLfDE=o6s@tMSI?(aHAol__)fIiOqiONV!Py7I??-{D?NDOW3FkLG zcw<(|nX!Hba+5~MNABE>Lt|+_+Nf<|UZ!%=EjQ$t4cRbv$6IRQ^RuA%!_WCUpGuCJ z_Dy3A8?>>e_0lI(H#V@^>0Eve;NlbSpaAu_excQ+&X7~T_Fk9 zphX#!X;ej)%PMJItyWMoAS&`wqBkwCFsNd?hM`2lcZuG*)M(ga>Gmbic=eTAuStO- z{HYxn)*W17C#}Qyg`+L04a~B48c#&=WGPu#d*La;H>q8Db!4~WR2%%fQ31Vp#C#RT8M6A%S=~!kK;A#>n0h8u_NfTRQ4beh#I_}d3 zTBe&MtHnWPkwF=f z4W6hQu61V!NHOBnT}G`lr)#<$loTq46{MYEDm!TAqPGu~UF)|E#SPxhmhQUP zOkZTF2R(b-_eyF*sQ)oqlpQk08t93g4h`tvnBaV@4kibc`JpBu#O`c91T`q@Ct$j`5U#h`UKuNO8!K);kCP1N z<ycufGlHmlU|@e2qN_2W^yb zuu0k`&7%M|o*`|>;pwX4%Rn6%c^|Fj!$J!#C&}NMng>RRUOGaOXIHHIZo@ffoybF> zyc61$+9w zac@1P0o+Se^o#Cz%}A%X1D`0ZAa+|ySH zr3M{1$lROc7S6}E-~_ZhWcft(W%TQq0_0PkNhM|2W!bre22B8XobVyYMdp1pVT_hs zKa=Y|O)?fFMNo4oSIZ8-eVhGYg{ko64sf@fn{7QNxzSxcDC}2a1gK@H+&}73@G}z< zQ(~tT1kr^O+}CXL*g6f98pheCQ-$$F0A2=Hk^4f@L&PvM3cusC1xv)G8XX`Dmr{jS z%yI8J#me1>HXRGvmB$8WgP6Fu+#Ok@OIeVT>#&76;$Z zOqrXNIycF!=MxnG4KOUp-<@%E)O3|OcBLbRD8vORI~7Hua)w0z_{yML%0sMB0DxLM zp(e8v5_|>rpR*)`ovjBXec{Qacx?;yI%u{U;~9DK<(MSDlE2t$eQb3r=wLP&Uj+(l zms@Q42ZmxycqWyW1fr^wVrV5c|CVB$oW)NwbeFTc$E*_DY5f7#s{9bEoJ^}~OS?-oA7Ef}S%@5+?`(*z^=qKG;cw-v`P=mNzC7_(0Sczy#fG!%O#}@XZVpIV zN&Zst;X(&0mOR?ck5J!bst@%go*0Gd9@?1Q3sp*x}F|EMCyAE560^?!=@Gc6TMU zw4}uM;TR1UwLl6zaL!#7s)1m!0JJYyh*D?TJVhu+qegRCw}-1;{0Fa}gx5%B-IBcN z7G1YY$ccy5(A#JhzXO>lV5N(8@k-m;Na6`O4Np(9R8Z63xv|womI?pp%{hp+m?ERp z!+B_#&Zs*x7b*ZWRRUvZ(OdHr#^uUwJ+`=;I!8}R#wvl*np^5G7B4TEM&hIO`(*Ku zCfrs?dN#FWhNwB7x1D8*Epc#{oMlQ#w8Q4@$FIK(uYb9`{b_jpUBq?8SB~}`N`r{? zZKD-OnrcN4%$St#PSk2DwI-1>Bjrw#HuhB&tvRlg?29l7jtOPqa_2q+*(ooyH&oI- z=)mEbQ#=4Z7R-z*7lf1Q1}SZEqPNc2D7IWT)$WKFT|3BR0-|8*>e z|J6tck4Edk=(IbeDf?D4=IFsNmd@RV7qFeJor?#c$?|A$=8XW4yR0*G6(l*6ax8Jw z^1X!NOT1SQ^plDcaA+J^6^;BFoo2hjR8)nK(#qZ(+Sy4aZK8SdFvT9C_c-PHN62Or zZ}!$qrnN3z+!GVKYC5UJ^O+{hI?g2`WRD{pm#0L!1#;JG+&f}o0U2kg<%84Q?@#+8 zp`=3BbYqn2Gp&rGycN`~fW3$hNv`cl7Im$Q5GVqh^imtt zlLTsXdLP6U;_OXX_SDG*!D`L+>;dbc9R+y0Y1%-lRxCK5J2F zGppF@`{m`aklV4l*Ez}`d2({$1NRH?$~b*5nuP{5IdAkyrInO2Lprc2rj>7bRYOqZ%d- zrE0yl8&n#!tXSY~f!Uno)aRB?T>&#KX+U|mHb>cFp8<+jNICXfMwCJ|>z$~MF5H{l zl{TfsZu`?@E}AvTz5`=0!R96vBw657gXegeTi{(RM$gJ~@lB0s$L0k35$cI8Fr!@Y z7@ODL%`9L!NA`NACoiH6ZJ%+l7l0IlF+pg;Y1=PFf`y%4Dmfc}il$soU_bx#PJF0U|7ns!J7H zwjet}%pTUiMMHthMo}Spc49LCvSr}UA>$w%e!k^NTNxu;gFFXg)1wLU{f}Nhh(Qfg zkqaRH8SgMc1o8g1a8o%cd8_4wp2Vd%)Qfp>xr<_nlEI|W0Vq^>_Mb1nITMhjvqFG< z%gp+iQV^bJwF(Wkw;DwoS*Wai8>fWcRhG5bx7X8<(;f{?65!FhP&)^9C5e+S+5ZeS zRRU8hM~k@sM<`c@oCRREaGJS)E zBE%URYJlAA`z&&ZLNl$ojWO0;V59@W++Gr8>T1J*jqfUA(c*I6455b3_B!z8 z0{iit4H0P|VX?0U7*35-1Y|mGy$bH_#kLm)Dr|sBq0GJm3dhAT)H6dH$-C1E==yqlVP>mcp4FS}5qTN_&QAF)?te{U{zK&mm zsRfvdkb$9KmVCAL-sYyRn(>q|ZpRf(Rk4 z{+Rg4*(C#EioLwR$^ zHH;q)I9JW-CoX5GvO@ImsAg9QLqNArlDyi04Rk0M`WtNPc3>Ra!|7;0(kO{-gk=to z=x#!fLmMmhf>Fzk-Y6;5?kUAqByzglX>*SIwbvXP`+MaOSiG&1^(BmHFVC!ZMx}%k z7O=|MYRM3BG z)mBhaG?aDFd0Xyli`ng{?ZciFGZk$)vQei%H`U94;ASh!#qqarx?ZTO=|(%iCT#XP zuPuZmP_cB)WQIQXK8+oBB$blaY)jyv4E`7B3(Yh2+glYYnJq(NAl=kXxsd1}kElyR z6_M}X5a3fJh`*e$MJ7j!)U)|cX1?+)dgCZ=2VF8ibj6a5z!dAZsvUBuIZReLehWAc zVgQg%LD~(-VhR1tn?17*7wiGZZv*7N1QHFMi3htjH!Lq}XOw%V`?=V2@7{twQah*f zq(<-;{_NuyI^`UCuo9{GOkZnscvckf>T*BvO~OTI**rPhvL^t;YR#VF4#Q;>L|;h7 zI+~dsAumuxU$E#jmDTh={?*T*5*(0BU3YsD>eT9FxefWJK`AoFgbqGGt8*SF@}K~i z+c$qp0Cd1R;-bbV9Qx`28`LLXXK^x+S5!1xt3s<83f;?kGaoA10Y&nDsMLnR@@Uyk z`59)vLojV&e`+Bww2)wiW#9X2g9kS-t6VJ@|W;Wwx=U9h=3Y26Ty6r&TnuykaUnl^;%wzm%3l4M#A7naIoOwjS3#CRCsUBoA)6%np z))Q=XGq?)i=uux=L(-J(Hl4H}3UxK3-pmKDe}R9Meu?o$@&_Ykg}qcA#w$!O3Jf3z zA2IbRNp7MJXbl#J$x~ZnO*KG$3iOxo^2O!t{}o<-YLSRIA9-sSjjwy;=r#;Mbr?_F zpGFA*UP$6fY>?X> z#fkAIzUa({`B#8+BtduzPVRBh`W)Sqc%x8`8ZXbg1hRtR1+W(j4rIzy z#XFc2bP?PDQjT$wIWc%yvK?(hNuoefekNUaR6s~>Q%^EAuqp}RwM_hV}@8a zSH$-!X)4?&w|tfa5^WgC-yD-ERV#^7ruc_Sb;2lNPs>}A&x})OosvL-ljKCT4p>$6 z*&Ez?$TA6T7kjNRBww>DQ#WN7`yi{1&pC#Da*ovM3#`2O9nQry5 z^4r)y{vvjZqcGZ&{4d}i@Ja&k;lb#1*jX!UYoNHm65K@!`avf59`AUk1u%d$c`mOE zuS%g%8Wb0z#SquFRTNRRoJ#mxE!W+>$1r}XO zU3Hp?+mX|L36s~>839A4TKwKP?OO^e^dLl+(|kc+o`-rK+H7d_coPs z2U(Zf&bY~e3@L$z8>xX=vahGI(x{Po<+2<3SMe>LjwiIjm&_a2ZdRlHa+7CK1()r? zf3?oxA^{ESyHKeC#hSyM<6I01~VJE=Ug}-`@ary0suOCVn z(2{qfns^jo>o33n$QjYXy;yCaJ@QHEkxju8EY%m{loGqf$^^-+jw)N!D9V8Tw${ed z>69JWB>*K=Y%Y~xp^qgveJV2sla5M_Tg)?C)*^-(`uX3V@o9emUc^3J(A$D$6oOjG z>~BPW@&r>x)x=g`C-FxvskY2x(8j8<{Q`^g0?os!$xY}(f7`Fv?2r$t=qp+61%emZ zCMTIY>p}ZNYG%-Ftg-~?A!><1SEWHwOCJ9-1ZUaI0nt#ok+$!ez*M|$uc|7**B^|5 zSh>STj&RLSNAbPQKmuBjmgJNIf@+82)Ix??4~aD{nU&nX;<*B2Nh0JuW5=_AMs;FMYQnaTj#sS(@MLg;GgDxEu|yo#?=t`@#Omj#`*xbomQVt*e*!=%Eh7?A)~f|UrozA$jv9(Kxw zVpJe;uOc0m*RsbAPW+fyI@wjxf~CuH=>q+Ips98QaDV@!iz+OhJlNy?qIR|-@E)%H zWd~e)F$q%^yCal5Oz13HlX6^2Sdu()_)}CIN&zqC8f-hHP9@@RY?`aNz$~S4M#D)| zl3m6jFDSCqwTCSG5*>6MXe2KPstDQA=6Piy6NZgal^I_6SeVVV3bb$aImKU|%Q+F( z&0|_1Skm?-24>FqYeTYbM>A@4VYMbW!5fBfrhITnC9G$MDfmrol7~_;VCVzJ-#DTy z31Pi+mC9>b@j1c_|W*Rgp9d05q&A_ylm{z*LdLO&vl3nH}kHF0M z=I^bZ*?&bZh+F36BYqA15bs5f!7{M@rhKTb=fL$I*fw5JERD1hL6#*2d7nLJY~a+? zRfCal8Dtwa(|u&)x`if|sbXKE3cI6+6^8rZFT!`p1{#SJU7&sf*!E9M_V_k6(7dQQ z(!GHdWt($cl3kW>MI3anuM3pqKj*9&Ic*4SvKD@q|N8}^eZW{s-CgA;g`tMfza{-V$pzxJQm9 zz8S`v5|$k`(u7sfELQzPdSG<&^yW&Gt8A{dPOUvzdtF;yqIn79=)t68lA}oujuSMi z9pOc=q}B~azftYAmP&^H=}|+2FnCCYrghZvd6j4c*pYi>+M27^qHQ>|!63;+qg%u& zivT5H0<1zL1<24&9w`G7Oa)SbzOkvManKIM05ufiG%AC5uP+pzO!*f0SCR z{>^1ZJLn@|T8ehV60r_*$jz^Eharm*_3Av_VSWRP9sR-oZ2t@V0KtmBbwE;*G+I$a zoV07DZajB71~|>5R*JtAQ#^N6E5b0MmkNg}xm`%+_LsMxzyAF7i?^Ri=rYvb2G>;f zMzEJ;8Mu|;I-k_PS8WQ}!&kMEhUq&FD>5JzSqP7U4l8x?7qw-2qHWQ;C&zZI zwB^NCf)uR)NVU=S+fceQ;qfqbu@g{^?@LslbVdZYJK54{Omq^mtZmg(k<@Qi*!8$M z)oG*d*4+nPz?}mXgC%TE5!&83#&Tf^sBY?$?Av_rpw76$+Mpf@nfYN*U5*c69c0U3 zMbZRF5;VaU@KsvI|49W(2)5ByyMo)Cr@S(HZfVLM(S%9HSXQl8CO9O^GE=8gjjUJDcQ%E&uJph%q^bXlexM4R|jmWaHH zPzbG!PU-od!t1Xts^dYw@f9ixk?3F2|FaElrBJI#OM!zrZ(u5;tLI>dm*@RSeE#TT zTN;}*4Hf@L`GB6KA6has4N0c1(qbvENC4dFyWY5MSiNYGxUv%|X{jVYlY=;AALXFh zWWin3W=eR#OJ&(tPQDfX2BT>xR%U7FUmv3`a*P1Z697DzDyj)5>to;^{Y-~}B(T5n zUzwNzh2dM|;2{Bn4TK@D+BG0`*I?7Y5-cuJ%y_L#2E>fB?+pSkoN%OQ1Rq>8(^A7J zj%@-88ap9Zbb5?~1V<55;f|Txe}DZ#lFea8KT)oDalU$mmYR0HXjePqm`^9~6o)zN zrtg|txRxL0Po@|SGDD3~b#DP~-7rc*w^{Z(0Y+G|vl<53Wh;6)2Dk@d4{_8{tBzDs zOvn1l=%=`sv(hSZ;3^mElDj6gJ$YzCU%P|*Q!XVeLti2VN-C0 z&f*D}p%U+RACbK$_B}w}#KwiHSc>N>S(8ICH=77t`zS$d*pDk4G{qsM*bex|7!L-p zXNDuu7=X)iOlmM{lZqz%`IJ5I8_D2t)SxkYSEak{hf~DjdfJum93D&i%H9otDE7Gz8`0+zX=m~Sonz!|6nsFQ-zHX~~URA7$1abaHIhdN~M+%mZ^Q z=#{D$DAdUvfbp>O6za2f+L6c5v^fxk_Kha~yBo$V*^SR+#^EdfxZJ8$0(Ei@2mF06 zFINbYv59d7NF5a*D-lgb`it_A3~kh_Q4{-LXl7ID4IJF~82?)S`>)l%!`q*~eDnG_ zy4tVb;-4>HT=sRQwF%DEooPPWMsm_j6UmgLT0f0>feP*5Ndgvt<>Ap)Q4{%iZTEmQ z^@G>nyJ{eDcF>0{N$-X`8QO5Y!--D81C-}2)AoA|pF=N+;vlbW#@44UPFSh@3W?K1 z8n{iTvUYk$mG3G`5MV&>A!Fs*vQom!!MX)m!Z(qKImu#LM&U6;7NZH1Ov}>6{(=(+RhXAIkaed`U+QaGc4_IQl-U_ur8l*}G4>IjC%yc>jmA^Zp3GPWhJK826)ItI2vgIin zG9&z;TVxm-h}OoG-6@+ux^mkA<;j6)GK~UsEY!2TZ|#sQkm{+D1BOy!2FKG%ScVl@ ze1SiC{V0&DoT$pJ%92>$s7<2>+2+uNv)!e*PsAGZvMoOV8B{NOqxYsfDyy!*Dd?lH z0}ED3;Nx?EXuq6thGUj!a0RkVpJ{S4eI!2^C2b9DiH?qKBfy&N%32>)O6Cwd#cg=r zLF*d)-OjrzqeAQe;Vo`iITQe;w^t78l@)UNK|Qz}9a}`5&ny7(#F8iRjw_24Qq~XI zWhGKZtf?Y_blf=gS!GKH2hWCPS3uWO^8A7LYG;cOb*_X)|1 zt>Ae*BAs+gv(I|(6*VzeRtmPGa-k<{$~FfQn5RRk#~J@E+8)mhLpC8;;5*M1lCwq5 zMpX>`AjB^bxWnw=ky#AiQzLOxh2phYXut#6-;sE)B^!n)HxTbZb{O=VY)@2}8_;QB zj(9f191-N8IAElBd@HCIYRhio>RPB0ya(=R8;5?xxoEU}SX>GXBW1Qxzb^#%v{X!a#27vFr;G7)|r zpdOmIUAIY2Ly3ND+}#u?ZZEyu3-@6Fp}|F4+Zz6&uI(&$V8aUVj?*O@+bddXThFL6 z-s~3Hss=b#d{QpUuBARYfW1Hwcq*rHblKfh04jK{dWoD8i$E$q44rCM+C;CZqDbq1 zu+5JNRJLLK!{{d$d9z!yBmN3?a_biqxR%bDwF$|Y!!W~N*35~ijwvbYzXZl~x1*CS zQ|!HCcY%HPjOc$K26gt7906&wIeJxAF`d(IbSIVKV1y8u$MB-~TTBvwrxm z!Td-L0Dg%eZMB5AM)?L@kQzp?xd6rfcEguqi!yv+wTWL1OpQ;6l;T^0aCJCdK0h6C za_-$G7hfz+le0Xxq7(Dd4O)W)4tEg6Gt?Yf7<3qs6U&_r=6-h%V^~&0;odL~5E#QB zT(cyO0zZLqD@d6x+f}yfYzI7sp6DsWU$f8ZM&^wkEj!)swE~W%Y^7RhduKe)5ODe755vFLAN?=kANA`q1o15!lYKsoDx2mO zkx9iL-70&HfGe|%RCgYm&Mz(NEwoc<2D!0zZLoapM&wNEc0D4{W-b)kZeVBiYl6J; z$PHBh>{B89wW_qZq`8%i0-jop%NhHXGNrH2b^MKdTAhu1cH#Rkj3hC z`c-le-ou;3hkR0$M;Js7Mfr&j<{!d;k^f!L@?75DNIS~Smty?m={5Y#zz!r7oGq6_&H57GJR;30RRCrWfto@V$K~-Ud zi6J9DNRe!@fzzFo8KZC$=DGF+au@}bWCuvDv_W{3@XyFW z?PX#ML-HYbGZ0lckBPZb=_D%C?BUtu@sx!=OHD!rupW72Ns2bqzc6?vl(RsYYiAlP z`KYrdx4T`QE6}8`^F^|PjjS#v@>;H zORRp{rWWB^yz_VEE!(Sdf!lG)It(iQ5i#QtbMyAImoLNXHy7pDz%ANc_{>dg)5hYY zgf$=r*Cvv6>&w!>qVh5`3JeNp9?&$4x3#S*43xtKtqD1E>sC3y6+~BivSl&1)!d0Q zgk{or6=gov8cz)*e68s~1gZ#e#i-V;TqLxpWvv{+CAr3^hLX^dLlah$6^I&BQDQ2r z59^`B_N7-zWlMvhm>)&R9Wqq}ugJrbB3tX|T(CHwDtE|#HbBjt0?Y3qhOM&t4Nu)a zzWj-E15KL^WE73$F-!Qv%g6D>U;@5nRTt>_sM6dvNT3~3?@Dze<|b%|b{bl9PxpsR zmVQs0$D7J~SHA2gpi7tCo1ja=5*Cy~hmO+RMp%etQP2khIhY&Zp@z1E+yJVwyA%w4 z+iueVz~WL_pGU58ze~94cDG)rD)%IE`p z|Kms#{XlY)0<9s~%{aqy*fp?T+6dyelM7HLoU*NPnWA33T2xhzgM0hw_y3{_%WBLR zH`%cRZ3m;s9WqZCb<5v+*v7;T>x_^wtMGpxMV65dP%8yoKKZ#k3OM*lxICl?oe_cz zMOf}Cr)672a{dW|`&yl1uI1V@eMFC0urQes=WFSt(jt0=E-o;t=yDAd`Wzjsn)SKr zBNMNN4Pbq>$DK269Gpdi2Rf{{`ku;Gz~INXtWZm+(aC+8$VoLUKH7$km6T7tGjBjR zS3H>=sBX&m2oL;^7y9lf4SrRY(Je5|5Gmj z_^2=kD{+vA!79GO0)XvhKq$q znU<~P?73R5?w3*#$#WyDSXM7g_d;r3JD9EH}Aj#gr59JFZH#PiS$C2=S91lWB>fASVG4 zvL7n%N1D;9O+d93$9d`i&@t3Z0itwheC65FR3h3O?83zn1KOFNt z>vX9#_@w48ZL~R);tLWE4iqin`exA)LpW_AFqI9J=1p!LkoC1xA&N}{$<+d69dxJw z0~CxdQHhndzTbWlUVeRf9BeIVQDiS73d!0&+tvIxTJ6=LKgN;sdE`%}&OL1!)KbjsqbSX9QhDKE!tHs6|rves|!d*^;4bJ!V%nw^tttZ_u2)bs9T@|tf>UW!*v>| z6%D+GkFNm1k)k%-T2~u&BAgJ7aPWVGb$W-?r zv+>ZaLUnXi+gEjY%Uer~t0%d&MMY}el)Y%!VF@LvK5Z2E0y>3rIEjeQ@ymj__FBy< z)&o^qD0L}31Dx)={k7K?Q{h}9;^c^s4}u*m`@>qX@Q#r>&X$U#S`q~0U3vMe%7YRF z3uCZP44_%Qt*Deyk+2qGbX_Djzv=AKv!KhSY2ZP#MCpFir{P+6;#8T*z zryAF8l@t{s2%B+yQ~MO#ap=3X=J}H+O57pae%JIzlF|yuZ_Czz*QY9(D(BPc6prit zK@}r(k>f{|2Drm7NU7~0Tgj18bhh)dLw!Dc76iR9+5ktB0|zITkDwQm)aGGdC82HD zW$PW`SvkU-Mah;jla~XqFUaOBE!<;CvszWTK(!ur*Sf}Nqt8fM0e?dxudG#1YUD4t zw@_^{7fpM)d*XC<>ZB)C81m=clXGT`II0)3CF!NYF9~!%fT6IA1)#Sr31F`+s!-LW zf^Xay9Pky^*&Z|QF0^FF_RxT{QwtbxZgJ$o5of{E5n`kj)e);ziZxdO1x9g3{ia?l zZX%cg`KqEE#JTowUQ_UeR0YM$(v0#>B9!?n-i z;(D9ffD?#-9N(3C7q=L^W!Ct(fD!D?dnT%!E;2Ol!ROc)}x(qr-Z~ zSYZST4?t?dN&lWAD%>`&$mcwWjEc<&c#9Zq$OBz)P)t1r%aT$A7&%2$@TLVL% zwQ$IZ`a(NgY*RU#(z9V8DjiU+)lFRZuzvyrSE@xh;5!QN)T#y^R}oA)pK-jm>}Fzj zZ4Uj_1T?obS4w)tzeMVL%bWnYlFaFmMqfP!tQjA>_Kj4qGt1*F{y>8^Wzx_WYL)0n&ZM!*bOw=p8 zn$DLkQ)U(Uv4cet%_!$E?>#aidzgbd87g34V*w*ehI7SC4%6d;6NHBn{>vT+a9oq+ zD|>AREo_6ZLQN=a#3`Y{k^rL#owTwty>5v4=ujbY1+Q?`k-M;&LpCU3bzzEE!sEym zjjWknRep%6l#d+UJ|hX$Ny$RKLaT@@FhV7RBK>8aI>|E9tO7GzRXIY4(@ zLei5OQh77CQIi*lP@`Xu2)wiE(KBFJltW1=XgTM#lJikU+(|xrhZ>?HV z7iNhBr8U8^3^%?B8o6k)&Jw7T1-h>UI&CW_fN&no(#13M!S1<4*=vysQ#AXC)V6LD zMMBR$+5VCZ+1qL%q_VfvFVg1Kbjfxvxo(=W1KejecVJlA2!7Vq45r{xRA`bb(Tbp_ zd6}dF(|M>5+Tr-sOdMYDjX4Nto+^o%iSU9YiH=|I-&Mv*G+ZS{4N`=}r-m?)S(o&R zXVR`wQOi!jJ8DN|zvk1Ut<-+Pg0{hh#(1RfY|}| zwlEF@p*Eu{z)nGlk+)psbu^EoadQ(R#65Xc}J<0L}??*)fccwc#!$XWTa@yZq`ViX|dfEw8rMQ=5 z7@O%cu%|u1_l}!SLF@BraZ0BB889Ed@E(YL+DP@uAo>7d?!8SrsA`7CO1VC&LrB@A zt&kj*<-4PV5@!h`C4}>EE$&`w1DcOHsrmTw00cl1O2}a1Y02x?&K`*@siz8Tje;cU z7OpxMbyd0xX=Su+`}3YpgLz@7UDTz$>bcuwF+-IwpkZZOt3v~gQj$49Wz2pLH%SI) z&BB0GEwGNv<^>_7I2AYFy?%Jsh53pNX!)SCoz+|Gq?koCbA+YOj_`yZtiwKvB3K#> zG2&aMnbtZs&QSOW9X2(AXgO#`ki>$eE`Tc~APSD!(CIFiiyW%!UbUC{pynWOMW}W; zzM0V~Viu7-1vw3dBj7q*$p9W`d;%ZX6L^-_NZwMo+AI+%Y#??EwkQuzWOp|iKx*m3 z+gTrlGx;4O148I*l{AF*<8Fsd3snW=_>fywT5AQhgPd_|b&I^6xFm$#X`N9tNn_c2Pe%S;pg~0zMPn47ebKb7L27GRI}F4bbTfYer}(iPh@Ka%)*XBD{*%R>BF12MB>9m=1?gX6Nlx6{tJ@GOuH|M{#Sc;i*`8;^fJxp zc0yp<-i zfwE}~z)g6KWPjNTbg_d4W6D`EJK8Do4&u}-2cQ*hvO0Ej3w+wYCu0N9~C z)BU0?Ar24IKskcRRF=DX&Vre-*ijn_nnAW5Jln37f{9T`W=^(tj{V#JSIwof@o62KEeZ5leh-yGqRQ@ky4%^S5f$y8t#dlX}uQRTvF{ zJn8>H72L@ynX1^7uGs$>Ea|9U;Gmc(x7`W=H%ftE`nY&|d&EUOICWid2vmS`W2~KK zcS{8s3cI5$P-a_4*f^ZpWQn!V<)z5U_vGX)&KNVUW(g)A*rUW~e&P;NbEuMMocGSq zPQnI0kRP2iozZSs-53$mHgLH0%mgRCpf89yL=+X&z;NMmf``&-5vh(KO`cRWcTAn^ z-hna=Uh5!1x4;u-m#Z(=>X20kBPwI^*2XA^-{7z?+df4}(9A+@4iF^Mn50zT{lgZ3 ztv$7CFnXM%WWc(#b7FGCp-55C3qkm+Z=eI}(*ORw8<8^FEdr_yao1; z%tPG4lRCQvAhp_v!tbMonttxkSjh}HWg+TWHG?y=FRj_tzal$O+2ewgrfVCaRR*+v z!tr;hwiU37ENP?`;21YfPbidKRqi^m^~cNRz=v8h;-q$Ou;_(AU6Bl!nSgT3f^mVv z%6fB`5eRjH6HoJJ$W<%^0Q3-)O6hcNvPbb96m9vQ37nOXAMvZ9aKHbt?T5%6y*$ns z?p=Z6uvc<-2S63=g#ZZC*$E(tz)eY1@gd58bOaTPweLZhNHm;M67&6yJyr!J$VmcK zW-{0%3jq|)0!t=kit>~Va+2xBwj-p4(ikf?tVs0ZmWkb~aBD7+Vq_Oe=RiqhzkT^U zy#4(9|Ks&H>H}0VCGQo(<1WLCM94Uzg*2x<;32DggFc#2SUknd!QL^Z2v_b-$a`{5Fj`lM-X83o(AAG-}~l9XfuzhF0cYC zz`07BQ0LGIXsy>g1DJAjmNa6nc|lD<+!>Jy+Kz)Sg{QCW0MKEj0BVaI{gK2V5ELzD zpuBgN8fA%X>4=ehjG||aJBZ~wWnKO*YH`Ih?%08X2qZb*p`f#Jr)lRIoSs=b28|#Z)cwac*+1G zW6}?qqNw!q4bL_`tDS}XI zVF*lBvOAOJ)tdazNFM?hA}(8}nyE{pZr}JVPE@*tLmlU^<8y+ZvK)1Ca;L_OT;#Kj z1pyRkl_yqJkg{F{ z(!;~>I^Yyo`X_~lnneF6iEKgo*%8-7py%^|BLa3?49F>|vg1ocrRP3(SWduFqJorljdn`nsQ|kLuv;US#pJ4Hc?*t{PniJabz3)_m(}fR zdtr?dW=Nf+s3?_OEjc6=OiEc#a*YysCDJTbl4$Fh1xbZE&|3?#6{7>2Z5XkOh?~KL#@( z#oK?y02pVApFnHoT02W+t|5*Q#cUX(btz%#0XOR294@-umCllT=RywxsWvcA$q7Wx zam&3dis{Oh!>U6t*Yc7z*r#+^5}_>_h7trlx$U`@oRaW%yc{xJLC%}xK~2uzud8uV zmr4tXPeCh$iSp2+i$><)_s2(ehb;_du+)>pnViK4_r%L@H9t&gor<$vX2N=8iAXS! z$}%HFevn`}0zq$q9FVU!yA9`Vk^Qa8;)`NlH>z1Q8HCL*70%VGyWBxe8ucT$ab7`v z_q4`;Ch-G3Gfgg_`Q$7B<@Xz=2IZDKwkLHYB+5t!fh-ZBWYR)8O&* zL3N4K&k|4pL_^m&fm(GK5v0ag`Wn zKa~Ifrm0NNnFA0$u=xxQsvCD)guS@l`R2GjV$4~PyJoNzc%nO6&l;n*-0h_m^5$? zEp?DfrM=5?^86|S-3`L?vxQ!e606Y)A#Cqid-#T;ZB8D!_bMqbs+11p0zs8pFDe@m z%4N40jlSCC1-6PD`9u-}^Mh9&%ALKSLPa_F+i!A9lCoXeHZ%ZjVrXWVo)R7|0Im?X zqTUYb=*LbaxQX#Y20Xxl!JnDlz^H6>c9PVpZ1${(7hahGpx9q+@xga!+FSyIa%HE) z5z18ytm9TgJ2`~_UD`$o@8efXVLD`@scIrCcS|$V2omZ zPGOdVr>|B1!6rWs#bv~Yn?eVa@XC@C>eBU{=YAg?t^wtQ2dfW=fZFC8W))NKaMJGz zA|%%1w&!4}R=9W#+Ro0cAT+IBjjSjTgRG`+)#||R>>4)Z2}xBk0_mU~1v{5s{}NvR z2vACAmhd1N6Eu@2vLw`6dRiBCv%Be`A1cugL0VqznEb5d4Wesu2Ob)SHP}x2FP^p~ z>QsR|!zI!wqdtmcWus#kd)PtBF^1{`Mksa`jbQ&)PRN{l(EnI0&9GEw#wVv#e}Pg_ z74P^E2> zLKCuwAetny~mcsUpdWk@{%$m|-bT}cS`m)_*|TpaYIgM+6gM@I$vbWPp?`k)0heG77C zSF8#7te7tXX;%w|{l_8rp&I~zJjCIL5r-2Kv zqzL0l9~HWm60`eq&!6Np%MXkkb||!6ch=wQblpzV>fvy+liOYb9BIw01b434td|c1 zS|?BiK}$7hhyoUCXg*Ad_MSaaS?5hODjFmPp+Q<*+L=zDz;dXDE`Q~0H=6^!RE=sS zm?b#?6;}XlHEPy2bRN26Xb7e+XB(O{YjUzOA+C|iU*Rl#8jZFJ>z{=l{5{2PDyL3A={AMKmdac>KFyoxGVWH%CeTDOy{sZ@OJ%L zOz`aEGTm^I(DSzS2NH68IC5D#rKgtQpuu56NmHp#G>F$GZV zvLl46EoSBJ135t9$9Smy1f9ubF;w0#)~M|E%J3Lf-?Is7Q0D^-Ia@scRn<%jTp5%# zJA1K;Gx{W|zkFyHUvwPesTVZ|rKmU&DB~^c0H;Ov+4^V)F!h=J!iVcTh>b2itVsOAy zoMh3VHw{_^BgGYl9<2Dz0=U)5U}u50D+QC8CTkOt^DS5fITE4SAx`SZ0x973?NU>6 zx!OZ_!LrbvL5t=_d%}!j%J%%8ee-W#zKIJn0*hY0xIBg48t}688=j#CI!2&Y*I+kU zxrWtb@1(+%bEP&OY6%}UmEnlE7gIUUG4tp219G%yfv_*b%XeS^mx%{sf_i@(Zzxdo<@J z1zHXu4q)IZ)dg9NiS(o2qG=1aG*=YKeQ+d8qcoN5REW;;3Z$kiajsHmOA4QO>+KcEX zDY1{aG5XgqA(KOqj6YntxdX{z;4O(wl9CbvO0EA=$r>j%?OK&PwmAip`k|;*G>B7s zV7aW50dQ~(uFZivc@SNvHwn1~n+C{6K~JmlpJX7wsE~lN@p6>WmVG=>>F}t9(fYCz zHnA^s>)i$L%2jUd$zC0LIs~1S zDz*lbpRskgPNCJ5mszo$Ruc`a8B_cXP% z^X&&Op9jvL_xX!lREJyOzF185EGWoSK#&Q`0hrGN9>XO`isQ5*y&F zNT6B^%2ET77Qz`+f}bs3SPTHji5f#Y|CwR!Ij8y=fwdBD~rRh+}+));# z_p`l+|IMV~|1*!-Q>`ndjU1Ub63V2ig(?BG!mECo6Ce=&!s{iLcqiBk@Ff;q`;eQ$ z_5}0fDgxXZRnlr&GIg&llxF*03YemDf>Q|)PZK+-LyUH|jZgY|wq_q>*Tk-`{DIwQ zjZ?0DcIzG4S0A{oRhx=9rnzN|^`-?_ss@#E7CZU6CH%u;pj7w&d4~fd#s`caz zdhyU&M5v{7zB-<#zO z5l&%iD$^b$-kLmLTQqNf{`w)PQZTRjL}G%%c=pjx26@xYIh%Y|1*<)ZfMyZ~$%F$- z3`$G++1Xg>IEt(pC#sb%WweRQFhy9Vy(Z?SXK}RgkXRe>+!8zGe zs&iHJ8iEW-g>WAorGx7lgoay^vu0TucI1ZA(xYbgZh@-xTdV+(slrHJD_fHRQ7m`7 z3ykKl3f|~}_4;XuUm&5+*hDMxBCJ;ogewwLi)+sXed;5 zSF5ZiflC}Ne;fWmzXPJWg+49BO7$mi_GD&g5r9+*6>?=RGwL5((TmA{c1HZR2`#TWeEG>j2vO!Wd zw5|OlpXD_{gd82J$$*+SbpSGGKhvptLgUplt2U zo^z@G))R#8An@R=j_k=XFB16e+TZ@`%g=xSiQ{(FY0IIF<+z*&Izx~4*?D4UTXN2{ z4~o_#$)1`SYgH`JAIWGBJXd&_sk|8E-o19{RZwx|83|RWL@z3%t2S|~`?6KZx>Yer zmd$~|!G(LZ((UapUcL@5pU3-<6e~){TU>7e`jGHqqJP?W9;sUdw?|2Nh(I~yDVjDQ znwz0B0yW?tayAu3B8zwXGs}XjX&KQkE|-$K!p}f_BuV{{n^2bYO0cgS@iZL;hu?d8u-}7lp*{FI5LrK3*KDuW z^ysrehy3Zd{B?N!ReZ2bl7(5p8Q)mCH!xAdApPMvo8?ydbO62MvOY+EsNe_GyB>DK z4g&~@5eL~YNZ;K^dP&pjED{Ns?nOiwSdjK1K4sJ#T_$B*2x+jOY!&1ISL%5kL#$WTdBduT}DV%P_r66Xy!m?qn}=?Pbb1R_#h*qNtKMo#G4 z+s|MB9KQci{Jjr=;Fl1OHd{~7tYvsyBs$dr2e<_6e>5wb5%DZe31wkkkyb_QPKI4Qy_LWB@&5aiahYFxKP%ZHb6!RA1BwY*i!YnnCWeTJ@ssWXl{T z0)mJfess!w1oj1yxmc7{GeV46^xG#n^rolFW3)NdBPv|lXB;?oBF-uwz+o011C^w9 zFLosW7&1p!l4ZUfIxIEZBgZVE|s^jdV2Ki3OW!9E*F_9(Zg4@oKlQTgP85hvt zO$!dIiwb}6W8ZM>fcGj9X&tcO;4gYo;{k2shukZrs~tR0`f|s}?R1FbIplXcKfNKr za9MVoBXT0KkrB|&p%%of#l+5uOV>u$(q+8%;2y#U$#&i()wzkbOUXTGJ22i6E*bwo zgjE(6?UX03JvmI#M5L&oZ*mvL*KvDT@umilaX8 zQsN(b3Vr)zFG@4enUaZ*VA^4K#fc^A#fst|Elz}65*g8p<>XV6O}Ep=&|z2V7}Z;} z2za!mp{g^*ab7aia6gkG++A2U?WA8KTdo3iieAfIkoVgj8JD$e=ThPh>nvI0t>V^u z*}ew(jfnZSk;OKrAzEJ zp}M;3#cHYlFxZD1(pflqK9g~X7S0M140@ZGV>6059ZZst8>gITr`R)Ei87eb08et4 z)wrgyzH)1fEJAHK!)sxv_Gb4~tb@pryuB{FU~p?-DRT<$9hRVpD zem@H|qF@&s_v)hM-8-r;vU=tz8b!nhkZdLLAv}ohl|KQo_)}DO-@pmtE)o=`Ibvym zWFKrIG)~I{wv;#mOfzNJtlgl7&<)$lK6~y|K;&X5i)-uM@z@r$fao4PwvyW%naK&r z@b-Va{5F^$n%V?$Xw<6uP<2uINlzIT^tgKln-Laux64olD&?u>b5}(GuU%$dKz1rQ z5bUrP<>fq|C5?bU1IvF*o7Tu?Qp*ekw}KjqL5<-lKmnq+Io837=8E^RXrvaeqq0`C-0T8CgNvxIy7ikkzDWkS24tb!WjSERfjrKN{uZgMeGbQXaU*!i z-O#UwC?-YEYDL9j3`4v+PB|8QS@0z72Z5@|u|8Y&+IpyuoIW|5c34?1ZBh6ftsgngoz~!N*rlI4X!AUl{Zg3R)LgIa_P@L_LN{{MZ;A> z{~rTE3fWjB6@#+6Wp|51r7A|M9UhIkv|C(K`{y2p!qz^N(WCT8!g{(d%nS&4q6I8n z@N97a8X-*y8a0!?G~o##wW*5}8KfpACWkHt2bq0aR7%>wq3><*?B*n-g51vk82%o} znU7vRw~R^o@JXt>JjH597a2DfOb=4i5MmaJ$K(8JR1KrbWLx`<*Db35t3sotBqH;F z1gw(Y5jiH+Xne}mBHFYzB^;4kN;NFCr924d%xNReWiOY4B?cJ7;Jfw;O1Be6@&*u8 zCo<}A#1T_bO$*X#IYsU7s&Pwwnp9lhEh3l7QIt6p0_D1CCs+D_5hwWQb=-#pXWns$ zXPhbZoN7yr28OG$UQ4cW5bK@^u7F`~=uf6vQcUJH?}Ok*>Oqv1az=WGhpCo$qsSXs zrM_pbT1Am^w{J?@XB5c~IoqTpai)B}#H!0HJ=LkRSUVyP!r@J|n>o*xqnnZd^Bmn` zY;k3qcK+>bp85j^Q&Ptt+YaQS_W*j5M4zBZ*U_52*H+3_YhA`4B>i4hfN!`7pd|5Y z-bT{;t>Rk*e-{4^Xw z1x3@1$6@QbZ-ndQb}=vpl=6g`Wu?So6xNcxqv;z{N21%DYd1YI|kyUNv(q_ccs?%r%&@iYq1WmmCNq8k+vVi#yhx(Wv zm}ib86{VkT!Ah~)i8rr?z?wXvfIroT#`OQSxexw1y#Ip>gc0QM=;U(kjJ^@~iN2kU zTk#UWq_d@6#Y3E;c~$9vwUWa|m@U_5lJJ+|w$C2uz;&1P;=rumO%cN++?{D9*nD&VJc+- z&ksRnY&&Q#8Q+>Zv*U_1!=fLX+}j0=EkL$T=}(ubee1Y!u|Ukify&V}y)6{;Y4zR? z+MG4@m+TQ}<+)0vmxQ2Y(@EA*(Q1YvSF%Ac##j+*TM(SLcslVgEp0Mp?&_~ZsKrgC zDzKKHC+E^mJcvjN$3wyH_dnX&7N zkVMlY4=(S1whY1f6i~WKf`M_+tK}`1S)L^mAnn_> z8wNB5${UOhc9x&=hmyX>rmR>CywQ5h>2&v2&5XP#Si;?qnStORDJ9X5yGp&oguZH> zz+E1zJntu~;o#BBgGohsmh7Fl@)f@_uEgHVldKC9ebcl6-G*AO*)_N&w6z?PzIPr& zl%4taivB9f*-9a3Hqi||{mVeCgsE}0+@n_*bM7Ks*}sI3djwG?E@N}ioH*yNfqy$R z7Y+;>FDs-ShyZTYEpsF45(0gMs4WTWKdFBN)yaW)nh64KDO>=kp$fdyL=xYcsa7?P zS&NdVloQ1s@!s(wbmFkj*v=f|K{w9_gQ~y^Cs12TK=s~Pt;6-O;)AojrGobH-fLZf zOSJ8?A&q2(2ZOl{9u6xYqVTb0PDphwQW6C%D=a%6B+Xaog~^uLu-TsyU`mz zAm&ibRW;I;kP4!j)tFM3+-XxJ(cubsmx@$aGeZGNvrczzEg6gzCjhGPo1VybFW>Sj zQL#3D`fo2^zx{72!t?)x*Plx*J>gf`G-pZ!dbO)#DvVjCmpD6c{m_h_!$V3MT3Ixx zUTpak4$qLXdVgoQvL<0&NU>17N~(XGVX6OSJxVZ^10~dy?#XJ`O`vy6E{UTZt=a*{ zm`~Dsw-<#(>lFY(HZ$NI12n_PX*`CM6`>O6Vff&p$XDnkT^U)bfvU*1mMgW6U>`L} zyTSRxTp%HVjtVx%jL02Wr6MZ7*i&V8)W9DrWeMWk}dfV zBO38>$zr6*6c?Diqs=3Ek_{s7p+Aw`C}#5r$|(iu`W^M>3Ovt{#LT1l90~ckrIOf^(hmifD+Hf#da}E_Dd5=S55CKiImQJWnWsyX0>C3Mk2DuwDYs&Y5(J~i#Y?YQoGyqv7bdnk|t&j6`kz`(fS)CjqN z-KmdYuZ7expbM~?`_BfMT&sIzrPJqX&03cv>X^HAZuXApYX;?hpg^U@nOnSJsSZqT z4eXnB(u7)S&IhF2$RCAio~44o7_is6j@~_ihnEX6@1aJc&Q`*(QNnW4QSH{qClwjC zGg%IXD)1R}YHA->dao^QiA?0{pof)ASkaoj$!ag62^T;q&@JYP355(JfP5^;&dbk1 zqtmGAq7|S`Vv^btuet7OF=yLCxgf46zGOE!cQ(n&u1PhVn`?~0VK{8h0xv?>(Fnef zno?f@<(_JZy;KdnO5!|3u1Mp2hH79X7ilAvkC`PIttE?s*KXq7n#@0W8c~{iOvb8! zXOEI&sMG<1A*FAA>OE2y1|WAZnQE!q`X)u zx?&ku;AOUuP}p`!Xqn8Kd-tztrA#BADB2ex3CC#w zys+JBU=P(Z+PR<6yDTROwv%3y(=?G>I-kjXW2zH^&lM(eCCXbRlcT~?&I2>1Q zl<0Fn8HZOTc3=x$*rrH5`fNxgP@}``@6-@L8~Hy&Nk7Lv+FVv{d^ZM4Nu4ycTlElQ z7Z@766CXtt`W?8teZ;-0K7%6vO`3jfRi@Buw26Cf0)1g@h=dv{MZxf~HxpdDC>J(v zvgsXAFBhgm7dLl>$KRKVw0Zp<9J*e9s{i~*u{U4o&p$96&d*=IdHr1Z7vJKaFJFYW zKYRJv>xc21w;#Ry{`L27fA;!2%L*dmE)D8XJ(Za+Fb=9GZP>ckalD}^7+t-Sw2bZI zPSvUGnM#>Bq5Lkq9KozA-oIo`s0-RVkC{n<)-(mcOm${d>kSls`5SL}#pePp*B^r_ z!o{{5=mG|p!68Uq1OySIrV1w+&nYobmIh3*jEU!dPvW}!0j9NQZ*(w19N~g~6ES>WM zSaMGE-cuvxEULA$y}w+NjaA~Yl*->p!a=2ds5xTTDj#wU_L=OwdLr^0 zRZaup$sQn4gAc1uK;2$xtlN;Nl9O|d=?x1buvL<3UkoGY?%K7_Y9DMUXIY38c~qFH zMZE+bp2i6ZlGbd9I`7Voi{uH3L*`vn)L1v%_GzZod9`{|!9mB4Z3+Osg0#|-l_kFb zl9%mjFA#9kWtta^Ra@0GQhe;DwKPoZeE!mcNE3%emm^IC&_e<1?a^Q{)(f?&?y%}O z8L??6E6GLLhTLWOT8?2rYhXSASznlu6Cen&Lp08fgWcvUu^+&w>d{qyS=RQNo7 zV}})#276b3?K4L<01;R9S|XW>ImkGRwi#|2xM0ur2ti^#h^FZgWhqxGDS(e)ko?Qi z2F5wu+o?}$7H3BMgn?9s84$*d9E9YOeaZS&?RaA2azK|^RO*BO`t?`V%eMFMHDAcr zQmETgeN4}C-PUJ%XxCKbuWp$GVxdQQQpv`c#`YfVKx=p1I2aLDfiDhvW%J0&_!6#eIRP z%oSsmm7w8j)~Vv)8a$)y-V`ylQQA1CXx39ITkKKHm~^P6xmtdDTm}-y=FyX;d{&k% ztlfK+US#sv-cPEgH#pd4{XmS*CJRP#1*~#Qp!VF-Jg9a1PCIwzWsR{vP6oKdK zGK87uVPJmS54R_X8OH~reeH|0x(2PBT}xspP;(i49Ihc{8#Qh$9_^uo(#^O!(dMe^ z4ICoEryYPo*hsp3z+^K}D5S00?JV67_YNV^c#+^8R$enP*8eW(qq1%EV+ zre);dG*-C@^EZHi)=cQ3+A){M48)e_6Kv|5iJj~YFVabV*(2)!#aSUF2}C%R5zs2J zgbhm#6%`(~{f>uIGm>v^t4AH>p(-CL!H4eIg$_{F4=p74M$iV&HqI-$zjxoT~0J>kU_P=F9(e@ zyUiqqHY1;~Qg%ush7RE9e76XYt6%{9PI{(5*kF(BX5W>o_Q&I&&*X(rIsWyV%iB-G z>z|S8g*&=o0C7LN2vG-ZH)7RVm~?MVZIPz~$Im+C?Kt5y0V0}HiF>;wML*R~hWFb% zSKA3v_=6vWAN(MG3V##dIy_CR@ws#Sul;FjddX=EVZyD!!4vKoVkyesfO-c#t%krK zxgLAkSAbOPxIcU@k&kN3%cz3V@p|Up}+OYUH6E$(nFM8{T!-a|pWu1uS97u0YFl zh+HW=Jzn4B3vyL;eTh32$&s@P_?gnc0tPznA)%#UhIyT`vZR8=2obSs#%R$i;*?H7M45l=H)fyPz#s0@UWMoqK0`9#;6o& z5z!@XP0<^6!_|7qZ@zo|j$gz3Kj2sW(?>=bUtpS63Jv4jf*XcnLFFkGJY{AD{`(+D z&Kc_}RS$%0&Lz}8MOJdHRMs?RDxp&Zu*tNwcYDOarrS5EjXw&M|Gi1tLU9@!#-ztQ z7X3Sx_43>yN(sC+6Ug1QSBfP8P?RZa1B(w{Ka}eDe~OD{QQypLo9t|b6iqnfOI9Qj z5!BoBoVAD~1|a5gP@;P5IFdQYYO(2{%nB5ZJ(ti}N*)GOy1*quZ}wXC$y4GQ^-4L9 z%L9)MfDy?}#i&b>u^`sjy*XtmIuX?b2HOk&HCMu~fs`C5^tVFpY@l_lQd#T<$DLV$ zWTxmV6&Xo_sBbJckaI_#ih(ncdA;MPe$9H+mLwcQ@HJKHEb*O-q0}K+22fhV^!4T)s&!wkM0%)Y0R5)wXk7_|`D#sF3jjSN z0Vf7yR7_$D6&E$_G2zso>d)hBkA(v0+EyLuc+$tT>ui!pD2V{#uxl#Zv1^c5wiC`c z$a(};Y@RC8LgCvjE6tdONTKW*X`g3dsW)y4nqx_GaCRJDdS3_5nP5Ood?)ISoU#LG z+qtzdsu4NO?l~5^qDej}khehv=@`&Km58m|6bkEiFDU&+@W3zXWoSWE9ts8xdQ`;|<) z)Hw;2`W#%F7`{`WHYtdGT~XLh`vpUQFz<3vPlm=is9qOyvpiYxO5UHq2?b3uD7?N?UqN2`NqtYr^Ho(LIufEWOJQ9lmU$8i z6><9wz((=snYUV%h!AK{tsb>@1h`_9DmD{DnL#XSSsLiz!dQ?}vg%BUMuR+t8&~%> z^|a59%)#&fCH$>^yN_3e8DAhHYQ-9K4dcfN7iiIcI8J^aO@aq!&zJ~v(iuB#!3d{! zlr7F1$2ig8uABDynjMp$6)sAF(7Sc6{;FVA=X93tfo=!ji^^YFHDs&}d*~XjB?OLR z03qIvrRT6qt^P=wTfppTiDy~Mv_M7Ka+(UxT9P_k9F*AD=is6VFXn!?eq8eX!#T$CR~C-t8k&eC4RD)kRU4m=fJ8ZKPeIV?coJ zw*t1(pbZ;xI9W#IQnC-h%{KBLu$a7^W)#hX(=Pf-XD9mYe+d8hkN>Ejen@sz9N}x{ z*UC+}7v>J-E+@wVKdf>AD403yrX+RyTp_4C9uYnZj!#wND0J~o#xu6|t`U^v_z;EV z*KEf3&M}Tn5C?;!4V*E3_Ra=6AyGEQdn09X)+qXe+=rZ_Ov$Srl|=Y`%f_xrspbkY zK~X7@%(X;ky!DCN1;bP(_kl{0K4``j^a!KAn6qbV5RzOQQ2mh@@1T${GmDaw5KE1K z#9~+1coLn^zR5X5S5u3)B|rWC$FJXnx1YX#`1&e`B~l^S?( zWk!SwNhqCPDJhW+ktV?4xEY$4!@Nn;CBiL`~JsTPgq!eoKT$D&kBAe7uA}LC$0`eyRm)E!U`c}kc^@A-yyeIFF z8N=Rdui+a&TtkV5hNvn{w9)O4pD-k2#eXNyb5>s>Gu27v=S#q)tU7081#7@U8kTh) znphp%9U#1N0hf~BydcEh;YMMn%!BD6zJpW(Kl+iS9V--sZKMLeLOifM;Om-@DzZ&k zi(q6z?7DsqE?=vfjT1`sSC9udZ>Wbd}0+IOJtYeNj-pho;Bkt zi%5-z2_>xIcET{RME0uW#EBL{@-CL$Ml9LD2n+}*M$UjU`EXa_Qy`AJLnqrNRpaa$ zU)7A%?fWE72u#5OMEN+JVbzMUn|(e3>HGZr?mo3Z;yRp8x_r<9g7xv+Hy`|7{;lx- z5t}%X zR-<9;8l8M035tQ|hTX74jw(M*a)qUA ztixHkjFTQEYwIp83oIr^Wm(x$zoCf&mJmp105w3$zbg^+i`y?DSWS!CsW$WYU?)+Q zu`Jt_0IWniLsccU8#;vHf!4A4YE=f61hHr-PnKjk*^hwgk7o5<jwMS?IVZ= z0B`mSh~0*FXzSR)VT($ORZ@R|62n{dLxJFO4sbUBxFkGP{o4-u&{bW-I_aWnu_k%x8%x#13OWy{@qi@i$?dB?RQStV zPAAPT7H1~OJW(OT-6^@=Oucdfgy|>rFrf24UWrlvl%Staa)kNl?d$ORYqXW5imy5F zl{jlH?xZfTcJ#G${gp`QU2wxdQs?ldv)FtKX;o~iTnmN^p1GBCQn;#Ph!h$0`ll1@ zYUweQA>e%`<3kOUnR1~ft4^>6^f<;*EkfA=N8P%RQ9Gn115}OK6)@aVQ;^oB5{clJ zY$4?bT}a6W40_Eg{hl54x1{@|rRI&_N05sob-PE2CEI0{Ur3_UrJjl3sZ#wS&eq~G z1z8GgnL(E0gtG#b&Wq}8@s>JTWmY+Z*kscZV1pHj1m21Sf6JRBXwQe^HH1nlZxKKw z*V66I9h++;0f%`RfYuztLhjn9KwUVv1l!>1dMjEnaoDqI@CQcIFF;+v3e!2Ey10*r8q9owo=%#FqC!Kw+AHpR3? zqHpZiHrgrOLnN70?Y;(Hh87B#DHyP^iz=y9W6))Q=FQdSONe*EG^x#+;+RPQ{Bu(C zTnV4aN17cPb9fr(%1M?*XgI$?yP{zSPLiYt5X+uRY}Zm{l};-W1^JFAo^Kg_D=CoX z4XLJyzm8G>(5?{ptY)s=Dn?F1s8901S;NB6JYeU}JXOBHc#p$NUKN#~LS-RH4Tt(#1u( zY!RNT8^ln%kge#lKd@7?9`NS8=l-xPh{qAQWVORj!ZpCRSzZn|?^GY|di~a*?O-80 zTn$QmOX0pTJcX7;7*YXB(juRLoV!IN%};aO&8OFwl&~Dn0?+`Iw^qUdC3WavsFWX_ zK5JJNNe(ONl>0l6vi9qVj^)656}2O_G216)`fN>nQ!ytR(@9Nj16%p#gJz?{)>9z> zCNcQ8Ovau@hq+xtkz`w|KcA0*@3ogO3%q}9)__1j5nb?)N96rYmks_<`{IvlQdJLRi~W!z9k~7CEg(=;4CfR zOIW}U>O5bJTp0+1bLxbtvVzg6(+w$kzR5U%V8eOs zqymP!&N}UIkaRTYssD(a2n=Wp$XkMwK!FaA#Eci)Bi^vMr7Ej98s5FmBD?G&ptWF! zz0Q*2!^z92OQ`l~D&IW#AXihqm?3Zpr||U_pd(<{E&Ya9I$UPX5wQV zsULLfyZXc%Vos7P)!a5c1UbcX8mi^50rWDr^2jY#&)W(~G*y-A_m}rSd;K=NX5`lY zZUA=J@o-^6pvq3TU@A-&Bhm45y8o1R7_m3-k%bZiJlN$ul+J+bhb+Y9I?z4z2s-3f zvcPNuCKVU(L^iQTZ6Z7y2pukABc6xweI)&%Ku@4%vO#Y_SeVH-K{JceNcRojOM>s+ zFb1nyZrd<;tp~a0j_51^2NKevK8yHqTS>KN^HX`>**#t=1KgqQ474naHfq6EHYNPs z?ePI$;zKG3nfr)+PIo`mX4T5Z_y>(+x)gL+))d8r=k$)`2C%q%Nn4fCL~aRpy&{Wf z<(*#I)Ahu2&CUllQV0UgT)M4 z6(871T?gCROApAHqVi^)Lq|x-s9d)E9tS*9h;`$x_ahg#W6p(ksvECLP{Cn;DT*?; zZKViwK0Snc(*-6s-&}S#U3s9+YYtmXl!jNjx=KdmoVE3&>5~vi4n6?JOyyQE2}BF8 zt?$%?EOXa0Q!(-bK-a!zqo)bpNNG~nB!GN6I5I@aD4m_euXXJzL@IfZp9Ksm_lt_> z4)(Cy9%o zUj`bDCHP_oH)&C39aM;Bhun;%Pif@jr~ThhH%brV(0=r;GbTj4M67EUpASKkDqdN? zl;dz`8#m7CwgS!c{2bcs8aHc*F5wV?r;aYP^GsAC2>Ojyp&ns<0j_xn4+SQZdxe8C zK^z*0tyPmTi^e@5q%gdsloduBr+o%9U(mFU#0Uu1m1;k|q-%CoJz*C_UxjLgu+T>; z9rjWOX#|jcBgx5j3zECv25)DpVawX${)X!83kc|p!-uMtEr3ZPW~h&bG%~u{%Oi-a z!+FE7m7sXp{WeO3L&+m={n|SiOp!EfG>l}47F$)dM;p@BRHaaE!Fsd?-J=YJrFno4 zu9UD^_DWrOACwu!r(=wxO5g6L3JC!Huk0X6SC`Tqh@miJg`tEtE3MTc4NY=eomchc zvmLLx;aXsG`5oQ`8^p^p_RJs>vl3y-Q=O;MuyQAhQz7J^qy{=_!Sp!umIy09&{j$v zgJ87Ez7&`>>q)XlLNI&)mU)|e1A!dJdF28P0Juw#!;*kbT7ws0D6=kG?80>$*C8{j<5pR8*|E<|#J)^N?(dxmIWCQloVZ1m_uxX8;p=yP4=XnvG zR#JX7z*cJ)qm^S?ZVP4`Gc|au_np>_B>nov!FLT6Lp1bE`w>%&(xoRqfBSuS{gq-h zueHG<&`p@x_s3uwacIE|?4qM{;9ZBd12%%EdF`gTon$?`U6@*M*U0Z45M#2538x-l z0+HYZYE#F4;^K_MYf>P=5SfkD%3o^^?0=QH;S}qr7hi&?24hJ8f@)0I{zoQHl#&&_ zzu>Ro`@fM7AMi=>{!XuNsT&nl$m>z+9rs6?)X%|Ir89PQ#C*S;Q0*=DcSF`7fUBs> zt(OYypG8%mE73ORnvO`MXvc?dch+rjIGW@JCS@U;s08(_qsLKqF4?b|mau@mj^1v# zy7Y zAc$a6n42(~?27QDcNLriIYI7;T_rpN2nH9)M+HxKKi1=ada_IvmdVy$tv7y~yKFAi@R&|ecxiSgV{ni`hca4jF!iTUpzi|&|-x2f6 z+5n4`gXDx)lEPq9Q91ik)|?rZCMr*~XMyf3&Rq5YfkWGfADRy@PT(giB!+B*V2`-) zrl~t9_>67Nn4Pa{n!(&dNtslH(Jpa<)}uYbyl_$SE_zk-advg!Nu5v;FyOSG(u`x% z)yV2L!o1u(9LQC=N!{J)Bq5SGW)}eXqP6_J-!UBBn1#lxL?_DB16nl_=^#5Os@^z7 z3}p$;P>Ph`HaSNfBdw_WB96sSwR z()z0gOKh99pjEpbI|gRxtI8^>&9k@QU@7ByJ_1g5^ub9YpA7g6YUlS+&m=h*d$-mJ zPxfPZ-O--)DKUYkZmQ4;G=RFn?(JIH!G#iha^VIAfpXG8+RLg zRHTNPze2acy=|o(WBq)Rc2bnPT!HO8ry9<9vQu=r{dJt-Xg$L1&?g<3k4i0!7Ro6~ zY%|WB{R2{45fv^a$qmj}#thK1PwbCxhEX7rs*hBo*WI;QB4&jM9z$J2W8JQIA2ZB4_6P zA9PGZ?z$m<6@{#6`L!F_d#o_~H0_$swfQ@DxP%zRmX-D)T*>)uTRT2V>MQUAs2JR+ z7g|pOOCS8<1ym*R3ph%ouaw&s6wD6AEL8EWs>vVu>6+niWWn?u{t0`Hu8Bdbgz zi4JB}f@Lfur7p=yte}#|?g|UfO(nE_``2vZUqi`(RP9>#^9F4{m($WYrD`@FNVgW2 zVtoe6ZcBmb+f#c;Rx?cvUO~!`8qI4MYoC+v5ps(wX zu?Iy_cKU{-^rA^7t20L z#|?xxYhIvh$AKlcU9?8YTkq$uzkK^Ty#Ms=tMC3gi>2Ahh7T^V6Gm}?p_U~fHL7BD z(w6l5OKEesr^$DOzdQh#adP4RZTyQPw z8qGi8hvCoiq<+VIc(ae8#j=rq1!&Ecx}DWQ%k9T|s?RoQow_}7y-d2cy@}FGtrheR z%-ZeewnzsRzsisBhE$Ll#ycrZtYeFeP7}I={tSmGdAZ~hX%iRI?ZJ@x5+yLGI^_Fc zN(z$&(wN4%sX-z>(7>=Xx9u0McJ2WwxXKokGH*%tDkWR2c&KGb)jmkAXKMu~5W|+Y zZ=Ud`YXUsfUud%6A-2ov3f$ ze)?e_QA&nG`q2)(8GY+Jk<)CLk8t+nJH{M#jqmJ!LZO9RRQuQob_QjpEXC1~ep{uFx&NH~n;JRB#$$yLt?)&VmO zpuhr?sW1&Y~e8iL9aS zT$7L|4M>dVX#Kw&TdH^)SAu#}ucL8(>8(DA>$J|nXn7ziklFgWb*A^m50LNW4Zbs` z`hu+H(6MZwKvC`Lr7167cK4^@Eh7-tf`^tI^2i9Ry*TV{cicC9&=MfOZwSp=+*RT8b?IXi}W**ND_^E!{kWkDYGWTQl$zfKipCfMX*e3q93C7RbF3B)XvpENW^R61@`M|D7D(ND2)& zKfC()KqAsEg{Yt3s)~sZ)Nj~WAVP>?fJ+@aX<$|dL%P2QjNaK{7iTG5q%J zGg~M3T7`y{)M-yY&w&C*Lmy6tq~wtowG(maS`--U;)q)72QgG=CD+IvB>IB_wqLHh zK`5}A826PrU(@0O1uCN&s&`vsfQ%Qe%UsH#luCl0@__k(0*@VLF;aNsFV%b~KZLG+ zM(j?Wrn`?TPY)U;e3p-qsKW)$Dep+)Yy;5;WPo!Ji8?^HQ7&2%bCrB1{^};nG~O=h zU6@xYOLT!lS0oHc9Yl$y?LZGw_Zx7qt)$T(HgFG78}R*SZ$G0t*jCa`1CEbyWwVTN z+SDT0ln&sx7+1OA2i1Ujt$AhFgbAowgSB5ViP@fPk5*1N!nZE=;qp?;B{elWGLO1~ zajYgTu0n=})@my33tHTV=6ihJMRSiY;}j{sEXNfBdvnn3&Ek zeVE|d7ua<|yGP+3upyJB7)w`$8w;nV74YCr{pIETKSDGAAKyN|yo8;M zCK~l+Xw=nn+pJ5q$eBv7KzKidCu?b4tu`2|9W%OJk|xxbK<)sZwA6>iiw@|?FIUf` z(hV+=_UyWIHXAL}&-GlMa-;-)UhyTPUQnSkqAuL$@msP$)*`zxgT|$N%HVt#V50dN|WOLBeURwsZbqz2^aMu(M>YlXnU!ix{U@> zH96oRnolgv6T7xLM>z4(zj*yR@I#hJR`hLd(vFaSvTGXk{0712MpTGa?2cK3^#k?u zZi!&aG^jTnB=@MC)$z#oVgoP_|8a{f^=-*{IS9n8gnO1Cw54F?r;P=VqF z+kXsXvQ*j)xHOv@vJD4lA+JN*EzKA)?mm94c)%9b<1v-({#j?Bl z50ZTOCTP6F$AU=!JZ`PMtBnw)KvW4NUOAeNHtY=^!y}9D>K+zD*Mm*T^GQX9Ez}T* zqWAH2c>7bnIGCLAf^_T}3zcxxGvm-dy<^NY;F|Eua0+j-sAfmCO8VGGtzP=X!}l6( z@>_xAG`s6!gwkd$34^Os%s9p3`Pv&rF)GRIqC%z?0_6xcLhd+2oWh>HtU6=3D)2Aa z$W#(IOM$^zPCO*do}=Np(=@6D1W1wfxki)_kQb%6aCJPCMDvnTo_JAM5RVwsG^|bl z0<^ce%i%1=@r$KD+i;i=6R31{dzJ%4EkOqAQif(z-`@Q4cR6fAn(y8-sx=2P!fnM zVP~{;3bjQ_oScP&TErem87Gh&ZP$>^|69h)x1V12t>5|Q%eqP4>C9^dt^^e1tX;W)HkeEd_nSxMq5EHiQ}6QX7P^DDC8hq zThbZhMAVX6*yL>1(OA!rqmNwj>T{&S3*u}$0Nii&rOKp!EJWrFJc*UQ>Vq2fOx`ht z+9{4JMa3wGUhGySF69UKAHxrS_(T2lAHt7+oMSqI%aSf=4O~%h#tXdQAFjV98Cq~! zGrIqCeVLXWWHk(zBsS2}5gG|LtF4@5osfXw#0Hb+Wme!6JfANp~vn$9Txs z^txpSrocDw0tP66prgPsa|BF%bRaD(Oq!N&3*vRI5(ox)Q~JB?`f(($Lgmx$wk3D<2TqCZe4xTS6 zp3N+Sk%B;grBy8M$|>t`tT0`Tc>5=`10|}+hS*IDbAdT`SF5SVVVP4Is=Sv6+Pl>L z+++ss;#WVQ9cI$capuemgS1FYPm5h;@k@*4$XOOt>~zA=ao1Sw0rkzR3#Z=G0`G5J z?m#C%h~9a(cHL2SsK%zH6uo4qiU`eLrY7{%Um1I6V4^YTmHU(YrG_VV*toZvh(pa{ z1qiaxz=DE-wy_Ona4gyiQuDF`ZDVq5QNk3B#F=d6dr?gVqV;p5M1>|I&o_wV)zu-} z2X~5XqJBXM(0Z9V%=g_Ox?iPGf*3Qf*Q{JR-6axKMtdVq68?xLNFBOYy=@rir9wE- z39l0YJSwfU(*@#7mnJ-|t?>F=KVr_Zx&t(9XE!_Ux2MpuBLtUXc-l7p1aIo1V@k*9 zy5caqNdna;cavzj$~catRo7JqqlCS|9^8$NB}lYt3$q+Ri~@QnYGnO5wXA>f`kVY~ zFuwa8c~{A&hmGln&^Dtiq4DCP4LiOtOfIjaPr?RA4sYV&!s52VAd9eePcI?f*gI%| zHBR1y-xTgrqN#+s`=ZRK0y5{Y{v!7k1$sH}%+-JO-+58rO0oE7`S_W#>SK=dBc)Jg zofnL9X2K4@^i<@3!8Y7&^u}Vlp**pC4w)=Hr$DG=T{4o5i~g-2&842mm-y^JfH(}g zs98~Bu$9I8CY52ZgCq2v?6U|u5W=7itS!^2H9gIr;jcwQxc8q!vEYyP`Sn-f^>b|% zfV}r1kt&bWAX{TOTdmE$(qcQ{Pk9xWnuuCxF9IbfAKD*1H7KFyW2gOX_Dman@CQNM zs_G1wog9dc@4P|Z;C@1b-~Mv!Z^sO0=qi-0Lq7&J2&~9;||2YTJxey7MF_> zyt9u)-uK?rR~nX-1(L`O%G9+itX2Yr&fX*d0XBqAmO6qt&j*O;D?;mbeyt{Mx?Lr2 zRjZgHwk__4oHf!aMXgH@1tOLZZ^E2F`z0BC7O0^jp`K9k*Ip@H@ft6=yEVaL! z|0J{9noEwX=x2CPSvE*1P=gX=lsj8i6Bs;6_V0Rd(j+QwFiT?un|L0}vtTRK6y+{W zasqzr29IKRVYa`;#)4cM%pOmY9K~`zg7}Kh3q_^>M`7L%W4zLr5|> z4=3-EKGP`yL8v+Q0w5_b+5o|ZW;~I}=djaAt!xqBphlbyyHPbTkR4aZTY6S0>CQ=_ zlCWk&r~G9Z998>48!+odmyVBrXaHBUUyW%NMeFJ$;I+g8bR1vo?@*CifL$Dn-H+>8 zUinFJ4@?ERZd4x+)ceB$>;*DzB2*@BYlbX*peOokgEIdyeE&D{_4k||-ZK`;%MrL| z&Hw_dLJEcyl22_0x07UFa)l05wVC$6PbbdvSssz$7%+JDt;(F$k`XVbjB7n~YO9*> zNGWQWBfzc>6w<3KkpEE@wEW6m%;1d$i4r$xP;q%;7*n~*4^|};b`&$@NR~H9@V;0w zFilcxcU=j8u_xQ3=qf zz4;Y_BQcv2r_n6P3E;a;&UIVl@{)362}N8YX9X2E4K2|lxuV^^I8f&b(55#Q>*o@1 zdG8a{m}sbjEmeDf^Er&@ixD~!o1N=$?j-CLQ@1O5Jf6oZV}Q%#q%rkGT4uf`I@lLL z;Ya~S43l~&=8u@qC!QZ)hPN*-pbxVLAOT6Xo*eUcib=M!l)Zx;9?R7p3GAzrx*;6W zU$DtMdflMQe~-`cq5ijOy}I!EteRR^6(S(#8gyJ6LLfg|T(wLmDz)4eOw{ZdO1_of z?6w^2p#8{)u19l!86r-+N#f@(0s|;Kt8%IVz)L?x5@`nv6wzmt{{>Sic}nX^%`Fim z(O?cluqlS}M8LAC3;H{af`;m8{F7Fze!H6luN;snWas zr2nJpdb7*w)kAZa>dYWnCAHTSlAL^)I^IlM>Ua!thMHU&9Gz6aBZD0$&p8%3&~yL{ znV@<`4RrVf>t72`V}2*HqHN|t(i4Qm@5Eqr_`4bz@3Q7QU<66PPElB81~=NndRpAyzS>MiKJeG$Po=v2y@g$gy4K(h6^l3M zrFqv37B1|(-yH5z$?1DfPi)bYJHS2FfwI@=BX6*YJt3%ts%*9CF+h0|-T6G7jMFbN(9m z!Qx0$7>;_M%#16!x1eko+#2D5%Z6D+{s>8ql})oA{=R@TB&%4iW?_R%wSzfEmB=0L zbX!icfi|}HpT_$LofC?S_mZJ3Sz3EHWt+J`*=p%*ghS8y;QH$IpL56KmzS+qt5Irj zgZ<|D@goEE?T9;RK7n1wCfR~9Pz^wa1=^%zXDzJx=H@vIAwfw$3%VGyx`RDmg$rQ8 zUG|ay-Qp~(JhJ80j_@V(yMZ%mz7W;wUHv#i_4!2Q-oZO{GrZ%lhpfjWE6Hdr5>CLw zWjkFd3Xr|K8iW(=bMPT=Bc!>P8+++5kUcy|zb&8>Q{>nO|3;70 znS>(S27pU4nOm+3*)@eLIfF@%suBQUl5A9xEX(4rPFfu0>YiQ0nq+x1FPAEGRS)=u zbQB4S)=ibA@XhO2)SuJk5BFg^i$(~XxeThxBfzI{EFBW?1cE%~*iHkxN=|Kf8ITs! zuu**bG%?p!rd=KOvHEJ!6Kj!_>=`PjlG0o8=OaQ{mKNA$xkAg0NIPAaO`6$2g607~ zx)TFt`15Gce&_{||JARDc5z==4hH9<^kN4(dJ0Jm+13^+6#1Y!8^XlGRI&DiN_ zFxX77M-FOBwg^x8?vX!0F0CimPJPAlXV^tb-Ex|RBA;B*PP60@XU)8$dU0mH!ZbQ< z3;WO;8vn9~)NG2vtetk!+$DgbcZpQ8RvpxEQgL_)_b`wXEN%lxaF8lw<(=&bRM%^i z!*vh)ZewVqf7wICt~4khY2mY#B#w|l$ygW4odg0rp+V`uSh)o@OzBK6f}uMzA!I8c*cAQk#TDzFNJ8dfl> zS7`psVExV&*@jT8S;7FOBGrC^nI$6hla5UdT_sEANfOI+4M$5_c5(b(<6jxds_2v3 zl9I9pV_OG(JTwRmnsh81Nhs((eWsz7@ zGE`w!#xO2FfZP8`c4aS{8row-r!{f*C~)0WSoJ6^NapKDN9LkXQ5p z#!Qj7`mRvPVi=#ZiVW9@vCQgJ0_J{WCzu4V;t=4J6%U4#?5|WgT5Hi>Re3v@P!jjT zO3oTizBx~`r%AV+GMXf^9lA=rJaBb@S=fVC&aa7JVk|4G`r7k^V=EE~<%16rUMvU5 zYYr}00X+mml*+Oi0G+ANxpVaM8)(ko=5nZne9s|DxNLYQ2kropA>#lw{MDTZp*$I# zF#%1nJGFrN0|nHh;T+|kw}kviUe4ZFpSp*9n;WdH%PzZU=K$3OI|-fw(O8&x^;F|( zD2xSVz|)ZO>S(=9*=Prn1g&lim+6y+rn)t6CHaK&Ldh;0STHm-2vCn3=Y70tXC*=T zY^`r$V3Qu()1`P-VJ7me0)`ACwmsAldaCPzycz1c>gq#02$nG2htmZ`?h>DP<%pym zRp7}YGx!5DL73P8n5?MZi+0dWmNyoaDt=kc@B*D7DxpL2mb&mtP4wZ831VQeZV<1w znN{qvAS`hVFjIlrn8#Cj^ppne>w{u=RYH?dN=6-C$N_zgANqM$H5^xlJJ5IRj7f?N znPB;Qs2208Pcy6-DPJ35OOOUb*JrjASYuxE>u8HB_ zf6h@kD$D;vQMs~Cjy}dnd)&Z%ra#yqXN**6KE{P!U%pCJD9uYL0pxSJCW(68hh~>a zq8v}1*-|xf%TyU1ijz3N-V+Sr9Vw5kg;IzX;7_BpO2S{^~mwS=~-0EzAIk0M2 zM<-dWwR3)FSWj|uWy0h^+~7IfZF&sYp19q@e9ywlpiDLMc7zBj7|3n`=RE=z$c!Cs z;otoYnQl=8^s!9kIv&|0+3Z#lpW z%y?xv;)Ek`>;VxWUR=GT#>ODp0V+SwB3y5aNPpMr0TnD zx|5bK{4C{fmjwnkQjXeAm)pD}-O)OLhkTw&*)3s!L9`sYuw8QOjY~mvI;!;o3TTV* zMd2dk)I5&VU%`NecDXtaqmt;*VmM)dF8QG~kuGM1_T67!?&DfRGV4x&Q?Fer!=olS z6CB|*LyGDisX8^oEY8o?49n-_UO_~O3QhMKMm!1%&A*cgA4p&t^%ggNzno@=`X!qW z7>yFkyxBA!P_Fag8G(?zZk@M0BP)l07k==AAKH7ta_%l`Z%kZCN+9Ey<-$}K$Lf?@ z;9(=%?GTNZ1e6aM$)|k+oWhTYC2D_Psf7O6}6k-h&+U2kQ- zU)6>hgSJy?)5wp18V5-+idiSkb{VinOpg5PHusiYvxNnTmV;W1so6Vlrgfw5DKDN{ zs@sxI2}SO8T%wt>nQ>XZ+Ur%RdPEAyCh3B@588#I#EyM=_PbVr>-gZbXu!nQ0w8v& zonpg&qy__|U}11_bPmxI=%~y;tV(wr4}h+`u_e8bPOGR;hx*Z_eCFBlt)q(@3 zg(PCd0Fj%wuoSEC7G)hCHmvHuR1fUFeMKzc*B(Cr*Uz+m5CG;=%_Hxx1$N9uv!AJW zs*?DOe7&rC14wFFF9EyJlG`%kQr^X8O&v+}tY`lrCG?-)zShDsy#ITfZ2edC3IAX| z^gAppca=r69BM5g234{9q?$JV;GqBn01xZr9t5pa0t{89%wk*XJZ&{t{gW;`smzYF z1O_@h5p&$zW@lxqJ9}Pu@+io*?nC>|&iD>gwK-0!3zOAwQR5+`t;3+SXd;6TOf{x3 zv9~tS5T;6>Aw**>fT^84C&wyVw=HTIn%7I+O_*ooEyc0>oz-c*E_*O7jC#V9jB02V zZhp@k?GtbJi}3bydkc`ngIf1!3?!xC*6U@WECSGEwo4>B(H0~QKGEv41bMy@2}_lU zEs*Sajqvoy7Y9}cp-S~h)C%zJ!DU%W)C4ylLgum`14es~YM@GOF=QHtPOI`X))CUm zBtwP;N1>b<8$P3wIuOtk@(=T@36PkQ@52?*qy4a>ldEJf>O9=SeZQogmVscn6fF0< zO=U(FnFX`O(|Igts$nQWj^sRn&tDPs8PL zR{KGnhT#)t3yOHm(8aQqjdnV()JTZw9^_KOp&f)-FrDlxc@_s;a_rUpBXJhZ4gkbI zq`JWAI>p02eZ5On_e_0<$g^3l1rF*qaolFjcOw&OIfDJ?gN_xAMf)O&G+O}BcAx8T zX2`72BA1nO(bX|~buQtjUrq{D;Do0|mNE8OrPMG_hY&M|5>*_7J{Z;6AC7R$cN=cj zi=6DuZboWJYA$2xz}ogm5ir}R#`&Vi7m&1+)9CQkWFs)hR&oTH>WyM7lE>UIYOWCt z@3vqe9ft(Mlh)NT97#7y70+D!4--8Q8kO;6#)_IRdb6hlh1SwlV4vm)sye|94~!ew zK7@!0^ztdPBP*&8w~<>?mYtm$k^r|CGy|D3Pw7RG^!X;BC$n`5Dml+@p5n`k@*dKi zx|47hu&xe@40i-r6lt9!6(t#|9RL1v5Y26({_)#q;q|8qBXO}uI#H4&o9>plOEh>P zTpA1K;oGxSy;l=MniW1uZ(t-f3xsi9GPD9+aUOV-)(kPS)S1%2(u3AVXf|**lPUF! zosExOevriX)!mrT4wps9mIg2o3XTDOYh>H14oqW0+Oxelq5x}Xu*&63q0!njOjVdl zt3@TLR_DCqt;id)VBKffnZ(9vRKc10DsQDXMsEuxRrgkCfSYl3eMC0ryj~#>;RYLW zw8PzqYqK9S7~t68C14Of@+{Rx)dlb8b^M?asHT3W{OecYm7sG>DdJ!#X^`941Gu@X3!WY0-#v5CsS;6Q7M%!$r1uhWNv}HKQXjn9fM&PVSh!CO*bn%g>h2S zfY6WX1iTWQj?t{FrpHJ#XfocksIiTCgNG_e|M}f-I;XJyt(;2oKMUUEX~}~{B?&+y zAFi?0-DfQho4g}U8uIUy>Wtx>?v)Mo8Gmh|>Vca7@DMND-wa6KK03x;{(v>@E^BCm zNv#E|UHSSjJ&^S9uu6nCiy{HR$sUR@93xC%DZv7`#qEk#z`*CT#6gz+icVrRGQu_> zkXUiOVPhl?1&`hvGTxSEOc0?10QtyKUwVcw7`R{%7-QUP>=zqic zi~Ohm`1VOwB-xy+pNEP7T}n;_1wSt^#%WC_1}Fd%o}S&*)bU9te!Jg5qa!j`uv5bV z#X8oEdBu}eM%sC%d#<{-IPWuqLGq5psMXUQ`AZN60@~S*qEu|>rY4Hd8`2+qP`qGU z-_dUvZX8sjXsbL=B#v;BwQoo%K)`oQE)=%m{9Jk-VoWG$o7!;_K(Ut{hGeIB39FVS zX>wOr+Vr?btEM3b@1`Z*IkQbSBS=V!SVO-ZMmO@HA!)XF&?E#}VuW=$aaf$>A7K;A zA?4N-dxqkc)Y{tvE*~JL)y`Xqr8ba+s43l^ubo8PCng1`Qko;))C5WwTZu^ppH873 zwf0z0<8(aeDym%NS_`bU1VR6U%y770az!4ctsK^>or+jIr`1fl)_Gf)*U9tPY+|e3 z%(SN5jlkI74laep3@XNfA9%>8j9USHm^7ReIwT>~VJl0Ywl0od1ePvmb2}WxSz(uP za+{(?BJF7^SES0p*HmZlwm=R^poiy`0Ho4=OqFAARO`Yrlx5tJ68S)KroNgQoVgkp zB%ZNl`aJq;qfcm|O3pSiZcu9CUD9q_g+)}yoz>qd5}oRzGimoWjFK@S=N>z4o7E=? zeRv?nrS=XGGH4Vzk$X0b*b&dBRhI8!k?fiGkO}u}yu4V!KOtG$S z7^^^{(3?DPl0s-bkht0N%k}_J?Qof8KGn(rxmogsV|<9!1)%Ju#zHTsG%EfT(l_G3)nlpM1ciXff`?Ih1H#<+Ox*bmrtbqFp^Dms1OFwFxE^ z)R<}}1-by_w=CfR0y)7Ri>k9g2dO_X(fNR}>27Fh$-WD~C)C#lh$TX$p0=iOE`T0$ zs8!S8IU7ze6ZKH18H*Bl9~@Yr)Zb~j8@1)mzHyQBOROqqA*_$I8dSkeYVmauXCwYh z>OG4az8^rHMb6&Q05(XXZ}sI+XqUG+K)9God7~tm_2oXM=ggPK?|vO#zr3tl4MB4l zgV4Gj){@pfIINX)5M?*eNgBYY0C1=z0?@3(7}nMn<2;NUVYg?=+otR$39vPtzD#tD zTx96tNxi*zV-D-ij!`H)59>L7grd^MJw(p>$0k*Ruj*%j z9Fo_4nuJlQ(viUCa*K6qhd1n1^4-;e&TpK^ET*X#yTh?>TJVk!9Z2L4_9x(d93nD3 z9eqHi^hUKZLG1p}aJ$I{z8NAcTd<*Mv7-Sw!Ww4_vTD*5uVvuL9E(=9qHl8TijY~R zk>hrsrn1kf-0$jCf=|9%C#WFhPpWckPkfLw%NQRRNkaA=4OdBr4(-0pJ&M%K^K$E= zx7eRH_z+){htyV1G<*Ym@RR6ehol{ z15F=+%}gHehMF<}=@>r)lD8_T)xsS*hO>7^|Ml(n2f^IGIDfX-SKey4)-I%DK5^aR zrSvqk%)cYgU8*`%5KoT#(Pj^I?Nxx=Lxw6x^1uP!wZ2RQ<-p-d8FHnY&9CULB~thR zfFDp^(AQVeRg*-PAOJg&3NkH86YT_GEosT{ewWj;ww~aB2>&s^D_JzO_nO&A&Cs3un;WAF=zrzLi&1>f5Lv-f00QGaXUZf;nfFTgJiIUBC z(OSEGEGA3bj!l@%BdTY|!!`vv^0M4o7dDV*X-2F)L{pOv{SU7~S3=F6Qhi*#S6;-M zyta`_#Q;e$3((4r3-}M{OWLd!xP4i6`yP_nJZ$Wq%{4kA?xrvU24N|W)HpkAW-9W= zkO!-3a9(1Y7Q`)hBe|7b4<6rIcqUk{TOP$#;tQP%p>GSczi-49vk)^ngNi^ThBqHF zISdV0&qw5aaSSpbL=^F_Z=OXy$!3tK0jWwqM;kq!K?(zTk)We;E46__oW%w#QSFOt za&>_$HK6JPK-#<$E&kT ze-!@Hf67|}@Me=5U=Ms7Dnfsm{pT433X1zh;ocvhVSBZmg{3W`IBUv-M2d;6RFyLe zr>tCnj(N4qaxttN)Kyo@?Bs7o@S(W>dz|nEyK_?15TVtgUx|LeXkW^%CO@lgZZpc^%pNQl8IB4$rYx|bSOc5I#f_|JkVQ|#zAj@tz;%MOA#8PrXwIa5erA(38E z&osJqPf&15z|67+vXR=L?mZL-Dz??s)`kdO=m%8@ z1FV;_15m>uLQ99}Z1NxnrAO7{1~->uE1M9==Trnab9w>%fyu(xAN1=n;{V3Z9q6B& z96=$LWzCVcjwq*iKCgKv}l*(|QzKgX9l6wHuzo^pKq(tCHk~+8qhd zy`g~#{EonS7@}!(NdkNi%m^B2*+)rUlw7R#8=$dAsE)FQAsbS~{ZHvIfDiH6pTg_U z!s}<3=Vz03KxaY%JKR@%Xt+%A5b0W!3C_K2Xn!P4(3YoMkG#_D5Rx3&y+}x>zy!l1 zb32hXEKlI*=uxR4Dyiogy_Zbvw!8=WLu-OTFWWLG8f_6ki~XV`SzkD&$jGL*+~_08 zCVRMa%zSo9krfX^vjNm*2yO2}*{TyXm-dPtBG>i}J5&!E2eR~vr@(1NO$VJpJD03n z5-Uj+x;#>MaMkGI`fgJK^fDgcVMWO~ZS4RdjK;yYhc()?LcZQ&6qwxhXkR?d+EH=RlC$n$Z-yC> za%%Hq-)6TR1h6C8KUB4#&e2xGU_GW@5l0-PB$aBJqibs(N&; zVfVQ($0`R)ZIEW&)RVHsDR+pe?lqP5;G7NY?sT+N1`yYPb^rq$DtLCZ0Tyq=;oOtT z4^v`80A!J7--z6 zy4Iytz00c;G9Z}iwU?x!i}uwe7I^2vNsy3HYHIkO<(pGUO^X0tK%u`XFZi*ShuLx5 zVa6dDTDwVA#bangVbJm94KL`mz8H=Hv(dQtQ1>2nw2M{Wc;9%FcQ;LrizD3L)}(3L znzZ}-e|Y^=4$ANT7FiJ(zL7-MH6cXOq;=Iqw!sL%{S8uhe!eW=UgqE?(URip^3ZlQ z^l?A~MjvBG`>fR1!G?P~peOi3vbqkg>pW7cR96xU97WfFun72%tU(xH=O->pMgA{a zuq0k|)h2TO42j_-v55rV#!J*q`FD~S z|9KYse#lEPu7jKwvKrU=IdHtU9@5kxUSXJ|L~}ODr5seZi&53jZFNlzmY$RcNV;0< ztc`%LuqGNER|%pCRF0a;>cbmQc7aNhEl_8&6YO!-8H8%j4w`m`6bS4nG({h-&cB+X zREq#KLkO~zhz8l`aX$KqP!%2y*&Wpg8xmxN=CME~qzt}Zv-d&$HKrCz8^jIVGC*pM z9hRVO3H&V%H@Gm9Bi1qXy+TB^q6l?b(EeWl-=jbmn9iG$7`f>stYa|FomY(=v%iQ2 zvQ;AQKY_;f7Z-K=dHbbWejL;PxTqrAfaMFVXw@3NV7Qw~1T2gA3p8T-)ioIE0l0F^ zJ0rbIDoqC+n2kDIwS^2d0;34yQZGvm{;sDDr5pGfYX6I>&OLfNBtF6*8?D63n%+^3 z%<#t1Ae0>cp)xks5?w-t`)fRci;CqlatK^wW;kx&l;M?ufwxIfSL&X!9y;oh4&E<6nND zhW9Pi@T{8t^!0b)^>=nJa7c%ifnvT^M+}WH^GH@RwE%iqzq%aP%x>oSvxL$9$2ihb zm#t$kLZp*8KHw;L;qixYXycv;5;M2z;H%a{BPmy74g8`Ah2*ku7a@t{$3OmY__G}K z{>Sj6(@FmNW%!@+mw)s6hw$SZ7qh$?MF@Hq5*(}Q0POW@n#dt;IDBSXS?xG6IXS#) z{&>0Ct2`@tTdAjPTC)Gt#RqM46}Um`O(j4)zN2E21Nhq6%pKpxM;!n1`g5=N^1Yy6 zjBqxp!@|H)3pnw`Gmo3YW+g^lZr<*YADR`#?8_&6oULZBr2L`vSvc178v4nsKDa<@ z9Ipp)sazTW_U^UQlT^zNG#=AuN6>0)Ft2W4j>ic`Zd*E6iI`Q`$RPPD{>J7gd_f^B ze^K8l_^MgHQ^Ovt?6#bG?|Udq6Ww_@;1<$eUjB|Vdeo8$QLh0LZb(*I*dL3hj8Y~r zco^@l0yqHRoC!d|3(X!P*EB=~pmh(uDU+(dX|ki`diX$HwKZ>fdG(<#U4@~Cyy}@a zyDB_^!8fxJj^0el0A14MM-ahsKjbdS@XS1CL};Gdnj4^2g+fQTOH!d9wOUUXSm}-E z&tlQP0IN)asJZ21t37&b{N)E z$Waa!Bak%_ zf6ZUR_kV-G=D+>PcYi}?1)zfnyMx+zds&9$?Oxb2;ZVWuyv`${k*jvPnA05D^*~6E ze(+>jz)`Zmp0X11#yLSN(NSc_PaERo46Q2R$4mtELyiPL%w5s1P6x!>AH#V@e*DRA zcq+dC=)1oPufNKl|MvA$8+bi{p|W?27HYE6TgA+VLmg(tJydLzX}7^L2b_P+xI!?d zfCC~y5a??#rd#UKANYw$3ToAVh&gbRHSWflg>7g7pB-N={Bj1KN-aYWD|O7`7?D2p{gwtnu*n zsT^{{41A=IFwj%9V@Oi_iZ4bA2vnjRio;T#By{vJCDzJutRN#}tDq;%9HNry9*jTl zP&Hev(xulciBn}(smv8>c>BV1Pkwt@o~Ztz{Dv9enWTIw=L01*NJjBa_?U#P_Ri2R#{jRVgCBys1r(8L)Nl8#bYT*oVY18$>`X8e@M#{yRJEQoX;+ zZLg8%3--UQMg=F?XPEZLWg_2KHS*CT02?Ejw}g{qmv?-~FUZSrSE`Oi9f}ezlSBGd znLvuB22KHNfa!@SB~za&ng_=1SvJAbW^Ih?$V9N3y{ar%V(#-4(eA*!Cl@%csvSCg zSN}Pj&Cc`s`{~UrJwNoDiKGmknoS@ie zg40sTmEd%-%)5>qOe<};S$Dwb&9LF#To|R$_ESe_TmzCctFIz%Jto8}wOb_4_Bm{* zB<$oB&NV9E9+u%f5>2;5q_lmN;f*Vn2k^wTHz6DvUr5nTp(hx)+F=RFYK-3C&!I3n z!=%>gqijI9Srt%fDVK?&bDS-_r()?iEvdH&$LL`0$c(j@TokPg3@(=&i-Ct6pa#$E z;HP6N1GL;jGpx#x_Yx{t4k3=27{-=5$nMH2IY=c^<~)W2Z3&ElD`a{?fI;j{iW$k$ zjmv_uQhc&yvm1h8-XR+|E?#s4&rBL%QeRf*XWRgbbp7Dof=!l#qf4_K*f1iI*9J|= z!aFvY9nsPaE^1o0MTBJLknts)sTm>OU|5#-0A%npWNn)!U?oZlG@-Slo&fYNL9WWh z0Pr9?1-)jwJn5f94KXSS)h)fw+Yx+;pqguTm_)$v939-FyC{F-37%Qa$y638v6cXzk}6SPw-dk!4J7I8ZWg(u@Q zUO6g$#CGCuA=5D^Gh$r52!_<5r>)xFmRvyY$U$tNkpsb5smuu>(l`VL5iUYS`6ScQ%n!|I99V4I}%`WGV&>_G<81@Hkk6g&R(lM|Y`Or~X$u zT<#8~;SGU_=x_PaH3yZl^a~Ea8jj#$?zx#;Se&Rq9*+j8iopCt7A4YfE--l>5V*4N zDJglcNJu;lpldof9jG9)izZ1%mSt#NuzS?O9#eNoehL`I4ktM#wP_*~H4}D@sa@e+ z#9w^(w{Ks)|Am~2zkC1b>&I{3y#E+9raWZY;Vw5^p7Fe_2(2?av+Z=W>t1LGp=i5v z>NKlUGwA6`)2tac;J4~RHam60y3Hl)yL8vQGT&z6xc~4_?m-Z94e4<|57;Gv%=@r$ znKNiX(N+M%JYcO0m5;DJh(R68u|`>k+W8!Z%LZixMN!Z6a-%!I)YWo?H!2v|!Qcnv zIhQs7s_c@GhC|GHIpIM|MCgVeTOTs0Xn&O@qU?tixpf06DAcLMTj2-gH<#1uUwr6I zbo!0U%i%Y%*9({89pcGYt#emV6z$=u}=bq#+V&r1HI9yJK6CUOdEQJ2RMD*{%>!)^e=u!*_>u}4!l9RwTS#X!f`x_RDhx@t;E$pjY5eeUO)@IibpHoyRpf(q5fheH+6o zyRV<+Ny@)>6Sh}k z&~^`EoRqR5_ffuKZ~Gka1lcjD)>0}PU|7y@XI6uTt|B28PV9OY@P(7n(NGBa*c&!f zmO5%xQ^1hNvDE0VLGsDkwrI?_@i3qZvZ1;lJ4Gcu;qxAo6@ z3G^5=#Ot=*@5yWV50Hn(NJa9BH$xBeZqAVB)*F;{EUW zM!rX;`^I2VDogPCuNDhCw=zciwQ2HShQItvZWT4+o%vOu#+eFDqQigSEV97t zBkq6#DAemv^OtR28PyF{;W!^dPL#(d_K%e{r z-^!=4a5l&@Dz$3Kad!fO+}s)*3z^xWmNRdqr-s1F2jSf#Dy2i-YtfmXY1p*SkRpI;i+!CWyFHNE{npD5NWB&%veIl6qlht& zK8h-U7dpfqR>p^G9ZL0HhoGb64OVQ0y4ek$9A5u$dH>n#muO3T{`R>w*2STMQ4A|J$-CT9!*O((a*ktCQ4fD^;Izl8ZtMJl7B$BCJQrw#1eSurQl}zSsb9 zWj-c3o6ste?@7$V5ZxeGrDkm)0|N?u;+LBoN0R4_yMDrlgWUywFsNy?R&EZ|2c{fm z8B-mce-+}D1Uk1`ImwQ@=P0U5_)L~44iHu=SP?IbG*EHhgTy6Uk&JIyAt?8_vO2A!UGkbc zJ3HcpveM{9iF-%?7sGVh>~cYhBd!7V@rl$Tl@4Qwl5G`?0Jh0fS}*Mik&$X#$$114 zZ>PDArV)1bN**5kv4&!o-MLF$Ss6JZ4k|zGqJn4!*iKcy^Y8v9uY}Q8%bI6O5MEjE zKRbOfh<6xzIir;do+JZe#s1A$m|TbZsU(g9AmC~)D@=43B;NM(Wm*K65@S$QPc$hATMU4HiZo68G_ERPyAS^(JLgQX6hUP-w@6eoV*iZ0{zlIbC# zqXPld#wIia#*=_Fyw%qiXCKSIZESu&wjgZf2m;&flOEJf*(VY#vsM-WP{f*akehP8 zxd{moTmj@8UuX}-0QZcQ$GrK%M_Eh5Ur1cv$V9hA422fIdT>b<;vFr_pg!qBi30 zi(w-rJPo-G262QOW5L9hCkYKA*D%r{Tz*tP4{u+C#T{a_bo#!yoYN#rhxr+*adK86 zzV`$nnj}fDLNP@W6Mi-DMYMhGsx=NlQIqnCwWH``c zhId?cG}qWFMEwC)@nwdW2>zqsP9M6#s+)dT65tMj>Kd{DOMDS*#gO>q#7S0lV= z5SS02W0rI}51ycJR>6latS*iO=G~;3q1Pof*us(*bF5s!oFocmemM_K6 zUOx%h>1JE0{J2bDLpiJsjz|o{8NOscaAYe18Y}T~ThV10tcJdga`sc%t7Io!nIJTl zdzSxK#NR+j?*jFW{?zZNx7_*9UqnJ=fK|RZRCkC)I?7{6%t+wA{Ka2{zxa#1w!We3 z;2q3!U#Z&!52e*ukdOJ)m;l?{-sqs@Wj$*amAUn;J~^mNg=DR{ALW!&9~u4fi2_Lq zAQ^Eek^&tE1%yW1XxVqwSM0sk#MzPkm^E6v??FX+m5}DUd?0*bLh^sqN!~4!kqXaRJE9sogq00-W0-$Nj5vY>jP;*#kOCkV4b`OV`%?gh3J8my}`3x!wOoF~v!1hj61izK@?>eXZc!V!y zI`)^cJOul3D&oi+7tA<-^L-*K4vKA%HJhnuyB}Ta2lNO4uaxAnbP!~gXy(wat`MZO zn`!T-f$oBBDA_jN;YTwuRZwt9b^cD*s3hzhcHpM5&<+jOC8|%E9|!cHk}Q(oNq4Om zNBJ?Z1heft5jk_1Mj}eoK#g4`$VR)6&Mh5|xf+TlPI0dB03p=!B#lJ6fm&-b^t1pt zKBZ^2006_UX-ygF%4L7pNhwZgT=0+#Ge&l7!QnqO-f>+M z>Iu<~gM9iTr(%<9i2^VN3;3#RZjDV$vO9v-gB$VHl`7_&bWPMr=V7^}sRjhFE=v&> z46wrFrp#{MS9j{>B(=WmxJ&AlhFoV;>#|FhPAIi$))oi%cO@}m z>uo-)Vp3p1+GB_6H5t%@cKf@q7K*dnklbz-_;G=1xw9+V$=A>xa8LOTg=E&4HO-rW)#X6Q zu9lK$eG%UNbb>j{@nbUE8KgLh0(^L#yh|Mbo=LWL2z{iXqxW=U2Z#6^!Q4I3swXYt7uRH z=!mGb&Fy4ie!$5%MqJ4G28gr8dO?iDF56HwGPUeMoy)c2+qZ!qa%%9#fG%N#y(L+= z64SSn@q^lTpf^(n2tGNB6#aJh_<>n-s!Wt~8jl~6Y(;zy2L94q^#z4n$31|+=D7Knn#EQ2Xy`U_>Aw8YoESCeH7eA#n>trvl zb$N;RWC$>$Gk<)9*^gfTXfyWzfv05WmfMix3#E1u7NF==*@mawQmgQlkJ(UDK>Qgf z17n$J18!t-s+xJoiMg9Wps6y3G5JllXO}DK&;?Kbil2Xxy`!Kcc z`MnRn2S92P!8Gy(`mj7A3Uz~*BWO*FqxB!kNu#>Ny2Hgae^lWN@2tprRNzk{djgRK z6Ki=l_Lrs=^m6STyDsIT6En${c&meRn{_&7B%FLgHV=(l-Ok)Ii*2vo!3f(-X-!Nt z2h5o6a$hem)@s}ovd1lv9n-+-Qp2GrG>qAAD1+p0@?B;1Nd~Lt-+9H!X~jGc61JU(Ea*cF?14g7 zX3cn1*>~*v$?rnO(^G;PrPiZPv<{rd8^AR-Le0WR*Ukm@5+qgq5Q1cqqi<9)xpZ|b z*v1n`2k$Sg#uDHMIfrZdxGMZ&Wx}Rj8H!5vw-{ZTtx;qz#twrd=FkoG$kM6FCOgY7 zvfAPiN4}+4^ z0!|pN!g_kc+eOk2%n7>W^DpeRbvFqGIT%lv=1-8K?jtJcj&4$*kvpmmg0PUO1w+#6 zUl_|^t3R3Bt`f8cN{qtyzPiAzcfoiVh2c&~q+f?W&p%mGppVoIRW-PB0D`0IK{LlR`zwOxtvs;L9nyH@8_@$t#`BD3|e^YI={HhU$yrfet$o*EcF9 zpJHl}U<9bw{>Sk8OP-7Wf@N$;iiFcR5nG~qY0s%Yl`Rn4O^`?O_AZ4S-oBFkkV3LC zL6?r>%BSiOdLt;Vb@lqC9FOt;=p5+*45KRJpn=0Syg?_~Wv&kE?kd%A?}rmKgAQXq zY_Cf-D=)D^_4iblhUEjlygr(*&`jt&evT{bSAYKYhxebp{mXZM9o~QZ`tj?Zlx_Vb z{`>mN_dk36_Vru+{PXvpzW)C0zv-WT0WS92=lJ~HU+eFDayrcKBj*xQdN{cZu#dPN zqMCzyTtd`|v13;A+#EZUhM}#N?P#$cF`0vKe)Lm9y&I8?qL84P%#}-w{qT$02J=IXg@a{MPv3Dnm95 zyR528ZG!D=xPe+~dsQK|wzO1JK-+aW%1eU2TYnv_cfu&RZ!p+lQ|p0D&g!U#+X&@1 z(xkb=DvMqvplonOZ71%@Zh^>IENgFQ;N0L)c94gapg?AA+Fq4UB9#;YV%(T8ZnJB( zJS!U($(Ott2%z00S6XliaKHc(Fm%DGPg*Y^il{8?3wHsIKM3YRg6?fG*Xz;fRTwZO_FbJk$4a}GgK@12u#!?zIURpS$pERI zq@=C)+QVe-=-D(ll9B|pm)BQvq7|q9Q&qEtedw%@ySIActT3&7E&mRg=+CGt2#}kk zs3+s7R_UenWdohpOK9_6w(3M>VEa1z_n-!FHS8N;OV)Jhnqm#_$W8{065{8qd=oql z$kgPcl$UA1oEj;rnu5LmrJRr-h4-I-_gAl<8;_cj8Zh0P#z|_;hT8stYH(0|9cc9c z#$_d4q2K+8)X7Gh}UYGHzK9aJS4z0F_N{{gs zuMjSSb*v64INVjN(QuhM=1*)}wWW@L309j) zH%U6G#3yQO%AQn#o}MS&ZR?M&)D5UlTa5{d+3v9oBLvePgTsM5Fp1?Il@(=`=Mj31 zJ$noua7Md2JeuX$fR)b@tJ8YR$oW!jJ&diQ<2@$evW%h62eJO8)~4<~NuGLjorDfh z+BBO)?-a_znY>VO!gM)Jkt);q$Ohlku9!v+h?U6KLU!b+x?ndCYvy2LA%!dp^}2S8 zI^d%)T<;bVSg`-|#|4r8h)0+x?w6Rec-m&{G3=wY4M)jAp4m~5KvFpBsggYlVGp`S zaQlL~T`yLmKOL>&7MMSJdP>d?HYtK8PFFk=P>Hhi6`-C>>QHK_Kca*8UR?J-q5*d` z*n}0dpZ$02JH8BWKZi}_Ey5@iV&naG8fi!(O2F;ZL)Y3xZzm+FuozWVZ{jiCY%}t; z!%+>s>LoA^az1pt+a6IJH&&ABQf8}Mq;(IXnx-s7#PtWi&>O+OP+(@^qLV@5EaIUj z6pK9o4RC%2pR&6D^s*lS7%Af3*@_M|+ueA1IhkHGU&DRurt++$5=nxYKX65=EId;hQD2S511f6G?8%mzWK`W@6*5_>g!10C4@yjnFmSM^-^ux2xN)m0^y60_KNbkf zH&B7#ybcW_6N!i%XdqxdBbREx8(d{w84(+TKDKRuA~;TDEd2aP&BC55J4@V*zV0zt z0RE>zFFOC&5p_ioDr;DnLtPNk3%_SdX)hGDRz#aZ7OWGfUNhhAKQu zL1e0aTlfW*RZ5Y9*EF}g6cGId(mgg{im32sR<=WEDJ57xOB|gD$pY%7JUm9xmCK*p ziK0+gXugL=wHB@Ru+8=B4?E)z9S)5)L*0V)#a2CgI9M%gb<9ftgnAvS{Fj+yb#g$M5kGfq`Vx71KU*y$kt}hglCn^&Imw~ zE%f)$QGyhSAi9||E25X9FpwuT2C4&r99IaX&QCld$;c6Qc&gRpUB}tAUoq#1K9QES zQ*r-v3AH`ghOGDP)5)SlV6;t%!rexlbG?Jxr?W64d!z7KUCmojS@%=qg>N>c{o3^j zBoupLvI_h-W*j5r{TKP(x?A&OcCW%mkN9@)Q@#qEUTTiv?Uwyf%#I{Of6b$3RqR;f z3!8x>n85pPEwB}eS$>YFkRpx~pyYdbO2Z{nIyEh|0QwSxt4jgC1(4Am3mu|ap_raq=DS8Z1g7{?}S(R;=^ zM95AiH>A50`=3_t1G7!yX|SmQKzA*3P6UM)I2Y$fCP!l4OM5qEa(!|N!_iCZ)eSiHD}25#>hT#JdRa@C%uV65vQLn6FnP-(YU3}GZ4 zHtcqktzEmO-k*g(`?C^7|MBeyoXz}P76Y8`erb&;c)sif7?@#~Kyta%{jTbrwkW(6 z1g{PBG1l4TD8bi;E>=(CE>85RbS*)#Qg?QHC#%V(`EavvW>PErgyM~Ga+!C{VfP&e zBCQTIV!i#t=Vaq&GWKi!gk9;5sr*$^4D2#57iHw3BOzJ;1XDTF2EiCDzmhU?q{AN! z1;~R0>Hf%5DjRenZpjLD$U!rLV|Gh3Px-ia2p(3iw(Y9kVHSQKK$W;q(*c5Mkl$Qb z6jN_iXtzeSd=^4Q(GtH5P^xA{dV{d$cqzp8-ixKSc3K3cbMh$wu68;pDH3lkVBRnLkoCrv|Q6~$|Ad19+_3$d!jHukc0AOHTEFt-;hw>1M0qQQQvhNX`A6+ZCYaV;C&b zR|XfkP-JOq#t+!J*eMpsvNN>KEOm=}n`VVX*lm$hh|9F=*?LmdQ8_4EAjx4n7ijpa zCg|*)RhS*ZbD8QS6|!fwjBi~~N*w69q-E z3wX@3o38lz-fqL@a!^?p8C}vnE}yk#l#$xY^HJ+diAVao70*vZr9qaTM5&vV02?yz zEX@`rz5&IT3L+T&I+j*QIOJ162f2dGXSllU3u<-Z^ki3J0A-n-tZj*-a*IJJf`K-) zCT7SJ9QJv2LIIqXy&uAdBda6NLvGEw{DFLv`+_|GkdHFWcfX4?jRB~&?Hr)NkB9CH zB$8(k#7U?6*hACu$^&>**{Xq)4+y6#pQV)~(z>v?(N)#&3M4BzK$@UZLL{F`QG|`zM{D*QLSV5~pm-J2?84r{)F+E~*#=c(cut@pIcS+DkQrg6JRD|M7oaX_ z=+(BNkfs9|>5!m6!;3z87DWHx(G-i+2CN&n)W#*>Fu0u!l7l5mjc@fELU}3?q{fte z@iSsH)eCtkSr^RDP~CDOi=OB1TAC}`fs&vPKs6u8QzF_wOF#4ycWmFOnTy2|bc;?< z-Kzv+iQ*Jq(tO8#CA1U-KdW-t8r}J}9CG2^(GEmmt~UUWR035^5aCF{My4eBd+bT& z#(0S23HW|M#6=z}@~o?uJ~!z4^6;Z#Tv`Dpq$YoZrUQcrRfMZv?Z9!^+kOVs-!ra5 zP8HVS$t4`Jf2>`KA{Fxk>0e*LsFmEJ-+YGGhaw7fM}}*mN_KDVV-8Y2KCICLFJo&{ zVT7(G$C4Xt0JUWwH;dc@G()WveU|b5s{^sr&1xjD>dw3sDDwKE?jFCknX_ZMt?g+9GsN)e3hmrME zmldM+q*CGjkMxZ!qM-<~K;GisOHE!4fcii_2_-S*PSi)+G~xaqDN5iIYL8`dB?pUT zFqp)F^t`McW-%VvR&bsn1LYV5*>s zgYLG`C4yNKO%=&rD5g!wmAGtp znyy8X9hkexVNixGIMfRg=%=d-mNo_?SWUAP^P(r%GY^xsk5J*0JNzi|x93^DE3$7> zFjrAgixP3S@US_{aC|)0Qvy4n7_mEWo6hsEj)!j5S3?hCqTQZK>J^}EynB=y*ebCJ zR#kGIbZc@%UVA?If5+d$*T10M$~|)BA)T|n^ek^iPBs=}Q%Rx5WM_fTAz=Hgo|VAj zT;V;u(%@sG1X}w*VvO2PTaZt&8(-XV)`)gQdZB1}u0c~{@*Vg6- z0y;^ELDmM+v8=$GHziDD5utLlmHXHz=cP<~5OyNzU0|9@%!96~qmO&A#DTpxR5+mW zQv#IUEe2N2T*KV4<0+BQKAnm?(?j>gAy@DNgrZUD`2TtM8;jSLls%Bu8;Ix#*1rS? zrK->&S!mUPq4S`|0nf`qM(>omRJtOnY$PA|s7o!=Da0yYfYPm)DrA>8BM%{_TL8h( zT=my5BxkK9wAR#w95souPKq*~0e!)QH7}`~rUgAJ z)~>g5M($vEa(zhHSGjK7ior*BbXqq z#wii5j@NMORm8I&+3ZI{h0IytN9aJMTo_w&0FqJovg*}bOD+U`9!M~j*(TJU>^1;? z^>Kj+qFqQ2x*YmXhAW%HHd-`Eute#Atg0=vs?a82xulWTnMPh9<%1lfKup!-GrXd7 z2Q1KV9|;a_{Z6+w%t%yll_D2EfBP4TT$r<9_f&J9M=Dya$D|T({k?QF(KKKKR|^e` zE|a=M=QlmsG9Tb8MdNO4RF{5MH5Cd5x0uDvSLkW&=dL-Vt2ynu#z%ykNIaU3ls81C z#$^d%APv(4ww@X^)eVt_0{QJ{S|+Ou{3J2x1NC^3ZnJ-lPw-SC?qGc884x43jFuin zRo0>34%P~4SKvUfLETc;{c?M*?b8asTd1oGV0AXV>9|tb>qmKr^q9w7Y>#{`>r}q6 zWW|;ztNl260u>e8t!w)Swr~G{e!R2!9zlgX@}~#%%dP{wU2u(>v(_dCQ6qevnX;&h zI9Rk^uR>~}A^jCmZ%rx~1zU4po|5|mo9}Z5FnI{eK~+6)HvtgdK{pBxcbESZzIm}V z`LCI1^Uw0@@7}-b?e(U477Vw_nxX?(A`H5Cs`laLo#`^? z%DO5j#^(Lf%YUJl$o_0(PsoBGj%d}z#zqsma_(4h?cEVON#<_hONp_#@1|7^{>_63 zA*f-#eV-0fnD=em7uhwFTBB!ClC9IBjYV+_ES7iV`MHAIUJi_Hqv=VASXvN8O} zt+Gmqp&d#2SVmG(g%1fs8vElv`PzTs>t9fzRJMe!3a>k5Lk$Q$N0xNv0AIam=0|a* z#@x_8=nbk*c0}T!jnT7>1RthVr7F|PK?cmvdDz};DqSb#H8;hZ7lpgUXa{X<0Cxvf$ai3gge3%nz0d49r#r1kK`7PTPt z<77XtD4}HsTRH2?D^LQ;ciw;f$G?Vu?+;jX ze8Cv-2Rj~t|E~Khi)w{~QbHB52AAD|ID22G^LQP}0yt833yK7HR?rL(vCL|{u+kZ+ zpQl=yXz6c}RwC_8hmR&L=o!&$FAYc;?}Qkh_#*x{a`NfB46)IV{|frb&X1Yu;^d|( z-C^IH_)|tha_@J0l271#B~5w&La|ugaqlIDAG|Hesr0SFdVFs@Egy%1oO`06WNR=p`y zV1kd9&SY!r?p;B||L0vkqlTH1(t;(a$U57=a5$qfqtyOQn@+m;i<}gVRu|*UM+Ux+ zg4=JG8+tbe9IBf@dVo4TZh6AgnUhTwt0y!j-O5&7hgGSbdqINL%&iTs+u?3iJU#yU zuft#GvQ7Tk0mYA$t)^N&l|#yenN~gtu$cKG2QSQPNkdla-knNxGvvj3Yx1X$3QB<- z=20|zz$wknk6GtUGuQD+cFOyAFOpW+pc?{&IHgQMlvB~?NtbiaXu(`tTI2!kKSk{j z&^`f44ouHjXQ0gR3r&k0s=Wb5<>JuF%-2(6l)bXhly7+Tru0<}#4H-&jDg4m$klS6 zRoKwoLBCN%z73T8ov*(A{U2a#&bUV%@n%;a)yUBC1+|`A^piU7~ z@gVODg)5`Mbfn%au$s+l6`au8M9lfg&27(a(J9q0@TTuh-C{K1=7H&Z$`Z!c z8by9R9O`|DVkrE`WB)w=qzA}qV zIPQ=JiRIZ>6jMA--c;G@1Ac(^s6m*zanf>o25Z0GP%?rn?+(f@b9kAz3t(y617Nw? zA#bas;_k9Wc36#_I`SM{VNV2!f&BOWCVV6BL9P%syMAk-bk%=sX&L&ywn)g`Kv#Hr zO73|Nr=i}m*m0r#EybtU+63xS$XmPJ5F!d`(ke zUT~(Z%eps%yb2`T6E68@B;I3p!}>V;qJ+X++A+G8bqfz;E=%noW6Cd)%ceh1$gwc? z$O+Lzc9h|9H`krghEWBi{Up48a8idBIeF0)awC%~9$-#AI_@B8L*PanCUj{Nn{Z8p zBb^C-tY>`0fbRs&K4+V#6us1vNXtK~Ix!$9H|`#lM+r|#A9=_g0jCe%dQaFoKsP{g zG*_CM;Ch;0FM|Sy8o6Ot7g1X@N%EVur2_!kr^Rz*Ss8p)OeoZzLw?>(ww*)GpsZuv zC-cW0CAL{w0te-W zQ6iZ=t)O<29C|36t%$N2Zo`-$@VUKXHEXsIl zen$q#4LPW>BLwo9?|_}3$P!VceSQs01PJ9$8k`mFFlBE8Wq0M%RWkoPm$D}iS^RXR zZ{3mG+PdWGfw_t8MPeH3PU@T)@_JlepcPwOm0G~~465|;&nKmiUuTUE`3+5@--P#n zvMZm`D`>XS4Lgxrv@J!&x95QA)RTY4^E z`$E1&-+KFTAS0l$mf4ICeln%pxIk8DTRTkSE~)2N-@d4KX2v_(vt4F(?#3oOKJr*a z*RvnAhhq)f7s_g2$|q}>cj06mthV%ZEVvpybZx>X+s?@X4&cicctHIDe#DXnq7k+d zVci39^`FVMXacwDLyz#DMqQ6cfRr4>*{p3)0Z~+ z9?h>YQ#P_zw6nLhzR7iGulA~jzQl4*riQL|E#R2RLsokq)wj?Oh^lNJPwHmLtVh^E zLD8cM0r|bG-dmL4oJ1yPp}Bp^ZNt`*l8r6C0nFSTDrmz~`Af3|`q@}>TVw8P?HeZ8;rnHUoNw~17Nj#C= zRiQO2*EiLaHA`s5SbGdUr0d0D)OpYS6MO;)@%X81DtvFyX;roYctbyfHI|QViwkVi zc4J+J^YAo4U;6_HD?265o_)cH38GH(2xd3H^FI=(1uh@LVowcIrEN6 zsv(eLM*$$AUnAOQt1RFKqm^cdDd0T$sZFUj~QYDHa8)g%A`!Je|Z z3)TiUuuLC!z2CHE)ftSvOaK=ldf0_dh`x5-0Ums(7dgDmRm1j41<90 zYO_UB^3fFWo=MeNuD!=4n0^A}fO&w`f?JP`Vhn~)-+uf3s<*(y#snyoD}bOb=~=z% zpnr7k7&^qW3d^VpgGDLiOGVQMWPQx4ala-Yz7tbD6s;U*%i0P%QAbq@CwC(Bh9uuC z`O0%frzpNs3M>LE$3EJYJyUt5lj;&vu_$cYb*}6{Q6%(M7qM$6(7NN_&wYheliK=fu}2r-Pab zg_us6B+*hQB4?iVLMI%3ED0gjD>Tv-Cg%0D+{l&4Elf+RUJ>DPlT<0vI!uxp-LitG z?T6O=W1_0p%F$D#*H;ZHX?M{20-rQ*4-Tn^TtsOonFPuN3^@50y?hF-^3q@z3%oFC zcCpa#lhm~Up)feuh?PQu&3y1*HHoN?8WUVjj_$G~K}z~jc>lfyuAq>N{00bwq>6U3 zMcQb?F?nJJpTtT!EV)7UW`(Cz^^*;b<=)AzANms9$3r3d@+@0kF8or7mtSi*J}Q{O zdj>~%MtWm_M~oD-c9N6?G9|may9-*1rB46}0nFa*4M0x$;(HnoKmbKfn-6x_DCSR2 zN3cL8HO}xbRDXwliElR1fNyU?Gu^-%v5ZJY% z6lc0EP!j49k=_0gCH~~@AUY(VICparFvC7YGvfRO^_Gx>V)WZbn2Tg`OEFW!wsa}y6_U5!@53}> zmb}`kW8C5T@*1{kvD+7Ei+#tQvZfNK=QKUMAv9I8+o4oU_`Pg!w8@G^!ggXA%k!~Q zx`ljsVh9HL)83#^^?qQ2l*Wd+Pwkj!b?)&8PVN{zFa=erT~;5^BE4 zY})M@3w#Gdw0T2OV=b>*d-24}-9GTzx-0_@f&%;}9o-_4Pd)_eMHqsRBYI_H26L{) z-6b%dnWsmJgFMvYa$Oz$u&Y<6L?YEF!+9(>`XXB~+%KQL2w(m0ire|>+nL_-_n>&V zj_N~A_;!;Zl>%I4DAkDCE>%`y^_aucJi4T0I$+JmVVp!IEtOslmPBa0aQOnIAGLDL z&lYxBP+B#0;9e5oP6aqtknouXsO;NkGYZ0Ip+1Jvu36_l9wuj6!4j8)d^aTkzX=tb!v17E zs7mn`uXf2!R6k-(08cuaW1S_1akGjFO7IS52H3V#8Av*rKD{Pdv8m3!|0OtINfCP4 zT8s6Y%gCb6)OTFt9J*)2dIKU8wkmHlFzg91Rsgznl3?cH z!Cewg)kirk%MU~aEvxEh2T0u&r8^8u$=@0RRRX%?sNEqc6St;Q7M{dTva6hwdPq~< z@$+fi@7{lCyLLP-x{oElYQkXG6-PYQwng4pK=B!BUK>|=J~nPhG$m=p3K#WFWkWnc zy!N{CBIc8l$!FVi;0jh*4;(eYrVGV&rIB2>N<}NI2atw6(Li4ufP<49pS6l( zPkzJ#L9iZeMdHeR`KUgzeBTAj7d4~JYx=p_a7B*X4~If#lI=h33ZKO7)wrwCp#qF| zjLAC>s3~bod^=#3v%-=6R+{V72~kEfASTf!bERJiX- zwrmtaB9+q0fCuFjRz7ycIAIAs=GTJW8R>&!)L`X9904r9Fu95ZBMyC%yi6)web*_L z3rNPj;DK7m`7U;65_@)8SX+-o$8IX8DME_tn06Gn_;GAzOc;4l|BdrlX4eDZYC4QSqwY*R$&xU4sXczxu22SD0P>+nXU}!=L0h1qkgg^RMCj z2J|dA9p%pllY0Z~=s=K>=vmt0x0z0pU2v>&Qb^LJc?NcwX3T!Bs9r69+0;(r0zihP z*pt=;tMiMsmj^k>9hJ7u9IRCX-iMdj=s3>%to4~;7p`G5;QtK{Dk@%Z$a;tO898pf zH@O;gfzC!?iX2Ry9@Xen%Su*ky&^?%&lTj`IAl*M&zXx${cbE5m7AFhX#DJ(gvs?e zNxJ3EL@TVBT;iqW#UPzI?g1uHOh+ou>g-H4y?qxg)mazM|QuVWfyyf2wJQC`g-m5qw-Qn0E z4o&gQ)y?-~U7u)`>u-|2L&0u6>1Wq&ceM|!BtE!(^O%O*w|3cL_zJ0zwJm{xDEEF+ z5ofDlTTDuPJTC`CYM?0FXqRC>xlZ?(H$VnVTMDHbmB>dd?x!ET{Up5oDz``9ehimV z(5x^D4tz+Ej&OBh9sfcxVwEVu$;E`}rotNY7!3)ZqL3rOuq^!MS0Ga?Er7fI{c=U5DU~BNTJKqXTMj6=oE!XRC5Jm?oWtk+P@cW!=%$CI>$fJf}Q*pDN7Iud%XZ zmZXye%u%s0oQB-PXwx|bJ($yV%yy}87Ck$nMl!?e%76paF;r;SSQPrR@E`ND|Norz zd=_-Gz53f1{FC3keG$HS*#VZ@wDq`{0Ky%o-0|x-pjTPZ7?2eYdAzufjRgRKO zl%*P3eZ!PjcDMT~cJ)FllJ`b$_L7@;&u@Xp= zaK@ObqH~4%Vw%tkOA=59=-X`QBzn6;ogi3(t*(Qzrsw2v$wlYqrCPim=yF+KVFD&= z4bRIYi^fGC;KUA1vFSxJLttx-s$K(FQIXyz$04MSCH&YPl<}1`yNhu7XSG6 zOB;!P^=;_A?2U=ozoGxFQ4moNaHlQaz>AI?z^1r|! z=&JLTp70ul-gl5@=2B^~nJsKc`qK|k{gDUNa@GRH{>8oQCD7%I`={{!lgq38=l;&H z$2FXUWHz&+GAYsndJNUsF;ZkcH#{ep37PPUvgB&p6R?yhP!9Rbkji~=*&Zn35;~FH zeA%bliWGc{=IWV#mSn9W8v^+sFn?l{VMlkVH!CCcPQ;?&EomSQ;M(ne`*pr#ageP% z>R-J7ijgEs{oFZ)KG2L-0i(xd>gm+kX1S4(NVvtf7j4f64@!Zze3Z` zi+~BbFFo`mc1jQ*pqU>fLxs#GfFO zYI^b{(gxtz*XvvX)Qh8!?ZAf?dlvf8{evouoIHc1sm_pDvr~k&upnrW;9;}R&i>N4 z&8f)J@nM2^vf~IbTk9EuNVi`0w`GBS{R}np$WBLaCLIUTPGIP7<$Ps8zVvsFL07s~q#oep9TO;U(XJAt#`$Y5RFYxkrwZF zd!pf@lDF*j*>P#@LT%$JutL@QHb3^0@vaVF37}uPlX>5WDMQ-9!`LB+v+a%^S8W!_ zE|UUZSGii8vT$2>StsCImHr7YJr`1u#cQr;;Ml$Yv!%n#9KQ4ZuY99_>lMRJ_=@EO z=dR3`LN-Lgmo6LjOlc{hA^`krreN)r@G{lA_m;sLKe(07q>7BSZOLxlEB61dS_qb- z1-ffer`N|&b_t65hhzBBCC2pX!;x}bur2NkAD6j~g9QD{`@e;^-|J@$4zHKU*jstI zCY3KC9bUc{ikX8aHNrd)Tlu<1M9N7IHneW%tQ0V25iQtPS)~xESJkOd`I-?Tqsr^T zIJya=r9bi=N0VTA|4rbF%WFhvlR7uuIepk*LXk8Gd)2Hpek^@vkSDwLgh3o84da1e&2rIOz0hXOXV00c2 zt0(f^G?tJWde7mi!o8B$M;E$KKCBId#`>;ZXuFY%_w``7was()w5S6E7ZO1x*u1UC z6Fn78Rfs5-!vtyJ(Dni`k()!OrzwsFyt3r;7Fzu$%5(TN(r(6~|AlV#y{78%-_7 zzYiXcKjmSQQ#0DAUj4j|!_) z@rX$Z3$)uCdKRFfL2b`x2-tkhLQ>A5g9sFPdj0B;cL?2fxq}sA&4XVe98^4XcqaD?_`R0y6n(psZrG)e<1;ci0@}WS{j^0N4 z%tYZkH58Xsa(fuUUmMa8aZ*WUE`QM6`8mGIir`O<$z0$64SzPhj+ z9CXy699$urpY58**i;RAT&_t6H$?05EOYX<-2}gQsb+@xNkSN=oRUOQ-ZJdQxsCFK zfzV!0s4RH^VTey%`UClmsRgLW0(#C9t#0Zd(bp>5O_C}}1F2dK+@K9KUx6A*Y4J=M z>#rwnMMVm1ma<|R;|>ET#7%~H42N9U^{N0`E2nc-f3u@Wmfo#jZL0O6vbRdC!_2nj zoQ0tMe&9JNudHW3owPt2V2IgCrT!ZhxSVl4b+ACn%MV#C>mjs&+NU?!l-TGH!wQOu z&lB>r2;-T9pkK=-$Qgx;K#^->|;B~k!zOFaurgYqkM zfL;hU>RZ+Pw^hE|NcMA^V2Q{1Awotlyc|(e*$8?ogN)D|P?u|f?{_WE zWsOxQ@r!NzB~E9d>PgMPZ}zB)%Ljr@%?JwX8HMZh$H*z#$R1#o38A(lQ3aSqh8Z_} z`jO<2d2I2!@YT2IG>DceXjV|*j1Aolu<4ovK+#@o%;c%ueTvrE7yFR ziVT-;e)F5*Kj-IIp*2_9RjTl%Dz_WxM8Go4jWv-h`Xhr5CV#ygusm9FZ(_|JgWbGT zTv9OXaww4$uv{#9(p-sqyv5Mb+XR+UX)BArQ(zyqlzD;6F!^_Dmd0n{3VO#;D@0vFsKter6Sus5Mc zK6V9{SJpXwe3PsJMjAQWG=ahtZSH7ts-pN<3L1Kz4!^_Am_1{xFvDws$TL?8dQ+U< zXhYEgzz%#b^PxrKBfqgJKO<29=xrv&b;<3Ik33mX0L;r%)`UThR^?O4$2|0b1A?bo zdN-0Buc|nNwh0|DaTwQt> zmcvtyF!m+alruV?CM%7=Iy$q8qUP6$N38^R<(awYTeu#pI)Stka&yU7{yh8-e^J8W zzr6jB^B+S40d3{cd0|BZx@;MJQ}U!!8vfj9S4#5XMUtYiNT)59cml!YFd+!s+1a$a z;F{`nNiIkiQn_*#XvogMD7?mDgVmSasicT^%g@$=Y)+GuVcXdW?_^4yU=>R7k)4>y zT=VS*ggh0%QfZeb{~62>;R2e;1w^gd%|eGGTwRe1<~`ft=h=`*Dpp}&^g<=pK4mE* zzQ_lB`Vq0mqV1s6yz$tQL_rYi?IDl-pjkpslEm;-)-AeDCdszyRJFtx4KEIUOH?Aw ze6_x#DfJh5}aMPf`gq$$Yz$v%(CBnLl2p{zGu*D!| z-A^{(Fpd`p;TtC1G(nNffKLY)R@Lq4IK5x(e5%l7Ej`RC?7MX;?%F-|h5q)v@ctvo zL_qccwFfE5B4QoA*J{0+6@~^9g#OHDEIPUyx{xNr&xK zNH7@EY^%F)P66~z$0E4%t zhwo;PF=2?=+1^*Z90x&EXt&o za4uFs9(RD3TSc zGFEy1O+U+K#?H1`x_;jVTFs7!lkXJC2x@|={#Y&tg4Y#!h&w6#W%%>FY*10X{~KTb zHoRxFh8kCaF|GioSw8v4e9l};<4Uq-xKUb$A~6`su|9K>EX7=9o=Us1J%h2LN@Ejs zD94ZHvsSOna|@F(%u($NLvxDzS9MCui}6nWDB4wq;Eh`mfvR9~B%Zn4YeQ&r@@%4RKkNPA1!j>>Jr4 z&)`x&=y_b~0}O_bIb>o;7W=P_=1uDJw>DZ(@f25(N53VEtxb&PQ4W}cw&_!|C9v`O zwOA_kr3t58bE7m!FjqB^I%N!Z(6;)}L-11WTw2v2C_mUkVvH54=ymX5PE&sYg8ORU z@?&_R57y+G<^Wtj)Y<`R|SB4wHca&$l*DRFG*@~6-MLvuqXL?fHzP%g#k zN4F{KJ7te%ov>Ec01NE9V-_ma=5ym1Om@ z$T2PiINw@VkLVttYMg;m3{tTm7a`p)I%C`MdSU=&H!VBFp@(OE-gOJ)c4n^~+g||d zpoOM`J%mc_5h?N_qJdtsbls7GNd+-@aKK2%t=f>1Q%qOkwswD1Kcc8gC4D$&izYed z#{zy*yrp|xgTKMl9U_QiDt!6=Z*RX3pME62{X)~x0#t!sos+kqrM1qen+mL0(s|j6 zGm-?KAG$O=dW2~36g#zSt!0f#*%ePcbYS+L&)37vdn3TcA%UtU?S)1ieK$vFQGb5j{rGJ58$R;PzB>1K9^)tFtDOLDT7Qmw6dl^YY!OS%POk9jV`oG2`|f$RK_$S*(z zs=`CzwMP$vhF=cn&D@f<1@Y~pvN)gaWUvBaHG2{f*RgNWQLt=iZnRZY;6x!(d|W~} zYZ6GMbp^z5Q(1hwzvvB8w7|rLb;N;-uoLU!$BzL!mfB2#p#T5LeZ2oP{Ldxw{#FiT z3&B}+>C?C0ejc1=FqTIGW%Gi?zh|Vpm)Mi1r>K)I=+&^#HqMGOhPNC*KCI4EBDdyP z?}pwWH!kw;0xnjIhu(}sbS^C=DH*_7QfqTW#FJ!gSpKpM!SKhudSp4F1!xCIPWW}l zUqE7ORAn>&QTXsR>7#%9xt*Oq~E~}1F&rGl|Eb8lD}-Q zAedJ`1V$IT4!X8^#P-#Z}-w&e-JMu8mGQKawCMinLu^xEq;8;eL z2w1JqH%U&Gk49UC&v}99$v1~`4G&PJ@Ul*(T_;Qy_46`HFX0h=n+z3N zRBX}@rUznMS+?s%?Y1H%rWUmem4_$)1^l94|BJuC$zXleAHDs3c>Bo(tUyzf%Sz4G zZUF)Ymk<5zz%vJ(l~Ky|TNQNi`PzHY;>|jE0KIK>bg;Rq^xKuE<|r#xvQ_$eg7(nO zGjXiINJ;J< zq8m^xt4*TkwfDqVf{WvrC93JT@Wslr5sotIZJi&JlxgS$xvHyzehtT(cIc>km6l*- zW(!AdOLOobzx#*{7}%reuc(2zYl%Yz9w`}-kzSS5Cfyp3=BQMtsCYO4DGQ2>y$NYK z3D*3CZgxL;`xnL`aAC(eljzYQ-Yo^&v%Ej5dWeKrR8aBK&N=^DAV@Zgmj3jL{(7{m zVmfFnJ|8G7h6MR%IW+Z}h#taa7_(gV*#xG{sq;0jkO|P-Qy&pO05 z?wMmQYjDKOV{Gy^<)2M~5mz1jg#zsuK12HSJ3Ygim9rDoK8+U$((RXQU2c13N8i-cp}rCRw|q6Q z_xtKwIbh?=o;_TrqA-M#-Aif}B_Tc$@*KCGZF5YKJqAHU%B@mg!b)hodN}1Lfs()y zo5L5U8hnBxGkN0*7#>U5rEoY5uyiH&I3o0tl!9}FmC!N2TfRApeoH<&pHWtfZXT!3Z!oZSC%}aTs8`K7Uj*tN?WoZ=Y`mtnrX1 z^g{y*_68H4I6_1=Ie36bmDL5t7U=qNv_H+I=K)yr*|@4>M$kaO)WHDr2z4TK_Mx1S zHb4A;$~igpL3>A*#NBVr+jqbEFP~%bULQco=34+4>t<$~;Rw}{@d3HPyY<68V;T9@ zCeW&(zj(d&EMZ`YA62y}ukpFfDjRM&Yg4SSKkR5#SiCIw#vo|HW;q}vODPi@?^VP} z@-?XzEMh*JEKs+hbKO4pzUzv?r= z_O5n&B%AOUL#Y`&4E*(Z)dIc2iE1A@JjXnezq`)KfTFOPpO|}F>}j4;9DCJc8j0U+ z=Jf@^^=Ns6>f8;&F*%PF8@OhTr7j(I9>IC-S1OfG%SqJTuR23h(7hDu11!6Odr;qE z0Y-s(!k>9Pz=|Wu{~EQBp|9pOJYbfjJcj&(|1ZhNK7H%$Cwa|dboRKIvQIWTENU~5 z5j!=q72=2d{g>~5`1GYJuQD|5eXBC4R$ABK&#=?8 zV6U$w!=6<<+>j&cu zw^@Drim#Lbfcl{JeB;R12R&&Jcw}K;@Mzovo&Nw-0;ED)ZVctGAuJcAJk@ow-2&&r z1m(oOhGNAQ+M{nAHHtowZS~-C@JBB`j1Xq|qPp9e%JsoS!&M^4h< zfn|d>*)(-71a}^3-dK40@ZkY1H>(ijhzi+ZCtspU=|afe?n0mfkt9~IXUTyKy?RUZ zp}}tFFa?<;uA&?3YBXtFFjLTPT@8&34r~yg@fHOVFv^t;2f*}`Geg6;Vod0#-r}0W zfQW1?cMztok~mJs^%TJ;)wFfG>eF&aIU@24`FmNVhjtWwb%YmYZ*n5Lcvp4Ih}0ZJ z=&3|n-_R6IeC^xtOzA-vgm!9YgZCV}Shq=%O$3;P8+46dN#a5-kyjexxtx&;&XWZo z`mYC=rA)@q~RcxQy8K@ly z-SZ;$oOZTdHv{6hKp5LfZ2%9!owQTBZ&m+2UwwFVe6<}biUGN$2vX>TT>dir=f5m5 z_?O}R`I3>UTY9j-p%uSi>5G z691x$ekmgd0tR#Ql;nowPRvWeJBB=bt4biYrX^B?SSGifleQsSRz;3QhoQ9kvw)xJ zM&(b22-eW4t_F&5Ch$kCM8@iZqP$`=s-|%-)nLEO@&DHXps@agd!=Q_dLcF(-d) z@EN`{l6Ztuo;xgyc;oC-!0*QT4JW5u_px6Y=rMx@f8zA)gY~n)H|kN!LUaOJRlN^V zYiKT~&^{OP24`iI@?j4LumQgVz=l2uKSz7Pl>VQfzkgsYx+wO-Q6~~h6d*stY5n1N zg~U0?ij$PB(?2sC<;QFX>ahYtb2evzq!h@nfQd(*|BH6M@{fF~e8?@_t-9Cv-^l(Q zsQQvVx^C75N_T51^dWa`cV%@)gokIhJV7cOAXX z*V7EftNEW>`AKd$!_Pr`c=j@0wFRn__~TMfWoY*Zslr@7j; zhl>0j(up7uHqLobBY2+&?9dJx)xF7u30TD5dJh;c z@|o~G+sVzVv_)&g#Ml>kIPE&d<86D|xINHI5kuJ=>X} z0ro#>E372GT?P;I8E}ySPghj=zLGHOv@2BQII4dksH^(@K4;S9k8SFg)ovc4&hh20 z(q$M1S$9jeIf(#!ayGmIrfAL~cmKg~p-mfz2-w|FjU}=IfX}eH7$Byj9~w1U1d46} z4gfw)Y6?F3*<#H>G(F*>90#d4<$%|U|J5-#)b!oKc_H3pMIt`4)Y>&lvh)X(v8Ps; zI-VyvFT$=~&spXgQ|fGPNX69updxc`CXMu8;rXEAgBU$HGZUSN$?qjRLRhJ&D1f!x zix=3~-_$vM>|bpMOyJ&cdu~_TPE5@vm(x$PPn@jdeN)qO3rEy|g{+93^o?xi%t+-Y zJhx~+*LV7N{@~wxoxj`Py?rmdeK)`U?{B|_wF&%9vf1M+rTHZbR5(o>Pu5WtAWRFu zT7&a$5ouYCu&vqaaqeS>!s}`!rGz+Lvr5uRUJ`^{XWGcsr~W~1ZNB}=ec}Juf;-1k z3A(ief8}Q8&x%_4GuF^LYsc15t7sO?%u#uWOJ&BPUEg+LFUmd=olirCm%tH+vKv$! zG+$lPY3=4MH8{W{lS#}w99RG+Z+lfi6il{CfxuJI58W!XPRllkt4ga9A<)Q;B;HLY z4Q!l!4A$X!DAfpP5vivkS4UIQDKr1b-&;#~ctDML+v!ohNro!%c|BC}o=soq>l)Um zMw=2LdG9#LDaZ>sRhJ^U9GEz)s#AyZ-I^pm9{}L!;IjXh_kYO0hVvV3gh??nsnJ)> zQUNuL9Hh%hy;VZ5P1V(68tt-MIBbHyJ!Io1%%AN24js~&%VlVS+ezHZa1t#iYYEh$ zHBqkCDP&{X)0}aoZs0CwrZR@WWejc%Jm~}vM#B9Bwaw14+j%j!dV69zCYa|E047L;DwlK2 z;}AQY*SQd2F*Z0V)WZc`yJQs>Xm3iLWOBy`%{vEJsjo>pi?s z8mk%Jg@#1hD5MlWxT+!A+p$ui{H`vs)!hcH!hieC=Zbkb{lE7&;A<_%0<-efHGb4W z%(LxfMp@dsP%Gg1NS93LMeZ2v5s{tPbg&`iqG&GUv*_H4*CS$#c0Zw-w+++^3v5h= z7L=%U24B(>T7b96`+fvAL?G~oCJ=OKkL%U-Un?M2|B3xB=5{ zdTZ;-`SJUY0$(s#No@N6|7-a7{=mHLXuh){h}nUx`U~t5%jPLWW{Ct3j$VAMkwX*8 zQLFSYxEYmWGEk*q4AWu2&)ZY|;SjuEm9`9_bQ9K98@>r8yn~WKh8QU;AjcQ#`N%Og zXwCE!jvqe;@5)MbJj^}K3jwn!R1{Q1Dm(cIu%OCuL*;Gi_@F*@QK_Gv+tRt>E+7y9 zKu%$t@&}w~4G9y~uBL{;KzH6H_!hO&?`G@de_y(Z7_udT<WP=ta1-;Qk6drL5ZtDylWXpnRrH5U4M$s`|x5Xj#i)bL$|}#A625QY|D1 z%$H7QF=8S}=gBgUj?)Sd>*4yv(E3ZI{T1!@H7E@+_CMf#RkjRE4KrwcdRo`9g z3@M>`A)*(o{Y-e~qD{fXFH#M4+8*@bh6_%UJsqc$op*S!@@rv|QttMX+_LauRYIIx zT@3P#<|y(KPEg-pg|}aWH6yEO0BA_cc)4$E{y#9~2js#PT(%X8Q0#wfvJSx|?JIJY z=PQ`1#GrphCQzjdpB38}RRKH3GLfgCx-(MUOVVXAb*P9xxkVkHMmfH*{BF^l@kkv) ztK}qD?$eQ2ZJCYitQjS-z_9;wg!Q3YfMC}%3cG=I`Hq8)+3RTfb99O$9QdlVAk zN(d_o1w%C5sKoK&Ni;m{_x!~c@@dCFk6B2j0ibDTQLIkW6mWItOYvRCu&=KvBHj&i zYW4BjcUFkJ1=WG!w}OtIg)Q|!QseA=dtO}?;L*kXIeSC*k+fB2BmMZfAk2N&49xb| zvC0C(*%_UO4l`4q*6vt9Jl{4H)o{s;Om>&mq2=;NZF}kGhx@65;~_i2eSYM4>!=6{ zDr@a{(TF0`PQE$A8<7yo%B?7H4ysg{Ayahu&%=NI=H=7h0*mqA&4%zPH>@8tAetED z9-%xzbl;}zPzfe$e-Ll4-ZPiwW>jpLQVgu`RCDQ~Zg>=yKH3sq;2j7omgKF_#ju-R z4RHbm#`)I!?gid<$PRsQC(z>AoQ%mcP?zTxp9PVl7#tRNSY46> z^3)#Cpm??9VaCmnEwsh26T>i!T z@2vs*Oez+e|LhLw!I4uWOir)JJ9>gb#wuJ*F$1{FUgdm|9iH@$2W$F8MpY>~Ex%Co zM9X>}yjINdd0=8k+x6BQwpFyES53nF`M(G4rXSf_)sj{X9RR&S@t3lvk!(Cj9R&i; zm1s+Cm1+JA!8D=@Z!fASEH$Q7_jcPs#&s2ym(Zd40qCxc_16=LF>KXW{J!pT2zi8ER6XvKWD3%aLWqRIkyNO^6U)-eq+btkCRz{ljIS0ruv( zGu?yJ1reZHUsBKn4{T(CnQf_I73k2^x~_ww777;!qY{Pd)qA+hb@x&%!8#q$XWt`~ zPc-qKf*+GdbA+w&$Mz=0rcW_!h@t9MNuIz<&$Qs)YnR1B>I%&0^halxt$Bz2Tc zMjF&pB@3ykgBlO0Q~Rt%P0Wh`smd!z9#9jln;*N=S`i$crhmtFM(rNA&=QT8BRtFp zB{+Eq+SYmHZ4W)iitr1FE1Fo3{p;b2hkHGDk{48JYU&l&8KXM3IOZNAaq!c#s5 zB^!~fxW#X3a&5sBYy~_INVHEE&|l(k`55jmhfT~^D^i4^Hr7Us0&N{lJI2I6x?gL)0syo77IZdak;Q)yr=z*-o0pHxG z=?FBihT+NGFR&=Ms~FVkLIUjmY|4a|yLMdR0O@nrq`{SS(}yEZMzu#KTX)^9*qXt+ z#_a*(bz%Wqd$w$Kp9AJOWO3MXI6*{&t9kz z*kBOzam)@|#aSz~lLv%%%4e5RY2}bsp9&L{aC%1FofP7pn&^QnSF8+9-Y`w?MScUj z32XFAK{^1ecsna`R$#hTrj8SVsn~dGoF_$)6>2<1OX~Hc_t~iS^Ap}7w&*?YFEC>T8fkWP08eT7vp$_nDa zWl7AI;rl)Y%giDabcxybnfwV&7(leMrmTdsn4t9p4L3em zq$t+whpQkQ`VQ>XudQ4)AT^XWlFc8g)0HC%_Jj343>cUv^k|DNsbvHh(F`KxeOdLR zRlR+%{EkVg={EQ70EF_d_5^OAfyVWKd#SzFCGo%sb#)QIrdQz{?|tRY^4o8WQvK=M zZ@;zX!+j2YOM5O=bB7Q^SPt*T4))?7{Ht%@ zhuJUE*q_C}M7}`&H!HH)*Pe_~1k{HUj8IIoEhq4a6JoB9o0ER8f z7j_`_8c)YAB&jW*h+tu^ihs=i^qHb$1(HXin{Gkt9v80=_vZ>vB1hwGD!z}73{{fg zWGm}ujW4odlpnLxv<<5TRq~ilj>52MnTRE9m0(K&1|%~xEwY!zeU54fSh<;_imO%H zQq7mA=mNeLo^$*)yDiJn?v9YCx|YG#L$yLqGp@zKiscs^SGMFM@aSH$pZ;5T z|Bj*wF{`n$m-*=ikyL7p4jP2`*jVK?+AEJt9Anlak-&n6s zlBT%KvW{SXbpw3de ztv4?d?8M1ax|>S-<(sSO5VF(x7TYLG`dPRL^zuPZgjCn7>+8%9kQE#$r=y6Ls%#lL z`u6M3X^)@&?(MrOzpsh$&bHWHmF8`)U@5NsEozOl(Y!I3#!M&ohmMW_uaGL_h!!d5 zC4e`QlJ7;lu!8IGsr^}@)r)qW{FNHGgU${c^^nh~*B|qfhp&Gjua7H@HXbQhgJef> zO4Ic9Y#&gs$8t)kRKaml(9`fNC>F14SHSWvY%Eb^rInV`t<3c z&=nV?(IzWV2Y2fwHgZmc_DKA?#2Xx+%zyWFmMAPsZia^s)DLEI@~26vW?6?$;+F)1 zQFagBLaqk11|Uc=DxCxQ#Zo|aXYEqt=_nIz{qEdDM&J8jLRQ}Xr( zZsMi}#XfqUfWfm4AY>GoX`|s!EpPSgumCz8aCn|!hrsUwAi$bjRO}-&9GJioehNV& z3219zZz6fW3hLMM^+Yq0n0qTzh(~Xk)`NYgyR2**YpQOO?M=BcvV39I%-Kh+P;D9m z<0Z5#q2(DAF{yHf1pCCNDnte0a2GV}T zK>9P-Oc9=LR4<4UGUS<DiMBYPr&(ug(}~s97A57DMl8+j$RD_|QOO$y zwuWk5f-7Vy)eO(-;F&gi&ur`68cU6o(&fW3Q|&=&ZODqU^c)nBn6DKA8Wx7kGOn6g zp~!AU{^O9}v?(UaGAD2~Pd1zWozCslpX_~4aCm9+JA(u`Pxz4)QUd4(xaZ%#hbv0w{gqG<74Hrc(; zU9ME(U@)59>d+SOGsvH1(mW0Ku8*rAQO@pLRE1e9ek*8Q2$hNuq^kpWsGHh zPQU`%L#hHt{N zMQYBJ4=%OPiIB!ftqRu5HO|*7gJa${uKombUF`LG09exo;f_T zce`h?I^WP{I=TjvrI2YTd1ixhbxS?_Ajr4ub=Sk%(Ff5$5=ywT0Rv=6q+X^pFP;;c zM3E*D88GDACZe9M#${2ApdBY|Ar@_iRB!7uV~}&$1+y0|r9x$osxvf@H--yW`7Aeg+8v8nhJ1z< zIzBxX9fdSqqxF!lf3R2KHi6`)?bv4a;qJis3U@DVcJ*1=-U3f`jHK;FpoK?y}m(ffFVN#Z>pnZJ0G`A z2lzQmWc%uYYvy`DigIJ=eLX_w*WVn-lx-QvDa6L{O#MS}`bc%b=G$$bL{-FOvrlRj zTVsy{C0nZoa{cH2*Y~jJxPII?amqY~JNU^tnUL>KjqoEph#Dy~ZJ@>d zdikDbvq;n1l>ke4Xl|fs|E#FCy&x*swLl;|Wh;5gt4Vs2_lpHyMUzX)#A-b`15IwT zOR)9Y@N?G$)xCkpOTLwr^#LT*3{T7*(1-#M&Bo~0P+u?KkSCsIO;pkpjfrsbZ%aGkGh_<8w&Q z@UX5;)E-S(g!#Wr^dGNl`cUjb^7L_dIJS82(eBZQiBsQ zLT#<3>NAQ&r%BCHi|WOk=E{Yq=fLMkGm7gx+=>I#b%wAXbbpMyi?$J`*|MC-g_x-1 zSvys}Lg-&Pw&alhH6>=?cQjvZ+0RGmb8ZXZo-lBEO>ov7%ta3 zNl*2>7DZ$!yhatT+v3aRxVH`2Us<;t1UO= zLzam-E}wq*_Hz)4F~G?zT1?g-)@7Y*;1JwbsW0x^=(F!9SX`5xfCk`FyZ*@r3~+Cg zx=N21*+Pw0vxC0WR}x&G4q6HensgXb60HdiPBlMZ7qaz<61feScn@;r6vhA6%ltjQRCc2p7Tv&q5C5#y4;7&S@H#AL}mn7 z%G^suK^QvqdE#+JhR#|JWWojxcubid*;|1SLHR@>$2x|(zN(9*ZM$aqA5@GZ+uoDf zKkA+3jE$0AfLzZdO#VXEPI8?59_Q8n@c!Mm-^j0D0Nn7H3>yFFP{%V%mLoki{R#A7 zDk9r+QVC~!mxoajJwBqyT!GmdmvV?g!X>`~Xv)ekx!sR0F%yOFAT(f&)`P44DPl+8 zxU;oH@!SoE;(ZS*ME8MYl>D~8eV2;=KYjayhNWB5CTC0Wfje5WgOZKeec5(Z z)L2l_%Z8mtZ@1_{N__7CB#di62d8%e>0h&=bgz>(>ER~XQ?Z_lfJPaQPdgjd z-#EX?zvjCN^+}aqZ@k8H^-t}?3_QUhNS|+%avz`2%y5`6BC<{`wGXOa4^*|eqLG>gToA0yPr|VGPV-Y->Z1* zzG43bzW4_3msx^-E=(bzg=+Cjs?iEA8)?N+B9Xw-V@&8tyox^AK-fVkHulW^ULs(- zgrQqIxxYynVf`>QWHYs5j2v9wr$=m`*hWC}CD|jYR5qAsIk~H9NtWM$XXq8DLD|9A zP)6P|6R)!8Mu5GmJBSk0c8<<#qslwbr@OPk2YTmnavMel2f|ewj+Iw3lnkn)ErweJ5(P40B@}_>8^^mA(s`?Z@JLor_idS z5&7QX;chxAfpJQ&Rhq<}(n-V{w4-%{L$9Z$kh|x|N=`Z(AL5|<$NcQj6Sq({*ghM; z8n~-TZhQ35p89ZkIS~8NC^wpstaKBwyY?+77ip1C9Eu)qRP|hnFPy2{vj1+_fU$j--owfa8v#!yniRZ{%?G>ze2R9x97I2 z$&n?9I=@=yW$oo`9w>(bSSq~kPgck)FRrGnUBA^qJHYw#1Af4oQbn{vQP8^T&9?lp z$548wb4MhP7%T7y&E^;sMYk5w)r#WM3GI=Q!I)5^@~}}G5koYhB?nx>=qe&mpCPl0#g$2}&LrNp8i5#CHupa< zqL9A(UqfbHD-8mQ9AHaD#rK73qhW2YQy$nujVb%U*oub}0vsN@lVsIW)OG>Lf|;o4 zd&&lu01I7ndGJ>-0pjX|R?;vLI~GOaKz z>rRO0U%q`O@CDZ>fDZpr-@MMFeE2N@q>pmaV19Qkpa!V8yHmS-*vMR2TgE2O`Sh5F zoAXMs?x8Q@gEtWGZ?yh{b_wP~vL~F<5MW@QB!9{kXU&%J9pwciDKM~?0|2(5a&$7^ z$Tm&I7#)CauNrHN6;g@D-rWaZv34{-+#xxO&R^?hl@IKusIBOHKfv501qh?r5zCS7 zPpz0Ni5J8KWVvxpj!5yx5qHk^?uOA?ItBcTB4u zU6?rTUyD&GM7FjQNqz$pnxtoW`N~2J0#=6a_JUk7=#rP-pa(GnX(QzjJ=G*kwRAhY z&BwY!l|}Y&!#($+N?e$GF4+gT>&vKcrKgCBu|x@bFBl^sQIbl|5u+-|dzDPW`lkLN zalgF7R(Gx(4Y;)BWS{=;w_nTuzXZ*!EBglW8D2S3m(9B2byj*1!irSQ+2U-#iU>veTBi}NC>~lGw ze3mTP<$yGqzwN^ zKe8|WIE&AJ65f6bEan%%#E~BoIftvA+~K6(ULaa3tfa3#sE>eJ27<3pKpr(lO&ks0 z*0@b@@}>Ays1G$Z(BZS?P+3G$4LE_7N>|&XaE`YP+MoyyhwM~Y{Oywism{{9zX*RN ziPBf!3h%$t_s_V3B9f!zqsKYFs&)ZJPzOv8cG+?VWgkG(L&p>%)vlvecMol`x|EIg zghyzIv$CmG69?)ex6WCVQv(}GNhB>+ZA+Ny3zQg(+`Ng?z&;MPtZ_X#3;aC1|KWUq zD#@+;U}0$p4L{T)2G%5ZQuZVv?mDa9AqXdr2k6nBy61X~Jt*atV-rG?+$6_ugLrJI zviofgy*zV?U_)ONcW%`0xD~vh`ltlRU7JXlq}>~baI#tE8q#uL?((1ops=B+Thr@7 zG06jnq#SoCfeYmjp{fTaam1-Ap&?;6%rja*IoaF~4q+tgRd$K-PPWD-W^0Tul3vn^ z@)*_Ne&!;*9XKXe{0|)+3oO$~{2s+ivbgrKvE$RhDW5m z)?qq6hGW$pU2QFy8}w0GLv7&RYeizKehhb08B-Foi`ZxB4$WK0R{)xkx4BNX>uRWB zKYGF|V0Oobr<8RP!__?2T6=QVP#QN-Q~n-%tIzicHZcu^cQ^%DUBC1vMYS3uUhCz| z>co&=UhUhw6!RdkUjT7%B?o9HOI&gX>uXY(4a^R$1g%wQTk(;;1gcePTUh~;kToq) zqVr9DqHMsC#G-{-O_-Ad`;HgHt^SSu7x+Rg<=?+^_6z+n3;w@*`!$qR|L*NK?_b*O zlHl##g6#n>O^Y3STI5rVd{YjIjjIV#kbk7ZELWnINT|~sTLkG(qoAvS*rxRJb6a^x zWrW`&{UD{N_a0gcCtzg&$X40F4K9S8;c${Ipj)*ZGlYzTduM~XKe7LU{ccf07X5Xd zM~s7z)1i*yBn7#KI#x?)-SyDB%os0N9;$ALim(ZOC5pgKjEDlM$=Kb2JokE(x&Jpr14^{_n?#q{sICOlRVoD%ApfKw;PsF7l3FxgHiOrC82> zW7hUk{QX8LLDkF8m-9t<`@!YY{}JAQiDS2NP9yRk?Rdn7RI@R*a4h6jep1U;p5esf zIZ|bB#GJvibmMN1&*n!(U+lvg{5ubj%557IZV3bXoE+#R7qw? z+_C+xMjUaWwyC;>vqx5;4rQZx0_4s44)OK1sQrL5$-(Ojssl+%Bu#yZwi*94{EvU? zNabGvtq;3PiY=P#HSKZnoDQsUvd(g0+D;x z@fZfX1{^a^0+95~TYdS6xeS#_riRZJ9=JKrhIDE{F|?B!8ezZniov7R2y{eTiKB-Y zFy*PEY+x6Qo&5;Ap*n??Z+P0yfDKsWW0I}9bd>0n-D7oeqc(6#q~cz+x$~DKM*p^a z_50!Nr>Ao7n68kvun?Kh7J}%`E};-PD&Xj}1OjkU*3nK;BzX!`&J_}R?-uT_TGsM| zbVb*!4OOi`9kV!sy^#WqnRY<%jzqR>hdK7^TJ#0wuAS^Be)s-8Ufp+3vA=hsGnmI$ z#S{>uGmcVK_rtY!N;oq0RVtxY0&OG7;5`&44eL(~swg4#XSaQR%1OGqK6N4k?=%;F zf+*CE6!c(&rH3p&;q>dQF31=4q+WR`Uj)9$n_Y4SlR8k*2lprLgH;?`WtsM-K&pd6 z5Xf8Nun!dfmak+{PWP5u=QeZInIj{n^yYKR=Q@vCs)4oKS2iM%I##zoEimzey_jzS z2WZ!0w9V82-~DQ-PSXQ))q_ISgO%-#bEyKdN{WF6szjS}g`f-uwS!XK)_IE%>_wt{ z9tpN2lY3ZgLsXreLepK7ar5n8dSmRNg+Xfn&(fHJaKrL46D>Y@-0cbw3CckcEidlNb|6umjHI1ArQK3Zc!s(sJd zSv%l}h=cX0rVAWgJjKV&Epl?6p21>3^14{#HtZR8!m!(@C0O3pa5{njsJS#+ObS`) z&W$5?fU2PHc?`0}iBHfO63-$KtF8>msKvZpBj=TI7>3qnJpBkg+zAsR$vHS+AEY26 zx`!#~omPk0_m)j!AmVE_Y^Hd{QEeyR00n@?wybQ^yS?Zb$h?1tCX$@0*5$iH(F^>R zqx2{Cqr!-XSv=Sa#l%%r*k<|oX5pCcp^~E@rN9pM1iKk~+7d&bL1=)Dq*mW! ziU8eK42E|-x6nQZhG4eyR!KnUkm#lOd=O|mx=T%3CGMW3VQ)3;f5V7(CUcR#_sMn9 z=ORMJ)eo)9TT4akYv|Zr+ub)3b7_lCK(+6OGavFEeTh)>o&12FRp4k=OH?~0(9}`i zycYAjMy=5w3~4Z~w4l9d(N{+D2OJXHnMkIpAcv|xn>ew{Sph?DQn#`IrmV=EES@|% zt2pklffWg?J*}|=Z$w6N08zYmyq!wQH9KF}<3HG?0NMsZZkgC8QCRAot>E-@YJ8m; zw{BASSybQI2#{PHHGb+U@*xnxyE(D8iASIn15^_R&cNRPH81TfJoEksG-BnjEZ%$) z4411l;U#+GWI%V{G6`tuENjtHU4hvvrTYrBv(94vU%K9`NtWa~4}8yG;ed^X7A7d01i)Tbs#&%=LtSFlY4PktlC+LluC!rT~H_!mPNi;y9v6$5@{I5CR@$(&z z+ahTaZdTpCRhb^{$ItRD>;z(L_HI`sWfpS;xFT1sW1F+hiH&*4Z9!Mq`X1n`E2n#E zL3A!7!!!MUP8<_zoJI;q-?#c&-S>0!T=?0Zcl6*jUFsFuAL;ys1UuP=a@9f#Tyt1 zZNg`rFjmFg(|@gG>>~q7X}Wk|ORW3C@l%9tYZdY{LE77eX7mP!)UDx!wpui=F;6Vq z&j+~3Kr;Kl<7P1e;Eaq~d)i^cDoX%{6$sTu<#SV=rKb}wJeK&Nnr*;?5X}Rd zlVt-4_){eO_~U1n_y6zfw`^-KS^lG!h<)=66#{Qg^o{RGZT*kee?fak z{`@78NcS#$;I;@*m__tu2BU3@EM02)`bkJX3udtT%eL!AK!~lq7@n;+I|br)(2@Z7WVh8q!l!;PbsfRgMorro~C@W^BkDDB6C=WA-P<=zF zqZnt(!5(uPW@QD`k^##9u&n?`_*OMfI?FP8w=ILCdv}R#7QKn#HmNq2BSPVf41&Gf zO(@1TWc&ED!%7&Y;jav`bXV_j%U}?o3awVHK2?L9>}l!!5_}~7I_*(OE;pQA`L9#uEv)@85toA7q;BmV$VNt)Cy-*TpRXe~L%`dX0BCF_dOi7d6bg{ex913>|UF7yhJXatxK zDp@IN3<9u`pF|HG?l;eUgE!#{^nhlwpVWIEbV3b73y9*f<>>jD zX{L`bdz$1SjvPs$el zz$ZqMNjs>{TNK2_Y-v0gh_?0WX->|i51W#VU%zxTcHeUl1Ei0gj||9ATG8XV@CK<+@#@QWfS4$lI}1Kcb86N5NM4Rvjk^G7lq|LY_?QaO#al>k;q(q_ zINm0u84Fa4e zD_jCtTKH8jkD^Jm-4_!fk;5rvp}f19W_%9}F>K)w{R0}@7Loxin|+@WZsFDH%YaM^s1crdxFa9N}}>T^esA;yA<;YlaBlMYTQUMG4Xnv?R5q zW`FDafl}@bD_GHJM;V8eIdTM3O_!$reYR=(i!^|>$S*(i1 zvLV%g8@H>vq$akKwAY3wTIRwZM!Tp|!n-741orY;0JJB$x4Q$Zv)y(UzIW&WP6oC> z`Rb?3ecjfDNSTBe%2Qj2hyqtkgE459iM6(^bWb0ai)d zAMz8HL<4~w%{&V_N2)wz9d)uPBx9AwF4c0+(V#YWGJ$WZC4Tok6sN+rTmLmaYaEy2 z8VU=po>RxXm}#zu%G+-{3dNLr57?Z0ivLzh)AU*m6n|lxyJR|h>VR#4{7Y2WU5#l) z@^+E*BwR1h1ZchdipxZIylvSdrQ|qbRIUakWqE5#jY`e*jiCQ4dW{Ud%MN(QI4!uz zH!9NWP~RT6Ji8aPy{VKATon6a9VQP?{K66es8pEV-61E-#x~P{K{VMks+zPAOnIAv zyIRYhzRU9f0r%wL1S-fvceUuA?q!k1oQxg$bF$3;#E^_TlQS~?vYIy6tb%VfSp+Ne zUJfz}tWPuVp=^@GZ7z>dE8Em*4yEbfO?Sea#wQoRtiTiYUP=El zLZWmbC>0K5=h_W+1JP%HDx=n&*8LB`5|_dYm!`YkTANVWd=%# zvRf`-J4Khjn!r(@Ebq977K%xQgz+VFUxv`6hwy~$K|9Dn(sbbYaf84KYL|k7ct9n4 za1Ag7uR}@QC*?8FoOn@2P9pce8ldG@aFvC&Tsp^6M3!_;-Jx$~w^Q4xLRH2&z+r)9 z#GI?9@nO`uuB7*LoH(vl5CiuBNYhIJp9NGM8_D$rawxm({v!Ov5Ax&q;`Q_NXZZ7v zFzL(m(z~17OXfX-J~&bBW(l&5>F4`;RY-F$LmzYvq{ z3BWlu!r8Ls^~9X$Hco0HSo4yC=7-C>s}?4W&?4`4sQw~&?VD_rL{3Y)zm)2@vI2NV zyzbQ)qbLc{s^L^FY4RP&#Cw>n0&vpZ5@&UpMnC^y?N;y=%!fq<^{l%y={;ltPktzL zW@cIi!9&b)7nSYMYNV$z$mxQ*=p3awZWFk?CSTAU(3-RxyX`hLWlqt0fT4y};2=kI5O~u< z1p4incRs>e93&PfmS_>A4 z1$(1|A5JC5dJThR7BfcA{%aGE!kHc5p{*A+@Udgfw#;}`ifyZC38iXUlg|3iGh}#( zJUTO3g=OV5`rRSFRK-cdLHWMAP&EbX++KYjbt>(@d4_!n@DQ7->9{6*SlU7vmAq39oBh3M_6Me0Vt94K;w z4CCpt4hlpAj+zoKQwE8t+v}u6!*}wd1`2n$waNf99iBc+OKCw49n98tH_yk!&o$o`jn z80glHj0rbf-2^SlKaSa@?$j`duvC?Jvs!6WPdzoJC=_K~i zt&nO59;qbpexjFEBVof8h~WBQ;kn+gCwYo;>U!;JJ4B&W6RNBsTnuwbXp~W&en;-p z?_|p$yOQD(BASzA-!^~TLpME$^hWk|sOhJqFa`ud{(lnBn4u15NyPAhZ6s2}=?Z04 zDMYNL-h#)Rf@lr361v@}!%iXpy1!1ck9@{NM;K=G|H$nQaf89$rBrFg+Brs5@An?( zQYa!l{j7Jp5~-QmOY}vR<>`HVfK_Ehp1gz9-;tWcB_|eYrdJA1-Kq2qO+nciD575` zbj=cv?1ketWUlupMaMftxP=y1DZQG2 zRSj9UgT|z)^hE(I0Cq3}#>g$3vb=-m)84nTgNX@H69I#!frIrl*~V0jVEL!X<5!M3 z7_viksQ}GO@8gF*3_tv<)0TtU?p=)~OG#y2F-Xy<`*Nig!rHr)aEhG)uF$!jopq}Y zQ3CEUpt_e(dviZq$W^-%!_&m1ww0@ZnFrWOw$%!4h7v!u%Y6;z*CRGL3XLO>3fr)SQYZZ8^H@s5U-bUnmd;?5GpGbhW+SSDIq~N@RJB%P9}@>hvP_f1FTzVlP@5dJg<1*E z>>FJnx{&Q4l7RyA+a1uBM23y>ql)u{Ah`x4sB)(?gawp5w`&ctYSVZO<(~EuMn@Tx zOT6)lE{n|*!J^uoEb!Rr(v#fj*cehn3QRU1XX}EYYS4TkymbW@827&U+en>|0%62(#JT8EHL2_+R5R+RV!G3vzBki& z?IcJn*#klr#rm;H@(46e0u$7NEIE+54Oj7C->q0%sl-FmvbSfZ?0*bNR8GHlk4S2B zQ|_LnRg@WkZYKMqs-5~M9*fU777QPeB(&rtVaOnxN1@^_Za9tV70jYh0)03YRuQx39Q+9V7|M zW7id`qv~$ky2Es6ZNs%kHOaZ?!eqZJL*;Wp+b-{a^yeSJ#OuYbpGA|?v=b@(oOBRc zKhUc-nRY!y9UI z<%V5?v)4|rGAD<=gePZ60@r>lb8iq>eaw4?WSK#aJX~>o&pfLF2x_WXdwoUt;y>oy z_x0N^NV!#eawu z7|3qfp&shp@Q$@@<5B>cCH`xYYqq13T8?BSZAX-u+~mnIWjmdi!Rv|Yys)Y9{qMr} z^P~SAYHBL0e!?>%wI#-6s51LeuaqWk6WIs(Qn6#ym0B$W%UNDlv`RYn^;GK~i!chR z9ArZtp(Z3nXwMeQSmr6N3j(Ex$*^$T8$quBF<6US)RqU@6(FJ$U!q0PnhOfjb z9WS`7#g)BtW?27p*@tj5pjj7o^9zDr*rI-RE4_4X9dQFdzb_XM)9*HH#cDY!EkS0S z(S}L3XB}ubd^oQdA-KXoKVZ;WW0XZ9*$!>na5Cy?j=-`%0{8(SBx(RJ_aOy-?99f( zGi$t+8MrJ03q#pyb($HaFVUMT51`KwcI1+~X0_YdeV0ep+qWXy-!80(n-o>Gy_%@1I>7f0`xZAg#wv>rA1oM?2>?IH;h{zjt zfbHNpAl49o*uqdYX2J_Fj|C>yNEmaC%9nGyea&JfvK`B!gXl~~`oFwb)TmT%n44I# zXN;g8REZiOuw;@A>e9TCts?PncW4C!&ze0?=E^F3;9efyegiYg&Nio7(ae{7hy35k z%~EMlPXIHBb(Ui*wQ}5PcPG)hqbCtM402(Q>qDNqr&nYQYpc!MN@LotPlVE@Aw zwWk18To(_Gu~L_ZQ&6o`;UdFFO@>T~^%kih442+|!t#2o+>+87jpcBxa?2a37aSdc zRiW7?<{#-3$U9Wwv2-ML{9@;^s)}5^fMdF$q5R^>+A&WZz=QV5<@E%zU)r=j zoQZI=#b?PtXGt+i8=9*0GY=^0`^9pdm*;dI$?h zUh+$&Jaat4vLvB@dzKKDr2|eG#v@IT5B0W43#+;b#YqO@cYprTzx8MMxBeon+q&Zh zprz~rh>T{)X*YCtwV$;E3l5g*Wo(yG&Hv<)pz&Cqdgeq$GmpMSWPj6W`|GAW84ATI z)Z3*Mr2w5U?6bhyYD&5IlD9=0Mqm|^On@9BW!hQc1UE2uP^mFUbhGN0WXIuQ#O8ah z(*r|uIWnw#Cx>1x5Sz-2{0&e^?>~`%@ew8#e|-H??!{lc{ptPZum41><^Pbs{Wb|U zeS|M0m_mi>3U9<tSM--$(7J3OPF%(QGd-fG+lM6N36p zjXnTaoI62GI5(HJTU2<&4vn&v(`nQRcvfR>lyU)1qebGbM9R&!gF>VM_6IKin|HsYtP9XbDsY?w5R7iIS-b(e z81|-l98OJbivA7|0fTJO=WPt_|L*es=dWLqJ-AIJWS!kQbj)z06oNA07~C9?JCH4} zz|>d@27lQ2jH^pdZyTWJ=yHzlAXlwDbHE(Z=dP+8rNMpZt+rdH6C>|{_c%bs9p*;^0G=%i8r znt=VR2N<0aH16u~Yh0gwmHM;bEJQo>y}Px*wKR|53;8!$dq6AX$e_Y%qz^Vrx#j8O zQ;HkKf^Eg8*%meUDC~$x;poU50k2HnKb?@TIJIk6A)Q+nyuhwzQUROQcl=oChfIHcCq=njMUPAO5d& znqhKVcSL@xGNFyO7bxAXH{=)5@l++&FH0X)tTiCAAHlFmo& zNvx2OxLNwA?U{vhJ|Ep`(|0+IyGC?AwHr;wnM5HNl^@`q+4;mIRyofRoecbI>qUC(69sTsknD(-hY5>kKz;ScV0hHr{(Y57hlEZw#@$`YS#eT%$dD=#A z5HyuHCs|fBa$n(hNRQ9LIvYCUh^9W`m5#*X?c~2Zhr#*-5+$Gv-dN>48sHl-J~w)D zR~d(!AM=LtdxupM`Z$WJLB*KmZ2$^k2Nn1gZyrD+8T{1yB#G6TI|>OGlGh*+kZmla zqJm&cF0Xd#F!vZYlQ_D>WRqfbaMIsx;E*m`mknS@P61V=dKHwLQ-^}pJ0+=MIytAZ zrcqhBPlpHf5_cUCTg0D7YBzq(5_SuyRHA(3&k{GQQH3CnMsbmzxPM04y0BImK1%xF|DA8-Ll{H;|U`WBZ zqa@S`?wu5oltVdasl=jRZm#Yk!HDgQF<8B_Znha$IeCUMl^gaXPa`LT814yIAf}14 z))wjgV^VV?R(MIADBcsrQaYKZQM7-036ecB1$-))&>&l+>_{!!mUh`y9|z2uucofs z5=CBtLb1dX6fJ|S#_&=Qy@_YMoo(40At#Xi2e_<6808&<>;h3k_5M=L21hTusGS(wYPIv907{}~qagxL zPR_t1=nS9@RfTj%u0f~Ws4b11ruZyb9!BY$Nq$F4=nvo37BUg1|4tah9UUW+=II)C zf>h}@qhLt0mIMN=K`TL!6j^;I*8psf>=HwQU(^1OIA3jfkeYv?X z=#t=W_VG|zo@};IE6%yZfi!^C5%b=!r|BHD7KnNd<}3ztE!=sgIM7T``f!+*&ff-? z@&L@4t{5ug#=h7Dy$M6_mS_}FnJhF7+mR(MA)OgNPPBtU{g`B5U*7-n?c?zFFZ$hM zUUh71p!8O(ghHPq@1k!`+=Ehu{GUuihv=f*DptHL0gqndP@LvGC~olt+(#4 zNN|@7+gmNznfb8bIo0YHJ;VLQN@~>b+R-IBsFJ66=P8=*>&-hF1OC%T;dstLk|{Kx zZx`jNU_(OMpPg$Z#@V5=tI7D)Ku|EIHOBxK7jhd@!==?>u7O&C!huJe6ZAEK zLSH{OHhB8#i}aPbF1~)2zLd39!2!K$;)jmIE5-vlY3!&ZtEeE;j6%)gd7adOoyt>l z3XXOZC9)R8OpCMf;zo~i(5VO*zrl3J9ItO-GhGl28In~T()% zk|+C00^3+AwAAh?IZp2N1UF!)-`Y0BFvA6cp+IAaN`H)Q<%fy=njEyeserP^p2Ytd z{@M_wFmd=338TMHXF|kx_x6cF_- zA`Us!Y}^kwi|?u`Ldw`kAul;2YCOO`Ytw<-K)bf9_W+}0hxku#yNdrlMyMr27)RL= zd~W5wK&HRAk|kNjzJS*5iS+RLsR8`)0-(DO%wDfSNlnlVFb5N$HLZcOPzvp7(gyhE zF49MssDs;R1UY-QD<27*EqTgIok&6GvH){IX<(He>T&%Sr!(*cHA%mCP37nNkKaCe z{VJqCE=O^b+sw4v4{rQcg*w>}#5O9k6X0N;GB8GWO&>Bm6Z_;Tj9np(3ae@&Seayio0ZU4D@%rQJ(=mq)B>%dQu5ql?#M4 zMcb{;XL{1>hJH@r!CXxup#-;qi4)w1DYz5Wh1X>CP&Tf18`i+F(FJjF1z>0Z`B>QH zpw8@;w7x5gEy+Csl{vI?nt=B&YC3It(pl|E1?op9`I(@^HToLE4m`s1fKVHi-+)wY zN2uHa)h~&THnX;g{Y1@8HAa+Bu}ONaO#~Z!N@isbYl6$Az8a4}^+S2-l5TR0XK?IE z%uPnkoSGE@^1pJgnIs-KJCbB&H0;yvvJsicQv+^%)JQ!|Ic2-CW-a73cLAYj~7EDk&L~6UgBt3T&XwtM^eUL4M%Jq73 zJ%*0%42M)g%K$2;JW2!_$q6OZjxm_Four(ePu6)5=;K>Msk|DM0rT43EE&?@{`>Fz zU*L<&`@aj8;p`P2v|enFZgYjR4N$V;aWiz_ejcW-3I%95M8Y9tj*speeunzQ6gTpO zAZaRV6i>w87E0l?VUvYb)tL!ZpaVc|k&yHdoAd;$T~S3&ubDF49Al43ovzZC4pNb` zeZ3q~HOpRFvUH8M@#OG2b-XF0N=B(E!MvlKm|Q>#PO#4!Fxsv?=9xtNBcqDo!zgdU zQRZZQ?6e9QR1TsB{_j=*QoJUk9NcTSQ~Ul&e*9Bb{SQ)E%9RiNwiH!b*=*EDiqCe> z#&u1@m@suN-sEXGn!Ju?mtUzv72K)>!m8?xWg`DM{O#ZV?SD>>Tf3f(U5oOWx~F7e zGDuKXzrL;T>}yEMQ8rH+l+a`;IgFj`v!T6WX-k5!$h!lL?KWBv!uvbndoY$Nx>1qh za!K^`sL-erHcrqADFF~}P9l@2!@bN($^hMZ+R8l}9Z~|x-F%t$vormmLU9O*a%rWk z=BbiPl3L_(yn^?(O$_hoV>0gw#|RK)kX5ddC$mj=Ws{@WkdX5;-Y3*;OYoV^wXNEC zpMW1I=re;UFcFK(L46Pi@8Dk5&fVrboH_BiBW{T0GH!P{Qscq)ZOTy!ZBq4im7vQP z_Vv=W-shELB|jb0J`{k4TyH)&COYL}nN&?cyA&_`lK8iB9Qahr&Ow7x03tJTS$42u zn9%&13C*whXO7dq39sK!nk{inKMN-W=*!+;yLWsBFA+w?={KNvh8%5IPp+<#NKIxB zmYf2Dy29?kCmUw6v7HM*vUv)cnRf+eTqkT9#mzH!k|tE$cG<7j!aANR%C?eFS34Bz zHg=nP^(G(IoG;-zL|S@kpg|jm@seES@)p=a+}6}_r1dQH=_;qM#EgGO=TS*}1k*&OuV)!M=BM;kc>87g>hFW`ksn=NhDQ=LlcYuM?(8Wcy$C86 zYs-UaTu(BkJCMzuSuGA~o)Y}!na+rtM74+dzZVn&1C`A$_nQLYi4=K)Pl7XbfLY}m zt#1yBt}s0Z!490PK#olr^}fDnqgxKt3TV;iBWq7U5sC)DfVFEVxTcv!57i&G5b$V~ zZySlA9VvEob-h1*x8qv@6?Bu~X4 zA8@D?FKho@8xNq{sFw8blU54pF{ou}nx8@fL z3i5dz*sCkc>p_)`?E;aauA~-9f=Ehr1Ov^%>cYfzkyM+Sx2a|9epyj=eyxSK?GvY` zjfDc1TK7kFe}y5c86>C)ilD?s!$8b#A{YzuoJggjf*2G+MkhVX<`x}Alz#ZbKwno( zmZ6gs+h@Z#}h^!D|YTIpS8Rt`CR~rVJ!u}_I|RZQFVj{cyjfD zvJZezej|w=PG{jL%1imAa=O&GDP0*LwYI{a|Eq&~%bF=I?5m5jPhteX>7F?uD}3Rb!E^>QF-T%3aiXbI zYJtOHx>KjD_a5C7#;>%>!owho7dl-j{YGgNc^)vp8BZM;fFbOQ5fpKHGgQz~soD$f zsx#RR$hgx02Tq1W<4FOQK}tFmV_KlB-P00+OJ^9vZ3iRYh9;^3138MlI)M^kZ((B8 z(Q~$*J*`n=S?{Pp=-i~Edv!_w&BD)8~|IhZrB^ z(Xk-D6jrImg9U=lkwEGj1TjhLL}8)PbeWxz2+nCCL9;8-(W=>YSz%&EG=gl552f~{ z6o(}^Zx*#%^Z|M`+GMtZqVS<>iG?#olOF{WoB{~9=xz{_A|X>&5q+j??V3i+tBNbi z9U7Btl=YsUFu_tCQ?(VO!35>0p*pSvLlUfh65c+$yiBe!4tjJtK+h(x@JMEc-X{Pv zYMcn;l5kk7?uO_2EifhYl~_Rq%L4gj7MTybkVajliixUk(nRCG^ph0yzGr@mF%}sN-A{Z z*Xe)5`HK{qpoH;&->xIIpnGb2LviY;8y*Z)TcMKSAY!|*AoRjd)DxiCPb%Z!4^=Qp zno*yHtNU%J@`69o8T~V)~T3>)RCLKEnp8B|-50r*A)d`#dDp z<-b9?gnBZGPC%+j+LwHES1%YK3$#QG7p>)q)~=n9Nw(7x4~$|YQ?;R(l#=yD#h?P_ zZwwqzU2K61qmiPV2b)6NG2Y49iX5dCQV*!3*|MmxL<3b()JISU(j6YH&z%}?s+Upa z33a@6rQ%f?B-des8lJnmCr*awQf7OaM?K{4*))A<;0ukzp&yc}Ll3f89oz-e7YJl* zsPYU>4J*BUu`6c1%I12ZIQsybBhC0u3XKa9L=bnjM+^}&%ef>Mv7LzlilutDQ9fS9W%;E0LRT`_qiEMh_@Z14J7 z?a#Yf-i_2b8@+-68+9i3kx8D>r;RJDxZNLca+}~edE!`v#{^B??9$tfXaOFiK0YPg zz0HS;w9je!X|GbBJ8R3;@{CR+@cvLW&yigPVf{# z*RQ1FNx829vEe#n5`!Dmb114$Oo5u9(>zp@_uYB?#{|q&%?b&ajIMC^<17sVP%upP=b$C4LGTKQF0{AD4 ztMay$U?zJ)wGc-n+`y-{QwHkDX^*P8FaN^ospF=d6Wh^fV{$&dqpwR?x6}(dlUx}q z!aBP@Tk)L5Nw3;FOHug!j{(E^@#|M90z}oPK+o?`Zl6ys0X}-t7OE9|usU`OesM(s z*gMG=@XcDeUMs+oE%BbCG^KSxo17h@yxrYr`36eLHbJyt;UJ`&;lGz&cKlo| zKoc*T4ldmW5P0V_P}!&I;Y-+J6@~#bA<6r@_~A!Ci*N_?m45$oc+#t2qmzf=EZlB7 zae*wDT?1(M@JhI`Keco^Zo8=ennZ(o_wl|`*XCmH^NH2TLvncXmgE|7^WB}1-Avj( zvCHkQxxVZa@WklwApvn#*Q%w1rxgS%C7D>lJE&XA^MQ1!?wAwSshrC71L3_A^0F&s zHzn(oiyU@>!RhD;g*-%)3zY2Vuiyh5}wcV8n zm|hKjXh%4lQj(=t4@`;)_oy-~s<(xM^izy5KO&7yY~~KIPu{S=Ky1=4)l5>IU=jg1^;W-c^ER`(_O%BxnURX0=2?Fx+e<^56NxSDG z4U3H$qVOk>7kXE zfT%^DVF~R7mP0JV1=!ba!1#ag$q+7N&F^i2}<;_q?(gdKR^e*#R6t^EbX_Q@{P5{ zfCxtvLK>8Ydd+T=YBv@iT!Dq0jfK+s3l$PH-HZv<*ohyG9(jS)>r0VyH z;H}5B$b+0Amu6qXTq4YOnrEWk2fiml~Y^I6P>cDdF4`-~Hbsj`Hf$qJQmM{R6F z>M@mw$j;^fVGBhQICld+*R?kshoYGjVqn9;h)dLFr=|eD6g8<36LK2&M^bBB@_njl z1S7Y~p!lkts);gH6-@Rr$Xqrq-OP)J`qdYG4UuvnSD?izrE{Ow(Tho>H$}p29L-8f69B$&w$N zwhS^v+niW$6L+U}`wohnC+=!z;7mez_eIUTRHTh3?Mb2o{JS{Jl^ASqI9#uCZJ_f} z*oNxWgTmw(JN3<`Y65u5=(k9~9vFxup<3xZfJa%&z4??fsZu4F6&bx`Rp_GSEWZIQ z9`x|a-u-_G|0O-3FB6ZD=ooj|HE>)SX|6M-$CkryxW;z%X6p)7Lh}AEWSw?}2iDwL zP(=p|is-oUDZqnC@`vk{jMFET43Tsd$rr}dA82!TxmawV-P!cT37D;ICTAgzcO)@m zWlz~`3A3g(i0{EWqzFx4U&?KL#_9DMoH*d94k7JHDgL+N^(S_y;hVQ^Z9n9(pyHt< z4!c%ccXIez^8ikwHLzNeIa0%@gYHW~Gu%Ghuw8JK+qWbEOIfPg0mx%ca;Inm$Y+*c z0+X24;2kg4(N=#bTy0+Uen0%D|Bw!$EW;`f`#E#3<1kZZa#dL!7z?c{`?aeShtpVC zNh8_1c4$7(8QUD}D9L5gS8g3DNoAE8@{v8XMO^(bb00CXFa|4QIsw&twFbmyPw92!7iAu6I5PSju3O7eZaq^H0rNq!9zzj__*;A-8 zAe^PzV|{VA2!;>=4$_rcQ_6j}m!ksADST06T0>JnaRq*wE}MDnVE-)Td>5p?lFH4n zHh@*w;maa&KM4Oz`rID~U_6jvQAA)FwJGXwn;pIw%!c9)_!Nu1C0>_Kd(;_7F)4EZ zOR>tHnI{svd|Wg{dGql1v}`goQ-8HPSCS_J>BA#kDmPeubcAokz%)t@ll5t!=t9!V z0#ZFI{iuywTIfo!sv()46q1z{OK4#UQ!miROXj$8s6$8D(@z5p z*f5B4bs;Hapj{lS*j0)pNFPSh0D136@CJ%%;zPm)IL^NJmykxJamxs2>TQNUq;D zz$pt5<9qU43gufB9j+zgGkx^-Ema*J+H|*$!6Q#`)=hG%%sSOhf-MQ)I%#d+IhYPx z!PROsxEf9t#!D0yZNRr3U^M8H)NrIt=zvgrLU3mL7U}Ok%H3v2*8Vx|k#?*6IACbbMn|2EbsAOFs z3tXN62I`cTfiV-7htKur;bE;T|AD(Wyvbmk;{ z4$gJUkOB!aD`MLq@pEIRYDJ&ieIojB2NGlIYb4^%ylODE!mPp|rlH&~z#O5u$BzTVycS!bk&g=}qju$?fIV3svI}9LCFO3oHnzY@%xk4Q zzrjnvQZISJ-djulRCaik=CE=AUN1UQb+Ki6@^zPVvq~ONOIKcstag+{Rqg(s*U$iG znrTzB`bKe6%zN0}GD4q2pCc^y8&jI zdM*-`-9CLtPQEURk-T3};=$d`YJe8js?p_aD1Nq~SLCvF8&q!Xf#II&vl&)9?dM`h zn_7=0I^0Rtx!oawPjse=ipzx#|KWu*M-+p$x5G7Fno#Z94{Zt-%yNtD1d0EFAn|YM z9h7WaRD&214t+!*qGeNXBms#f%Vsp02^3D6r!G6I^^jUnW=v1iH@kkfz5vBUTh1NK zoGtluhr~+p!MuAr!1Dc3CZs&^8t`%v~Co(iTs%BOWNF=+V~PfnN*`nxTH++rpw zC#VcE%Mu`Or-7}V`@}C`r9P#5=$)0qI*bYgeL05${1eGFoL>yFVujS?oT_)_?Otya zBvDUx*XY7QM(ZtBa~i-o!#_PXOH( z323dO(f~-41n^GX5olv(5RE)}S_u(`Dscll`^CWz3m}Y{7b2C`y6(f^vqA_lr%(Fv z+sEPcPnvoJbL4uyh003e0ExYmIs^4kwJSsK3i$mIJ=;@C3f{B|i106i?TPCG!H6tZ zd{x+}y+l)*iR%?*kLI0z*U|hhxw@gFu`PR^+xwMUhq1zh`%jo~e!@FF^YroB7T{*JVUX&`?Dp7xew(wm_RpTvp^kYgsYavNCzVT9FDFuC`(>R9W;YkOq9PIVS2{G&?0rwgjm!3Ml~7 zS(Gd{!3TFUpaovnv^1BBJ&Vu`hr35!$xEz@7icvSS$z*aijjIy-jMbRuX4!Osp?Mn zT=Tk;q$#A#Z+539wE@r#^}&_UkCV^VwfdhNf@!MDMbQY_Y|f} zsVxqEq?(l-eYM^#9HoN;dvK^*7+2nmC4)`rdgHKt16Ngvy%c)d`ot&8;jQv2NXa*! zn7uY$@Xz$OpS}H&;Bl#?C6~+iCOJG;$A;||9)Sd+en<2HvCzuc=CmiFe$07dZCfz`?qY zdq7d{tt8HfqA-E8_F!MU93OZm7aigutlRBFKTU0*`H9LdrgvWK!FZP~ga$?rLvFo{ zT9`SD+(?gtmqCqgy`4fBch)LGH~vpYv|N(1QikLsk~{PaQZKCisK0g@i`G&N47yR;r?s1A10J=Z zHc8$|B6kVDS4=x;rJ>d}&WkO^o4rXrAdH3Lxa! zZ@yfWr*K00{7MQr(;f@o{YLt)RHW7n@Gt?F%F}|?X$o+IZ=l_laN=|3|u1fBpIgsF^^}3t%TsiXh#N zRchEL1(*qKV=Nl$VKuOjbXcBt?Ff}6`?R8gyG?itwv4la_|s=cf!sBW5)v^cIcdwH zW)Pk)sShj50tDT(EmX|5yE*Yd3HtUsoii;UffTvZXjAnSf5rV1fpViPb$YFXseP<^y9p6#nASdNeYGh)_TX(h2%#&(*v_7J$dWg(B3|;9_6K4Fxb!{-|bQVx?g=CiGfM(77P*W%FOB8G- z2Qm#9bO2()ykhNvF6Piy>Om{QqBO9#%ZY(0Mi2qNgx55kfC^Ppf>h zElI5F4wKem;VdTxrd>d__1-u#CWHQ>dpB+%P+u`cBKc49`jvyPZHchd9VhE1Y+A2P zIR!gpEAPESdfwrklOF@%GBj)-1|C*%-xUJTXb1uv3c@oQ$7A76lJa&`ciGO5%C>^4 zi!vFN1X}gB6)$i10~(2j)`8ze z4c^!^yZH&;F!8@nAnLsUf^z|Iowa*=0?^9wdXd<)$bqm=BtLVW6|Illk!NzuLM4OF z(|FgT3@E#FZz|z*OFxlQUhveK&rb~xOD()wL2JTlud8r23-LA)GMWJheEgSOBWlSnCmWu z+<`wxv$zIF@S-OKb{ui4*LcxgZfW4yL3H#qzd2B%ll1i{=xDG32Xt=yt$S&540Nbp zVO0oZfGe~c;3+)=Ib|=Gh>m9H*|dxe>6Q!VKmN0l)k|jLqB!Oly^Z~DSYDqX`-T%^j-eu7T7h1XIUwmT*o=p zPNB)NQ*lvPu9galO8Xp5hpZ$7qa-&cfXOQGFuN(rzy*<@zGez%nl~^yQ-5~>WH3oK z3Y$>O7(__Uy;^{?VNg_RPS!#Hw4X}*aoq^GhM_MT&{kF+`LjkMDE77~swxZ}yVF<{ zD1J&d&~2qkKFX!cy?|28awxfBDt&rVCb2&nmqy~tkZ!;4Gl%-bHag6;xtW){8lt1K zoW8R;5D^&@8}1&m2W7Ybo|S(6t$AcdigGp!wMeSNcoqbeIN~6~sNVHHve2PF1)U(# z9|nfGa-)?2D!4gWp3jmy>{%vE`(n@!gLdrAxQ4GLL?tg&8?(SHq;o`9s~M5o1jy6C z9R%MpCDE!4(%?C=F|PDpT|3DIwO?V*nnmLfT4>$YZnk)Zp96Szhy*O$x^+#|aDMcA zAcZ{%UR%pXQlO>HKIO3dq!?2P!h^xcXUxqnMGd|uuL?V&L3R|R8*@o(N zn8Bnf#7Q|ZSW80QjNNwe8Ir!4y%$xA%KlR2>Y! zrp|Hzv@J{tXN(fQ_6=+*ul*%jPFZ6S?0FTA0?JWdaC-ctB6RZ4{dAzZ)mz#Q<_~`G zgYd&2`U1Ru8s1XH31OJv`4pW^Os;8<>?njrJs zE|^vQvt(B3h{&#WnOX^8Hrs9cvw<_}m)gB8cd%)?yZ5D|nr>Lj`x?r$gi$skg|Ae* z+>U+$?90J&7R{NQgH@`zLm^4I>&t1OEpH^Kaovs{3+1=sl7&W19>0RdCdAu;43k%c zzTUd!=H^}v*rx+itEtgco_c%RcASJo4S{c)8^uBIlM+`8tfmZn?Ylw2#1QMSXwWM! z0pbsaH(Bx5_EAggpqOpy>zC=Pti$&DlMg~fju7EB5t$#MUegc07m9?1y3r=lradH% zPKIlirPAtxqzuq^Qf~&L5AcDvFQV;c`9zpmkw>A>yewgSlPu1hizj*BLnSBaSez(% zEh+~nLg>liinLwFgd;)jR4&s+rl>5jb*B-2(PN4=_c`lALC&+Qtx=d7+Z8i(EFNXI ze_|2)h()VXs|x1LU7XbOP5Gs!ACL!ORi^}_^u@bfdG)qP>xq^=OX*cd$8|0!uA`;l zI^@_$Dwx&^T1Ob9*j2XZ#Ct|!)-@!wN)m0@Dg3AmFp~_-X?lR3Z$QV|CO*alKr*_3 zl z1*Bd+rfcXAVby3#rv`G~lfNOyR)vD}W#Iz|Nhd8J?D=;l=|6Y&M3>16w6H30F)cS- zp|S~^gzOB9$Mix`3u=UFS0gM%0y<=f|PzkL7m zx6j@_lGnd@`{Vnchqqsv`63j7*5c+g9ISP8 zAKZugK|TuNNh&Sf*aG8$+Eor9&si{8e*Y=-4gSDLM-h@Ox|7$U4C0Q-+`AoI21Ty- zUg=l6b8}`bO3(IHiY_fWJb6hzRq%ZAkv5{;QnQ{cA!9)w$NI?p%NywZa$C18eR?GE zY*lsox&g$zMo0HnJw-Kfl1)rTao%>J){x%vEA{o0*PnVj*NkR9diz$kO|C%Se-Yk( zqfHPZs?nfMD}`$%+w#h1U3R!PgHCW_6X>9KAg2ZUydSK1__3g@ z;GDGGj>}LrKuEHqyA-|S^`De`FgB`M-CZPff(R8S7&RGcrQdP1m4&`oqK6Q8sP!I7k&i$UpzVCm$T{2BuF}5hGNR;XrD!$nuUOpv z3T^)eA_khY0zF9LO0USDbu7Jvb+8Mn3n;kW%okGO?dyEFlD|CT-2U_>amp95Us35qAI=i?4 zs9Q<0kQ~jJw#qOZ2pAbN9k&LN+<$bP^bRV!y&>Jiuzcqvw@_EoP8Ek6vUieZg{83{ zz5N=HmzmHss3jQWC>+ownlKMiEIKp|V|Un{D7KDQN+x1Febzp6m6d)HNk&mHA1vA)Ah zSy8yr>=*S6qC-)zO)AN=Bwd%=qE;I7>d&um`1PT-W{|znGOJG}VChq;ek^CmKAe+V z%^cr<5dL?QlKA`Z_Kg&c9XMcCO|2|5Hw8OenLS~q>$w8R*ZaDuZbS#RdW(T9;gFJt zRRNmbH7|%w4Q1FSk#9g|*V`tNhwSEcJ}oLj;{#yoHp=ape)bfecG>a3o3xXgjBi|W z^(JE-{!GeeH>#pmdR>Filn#Ik%*roG&8-^#nR3hNsjx-P{z7^5hWCDo9 zKNA!#8pJ}PQ(B4jY7#S|bY2`auX%{k0_pp8L<}T>lv8f=?#OvyqG25%iFbdJtUBm5S?b4FtyDxMN) zikMLFN2m1o(5tzbQ(rkf19uf9-DYJbxn|43y`nk5ncPlRcl$(j7Dyby>f{8F>|%C3 zpMnoFwuL|_z179N3bXxs!I1WUT)au+k&XhRWgWwX?qK7v4- zf(IOpfo5`zZOj059LmHFax?bX(F3H917@a)w5`dQ4U$7wr$>3+6%1w*6oBctN>Zow z{jR{Byz|GxgDDueU0N>O8auMv!Hz=cID7oQv1Z?X_rXxBJ^8aeRHqS`kPLVLl%P>5R5AaM7xz&i29v+85UK)HH;6rYa`rjh#c0mTB(pe#)DuWZxD{B z`d~ZnMnj96dw(^UCyd%bT5rh?$K7H;MuwXdvQWDkn zOQy!fpcD}hbN5TFMg&&YAmlGKhTXxnHgN(D1Oyg83M88Voca_W?-x?jB^|{ViM+*f zIg|^Gf&4=rh|6b$4*3Uc{~!Dq*~~p;IrZ1DtzzOJE9; zX6n6a-MdXY_IC2avmu^T>|+GF!(mf zBZ}=Z>0>PE*#lXlmh2u-G~})XZDxtj7pYZUl11`NdGGmjrD3ls8Et&ZyFJ>4vTVIe zBWvR+T#IEXT!$iE64qmp=S?o%iqj*Hq%E9Yx2X4aS-cc*169Q?rp435Yob;+NK-;l zFp#~3auJy_=zvo=$EJL)WoMlz47iFC!WWQT@Gz9UL zRB$b6`*)6@Zt5|4aum9T6ABAGz{J9p1QFMg)NhRJ7_giSSS zxGkjcBUcls?>Z(bQQ_#OH0YK)i`At*jDHMFT9F4T5l&WW*`XU{;DN1`67hM-U@9bKWYO%dj?p~>9brwqUU3bVo9bbv{nujdaG0&43Js8g`9x1{*@c~|XnFIm zK~b60Q*;|Dsj?&p8X)C5JtJXLFifv+=xJ&qU7_c%imsgaT|-zygB{1>I}=ZQtGCs|2?wEzs`^A>$k7Y$u1~zZ(oM@pGk`I&HJCq zUw@tC6TS)mN&kZbpBid)>HQrY=NXSWlxer3Vt`XKaeJF~s8U}j}#d2u@=Zcx*B>O#~J)j7-Zc>1P zWw}$zC7d|K1ldAI8WsRlP2P~qooK_wI5?|Bsu3s*$(^%i;t&Y# zR6(3TTao$@|AK>;!C0kz#1GzRbyiN6-nVYP)`DaFVxPP=t);{x)u{o}QRiY*kI)0+ zx11OiW!IqmaE;Y$LZJQ38mHcPSw*?x*04n~;V8Dh<&aG-96!Y1s;HG@I~*iFBnQ1^ z>i&}s_#42NR9bc{UbM}}UI;WT;K|!EvZ*6HKO=HC7hsVv++CERCcoJgvq^;jkj)ny zb&WU8OH{he-ZhSM3UkYkUrw|VQ0$jI>;pO#FvNsov{g0kGYj1eg9^?E)WMh|gZLad zi0ycU=R%WBZ`CE!7VBKx4m9D=P;Uw<@OJ}>32ar{?hrG{C{NY>&>1~5@P(S&3jbhE z2;xe52Pz;sCtr-mDU(f0C~sdDS(1MR#g&FRufkx9rNjA-%!l`1z5VI!pI$!?=|yVY z{}vs#-@cjm9kp||dmh&!?UT0#e?a(F?F)1j&NK@#M)OTH3jDnWBTU$rJGMNp*7?j@7qM^m-gW9!JCcp4t3=&QaTW)ZHI7*uV zo#Yps%|EP6Ry0>B8`icL=r`#JI!>qB@2WLxbq(X5nIyVhcOVM>#42NH$!3~Vps3LO& zUTFtp^& zv-PM$de_jGAYMQVrD~Ze!#^w;2&A1G2-Z0Un1`Z*R(#VEue$|LDE;DzOG*wH0ih=A zQA=751Jc_85v=sh2T*cPWGp@Cmo|dlKpEaqX?~nrspE}8s%@k+DU{B~DRt{VP#*c> z!y>7kxBPCPz)es=v6NC-0Q3~mT-EWff%4Gzsih2|&F7}wCIdNkD1Fgd_Eo9kS=#@7LY){eR4+2aJ1tO$s-fFhT;)y1%MZg}|CL>n zrrG|3{N+EseZ)TlUs%vni_x^M=y1A%-ow)^B-@&yFhSj1CviP0l{Y4wWrd`G&k1Mn zm$LuO+_{pY0);$;A}QgWH_6_=x)pHrLR?{!Ht~r#&`8qFGVV!M>DksA&9`fYg~x2z zS8l|m=*T8d834HL2s<9T!TEOZTbeC6%gft@Zb$_7I?poH;K+ahMYg@)=PZMVsjU=f zW^J|TJeo{TLnT8TjM9LEI$l=XBtwO0Mk)!cRoSTNBk-U7<|c zX3It8`vB5`m~AYlgYzrcVR%!u=*#Ta_Py{Q7>xhumWw}LrQBzPXO0 zJe8(J(H)hzV`HwuhJQvO8LKG(B$6*0#b>(3ZpQ!Sw_yz2B0QB#K3=73Y2m zelQP-&omTUQ6p^d;Ai(JW-| zyVVXF>+l@q?v7+f)HwuHJ9xC7PN1J{pP*`ckntohcu{QtkY&d00}$C)sylSh5a9uM ztt2dwJ!E;u53Asy7PavAsD)u#K%uj!e7?|UCI=Z`(B&32o*Xh1?m zO8s>;%*MXDa<6O~VhS(;HE3Cs9JlmQqPD;a6*pNTIk0I7FoU)8x2T(>{gY8meJ~?B zPFfvOsjlwxGASh1f^?zNKu~w3UYeK@p$NZ9CY6^?&H-t5c=Uvyp%y74Ycy2^l(Sz@ zI8`MsF7N+ac>5eWwYAe@y6uG%gnNh1X?DlB!-85;Df@kD!lQj0KV&EqS8u#@p@D6e zbzX`Aofj&`;ch0?M6T@gBi_jtFtFHo4_0l#jAT<_1+O?{q9d`|TW)fAUsK04fQonNpgVkonE%r-P^Cnjl zz(^Nr3`!EXWf(N=ejXMkB*q)*Dk_f#v&k#ey|RpPRXnoe1O$2Ws(ovr_**i|zJ2qd z>$k6pMEv&k=eB|v;-{AwZLgYH=**ecP6S{pL9(UV$1FKfJ3%#yW)d@q>LKoAC_YsC z(?{;R^(vFaCRj-G=Eno0wiRtSxd#%zfCBXmgiMTchcgAgG>pU+rzi5SF(nIUO(*CO zZf@;a?C6sBNywT>UNO)8;Z~T1bEAHM>yJL;_pUx9RzDTPz!rtPgI+>O*6x6<;aC&+ zqPX@c)AsiU&VGQdOx5N>%9V9RWlO#=1A9l@-W)+sgpUtMDrBkY^DHHm|n?Mgn- zeVqU!P2zu!o>%33$1ZG1rYC)I4K;D3*htWvLVO=c&$@=PG$`qEA{)UMIwz;_Ov((Q znThJCIu|^+6SS07%~5VgrW3~J*4N6sbe)9{R;*PMXd;PrP<%;m1lMyYj!5)y720J= z(yF8*DEAE=U|X=4Gq1whc4-Y%ikKe7_-AI2C@V&mhzpzvLEA;m7;4xhdPNwCnJ@#V&Duq|M%=g>wYTCd`*PwqnNFwPH z%cYrqXrnTas|V>q=1{@Ik> zpzD$7F1Y%B8D2j|(o{hDcex;ZBs{Oxvf59(P83%C&;dg6%JRD@^1s7#0XiBK7{g?J z$srFaths85YUn^6zr8GzTaYEC2uj;ILxsfq@__^RtRBB^&4xM(V(`2G)IOOa4iF!e z%29Ug&2Sv5!GL;Sr&_EM@M+T{z}+(0EgJ52HSXHdkc+A2nUMdiC&r?QNgz>g${+k7 zjX3`@{Lr?ovCE(YYB;++lx$1h!0FRuXyVrB6Zu6u`=t~Rx3(z*V9&Flx>fS@aU5U@ISr)I;5E$d5d#Tz1E1ADC-V2^yn1ACaJ_ zvK}^wZWpW!4l>4f&IwReciZL@`bP%IE-Q%q_L4vJ@+VWv#Szwn3eDbjRoJog=*aUgrT#(Cg?wwg9vgiYaM3lMR!Tv6(9w81kfe+FCupOYYhHqhi{Veg}l zow>_yop1cUvWax7%`ctdTA-K3WH+eklJYZ-UD`sx;cI8u?r=%D9}p^uOPAV3b`XH| zrIBsVI8&3?h)JHd_o_n;f)+x*bQ{sr34N^%XmoZ2|2OsBe*GxP=bEtOvpfn6Dpyvx zF}iRx2HU3cY|#bh;?}v+mi!%1Ah&J<&M$pa64aEVPqM2}wUibrYz#g@&={Pmo>Xl4 zZ*6GN%eU7XQRHYwxRRd)wPkU^V6<9#kj+VQE(`Zr!G7AbA>8EVuVjgPc(RmY{*YiH z*-HD6^Pu^ReiO1*bL=i^2=!#NH zPfgK?x0jNM%n|%BM|y+#ToJ@kJefYiV+vH+2XnoL3&7S|6F{;GB8d;(FxzAco!Eu+ z&Yo3AHoa^MmxaM+H!Y-nT|p5bW2*?}6oW1dH4NtYKx;L^76IcnHuM@f+B>O%z(!9J z8)kNz8y~dFv%l~xt*?4UTs!#vs7-BnV0x4V0Ep-g*Y zLk)JjsC+coj|4C3imorR{o0-UyNuYbk_Voh9hm<>`6BbdfzW9d*W+gyY ziVf>Zig3Axh6;@!b1n3CeG*QKk1GfJE!18$A=0w4ykNX{+GQ^G%_3{=CC^9&0RI)ET!U5>m! z)Ah;`_|=KOe-nQ2{ruFwefyf4QQ^Da`0m%~UqRFL%Pcen3lms2oe+7jrH`keFl1CD zbRrUkEq&RgK#m*MoNwfkg?*DkGKyZd`$ii=g^s-22^>Pbw=Jy5C1oq+Okt)-`$-Lc z?y)gJc~+@sT{gg|AvI({^aqlWkSyMoRO)cxwzlp&De1E0-M#jS?;I$phfe4crxyuV195n%b>EkhnJejk&FK0LiQPLQw_BCAa;ZwF zg{MO#>vb!%R&3%p?du$;IXS3XTTxPP3w$8f518PKBHky(>AC7aCPdTQ~x9aIiOzX&}#D~dV^Q2Q376tImA+dJOl?1Z&G z$5i>aO-i9=?`Rdjub_nzWB|C1a>@&buQy?YC>(|g<{$&h4Z4MR%}&W|nN>Ix zPUtJ6$QBbH-)>RK2ro~Q`qkTAx-2J2@)m+hmqs$ri;C`F6eXlMYKB$<&OV9U2oPbNphWu zz2~oRP%_EL(LnDolc@h8X=Jf@Mnq<89ZTko`yk^Gng`j8WWzU(^g^OHERBuWx|;xL zcI)DQ>3qk}cRUIdVTP`}x2kSsdbl4y%eNeJoe?w1=E4myAkb6own-#*_noR{r7vOB zbHTq<*~8}wr=IhG-T~yvbR-H*E zXQLKJCasIMN*xD{27%;@7$U~wvL-S3!ljU->zc@!wo&#Cw#j!}*YU*S!dq-85a^ky zN^M%V=LQTCcZg&kYdq8MAjveh9$NtjF?1fL{*&CP{p4TP7RRNCh`tA_-tFD1LPeK| zbE%5tdWT)}j3fCiA{yQmh< zA9HiL(Plq%tJ^N%yc|U2)D7UjF1oI zED!E{bepN=j;B-z2A?*mk1ctbHMEG)5Vlp5V-c4}fnyOKCXnA!fk4V{y?^57OheEg z(YBoamb&?>7VW$cPY6Z)g5uSv7SNyIq-%^&|Kc;(YpB*N(Z z=vCH!0nCDU5tWEODvYTn27L5VZAd%s;|ti+a(>5Y7>#;{=^SndHS9@&qf_(B`!h5~ z#cAEEP_LIt8Mv#;QCS|OZr*aEqqkO}D>1>`sktPR@(EyT6!##hEjS3Ud(ReKkaAFI z%ZnTueONulu&b$>DPVfW)D5_W#^=+^+1YCe?c=gePyOfg;c}!CjGYGKcJOodS9#Qu zJ)tv}o^}gNmK+#4Hof)a?@AgP`M5ELY}H#}uN+fVOU(!2LJJyD$-~DtXW5E}tvrd- z6mq|&Fr~_V*WQuG>oLfVbFB?I^oGw_ryirxVx*J|glG1M?OL*QgJ&2GrxtnM;YB&C zay49#QI2)*!wcZg2<(*H)xEu&5%GkIB|z0%GONNqHVzzA6jv4!JWfg*0sg(P8|P!` z7D%d@QgjW9YHPo4VYE)D@@ahg;~i5KS#9EU5JeY8iKkBB9wCG2nlEaoLvY!@mH!3& zN53-jfN$tJ`OTmHdiqmu28a9=F*pg=^c&)uzPWt(yYTky<-^}d(guCo$$&qI? zfIUO7%{5!0lukIz>gvm+644`|gV*b2RFx0yO3Ef_;iIOih9hgkgzlN0AD}j0vA63o zx@jFgMjy3oSf`5Z^155){hi$0kbouQ(-r%thQDc#^dFZOuM+6>hV1U)SoHO&yd-OG zgUo3CEtrbu!5DNA=*+dMAU{MZNnOsPfw}057$($NQVl=TUjQy8)YJ(|#?L_Zca&bP zFpj9X>(U05OB9CyCSnV00(KFfjSsu}6B zzwT^PBFHw?CIoCaXJS z0*jbQ%O(6|efW>oIHUsyBi)Agug?lIDQ|_55}SswFKg9A@0Omc3Mi~yMq^1$8C=?X zQGVNwiDcGw9+jYB*Vd5*Qtz_KYc6p^uKu-yS;l}~yFF7tPNlNNcAXU|&JT+EobuP% z0T_NPhlPtj{`Ox|9(z5^@ntGOUq~;_}!>)$X?rUP7)#DYna~iiv8X>u^e3BS4Peksh zeUK;hlKT(Sk_91D-pLBQK2EaG_31{sBW?54L5i1sA+`sqkbD`JeBU*y5Kd6~i}~xi zCwuK)W_KHu|3&!T<-^}&K@K?;cgZpj!b1=DZ(RX@>;^~CS%RbO-}H?N6L9;B)2yN} zbTt^Ll7vpGpC#xg6DKr|61ux;ts`|iC7+qII{Fn!YvY}{J!l>%MZC6twTK=8-0>Fr zoN?OM?9j=8J1(Z+`ImC z#?U4J)Bz<(Bz6muS{^8-Q!5}!Ovx=X1rd^+RBT&#WJTZiZ>cBaz2THs{EB(SFQt-u zk&9)c09V4SF6XgdwZL~<{^NI;W&<5vH2^o;Xn_LVyz2ziMlv@xJ}lZdMVCZqz4s+S z!Rv>cGwO%jTDcaWL`(3tbvPue>`Awb{RFQ{ayV-hH>5ZjE~Ar59;685vW;5AsY|;y zJ~K7FRqm-R9V&uhV_UY*hA#Vbwb|7MSdnA~EBcD~+r-Ih#XC9NphdpZJIRNGYdK-i z1IutOcxl0o#Bn~!AhcpjQf`Wo*cXS{K{?%BLE$#yPkG zlS*=N_)#gaj#^w*8wVE|t96LBv1qSutR5v>U6{ueI`1M$SKi!iID1<=WoH_;O|?5? zcu^f6i?w%*nRUQn@Q-CL(SquW&R{;lKEp6^g@%Ht{bVD42l^SMqkZyW2Eg1wJYDbn zmPR(I@vxh?;crct_cSMyELcqE@+(;Ci{oZ6pm99wnW^RXMGdF@mTokQpRB{6gZ@Of z!&+x`lxMg@LIlk-hbPPu&gQh)_(VOIL(MsGj@+x=M0yEIy4A(zzM=)^0V;-;M}Xl#ZA|nOxYUD*nkHjfsK^kNpcP;fT0b5e8C+yIm!a52)n9 zSQJ!bJ|ldo$_E=rY?6P_#jxn8C2Ga~=O*?;lHS*8wO|2l+>n{!s%7_{eiFi3rDtM`&5kKuM*$w4fRlZKcsS-7zHIz-c^0jFboif z0;({2_EKS56<-yy;l|7fh?73S!*T^ln-56J+0sd#3*V$+uiVq#j;SirsMseZYGkv! zbRM$GDnBS~eVIHKn!Z;hG0?kBg=y&5CIx{+U%k>7CRPZ27ZA7!Uj>afy#Gi^@Ksk( zl3+^g9>Zj&TwnsMF_3dMRH^n9U1msYI_SW-FQ_{ zpdFzr$ayUHaGvgj0VOWl3qOLF!&N9x8in6NS@dj%=(Z(rsHKbOss>wNOmzgN&sirO zs)H<;M)#v1ioPp%#15vxY8-rv9D7$z_qgjgO@ZI{LOXp(T8fI{QAPK(d6hmh5X8JS zR9P{-#t_2hec%A55BayyI{Gi~KSbqS6x2?KEH`B3+1xy|_ml25)jM#nw&=+%X*$_CYE-o~ z>s(^!N)uSPd~J*5;B7VlmiV=p3Zg)L%>f$Mt2EbcBIw;nY zdE6pP^^sa!Q7Srw8bWHk2VEI^!C%wwe)|3;RA}^<^qs$<6+Conpp&Um+{*JSdX@J> z$!-87ltayQr%)?&a?;a~<(ZV1#|gvWRtCW58bkD?v2~L@c#jAlYiF`cjoOe~e*?^q zVy}scfF+`Y3;@Jd6p0>hYoInq+9=fki*n7O9&1^-{3$x|VcSaDz~P7-b9pwZWgx-y zBV^rkV*>G%f-;@v2VfOTtR)hoo9}c-P(pgj@2?QV7>JO7I!6tSDs?Glo;9oHc-33^ zHpvq=Wi?ur%4NFLOo`2xF})78DYgLe4)LaDz%@$kVkG#3REKh|eb$UWmajql9W9b; zSF^h+WUhs_dRnPh_-U5U=sm300>|wM=>mBQSHt;$65A_L+s7Bm%u6p(8srE(J9b*O zfrQ^u?lK1Vb!4Bq3=Djm?5VjAgnJ?m4Z5Ak6zcbvT@GMHLeX7PFUnTmh_3-vF~@y4 ztAI{8x$Q{}Vpe&`-sz{fx~-uijcJllL;I4NPV_=4@Rs;I!PJd9hI{mdDVuu_L5+jJ zxR)!gX90!g89b6Cc%jzUKDo6Hp_#@Z@c>0oA9BFm#{!HL)8R#e_Je?3vc9nMC4``i zb5+p9__VWxF}op+tKE|cMH;{VL*R>aCVmjoFG=$~T893VyW4REik4Xj=amb|KK3Nn zUH58FH+DBqv(|yJPVLZuz&I&Q_mQdhy~V-36?~o~FH4QSO_^yM2Q9PHheNT!IFAI7 zmQN7O0tZSF%u=|_c=VuNI zWwQ!)sPHogSMQZ9q-DRF$}6ljtU(`p92L7Av3%w5V>cvv|(sL&V+2R zow1>Fc3F3gs>%!VE|N3Q+>ns1wtVn2CY*rc$&l=J0frJv&Q=CKr{27y)7PUq!m!y@ z^zz1gMQl)?fs^B;77svPsp7n3g~RNb5o0KWsyX^}GC^_9a@|+DEp3|;qZ#Rj$vXu) z)YE4P(P3_aChHijtxQnJ$E^1bu^yaUS9rJ)VM5x~)xs9*}aA=-+!*K}^hpjSE4Y*t@ zukIxR23;-pYboEmTlRRY-UNFdWM4n!VZH|HZajdla2KqHszP$2wU5^>ISU1nWb95o z->4ubp-4kC-gZ1Kq9MRL3VP?-BR~mwf;ErGwh&;fBXum)pC8m0_M*v{F$$rCZ5rKx zYtsz7bG>&ticetT*eJM4=fg~3ZXzXWCXOE^ z@5GId2A|7d_b{tE*Eoh!f(THj1k z5#ou_PAcxX1k~OS1wo=~GbgHDC!YiEE4+w$nWGQ&~;xebH*g5J09% z_*)yABp`z%PM^Ph8j@Mvnk84)q;Jhn0u+PcfFyS*fum#}V3v3*r3S!EFh!L>mA*YG zf{Fs!2t{%sfQ)3Rp^8XbVtRwgmc5)@l=~)s{2)ZnVja}=)w_d45P8IxMAWwGDjD@T zyu}VtSypJ{OhNtI?IcN6r^4(U1>g?!<7%t+b4odcKmA6Ek7^K2WHWsJ+Gx^BsJ$ea zQ)HCn2qmFjt2*zx6BBw7HdvFItTJKaWe*e$mmKnnkwOR6$MoBy#r1{w=dqGa|FoCE zwKB`QwYEA~fV<=?NDqXxNdT5xhLdoeHpI&n@{^e^R7DIZ`_#^jH14TdxPD7Pysi$z zP-*rs%`Ng391#1=7*lPCd9aM6Y`5IHXS+>uBz+Rrng&MVamstLX)bRH|R%?7-MaOK-f<}d%{sQc~9_kRp0 zE8CA`3cvc}UjfPSl#7rWO)9Y=(FN711!&n1km|Lh>X3A52da}1H_WlNCp4iFJl!}@ z`T&+f;vnTK(LwJ!wJ+3G+el>1OVs?0MGL?l%()~{cyjI+VQRW|>L~5w!yN&J{Et|> zJe5`~3`ixCBdbRNst=>h=d|zp_61-6x(wq3|>~Ne3NAi)g)D5^x?ktB@6U~pz_x6n}O=2n#reE=v94o!AzdG zJ9)8GS`!uuVOtqJvqze3&R=nt{>lyvt4$~qJlL7r6of>+l3s=U3Lva2EDjv{u(Wh! zTpS4qqccl_wVp{Hs)6$Hu#PfW6$sEQfbKC@k0S)C2*s>{6sio+UF+Mj!v}tzL32~U za10V`*1x?x_#ii@sBhrJ-4z;yE*u#YFs*i@(-{$@AuY5Z@l>vx(UKS05vX45>~ty% zZ&zsFmD|Zj8|rIns7MvZA+xo1WcXxcoF-mLpGdA4*Q=EDb04>8!9cLAD*Gu=yFUQ^F*-3 zdaapS?#=cfwbhQSR7r~GXN|bX@)bFo27%Mp9RTzid?jd6VR~k7A8W3k&py~<9XM04 zbR7Q!$P?RekbRj5NdqFOxTrzIq2#}wi;7Xr22P0*`q$Mn-no-_<)TVefrXgN8cv6& zEq&L(t(f@N5M6dTn=ngUlXH+u@b=fL-%DkrI?Wb(fPv_?dVyj>@7(2r)Rc&iERo>^ z+*L?cHq`^L*3wEqVKRRMJak({%@f&K_>6S$&lu&`Opbk(zh>jVrPzn!L{eR!(2_|T zEqw!Jx!v;+K**9VaO?pyoYXVa`%h|H6~QGRRZJFL%5Fs`r&5$6)xzaoYh%F(+s2BNAEVnaq#u6HisO z&u0Ed#jrTHFffr?k|e)r@=_LcG28u;YczY&#E+fjN1(}k3fz_rB(gaw#7UA$6@YEx8nMAHb9<~P5hU}I=+wD!z;pEaV3aDy zUdcJPod~=o-5fC_>i{%4fY0Y7tb3J3hR7hX?Jxy7s)5lAz@<*y3rsSxPXuS zW9pp;Whgnmhnx`lh^wz1l@R2ZFXW#Tbpou|W-4?LGqMu~5vYhrJ2jd*Odc+edBV&aQDmzx8vASV=Lh%DTgKta_Ii z+{0AjBcz7?d`Un+-$pZ4V9(9zJ=H!?(f@<=?d^NmbG`lR?!b?F1iL` zYrFt8?kTt2c^E}r?vn%mZWz#6@2IF`Wi{19&CHZa;#ZloJeWzlyLC(Xt*c%JcHYs~ zByp^o#v4*1OM;M~^+vS*E~hJYDkskhLwpYT+W zl#zcV4|T%6Q9%+oFiK@uneqcJ_;1s9)i>i;=g|56KYpKu36el_e~Lr^U=Tjd$)$O^ zOmo)Zh0_K-gdyw)WS<>doM3IzHsHZHtz=QV9`i$0$9QZas6qCUp~?MFhx%}It7;@T zSh&(;(}^uA%r=}p>HE*apYgWql?S5sejT5$<5mWGd-W5XDhdLOnmj+eOT-y~Fi1ya zXGpv8eg)GqxcyRdIi$2PN`_R-~^ zx@-U~J44P1U$G25u|tZzND=rDUlJKcDscle4^dQc(Rkz0o{?%b5$zI|)AdiunZ zw>)qhEIo#ERA3D#r4C23U_VN-Q{Ar<^Q>6~ZWIyZnZ0S$A1#Hyr&3uM zIcXTChmmETEc=E+K6Bd<6#)7R%4^y~xqmipB{jb_8MR3zR~vs4X#FiEn|_1^N5Oc)^i_ zG;fq20)OcU2?}D=y9M@~2*DKBth?o7whVyC3+I1jMm7MwAW4Z~*~;krfdVAT`XbRl z4hU-OQMIzIg(b;%a*$3N{t;4dCtF`wl8wB@^XN4dqg$6dO^vJ1VBVZw%B!?EmhW2u zntDoh^Idy*XkRx~i)?Bo&G_)Lt4@|Z_ij~Y2Q!9s8b-)cWfU7G_hv5lqT@O~Z0s&( z2hfX|*z^QEY@VER2N6;iAV;lPG$R!{Fd*=D#G(ngicvPKvWqsU(#e6A#K^Ltq@VnA z2`b$XGU-^G7>j~-`$Npd++n zY=$o3#9Xp{L2muABD2zTdah-?t5tl4I&`i;(?GwQk`=(O;!v$N*kk%N-7{BlLH?!q z7z^4H#<-;5X(5;yd2(hU%w5>s^l!rdns3EX09I1Fq%!IM(7s|POU z3=y;T(e1?tXvMlrXD4665Q&_{SGEMS5-L{cH_1KJxgauH#m?}W`u_BO0g?6&&4>Rp zykXGP1H}$D0mx;h+<-Ve$u7q|BP&Go4hn}SN@pkt(nbQ5VBnCAGK;#Ij}~Ip<>L0R zw_RI1kUSj7k3nNxhwe5fL3M4}R-?k>=(nlQFC-RHtEMTunVS$Rs<#ELT~kCOC=9JylO|AlFtp_lw7>O3va(bw>CBOw<5gSr_@wB=3-@9 z*~E4-9%ctd|C1y)rmZVQ2t=Hv_H7|IA^EXM%krLuzi|V&HKBrGvtrlTa*e9mn>wtj zGNk|pZLsX$C5g1G7QcWp5l3`#0bN-DS9%LJ`~sp%+RlQ9bXtzhrG|=|q=H1%R)zEJ z^%(pnynmY(2{q-Wo$i6fuYB@6$yQI_JRJagVtOha93}#*c4$~sNld;XePT?SVU@}b z|M&`8##U!K4a3H;_kgWRP~4fF^jYo&4|s!Sm6fRK#bOyAt`NVu)vq_K7icLzEE%mT zWT0r_&|=*kpWeRC%kk~oXZ)3u5rd`w$MF7p7=z}1;ej9pOIyZ_PvkOF3*D`iXzHXg zS*auNE_)zfv}ZI={Sm6exdvkkDuUEgBv=8+&#t^GLtEaCX3DC8wGSkJw3GG%FV`^G z=2;{gyPE9Z<1CTjXG$$gk6~sR{dqDn(YQ#TskU<>?x0nKPin8hzNX@+yd6xwR zt;wcsN}jTpS|C{9gDF|X4n0-zK#^S6ovEIxSu@(P-9JND@gmQwbpRe*!*F=2dA{d=Qj)~4bf*rZ3?*m6r zYB>TiWe7haZ+*gs2-@xdvs#Ht{^6?BpsYvYvTkdvlky{!;@K{r;|50n%ci2M z2fC=pEDi}UDXiV83=->&YY->Zca1WrDw*heKPDu)Xub43?$*#Cvrk6u1HmcJ~Cf65FTs;<) zP9!*~72JJzOep7TvREQ2+r(dQXb(k31XY9aGjfB3jJ*N`6vl#!)SVc_(}o*vu=a1Z z;Z9E`#XDFLf0ffh>oPTrSSXWUBayR*g}zzS<~a-CXOb+}s9c`~TWKvcD=PMI78O;X zZBM9^us_De4&YR)?zPSH5Xr9){$;z>I{uL2k5|AN(d_YHsorRFBu@a$1=mDUpEuxq zNP)nG)$eL|j*&-~y#elpg6)dCggm_saHN1HnfCJ>jeltj7d7WOr)} z>zt(8Bvd}T)NqS0F$t}At~R9ebGEav8D;feSOZEaDj!t!y>1gu`>2;i)3IE}wM#(P z`Yap)zCME80jjM9;D`D^cixLoV7uMM%K!@)lkyxQl4CfZ6ZZnayj`wQH%UW3k7l1m zw?Uy&Q6XdwVx@~KWa(o|tjQfTaXX8Fx?-wH(N$1(UPwj-o==MDOX6#%6QNTBcQTZO zA)@_hVklAsr|%y`9LWiVZ|xSdu5SWnJ~byPb3{u%H$xn98%f7H)6+1Gl5Y`Nb&V&) zUjLDe%{^2!dH~*yS?#l);LkI6FKj44MmcM-DigDjqBrI%ad7maT3rnp1PbG6LhqqI ze5!Gx`SbxR4I zUu{J@@yklS^2<)O10+Is?!_Q6cbBa9mhZ=MB2fw4nSOdQ|Hlvl1^|<`%aj;h7A5Cd zFLKZ(?*#6lazE%vD{OTYbCy7fvCPKJfrxMPi|>$=_G8--1t6y+niZSu8M$NDF-G^Y zz>OziZ^^_>2^g~9F*V&L9R6~GuX{hhk!)gjxalk2goxIf-ehkHGJ0@em zsep)vBqQFgt(J-NiapqrzVDDBZ`w8XqtIj=NFTPr9)E2C9_{rkT`?qkhUm$s{{sas@wda;^xF)`)`$+JU>o@H95I zlzaj4#Suf3(6Ix&anwd@|9t>8qKO~il`;I)smz-Aj2pPThz1bQ+a!&B0p1ia_41;_DpPN zmNi|tK7955ZFu`3IuXBv3LQ40+%B{2#i<9l8R=>_t{alT>510rN5GyH(KKlL>Y;-) zm1Qq_%lT*P8Kp0#Wv!AJ1+TgATqMB1qTIDpTC?y*maA@1)q;@6!m>{|<_l!eg;M><| zhl#iA0=)HzBp%LN?s=^@y;pFc5fK*v(t~Wu3^43tZl~RMOer~vKA_3d9?R6#>;zEX zi^B^wYE@USa{#xr4ihG#ojNsJxm1t9@w;*^QCPy8FMSV^;I>767~Xz_5ZtjhzYb{H zNFKHAmD&^c z&eL0Ayker0+PuR_c1c_%lomDeZC-`YJgpUg4dOb*+Jc+4UMtDc;)~q>9Rp{iDzQYT zhkUIgOr{$>#Q#t%Q1z}oKqhvW9aLICd z?R<`qfmeNn2w<=aj|@}30u{c&OdU59?$^6SXO4p!@8nCuQsKPV7#U0fS2=bW?MiJt zMn|%^X@%x8uKg(CH(e7_uG!uH+&BLz&xkRWTv<}Rp$cfNpC*4rYLTaGqB3FvVUHNn z-|}zml)3>ob`IpJ z95ikO^VI#-nk4r|2xcYOkQ_8;CqgYwwS!ddC~Ul56hcY1wd)rb+7>efv)^5eEdaX> zd!vtT*&qvvYY5$<%~r(QAduOplSmOos{y06A>WeJ<0S*I%%X#|wcY=7P1*axRY<4R zOZTZY@S1F;je%>z)9MJUHP6b}&?T6;NKWi{=%b$E}6@n654P6%*TUcLgA&m(g+P zH#s0Dq3@eSi)_qhNqj*CNGSqi2N`ybd%#=+^kTs2;Cqu@$9dS4V2YIbsNmV?P@l3x z*Wa0FFG$R|V+wX+3i-!dQ)~O`kADq8y06~-Law3U39 z_@udukl|2(Y+9jh&3TF3aeVVq{905)CJs@OjuO+|6}^>tU+SH0o2MSbtU_&>`W;Ha zY0Y{2Djv-(i;;bfQbcyFG!xP#LhWfIqJ1cp*-vG9;1bDW+f>neQ#Q&bA?{LyGM>g{ zUx)XvI3fGW=mUTJzET8;>js-~Q^EutzEWTBP976NKggp+0oWAZFOdG+QASMY+1BoQ#l~&j=Q!Mj-RUUE0R(MLh zvw+01mFc$hL}W%pI8wVldqXsubIzd-!t zhTT*Z0KRi)&(O8BAq3{k6Evv;1V-!$j}<#7cf}W4{(Vq*fzM-7C=D74ynIQ#t9UaD|>z7OR3Rm@Xzcz#0_*I6~+kNm`Gj z`J%d3yfJCUrFt|r?(tb|I;)wfqOLS2rBTS4Di{z^;qa~6aIg(zJbGDr^;6w4xW_K< z5@fgO)p+1uUFp4qa-XQ)-en}4ZVE1@xKm;(DlVsTwX`v3xaM9+z&uC`j(P{tS7D4X z>-?3fbVL>X;`Jlq;fCorNj#p7YFUbLRy(1s3+2VgdMhGnYU5z-I^=f8jP%Bo>FGEMS$1KE{mN4 z{uEtVPRa|2$>HKazij(RFyPaFg=6*$8a2xcP<&?DWy*YH`IAQ1D!S=LN~_$3*6|;v zd(1oo_1qZ(k~Yb!Q}&zS&$(pmeWd9AO)ZeK3jy`rc{ZAzdu|VvYn@T zr>hd?xLvBqDsSoxys?wvz^m=vRrbn;7WwR$p-!8l<0WhHDlJD-F5;+sj9U%9Mf{?YGd&OIBOJ5E6X8hE#X5@Rb~@1dtJfb`Plp%LA~F zs;S5n8jSNcfxQFghMd)3ZR4wGbuBu|46)Q*4)3=b#z!5 zlS4@rOEq_wPpCum0geW|)Y>BHJWF+E7m7OPl4}d?9io0v`;BBtje$BVja)c2Aos0` z>RbF%0Ykey(CgrV{qTQ;_g{fyA6{QsMlFyyw!2{ttx+9eZ+3xm?n?FChGYIE?DCmA zKyV=u&{O6KuCoINb#nD~X9JP}>0NPUS4~?Lrr8iNTmlvy9nVC6Cef~2z*@?NEGtwR z8RVk#D=Xkdf_r)`Y78Ui5xVY6LV>Sc;}n9jQ?qfWyh={!uJ>miHyoU#;5M^>VyM)4 z)LR8A|MS_~7nI@s!@nj2^h2<8e|$LrZCEL20?>Va?oXAi(U&{4pS(A>?vje09K!~5 z;g-1jB_UZ;jS~^IgT1N69$<{n)3Yrr5t2JYau5}xAO{99)lw3D8DFy3UPIE1JWFV* zv9B|0ow1#mRcdaH9yG`NSu91KU-TO>U5L0xJH}p^#Wj+buenpMIQJ*I$D3D?y9XxV zTo)3O(28@+aTyQUjhv;c%Dto)?(Qaeahq7Ie14z4e;MBY3EUeP5nhfMU%3$;kMJ-P zdo>ilM`iz>rXO;LNs!>4Lo!)iCN)X7Jq~DEbp1<6I!U@=qyR}jYCz=y=xF<_5Om!) z6^%)%GU;2Pw(Lg@oEHQ}31u$&gYMoMDeqE3$M^D=;m`gp@0zb+{OEYnuiyRw{|)b- z;urbo3YT!)$9_j8V$XTQy5PTF5U;q5Y1p{NIJ-aI3QBXl06B+dts#~rKT}_gB_{88 z`R@>3%vZAuF>R6?V!>=7Pltas{tKEdX>_teE&MsUB?G-sFxm0(ZU zYN+d)N<8t+WO!{yu#E{*&&`x(R6t!q>{8GR>9M*pdf1tZ;+K6%L^Njjk^Jr zy{%&>pLQm`5&od$ITE~yn$@ty$Vt_gL&XjW3tqgZTtm*WT8gXox-oRM`QV2y-~S1I zkg^TlK1EFV?fVbXf5Z8U%LA--Sb40c+C#~i5I)$vzoIf2CE7!q&YppbDewlGO=p@1ZNJ4xsiKUIKk`Fyxj; zL8SsR=uOj7HN>|B&i9S`g#MjvcZuTO$cF-0?^mKKi_dVY-jXjD`wie2+G~KnPp;JH z@eIk}&CU$~v?{x_?8I2flkcusoN&&A!cnbED-1p&&_HbN4N~!1sRLBLrRF<)Vw$B# z`>JGwjc9*(#El^R@$!>rp(KFJ#;QAjW+wJ`Mtwq#48X;_F_(uX2f3-ZsCw2VQ<$cU zR!uhVmD~V%Gh07$U6=-D16ghxN7X?KQiXebrB5j+HAK-NfU8J+*l4M2%QSAVK~Mv# z>lvHNS?}lysbky~%nWH;H)+yBHJjIVrOS$GtqdfHT}_b$xf86qUiMLq3~ZXDZ8Gdl zy`ZYJCTU5~`!9UpeLuMe{T86+*I+c`r$YQCAwtE)1(U5hyV9`2?{S8p9cY^mDuV2> z!N&SZ?LqUJl5w<2mu_dfM&aI2 z^I+Wq0q?6TS(QgniV|y+rCXIq)q8zeO1;{2K9gMK9<@pq(&Dx|DkH8Z@ucL4_>q#5 zybN!j>g$)V(e#hdq-}>;5okc8qfsHZ<{IrdngLCkL)nB2LPBUezrz*jzGc4r44&te zA6b39(kr>x2$x}R8*&tG(pj1x;9wFbZ=lbw8hI2skM#yhR8V#?AN z1N8Do*<>f3Oi5uQEGOweXI*xF;XR%^9HnW|gcF9&AFawKiDJ}i9ib;$Nxfa!g-*$( zI)gQ;ot(RBv|+J=1;&fIiyVwm086_+RXK$lqsJ@y3nu&y447h->;}LOpwup14>!XJGi5S*@Isc%z@^DIh-q= zp-Y2%2jk`|cgyUO!_Q~#=BYe8THZK#2cxYV*{bt=*d~yGacu5ve^jZWw9h)jAl7yk z1RLyjUUa~XZVF(0#({#&wcK*v1DlI8mQXEG>`oiqHA3#z&gH^qKNOgfbo8^nP4%JY za+zF&va3VS`PUZQ%owS<(jl&@D(IT zE);W<>b&DDLf#!5K)`F)kxUlpLQOHud+)=KBafJXH=&s>hvk?ku{zM{(%}zGcA-YS zD>%w_qb|Ue!rA~T0X*bj7$r+AC-16i`8W}b+>dmR>0!shn9w|F1-fU4tt%|;Wb>=U zJxO&^L0%zNcGfzSyKr8$BM|=h*E*|fCvbr57$>nqi`QF0YV>*})64GFu?8{huz79e znz!B{{2H!1m#w(ncd#rL&Uuh#bQ>@$(_*@3lU(dsOJJNHs%i<@4G)%8Hj@N#LVmj= zh*Xxu#P|R|pniF++gRmC3`$Xy=m`O$pSA?`#ARs?9W^}7;TPaL`uDE+;s;aF69jnJ zgu4kNfR&Dfpe`nphB96bz>*K1QKYVw_4|4s>S9#E*R|$?4j9MO2BZyZVRu2{NeXv1 zngH6ZK>-cv6Yi4L!IscX2RkPz%3quPXFVaFsdFyE?89}Dstm*nSCNp#`VNmnrBWs%@H_6z3S|N!|P!oOcG6Mn;5HI zLa)|}%9)WYMNTZ>Tb$y+5u)5{H+L^Ex}wLnSp~7=M;goi>ZtTwju)C-%w6$p<4}}R z60cze|GAWp0s&>hLS%2t>g*Q?D^wk->?fpw;+7b&Pfm9cBCT2fWT)NN0ODrMJiiqMw?%=tS;$NP$0v(Erq zK%~F*yDtD^+8w1bIP!0RtqIh;U1V90bG;u>e728`lE?Mj3+S7rA(S1+*I?3kEvEc& z^bpse$S;#3DZ?d>B!A9X3HA2Ix+cy3Xj22$moR18gy2lOW{?f z&wlT;1c??vZi*wevld7)h=e)SDl(rtj8qgsw}^EvhH@qJ1{|LO2JXr*-MCuMKZUm> zLVC#Ax$TZkj;^$^sp${3<}_W2679ANY$a^knHExS8*2T)RTf*33Skfe)?CGNy5ThY zm?USDGD;E*2_g4stc$sTqz>s2XeY7tCAYN?Zto+E>K3_#DkhG1*FHM=C1_RvDzjW0 zW9QuiujVwgBS6~)hs-XNlY2+VMi|vRB_ZIcM_S4*RE(9qwf{N%*J)w@%lnVucKf5t z6I#hzJ~-E&I}l0rdfBIIXp&{>Zf&b+Q8^=sjHa*WmfJzH-Gb3}YC8g)2fZ|{UI}!v zyJLj3I`QGwmdIrQXG>da-?SjMGOf{WD2Q|fjRL_FXI%cfrbu=f!YQ0Lptc@IiP>u3 zOw@Q9-Tv{fSVW|5=Z8<Vf{d_zt4CUxz4w>JkY+>um3#!o3!*l3Td?PbujYihyM`Xet&^lMwnYn!Ywvz zdyr)qRJd9ymz1*dox%MVhB5Qf;Y&9gZbj|3wt85*#SpsbVN)$$JnFC(xQ4CIj zd+DUodKR5BGSW|c;DoYhfv|zw2LMI&R8GNu?>MgNT{t6 z;$24`mgFo@d$mY1DOn`5uS^n(`cUg%%U?0$;wZDI6+oJ17m`R3av0(DtxbXSWd+?c zXG*|p!g0h>_RI5_CDsxaDJL$Tt-|GQGzE;m4R1*+>9InZAg#-@gLDy;Jf5z6ffCl` z#<6#)LN(oR(A?t}xj2rd+~HEy-o1(dwmvOXTAfL%!0@{Bw|fP&D7#0}ht5YuH$47m z=JNJ$q>)|AwDkl&k!ZIET|KZGHr^3gDE}HPc*K|M)MusQ_`?1}y?~Ym;FO#fsUziz zLdO*A%jHzv566?f|K7yspE{SYyl2xjw1i>9@W=HqsuR9@1_sBw!Rj(P*MZc~t+U<* zT43R(sfF#BGiu|eR;%f}jgPKEAx5W{UWp29Xf%*Jc*Q)AHbb3v0^&8AAnxmx&WP^>`h*&(%gw|3+Ygo?q_jZv=B8jKF8-DccoNo5CD7JLbjOu zf_lLFqt9>$Hkb6L@r0LzKH8I(4X)Ffbl!7?wXXOHK+Yk1K}PEGas8e}#%C$$`f%c& zMQ_8)dov08q4en;I%Cvc>tqK_K>hGuhBBQuTCI;bw-a@Oud>t?iUs?Ss#MuUiW7Dy zSCIGGGNT8_YRT+E&sHwwPSQ#VtHakrQE%B&y+o^W8y)&K-W6As9?lNW9g7@lpEUWj zytoz~e0SNYa(*B%9RVqHkzH2?2lk_#Hh*2Rv{C6iPWhD)ZTb&D1;!(pWkUyK%j0}0 zXm>DGEgh7c-B82Df=i$QfWXG*t@C!Z{osyTxtzE{g@QZ30)0gBs<2~X(=T{(XS5Q?X}SHYc1Lmn>RQ=!?~PIco=@b={0ejO-GjDFU$ zpnhzgO&6;qWmj?rfR?OqSbrGaew9w?;{F-iqK(t^nzS9L)Sv^X)+6Xl?*ND`cZpry z$p`1YxG&GD6k$7xaduF*lw}87hbT~Mxjy8kvZrJKHu%}pNr%0UXY+a;j%cxZY2+V9 z*W#qO(R7NX8R>V}KZ?8|2W(%Qrn4Vq~ zh-GVf4U>~=Eu;G?y#2v=$bgwx)%y$*$w%aM<&K3%CW;QNB+5(SPK;RT0jl3Gyu-oq zcdm%TRMqEzMbX^qv$2&%Qz>maqFnFJR_NfLd1|!)SF_u_BN?0xcB^1;v_ZuxovV!e zQOZLo`=fUR8i9iXu+5mu93ejJEwe@*n-GoG_3VisU(=x|R-{wD3v zT{RbabOCL818+QL(RVc6Ed7T1y6OhHr8#gcvP;8Ec?Tr+6G!4*QN|4_f$3kW!J)5U zBA`n+@~)98x|}rrH#SHBeh7WmY!{8J0TB9vYbGymWRteA)wS0slNqCc4(6tTq@#Vj z6S=^zPDxil2?cdAH`f_DlX6{`4CzoJ4SZb=C<~GNc<#P=J;! z0jFh>9H}t6owRN9DE7%txRKh`+IgEs=a0!olGu6BHNBAK21d;BfAWZ}8tB37FfyN3 zYXHvo2RB)FS1yf-9Rbp`USNG9X8}8VjM)x`h%dCP*!iYn3fVZyNX9Oa= zk~~B8FfXd=mY4R|?_WCNn;Yyg(LP#jpKX6h(nAv^0YJTIeq$L#P(Fc_vAOGYe@g$XmXnna*Pou}wLH-uOC;%^?nkaB7rn1xPYe;kI^mXXjqoX9CI-*!^4G$r^ z8^bLcj0VZXDtoP*)JO}#vGc6GXko(CcbLoln1Wa@^1mSePum0|NKXdN+9E4lFV)A) zRtT(8cOg-IB#9V|R1iL3Sc00n+!q%h`zKo1jbOOYknnltgNNC*w=t#bWA-(_4IL1o zz5i&Hm5|aOFTk||k;FA76!k+s(&FefB&F$vVub9QAjSHC;=`9f{B22IRPAw?Ah|ki z0u!)oj8_Qk(~AogWHuBmLP;bb?1AJ=Q8E|Fz*JtOmbzKlzPmZ>pdzx|J&>f?M=hy& zpl@)*lza+;SDjP_`>Ai%4au=uz4dH#yswJ&ASbH3D}MfCCY7Xr9quIASxA6sycbn< z*||h@cN7q}x+^_Eo(CF^3tOAoOmr8{1wPw*K z`edKTMI5WU)5}Jkz*UOwjz@(K<`l9sK876mYArZrSYaljO z7nMs&pL^Na(N?cwcE$n$wJ-v;Wc4ezOF{?YNRuivf;WkvhA5Q4>o3?)Zp~pjB%s|2Kf+9Ol&4jR4%Tvkb&} z+gak8OoNDr0XcwNSXZ(y6awkkm|ustpQYD-`}RW&3Qf{;+I@nm;Z%Z2WZk7yiA}B7 ziRwUrfHjfMXoFilsX>xGH-qM{vX|O$hlXlDr5k_Lu`b=3pxCqzKB>mNUOXB7Zc`h^ zLXz2Q4+ADy#~lSdOYa(5(V)nW=v~Z_@{G3nRdHNUn@K=m(S<4Arey-(wZc4B z7qByqm2>XU#3N)Q6c!h!fKCdU=(3qNB)}!71=*A{CMVr}kWg{=g@b?-98~6I@>EWF zvWywU%1J~~Dxtuh{r?{R-M>p4<$yt+8KFpSnmCmOj4n~$X|7=RhHOWBDfgyzUZptX z0iCd(pkzX32Jkm7>|%jzsDmPx4sab593FvW>BLL{2J-q6}l_W=WKc* z;3%MvgFZK5duaN~hb0yY$Ob2x0+gOd1xW{r&Deedq2D1Sz(&{@;RZK4n{^n(<(HgJ zhd=#>%^SkI%^6e$DSY_J+t1&A|KX?a-&(ZY)IUqokJP}m9o0_cF{f`RTNvdGa4|R= zVZ9eVIDl>zA`NR zN;-5v%3(=+>{LrK_O!<$f%4TJ%2=OdJ5A{CM}NZI1_B~5 zBRm1hpoTgP>5`Gmay=CVpbkUU+k)80taetmBQ(hDOGq)?BOHI>Zx18Xv^JGhO6odW z*$h!D@rA1W=+iZ9q(Qx)H|QAT#k=*$MHij_B#l)mbp?YwncUsGF$*LVZNGztcNo&< zr{VpFmsh#|l?UK7fM-(9oS>36bS{>PV(To%hCvBxQMa(KQ*kJ0B%K|c%V{~2 zjiZFeNzF>_QY2#rLPwN9H-%DX$wy1@^yCZ`;~JA})USf~owI4$RSKv<>4@qNAMGreNM_hY*yD-3>IVezKP zpX(Wi?Ma9=%rz!t*u(59UB%c*jk&6?-@dql-+vQ~;r^fAeiJ_Yr^^#6N$?x$kA^dv zQMIws7bSdT+mr2wVp*LD2H11gUv$<(r4Llc2C^H%*}rhyITIc?ZHY#?GKWGjg=h*q zS%9dFyA^arX!roGOV_B$p-YUTUoCeET1RyQgvhBsQ1(YqDH&Ci`S7`f{kP9#tKk+a z?0y}+4FG+Dz`gra7F*=e!`rrqqL{appY5>WMRz7-T9V@Jn1jzr zfxsmAG3;Q|9<+xT?E>y4Qna!)BTQ93yZlCzm9?rP zjMJr(f0_DL(|A=(Y!$U_ODjpOir5FNVDB-}3p$uXQ5oeKTGd&AFk=?BP_{g&j{R27 z@OSJ8v+#%cbKq%}rL8QEtJ76#KBpPg3N&{K(31}lB+-ya%(16zeM}9Ey#==q7a0Ja zE1Bh{uaR($7r5r4McY}KqB9m{&rrVzX4kHc=@o{mfo@R7r|M$w;(&KG9!d{Z1!bYi zklrAYIO}M|hiYVPicg4RO5f@UB+qrDc?r6+MJ>nBnrHBnFfFyRa-FVHjm(j-5T&%i z3DJ;SAHI6~5{eB!egDHd{aL`?XCDkCIh(7kcS!tZptQM~m4>QWHMPALK0V!~RI=Zj zH_M;rsQO#1tQ7RXyO-W_>5KbLJvx=jR`{%~`6ihVc#<8i)tVB7QtazskVUfGA@!0g z9Eb=YnIh1kpw1>f14FVz9gu`h1i4-<1g>3m9u^jThfH#`@7gj$&Rd?=Y0yuvP)>Tj z(C@x|0Yj9pWWoO-g_+d@j*fKG%a92kEpisQ3oI~e1cPbZM+hg0kcT0v^K7B!{|3s7zKnnd!mdgVN{IO3bImU|Ty- zvr_bUeuVJlMkrJm>;l_tY9nvwSgEhd>c;g-(wds_XKNRc34dWQ&HdG8DN20 zA`SKjt6tfK7`}`Y>P4BT{i87pGy3x#KRH0B#4nRYWhEvlyFdg_j2U^D? z(W;SXRZuBZ3Vq+b=Bow9AnV8Dc{GdCi{LJH`%3zkO6wRmU~SboYLQ*MWCxXHN7mn; zZn|Zb-Dc6|j=m1CN*qZ_hnE^;(Ga4EUa>%@}JC>B}^aht0 z43)iB3GHl4pM;rYqulbEW^YndEowe*%~AQcXIl0xxbqy+dSGBEC3Ln##O-ntendj_ z$$o;j%HQr>Ij`WY^53Js^BGZ#$*hZ}%;|eSgk0!r8%A!^3ay=mfnGMXk?z2#u(rwp z#bHHT*eoeh#RSVr`IDiN|J2Jx`F7ysS|`6k%YLFZ1Kb-Vc3E{f$j|PLXjLbX{jBF) zca6&C`bBeuRZ^OZs%;loY`Vh198{Ko0m8O+WM^tfn&!%J@#B24 zIQ5TC58b{bPp#Aeu$&q~XBBT^6%$~YJ*ls2dJW*@&;gyH{-Jhmp^DpgDR-GT8}E77 zjktlANpfNfI{j3^rYgHd0{7sr8=y_oPI{%V4svAgsmit6forldoor~h85OBW!d3}M zJ7p>1qXVF6&0;W7ga|^cOVC72J-ZGQ1x0$p0v38sEVB|Fyw=}brF2`(yItp zT4p|dmbZr>7&9XD_9)o#oO=8-;0sybr&Dq$Ww9oZlme#f1?&Ra-hET2#l2u}Ye}6c0P(c#4xXxt1aWpb-j~;f$%#X;-*P zGE@dRsvH-g8p_+`TYm&vCOuiOR4q&fni^qpAsIallvJWoeuZ`r_aDX;-91A~F_8y{ zh(q_bQ$UwLZ9p&?B_wDnuz2yF^@KTr{PIj1i3=Ej|Dh~rW z32|Caza~lRA#4VUCllJ&HkXrR!@QOU?A;0;HlPg3QBVvi`+Qy3UW3Z}v3Ns|Eu4;V zv*S6Yx=*ftr?(tI=p(u(= zp$;Lbs)fqv zMlR(SRzAIg6l&s{8Bzb7l)Gb*p)`<9&iWzqp{b6|wASLqk{SRoqGXu(*G$&|czdlp zu~qNWWk7^oSF=`^v<@{JMP-rOq#dPx^KyhQw}{;o^@(tT1wbC7>_M&3rr(`b2y6;wMrUctcu1$Qh)c$ngL?TmyP9Nl7Y-R!3#EDbXBUkH? zc4=JKcFXK~fO`v9CU93|)#ux3T!gc-GiF-;4F3U1B=;?qjlEo>EFGaNzgCQua?=G> zgGgUXF)=F9zGEc_F`Q??`$n>Qwmf7d77SO-vPN`??%Ov@PBn^ ztlUAD?QHF~k)C;Cl*`uq#C94Q1aXG$1GgEV^St3lO-tHof|<^Z9elKCVXsUDvKPNV zu*W3VdGd=Hx*gPNwNWG;CDj-nzOvk@@P=O<;e%{l(h4htk>%cz9<3=ou(RvVD|PpR z(WwJw<8sH5a^XO@ldawjxeGk#Az{s z!&z1J&?S8$0mM23W4CuQ?WOcpo8)ij7DBxRZ?TbjQFc}JOHVP{0wjOk&j81BK@9-7U&314b!}&wq)2 zoa9+FZU)+cELp3_?8f=ta?dLDlGestmndn?18y-xSwfPwjC*-imoR&LfZ@M8G+wkn^klSxC3&moOLBQ6}3$dw7%{nxC{mSmNAA)xmV(%Pu=SNi=D8E4XKL zKZqt%pzj=wW(_+rr3kL1bYOCYYyw@G4G3&kU)_!{!i^8huoS~Zp;VUbcAn)ms%_a> zKu}pLddbBFSPV&-A`VbS@2XW%cJaZC!&pSAjJ4yisF^?t!8`CQj@ghz;2AfZD!8hm z!MI)a#W4zUOj!ELnjS^Dle-AXT?unFryINTU9kXg2}*nT6?Gn``szCl<-v|p3mdMo z^~mQk65RH`45eA#E8u3mEAQu{IV z(pzNl>fJ626(o}UCoT{25YSyTyE%-h{$4lRc(Q*&azCIfK)8eD7jLjxmPVVTX!5ij z)l65_*})hyiOfS0rP@wi!ddF*lPjiNY>R|UwqXFrs>xChuLZJv&U;SDoi;V)o}aFu z7&0$L<2bk@T#I*W6Zt^aU7;LIxgIPdfP`L;3#+@sl@AHC?5mNnCz(Hox750aVuVty zC6642Q}7JKR1?*aP`B!SMle051UoU#szz(6V(hZCb)W23EuIzTA?1VZ77)#Z*|N=Z z;#sKEJ5T);Ex+lRXbGHr=+ihgEeW5|wq?ogNlBFcP%p?&u)}jW8IPSwiu~ED9*N7D_R=?W_N~C{bKZ5Abv-WKAX&1Zx)sOm zEzY)h%9XyN`jHc7Pd&b%a=z_#_KvJnVS=t89b6MA(tG7JDXhT2E8jG7pTkl9hiPOa z=kddT3~xVxOuHovPo?=>cKKh}0VRd1zNO#y!j->Q(1+H$4J2+ zVBdC4#3hcYOE0T&<&F)m?t|+3DjSUZB)*_Soi^1XUodB?CT%w2g0nmbHW}c?K&LKe zI{^&+>n|6`Se)^%AgnL3hB&RH9F~gM@5mKj(!G`i*iL(^b$5--2)!;0b#t}>R9_De zvPvI&-yP>yWlfogNRBeD;Mx-{xj-#AqxffS=)SO$(V!m;y3?YkYfq`^rRa7vm@2np zUdrPaWwGEsAv;rhp!=fe?J+hqt^6dkMD~C!z}GdWfrS#G50%K99o;3d=~{ID0XMj7 z8pa)#dK}z3HA$7#;J6J>wq(PK98_)~B279eu!<#V;uKHA`v5GZVB-0#X`IH_1$?07 z@i>}W-YDAlpqsa`_QC`vx`ygjNic{3Us`$}H{H_9b++3u^?DFZbHxQ2>WR!q&$0?F zYx!OzCRum)i1OOnPbvG-+Q1D?02Hn)_U(WtrGGJ5tJ>DW6+uuen=v<28{ibM!u~^=&IcxtP2teBVh^zlM3gR$ zN|tzp3{CD^!?e0z8bx`Ru8}|O(_r;0ZlZPRMwpFE14SM_bt$hC*#8HAYLWV*x1X7h_S^3mgUAR~ zg^OB((ZKBkEg8}yTD9zCL0h$uvvJ`$x%y>AZWE$1E7?WLgAB(Xw@26;#~}=zTZ0XX zV;khaYllj%_(F=Fp-@3LCnn343FRXF>ITHYazWF!Ny=jKd&sE$me9T|Q=ks2sx2EP zSBz7ETTtA;cVZzrCug^AR3|07zL=0^LOSkBUr8@D!+TE7%YZkJ z?B-bsOAZTxC-txO0$EqNSsQ4cZR8;R2^TCO1-~E5L#^4%hITekv%@>=t>Q#5=wv+>W%owVyYA8 z@+xVr?E=o=ASCFQ%n%-KQPyM^*B*YIc0N^BEx^;xmEh5u()){K#stkp9V)rh;E+!6 zoN!UH3I~?N60a3VBF^2)wo|W=4_~~08{U6`p!Kux{%geeTJevNy5%(JnXuPc?&2wL zE}aOS>0^?LF|{38llJP|A7|4(0->97OdwHh(21>3A1nI5<3=U!0npvn(tkV{=b%Jx zKjae)Z3Ww2C$!V`%Gw>W6ZXZ1oI2ZOfZa9vF@`d>T;Ftnh*o#h zI4%#BZKhKXW+1=`+Vn_5+^a-d6F`~0eP7X!QI#)P)dIybx{1dca(X;9fSvnTR6$F8 zj=_utrKtE!ZX_4x{p{@uvUs8pq}UTYEV<@7qKLLBtz4%^9vn)7 z^6Y`^p9tQq+?}tSTs^vkl-=TnClp-gui;O>Apy4=BqxWaR60k6l%%cA|K+?;zC|It zaX~Kv0-G*%gL2sf-a3*Z5SPoTMC1HPY8L4kOJd-B!tplJxpN5MRvz8ZW>EWD-o-8M@K*}m{ zQ)%rPZ#lvWy-zRkDpbWv=U_D&$HiMo{D~~V!*EO)mow>t)-)qh-B7}Q#{(H`(l6+e zMP>9bVqoU9k-IEC8pT?6SRgS(gb@nv0aM)uld=me6|u zwH0r=5)*YG4CIZlAb^6YuEl+}gJwhOUjz>R^}ELc`BKOCDNw~79%Gn2e75S|?dr9N zJq|2S@YviHlRRensKQPuE8XHi7E)|}`s51m;%wng5uSEmbRv-y(>Rx&XXI960eBZ% z)q5{dxKC0C*@Y%b1tWKBaX7ZRINlyxo&4+FI-mud=k~MYI zhljUo>o&8hU`7zMiho(-6F3!&Yk99pS_{YBkeWQnz0|-P74vZPyDg7^Sop*Tjm(H% z6h(6yyd*ngZwLRk;m`lOyyJgP6W>RtDz-;W_QXEx1n;7bJJHt{J;0vuT9m<59Fn_i zfck&u9_mNP0-b=dboa|B86|KkeXjmsauyV*6*%j^VI0#k3rL;^uIf>z^%-T!<%z8< zt|W&Zqc-K752lVh65&d~76I)gHl~1{*9Pc>ZEURbeINUepg%vS8*FOQJ(GkBihY$c zOVM$0-6s=zf!9dBbVpQlqnw(=I7vv?xn^`U&wb z%cnYcpQPa~<0V7WO~Ru~?Wm9VdXe03$C547HeB`jP_^SK{|gpzu7xDlrewVm@?B#h z>9dM**^~70xS0}N!zxWK@EtRM=$-gYuU>x_AVem%Xk;~BQHW-E6IU8OtZOpHe{D$NuDp&)&WcfBb%0J9XhkjY&g}p0EL^<6^cv zqh-`(>)RRJQ*EoqCU(?~nBy0I2$V`3`~1C2;CS(Re_wk46HJrXd=f#%of= z%Jv>g?AJtX$&%}|Splh!6a$Hijlr^JHTH!4Jz!sz$cWVMaI12_Oh z4A!T`iRV3>WXOO%QvOze-64tn@Hwnh;GR*xmd`GCcTV}y=I>)nTohZ|(Pw802X<~h ze4JH89_jm}@_qw5TM!9>2-7fUKd_H|fowdvHZY#oVAN#o4Lez>mV)##QL|bQH&8X(aYs zi+j7!)sR}+(Am32*MOB8h4ijsV~DC%-*QuY>T-8t_A>A2<#vvb(y|Ul8||LV^4!;1 zuI1d!$A`{t5+JY687lc5rr=*)UBh+WsPhRlK0@V&rUm+; zpOE5UC@0nMR<}lyMI`X21q8=NW&0VT8ZB&cI8v^V9|h_=XxT~2qgn-yGuo`$0XB05 zf#EEpRb~f8w0Gf|hi+6~cJjo#$3>fJBiRAPH87?8uKX{2_q%_lU;J4xHMVC7KyD&uzIl37`1BU2MSFa4x>6X%HnDc%5r z1PPKLNP%W`ivKlxZQpBq9I}Tp0aQ|2f7-*|1RjE=@xRv?COObfHCppbi;n+!1C!hGVKEetnLMlQ@>lkNcT>D^r z)qy;_G)qEIMPGyc8OY8JYzyNm1@8FL)ykfd5^Z1Gu z(WRc)7?&~sCLHA>lE7vY=5+Y&yu61qN{p;5olDUDmi#q?3;O+}g2Kmv1fWAt93cFzFI|BZq9DaQN|l52 z+1M*^EeVfZ5~d@ZB8Rg*812cdU{p#;l)Jcf%NaW~9fqQ-FV*w17daLf{_&Tk=UQ*> z$+6`l$-yZr_LxS8M1->bUCA(NwVAP(@_R`ISY8fXQ9=AXNTkl1-azy7Cg8 zcYRazV%|NN$-@=ZD>pUwk<&WyD+=^%p`os@d~6z-Y!g6q|% z+=*l2Dy5+sL-h2BMhp9(fC;Hndlb8>$r}a`-lbKf0r^s7lu$dd4Ij6IPIkONt=P*M z5I)JO{}%3mtWm0-QE29H(RLMn-C(n97sJ(1GeGKgBssO|pf(Rl-`l?FOA8`#Sa@9)giBW$J(H+pnyk+>+q{2R=NM52lN4#iP z4H$dW)2ALm%(gw=B#Td3&dKJUX^ACmRIZm??#k0)2{3r-{QhTX8-OQ|6!UFF~Z+^N-5#>QD_(-YjX z*}LqUdODTvS%lJ({OUY*a27|ZogWBNtz2x3j#9nFdx&Jj0PzR;${hA0^fK~7fuhz< z_JvwXtX&0sce2a1!_f8MPJ*=8?j{8p^@(EvDa|*I6rU>IKCaNzq*^~K5X7DqFG_wI zS>8jt>@c$p92KFdJDpL3tJrwGxzesO^EU*%tMAgegFcX(koIhKNY<-!XuqukhNd>y z+4TT3Y)K5OnYzk{e2MMI6ITo-dtApahN{2z2gJ%X)^>W)u%#~oI2B)^hhwcJ= z*yJ9*SY^I187g4>1-aG%BfNF#DA)nuG;xKYCB1koJ!(w3t)Hx|UgdfCUe%|`#+VXZ zCPo`z&3h--TO$?NYSI_c|4j?V-9XmMEs|wH+TEKJ7j5Mz6eEn&<`c%KQXn=z>@x?8 ziwJeUv!k6W6etn3vNeu?X>galFKr$BFz&kBOdu{_u4ihZZ5=dB@tl8R$!EG>*V3|p z;m|>XQV!J&V0T;xx@D?D5gR6wILm2A%W)#S7fqu8O6A&d+k(48vmO^Ekj=l_aP|Fv53ir-tB1Zt`MuqXm$YaiwZT)E zS<;!JS;_KcoI~Z}Y7lWu?AFSvNiKI=AT?$e3*aR~_Z%j-N=F~a5f~L_*!kl;J-NDO zcb$Bs*gnEk)L1t=Gp#zDSW|_-dFXNLw9$5}?8Qr%X2WB)iH(fPeW@#0)S-7kFR%(x zzvuX$0=~K7ba(W=97UV&X0X=XC-stpubqM+O0lzHgj~^E1+m6;WJca?gIeh=%*C6M zVH;3WZW*W$SV^yf3&2@Pn%qj2M_}9@2>4Ovm(gUWQnN@Jo8KS5l1!{QILuKJ9z)p2 z0S}AP_?a8%?dN$t?zUy`i(i`uPik$7HyEC9@UyiTwrn5Z!hsujVwSupo2XSE!hGta zGLYNdk~pa=nA^!s0c@)T2T1Ux#Y|7e2>osgiuzu-yh9jvLc4JVZD8sd2L+7+<+)>8 z?WJ3z58c9NPTU+9hBQp-s3X0i%s)%D;Qiom z(9xh15$QafuX9lF9uH$)ZUs7e_JJg=-hhb~(GIz9E0z?#cg=dHjw z4SzOD@_NASg{O2+?sf}1t&#BmY7fJdEmM0N93z&^k!=;l=Rh`%Q-kx_5`_$Q=z5dK zjRsAURl2J*=-^NQSUQra4}TpV+*YMt@=JhMnTs`c{h@5wyz+?zph(WWlAw>y#I^LY zUw>%*F}%npM+NMSqR#^X`h__$q$TTx-dOG2^ZpuZDUi^{PcGdsMlb;nN<)wYl&h+f zfWGaswt$yqz-w+l9Z4?+1g4E&8dhY0mN(YNdpv= z7cXSyD7!TF8`<%)xYkWloi%s78p{V7Bu5~Ve2CATr%f2haG!+Q=%CA#nPVo9{H(pa zOmLEaoSx-O^-f_E{`=1#k zwVd~r@55f(L6+B}PnR04gyzZ3w_CJl=na7+%ttE<5?;DziSk1PIytXr0|H4y0iC88 zfx>QqHgdPFfs_kr=P+MnQHal@#24kK#>+`Jh7)O*X*vi@!h{qH=9(oclmgel%pa9K znXjy2cd3UQ62MsMk&LqvfeQJWVkOJI*$Q9byx`+hl4~ZD^RrM|n_}vDce8U@=CJ{4 zNlG^wzts=zZnDJ;X{`sur#7l&Nl85tA|r9)#rmKCwQ>1@gnOLg3xe&q@^qr1xH#PM zu>!cxY0RXJ!<#1cXw}`M+QDqV

nj;X-C@gua07)qPBmS6kxKbsrp_1VbHQ%kr&^ z!k7u#?j%tu`H)R;4-JZO%2!$>0QKq&&?l(kFwOyPi2NUpf%zN7>I!<1?&7DVpkI{@ zmL_`FL^hDUgy{TA_m8lC`Sad3+E!0evYC5APM}? zn}5A`nP9%7s`jCld`%y;mWtGPnVBfxz%iS`08PY`1H7$<}!~CprTo z)#v>%DxgFCoTl9s)+Irb`hTaxwGxB*h@QgTc!zbtluM2V%bXNRZ`ntM4b$WFoRne0 zu3kt3yDfkl_t2DDc$ybS3Gak--iSSyr3B_e@?}j%xmv))(D`GWy!1vK8^N^o{WU-s zXIFuh2%`yi#eqI=PqppK9Vz+~Ezk_d+Ld0gnrYe?kc7?;t~|UeX?S z|M>>D?eFxjX*!T2C zQa|i{iG&hks#!K_dzy7zy*oq_SxwX~CZU~!<_+5D?-AbZQ%ivE)Kb`hijWQ(?clbL zX30qBI8!{ARUTXe11G6x3>YoDQplL?PZUlT1-qm!?d+ZOy(ZoV`}v=Tw?CfbrhZo8 z-4EnQK(MD@xU-lV#Z7dTPtftrL0a^28qc9WG*w7M$xsyd zaS&^bx<4OLLL}t0L+~H@LknnZ>I@qSB=+L!-{|eSLDs}}P6csZZbwyU%wN=yy-Yo{ z4hFeQYbfWCqoRW2+iocm)DQOlj23ajZ@A4Go{Vjk6eWhom2lH2*-+LbW}1gladIRH zIzBH@nL=-iTM3=}n&}N}0dsR<@VF))5*C12<=!(qw2|3hgY%+gsogE~<_k1hUC`ow z-!Rp{?8UE?6xGqOXI_%j*SCRy&NGu#ggn#G5#J*uFUGo!vB+V}S~ zIQf~5GCKOW{^DFT9mlD|5M`(ex21&>WV;XSUI+ifGoVne0(E|t9S?+@tqy#^ zP`Nb|Fs!zNCHp7!2NOWr(Jl@)j;IB0(Z-113Ur&|*^g(GOWu;%y%n)NSam9N97&V9 zELjR!dv?4eTv!tg=O}yA znfMznpj&qs2SxM(uJ~)1+LUYQm#<&{rOxR4@4fyqy#AW6f5F!e+4-|qp?kw*t4->= zBiHX1u2f}sw_~tmw>-dyNwy&I9g@}-%~q>8A1-nYMtpt|z*q&L#n0O?DHNsjHHLUp zbr>6|qvUVd=0xMqpW?El^L`+1bm4C5Qo&Fo&}HnDrK(a+gR2HF;~kUz*3-|$P(dqH zJMD-%^ugelst+jR9-bz*wn7f#AS64yY}cXpr3mQZt6N~ z(hUZX&8^2BU+2>C9@)N|@RT5b+mRh0fpVCYV<4$AHOaIkBv+f%tKPIqJ<56Y3}2Yk zU>-YCcu|cu$3)KsS>*w>yC+SsNWF4}Z*nT6h=-}fYK`Q&ha@280>ms$j20cY1!6d)A~W z$bOU!q(~t~T=mr9JQbj&VJFELn*#cT?{t(-?(u+gBmox64-4#sd^@hO&&YG{)E+QB zuzTn(r@o&a4UV*9MwI;86Y;pJzr5X)Pm^4!6>a^pGL@@e!|Ke#PS1NV6`oE2~>eIY-JzS{O@+@G?sJcIQ@?FPHm0r#569ynaeZn2m zQ9=DI^_RU&>^xl$VxUhLUw3k-fgHDf{g~B^^Kzn(H*v&QtQgOD8g@n$)qIp_?hxL0 zTsg9sS;gsokXCDywd|R2y)Qk++#O{#gQdE4xYVZ%m{VnfR<7HLK_htm#Ygg==);@? z#3$h&EeN1vxaOinHlpnQhf0kb_)q89TOqXGc}HwWy5#`_#*!Ky4-~cW(7&A5hrDA> ze`nR4$mctx{l+n<(sW!}Nrj1qNI6p3*;kBFR+~Vys$a(}N-pI61WWG5TS$iv{9@1t zDqc6}7)0nHx$fMEZ@vHY?RT%AzW?-3|NQpL@cz@+-@SeP{->|MrnA(?Z(oyQ{rT%3 zauAKrp|YFyB{Y^7r3DV71mAA>>77%1=hk+01td;fL4pG`xTwfa^@dry`Trao1KarS zoy)l9|+AvKvUwXfTt$iD$tlGmUooL8P{$J%Ly0fQ^# z$dgi4$f_`@0s-BFzJt>fI+l_}D}|eHTcWcX4{UKDgdW6;)q7@Vxqz8J_ny{4NjMN$ z(}ZSm#XOxMqGYQjx<@IOFd*v_*)QV-WG2U-j~8?US8}zLgT29;`^RrmAphv?Ya6QG zB_>)&=q7JJM_>3vxd_uXK}X#6ST@M4u#>F4TiHcw;@Df1s$e|YMs~9?hp{>AGw(l1 z6%54=NQY~Ljgm&ElIp_q8ZFn0d}y?405#|(8#|bYf=43f7!Wl$WM~*gpGCG7(P|G} zv0G*Fqn)d|wM0Ul!+kwM#PRl4svD@OI z+I4%i*~cf7?9fhefU{2!$h+EMc>{b?A1}^C0Fa|OP#%yFmAm=V zTp_o@zK~WeOG;!##T#;pqT#$tfmyMcBuV-cQee}bAp5F)%-SO+)VOs~zkEr$0@7s% zn`6So-$_orCjyKcZK~laLfwOYe+ws2q9CR_0|yXAUH(Ha+c1*65(0#glsTOIRrq@~ zNR3uutH;F|jgmzT7aE?y7s*)c3ut|+W+2F|gEmXCEvO0c4)_KaWs$^c+={QVMJPqW z+go$Wr~Eouo>Q-_$cctD5_dLlE{Ah`fVqM0$pYHRLbyX9kfy8L{by?0OAJz*%xW7pJ_Wr6JHpmr z2m>w-v5rGlN%didHXP7zkPF_+5;<$Ny;bz2R>Isd<-hXDrfx`^ z3v8pszk=H%37-D!mG?>@c~Cy&UCFM7JzT6~w{)vQn(Z)wz(M8HB}s%?OMy3Q_hlpe zc+Spaq?|}y_-xx!QOPFE3?BtP<{l3AClzSU^pCvTG(~D*N-i0v+{9b~RbrG6MM;Dm zqG&dyI)l{bW*E+wOE|F~poOJ20q<0eM&u@ShZda@qlpWyvMK}>E!GP8VBvxd9}H|H zeqqgg$=-kG^~>-rBwDW@V_x`#p*HOxgQYp^e#8k6j}v&Jfx8X#xiDR!9Y#>#hzW)D zw}*~BE-kIrJ|(*Tc5Bf?NC&_sh_12f8IQrw4MY=am@m zR_TmW=>!Z=J-l^It~0>{lOS&kq7Z!@jOOEnHsc8Zd>a#BBD$7hvy5|;^lG^fu$>la z(Z0094XB(|SmmZuG5tSUC+^-|K|Wzd9hVOpU6|)T93unH*JN)>Pf_PbE@*L5a^S*u zoiKKGdkHyMlsiY4>uF)c0qJRw!Zp)Q8F(a%F=`SCURTNa>vp=Z`PNHi-l0j(lX!vY zteri`$Z%4XV-Z4;7XxQ0Ib2P+p87^DWMEWNoF1Z$hT*9!NpfzCq8s(x8BP`j5>1fL zpJ#eHHy0BDog21i(AcY-R3Z-h9$F(U@M1A znOVyj|9N=(Asmy|9iGe2)soow4%z0xeY6M@U_)c74#9}aWRgD zP4NdV#j5Mw*}wz57oWjFborJ6rQDJ9OKah}oU-GJRC}1q$G)LL5;{n>FI6nqlQ!6R zE~b?TVKEc^mM7CI2g%xD^)5%eGxseOsizqy)#<~Zf8)=;&R4FKuZ(!G`~ViHiq;B~ z2OqA}kS)1Q(Nx97$xU)wNpm2PA96=lMns5IGLl>mK#C^FaaHZjME z%kaoK5jW$6$N%kbe>;5R8{a6q?=v~;*|+okzrXz={OP};ees82_`DZioI6k$D&;UD zWtPKTtA8;KBWnFvRuHI`$VhlS^6i0EtqVj!r?DaDf`IIK2VWMDC`d`Tyy=MT3YY5# zqwy2GL&CH1JedpVVy}uAO^y)8EQkc(wio1i-IE13oc@QI(w?x$I z{@`$$E3EMLYa5A&x6eQZw=OHMuPTa3Chua*^8=!jB`2SMcC4e_#zd zDM0)n-6Itpc&t<$?lj+TQonRlSwq%LRecV#rBRl}y=HNn$CTB6t*Z^?pu={7JfYpD z03@@uCzoR3`W9mALVuXKeW1T7?+G()V_%Lc+mn~9tI>v2&#`D}h(ugTW}fYJT=#=* zmqa`qppEw}X4VK|PZ8m1INY8a%8KX{UuqVIgkKpG3ktb+WwVuhu-bHr;)5&3}fIp0mz*L-xE2_muHtMns4N}bP109&&adR&< zY&_?c2JzUG^2{WaxY~GJX9bkGfF0OiP5w5b!)-*DPUS=L>!AKrIShbi*PT>h(q?Nr z9RH#OQiF2<_e2u>VU7oltZ{NhvZ|cO3RrPl+Y!lvgu%^f_-RL@^~xO!9U1vhF18FF z^d0HMLme8uq>^fUM7~C394sNH1GlW}eJb51HK4a*Xom} zrO-N4pYh+}&%aUj;19#wC#U!S^7{4re+jR@Ki!9;!p$9n6^pHs@K8w`h(TyM%csKx zIniiOE{ij5zTw3SWf%-pB=>`hmD+{uMFG&I4u(3zv*?M~A^nk@XSD5yrpMjrDjm98 zb%ofuzg)lzH5ZNHWHlAcv`^d^BE|q>1n-Xgv7}XbGC`VQY zvea_UOQd~a>%+;KP#KK+ESth8Mn3;F0jN*e5FlVXlKGY9mG~jn=6I^PM<0>R zkZH{0Ease29*(dTbETv)IGyT=ki3hsJ|-WJU6M)*_h_@IeIyQapVwLEy?6crA3=0uBI@IJhhgK`)Pp}Q-6|dnDwz- zEOJ;8KCB&%vLoF}(gQ`5QDxciyZqbDBb;gQ46g{*lG=~3Y@)`{EiWKw;025m@9Ie^ zL3^eoRB*NHy|Lk?TBCHxs}gb65Yv%QvPn4Hjd-?hAQ+&%#t9967^law6$9lEW&1Pu z&7E%HNTt8nr~-AqFJujO2y;EzZtr&hP|HvOlCiB1^!gMpyHB}#a7XpkQ*@<%z_t#Q zQmuv;xqrCgu#Rq>%NvrLXiIX{r&{yv>T$}8@ow6hXl?*n?U8<_qO$m>q;_od1K#Hd zkQ#Jj8^FtwU3ry1!nL2Oy{1a8C0Kv@XC1prF_UFdUm}HIw=CA%_ws7adRa9=vE3ly z?y^K1n<4|Vja}`Q9lhJp_F4IXagmP{e4Z3+X9)QL61T0bGBE`x1tB#AE6}{To_2H> z5H5`XBnh+04B0q9wv4Q@_NXt^M}=Cc#kDhlo*)csqgl;*@&kw%hs!E�J#6HekB- zpg%|cf)oM(=xr%!!i7-`+pzr^`1nibBx6WkgjloUQrpJXl`#~unjel1mO52kY9`EQ zTZQ0W2!w;_eBg!m6BwyJFotQt?XT4bGwfF_q-alz_%cud8s3gpM!~c|ev|TIlC!*e zH+2FTgo6Z$8IOIn*!gZRGV=4HZNK%;26fu5WPT=3)sirbt7P-+L>Wx#4(V0Njl4}D zB3ZRvz&_Tt-j$t4?E~ADu5jlC-S;A!A;o``)6+2+Y57|0fpIYh)p_TzyeLM(tZkT} zi#5yLrvm$rI9?~x%Hmo7GU`bE`kQ~NBBt6~e)}!_r^4%xPEa8Y?vHne(vVY2t04Y;8+yHR~Z(2qh<^BX{Mi&T{y%Xd34 zN9?OYFf+ddYw?ym-{|*kI@m~dt@CCj12@7A6mD>zTY9*aUT*{YB4<9!QpE7~Wd@W(T=qw3Eo7bf z?P13>bCJPqOk>o>ooaS^6Z`J)=7en!fWh|txso8S@=n&4#v*qTk6;?DJX>C^I;KDG zt|0`knQ*7(aHVqSKyNIde0xJb!Cd{k6FOJz4OG-PU{nLt= z_V2^^Me2$6D;;_uCDxAA?+@7f$AlSM4m%)r+a&bfhIh7Y;Q|BYcUd%v8y8AtY;u<@ zti%AK=^@`@X>wg1kJfy~IDNoQW6n|=QCse507KB%c~ZR516=BiJc_WgCPNiMUv9w# ze!0{*EsUd{+-A{Q?FHPVfe0F6=rOUy5V zuj@73PPOFFRmGcMVmoHM5-RGWD*gNKASnM6%9r08sRSz>XZTz%WRJ>5h7@Ph6I{1$ zj&K1Wf^)%ndW@ckfFmCY@I3EJr8(CAB_trW-sz^7Fxz(Q;|-G>d+mHeyby9DFU(do(pC*&uj=jbK)Ng`q+5>#|q8Aw( zjX?jRvZ0r6T80B58xn@rlLalBC{#&oi^N{NOmJmXV#9Qn$b%tpT1`w72HmLGTyO}A zF#hW*MK@c%41ajr_3n3|S>tcR>+i6g0h@`Vd{Fz)`gX-9hvo)J6C6DgOd#8r|$AuQB1ZFFg zo7`@Dk&?bf*4W^IQ9wbq66;|64R|FJw~9xX?_iY+mCWzT3n-~7TK=Td14>*^Q^n64 zCQGt2gWFqAy((3+VO@pMdU@1e`=@^j|B%m80nh2Eu<|*-%Br00l&k|v4c7#~NKTDf zHXjbkMb#GXp&1o`6J%F5RDo0;)VBTsbf2t_)Je~>GST^cm^#>5P)-;ik12bA%i*nv z_L4+y^`67ow8m&Zqm4Vpeq?MeIHoZYkBQ()?K-u>5GN{GDkIP(2*rnLM(PE z#qHnp^$TK}1uo!>E&oyu(WrX0<2n<=jmsQB45s7zU0Wbb8g+cZxj^3psTVVqtaAG0 z!bTSKgXBY3r)lhARml7XF1er-@Z}qZIda%1;Rg1a+53>ddS;&zeJJjWW*@PR0QCMghX9YRD^Y!kmi$t6aRdPl4oK=Vfk_VSe2 z^(+#MP7{?9ush1?4*-2rhiYHcWtI6HgwP6vDLwCs7Nxj@s@*t|MK*@c%ko#@LQND^ za>>3#IB1BKx4$3*=7V`GjlYj@_&ITXc>7rI>%A_7zewpQL%}Z z@((-uaMWVbh8^crJsicx@zkmyJxx&5_i&Lr(!K_at@?rQJsaWBaK>;n+KrA<8<#+ zb1Bn-_a93jG&YcwyuZqBJTF>`$o*Ma>wa+&s-2@LxwZF74NE3tDkx9gBB83)jX(w< zsex+xT4XuFbf-b$io@c5oPZXbdzVT8Nr+HD03Y)!U^&J>Yn2J33Nj!%>>Sj1SEM>< z(gF#u0BgzeX$8EN4!9h5u+IXpGqhkH9XF>MlUB`5*WyqPjWh_19a67)2bYYj%{%}o zB7tz}YE)^vl%RIT5NK%IdviH=v zz|hliPJx4Ar47Cyi?x>3O`h^C;ml4gEs!b5vhE2H<8#|LNDb`}!|k(4^yR)FksnD@ znsmd_z;Xs4gV@2V-k7o#ynr90)Ja_!I2yue&bAhT<47IH54e7EkDa~K4z1OC+gEu= zOx&S_5^BGMI!7G0+OBcQXn9Zy>D|cTQ55f9=t$=h-Im z5W~lBpNH39ekjfG14uT=zs%_Q4hTYyC^)_r46c$!z)i6GGoL*rp6#+tA0Z{E2=o3{ zJD_uSz=rLxl^I>%qE8!;}{+I;v~#j%XCHVkh+GtdNzrX`3CPBZmVi zvM|#&r%?p;eP#T1KjZ5HRF}1&&_QM+Ufw}_aJaJJN9Ls33x zs=0!s^S)G_l7y^L1chSuLERZ(gg}6G2BdoGhOP(Ln&>L*?cUDuQ{2^_*RTTXL1z<^ zY~;JNi>fg*@Xc zwmy^TwT31H-3C-w!g2>VD>q5oc%&}MQ~wgIPG{2B)Hu^=9wap_E`iG;w=6o0qj&CS zd@qIRe0tjD6oLzkl2TSj>XHRT+{SKBX4jmgplB%J2mv)k)sOMiKqcx%@Ob5q2iPKo z7QsX`f2WV#a+@BmYF2Bifv$~#ASxeHBf@v5=(5M(%6JDb18Q7w#J0s+?`4lh@g5iiB!o1J(Dh?14rX&o!#d@`01y$LSI)Kc5o;@0mP|dC z3Xf3x1qz21eTqZBqeEaS%=fTKG=?HNTPItKsh8BHrELh&`h8Xe?BT*Zkh+z3R3gZ* zqx4X5fO18TH~3=bb?cfwdnU0)mI{6_f&<$k3UtoF5eNJN5J8-%DLUMG=MXrhc4UF#r0woLsjAc>6)FZDORimPuNt`EsqmN@+k)tiQP)w$)3EJ(NjNUEU0*fl z8IlKI4rmJ}=0wHI$~F2h?w8zjM}%lKm3aU_m6AL~P7eR8{V)7i{qi6FA^gMXo8JuI z{AON9<@uWxAWtuRNYUlkviqII@D1%l%8Z8do{`vxjTxO5fuyZ-jR3Istz8&uGzMiU zhfVUsn}t(FaAcPZgSb4UI6AaV6-4buI$Or2>1zM@U~ZPJK!N7Dqqm9i9ZwxTh<&g&mWX7N`4l|pa-&HlBGclQG$l~mRXUr z1D1`MGH{@SQwBOZ1EI5U&%gc!b6i_#D$~EF<;EWY-a39u*E>8z-9OQGgOuE=J$Dx`_k}`D z3fYVO%x}dF58#Qtx+mILqRB{!sSai{SDemM&UOr}3o@D`VN`0{#9CA+ZS0CZFbh=7 z?oBf6tlGS>rxGP}kZROEL;yqbvp&_N`CzcD9?jU;wW~{v5sa@4!{OOejt^x&;F+Wy z!u6rH*qkE{59o&P{4oCz{txO`|LiZ-0q?Qj(4ZiPamS?7j5>jekegMd1-$cyr)Fvj zk^s5v*`lbPP62_EJhH_)4S)gic9>zGB)cJkeQ)(u8BO8lrJVg0tOpBkP{oEPkm_5k zt#N!i`H$~XT8(-8)LuYs$EI%GDp${zbcMTN;0+Q1vZ|C!;>Ik^P47$qK+aI<->l@X zD5deAk5Wrty#AERL4Q2N1$JkD@%B@6^s^Nt(Py^-kvW}i-OE8XSUy0wxgFWQg_~wH zXh=r4M#Q;3GY?vo<7C(N6#x;H*30XhT^A<(&8v$lV+hY;48OWo@H5tq?HeiBn$s0_ z)^t=;<3);RIbji|x|kQpvyls|-l;Tgb}PLUkYqH*;TqP<2Y_}EfnT)7Il;D%bC<(o*yi=o!wk#?ZuaF| z9tqT<`^RbJEDI$CI+L9X+w^nyLG~rb3EZMvfo6EArWjjQH!A*p88~ zwx6L_S4a!)dkow?r)>{z}2CjU48_WDIIO>=0=7(5lH*<`gP zFlM`BF8(~>asgYG{v^P45Y`-F18#qSxN;>A43>$8s&F-ng?34>D(T4*LkWF=kq6k! z*u-tSp*-+HIS-h8L^Qlsxk@f;M3qgHv4f z8DW&}Q1E(@DiQuLvGm;Pt0I~`vD;PF<)lTEJt5>qInP-RL%2VLx8K^i`O`=8+F*hO zFY9o|n+`pR?T~P)MRS7zGN!i^g4lR$v!WgA2?Wc`6^Gf!_1LSGcaPfTq!W8KwSg9L z*20KM3)`b%?X%P2nSw1>Nsrv0wA;2atAqc9oIe+4mu$eU{B8|6o|Hb5g1)=3<<}s* zemK`qg%g5?TAieiuB}%Csi01iP`Em2f;vJdT5XOWBtBxy=>&=!`<{CZDHV=7Fqi{h zA%6w&l6cxQ#aWYf5}7&67B@}$ImxY0G#m^E)P|14x+-@Q^A&+rTiNC4RppF`O{oU% z6Ah!V@GfTEv#EfF9ESzx1;U5{6<=}><Hao$rm|9lxcfGCo?ai+Hd5QbBYM@mv*=61oFYCk$?|4JWSXc-RPUMqLa`me^wH* zX)(*}_|!Gw3GLgw{~)lI*R#vd5DP0A$>a1STMXXni6#fyRXJgcpeT|@NWY4>901y& z&%*Mv?a{1s#&k(1|@szXEjQ^{vc%127P zPJ3e*6}zC6Lde&Y3oCMX!qxPGkv3M5;JR~v@b^uclpYA^2$aT9lu!2D9mZ&%zx_KZ zmXF_lj*j8m4+uh6_k%xul>bewC(PU4K0YQ2pS@*`&%4@DRBBMy4{R}LRd-r(quZ$m zls{!D@BEGKG8R1k(n;F1EoK%f75h8PB_tdso^VwA>;qtm(@U|7&}jj(gBj1&%ikv{ z=Iy!(R7AwBFrCy}CU-1!>>m4@C&$YL$8M*kTxh8KB&X==y4-*+Eo*y|Vv#Ypf%-Zi zVygSZu5Cvyxv^`uWa$7Pe(OR8k!04&N%YoF6-G|3!J)DA6{2=XZu1wFPT&)w!RnZ7 z{jicE%PrRt+Z4Qaf^ie{aNu9qI4DmU10@fYD6dn<6W$)|2Z(W!jdVs|8V|=N05hgO z9bY&0-El&u7cYC#ItbFPNcAK9kN5F{_AXH@K$!Mg?$@C8dG-V7N`!AQbfKq43ek%v zR7p09n&KQ>qmv)~X7_@$lba6&04m{heIseWs^cX_ZakCGJ5jK3?5WzGpHxAWEiS8y z!Krezh&dg{-J`}s{ul6%yy%0qA<#Gm(#Y~9#h7T#2w-QEOwAO7W9XpQq8rC+Kr)0|Miq0lBs=(fpH7?N{xwLFe0@>|K3XO6zZw2Tx^{i@A>MmUpZiekZ?;=A3AR8Wbgivz8%gXdiKYvV%sJxSE1-svjjCG+jNNNrI4TbmuM%bjgcF z_d-b)4t=du5|Y7jD%cfC?(p)4M?;OR7W_Hs z7xmTlnw#0JFyh)y8GB?qPtFB^F4myHkl4(kXN%24CyUuo8fcs`1SH^w-tNF(_v%$= z*A1qf9KPTgTL7DTEpFV!Y(zrr#p42;alsh$5XeW1h5%N*n|~~&;|iB&??!`n!!Ats60DE2ss@T}9oend*a9HW>@m*P zU7jPPs3LuRp~JrN!1lq}KM<)Pi8-aBbbd`cka0@>*-eIaN)L2L4dB*lrYL*-%+>GZ ztG#2l0$nk-pfP}yQ)i>u=~9@44YDTQ$~$KdCc0{gdSfcVY{2DJ{?m5?Uzozz>rVn- zXa^>|eVKLEzC7xzy~OMF9v*#@fKjkX0$7)P@npt@hzoH*s)gPPWYcsKMutL1?OjYi zX10-r4()NDk7-%yRlMFVCZVoUX-Vpis9Xg30k$7hz05U;CNRxVv(V#5-h$DB?=vQJKxyF#3r*BN}a$?82qmP|R#NqEn+gmouhR|zoG|tS2Q6DPFMCcnSjjO4D|NNOU1vtz@(9@;^t86&U9Q6puRGrJye z)-$S1&9;_QFnWVBSq|c!J@42)U#HP|lIn|ziKaxqUU8KYE^ZJ`%?)NH~txS4!l@RIE@B$osbcZj=MqTV9Vw?OHozsg|9vP&ngB zf~&;`zlc?FLK2B#k}ynmO@t+w^}F)%?j;ATZw3mkCp75s?3A!15$VC0D_7*eEs3Vt zK&@}d`3-jDVmIFof0HF3zV)qdg>UDVe;fWPJ9oVQ;oI+CrS|>d+t=n(ahJ<~J*zh2 zNSX~e!1%<^47_qzIZ#0b!uJ^nnMSWAe*~*+hz%Zo5BL5AJKyT!aGSLI@+8mAs5h(Y zFGCG$1KCUtTuJ6M^U_mnUnYmEO>CUYU8){-giT1T`TnEVPsp2v7Fs6-5G8Kghj*S^ zaDU}DFkRaTTgJduy+vonZ;1lN0!k{Ij|xVf;Ea<)xi<=KEsmb7J2^b{}}!{Kad9?_6V)*bXKP-c%hClFmHq`hirLwgTOl4 zOQt8o)HrYqTvYaR`iF{7a>R#eb+P*dIx?&L8x*}8ve@y%Y?SiudrGo*BzF%(UGGan zP+o#eSqmosbiM61l=Q_PFjk+v;zsp{Y}FEQSAo%Sa0MU4bTY_pXxkbQhpPoBd2Y2kNGR zXF`1Jl~VmhD;*1h=$7E}=w7fT zsB3$b{Pk?jtEbMPZz_^>!L4oTj7Y9Qa34EIWR~GS3Ni!E%F;Ac671EC*7YL3|N2AI z>bx(ioz0f-n8QE$gUD&k9fUKJL;$Hdc{==RG3;w&-?`@Zzl*ET9C~sc{$+k{u(s`2eAs zYTTZeSfMzqscNLK#~-rNIedWu59{IuYROxM)v>jsK3-@OSSRZy0c&|X$h%}AMkq{T-&`_xz_aOg+?h=oYar`lC+lVJEn@gq9=9G zw4SalNOXBGbpuk4sSvw#zPu%iMy<-f+six?;b=o@aJe)MPJ_t}Hq!z2q3$&5EWKJS4t}Op?90AFMQPQRvjGEvh3`~hnbs(`2y^qG#>yd*!R+TXY5HSaJFM#(4OvWgC`_8l_gL0#<6N%v=v(W7y&Vo1MsK91u;ww z_($grA9kI)(iTG{BiRk+G%)O{sEa+S6G0}K8;H?Ppkkh;m7n$jj~7{RLv0RJYPe3W za^C?*5>~&XTUE%C#3fDS1ww9dqa796+Ides)>9kK204|8^+LpX6Z{BY6lYQQFl)%5fl?7q>#D0Nr@9AP9xe%@b3i7XEO0=5p>U8n2pnUAsnUXN1K;gVuZ6 zEmRKkTGVpc-g#OF%g{1%u4exye3&c4WG(2-oXHKcA*y#PDuo1t{C%gIQH!ob@$bUeXgq z9ML&gv<|gYr_%!5+4XV_BWx$DQ`F$Pt0i?mvpKGUKd-qP^8Wt~fO##@J|;jz_C4G} zyb*Bgs$`mmx2Q7FAoEd(S7`&h=;cA)h(UoGK%6ySw0>1LZHEsxpZgu1^9 zb!maf+aqTH?*&%WD)S#nVU#5^vOflQ_Jqlbf>T^71H54!U<^?Y+G?%0@}B4@Yip!5B_B9fU7r zG53*T^7u_!irYStJ&mBt22ti5a3(Z{1={>`8&3%eC^iC`hAI|s_}c5Gx_>m*5a;SG z#!-RhR zat6oJf%72nT{QRAKU(Y>lgmc3CohJE9WGLxe`)-qNk?)ca~909ad)%axk3O!wxOKi zxSe$B-`nv#1BhjTv4deVhjM5{A-UPr%D7__ASBc9tGWs{>n0UO{S7xd&gLVQZ`~o* zoDYGXfzVY?`R}3EFN|UdVY1>YlF9;w#FwCtIyMa!|?$p8F{;t~TcPL25Qw z2Y382%@Rv`(Ew0JhgEz;8r5hd!1{lDKcTy=-Q)ia!{eAyu|v@qHmf`sl3fbc#s*Jj^SrOa`cF@reX{hYXkMY)7c(JEG zfc`3#3JbZZOvvSxaR#O`1-M2&ji(1758aiBW*~jedIu^Q)^xE|ZJ;H1`HTkYdeW{~ zhxw(Q=JYJbTfXB{jBR?xSEc+BA0=kc6035bR(yoyQFfpjsAAk#kPlp@k_Vr@SkQg8SvEjTzFkwKW6G7 zn(6WecL`6Fg$Fp_P$%fkWL{O-ze{`yz=ByJfw>I9GV}Tf+Lp5&GL?Dj9JM`w-VDT0 zRI+N!B4F$Yfjc~-b3vOX)#GxT$*WUbq49B}^fWxrL*-`n7d+@~1!86NY#OjpHssIY z*(BuDxNml;pagkE?P7SY5jX*=9vBQm3D6=-eDT{Y&g~@klbyI0%B!|V{x1C8KbC{{ ztJj|&ANt3Khn^|N?5bs>v5kmzonA%u*bU!82bkv%SVQ#Y$z@b6rhHr^n}mOOl=R@H4i$Arry{8_ZBxN|U3o;xd~ArmK+>73x}$3Dh2YSlGOs`PkcE!J{CsC2Qe zP>Az1x~5o>+$b5EEditsSI9+Wm+6(;q%lzku!v93op1VEbUhLYa#eJ7T!j?iT1AUz zaw7{#b;9H{x)s&O3PC*GP!HZKl+uS8uS1`})+Vt*Fz(;2J`RzUrO6O_W!Jg9^aZ zvI`jQ&*2@~`7cx|xL|-Cq59^|TOge9Hlx?&_vx1MDP;>jdA?8yJ3o?^m5zzdk>N9t`MbMOAi`znt?)>4<-UvjM=RX z7L}oH+Xu1`M{lw(-hRP<2foOE`sv&6-hL_n{Nw8v;r-9ve*5+-`RDfy0Py~kw@+Tb z;Gcf__UY>n=v77+*PZVz4DvN({g|m9l^HY@mwjotF#wM4)=84D2pv#KZoASeT?B6<)fHo+YU&<=P-KWa$+iG`Lhvp0?`L6Phy>YR$#IN_KBG@1_q!`v0`O(Ym@G6ZD22Rt*+@Z8 zi(O|@=5d6F6qD)rk_ARaeCi0du8{mjYm}T`DIRh6gG4r-eC%}YHs#U~GZc$xbcDV$ zd^di}P9xr)1Gw+q6NJy2on{Z0!!L$b!Bn62x(UthT{{W;pjURRF;{RPpHu=~vW!K! zL1(gRym)qENDTm$Wq)P0*mC8 zG{Lkgz0G0?fO5c-DogL=+GqG}Ay&B-foJ$OpGh{srAnL}Mwk$>&tEoDX4`bGnpK}_ z8c*>B-7C7N_Y;S2_Xxq*gALEVf!cP^==agCOX%dc^w(2;@LA1z$V zd?tTgAw|f{7#4Suxl|U+i3GW#M5W*kZj&UXl`cF-cxlq$!SbSE9d>Iw@nZlsm zT)ACXGoVnFZ~1prd9732qS=4t3D3?hhZj)^AUUzyW$9#pc`~jN8Aerlbf|G(wQR+weembW3x8C0k%~B=rda`AMotcl%I!%Fbi7kKb3-zDeM9Lvq z+rwwV;DIa0{LEh9rtVo3i`H4{Q0(JyH#X{jidh-@Z?>gys2^oKlMx+m`i0(OcOj-A z5Blx3w%6<^mstX4)fKaJse6=l0Qno6fk7P@U08}t1Nj1Q-{47mcb1PSb%Q*|>3kt? z_KeA@C6sV6Mw5b0s0kxp+m%xCkrD@_vE9TEK$Gmycd+2Ta&iYP(4%#G1^b7oxEbB? zQ0{cs$O`thb$WaS|jYYxxXj2ZE-L5 z6Uhpp&=lks`RiuC@()l;SN2DYdN47kE}*M3PS=Ud1Sw#S!YA=eF3UJubujl7g;{#csnRS^5C1w z1bY>MBw(5xo?Pc?T)Kn4ET7T(R&$UvX;cpY%Wy#|Fe=@{?~Nzi?(qg2od+bI6qsUx zIqLrvmqw$%pu;aqY*RB-w^FxZ$~h-W%|N#nb4KK8vk9iDquTDJ4yvg#GOKH$AB-GtD<|}lB_Qa5ty!$9E-XPvh<-c8MJhk!(9}b5wgy1U=AT{ zru}srvoHhrW`zm{XASH5%iEAbxb3R0$chidt{~o;r&$A+*HQ(({wTZ}H}0WCWZQ!u z`X=mwOW95u`l(-AyIKQaCuP&la&~Xg+B-9=Vo9a1?&G@=y)m%=J%pRBcNlA1>{e2k z{gV2X_eF~-g}oZoBdtg`j~;f^1Zr@Ts8GAh&KlUKfgQ-`_uGKs^yVE!cL|S;P417= zO;ikZds1uo!vO88*N@3$`bfX~*vUpwJSAL))e6dm6j7u}Ed;SZ=75_-$1zz~9pvrD zY+3M%EGa4FFy7+>Z2I7;SB-+K=hiP)WWD@2R6UZC)+yX0wES@oH$a&nEaIO&E|Cn# z`oaK2QJ1Rw!2YVW-wJAM^chd%GRyVR^R=Fosi$W>K-AridIYd)?+Cmag?MOl$M(7i* zj0Xg+SpvVS4b+VqEE)_I6~sbw@=meAt|ovo0c3F#vb#v?!UPLc6GsCy9r6rj@o+k2 zdVva^qUjKL(uOeTZBRdUgz4U5l`*3r*R6vzBBdf$z_7eTg{;%6b_KLGam8n#Kw%O$ zCZb4t=ZB;49>dF&**~%>bRLqDy{JoTZY3f0X+lS>sJv9u*jqdAa!fbN-ZU)ZL@w?c>Ppagh+qxs-~>} z(M>twbvb`>S3V?^xsMR!>S6l98@Qs{U$!=3+KRf!-oASNZp?rjE(UC$xoHea({HRH zgw_YdFR^4sRF~)lx`SpZgcmCN`M~9ui#9l>&HAzmpbKPZR?|_NNNv7+-uwQO*B`z8 zG~|DQ>GQ|%`n4Q2Qy5f6B8Mm{5tNtb-swF_TQx9&?9RxJmbOZ%_m+X`RLj{pa0>gl zzR>fvCo1a-&8QCCnM$tuX!r_luS+;Diow1(;TKLtD9#smCmut)uSFwN8z{~P?tQ+c zyWsUREj9L4o7ajLwP*psUF6={Q=werINf0S+N)h*L)L2_>e*u9qK+a-f|QLWMdT+uVlmf*ewbtrYVS2Vf2pPnRQ72}{`vw1 z4XNOGV@)>ImumIL^8dfqF0H)yT>jrIT2cbi5U4o`Aqb=Phylx5=+P|YkF{wwxBgty zj*^oZ7=}t5M^<)?U{=f4)W&LOcyKhRiq4Ty6*wD7v@TS)kMhzkaF~Aum-#)b(zu*Q zV_T^@yYiA9lu=71>Ods$rYxC+&r+0-z3dz!c0Rs~7r&%6bo{>9(0^XO`^(qguyOud zi@nQ%cqnJ>!G)5Lg+v|-Gd4?~h*FS{dCLaWMeIc$pM8-LmY#@pvYlNe4t>?7iC2S&RYu;-1KK3suxYO4SqEi6K@EmKGNfU5kJoD2R$~FYqPUWMNU? z?XIksClz(SR~B;QzVCHw<_g_%8IUN^a>KB~kS}>4m61p9{|5}%pPxg=^l5^F(?PeP zO(X2iS5@9#S=DT9v7}M=R9f2Xb3s9?No?j$GNvc>V7ATMLd5~7(A=|uIb>4!L6)h+ zu-8NK(0Nk|z{WBQ&{kqyL))NMkmR&8O-q>;ltIt3QyZriaZ(S!s ziiE@oKod`Ra|D1jawu<%7(kvCzxD`YLVC->EG*B?p1hR{FXz0tyOMNIcX~j9w?U{K zCKuEWTrtdAq|#CeR?y%VHlw9(zbx^n2P@BCJ2n?$dV<&XyF%Ix6AQa^;yOX}xd1h4 z&Q1&vu03}}JHj~|(-i`#3t-aPZXgjUYip?aE<|)7<1YJ>U{PgR$ur(T-Y*vmaJXc+ zLN9>|Eoj3`R&@b8X<4u8&8A%4y7wJ28aW(py1CbEv{ch}Fl(uxJYavI__y)oSqAXY z98X-`+41kg|E2$aOdPX4gWqw#g>B&WhiER~hBRX-)#8wzmBdMjV(7bD)|UWOAHCX5 zNae!1M3=HfeH>+t(Ha6^;~qW5y-`l5k&Q(VWg6xd<;3dae<$;P))lKahc%0!`d5+@>kN3H0~LhmZPABp9>AujXV?87@04DNmo8(cdiaD{(Ia<6 z6S&cVO^)C*^@s5b29S1d=*dXXAg4Zgui@8@iF&hj*%(r3rFy%7*De>bN9h`606>Ag z-oO?JzwwRmzvYd*%xWYpQIg6kxL4T>Uq@IJJhJJkp+_&+hIz+=*GwQ%nfF7^!0p9R z>>7$Ig19b47lwpwQZ*}_>$lIBp5G(qDJ-(_TYINsMmutDbZ-ZMS1ew z!cOCa-egz$ZfjrEbXKGeyb+W79~9mDF;+D9N`N_6Cy31GL*Yjf;*?e{o{^Mdhd#bpq~_t-x7FuAp9@5zA~o{w#&D z$t5I}QnlV>4dU}N02eMLkT?5p6*;p zoERNjvPId=Yv}je0iYfGEuK-Pt=Hsr%(*F)6_$WyuL zB2@o@`MCwmC>FH48(xLI1SDSV5(+u;xgsF~_6d+z;*ZbSSd&WJiadt8Es1N2l$7() z!OPqmbgFW?L6&@#Tul@ z4$9(_W>`H3skPFA25%9;d65G+V1-9?!CZCl3|+h3GyoxjZsIvRNOw}K*zT3LY6k=f z`q3d8qI00(5W`W)9iF2s)K!8j+N?!Nd{r$Sz9xSg3aBU<^4MmlgsircN5kC&fVL$| zNsEgnjdWZbItb9GyA*J{AuF#K30MZK0#=48!UbyBMnt8%L!Kp|NDc-=bBm$q7ZU7@ zJEO)lm}+Zh`#cSbIJ-3`&Nmw+eb9n<8lQHT7y&yCB;k&6TTKsTxh_n30YLIu8dzce zAmnM*A1L*!_}3>v|MhR>JKxXW`Niqp^$q)`djm|6XAXc!Ovu*cP3ylE<}Sy^F2Q#@ z6s_#>$!&RwYK7W(NF7xXCZ?XvWH(yNNT%4hFtQq09$2n$lT0qN`u-!SX`!U@JW2Wt zqN3XsTqNz3k1G$VL5{x}W+GK+qREXXSseoeV5(%pNgUFvk0o9krL={q9EE!&=K($RoHP%(Gr z`&KZJCMCD@U}`o)tz@3AlA9_!ZI~$Aat&-746#+b=H<|;g~(^0py?%vIga6?sB}tP zToK|&$q}AZc0AK;Rt(CDr|m3RdMjl=dratR9sGAMk>cZLotUfJo z98fD2jqInjphaqcT6hZ6GJv!A;&BgGeqP^)yP8D9Z$0=#yf3-lk1iSVp5~om=fLi_ zrj7;1G?34dxeZ;`f-6FL+uh$a_q^!6i6qik6+=rg6`jL5%vA2Z$CT0 zJ^KcI%BhTLD@xEn;1d`A3^T~yp-8L72;TG|Qm>|#Ds@2K320*DIgli(#WlN<)$4U{ zH}(^7qLN8Vs+7&@kN&)5R+!aQMkaWz zT0szEQJ)mK5)2e4>o<2Z$4AC_mF&liqkGIlY1#CD9xaLf0Cf2OoUdd`9e<>3dbS*W z$*!e&$&*i&4 z!BB6{Mvd&qWgSkxX(b|h7Yk3s`nG_4F-HR7>_aWvuin1+vu?ttZy4*n|Mc}oZ$D%h z2MD~`?c+SquDL&x)PXr|J#znsD+QO9D)=~5lJ0wirYtT$Nz#`G8rm0y?^vjn#q8zd zKZXDoko=)87Qe@hrhWLZ7HE3Lk=Gc= zZHg&)J^?$QpJ=f?e2Ryf1Mkh^J_j%o=66g<&YaJKLuMn79VXE>Sk?MURwxZKx#)E_ z)(;Yw>(Vy@o{zHhKz4wqHS)6Mw*L)spGA^^$jD;?aQD=?CfEktCG{JDVg2yF?Nm~+ zzamkUi{aUt^tG1k7LaZ#I}*MOoeC*xKh1Jy|Nep5>qme3j^wIs-x-LaE+IZ;=wx3= z@*43ml3cGuokK!IZCa$fbC(eGUqYYbpli;W_28RuRep9QyZIEh*U^A?=6l=gfL63nW z3lIoh-$fEpYL-DUjs2qtaRmQ&OheXGad82TCo65o#wd`CGp-#sCPSLR>$yp#wcS8e1w#*H7Ka0& z#z8Ka2umCHP1r*LJrXn@6^7P>_^7g$Bf@J|9r)I_^Tz%k!H8Iz$jId``R|6sGs+4~ z1&U3k+6OVaShE2kQW$UUB33`vdm@wrQPzY9q*(V>>9_+mDXU4Wgtc{{0$WEX@x#|+ zr*E*L)ZOMKON!x#?(Q?XZKQiDZfIJhQfuhZk-~+_xY&V;bdkMqs-CQftipDee;m52 z5or*Wv;M-(?X%bH;3ie*jb2jsKxJAuwy}?;mgIpudPV=UDLpO8^f`=AAMPlAni&opE zm8W^2dXT7DYZKLu^fNCqWG7vN9Aqbcw93c|-aBt!hri6{enbhjpXP=lTo)j`sR(g{ z?P_yKTcL*>awcb0!Z-;^154j22f^~npLPLCTUsBz6rj+ukZmb`y?B^#7I8H@uq zsQu7;cS|#1VRsHIR7&n#QV|F~5Ou|(0-&o*Gm+ARymoENSJTD9m;}umpM9t|MD=zo z5AVT5CA>uIRJL7%fzG+R_;y0FE5}DQ^~VlZYSJ`zw~GHcutLNY8QE#p0X^Gio!niL zC|IZ-s9uJ+d2rQ(!+})iZ$FcN{^0GCzj#(AYWC^d4_-fg|H+^J`R!NAyEQE&(8We7 zD5~laZHnaD(O%!J zK(e+C4YA7(0~O{%puivpb^(r7B^Wv4TU)2=u1U4e`1c|tjok5OEzFY{CL8u?(SBtz zJwjti?UpTi)%D^(Zcr0To`FlTZn|Vl;~cD@ z$-T7fVcw9bBc-r8CRCm;p6FyHz!3e0ffX?DUZ{TQd4Gr4)#QQWYJl+x@~gICCB=JC z9Q67)=+dh#t&zQ)TyU|@7nlo@QcH|B(%684(V1M?k?zRmeZn(&fLj-oC4^|x17~GK zM34(QoioSoq$2z&!=&8#2*^D5h>P;qovE=SCbnuJYsV0Hitv_0>od`EcO>;0zOUMI zl;%U=v9xcyA8d{yFv9DyUyMOGr&-ElYiA=AT9!xzZ-tix)=M?@&8Fs7JiKbx*FWUQqVYv{XiYpa6nQJIB~q5aJvqN#`H0ep zhkZ+4*fg4ul0Xl%{NnR^rOMc4@;AB5_nUHle-C?idx7}-Q;ol;hsyxn(Vn}bvtl6% ziilIeI=CXgO1#n;B0F8LvbD}r`iW33hfLse6&pJBQhNbmu7fzSY)%K{R}z3N$MezXqg_qvj?gYoE}? z=Ipr#{AewLVs%vGAr|YH0CabUn94%+KUs+9-9FGan8oEjHcTD3 z&*fbKlXB}EAhS!N35IBh!_0Pr>UZrgFZN(S&_hC!!@KS4ZIUDIaam2E3JyFj@s8Ab zKaxUK4~0xEo!GeUq~r=pp6NN|#6Fa`+!M7AmLH=C07>K(+g9sEll%{9qzCH);iqe;hX9=YtOHc6&n;;$tk1e z3HW!~UV%c0s+$`WKycU&zfKPh5c5@PITtNfb<6x{<6~qd4bgp|1MgJl%~;GD=8FF0^lp=H38YA;sVA#W&B#|S9V$s~=`5F|RL|tPSA|EE%z$3I$Z^cF~SfhAo z!pngiz^q=Lvzg+^Q=2BHj0=yx7CBOxTMuZGVA==pjBL@Kxjob*V$(6i1!yoSb_bUX zNocVqT1+ewZ{&1!?G-c-O9=G@{gw=jJM@S3xZ7sgphFx;joiYMoswAxR}v!3O$*jS zo@_{Ts+_WtC!)yk<~&;}x5v`AIjgYqkkm`h43$)>9iMzzkcC9%!IyII?F30hVCnGF-os2_OBwEhSrcoY z$2j z;LbC8%41_vPm19lQYM1X?mGW@on%d@p} zgg@n`?Hi9w234q)mR{swn}yEHEru?n<|oQVHVISmowt&b4`0}nt6Vi1{U)0M=l8M^ zI3Wb~OEQhIcuM2=nUdL5`|SP(Da~7?uIDW*4;0C=`UJnWq2iQqaidn;b8VVR=Z#Ig9A;^r3(xE{hwN$4IzL-taljaF4 z#}jBO{(jI#(OsP#_4Ug2Ub$@3NfrKrsWB3l^}tM(L(BWfVw&z#2R)XDii zyfVKN{*8Wow6+QFUD&MZPZX25turmLZ)&+^=lua)>J{?s9QUYRky0n@i>!(aa^*fp)E% zTwy_$c7+QC^eXz!1aQ!KwTS|2K6nnSo=pR0<+(CCgA97r1R-e34ejZG-pj0_<-kb( z<=1~5_ySD+-@pC9#5nU_r)t^*jc7MSUOQAbrvB|$@b-X@9H2C+Z3^A~Hl4Du*0CN^ zJDer5@LbQhF@XbJ&-wzIVpm&*4o*c&Qo*57{Z>+z{!W(EX&;7C$~81}XEs;lIh^wd zc~YJZhsvO=4t1@Q71!{BNPA#c<4N)kgh(`=`MjU93A0M{a_)cStm({)yzbFl-<(wM zd@kq=Nm*je83013kt$9gQBN$&KYsr8e+X~C%zIcin+vc%WCa4bG#lD5K#)_QW2X8I z2F!*Eoi8=T@z6`OqCM&8r%}kU>_n|GSS2nVUApNCL50fTCUQx8YOY2g7iA*H3N+5x z5cYXlpgOb9Miu<2RW^F=x^98V3cR2KFvs?2+IKpKS#{&**;fWKmOC7c ztUCqZ*lEdSrEiT>w!fAtqj4v5OcD>yty86bj2<#o+{u9XHS0MAcf+R{fUuQR?934c zGO}e89{J3wm7Ft?GA#R`0(+Tin7&%ldzL_j4o^?nw+-x?JtPf7O%5imBJJgOj z8X;}CEW4&Ex2W(n$z&I-IjeCMF0cnFudl3&(dI76!JJ%9H(Q^9oJuDAuAaZl)dqxd zLo}hdP*n|kC$W=BD{Oo0>_RSPhYxD@oP^Jgk{yV4meLIRjljfTE)rs&i!mH%MUw%_ z5a`#9!vGLLl=$tYn8TdB87$j`ri|5MEjfw3?e-GnNF^Ivfg`zqJiMqi)2^80Hn#c- zFC=VR^xqdWv8-jS-2+d**M~d7uy#-Zh3F1i5>Q>71#-mgc%Bkr3*abNn)k5oXpfDk3pFvbf1xX!gi<@XGEnt zi1zI#1_p7=k@|8tiU6XxxaMU4L;JbiA~UI`UA&{BodRzZ0OioR7-oRXsuxaEHcO(K z2#|BTa`Mtvs-t$3JQadFY}EmI9-cBhpqUJxfD#B>4x9t!YOKnSW&k+%>A7X`1J(}6 zo3u!4?A{kMC=7ZJ7H!L9~bJELPa@ ztmxpw2o%TC8Uc^dA}sROvK;b^iP0aGeavpkq>h~VwW3Ouyyw0MH)=x3<3-}t+9WqA zZ-i{K#(OX=tScrjVxWzAMnl^Q3+36WkO}z|10s9=+mEDN0Fdj{Fx>mmVCNU=0|@^E z_3IHjbqbzVK$0bywl4-a?d)DYQ4{S|!s0|(K)JtVKR>0&%MJb#f!Gc1X;dPrQ4AG| zP;hi3wbTX`-kbW2AY;iVvDChgLH^YfoI|bV!^||FdO25S!O$jO)-!G;fRcMO3Tzkm z-Z=voNv`vTL=*JU^OuVkl)h5NQv@)&2H;(;r9Uj;MTe9=&QHSC`^>qhd+Mr?UV5KGbv&> zH7|}VK=D@ou`NsTQ9nW+vbmhVoL<2(9w;zhH{+^#>eavz34rZ9$kS8`PkEp;9C5%R z8Mwpl`od^Mp{#H=`9MLho?Y{&{TVVPE&%+rtDwy)JKbRu?J*5$SB!>}EL%_KI7=He zYtV)QYebX>IWtfaVAHB2bw$G_wBf0l4|&e|q?#e@E#3m>t#T)z8RzC;t?c7+U03p0 zcfhGFt7jtv$b>zUM7=Meat&O=?9=p;t8mZ0055RW41b;1;AeaJh7^ zg_c8axj_{3>w+zF+}#*^QU_83fwP;JgRq>2Fg^$$n!SCUijvN<1~oyL9!*&r(;@)GSq zdv!uL)~&ATIE`M!+s^}EfMfBu#tgUz^>EBjCsE52YG%d-SNjgA)<^-vk^y44Fzh=F z(p+nCh%XJIZSwaEfTe3ogwbR~jXv=jl&bmQQPm+Lo6sSw1W5*MHAC*e!^SLHTW3W_ z_M*~se0)M8Rz`;jJD(IlGm+tW1KQej-!=*A4MTp!2TI5d!3! zQj_ZKl3z+LsbJ2=9@Ffq*}Ia;Tgx4!iawW4vz!1Gv4S;{R^}ZD1nP9Qt1tWnjok=iXN{`=TE3aBO| za>)69q|UM`eEEGRhZ_!!_Y^5R(GKVsvAsQIUvP+5pymN%ZOWzf`gl)mL(zxq$R0(p zbFZKxe2UL*B_c#n9QO!2WI|&>{`~C03|DYegW&Z`f$Pe-Jw|@$6 zrauqW<@^AFoXmfHzstEJ(&2obR9`5+H4#s+7Hsw4#v?!Hs@Pfrw=mV17RY%Lk}wa@ zZ!E&g@&L|0bnAPU;%rA7eYWA_e|-CqJ=uklI#^{sZ|GbSZH0{C)~390=@|{a;*_mc zH2oC05$h|SC5(35J_J%Tp_JE^N~vvLXWUCVk`;e#LONj}=h77rzFw`!*<`bsK`rK{ z#OWv@**lRefIj>*Du1y@4tTf_9p|D|HK}; z24Dc|&u;phQ~)VIW>j-T28?l5#tb6x5{0B;Sx4Fj09}vE?u(Id!e9eowq8qlIbV`C65SXNnoK4W+{)_Q%K+8JU+ALZ6dr^mGmNS5 zbNgP~!V;vqg50XW))^05pq|qSa47lz3|;wl z^LEAsXuHv`Z^q#mG`skqAFCNJ)XVEkXaAE4*}l&kQuYI_z^JxVoi%%~<_ z;xnnqz}CK|d?WX(RH{M6w0Rd@;47NeEBaMZ&f*d#HsJ|6IWK@e@0dzBH;JrAxjG6{ zbO$vLSL>EiLAk3y5VNVUe%PVq-_J!PXi4Xt7%NE#*5Hkf51}D;R(Cf)pYXe^8^;R)GH3PTgG%22z=jc*TC zvbtx~tni#!EfCig`-U+3pgt!=2(2pk_&F-Gk3Yd(pOtf7;F@ixMj@y?_jg@{1*F4O zDn|lLSGYY$B~N73l4^yH71qj! z2k^K-mtQ}HFyj%!tZhXe=|?c7^E-xK(e0#LP6J^(XZQbl53_Q}GBan3SG5jXFEByZ9LygDD=#t({A`La2IqjBLhk6Qq9NmFYwgjJGwb0h8Z$^PcBv zlDrJFyMQ5PIP{oraoErkWU2B^>PrED;3~dj$3YoJ_Y#N<2=944m09_HDnOk(@ z_*_?|B(~!db1!vLu_yNO@&FayYOdXz{1CcAB!NCQATkr_$IAdOJie>3*3K4PRU@P& zCHXF~_D&RNCa2b5)fLyetd~rbNaF&G5o27-1SPOc4`ntqa#w-7n*TLP`YbTP?zWd( zO0A{2FCPV!e@%|uK{u7IDjH!gCfEoW=5%e7VIz4Gi~ zya2VhTObSpB4kZrjmiq>{rWOZ<>?#is=WY;Duoex0X4@*708||n^>?Atz;#lYGYb# z2oCA`_^ouU+^`A6;!FonD7r`qb^P0mDa69!k3>qrzX?1i1GBb!u^Ta?mGy+k&t<>d&} za>CP!$@dwBO5+k$TUH6QJqX^$8KOerV6p+A&a9RZRh05k%W~V67_&probF^22h6HrCOIK zFszBFMyJtX)Ic<|f4+geU%9wPlJ)z--8|R&+CwPAYMwJ7c>ZU{sRGqPZB>W3z|~eB z=G9fgE{VFjl62tCgrjKV5=)Y#?=C&B!)G z7jC6+K;@zz5~De_y?KKTbQA(#nyODxpDm84!)IG&K!O9+aJ@Hp1DhiUrlX zWL^SMX&{+l7{qB!ugqVXcI=^x;3eUFAINu4z|7+8vXJQm(K_${7ryxk5YKyBoWfQ{ z4LyKf#fPGeByk6Le(1ux6I`Rz_0UbO8h|j2;!(En1|`HXP!6DR8j_q78*2d9K?A|8 zUrrMGCvRV>(B$8~{vlYa=`l!jto#-!y~b^-ZPAwtrjXtSHD(crYFsSOYmk1DW(qTb zhN%d8HW8vgoX-~-R&f5G+nj}`i#Ed6>jzsl&7o}uHR-5w(1}`Jwn;fq-p1|J+bW;X z0e7lh1z5MzMui&)s6S_nffc3{ZcF}I!Rv$*x(!u(a5HmDp4N;I;UEY8+u>gvMxDE#Dzz`B^3N$%D1b$J? zD#L{~(F0W&N0NY15MQvwgCwzhfdzzXEqMZ@s3{175JjK7m30qq^sQkHvA>) zvwll<+~5>zTqoz%5ACxfKw3=_>@^qwCcsbypL-8l->Vo6tO*txs6>_J8QaceXRpu) zDrkc8(?DVuSq%IX;#m!ep?p&_jbOEGCI4*DBS-#{M)=SQDIItWZ0@e z4AICuOR`JA`0Nc%HOR%zfb1R`>!AW>7eQM_P;<}41|8`V#)*h z)b2DRr)jlY9uX%<=AyzqQyHM4{2J3WcCqUyiWyZd*J`zR(4tlD{E{?C$erB46_aR< z78WiH9O#QNnIl@TQn`|yOsb_yMG{qxyItTm4*4;AlRqz?{Z)9CtK$1_KLktd4pwQ( z@Y+c>jV8^U;i?D=#Q-0K&$W1_`T4H0HqA5`ojW3=a~&X6nIF44zFNhJCw3@6Czz4g zlw;>37`t2%*cye430x?ALGl??Wz>j}C(Pt{V0REb9;EILo0Ig|K(LCwKQ$5q$-T$j zRz^~iA0HG^Y6*?5`XV>B>DB|Dj^_p6U_ySe2))7@sa*=o*%wLC(u@|+!}fKL$)rsx zk|*jI1j;^a-I#0bAfn0?C}6O7f=<7BQnZIZIAgN?6gi1O3&Li3GZogMc~064a!43q z$ZmgtmSY!VxVe{Cp;l5hAPekN1fO5BT$22Ey0lPH#>^rhEnq9ynwAtr-%W#O z5$qUD!h2V5LUNiP(7v9-eZ}Mm9W+8AHeK?K9X;8nEp*Xb8)!`+P|fBqTs0Gw zZ@I;xh$9iXbIOVh3os!_btFp-(FAajwT?tL78k(5odLOhK|~_lt9yhII0YsTS0zaC zwT_as5d#}BqZ?%j*zI(t@rdzo)a#FzxmuPQvRox0N#p_mXN9K{rY7vW!}e=9#XYd` z1kn=N4(dS)X71xKGWm6Q{bPRj&jhJ|{q{!+i&4_|om}i4j38c;_XdmS(7=2Qah~FA zg#}Wq-Ouql=gx(-q9b^!P`}Z)DiXhj<>8`vxIwH{GpV$aUBQx95CVig5$lpCwKk`7 zk6K>U`}z)!PQ{mY?Bk>Ce`Si>h@`=&&_O?s>1;xF*5Ogx!40_n2KC>Sr?CP$f0+o{ zh=XRlR=`GOOdZDKzj*yY_>1!PN3Wl~Pj+4=30D$%Xg6|Km2~4U0oQoCO>Lc~bC@b@ zF8#bBlv~wCw)MD6j62Is>&*3a!$cj@l;nqQ+81W88Ws?XQa6sA=T+_{8y-ps)9Fj` zX3w_@@atST^j1HcN_b9=NpRjWHhGt@mxgsOk@Vv7hL7o(@VgF(Qa(80Z6Or~2ZONuL#6CuC~ z4pMi29{wA%q51sn`;d+OTn^T+b8Y^>uPS8Ch_z?Dg^O2(%W2W#_^RX6`-DQ!Nz$?w zX8M4Qm_n#9GR4EZWa)5P*6Q))CzY3_Ps^cn6({qtJcKNGr>Fv~|c( zgVY`6go)4F#f@91W=$)bqMpd&*ZrDq_1Ej<*!+2JQ;*khfxx60leggtChGg@W)FLKf4B# z$`n+uDpO1B zCF7}ud66xTLzy3Ua+-lZt5?;z4|$qq4;fw$Y>iGk2RyhONiCBDG`HS>lVGmmgG;f( zg(ooh4ZC_xF{q!hyGUSB*=bhIiz5;y@ViJu1|f{C!s*I+7_55fVL3q43mrNnNTVC- zJWWzqf`M*{sNsbhMdp%AR)NM$qRl`J08AI!Xl}|lI3*540tf}}Pv3qn7oF-cWD6J{ zLrYSIUSJE7(GEqjQ>Jn3<2%0eDtQu3>LDoxm%4c$pXI`o3y$QBIc_-h(|V^p+6;_1 zsY{TCXYlERPlUf2NYpS)9$52E!dq!9X%Lh=iD?;7`mu^5JfcroIh@! z^FS@*QWR-nYWf~8d6DQg7?4kjXlqb{dJGFnY<2nRfpfF4kBI8@>We~v(DQBFvk+=A z)=Pujl{NT3NAKp2C`O{R)N-e?pTBWOLKs`pl>uF}KI|8xzkk@n#8AJ2t^9mK$U!fj zUKR_SUMy})4uJk6Hy~2TMq3RL9c;z4lF|Ioq{||8;TGl+p5itN4%_T@Li#gtY7L8o z6i8)Ox(IKNTETvP%|m2F#rPANiiyf)k-oiZgPM>!ePMEI?jA;{9yT34_^Xyp}Og_!(?CU( z;nxD4YE9@A8c_x4n4pwSXzFb& zd^o1e7_@K^$u@jSa$8jC#Uh?+q=fX04A7NIKkeSs;8%LTX+_Dx`bt<26XBB;-7%DPHo>% z1B5YHKSkbL?!I?2i4l##ZM@t|(hGi|7nVq-1SPSL^mn5P=c;p2aP{Q)JU zK0oCahRRH46q|}Aq3RuUP%Q7&ov9v4?x~74==M<7GxsA9KK@@2LIQ(vqUNGRT8yA2KR1x@EwG^8XYG=k2gyFk z#iW8dP%rYl5OJCt74DgK46=j4p-ijZK8HyVK;{-d zE`9Vt9`vCtr8(nSC+gEnL_z0fjUFB4Gj&$M@VXss{7O@!ZO@WJKgqVZnY8*6=zA$& ziHwGO1yAv3H|3dTaPjEpmoe%$zERNSiooHs1%Rr#gVT-pdXPp3J_jg?$j?EsYZL_( zk6NTion6TRQ%jNrn!qNuJkztuoyvU%emgHvsBZM}?lN-^r;^G~FeCM#cxR^e=|*?d z;9)8^V`}8Ld<}jHiMSYhFis;mvWS7xnAEX#LSNOV(d()`tX0R@4X7AH?jlG4NgPtZ zJJ_1HeR`5TwCE(nvKUyh0>RPk1I3di9W00C*KgnBY51OgR--GOHnD^AN-onhmw-Pj zsn)K!6(Se5oug}hE-4m?Oyjk$;9cHN|QJ<|o-{Agh_=Pu8HY z9<+u*vt{cG{s4^nkFj|6Ji)fx+7+4GTVg1Tu%LDf+L@iF2wzB0z#^5hfqAu)BB>=6 z!TLe({koi*K$3;r765sU4t@p3h8Hs!NXd)-J_GX^&F~e6iikotdjkZTpOg)TWgV66 zpFaiE-z2MdhRDo@rh=_u4+ObQPi797A3Zv313)UZ6wa1!GQ7>eM%=+bbAx%tS%9x zxgQ65!#Mx*N#OdZwBga$y%CT-$_kXV-W1<@VMLEcHZeJrd_ZRc3SU* z4iwx@y$|#ztCNm9mfjEX$IoBCheYNlZ$EweF$S9Lc#?m)2^RxMVKjjLaO^vKTu7Fe zBG*w;lo1KP%bkVP`~7fYm_sF94HN< zjU$>mkY*1sl@yL;pDr!BOXNzOt$A&Fjz6TZ;}5M3aAjZr1}$BQ2AJ;``wB2&z;g9= zHq63pmo5^*$(K}-0@(LLkCrnaw7!+By>Yj}v>`9R0ss&pOcDBjoKLLkJZ5Kpzqk}> zO}h$Ja(2pNANyVYQWiT=%lm=CKIk5elFLi!J)NF{pU!rWa||$zloKT3KjRFXA=Zc? zQxzX_sO5>LS{3Zct^;b6rRKpcv7A=bP&A$%+ldlRat$&)| z{e7^z_2b`#*Wc!y4+#3YYK!M{R$m#u+`(+LFOMV;1R$eHBM!30R%n`ViTu{FJO zdBEOESGX)BjcK13>71_cCE4oG%rx}OQyehGaOv!JQ*-pYE3uf~p1sDs@4$p>wvMyy z4)_nFf0{#M>c%?!Qi|$8%?*ed=$Jr$PBm23h7G1f7NVi=Jl61cYtezV#D5LUYE)Z+ z2IHS)MWrmKZ~Eq29z>T+6hmoBZ@`(S^+pX66_x0;EssRUhoPxqT`xtR;Yy>_kx!h> z4A8YhM;AV-R)p43k!h@apjb+FdJzT{s9^m#g^ZG}|1ia)W{5}eAld&?$EOMS-IKMimHq!@oG ze$8h@J-QcQcq&+6P#8_J8W>wjvfC6-*(IrWGK^gU(QptY>6~kkTmec=MN5NBO6-T0 z79>TF-oF7CJs((b<_t5U8#ixCj9lVnk`&7>+abl~opWmMyxk7)bDIDwg|~?(^vkWh zBoYaPDG4*@yonV5W{10mdacQ8qdT>w%W{B$);fVEWnK2B882bLV)b9u>OotzUqyAb z3W|Nja0LPS<&AYH~Z7?x)ezwq!;|G@vq))s(GJHDItg;iZek87X?4g7=hAi(Xfpz1c#g30;n*9V*y z3}LZ|*rKZs`8$Ig{+;Xsiz)h6gc;gJ+; zl{ya2-h`M!G4c-abIH*D@uWKQw#-0N&=tN|-mYk5Sc?vVQh+5a;DK|z+rp&=-yV%n zV1$0*wZ`gf%HaDEExqu8MWHM!2(R~cE%W&RjSl{{tHDN&oZzmnin(2&k`)Zf#2=6f3SS0jK>Vw%E)LQGkLgq}} zuft6Ryh=6?YO|A7mD@?!^bnupb8lRY{+=S{!O_N$P;4+}=ca@F)*D4n{GQCV^>6{U zFOvGnI$o@nTjEp9H<7&$gGC3;!!Hz{g^U4*x1GBtKke{Fk)vk$vt0QVj-w@c^1*s> z7nK_!mIvF(#4sf4Jz%9)u#*bQ&svY(kb@};g;3NQ6z^=T)~W%TZDAc2S!jVZ^I>xH z+wf);okUs1^QHb=p4rNRdmpuv#5wy8;EvREG%we&?mW$Vf3WbxVekp;*k(ISSMihl z7G6n`r)Jm~(G%XY?WPy_yLY3PupN3AEAiS&G_|}y%0H4o7KpW4+8Vb$YY-v}sEuW& zj!V;id^6%$&wWBwk=N{59Sy)Qv=mA)MruJAfNgp=wr@kOAI;)>7-HgAKi;<4vKIUF5n#j=QtBd7jqdS}vRC!w#b| zM$Zu{Q%#gZ!CR&wh7TYFz1}9`aL{F%W(Y7%u$z+Vg%w$Zk$j+W$_x9$p#2-+;7k34 z0Z@MS^n9_Xm`dRoN^TAeYMCX!Y_@AG`KEoc02q&0BEK^mn za$4^(OF!gy}#6UkZub>mM|od;JmKeHz|=170y8 zIytwe2Ubf#X4p%m6`RiB^qm@e+cLoFiZn5)o-H>3On*%e?X+cfJVbQm`L^^C+$?Dt zcDLY-klD4(uBnB0D=|!;An-JH&=ha7{y6cPXE+BXzFv}o5}5kNduRxdlh7Ehqe6kv z(cDHn=Z%Sc4arbR5{bgk-62MwUF~h4@RgtELltXA3Q0tW=-9Kqp>(h*xOSA$<+Z*7 znt!@c4T zZ5a!iU;!nEUa8eD`fvx@Zo|*r#oeaj9XO~ueQ~O-QPI@Sh+lHcpLPEz-~Ze~HgY_u zk7v9U@@UKM2e}ul?FOd8Wh@Yv0rUL)wVy(|Wv0atyvvIoqJ`imuEBMhC8Dk>_)@p- z8P>ZG+1dP^z`zE-xyX_4uqj?RN=_g4(9R`aeU%{j1AX@b55$}LlSFFD$|#2T@!%L zuQ0<98K(H{S4u^Ml-^yE`_0Bu_jtA*suCzC`xYRVeJ0>wosr0?Qxa=4^b94)17;IL zA&6mO6(yg)dN&dkI`rUCo<&4}4|eNzciQXl#=84}p;suo;FBcUQnhw4wl5m;0$k9&&9=CQHGweAVe%t(KnFdW@ zf5!)RHd0KU(ht+XP|><3`KmpL4V5Pba<;x8PLlK^$w7mrJ!}9ug2w1Mfrl=uZI|@0 zbqb+&9r5KdDG`ho-UzH#mUY(;vODFuI6eisu>-HyD`Y5Tiy4zbWrLxzY_t0WVL4*D z9`LD;7gs-iOy{#VQKb6aDp!E5D|yE9*dmu@)e?^~`%)F%2@*sD8B2(JcIl(*UMo{#vle!+TQz#GrR!ouB&4oN*jH`z7Zf_s~yr=r`1i$*5 zJyuB*h^D|xIqC8Neevx2C}$osSIQpgAeRfYsU_KHz|kIzL~p-C>~2=GKn2Qz6xY^h zpK`ZBxrA5iCGOCzAMK5oHE3~+&SvrJsa6XBM~f}ftezm0)CN_Tn5IhdKu?mOgsAGR z*7KC>?baUJvf%dFk@|D_FZ}tRAG+?4&B__eHz^3Njm7i!S+FDYfN_rvU6M_X9_--U zqC((KH~IlXO3AuMnSL2|w&tat#GkeX08ZNm9gxB=Mk4e?i1u{6y7g9IFJK0c$g3|& z8b|c(Pg-OR=+VQuB0^gcX?YikIzZy1(3y^4h)#jq=48=A4v7`omEYzCS9mmIcv!aQ zKaEkD^{o?gJM{6Vb0)?!3#_kuLDK+?J{3IJ9-d^GH+qv{s>00?uO`EW%2!nuRsBzr zPAOULsTtE+sC&u*Ua=IoOP#2=q54Jca)^FMm^_@rjJMvRM%&46l&V|VCGyo$!HMSa zHzs?^V~U(|Bn?p|t22Y)#}9xnkG!9C*36>`Oz21@=1-cTRM+yEudb_eWkxIIk;+jD=g3 zeSqz?%B@$0b&nL@T8c42>Nfh^k+h-T*rAj7@=l}UD2x98=VSQhC-PQ_eFv8115?ai zEs`zS!=x*(`5lDC14&U6X4?;QpWSf%$}4h~%0xa)I%FYEQ-s>n-P2@?3&bZ~9&S+&X5BwnQUWH;ks zgPIAo1ez6>ogHidoY7O9m+8!)3BPysAG9!XfnCcZe=s)DWd}aeqT@x*{O{fgifD{Okw)gy(R4D1g`a^&CttA88* z{a;xU08)`l1Ki;&CslJ!>6(Weg+X!0G)#}`WTxD+{2DKjP?=5wT9wpYk>KQf37m%2 zWjiEWsx2-#BNpz4#BWW2Li7AhvlJMubrYu^eJ8>bp}_~QZ42vWpNJ zTL!ngT;$5PEp`ZatrKMmgZLJUbPEtbP;3Mc@64Jt7gg{oFC!lLhAe?XblcD(rrlZU z&!Jh`qJbjSWVZ3MKM?yH#;uZ;Ahfvz)nKxbGvq9R$18BWSz!~@-jpiKl|Cddd}$f! zx=Asn10#?sil5-5h7N2=ML2N2LcJUuVny93hwosmc13)!PV!~C4M<+Dd)>t<5t_Z% zs>sfE&snZlxu7~gARxZ894?tNl9np!_V|I--AZS+E<6sFVMQU&y}0G``oh6Q)2>jy zUI*=VuIM(>#HViTa;QE46JqQ47k~a|LH?f~94y|7tc)b=*!&EKXzvvk5;|?|3xxBa zc4iz6$^Kktwz8y3b7u%E&V6%jTor;`AS3&e@b+U=puZxn`c7liyYfr&wV|VB zIbhUDf<#UG!8VWF#0oz>Q-tMC+xyWG;BY107RsUaF*qv-HnIi@c=BeV0e>Ztw3yq< zf1%|JxxizZX)BZ?*(o!Ufu`X%0Bvpzr)$RKbPkvlbLilF2NYPey#Vpl+TH4e2;bd? zN3+c??H~s2M-jod-?C81$hv)l940azyEJvao1Z3V4EII8@J?A$QPgbJ@mWbs4qwc zEkddlYTm9OaqhI%Yz_wVvg=_Q`eGCKN`=f;1vSEWJYrZ?^O^&f&JO5%=k)OU*-4v_ zU;ho-B8L*Z;&a$%wmElH%LHLsQzHo6_ypz912ot)|rDX)U0K@6X#;Vni zDwM%4bP@^K2X`EN+QfN7Aiq!5#V7mMuk^yXv{NRoslKJ%UrmG(Ufr%LG9vly=++0O z6#%a(U<~@+e9~b4yXj;u8jn8~P{0f3>!#t9P&hnvNXA1vt~Gc)1-?JP3%ZAp9OpQ9 zH8mzA3_W#p`1qsA`N{(UjD9%T8J}>8Pb7;=)~(IuiSMBL29Nrs3E6goBZetF@iKtU zagiJu;1S=Yo-p-&fi->G1FQ}_2ib=SfCj0)C(!XIi36!s$rTF52Y2LT;r1dqso8{~ zNwO)JC^polyg<%8|Ac4gS0Y7MlLAP2Ho<~9XYPGTpz0pV6y&?Bu#Enx$Em7nTm$b) znJP0zEEd;p@GNEY)a~1m!v6L%wlgvsBCEw@<(Ru{rwDu|t}s=pX=}g#w}(Eov12bd zI}kdG0O|E^uaeb>sB*f3?mK2=$mOSo8N(QnF3b67!lh8?$V0-`r3_7zw7oSzHRc`D z{V5$pa<5WEr)TW6)g>!)?9pBp{J~7|q2|;lL3B%Uq%OKG{2?u4vBBmu5LT2UJpkBiPvhI)4*w#fjXr(`KjTm2V|e{JRM&3cMvl}YR|F50=r@>` ztX8=iBv*4+BWIIMO5rKU15(&s>t#DVFcXqEc4k9i2@gwH zw1CI-ls0biw+zeGD&g2}VHDYXu&@~*)cvZs2{z#+Bb5zZnhre>3Mi;fRd!Wy=(L=Z zGY}s6O>iXqJ*=eiUSQvxFAUB;wy7vCs*WvL*s@gHl-qNzxwsBeZPuzJpnWOMYSX+! z`-tuz4WqN0O*C})?(Afx?K(B@HR1;t zUH0VkjSa--XNisSZ1a7O{s8l_%ie|;O5H&Cmj?{}Buu=m=0zul4KR$95}nv3y^t;I z=xg9HD?cY&x*%z<9T8o@K+NYVp!5wq7#nKDW%8q=!eXU^D1iuMVO-^T70)VlYkl9W zoj~L)ldbS)E?W&~~ z!Fr%)9(cBMLolncjO~g;il9dA42~+_F+|J-JLY-)Q!x85N#I{ztg=WYF!${7cI|MM zu+I45|zHgvAY^q<9uBbX~eh0v!P3_LWTUN3g zFDgf*_!qZXtlOnl+4#&8Dd!yQyrN{I8ag~VlH~n@SK3S1FOsx$N~17k7PQ*E`7wdS zxc3l!lJC6*ADcD88l4!s>~j8Fog`Zch55{ji>IOY6>Bel<(lDSbpc+wi39SQrjQ3P zAfvPvtY20dA0q}MUn2V$TJ|=V%>;e9@T8949R1!PGwoJ~z=t8yR`h8Cx&x|yQhR0- zE<00KJxGHKDKro_DotWZ;ci))kUh!}H5m6N<$c~Sc7mjGWIAD)~t|__nJea z5~!^(gi?YviAGbhRi!IF5>WQ>p<&B*bO5_rA71cNvPE7`qw)tmM^h>6-mymp+pAJC zAJ^j72-g5)-vRm{gcwWF8b{pTv{$v_!j4UueE^+4 z6G+5*MYAuASBuH!)owZvtJjuhzDw*M19WHBOJx@uZ5=hMFNSwR+vuj@s8Z6??bJ!` z>e?*bRq3Ndzile9fffNB>{SQCe(ozcp3|w!u`hJ8#jPfx76UE$a%|5*t!Gel*A1qg z>bq=5VoWXy*`$iZ?kw&Ix<^urYs@|{w#oMqsACUk{g@1F59v=rIL=a5?MUruB=Yg| zx39wM?}?<<&plGi=6d;(f{4w<~RYuDfZR~an@4UT+>CN4iYm7)5D0yQ5q^3 z~}3Xme+HQwm1$3>pJ+@gTaMi4WX2{`XWu7k=!^c5ETQ**|-v9yOR)w zjCJS89&Z%m&ReW1CM%Vy;o9^b(nM>IUq6*H z0pRS{pS=Ta=Lwun(i|P6*oIXuk0N|`Yn6~jjH3F*=Do5))>~qO#UpvR2Jga|cF4^7 zfl7?9ah2z%Xqyr^U~-sH1bYmcK}YDhMN+0V7R?FhE*8(2CrJ~@;N0cj&aa?KE(aG5 z+xuXbOT9A`R7IFbm25F!I|JIuhN><|VR3`K=m2FT_pHTN+ybjw8?AB^!px7tMN5QZ zfk`a@sk2B*nD*Op9Ez0fG}Lh0S6Z~TJjfVbZ`r|ci4Q*#ZS)ox(C zXCAz@W9ynk6P479c)HdEsbve1XqG>*Ku^(Iw34@DVz8TtfI6vF3;Ko7WMk2F4|n-b zHul>;!EEyrs1f}h1Aevi&_DB%q8c~Y9)`UMQn%4b;(g#_k-Gsvrgk)akV8qoJ|Tbn zQr6%S%Sc3>t?qP;hk*r5sZ{+!o$UcY@gdaHw44r1p^Tw&^JUrWY1ci`L&wNwG?HT6 zsP+$=#dVf4N|Tmk`{qds0{$D&Bb~^BLX#5%!;_>_y(bSN4Ie>+y2);m4Q&**O7829 zRDL+5;RrCF97EalYv~Q@0euH_qG#Gagx5cvKK`Fj;r`E(SG;J0UxG_81nv!b@@knt ze~~pR+aa{3N(OR)e1q89cVcg6h4oR4GC}(iJOhIL#PdCxHs0FFYd#{0ff=?HPDQ;BXO22pvh)#H99w5aONPgmFZi9 z$I)Hkb7t2JT4r=O$;$P2_C7GMs;{l&Z6#@ps_oe}DH7Q>1?ty<9U-;gWk-VATe5I( z(evlcjwyqz1DZ|Su4s+WQX?#lDkT@5tXS^U;BY}mywU)oC+QJ$?vAfuOg~{xD1{Ow zaT03W(U0)t)^e!SR!sH}{Djsf*OL?rtsL$fGjSyA7Y0V;1p7-1kc~mLTNPxvL`p?; zspSw?^=DX-1HjWz3U3Ugd?1AeY6*%G1mLvGsumg3`OG=_S)x)nGc;kD({SL#)gZ}t z5?$DsN1k`IXTUms*qQM)2t}ybtIDD5caUU(vS98z5%G>@BtZYR0FcR(Qiu47lKQqq zfe2;=z|*?8qpDmHM0%)$#5pjTR5?Y>!}6oYP3p*M z8(vpconcI?Hk0hPy^vBFc-AtQ1rj;*0%3t`B613j;kuG9>>KD#fdr_6o*F0KuNom5 z0yR^al%M=#hir9{@Ah$V;@oMyLZ#?g_TFNOH950J$Qdk3&avXP*q6Xz2; z6dN_{K_&2wZ`Q~VQdnmqf)E9wUp^yL8WC@t_fzQ=zo5FazZ1*gB-Sk$V|SX7m|fwQ zws*G-;w9TdjiKyOC=SK@*ih+L?>-LEmxR$v$K_n)YfR7Kpm#nW+)74?i;qw}7F!N5 zBCEZ%q-+=i&66*H>x^h;T9|;15cEVtW~ei<$0NL48GSEFcA%tg(4;X1$AxIV1R?N* z2e8iSA1;Pp7?{K0rrLE<*g&?BMlWL8-Rqh0bHjnKvzh2nuiB77suLYPy$X zN9p{4TM11g5CBc>C}S%8AP&04ofmUzB1IbM2d%fbH_!SO(X? zb@G`{Vcw~WGR%M@XkWzDEy_KKZfO-aqqbHV6lgWM=7?AF&cTH$DDhQ6Z;HsX-$(mz z-8-TgB>Jd8Z(@t(9yTkG?$ zQbU7#!=*Bo9lS)KQSB`}Vdu%~AGu`FnjaonwtX54sZ~M5`);>pzxw|qm!AoeDV$VmVbcj`ulQz{GLXxJGE9B(=$Io}q#(RgXm^>nM0{w8PTmSLi!lD3W@4jH!N?!d|3g zGMu*x*IHSz>z_HLvkeubI$$c9ER(GtRW`59?-n)Ktkm3wQqw^D4Yk&CA;OM3uA z;Q7uvmTFX>*R+7q<%f|YE{~7=y$3PuX_axL<$YckG?+O zj0Z}Hh3dHtt}h}F1HW3Wo8Z7jiWdANR9my`6ntuc9V^+eaDK4YsxWt&E`Siq_Om;0 zs&t&lvF>6-@?k=0SM!b)D|>>JG7(f_a<^bt`m*tG!7uO+_FO(d=?B0x=?KvHjeoWh*1=B?8!nRQkBoZfXR zcQ3RFoCj*zu7R-*t{b`>bPWfU*1`0;=ge{h{kFX%J#mpYc#&>|7fr$hwXkzjb4QJ& zZ9;>DKa_F?VB4;uW_EF4I<=_muHWWB>rBjRG0dSQQXW436cZsiw?jd9S17jdB0N9a z6M5I1%{o3LD<;fRY#zAFH4WWW5Xq42Jo}CD99Y)M{apMDFfquF0GDlk28lKh=V!o+ zfdgf8FZk|5C!gvj5?R3zA3}758XyyaNLxt%Vp1Sw#}GuHik&H_Aq? z%0=KD&|kmiZrw{u@ZVj6Y0W!ebw{VLBsa(1(%>>q>#j|tLVpWS_@!b2JEzbQN(q{o33uZErsjT#G-4caq4ilsWer7)JQheL9+NwTqhM@E=V9W zCRqFL#rRuR8s~zw_!;xcbb{TimfIZhv|Z@TXuH{$OO%cA^p2z3ffjMMLuP1fshUvfTBWv}odd4mV=N9&tU55R04v;pvoB&A=F*YF%iojBx$!+fG* z3;9lN%cg*=4e7jrnIRrO9h|VT4=b5g^F{&+HhVuJ zTV8kxGF?Hm>&z}%8I>y#9Z+`lz7s%xWV{qJ-isz?c!y(P<2oZt5ihNR6OF39oCtvV4mOlk zLJ;)Hl9fmQ@|`E9-JqjnKX5g*jdDv3h>n{BW__!{)E@Wvllctoi+cQ62NZurVsKsx zK=t~mzDf`S1_S7nvO@rH&6s9qE9I>MdSbS7W;?SFT-noE+CwpQ%UKqR^9uE@9J5}ed zU5!a643+t^TBwY!4z3lT`(q8GYj8=hy?DR7kHC<`5_mf0IGe9gr{%q2pV3OUBMM^p zm0Pb1Ui`~*G!^dUk>mQ&(-P9$?8{H}7Q>yvLGqB%^_*g^6x4VO87QB5m?P@i`oN#V z5dXjc|27a=pS*qg4O-jl@BVqf1?SSH_6Nkxj=p(hcmJBufOAK`X$E+M2u>3q@{j*K2B@kwEP9k` z2#oP?XtI0%e7oD#CX0HGC*{1QbwabYN$#5mwTmakGlJg?&&-~>kD3L_d3(ywbm}pk zC7opQeK!$m(N8L23rxJjN}wTUud`z8K_K}uoxOm2Qpwb6+Bsc$qNG9Vut;zLi3|!e z+3rgbcZH=0Q_eF?u4;Bsvsy(KR5gwpY?+dY=QNue+_Z>tN$PobRg4g1u%xq6U0gPZ zF(&YKq0-u>wN@Ec{$(t+6FsslNO&{WS^{$L-f^{{uV+n3^lylL1`yH(GZe6|3W$KO zLiGSLiQ2;C@UJKusGb!RcBt}sbNOL)QZxY(oZab+Y;7Gm`G=8e98a@yP+*El#R==! zDEiFfm+no=JpsK0rInX0*xh`peTp{!yz4^Qf|C5#ko4+ZDo%6f8%AM)j`MZfrZO zfVIFs7s@!}VPb&xLot7uv|1Zaqr^YCz$*>-&%uJIBG-dsU1}M*U&7`)ChG}he2Oe@tC$L(m~K%PR%*hz(F-W znue5!^N43=U5LP;dn}ih{jGg~gKrlZRUuGg_eq~IGDL^hz!*X7+lxM&D{PotMgotK zFeA;HbUx3&6jU{cv;8sCfv+Xp*upbJlp3~S&Kimu;+W#*sp~nS+zzHrE7vY(&!+~G z^>&j31MQtUNgsEIh{4oSLUc9AzxmE)E9XVw_1C11m<}s&a8!3RlZ>sM2?d#tX667n z(uWTsrz@Pb`;}v7ST5HvvYu#PAf-AgbuvSN1+l4zhJI6biqzDM&>mNm3auPt0Ncm06>Xp*=uo=}iGG zOAZifEs`)&JH=|1tPWlK$LZsDG2ep-%sjPbXh%pvzJ4^E^{ry-WX;sK%ETPwQ?S%x zUddOOCq?_s@-36jYu*jjeh}x7N>h0Wd}>e++L(w85E${jU&}$jkrb){R|92?;hgA<-*BBKbz+vnJbnl^rbNLzdb9v;f|ue2gZ>x(4xKz` z>G2ztIKV@MdYnZtHTYJm!chAAZi_O5v28&~okiYtWndn2H-|W>OYHzGewN1vw1tR+ zMf|e9>w}{}`FGd|9CF$BIz&vtg;jST2eAplV(Rm-d4?!4O%ildYmNEh=>2_gqD=16ynZiO1!nit=bVWA z__!9o<68Xg^znz#j#jV^U7V%JeY9ut+SvM#HBx$+u>~ZsnY=mDe_5*gsBJ_fT+6o5 zq7rg>j6>QxXSOl=5Wh#;XC?fz!!+nYgu+7(rhQ)W^BQ&$#sB7M(*CX7rmYY4+VP$9 z-4za0P{)z1tA%wLn`DbroF>AU@_d#}T>NFpK_p`UC@87K)Ik5tlx>}iu7*;}%5ynY zc562+7$`)bNc{G$CInsRiIbp8^6vV`>Xq(prwi zduH<5#67rFg?xE80YoTkeGXPDVz7Xbl`(iyH}A(cB%yvy$KoFc@bf--`|R}-8)v*E z2o6ggC)?=^ryD0fNlkLhe${JnQ;pNR1Tl6h~4mVT9mNVD-$4~Vpv+ilxu;=k)%H>Yy!)G1)JfZTHW@u!VSrllFU<1Hk4S+Avb~B9*XM; zz?2d>b^gGV2bKNO0u19>5EMk)7w(}E2FbSV)JnOC6KU{XCvOM8z#5gcu5 z!qo<8a*s>FzS#5&{*v3lxI@h`DJX#+7t8`+k}_UEwMk<}+b!0YO1LP;Vs9{A!X-KG zpGeTghHT^;g<+@q>k)?dJ6r+q~)7w=TIej3pnn5o~Jl#@cgNJ$pSis}{I4A56) zdpRdeghQ}x=90yGKcmCI}|2iNTrE?Z8OI(O>@LP#Q;R9{c+W~|_+tnYrE{J83A zb^fd7Xhu7}%J(d5>K(F0$&g(9Nsgqu05kxDavIyelR-mY^^u2Tx!>lDig}ruy|D6- zI3^v~kPraGJ{du>Wnf&;Vp}|bZ;s1}DM&fn&wG3%k+Cok0R3IJ3-=ECDF zE6)BVhWaojSFMVmP-_NBWxN+(=L|Wl7Y2UxVXiix&#G@GAWRwS(g#Us1MTYx+6L=< z08>D$za+oNZIKM|2FcYIe?xG;r29Hsw2})F7MKJNr5Tug!qzMj8>Jqn6*wGPXY2&{ zU(PAK{Jf+Tb1Hpcd7@ix@VoDN==MQ=Im2LL+3OV$PgfavtmVv$|k2 z1g+3pj;Kd!)sCO+^D}rvCHtGsz)hM#>_}Ng0-J9okKIdlndy0gwZ19 zZIaBb+U%%Lgd}e+&4M}KK*)UeP|%EmJlE?7y9JO~ta=P2bXgLxg3XyC{jH(0j|Sog zb&r~*K0#5#BbnXJ^Loq#aHq@F34s_}wYg(#KXDJux-?$B7ngnQ>~(DbM%gjFgrN4& z2x|wVzlYA+2J^lW!mSI(hQ| zou@x(ul)6QSq0~NYA5^phj7eA{P2 zdNF0PWr6?*UE|Of?sjNbW$12{+#5=``2u3sd;_}vopz$m;A!J~mV4q1HJDELW)Vj zB*Z9_bsz2z`YS2XhxCj}{*a?K5v9B=Q->NC&}onAwqLz{_5WbjYjwZPg`l8iCazZhp`&#+KU%EfJ`XF?AxWUOHR z%ykDr7=R^}zqjECMhTd5x_Bp;f7?ZJgW0EyFz>^yBGr|>?_I(it^OV6t@0tSJl#lp zxYFU5-sb3ii-W16ffFA=r)1)CxSp0k{D@+uk==1++iC#L#}@ONbsAU@L$=Y)*wQdx z&^RSoSILaBsK0*uqn3EDnJ)N}FiVzaZNp1; zaPw^IOq|2EpD8tjT5T}!%QB(&fgf*l&FS5)5V_@RIEzxzTm6W-(kg}yvFzHZ9}A%g zJ=|$@b^Nv%%Yyg-ACY%F#b(E>Y2Y0I(U+Ah1=;$uSO&-jaY03*}lw^)`X(cJF08c z4V{-X7u-Zpp>5}QkqdHYOXm2B!e|EZv=|czJ*SW zT3b|Qy9HP&050(i_4Hw|#(L5W4B{pvE1-_DoH-3eFs+)Fl3r9vMHuWN{gz9?oF1uZ z!ea-H!Sphrwt;qBoByG^k#MjDdfw0K#p8k|^8^B-ool&9R;51X?F6v~&TC=OG}#W2 zz_bBla#_d#7~qElTNe99dRcOv2K0N!=Xz#m^L$n@;{z<>8cd^1p$F^AI|x-vgJ1Bt z^XFux?NXA9BLAiIJOdoC6O*B%N7B8Z;jLP%W9@n$Jy7DPSmUBoJ{Mn)&E&O%%9Q%> zTh)}@0y`T>HS9+pq=VJ8%3kD~C3lNmZ3kBlaC%nwZ7^)R@Za1<($3Xg+K>rqQwCp6 zdUR*tcb0^<8$~v&4bfL1234lk0y(np-Ni8HY3{LBv+n+u+Kjl6(8)P0$_NH9_^z&x zFoJZ!XE1EH@_2^U6%ZiKZm_IwcR`VdPYhcMx1v8W(HL-1(LO6jfT>da^4W#Y&+6x5 z%tM%KOH8B6P^zjmoO_yyL6Flj+osTovyi*$J>~@k8^2va;Iae~dSk@#D@k3F9LPql zWRCo+vdofEgm34!pTGVf3oL#0_Pu;1O+fG3-+GCG8OFSyZUJL|7{D(P)ykY?!yV=m z&V>l>1tdktIZU334`2XTpi{teBnu2`#H-?}>_IO`aVnw|!-eY)M;bsL?Pda#>^wPr zBH9gCLo*@2jL=fk89hJ+C;lKZ``8NH!$o;b2nM(O{})|)Izl3iDVd;5w9R44$G$zkdBbCf;!H|LgVBcmERJehkSV+&=y4K6abJ;1!;j z4t+Pz$qv#|-Z5whpw_I&GcQ)#V#m4>E<{xT?>maKl+%0cH0+GH> zFd~-NZo`R5RU=u`+@3=>OLFXqD!I9Az7~ojn}#;by-^f)GF%bfM^}^pQ6)5PFqp+M zB5Srv5WYL}lSNY)PJ$$HN|h8O1dU8Z8zzs$XkY{?A*I!dl0IZhfsJf?nN_MnJEbWLcY{YUgxcVjd*zD< zsCSzn85UpzHQEwH>tJxns;D{3;-!FCGK(=yn3v>&3wZi|Ny7B{G*d>h zPIT`Y&>cn&>n!CHzCaoXk2Z)kHR3z%_N*IS{3 zkL+NOEU`M-+}H?{d9;eO6_rMa&@C)(@Iy%q>CjQzP(D!n2mI;-GW5`NTH~|ygq!!0 zQ0z`r9g=X{=*X^XvWxd9yM{t;tojpWfvH5ake|vFRx6znuw#b`+k;BqW#N=;l{uCp zr%6wKyM?Ys{X({$86_vl_;;Vb{xZB868vN&|Nlqgm0r@(@9J?_s>Te*DKX;==FswS zURCl_{!r4u5cN(9S3T|jC@wN!lh|$c>!^qeObc-oX-pc)O!<2fS)hksl8EK$wyeJ;FExSgLpelLGFh_%+5S z{2kV+9o9nc?azPp_M7luc#|P7emPvW5i11e7SG%8~m)LNW-89T~~X9lgNW^fgrJ7GD+TYH6eZTm&AcvyTNJf3CnC zw!0NHe5k+-l4;gVk$R$nQwBiicATYwW4JjzkE!~=qKXSwN+`mWQ=VgtrPM_cFkOhGO39kSdAyRS zP*d%%)a}{ z>!)v@r(c8o_Js|s?%)UC-PKC<4CM!A&9^I}JiP{Bu_Yn`g(%5567*|Nq+sfT^VesE z^~vm++aUs-64>v2Y0rx8m{?L3fhJOtI8ewPVjt@60OO`^5fE z04j-*4e)rQuDkkLZ%_L1NFkA%Z2jj+RJO)2i6*ff5YbLTFzHaK78!HpvBQo8AZ_hK z(W7cOzf)Bdr5R3h7L0Igc!4=(`lf{xJ?(qK;2(YWcaEQQ>=53*$?tyr`g3{*84v%< z*B{Zt;}LwS2xZGTxWuH~}Dz@jUk3(gWC$khw zm$`&Bnb)Ymc9X~`73*~;9T7rf7|i!}`A4X1^{NrSk^@r*F1(uH4rg22VZT`<2at#S zD%bxRs6;5FT5N|d7oF)UIMZbCdj+g<1jAf0a|1A|7d2-qc)9KhHNO%sQj9m3L0o`- zgpQHz@~-|TBXm^kxl%r(d$zqN0n|fncFYSaT~<>J;yIhey4H9LSPrKu$gQI)V;c+P zIz8)*nKI=n(I%(Huz7v=f-UYv^0X|1@5MTaXAapUiI^-mE>Snr^KYW znnj;^suroJTJlq0-t$U@wdcSb@)CV|{G!`d)k@r8zQ_&$lF>x-RNy%itE6S>LR}7c zO~Xm!=5^`-oABx^mr|!mh+U+0K(hl8H>gGf!Q4*3u}}-T)xyJd-HH-A=<;0*@rY== zX_Cb(WI?YnaWo4DI6f&@2IGmH=v)snHC78}HX;O}rF(Ko=p}Lqy8Wa$@b z?qpq~+P~RlQtlLI=y)R~0Tf$rd0UQEN7kq3I0s-1SFF+FyaW$2mSQ^~Nzm13Z5j{*gFPlh4bkJ!sJAj9zBhEM3wZ>PSTJ^?+C)|8 z5s|!8%$n7>NX(p?2XZl^y_7K=kmu3+82GXSyeb0vCJSc}N(IC|doN0zmtD~oah@ifPC&+BFLgb&; z__xdbQ0p_IHX-Rn<+2KL0qseRc#c`|2>C@VeinvQ2wnmac`35|F=}Sk*Tu+VhC;Bt zypx*dYp}>Z%Xr_oy1T+%-9^zLC5^P?$x3n@CJ@JfMM)zW38NxAe+V^3Vpt-qT2KB4 zON9J6sLfMasb*C@H>tw%QwqMJGKP=UB-0c~?V+&rZB+39yZmFWo6_o}NE2;jXFu#6 z`4Cs_glyw2cc<%zE72Ksb~dXt@thV(psbG0>m#mG2cJyU=t%SE9wwTc9{iTgLYfNc zuQnpOJo6`6mC`aZnA^m3o)iy9m;ta2Rvcl5Y!Bq5AV9+0rORjY+H(edlV=%<83*x> zV=WJ@PL}N3U(H-y>j--yTQ)|JZN=D?Zf-y%w)SjIt|}#$Z_P@buOGkuGVn$E>X)y7 z#NtPPOJDgUeEWA=qDZB~_}Z#49>v^XROeZ*$BgS_jl@<-vG-~}=kM#9b@6JC4T+dK zkuh~x2%={b)n0m<1B3d;E+vGN(szH78%p7S3H1Y?ssbB2JMPdhO4o8y;LWP!dEeD$ ztwZ410^wm$LS%LV(e?WZV_m`Im?8tP@ zUIM2z&k%By<}rm-m{Apyr%-LNQh4MRWG|(~h-1ORPdhe}8o@}RUulI2Bz>19k~t`T znHrEtOx9T{y6Tie(5_{nojKR+)6CN(MZOtu!%&KY8}*8G-Zse8{j>rF$OmSKH3k@0 zh3GRvcg1jlaDN@8k(q82flX2-N-#q2Ogk2Eu&Clpr&P6DF)%jx3+~Y;1qAUCp*qwx zZ>2LOYJ?6_n!Wl9rTaNOCmdCJ*Qrw2+Bol9(;Ud9_I`sphkXY)M!%%i2g>wOz2gvK^g zC^1bjs|EHxs$X^fuu}i1- zEZ2mlt_$5RckFXocC`5Ri%)#V;O(NSV@bSnz|-2n+2SzIN;L28wE)G?_T**?8@Q4R z0J9t&AWb1VAPEv@Q(~EwjXnCs={p7eEzy>mD9?AduKqon1w;6NU(M912a-toACoHR zsw|hTt0#y3!IV@kW5yKs1z}@sU)2=|Dg)a{dAw8# z7rDodNWIRj(#F>3BLo2Uio&sc`tBdzeuQah8T~o$##BpZTJa-Ybv2Om*|zkXH727_ z%a8PT&kHC}%uMQcAXxMYr9YcG92qYb`)N)}7U_wPkD$P$boWrEY{aXgX|+2C>h47! zf^@5{$+*aYV}Smv{|I*)0Ntx>DBBzP;0KwUY%A16jY`@DoKx*TUwiP3DXQH{^$M%$ zi9I1jnB8~5e|*5SDl0jb?&_Ntps2Zi%yGTUV(B-cx&668a7=m)l5bwU%Dp9b=4U+)&qT8twR@N!ooSdlsBfNcl$`#?&NM4`4 ze*X6Bcb~p}_3ht#C4$8aJqsj1giIc{7BwV!9jd;d8h| zf*MM|q$2xSPJZmVoJhHL-yOqF$rE>?bF?`_m>azo~cLI z+K{!ukX)yDBg$C`SrQx=(#r*gQI&G&)tYX>^wyi6ndzclZ+Go|Ep-wR-@o2;%S`V&qO z$Hr~AY7*C^B!Ku)qSC@_!(%e(wemAj2&D>-N_RpK-A|9el87c3Z5C`eCqLJeZ~5=u zer5&vH{rWq`0o4sU!9f;wxyK(X{%s09jFd>5P)=%eLxT@?Y>3KuXrqZCCa5(!kh)W~bpUtP+VE&Q zqZ`a6EKZ)lLnudxy?}PgEkZU)DHMxOsW8=aMdePRa8%^4dI*zQGD9$Sv$>K_G?olB zcq-6eZK3cV-jiImp8}->$M5LF{QA4Ur@#H9w;#Rz2bgStgMIe)qt{>Qmp+k> zb(&_?jIJ>T_gE>{^I>mb9KR$yz!smK;!12L9G~DqRL~80k^g||l{3VvHQ-aoJ&xG2 z^}P?Fa3&hAM?h1e zvF!TF&$yI2Q>8AwxVMAmNIT8l(ucKl$v9O=l|b#z26FngHe|OE^p9uzsI2y*ydIY> zm#UvO6Y_Ywqeu*{i7GK@w=@C2JUh{U75?JCrrQ(l3L4{D#iBy@bkSwh5_>Ku~>EZrl{yA5S;WyJ6%Owl->Ijl_JPIXh}}4j;ha)QR8@;0yceQE)% z5NH+fE$hp7pTGY0?L*)nU%v?NzIgrU?U$@5?);A*hw{=O=l0BI2pltent*y)rYegA zNC^L6FM9Tgka2_;LasnUN!(w{$?FVeqV0cZlmxd1)$2I1;^5S=IP(Wo2Qy!>?+xO% z_PmxecHUTMyybpFhX7S?ryJ45${DHRPHLvttEC)Z2koKgP`s(6Mlu83oXgNhwBj}} zhY!74V=`tU66%)E@M+R6%~+X2TdFMVhVHWs#P@`ZsXA#K`cr9qhu!Q3TX#7N9hvc4 zLdRRA!4}J?M|4<$comqPSIY$>)Iie97T$k$!YYjXBOTQGlNq+$;nIAH7ZNa0^Efcz zmV@O008x;tfb|;I=XG*ryj_rFNxX|2w&N%v;pia|&Hcz56?Bt(sqzFI!$j%aEVxN0 zLx`6=+6OpdJ@{yqBZROkfFwO&8(3+(jGI=Plr1lHwgL#>g54$L&x!1r0+}b;6)n)u zg60!(7z%%;6z>lBwH=PN+wv{F(?WYgf(UchPvjn>9N8XJL^fHx&ZlBwHSrp_f9f+}*aHpIIfiNzK3XL7(mj9HHfI49DvB zGV;)%Rz2C%p(~_Chz`Rn-Nf-Eg#*LK*Iz1};Y6yd9XF(Dl=FIRj+R6)bd@f77w z=yRFC8H|j5sEJ92h9<(I^uf;zd$T2`G6TRM3?S7OL;`*cn}&~JA@nZ*RQ-$jnL=t^ zu2M!50_PoVj;5wu}Y$d*^tQqf_E9J91r zuZ`-p+g=)=>MZ$t(eZ?lfBAvMEl?Ap(`131j3=e%2ApAgoN=qNKQfqiFWg@9Ak}&Q zpxS3UiU6swt*TLs5eK;-X&PGzD^+8rJit-TutiC{P@m6^A!?H;@e2#-3)r>@)$7Un zSS=sDctzPp75}AZ!ywmP8b___TB>QdNcC6A;RJqLRaZ>wqFBNT&C;zQ7 zmQu(VC3`06@=jVY0`(zb5CP_(_rfxrBx@P^^!V`l&@GTI-=X;U+E_eCMnZ?h0T4wX!dUUjEq=^oC)onw`+stlIJ zfOX)MhzKv8+z;2gd?ewC6Hxdr6{}@E$&669 zV|kBtg&{8dsb8j6)lIF&g{&R7KI??Sqjz3MwOiI0vXndQ9LZmeeT_1qjgF-G&L4Y2GdcIYZq7UMf?1J5tBNefeYqEbY-1}-RC=Np*l5DypvN#V_9gkgLUTVytJdenKL-$E3 ze?HDpQ;x_j!@Hzoo(oU{-nSve$T1XhXqinU8=1cD#x2AN5`0xY3^o7Tc!yjua$iO* zuM6l%8!RJP$VjnbtHXAY|5z1_u#u&>2n=!7%m#517o;yMKghFc&X%@bUlh4wRS(>4 zEoRFB2lf{$v6Xi@t2683l6_l3)%HY)_LDk>|IkD#K&@Y4LQS~)4Vt^0E922I2Mz{4=@;~qaCKXi28MlC0N$N>_%9T0paSNEJrLedMK2%q1wJoo~<-t;yRC>k& zFS-Rd!|38r3tAPPADkFN1?<-uPvoWQ1FM>1b3;Nz78l_l^sixH$g!@e= za0KboKsMu~gT^S?CtgtZMDIkVZ%Wv|rEWcpz7Snti`p$eiCb<*OfuZT zRknmOh}Wt%^OUur;MO!ikqx}DeSv1LM9jsJ6h7aCX_TX@(V=IhR%NqA3kt zO{7iC&QTua8PiiR0kS6tQ0uB(8DV(Vt?MlywJtx@g9|RT=8mOCMv$&P8>c-EDp=xO zl*eitq64Byu_h|u20QbTH@X|Im?#o<3p6SfM%pI0zZjT&H{+94e4r$El}uewb);9@ zC_i=bO7~q5Kuk`FAAsUNB$nXY@w-7hNNzPs-ErhRaRO6(oQ%^}Ky|)w{(`M*e`R*J z=&621o3Dek&S&(pHUX~U;zWR*X=GDdQ#xKk`QXmyY(2ozvwM1kVJ1v02BN@JJh_~X z)!%b31b8(#T!|ZI4+){I7*_U<2ng*VC&n+*a=ROL0gX?Ob*826JpHWiV&4Y5sv!R>9}4r{VEL zDylW>&d`ZrU&u=ZCZX1norO-1USV zmsa`|Plp#QcUmjF&eALCZ+xFW14%Zs%m+pEqLd-W(Il#Qu%Fnzszg9eFl)Dn??$9} zpGbCt6em_kTo?7Rrk21}H5hpsF<{x2tWAkJrVck+mjXC|QoyfW=Z#Rsr&(!hcknDS3w|BVy2-`nrs*zdo4U&Hi=uiqR>idJg$nHl{;7x<%T zuq>8JcQ>vE3=Yz;&#u+|Bqp})5>{xKl$rqmKO2J0*12;Hw6%ljSLJx=&CwhSpjDN_ zFJKELkMGq<PJN!p!(R)e)0??#$?K@_` zMTrfMl%ln+{h|Ksa|1c{_15Y5d%N2Z>j*3*+X(e7s>cnzfzIU0X%2O*j15ln&z3a$ zLN(Ux>a5uOIYtz$E=+U$eU#qaFJ6O6baFGQrU23v`~px!%LvO9LVKa|2RvqVs#@wN z3yqDAk;q7%h=dZe*OxN$1|kc*iVA~1tW*Y|OwLf=4qW#p!v4r?b5Ve@gc$>q^axROriVnxhpq!D%Y#ao zM2c!Q`Z@d!snZTHZbNy@6*!0r5K|~}DWU5Kc}8>^5y8U;rH=PHWfivc#Mw0CD@MVu z(yf`6URga0;OdyV$fK(M57-WMcW(-oq&CbTzK#dl(28VI?1%>zAxnG&pQfzEeuvf< zyu$XxZ02OR$s@H7n3?B^a{DuQ&>h*y6MpL}pTV|OW_ zh$|S)*z&26QibAew{TqKleR7?CfR$N8f=TO!y_IH8zZN-_q`K}F*C7scJb`GWRO!_ zyGn9CFi7eUX=i7wh*FwiJpJ*UIz2bg&OlWufM>r5JrDM9@Ufz?^;J#KA9#O zjZ5jx6^U|)e89Sna+Y2Q7Labtjr)>yj%)tPkykSW`V5RY&pYGX^F+NgnAD-g2UMo*aH8&eWj2m(T>OMQe(stWaahh&0 zfxQtSf(8GRgk`N|&7dXptAx`%xH2%rI-r%5gNlmtRC$Wh@TCrx;MyWTY^B$yy>bQN==H72cR71vAe``s#BIS(}|jTH(E zYt2DbuxJQKfGd5s5@)22F&VZ7VZ69Y(i_Q8z821d(Q|)MOcOHv6BA`XhBH2PQ2&L7z!T{c#uwUj1iE~{05y@_pVVpTc7eW( zJDa50Un50%xufj!HQW^w9SW3V`4Cn_P|VoIOO)V+nuR$c2ABN6NLdM)L;~?rf%uLU zJ`L0Z4O}bG#uA=jR$LHgIA9vF*PEdOGnA)Byi`pfCpg|&mZ6b0851ll_jFQT3R_xW zV{N-@Jh^gK0VQM7mVQB6P$D2C zVrqxi6Im{hvmYVwESGg`$qXCz9#Rlqw++*R#}bjXViz9epYRR=7El-=aq6$#FnOF2 zMk03l`b7y}n>!wHma*QPkfr`x%8B608n`YSFW*B6-06el7HFyVgohT;hJ-MmRJCN9 zeulY(R3yKB`$X%Kx8I_N{yMNHh^`oZj8^F$u~(5;ee*0&Ke?ulNrh4C%LdvgHA!fw z0Yk;oy$N*tNwvYXAq3K;Cv{!;@C_VAkanGI+3-poWw*4B-cpLWMeW#N5yI{?F<eR1Ye9RwrTeJ}iCX8x1j6h{O7w~G4TdkLO|@#8QLV0cGIa3* z66|~g&H(@+AMCX^{zC;;J<4L+b?cVWziMB^+copZEc@W~6}AR$lms+gW1n@_k(*Cauz6I8 zyJDvM+?EvEh+-=ah2O!S>N{<{vado7@pY2hn~rmZ=y^&4f)!`oU|8*20lZ@~rgUN@ zb1`)IKF{e<>C}Rp<3Fqv;|aWVs=R*feTrU{!>sx3mR@t|B z2aeoVH0ZRU&OobOFj`3#0{f1IwOk93Lm^@%g*gFH5|iX}A|qcXiX9;S$&o74f&L)4 z_eZblyVBSDg;q;gdoq%twIsiJI!XOVzG>AX)}1}1XHZa2`n(O$OYNnhHfmDdJfv(J zI`}}IRbLZOO&;bsyH!?YsPfRTDypheon32Jv^tX8adVhLvCF3e{oeYl0@Jgg!v?!i z6$HDdd{*Uwvy4{E|)vIv<0N#SPPF{C?(bUjc5iP6ZK&WpZ@RFGP=M$0gro zx`KdFP5a$3DLnuy@_V<84XCa5L`(1~9-I&WRA&#if@`;=8T|QqDDc&5QWm~rfS~4z z(weMVLC#9Il_JgkO19lsL0eQ1@$SNHQdT$no-5vrn8A+&9vdB!j;zc>7`2kHL52|MQ7kT#_WZPfmc@lg@sAs53`yYFW6@e|yCbz}~^+uUDY6UcVq`}4v{*`i(YAn!3 zhyv?*iFWgNu@nNk`tiW@Wz;cEy2?dP3-{dbg)6b?K5UQ@X(B9OomF@cXm!NrH7e~Y z6P#2np3=&-QhZg&eFwhFvh6UWjV||R&}*?rRbvSn-r1XxCIbI#i4ql1;r=>z%=uY| zfwY+Y%OT@-?HqxOdXig4xP4CBX{N6>ft-!pl+0r>I5>T&cJmHQLuhx7Q6w}sqQ#`S% z>kN%hPeMv*!VuX)uX;kel5Hq#);MYS!v?!gKYqI1I#-ln&INZn!CIoCvD)Nt#({zZ zgJd$f0MY?qN+l=qs^(znc!t${=iFsbkvPC;5;_U|oPG;kYqP{rPI2GK-%mxge#Vzv z@?pJ}hT}Xa(j~6y1F~^)ch4$XSog+iYQ}CoTaXwk2jY~S+_nCeQM@Z^#?(1(-JmO< ziZCOXE7*v##;roliZ!;?S7_|m+sMJ2v0<~+KZc#HW4b>z`~_@x+)9N)ae!oURAI=~ zjg>BCPr9wR43OSshp}4rQK{JUsyD4aY4xu~Wih?zCE356^*es``kTNP{5}2YzrFqz z4pR3#@K)6}G-7y!eWHjd8_;JkLxwp+@#5S3T{nC-li07$3Q+OR)x~Jh!}*#lhQ~6w zxtJsirz=SvdyQEU5>qH=_|NZ&PC_6X90hEEh}Flwvc>&4aWAlJA=750T>2AszW~8K zNqbmF_0!~0S*gZ|9)4pMk1KJ_^2#NTlt4@xMZVllQ; z-qNl&b&#^GBqc`U4wv&@hHMA?0RT|x%1iejt8^OVu*w0?mp|(Yq1&ei?F|$(5R?iR ze!T_iTu3wC=(BCO;3o`cIGK`v;@;`@%I?R2l|*)q85})=5xxt2Hi`$1tBw`H9+8jb zgBGbDvRz!GG3Dd~R9^$-(niQ~q}O4#;tU;i$JjOjAhbzKOw!Ws!jws~`q4SO2Xz)J zA9!jxB5JfX2&7ejo<2}s|1P|Kb~Z~vu~(S-DApNn;Rt~Mdn^E4qthSOPG}P=H1gDV z9V@x$6upbpp%$hve(n^_P;gYUhaT?P@)=`P-B;Mly1x(F7YMxizN^R1kE+Wz{d7u3 z2h&~4fxu#~kxt^7+ zuMz|&@ct=7ubOmpc`L3PG_U|rWp-0zvzpmOdAaCA{XFxff(BIo=et; zRKodCSv1n$0S;|@wr<@~d~=6_^23<~l7l6PZG-c<+47C{*L7$pJ2=87k^ z;kkqIrCW0nw8-~BN3)^m-3`8+NS9I{4CoBnu^a5h(v{Y0>3#vjWJAhMH4fKy=-3HF@@SJKHoi@q9Z!s4C7sO18)zcY z5*1wo6ZC;;<&1)eN z;Yf>Fef?18tf`S=)I(3HwpUpfatFag-H96q$YkUhg2^43!CLab=s<_r@?7nG+GwD{ zxoIgUwL|elKl~D~t}J+Z?wI3Ykq|>fKE6PF`_vK0?unw9IvIA?YQXkUdt^25!cf2^NEB@H z%QX-RpWfs1!CdXoQ*7PF0vi=Kxvi&#hQ0q=_}@J4KYFalhK(z)(pbFzr+ zyAO7o2X4hn%+Xj9jM}=QT>xG4#g5m6m6KAA(t*-Z;TkzK!9abWJ&10o0ba^05zMJ< zsFehjvA9H&w%d&hM}O&RDXsd{L{C>#S+!3)oaa!hTRh#0>K64y@g&JfA`BTDlKUnd z+Loms6(~d=Y1+lv7TBUg0h$J{Dgc{v?b{OwVokdi1C+h|B=xuHp+;@jPgTnfYdY4c z!Zx4V8z_TI#(+3bgh!6mnG+-|AiiQ;viQjMJR|hBT4@a$!mRB!t4l!giah!1kS99C z-h6O~enTS?V97jl@7KUwKn=y>!`g4K)+u+8;Z$f_Dhp$P@UJT3j$4QYT+(7{x|64R5B4BdbD-SCj-~}jAL1QRFlK*eDK9QR z2>3N6-&(z0H#{0;7=5mlrhFI|-( zkp56k%nK0AmW|}n29;&vd)N|Fu6j8Uh$IVk3$=Ql4ec^c92yQuHqFFNnTY_8i*Zo%Z!AGRKIThAukm8ZR1D(d0ht2#dz>kTB{=m z=z*Do1*xel19hOw*!9s}xL@EqtiEq{yC7_xJ}Cx=h93UHgVftEDK7r=*KaOLh(5Rm z-Q*#!7hj6D(p61r3iRNxcflM~^2I{-v?5jwJyT*$W#!r7MzIo*-ZK`)b#1^zp#6D| zp@|CirIWU(76v5Y<(f=Oj$|wg3vNdnoX~&DT;!w$7$5CkCW6Cb%0Oi zGHO#k^E;BeolPit-!b#P5+f+zW-Zrwg1{gvtia{9j=saDH#dC&iI;`a7G3}bT(PQD za6lCxI#)3sWPVnkMV(>8l?YAtekgo@BTvaKVmEQeRofkzvFOGwy~c#67&MUkpc*G} z+&PYf3bCsSRXaqs+=RsUEl^rCl*?B1WrwctF5!PJ4(mROiL+P?uPIW5mdEJvg&bS; zbJKT!8s7c=>u1<$pmshlAr?U1@Oq?7bB7 zmRp|_6Qt*)Kq{xr0p1w!5ncn;vy*Vj+Dg#{76514axF_+AHj+hunm>mk>jzuz>z$e zHb~M6#s^8H>`eDbHH*5-sB>{dIv1msZwa`q3r)G)@lza?#sWYG0dGkq!Kx@&W?Lby zBjhAa9Ucr!@DO$+)3?u=Tz(P2&r~l~ zbKJc=Vsx>WyVTc&OApz017_^hb11G3P65T@RF%v-{E{BwMao33N@vwoqqjV&W`cRa zyB!LNcfi=#)2OakCvpXP8o5Wv_6?qS^9-uwhC*IwCKIyTd`t$#Kun70z6eiRJJ~l^ zyHFS8-4#OPvjXoFR+YX0f|(`twbBYo25Yd| zEt72_W$9)10|X!1VP~;MYAd>*hEKz%;ZM@BmB7FQ-1u#RPYJ=9gE{ZB>~v$ z71FO`bE02PHiE|ZSg{OTBf~14+MCthtLixGY|Q7ne4j@r9D#NL7vr?EurJDO=Y0ml zqH|nh?QDL#wZCR*kwufk+ZXul^3rjQ1`-+o9g<3>9VQA09in$zb}f%5w@gR zM-ULDYnP2s9v$;F%2Ogy#vP+Odo9iDzUqdoU}e*&qX{)Vu`DE%uMK_rkyV+_KI=81 zRjhrFyOLJ;U(}LkPzZT!sgY~#&om`0v=gh~Vkgge@>iH>iCOh~8E8oc<;ElRwip^nD-Vp$_h6a>91+<_b+ds1bOkR%e#LJRzvRLh3lGqo|TNroEbdk0%Q#IF%iE3 zU_i~7lKVjr1AmcXjgnQ;1(crw*Zb7Or_KKg4vmD-3MQQPCsLHngfq@6^G^48fD~;_k$^i!Yb9+QP)zS9B?0q^E*+Dq+T@~{TPB>!v4&l3%l6PuL z4(-Big~Qaqmf}fCnU#kw`Dqr_Lv4H}xvJMo)wv0CH^M>lJk))_Qb#1> zurVdWWV|if~JR@vZ>sBN2Y!Xz$`Hl3qETud>T%xx8SMJd$x+ z;)qla?Cq|Bf{#ewY%3sFs?F5rH60X_FEXc8#OTt95n{1 z^%0I_aRod9;1_mhrz@FjatIWB9g*!NEF3xWM@+rJ26A~RxjUpODE`e})+q5HDKvJN zjq+U6@DyKR6BZJbH^c8cC^vWNq)bK$MmTO2&?Y7+{eh7U*`8i?0jQj-lk`O$<)nRp zLt9arGOc1+xGe{K9kAyv98or+6HJu?_qkAe?m6fIEq|(MVtc%F;OcU@yFpZKi|FuF z!ulKHS0IelTy*Koc2J&lsvJtRf8NgAy|2v@5a&C8^_St>zfJExeET|l`}e31yF{Kx2XtQ>P1Q~^~z$z_{(98kh2K7wn6N<& z1B*^}$&y=fcgksTXVnkFltiYkZUsHNXyV-amTQzB*NUJgq#EubcBF=f9LO<3wP#Tx zID(?$m5A#LtX6vL=MVX|s#gEz5hfmY)5aB$rl#@Eny= z(CWs;I_Xw@+?#1iY_Os~ToVH{=5;=45}D~hy%RWtA*3x4ppAV7dZ8XkK96Vq$JVmQZJ zL0&DMB-JU#yUXi9Y|OXI2O!Fj$N{eis=`k<9s#XvI-c8!W~v1oOGtC?r)qbJRT+o140go9kOZwfbi z+#9SDx5bSkV_kO&Hh=)UjZA8^(Ylh_I9#my;(;BMpV;N1%rmuHE_{(F*KEiDwk_;X zy|g$56d^2?7bv43*q+?M4I{Kwz}{7oS|EU9Z7TpKPm}!W-Bcmvg+%BX6hiB`6oBqv zpSgYxo9n1-P!J=SVP@EbCTvM0Vc5wl0Q5{J1Cfi_#8#Gk$Wh`=9iItgilZVm!!#V& z&#D?2C^Uo1q7XNT0q-Uq5IXv>FZWn;L%yzsJjxL~fE`{dlg;@T7T$^_Lyh4a+;b25 z89Y0a<1-i>mW=j(L#H`S^aTQqF2+Ch_(cB2+78qC7(g$)nNnh zUtCx_C~(#;Ch8I{laS0^uJbACJOJ0tXX{tp1Ys1Pp-A`(#oz@VAi37^!%qf~SI3Jx zC>Ba&h8LI8TW*|`p*F4?tT95(kPm$U-ZP}#t$+Z2Vv;rj|F#n=k-_;~BWpY2YR9l3 zednE}6;^kM(Gqh|o7t&efp2PQc!ELr^|I_;Juwa<}Ju3j#U+M-%$FLVP!(7z&o@$orc#s0w2A&S&hI3=Pn zNv+UYlnVyTo!m}rAqbfrVSIP*XatPmjL&AI?Snq3&s|lr$9GvOhH-Pv5lODkUBxLZ zJTN_G8*x6d<;$={q`ryHc^&(;PdU#E6*;d-o90fMv# zy+-3jt<75jh99s4_V7QEf22O`S4clPFQP5(rx4y2S|kvwgG$;8Hri@QWGO1&OuZ-1 zS;s6-BH0i!Q+exENy!bG*BL2XO8aDC3TvxyJFP3Sl-xJryI-)n3pVEVLj7fS{4X65 zQ*2kId&ZcQfYVC}fC+K1-X%u>-)KCVPJzL5)(0=frx@>N65ou0`bumsl;TG?^r1H8 zHt7Te9i&OhESdq-o!WgFU4sRPXwzDOv1Vsw?-N8KEnuA_Wx72g3Dwz~FcJ-qIeZ-6Y6n1ZW zkc)Eb{NKY5{)fIeoOOQRVOnkUqC3p3}G z9AYthwm(`)++L-rNoqXdDQ1^cm9O`-1V+Z)m3ij(S(^O-1Oxl3YjCf0Vx=Kb=!8Mc z9trSJg1CCqp~5GyO};odI<-cVV)bdSMxm_gDpVBuIV04Wxe6-WC8JclV6!J(=o?ngxFuLeW*yxvtkwBk9znsypcuc8^*t6P>Z#+GZ?=^#8sgiAXCYbRBm z>y*efY&ukcL@HpKYA+#cR_o}NeJ|Lf)WN_zG6P2v6VV4o#2t#iPY&BaM!NGS!6$8l z2Oy~6O3+(C!gT20(@Dn;7|lnwx%76cgB7RUUDbX{N^)4C zerK0l(&3^`OmZc7A&Oe!E5ECKQwwOHCHY&b@BA|T*}tk49rQrH{oBiP$hWMrUVpn| z8|iB)s2<;4&0_{khG7lVTq{;5l#{h_f~Dt}vf{vi+}tSMx_eO#)8gLg;8W`n*CMt7 zoR)hOs*&!*hAK}^6>SfRwi1HOaH3V1_rR`V-GS}&(HJb4sQuP?X2p!G?i!x3Bmwv6 z+)J$lAl>3l8C+!Ld*AzB`2Js~%lHX^)IUZl{w%znQ|?QQNumC7bSTN>8en79PQ7oH(UuoI8iTJjs23uJ+6P( zVAf}8T`fk_D~yyqWB8mGc?YIr`)Um{lodIE*%zl@o|zF%2bNELk!ProoZ8t*ggAjq zsz7n=Q5+}j0gX5Vql_|?%;s4}=ULTje33ORjRb;sc`0k0* z=udF3E|2!0OGa{73~W0NH!o-%j)kXuF*8_@4;fjCRvr`EbImFS#k_}+$;q1yo`6>C zJ^9=PdSC6OYY2Wz>$V*0*Yxx;j*I@ z5@@dstaQnX?6W65rXxjk^$&Of3G`CJw^Vd5^q&|v9}eeD$sq-UtpHj8$Dri_mGrg9 zW@RIgR}xm5BAd#rVEt-!3VcL&%A=C}(hm!CzjF{^ln5ipb?W_=%~9bky2Zt$k9m|N z!chegR_0PjK_d)Z>3rN1-UEFM18>w2MC^RZr!=mDdg;)GiUeum)Dxl$T;uFx2*)*t zzLp~Zf{g0taDp`IOu;Jx0NEC9ysFR~@=Lj|5L!mka6WCZJxi2^L|x^#%g_BYs6eYva{$hee`1_AUfu;jlD11jtZviBMe*PA z+;ONc_kK#Qb9rrNc#3vX$PPNYBCF35x77nZ+cN}88r?h*y&NjcxB1u(ac#hAh(e@p z2i5{p)02U&w(Br?>PDq>RVo_bz;$`%PSBM~#p}sNKvK2GPg+AGQ@kS@DSCCStn3?4~EXKYYWJJF!mRSUUT z8)v{kR09aYh|p20rA@Z*rw$R50x5Rwq!z9a17m43Xemtiqn>~p;YvU*vP6l-gqLBH za?I*lg!14jWte@IiYS^A-D-MO2j8HA7b1yzW$!4m$J|Y)?G4 zD|MbnXP#j<^=`OUpYr8p_PF?(UIcT)zXt9W_urU z(~+68yI}8VH(fO|QqJTk>&b!BQfF~Y36Y4x{$|ubIcP07+Yl%59J28aLYTknA;-JA z@=32Xylq#b%jOa&!GK)hVN{x-^smZu&Q_{03SnPGN^Tik=nZ?|p?g-D`Jy-|zo;AuDM)9PVsRe21BgKY;IdqoiDaj% zLepwKU%x=%`QguIn0S<7L8c^YH@08O%g1kE9Zx}~$?Ruv8rCKcIqAjYkE z^bIa$lFh8M0b!+To;00V7iW4Zz$I^X1u_{zDHu4 z+9TMz4kFrC^eweN!Ue2eiK|EHDM8bqzi(d?3H-_1Z(lzS^4lL?zkmnu7Z~z?YEOD+ zlA|_#9!3no!@&Yh9f_K( z5%X8!2kG*l2K(8ojV0y9#7}r5M<@GDz?<=pwQ1;H(z_1rjPVpH}-MU&1M3lJhj<&ZBPfjA>yj!BpiUq=l71ViX4KE49MXAw$tt}SimJ1t&i!~FMRb3J_I+dp%q`|61 zVRVMii5*M8*fedFoWTd|4v_m0NI1Lg3&^Q%6dkNo>}4HO4E?h|3x6j6OIP(@-abR1 z`10~HIo9v_IS^c~;@=kD;k%tKfPBF6GRqOSv55RNBZA${Phi;WD?_C&aJ*Kn0&h4_ z#TNV0tymG!8W27l7aU;Xwy)CgswJWYjcb@~3B6J}7LDj;C@MIfogEeH?7gI`jV|y+e*FrLSpf2 za$|q@d3gPbLoEHuy@PN(Joj-EymVRa5@2TH9Ws;MA(6!?JEme%FF#1{v`nHz*Y4G{-A76j|?xWYQ z!)wCjKcb7TV)sA=MQlrNmT_AA&kk=vpdd^y+GDBQbFC;+PS!6Sdx2wPYYN3ns%RGJ2KLWmKsy+h|;2 zuZxd$Ie#i}xI!3>X1h z7*-+=tbYp^opxFp<|wc%D6r8`qmCMIHfJ7g>J(y>Kwo=nF+Mw@P_D?7jJy}zYH*UIO6ajy!B1NZoN;$fbZvHk%>eI_geHIO zFiy%c86+yIM4EL92UPxmnUr!85d6l)qxK${XB}Hba~J4U`$jQAd0$$|bH)q=Nz6&r zHS9j{xll_Li*zqUE*5bD0M;4|n8sf(fBBc;FXeyu%1aBbj8XXS-O{8k+z1_A+VIK| z1F<k;_7M=FTltqILf`kGzCJXD%eiOS?bH&UqVt=RF)a%ViBToiZ_2?s&a#j zVZyDr4h9`aMcBtft!- zbY>ip0&j5`ff*b!j4MePja?R;Q37_IwHBpV#mI5=Ma9zNJX`iI_f735JC`C$2H{D4 z*Yf9#Kd0=+U;S0Er{&$pz|?+zc~Kxrnr*6VnyM1j1(YSylt0~b1wFB%fgb~JmIBIL z_X-j^+G=GGEs^t}*3D|AVIKx=w%RkDYXIHHrBt2XOGcu)L=}3Mtql#xZR$k}Wol>x z_Yo>H8-dWh`VK{ZFyvwHW=?Q!F=-)n6K80TRG#*i?i#F&0xRmEwvJ@ri2zJF>bO#k z6tO-|lZ0NS+ZrRe*tIUNs2c)kcu}2jZc;KD3Pf4Xw&4e)k&ekbQkGN}edG#ip5=OZ z-HE4kppP1$$?4$jriIZm^g_u8_n+yjBcjK>Jtiy z!P8l$ACE`PstC5tstR9o`vfW)ASvyk8d>JlikZPskhv)3C@C?m^txEk8M{ov7wRUf zllu(jZ(=xBUTc7UqEA2Il9Y*z*AA94-6%2ps+Q=dUNSx_4Blng8$RZBn9ZUU&fMq@ zD?IW15~eEZj;_E`JiS(HC*;Xmx>Yp8+G)#M%nZNwBf~HVK_O#{|19CuxZ^!6z~sY{-~-Oko%#HMM~pBQOb;nCP^zjo;@#=C zeDnHQNb)mB5k5!S#TC3`KvlMg7+Sl3g`150!wBRB602;k&-MPDG z5V5Cth=H<2)fh)zA4`Spb4@jMS|+!68tJ`T9bwtA;lBp-!Q4PJTC7Y* z6aeZ2KdnOCN><{VjGai;lQwhpm`8Vsd_Pn8&%Age007HuU|q}8z^=gYX8Oe!}q^`dHa1}TEY$f@$1j*cOzh)zHoW> ze?$HMMb0MZ)Jy8K_1}UGwp_fLD4YUSLz!VhC-?GWv|0N_LB80fTYsoFd`>Q$BW9Jp z*;tW)DyopJJ+Q`bGV{rIZHIPVCbe21JSuR&346W5)yN5#kSs0_B+Ro~uZWP_rPY;h z|ClJl^rX0mILil*2VqoKUpx#Z836V8EZ=!mL$s}Aq{Y6|YEuXqN!dc>c!(iwhg>8s zz%d2_TvG?z_&xTg6@78X^2~`B@<{J|6~~d1I{zw(&ejQ=)J)ry0W;b$18KETqkMzM zb$Be+hxA$h7*fc|5QjAwI2UfvyKm_6(=#<5WYLb(9e#v5Suscy_Eswpfmg!@N*y-W z@*g-9;~vqInLQauU;X7te&~q@61szuWPrG_fO=Q*MlCmxehRQiNw2iSgRG>T#bFw) zHD}*I@Mfjb5m@E={g^QMJ!|=ul7CA_7MFz!jFyUzAtD8x3{P&M-aXjndD(bH6DfBZ zFhasD)R@uX%q>W(lEKU9_`;}w@TiVc(({hMBo|>m$P-zB`mn&X5Zeh?_~q=ub0s|H zq*8b#{2qcnFE$K7O4alx;R$_&A!0&ZT6%-3unqq(dL7m2#LE3?%1DP+2MDcmB0;P! z%!i;+s8u>8lkyGL#0axVt8dbyBz&p$fvy;=h?hobQ$YfJ4n=0$mnC>Fw4;V(A+hK^ zVCpkBcGoKk;IyGA;p*Abd{4vF3LP@iadbJCMT*v>O;Sk_kgoFgQk4An*RL!|zWotY z+ZTuV99So(kA3gJMX^#+URsL12ZK-DRSLcDk|o))&wEb@0`OSG`~m4}W7rmwvgZU0 z_wYpp@1cJtNno9ld>%Ol*jo46bgDX{X(nR`xKnR#Ny9s(?Q-ZOp)&(%Gtg=T%UeF9 z2L^NpEn3cUIckmwh7eW3>IhHi0g_y#{`KF{D}l~odLSZpgmNRU07FTY#?H8gqE@bY zYg!ayYdEhQ27xMAM<|}sS9z*i$S!W%-BT)bD6PpuWS@y31;@Hf-iuVUsgz2iOUIyk zz-;^gx4-V&zK{okA#U7Mn2Lk)g`){rq0l}M+R>eyBD;?xf{9DOoVPnY)NAbgEwmX_ z!vH2FV7L~nq==`+M90z+o({^qqABN~7MKSsCvlVji*pH$lM)cMR;Mv(;}X9FFgwq5 zDaVr611*`gKN9DxaQkoJ`)G83&IRCxtf|NXw@<_xB|$OL7g{JFdO!!i;<6kuTa&}6 zhj7oBDEH1t!PrcFIXJwULpl00460wOwg(8ke6;6oQg;hDri{|&A}qy)gZ^;}w`sVH zRUo4|TPuvPY0X6g5@fS$`S9#`)E<}{NWvMQ2DmlK^K6nedP~1jEvK{Cs4pn(8cIB= zxbmj;wJ#?wXg{IjN+aJCD(enof8fxo@uZys!qaB6^m1PT;$m9`ktH2=)ykihbOq{o zaq5=8e*2t`b04R#{^RRcL4NtgyMMgg!E59+V4H3`PT9KiPICf_ULWb(AoR(7Ln4af zvlE2u&Xoq}CJuF7*Z{-kqRp&^jJn&ttPA(`9-tbUu(vll&zFxHB?ZBB31Iv5Cd7sr#!Qa=G>fgK;e zx++70!^D#(j7ng+EDp6jpj-ou7dg44LuQ z;Y~X0|0}#DPlo3MN-!-aj*sX=(?{62ZX9$JZ2Ca!K8_G^Wz)It7y(@rf^t*ROXRo` z5NMFEfNhcwfz#XgG+OFj1~GGQl4Qv zY-2vbD>exZNHSPn0*I?A;B3yRQcmoe#|i)wfh;)EVFn z=E-9+2Is0I?PT$B_V>(7kx@DiGVFOJTpMH!S#MUwxJxBxLPx~zXbS}_zEo1}@}4}` z@5AfApE!w-nXvQx=rXeXj$7lq0zgQyXjtC6H%qoU-K8*GFGxnWNrRKra^1?Q%(~Yg zZ^@_Lp%20JMi^{(grab5lc6>dGZRn?1pSXtu_GM>=f@gfqzt^ynoHhmSrrE2v|8 zH6{b~=5m9ovw9U6H0sHVl5PZX{N%idHPw8&{%r*Csp7;p8ksKpsTA++3V>!CWA+9p zJDpr$dp9+wpF^eoUQG@BpI-kE-u?62hjKKwY}>3V!S{((=Yv?`y$rq<-CyMJbQLGf zZFj}K%2x1`l*-Pb$90xZBE|B9s!TAhMYw7V$M*sJn0XT-Y{5uDQ$?Wkx(!^g&GNu) zOCDuQPSKY8no1eWOs{rl0&NB*C&=xMr>(puYo59WXf^fS<&!6O5>=rNNbCzvJ;w7E zpKal&4tR7Ml(L2rzi>g4x(Rb`SLis<$h5H@VduyT)L`iXKq|E`n+|gGEq-r`D=2Ul z5Nc%Bk-7d3QF})tLx9z_BJQXOsB z@x+lB;MV-IqYG#1fec&W1~;oJH_$aCw5nRddm~8*#B)Z~5kan#JFajl+YkD%2F*~f zIFW@4tcom_zYO7Ad9m7+kW9nI#d{hIO!*JM2RB?dop|!UgoxJS zLj8~%ghOr7+ZM$dMJbT#i~2F8YoqKP&N}4`+Wz)mQJ#K!In+6ZJ09TS$+bXuldHP# zVW)DI)cL&)8MY}Yl~RyECo;?4G~n&xsZEz%M;*{MX;fZ&fOv<~M+!EBaO7hH(GW^I zAvxZpX~fcUJCot2gfj*h4(lno2+~@#1nmw5eBH1iEb}>ON&l>foxd%NfVU!(6Xcm} zPfK{W3-%p6cvzHW$AwKFI}XnOjMrG51iCPX{>oaAK;Ac6jEo8^@uBQFM#7Um)Ed+R z!$C40q_Nr=F;SuYBE0@2y;Dma_45AqhnMZpYmMm`G95WRD&TPMN@5t(7fOlkW7g>i z&BSns4iB&g3w2Y6ij;aSy4bw#ecl$SJ)+&g#h7gnK%byq0EP4pLH}TOGT^*KLwG8x zhWdv20pSySR{fFs1AOsrQ_CN{J=C!3hHoFLs-LLbAtljANBY37In|mcWc|@M|LlQ>)G5F^V8Qtl+>sSiP94By3n8i${o- z!Ej8#YbE5bk)GXTb4F)je}M9=71k$fEkbg?{tF)wm`9Yi67Zgm3!rM0A+F zRW5U7N+s|_m(JNZC%~Hx9dgax6{Xie5hG|h;27dlO0X>%TW?gsyCn|^D0~~-v3T50 zYO7KTcfMeg`fdSsiX+H&s#3hJP_O}idj%?mHJkjCFs!D>ip0dZBOR|pO(j8+J#m@F zVd(}z7c||g?@<%_r~38)eWmY|jhCs0_oAPb%Nnz#I?Axi7B`H5Y;=bG-3n?Mf z5cdw%c9}=2M^u*pV`Vy07QE4h%maJ@|IU`b(2~QmNH>D~{nKDi+ z)DBCsamih88NE%H#|{;37b`z<>ohZ7-t2lHPuZXAKr(&rzcvtZqUZ;y&JAeywf+7Z zBl9Z-Je^xW9?@#=QMzo@&USN^y=pgdy5cA}Nk^U>YWc&lP|{f*nEG@9)}pGi#PnBT z2n)hxq{HW|tRxhcThHSPux{^WJ5wkqeg&;(^vAfYa*nstdS6D@i>NpPNb zd!VosF<4)%qaAxZ7G9vtBrp{2Jc=LtV7)oiCIvFJrvxq;7l-D)bj^ ztzuL;sq`mmUt)kFs0v%qXt7PVSg~M-6bJ3KrEyuEt~N@0a=X08CjpqF?I7e2ly1Mz zM8135qS(s9USfqPpJ0@-HcQd9%N>iL8<~dNS@RB|JZ_gO%s}epxWI|aMG&sVD9``W z>rKw?z%`5u=3=9+l|*qvrGc+v@H^66flcVSsBrY*vE4_(mTNC`}x$^8nTKd6$sq@lGP)!M0d+8BR4RT4Ts0 znzU#{w&^(O04B^Dj&SD^y$)kx{VrsYEImRy#d2fFYX`u`vQa8RGDtyX)JLP#8j^xy z5LEWTU-44FZcd)W7Ubl;j3wqYJ^2T&^THSWUH|j}^m4IX_P)S@EDHL$%f*R#BO>=3 z;NX*~0h&mL#Y-v`C@BZ0`x{#FA=?>9g_0#L#{HUTr|QwhDdKJC5Din*D+fn~)-y{M zUYzhuKjD$~23DRhmkppnWV1VLqKQ8Jxn{YXSVOvvOUruitIjD%D#Z>BV0LSA5GJ`B zSczO|C0a^lXi!$HyPr=`0JUDK-ZS8#uiX{YT&n2t9m_(DcRIC-P{2@%GKD zEwFy_`deu3|Mcy1dDf9V;eL&WzHsu~tsu5F>^I_p-c!PsLnl%Fg+P+f8t*5uDW{9d z99l^U{*KL;Tzz1!1F?&skUBtYJaH7Xl zX82okc!9EWB9s)}8E0y15G3{jrvW~XSMpgl9*7R-@+%Rd*eSr*`L43if-Ai&y}h(9 z>*xGEeD@2NV+cG9kBM%!cPt@^MZM?o9eUG=5=e^8gQf%Jf8=Md!RUI6y>j9!_|e<^ zY2@x@?v(muw?J2LmVQ0ZDz&_2w>(yuwA&N%w4;1%FP&R9NwiWEcurrhG2cd*q-@Ul zo0T8TaE&>p3N>&G1qw95%W_d9)^`i5LBObIEMPxVXJP#sAn;W1x_2sHVf(;_VU3VO=v>lR;#AfzKvyzDSTw!U23v;$5B`v@dF)YGar1MJO#vd1(Vp%S2h!yR;_8-$=ModSW9ZL} zdvI6pk&ojF0PyCyLB2t7{=+J*$;?FI&ereA-oh;BL=P-6=HLuMK1sT)at0LL4XA{5 zvawP?qp$cBMYphmg_fUP+Zzm|LDadyDJXq{Td^pC#$wvS@A!1fDzcEfu8J8@wwFlv zO{`GtD!~0s9$so`m01V13F|Y25-@pUL__FKpQoM%-+)5r-frEHZK_?tgHpXWcAce6bnU-CKm z(z=^(|BeU#%U39!rPm+7{>*T3e|-Ij79{CE{5_wz^f&cy@XrhjrplkJveXt*D#gCY z&*RqNWcu+1B*snrR`sV)#~zMEr0s*s#1z!tN56;_%H){u0##i{@6KWvG_Gw`o2zj8 zHpwef1L##0%$^}6^7K%ExOG*bTk1M!W>Q33L2WrSz&8dNrAkea0!bl6|eMO2tsm zom;tJ<@q~MZB+M8E-l^nxz^0h0%l%%4i!-QWQjo$- zi$bzcK3UQ!>o1g~f6(?eOQg|~LJ8ivF_uwFV?S6h@6=q@jx6AiPs#K#cX9*I5pt5y z*|rNjVseFVdV!XLJ+E*+)w#4{#6>e|INck|XXV~fO_Bv+Y~@K+Mb9uu67 z^P5g$_pB@n^pM%+T&sI{l#LEeb82EXSyy1QOG?>olndOIq3d`Sj=d0d(qgr+y0`eA zm+!fDl13vMk@%2x4D^~B4sND5dwOcm;!|}{t}lJmd9Ih z5Xm+iJ?m=KCem?at&UJ`*D3j7jFb*odnw+f#AP>6;+%%LFtM~Ru6x?SJWSkwFL6uX zJqKINd&eyFh7K+Kh0!OVRtV0f+g>aO2_z^lHr2(A;;($Lb?|$sZ`&c>1JMT8v~Ajv zwn+fL?#U{8}QJTp^3c@HyR8 zxNLIDx|E(b*6lNf9|lhWyG;?$wp`%bX-|K+7C{IL;~-qdMul3co*i`A<;nOkBSG#1 za10RtMK#MtI#`3It#ehM^dqd&j~AvoXKa9TFCpp4Gm5hV7NY|++eHC@9K9e$dwVrc z4`B>~4kws-OTN_59e2^RYHyKbLwaMLfm#IX-XboVliH&E`0Xd}e)#s$>o4>(pN4NX zGOdsK=l=e`{nx|Sf3JU>KlP*RvK7`lfIzPFJM4Y<|FVL#k{R${S94O`S!3DX5H)SC*BDS3vf-L?_oR5!SeeJqA{jlC=c zrU{~T*@R+Z__bC;nKZwB{LPOgJb(4}G5^+&%4dI`T`44!%%6i;&#(UH{~iAS{s*T= z3>%81A!NdV?LswT26zw{;Z1_)OoK}O6PJlZuX0lv%=|WmCUU437et~WCze?0OZ<8y zNso33_=!Lvwdk>4O}Ni?k#D*5uzkB*sW&|sqNmQ~W8unnLh?*)oe`?tY^+Hkc4ccv zq77OU^&;W%k#aiSYUn zX6x&2UvF2;4`b)LM`XW0rGN5_KInuSXG{(@nex0WGM4lch&-%<5nOiAzWbNL^w5Mo zsP9M75x`{5)7~Mxyu8@LZ`%RO3!;&ACG(Qs6kAeJGj3OlReHt&2SZS!$`94iad;0h z{e~UP6)UNs70Fh(j?%4)QILW)!^1eqV)dBh=7obQoL3A|#H>iyk*5HzcP0EN%VxVy zDuB3bR!xdm?uQXYN`IqVzcODLbU<_SPOSQ!7wtd#NLF4MWjQa5>581!herlX*0w;Z z1gaOFV!PYedz18{x?k@QL&$cXc6PM~v6Xei-gUL%^}>c!#AtvC3Fz|ZgfO$v)SciD zn6T5*#x(NywHK1l!KcVCq!btdXO=W}^BEGRxurQF>B>gQ8l|GkF$PXo(rDNTP~Zp& za$JGAC}SlhHWiC?buO*kBNeD7x$wYdx@!A2QvEM`(Xz)0E zCFA;+-~5=D=Ft>HC+s8T4mxeOFqt;3a;6}|eOL&ftr%7@&0(Vsn)#bQUq7SngiBW% zjE`0ywL-~F9;4i+t;AYt%c+{I(aElb>pV%ph+@v3?Nn_${1l1?nIx5L%8YTVYVB>h zLRC(h7f6rylx`dL5uhc5J0Ge1SG3WXb7o2(JN*D~0L1QqngsH*@wqcRlzRFYc7*D7 zU>KuT+a-fKtNE;Q0%}rVTa}x$!8>v#*l;MTKCkT(?{LMU^lMs2=o*78c41FlrC}#i z;wQ5f$4kMNa(>y*pMy5ifW=@zz-AId`0wP>|N6V(%@`*C{Q8@(zZdccefRe3pq_>w zpI)jaW3)1r_Q{eoWn8f+L|?Pox*lE_1 z6wAQf?=7_BZWXBdDxsLq>*S|ubTRqAAU%3G$up*VGO1Uzrs z!rBXB7{pztZqC%Cju(Pz&@0VSt7|kQ`A~@Y>R7*p-HrC35C<#I0a@l@u6??6S_%V7%Oc%_;ggSnadnVzexY|StSN~ls9In>X$mZnx7MkTJ)-wI^VwA6A*p-N-mJv&iD3f_ zA+n?dcAIZt(M>LSPa#Vr8xE$o8Yk7<1sgX{SdAaIlV%+Ci^tXs30c+T?vy z$TF+a@jSx zvcyN1!A>f_kw2+m{i#V__mBHgH(bkpB)Sz|w#c4ULd))J$itbCfpVj7=E~KoSE$Mn zN}*XKfMy`gDM2y7BVCVE^E%&NLkO%6JPG8iGk%Hyw-0ir4| zTC7u`Qg3-&>poo|-9lQ95}KAoEX>+JKeJo9c53X&3cJH*Kkw8i zu(>0J*3kO0A7{byKYg$#oco5qhd+1jW>T_k=X}}*_ z)*VYl4=;A5>TZs1d#VOWa^ggnNN6&X*oI1&6Gu=pZJ$)629hS!)L?S-#rv*?|vjD-0#A>AH9D0`gvyF|M-9W zcldLEpk3(KUk3ePwZ+J}IB+#!T$24A(dj>QfcFUqZtSHZH)CF=8*!Iv?^U^A!n!w5 zxv$x|?#ErX3EzidzedC|Nj7BL?z~nB|4&8y3%)p(bjlq?shsvtiCrr;i2dj+~jXe}@ggd7WkczjM0GM>@?kI&R5kqb-W zt#P8;OLA0pKS{Lwliha`9ndyPQFC6%rEmrO;zLJV0f-l@KQ<^ zPa0UAQmB1SNCze;DIh`g=AmTTXi=?@k#~`X2_ZtRBAWnUK%c*dTzhq#Bna#p9{@5L z^In19^uPf$(yp~G;g+;3C$)&#k-HBT-&UhsAj@p+%p z>sv|IERof6daD$l?ZPn?T0aiAUZlLBC?_bY&=3asV#Bz6D*~vssswNuZ>foa)LA&P zm5G~H8PlP?S6ae%&Fy&{w83LstzFIUBya8ge%KOt#fGCh(^401%#MA;WZnV2gFEC% zjKrx+1&mNFIes^lFSULKQw%g6$cct2oIU0l^Bv2dt1OCVi8E@KuvEFG8dV6|E+c5l zppURQc^tld$ix|@AzCuqX%F*|Fw)+4b?u-*iYc8fV3-H*iYsH-xV$b(#}Wj z#4&lmH2cxKH(rvb5obH0)sa+MXEOntW!oqlimQ-2ULbhZU)*M|B~lTBby=@2yndqN zLrDcs(2VCoqQ^d~lB~C^j(F9r|UDV)7p0-s87j?cWAVLUE`J%RuUaf~V^ma5GcU9*03B5ve z@rrfQj&VSP9sqD|?BL2zhJ~-rjw-2p!t8B7Jg=#cm9wiAqxG+)(UEfx+mI_)kCsQ$FQ~JOG+0>TS#%bOYqpt}wY3F0>v> zy-N;2#_&=&-?jyyfK4eJIr)&e&~_qO0kX5Kt8&FYBBZ?!&nFb26LDwqOg}!I&wFvK zLWx&7C_r(t2XpwC)vhUZ&P~GWT?($7EjmoYNZ)F5cTBB(kmA%TBT!UZpX5e*#8|kE z8G-mvOHj*!?ht>s$la@i^@UlE$`|%y=J#G@hfa8@v|hML(oAxZhpmn*#rtvSA^mxA zSS~QNb{e;)1N%=7$Fui}s<5_l`UY}EuE7Jk?1Jz>ZKuP!bk?qU&0+2(P#dxdk-G7+ zT_glIn_MF;aPo)__YVb@mC>Wdm_%sUY=h=gSoqH^`@r^MRG$&&YyF zpIIkG-9p^)*i7o7bsjku)ZJ&~yUqj-*GbNUg005qFq^pe0CX~{)P+C_?J}!X z1Pz`QIoQ+D`dYzdqw7Zo(2;uBCCTWa#7=8k>g~c{)tO6jT=T0X!4e~wA`vGf5*BPU zcUHR&t*)$eQthhMi!4bgZSBKQSN> zz;fi3SgZS8(cqS|$XUj1+3+TW`I($@eIXxlUvC~H;S7i0;ZzZnQ=M^!l*iXs(+TFTcbzD&po}KY_M?w$hj~H`cDQ zRo15m+dMXs`hKQ152ktK(NB^*K3Ud1_Th=LdgEBExyPz+ofP*} zjan!1lDYU8tv{oNdAL<@$1MTzF-22Z)LP^SxRR&bSlElybHTk%A0R?b8ig#a9AQHD zqb{9OpulVuswd5Zb-bGk{F>MV5ZaDy(qFJm>RRp@*Ya853vI4PRTEfG%9@0|{G}>& zaj0v`hSg*A=(#2c^rIN!bUQxxz}D-)n(3Od;_oLcn}e4Ud9<+q@z!&agyd13(o=|* zMkPn%V7$F^vqwlpjfze#3actO?YCfyz6v|u-3lyv53E+|LM?&Cs_2_#Z{qi(mF#kcuF=O zOXM>)tfWbVDEe~-j|(Em_aaJ%9-F5;Bh?F~0=yUahMK@habfWSfQiceiZ;N@3$)hV zIjdnt1`@Z^{~G@H5+D8zTrH_vAHMzZ?I$)2{u|p=7{~c+4(bc?Sgp~vavrs<`&Htu z^+!9kGVZhl+;H2u_eZWKdVnO+%c6{Vj}!)~JXG>s`?e+0a7EzgH0-c<2eLTiDo7NH z(EOfDvkrxlAq6TP7S;5c)Ljl3`AA?sL>AaEDap@MAuBw2MvZOP?GiJZti6>t3)G3h z(2Aov3rySq`=B;&9F>4(*eU%RE+8xY_ul^K>LC9{+VbCDKM(Kz=`9mc-u(b3ZvXi9 z>FGs^DV?vHrkb1_eStf+3Pq6f(L#N6Nw}$5Km!arxIP-!22mF{FvIQdIhB%}E<+OG*{M+R z{S^avd|~!eDoC;#oJf}H)A07m>D~9kYhJ6Doyt0rmng|9FV3!gVrcwGedjgHws^|E zjz=}>^(xh((-QjPEsb6(jDzzV5EL9FTIC5sBgL8HZ6472x}?P^$s5E?X)Qd-?>;yn zXx!Vd4nDHMF2>WAt*4Fm|^`J+pTaR#Fi9hUqVYDiMLm@Z=f z!kJo)$+OQhWRFg#3ayuphkQ`qYTE=cxCp>se=Gd;x8#4m_>gP*&_DfEWEW9R!s@-J)<*8EdwUIYi2XGI>1^Na5)tO^l*-K4dM9pET6+{2>!v19&aY^*y zOe8lh!G&~8*^_p4*AO)FpgC(kPR7`>aW)0fpnM=75bRu7HLlwM5qMXPD1)ETVdkc= z-JNsQT|KSSM&&fwbksw`n6XGJEmChBM$iD6#-XxUBwvD1?<6@F9II3oouA8E`QCD$ zm9i7a>z*rApK6gQM@wEv7J#9j`?pIbx5_41IL;qjr$P?!+JLPL)P7`ueu7ZjBQ#81 zpR{MV^j2%2P%zexoWuOUi;p@$lP^$C)?xe!+IqUh^56c;@U3rstK3qbzkZQFhSy&sVEr=K z0O+A*)am}1-1O~^B)73>qa&Zi$Euh+Ddvgb_-cabtv|61O|zi&I+wY+!D+T8mt6An zCSn8>T7!SU-ZiP&ckd4NtB+bR#4i&>^@EdB$aj+Db5uITY-o9!Kz(1CykK6iMjL_- z)ivsU3fJhE=xqpUBZzhqb%vFgTy?X@9EfTJko8C)tpOXAyk5IN?>f>}W}D z2jV(JJ5|0V8KMrF6{ZI!_pSUN>5o~W$hNG9g!?ZTQLf#W;@Z_pEpn67y=SHEnt_vob7K)YP5I)Gf2BeAhT^344O@^W2unckH@)v2b_C%|2!r9eMWf5U+(zTegJ=je|-A_ zlG6rz)<&78EQeBS2Zk;!#^`|tj^~Bwj5%-)t*N_f6D7H;VSKXO;pF5EA9zPVKv`w( zd^}n`9_aj3ytU?p!Xa1$_`CLqhe1oOKH6GimgJL{652zu_8Q( z2ReruM&5lbD++%uP}xj%S!IkcGHMM(Kdbj8?=H~61B_)n%qRWCy6OwAk;JHHj&`+! zkt2yLlJ&CW&=V{^wpP)MG#Sh-gfntc`U6dI~fYw=F!U zU;z;MS6Ftscj1EMYuK78#);vkfsU`#KBgf$04d|8Ehq)y0V$-s@RDX3HlV^ku99MF z{xg2$Ciq$T(=P*6EC2cRH!xnqho9l!_>BDNr+HU|=RR-uJGf967HD$B(&MD+iTNkJ zp@WG;W{hS(lNVddj`OfHJy_##R-%O^j4Rg99SI}}cf!GSH!QGRMUJt@)a2a5fDrVN zsrByMy>qEYaCX+olT*$3qTGK@Rvg^I9^GvC!d&64d(ysi0Tgtq=~_`&9i}txF>t|z z5>v_9vxN%;Htl7nOeRRol^)+2Vr2k5k0q={MZ3v*a~rj32Ze;0V;dph9#>S6s^Go2 z!Ll}{&S|0p!diTEsuipi4jbT}X5_-oN=cP2{SA~#|L~UGso#Bqr1z`SOLfIelL{uv;tn}uH0GRhJyp~Dxrf?V zSPlV3iDV~CU$J;v{+VBea1fXzw5co03ipxSW>Dq{Dw;U^1SRchs&-aaN{hM1iqIfpY>2gXE2UB zI~y!iH|Kq!g%7-q)Tuy!a*RE=3kjR2f9_-WbAP}f|68dn6dL?%5BpGtQNp*r`TX?a zHHyr2;3AYeVm4cKO<6_`jm*)OOy?X^l6&@rPo?uz73 zjRAYnJOEZG1HX;8D(8h~R2{edk%IXzXJ}*hH4_@HV4o_1bOAF|uHW%-IuB0V1ufri zV0+cxLH3n%t39k7V-x%pE!?6JY|Eu&F4<=uj3MyijXVid%7%}wV~R_jwC==~Q`Ig& z3aLp8;Sq|s`6L5wa$vqm;CZn6+ES-T%*n7xn@-Q!F+kqt+`g(f11yj?owVtRL{Z^V z2PV4|TUYz~Dsq8YbFqLNAV!}S5~nWU15NGeibyK|S{3~S561lXuj-~jKE(>+7R?5_ z1XG3az)bD^Va@cw_5{*F#hptIMsrbT2J`~HK`R-Rjwr3GqQe3Z zCrcd6v@vE5FV)%p_@y5?-Fj$W;Tli(hdgRe<#rmjslnquj#LT1(MV09`&Wg1sOGNY zK2*$@<9Gl;7vgVG(yIPs7uC(#zGg~cYvlqRABngDFdN3|q?EZx|4=Dvo^36I-O<2= zP$+T020JK~$gh21Z{SFw+oz4y{2x5+VSd2EE2)b?OC?3<+C{ADSVZ$uNtlQR67V#~yYIZ8@~o>A`skvdb5yNO)e5%*eNrYG)YF6r+=U2ENfh$+b4U2ym7gg5!`*wJPQMTid2E0WfJ+K5LJ{ zrLkapLu18Gqc)nPDh6!FmI%J3)R32?QA#p&si}ZB*>ogcIk;~Z^~#2jKeCxs65fbj zJ3w-N5Ncc&bRAdMg=$HJ2K36>27b?)OBJx5MHStOQX3cl^!4|DMq}#URe%gus7BHm zqUO6iWv?jZ%~ENcl^jL4O_~d?oNUbvGS%o!poL#uXy|fx9}yKAQuBy%zx6seLhMU(I=a@kbd?E2jgUO&UEH=}cY@cLWW;h_hqRi;q~ zZWsbVAiW1GrD|BZKy!9s(>AMJtfv*?k#f#dY$*X-{30o=3%;pRmyfj;J)0y>kHw{S z?4Q}dRO=+t276`xQMwmH-q{4?@kE!f7enwl^NAS$(EPTzD5+{rhau;NYV%+OJpj(e z$z!2~HG`s`hiIzVwUp!b^VKn?1)VspotEw`=MfPUgVdkei=sCm=A$x2id;kciWf=W^?D2C0b; zpYDowgqtLJE;J+|wRQB43W+8T9MJaQP=dWW976SrpS-Jpp@KX%Gz=Rp$&mlZA=s^| zh$SDM@D!`*%4T5$oFfmJ>f=oDfRTQtLNS4@RfLps+@IK|8wYv+=+79;xq0=ql}{Dz;O54uN=Ls zQahPCjU20ca{f+SEz*lkAzG)JF zrMkfw(>>U<_=+Jze!fpo(y^;w;)#V86)Q7M8hGP676ENQv>@2xhYw35Pvs1i&U_cZ z5%IDlW3sjBvVKGSq7Cca)^LGZK(UTCzBju-`<8$}y^xiU5bf3DO;w~^3KjAS@mj0%deHfMB-=EgW#+#Jf5Oa4o2cVf!`6^`2dLKYgh$YnnJ zpr8c+)1<&Ch?o*;^}Yo+l!TWUT^|734R60V<`%NMO^)>j@fF?|djaH2{W?KJ%C$JP9qV82_kHgxXeSb3a^M>29-6!VTo1Zn93kal_bKJ{EhDz zv-RGrjE1v(v;qcl6_RZPR> zl5421jw$-mYX(Tr0>(K2v3kMnIZ$0GX2U9iY6~}8o>2jyu+mkMVise2{S{NfKjdZ8 zDw~6Id6BOwz~(G?+>>fiy*M^wp}@qg>JFCRbOe;@5!5)!0Bo#yX~eps`|T&R}LzqwJp0*4hJ+q zs!`dWM>&vd-W#VUNp5PWbJORN$p^iR=W5C{1yjy;Mte z!RX!wNtZBEA!(3HzmvS*t}XD3i7kULBO#|=SffVu0Sa?~ZMbZWC9$aS_6j64X zyW#;*>Z(pO`4d|GgM?)F;Mk$SKj5tFt{KK~1&ITH+2SFlRgjyrG5rP8W6Sw>DUOz6 z1|m1uo$84@N)GkF0!u~Cw;UF%zGQSI`=}iw*+}ZtYeWXZvGU2b{FKyPT;`xdb>ty; z#swII3>3e7R9A}XZJ>~Aoi-Qq-cA)UMq8bAPI7NQhMUWzse#I^w*m1E`ICxBRLSk` z@=&6L(XOiN1E&GIec^=ZT1hRyA0NbMIczvRdv8UP;y}B4*iRqNl?qoy=Xui6wt)G0(Pc{%6ns;VR3m`<&X<=3u|P468<8;RnNj~Ss3!096@V|HJ0XOnV7rOp1cvw zR@I}ZqK!aSkrZMk9%$432tXw+^I=geqV}L!0xi&NAQJ^V#tTYcBD^LV8Dc3RW6JB% z3cOJjQ054kU#t_cWy3|T-#+_3NfD(Nx$DLZc%Pdks1ekiB`i|S=}S$A66UNdmJzajLmY$_f?)eG}@jt>UC7lb23#GXg%3>#&C}uv`UG1 zwt!7i^j*kCS$4}!rKc$$BRnrRvJiFf{scZgNZqW^xIT#S=aEc{6a$S) zXaZSg4h4eK2O+Is5Y6F*)J%!pu8BUVqH@jAot%pG!H(H*pgdm(C~CULSJ?fgp)tf+ z#}lrk5%r}hL=U9k5{S~DlKqa?k4 zDUFfP_6J7TX1s<}9`clGXnwh_j&_~ddjgg(8yVwYXc;m`?Qa+yF;W6^0q>)wM$grXc?JI>fiWGeqg~+$9dHlH`4SNQYYH(KiFzXIv?2H!eFMNSv~3z<|hw~;w(*trEsyTyw7aB zNz|90j)ML8HXXvv0v)a!7umuG>=Pec%_XlbmJv!+jjd_eZFsObDnyEsrm62zOTjDc`y)(lu6Sqq0@W>RXGx~sE0V(fL%_{Mvn4ytb`=yLafvIvLZ+vc4d?X-PSwVmnI676k z7gzErRH-DRw_!6!VBK1)j?`P$^}y<)n8XB^0;=`yiI!BfQnOOW1mOpC%%0<*0LO_QnZ&jCYH>-%HccC(_fD!MQQbTT zLBnNrFc3szeB2{n9HL=%l;o!?7wQ%1(YsG!`F_`p;R7Qm5H?T{kt_WQ{`~puLRKrl zo{!}4@;NqJ)#!Bvl1u0_wb@!)Ri5q`e56ZCL36dAwS(c=%(x_1iCprHA%GDNAf%9mGOw z=JaxFk6kJDAVgAeaWH4kFMDWtt}&gnDi(VZ4bWV&IW$W@;E#cOuh=-mS`zJx>D-GQ zo&|jqzyyJYSkTA|Ns^z|rKKu|R=#MghtnUqE|Vmt+Ilqazgy)-%eclsnzA>r1fmq| zz`A*zLHeM*?HHB~r|BN13K(IJjF~lL6tpB^dQECF+$@rm!tbb-6iEJn8x_R_G)F>h z&0j=R##1>1hZe+~P{I|~H#Iwwa~?)eZh3Uk!@lwI?3=FmheK8`zkrCYHD7lB<1S7M zepl9X>O)xX8!6xYfr2N2m9!VR8OiHL0gc)c~QfxvYAxe4(3NPmpDrBA) z{9y%F4FnPjT!PEzKn~Npf5KSypWc39*WThxw_PWb!7sSl$+mz<`#G1osQe{aDLF@W zy?nq#7oM7)uq?&CHV-D(a7!DsVJ#Z~g7EpIo-g(Z34tb3pP(i^RP3hdzSoJBVFMK> zQ$%6Af*!jJC?cHzb8cwzCCO%dp3`waA-}}4v*6pl*$yJ}atM}9g2iJzX=f;`E`ZZi zgGtsigl-4JT3lAlMnJC)t5(eaTlf$8yy4nCJ%Ad;T_j~e{?DKqFWg@ zN4YJ|Jqp<2aXN>omgMjXbQ6V>(TVK}$E%S=Kll#Su*|W6ye5mJV|1JZ!N4M_dY^Y$ znp&v7Uw?Ld(!dMB_bR9*dfYzba&vC z9l8~209?}1y7hD)*F$edK0!O!l(n9EIkN0SZ{DJuV(@{^b;6R-#xA*_|CsMwIg(1p z-FW*BDopDt>iu`i1Pw6R9)%Tp_W+k92bAQ@o2{(LY0Nbq?)g-c8SnJ1r zqiigsXfZ>A<>ndEcu`^`SdBy}fUxVdP^golgTiws+ki8o1-a)l%D|P&fI%f03)pnz z-6Gr*$O`WGlL?(ed{9a1YZwL#YD*7yw5#OnDZptNE%TLlI*?I(9zD1$wNyVn+C$bD zG`0Br8sqa-DVG?2t0Xq?-WFJBkj;S)dhb{{DMJaJ?cg9VQRhqIXO3lOsfQ*-o1l%} zTI+;y-j-yCN~XiJ0{A;cN2VEoGqQM>T_u=u%+?}O$D>wlkR+d^MF!G8jsmbE-U{budG9b|p>jUL%*&f?)tm66H6=KrNHqt&hwi`nMG3O%id`VhX?x94SBkXly;PO-uIsu`tUbCA;|&&Q-;uqQak&o{AP+UL)+g9 zm**g}eT$d49pK^nNcb)U@iyZBXO84o_Wns)M@TY)859NvS#02@E>- z|ILn^BlEZg9E#+V@Q1_%+2j**`~g}T@Ast!`W9Wg3Ub)}#xh%~>T86fkO^*rHiI>0 zo{kV~vo#PskTO}|!#HnV9_V)h48`f*G#8je-73%kB_di41qes`IO)W>OBwZesKD|o$X81F z%If)^wblvR!AX>a#&Y*uwT&o-& zJ2#;%X_}ntQO<^>p+Gd=!fIZiUF_A4aFXY$eB+IP{Q(3EN?M=MqcEH>{0l3mO197= z;nj1&JUb*eXl|?JejM4TwSYGzP#kS)YKe*46lRmuXw)4!?Zg)2=YSSIYTR05XDB6} zWC_`KUElpx_;-I(0_9KNe#npEo1fsv{I@^*`oD$OpJ!^+uR{KCdVUViCL76N(p_yh zX@FF@`0uUv0(w)|X3k3izgmeaK?+to+7oOPx2&Z@7d;NV_B+Gw5$u85|^A?Gc8~|nle`dKu zuGC&bC&B82i#-Oby0SbPUDu&l%lS;B{xk#*0 zSjrmN!95Rs@mxQH+t-2?w^hjQNtJ5)8fsIdXiMNTN2JEF>&*cgS1(l?vXNwdFUObN zOiWc8mqXopc_{B2zWc$jx&fs1&rhdEX69v@a&?;Epn~y85 zPhWnpN7Gt#y)xNDhJlr1M~V2-{^(*u{kug|Lu@2`K-k8_-IwI^i%GAtrO=LH?V;o=c%CBRaylfk)6LF* zoxJNUnGt$^6!P% zOqkd9M%0!nDP~x(t;}l1tcqQZ=&Z59BI^|j!#uhU2zXP$k#%6#P=5}C&e~QGb&GN zZ6L0vQpWXCIJL6iu(|*&1?e;7m`37Ppn;+1a`ibIE@@N}7DzF?^%am`9-7@!w=Syr zv`<=umu~uo371y5h@6z4#cd`(8#DaJ1bDu-$Ls{ok{Wf)KQ_XvItbGIZF zB+K;7r;47fo4oYrO$U^A6r*C=E=JNtp}=04}NelTvOw|ER3=WxXce!MdWFlZh={ed?tdn$^!TZ}m+S?zl2btHf4)mYA!YSnY(l$uuV?`O8QJ56}p z1h{$$mm+<6rv0bfos@

xjmfIWPbQXBQ-hJBfVL9X{NWyGi`~VAmgpK0ru`tRpDL z)~h#wmoE|g{oa>e@)8ccC&>P94*-EA(W!=_h-#S2KaoxTCnDOvB%=MxER^~ggm~=5 z>D?D!e>Z&nJzTVsH2wC_EO;dC!9Ajxq_|qsfX%BUYcC}-c+)2|TSB|(Oi07zD4z8> ztarne@h`6s%9;IK56T2uFo?ABGnR1=GyLmc1ws31k8r;5i=@k#miQD zVXLNotV+?LAnPi(Vsc8!W^w_Fp10``nwg-tkk|-P<42&3Pu8RWamNzd?5CHXI;L{2 zr6o7_K31oVT2brXUz0zWwUL^@5_MHYkSY*kq0YjI+6pA4D)};jRUTod5|?vqHrEoG zfd~fz?Be~3DUwJa|G7LB`4;!4XT8rXi8q+Y&k8viqug`2YsyvALiTVvVVBAhSB$wjUo$C!sFH)v; z&OU~4Ji9m!HPFtwL~(0jLajRg9N!5>6!^+M{zgCTo_enMe>}mzn$)ZP)%pF4QJls%1#W$A~k^AQPs!Jg@~3Ct{4k{q07ohuaVA2JdX{D5F_jM*5K zceFd7%f0J9W!3Tkaf1>qmk=K;qqG9duP|7w+(EL#R3fT&=IrL%7qnV06lVoz0cv>n zvH`l%#zwXvUqFY5x%o;m7~0GH*^typ9beS2W@buV=<+}LZL_GKr&Tb275)#q3Z+uo zr(WA%7MgCoiidMLHK8|F)JG9<9|Il#ROBeX>|%9RHX`oMRPtowHmdY)meIj}a>?tc zB5V$_nzcn@Iqr+)COWE04k427&-AO&#zS^YakUND3 zb?V%>Rx2Sc?&KGUpRP$oGWYC%rnRh4uq_r@8RJQ_Bn2^=SXwv>56i5Z7^cz!KXpkEv2aBBIPMP*I|aM~&rW z5wpNgiq-FVS1KhbLp{KfXAJ-48%LtTZhhL7%ShlY{QbN~yO-{huKD5JP$c1yRyoPH zLeGoO_yPRp=|Rc9dnEsAzbS8q+(r*hX(Mz~l12IUMvkneKr?>zOR zPK}|%?z%UN!xQ1~vI02cvLmX4vu$kcMF8EA6-~vj2?{ss+S~C8uOGtM_LovzvE%1=%=giI2-<>Ovv4Li>vsZsiPs~M{p9JI#z}REnrZB z$Tn(`E9UR~!JgCuuVO%)b5GViZa1g=Vz?>0@=}vv-Jo+#P^an6SVaunt+i~@)u)jN za2^f8izUD23XZsan|>TKBzdC{Lx-%|CTxJdlnqldQECn&;lV zDP(o}D-{Cw`e5cV@05UF2h>f~N%4Rx$ddPq{1fE=cCM+N1YVm`$`w{oOu*2VSNokC z6?d=U#d1LHCtds2vn^mgsuvT7km?%3d&oBOszD!H&XZy7A@OTBD{>tI>m||FnMMLg zD%6zR0JNc!TNzB18%-qSt97T_QuaS2;w~59rK6g#=I5X-BzHlADfuUOD1cAdS6Z@x zZGH{Ku3|`6T{`^ku2eTamZU|k&r-FZj4QYX2ei!`%REzgCPdrx+j}wAH991I_cl|cldLEaC#wrSyE~%&0zK#6iRHX1|@+DL2m2b zH2YZGZdZuFan6fbJn5K}$&ws!03hm#zzStVa>|9EM=gkGBYi~AdFhCbrm|x zC@N*Cc#j-8L|J+av;N}v_Q!{}uOGjD#E;>dpWsK|IN|M&`ufEcWYk&%#2Sl2k_mL+ zjY}#dS(7}adB1ST0GLrx(A_5q^ovR-E4!F76za#~K&rLM{X9N*GzFH*7=lRPdGyw5 z*f+&1#^vTS?)_4Hk>NopS>{qCvbqOPCbolN2DBT%1OA*|9 zEal+v2p#)q5{L~vb=jphpamq7h3SM+rc)#CHl7E!B?sCxHJD~$R-d&6@*oU)$s2ol z@*v@Dos9S;Wj{vj*8G#ryK_$c)XNi-q@$AOZzW>2vWZ;Dt!UjnEF4$izDt@l+lsCo zY`XQ3bBo>4oet(aBx`+fn+KFlh~2K;2ersU9VIy{qzHBzSwK1V7U`SRv7tT}m>fKk zvh9(|@O-dqmB{LF$jaYLZ$NZkP~h0GaysjzaM=N-wA-I%uz=5??N)x)9tA|t^)^?+ zynN`ulEf{4YqFQn=2#mWGqV{&uac^5rDjBDH?F6tR_+$s>8DXLXYKO>fnbrI4GQ#) z2J^LmW&(T0S3r%(Mx1FjfB_DhbI+j$qsSrm>S?B=vdchje_aGW;IxV;XpZ@~!F3+gJH#}*FEl#H^?7Erlbpa!6 zE#=IVN*-p*Uw0!E{K*Zr;k+K;4s9XqC4ydW5;{X#)ojzpiZMfVO!^dNd}wJ+9Q?}d zxL-Qr79Vr=8*uNy#u>2?vEA6}thK4K=#;`b!$=lMQ-O)BJYkX!VhYVx*#T#bMCD`H9&t zq&ACWroYnGC1?1sD$i71_UdM&7x|{yL3M)Kt+mFYdR6viI?u!bSW(8;9t~j&R&uB4 z2zzDlnk7VgAnOUU=+sJvh{nn^T4AVX8WX@dcz>foAC@=Kh)mk0CLopI#(p3b+H$~i zrq?kb6^fc|KPXzLdEY3R0_U#x3{_KJ0?W#M!o|NCX;E+e9INE~Y)SVF{~{U}Ytv&v zz5yptA%Px>rrplI@EY6W{euHZnOenG+SF9X#-NBO;ty6kohH!T30dG zUz!K$hTz@7GJCVjatQxedY%fFCMAd@I2pwipN*4S@~P@yFl@$m0?m> z^f0=YTpVgG-gDlm!?S_lUIwfO)An?W)^JlFa-?KG@ZnO(zeyXwsr;)YW*J z;3^j>!*hcmD&x+0h6#s`Pf59!b%%6x&#OiiO-&C*c3eePEU>M%+V`pt@BZ)C-&uW~ z$J_M1h0KT)GY_eRY)pi1mJjTqP~@26jQv)_umY;BQQa3K&H!aHDTPVU0H_lgNSJ3G z`q=ys?JOkRHfFWmp)xvIVl}k~n$EjVzW!c#{Zv`dWrC%lJj+}?tBwG3!Mo}0iJU$;8MJmZ7!C1^s1Bdl^1?#aNFD5EN-nmIe6r;6 zAULhs2Zz}v>@#2zD7o}DW%W6Qy4p`HrMig|08C!H(#zr=NL|XN1Td_YHv#Tqr>;)# zHNzqbRTYl06O8Uf4=4_lHV7;}SW4MlDo+Je&NQ>{(jslJy|EQ}7tAi)WTgQQojT*y zB0m_6-zFkjtLaHoz?J#RjuxY}t?$7b*zi9d2xLUGU_WNBLFzWd^}4tPhH5l`$DWwT zV`kf5ax-NH_O?tR)Pdb%Y10gWQerqo*UAtTkqjJDv$Bz7KhDv4NSOWXXk85n}I zd1tXMchKzwrRF1Zx*BV_kYt@DC8@`}3U}ElbRL1cQ+~{l;{5#Y3gU-^b}`hYp6;W|oGigtQJW35Zbv<4aQMXQY+@PC&80Fsv}Vd|o$6yCl6gIkQceY)T+ivG{w6BC;|F}*RG$3QjBA}r0ook(Q-dR<9d&NwZaIsBXt6- zT!u$k**I%67(*GWwvWonSu4Fe@(OlRm3seL)qYNMXd1MwY~Bvd8wcxSeg@98_cfH4 zd$5^Sg}Jlu5S8zc+b&%zRky8(;@{LfJO@?G-jPYmh`M($e*;5Ow6T|UM{(H(^{8xSb5pqttrA+BfC4`a;Jy}eaDr4ye`U)oI4n#aWA1tD#t&+nVC!BPXF!f1LalQz#|YVk z?e^q%r;pt50QaGl320sAngGT0-4}0vq>1#q zABNYD^3y9OT%WxCIQ(sX^AEr|eE-#Y%2HfEq!_S}iQleCTPYc3CsMY0xUN?iMG){A zhK*2{qzYkBn^^X&7~b4ZS!IJwpsji?L{R9aP{9Qb5}un%C?ow7bFK+`xRxR#4<$(( zwJ8wEL>yja*XML40q!6_y&+?~?KSNzuO}_KED)=~g{|M!#j-}UI?Sp;a#K%DsoL_C zAk#q*e+3vSmlkc~0EB}@@QY3|?C4w+xv%D(`w89Mh9f>GH*lk#73Gl)f%Oxu27J~a zVCZ;(sn)}p_3f>rdO)*>XhryXb`Gg{kwRO=Zo*7s2c@sn1S6{3<~$T9r|-u)O-uJZ2fD@-Xqe*KO5iM@Vydf7)nel|O~RH?F}HW8LinS?uH zcRF;kO=~*)I}SO~%N%2L?IiZ2VK6G=RTKRc$pKG&7e0X1>(gmzYRLnansnwY*5x2x z1oV-L=aQVq{l=54n^;mG0I=Aio|zx^6F@2!om)3a*9aZDeJY{2Z`<%Nia~_N4@}>d zsZ>F2_6I8t^HNa3$(vG40Oh)yGzJgEKUJFw1}v_HEPp9@n;HtRGf_UMMzNcDfnt;e z?<$Fu4{!(`#a#)#r6KD5WSSPWDkL*AgF=Q2Wv`Brl`jp^q%?6qfyxfZN-s5z%_{6q zFn7j)4ft;Q*bS|eG6VnESMTx*tr^VbHZ-QJ;aexn3A)u zY*s)Cu3w>n6Rwb`-O$m(=vVI!tOv+DlnG0PTC>6d5Z7l(=4Ihc?j73PxN7pw(nhgg zG_c9+b93H_ost{(L#o=qtD7clQ$$V6q4r9NN;~e>LxLe zcJjmSILD!%*GHI|({*Ki0-CL<jR#mjr`*Z~@al?X z8%lOVyu#YXa)d=Lp^ZXEl99N$gxtY3aip?mKH!e&-SI~OaC_0zt42stZh%%=!jC zpv}Q)8uQX>F`#@U2a2?@evOE_a$nmeiV-34@2Fwr`k}P+;_xr26@217U?gaZw@t+x z^b$3Pu}cFW)|qy`SYzUx0o1)DPv#^pwMu$U<`!zmu51m0kxdQ$0!>;V=A0kz@7{iL z9ASSc@%}F@VlOJFkc!ra{7!?$X3Rh*^K#z8MB3y=1OYCikZuu?nl86WlhwJPJ@(xd zFFx3-maTW3BZ=ahayTrgfY1Tlz+B;0sFRJQDyi^rXKuDbVM?~phY4~KJTGVzw?)to zf*hWv3|JJ7n>UTa@tAw;AmUYloBKU=9cx)r{Fx8ko`&4ii!%rk~@srY-kN z1&%|*A735>?408IUJ{6+2tSb0*n|2d=7ri02%!ox%yJykS$}xYL*(Yio%4)-&k@y-&QgzxOw~Rtz!HWE6 z&sCEPET0a-2wuykS(e;9nxV+cHDK&I*eyX3no)s+V*Xf~#>hT3$2GIvzjrX1d|8V7Jy=3x|NYXtX8 z#6)fI<8W|i3Af8G#0fhV(>V0 zu;qv!QhfFL)%zsL zI&Z?~XDM8W$HLJh_9K>T^xnwruka5P(h6O5!3m%*(O+ju z;6XRf{_+O^)vij$t!lP)R3{Kj*oh5Fxs_xI_PR1jX|NshZpk)6FgvvOLAhLQENR)G z?snGBjFTj@2_D%aSU@VD%u;zG?cxdGEgP-l_>`D&Xo|&Wj>pwol!cJWo<0tk_9h+# zvLuPGc=gwEzXUo!sV^@p7B>}_pQ33~V22!qvs#B$Ry1qf*}!I*T%Iz&gTe&_$)PTa z7X1NQDh1IK)d11&XPxgAQ25i_C;)jT_ z8g}T1l8G@Z)WrTe$R=roKBOc|bV8qWoD*e}3~FUcB@yVps_3A5JjnxEDmk7~kWozS zsVDhXyN#wNf*E>Gvd@#2YDU6TlqLrYXm4^lb3c0g|Z4@)TY7xpwV2sA~ zkBR1~md%4yh;khFu17wK6VLZZ<^rO+;~?eKSn09EL*NE!gLJ&B8=X{|@L$Yo9Fqc5 zIa}pA`aHk^toI4HO2(tQAbM4vWV@!_@8>|#3tWw7ztfP6*%Kw~V+gvZ3@YJw_W<(7(|B8-laP1>;aQWGF9sXsXQ8}==sRZtTo z{{VEebbVrx;gVk}P_hC)r<85idlCJ-#vAR`p0fRtgD)2`V7G8Awk;kQderc zzx1lOQzfgb>sp*)8xG}SOh9FS@AhnNaYB1m)x3J5)^2EoZrXt*@&a-ot{9}! z$@%3#@gUGqYlHbijwMo8F*!SRiTT~ST0`ytp zt*a_TPxLTp#1VMT%!`f=dehEaM^gWXPLbta0AAcQ8gZV7!F%3;<{M=zfRVwH0dBhx zeYAAss#1)#_3Riufh#AFW-EW){u95~Anwcfb4p`zV5 zZ4VphV4Get&WhEoLL@nym6T8^`lU2*ojH`n9r5{17pT&)hO6b1b$_`mP~?gi>oM+V z$jZ$yQLFnLik@|b=Dp_?Z%Vj7p{0EI<|p#sg8rNx4NY56tDJOcT*C%gN>3Cx?4?i@ zEGjgdKiT0Bd3$s#CW-6)Ud{3!3>ZgQppz^FMqKQ=X*+Ia@dl~i8+*QT9Ojv}7a$2* zpOJN(4%_{3|7CxRDTiihdLtPM?n6*j{>YoYC zc2coJIp%r9rSj^A^iC4Xj8B`?k3wK(%Rm?UJT1(GdAEtJW% zE=6Z%x#alN-#py|avG{>#kOs~6nA>bfJfy};|^L>iF~SV)`mcNYSBm1LW?;26I`sR z^n!%xLV&J%nnb=vx?m~5u&*iyKz}gR0Cm%$L7B+x$yO>R3kG3fh;2}IvAEEWS+ruK zs@j>;!0dZg*pBD<$*z*~0L~E0qqF>qX1%zo{`O#hE!GkYxzT#!?^Kl@-PbvVc}sr5 z!BXWtD#DM#v8|B*h${`aVB>_m6L1Af<_B+y+}Bh!t6e4HYSC8MT%QODf)= zceGpQ9Oq*-;W2>gdXB$o!me3f9!M0-%BWCX%YL;Rt_UVPYo&nx+$&4Jk2>h41b1=I zN4Q^xV()vdGBlM!=IG|yqeC5jNJ`mm!;bAOm2V(nU!p_3q$_Bb%fR>Y<5TfLP7mi8 zavr2uv!SFi^Os}x8Q%T{?eLG@evNkc+b_Yy{74qyv)A9g{aF9tC;A6p;Pu!4O+RCv zT_3*v7O16tRwElDq;EF>kX&CNGvX|+s|>}qpI`ucvvUYBJI_d~8~7tjf`^~nJFRz6 zF&|n_%h5SR^|65E%I^?FC(vP}xNNzuM$+ol>OSAnmFgqXmmXrMJP43ww1r%5$mY7! zB^mnM)@X1V4CFj2ZHfm7Ohb2Nqhe^i>=te71nwyTnefDvSPTp%Mi$SKX6=41X!@bG zSpGWt%gS9Z1=ZFSUbbqB9uenTh1kb{$MnFS((al?1~Bi7^D?Sd3>BHVS9}=hxi20N zQ#J^-pa$$*S6R+8L3`HPG*!cAeBFahA$nOiDmS77!*49LtlV^C_Li{js3beI-fWTU zNC{8;D-v$l3hq>osDX4~m#;=~GPEQd=8ib$hDg3K4Pbp*DV>`ZO!z5+JHuA;)2wI< zSR?#deu(GDay;8>=erFJ;pylvPG}_^jD()B_7|3Zw!7(z>l38;LdZScAn1tY2fL&VrZS` zuul<9FC*tiYvIXFk_>cG07czCW+&5$R8x2k$+s=v6*evnDdkz68!p*EVO;isw1o>M z=J_H)R}K@x6$UicPQgro{^^aBZdGm>+k0r16cIXG#O2@z31UHHqw3wKZ=Z&@KR{P} z07#D|5^{n8jgnQ8X^+7>p2T!EBr<4LRsd|pjTOpQt<7q2qKT_S_umPptL|l4L^ivk zTmctAM&nB00-mL;3Ah0|R#P~gT|}zwCeLm}xN{wB>=Jtk5H*k-4vM^@>-2zyAwfPM zC8@{*rxO79fwV!X++CRw3~tCjz{{#!oxC{8=Pg1vUF=Ej zk@6qmPPRQcbl6EeGh4xBDx{r_FtC?LTS-{6qq{J zN_x*L+c|#%ByGt*K;j)(Ur6aTTFxT3#s`{btRxW2oi*7G>>jEB#Vk#-;SuE=I0%@( z&)$mcI9lsC?Yv;j>;uO0E?IMa<^BV0Pt^%Dx(15EG^SXGLi8Sn0?d+CLbFSv*@d5y z>%0dL3wjBDY?`WvE~P|%zCT;et41x}8^vk-V2>H$W1$|s3%1s7-Yi9_t2mB)q%lph z8tits`(c@>JH!&I4I@x0mjAzK73-LQFtcos5MCx+2+scJ&o%6z$u)yNAT>j?HPTn{!MteJNC0+4_!{ zhLTn9fNBY;D=W>>Rrcg+g~3Ly2PDP(`t4_^9)1l~CCOty z&wuM5-#!Z}5h~RKaJvuo7kXNm;&5V1lQNu4!UvU;%}SANQNHvtR8XTD>``IZPt*@;B%t#d{pGx!*%bo> zElm3cPKMm>@DA8;?}V-3^sfa2n!#PjI~|UK+qk2PSPgxIYV%r&Gi)rZ%adEF`W0y# z|B6lag_fuK=Xb?lp6>m%cTJqT*2NZrB2{_dn$4*t=5D=ZL6SV-AG^W;58~;UGdA*C zQD(kmDUyxU?!O5JT)VRpSgN93xyHV5hgXRjytalY(M!G6r-vMYX6GMBy!OrJ9=J0c z*c_s!-d`{qdXep(gBT*;0uf@4WBcdW;-onP`>MimVU-P3SlS8^m%^SR2a;=PGmU!| z(q?GEWvqfn4VmCA(9?6!-`y{GU4>K~vF36>}@Da7Esn;&Sst{nv z!pIB26DKlx3d|lDSGO#v7Ij6oZ6c>${@_$yKs3U{HI*Ins{ozppS*nvBOLvpgBp?x zZ^=rdESsq5%BmgnykPwhs9v>Z<482Eyc4nj&xr16_E%uTe42_=!3@M(YOE&!8eo31 z2@%F5!NCW7Lvg;E7 zvjqLC_v>+dncE>WrG(ymHpX_m|GAbj>q%;|{CAu4UKT{Ca~jE80>3s?WDA*;5YS4ljmWlXAur#03b9YH?Xw_{~9h{3%-WGIPtJI@(== zrZ)_y@f{d8S zy2=U=9xjwvsa_t7{wS-ffo7>F$AxPNB{5SDAtt<%Iommf&9BKqh14ByUKaD@gedKdiWMXjPSD42nqxQmE$H6vF5GH}wm-3?^7~W7hN|G2{Y!@GibZ#cz zHU8sw)vYgBxl2oO!x@E>VWee0J#?;PAr6Fh2*LsV@6}VQv|+Fp?8@Z$`+cdcItzPR zs14`4omoP@E6HdM+T33v`OYsswU4IX_Wjr2y!(E5{oUy$xjps6tx?hSfb@ZyzP-4v zv^$;xIt*k7s%-`zv>gJ3&8QazOW-sR5Q-$h9j)MmdiLeq+^A>WAxjJf6=C_>gC5+h zQ*(d0cogoA&JM=OBO8b+rrl2p^1fE|w~`zTT5<`)#1-j+oo7HC<*ldoXe(E_&1)CyB)>iA#|A7!YYGav2W%+1 zY}o9WAIpz(Dcitf#WSYa{s0oXmwW}N>MWS5{rFC;+)F!dZw*QuM1q=(4D+$TN zhjMm)O@x60s7J@_sXOb1)CFX=k9}vTm8|L|T+?i`K@^ijSj^UVnzM65yEj{L?SuT` zGX+mn(NU3yQA)y?P4$^)&2@ zi^pUN;F*!RP7;{U);SGNaX3NW=b@_Z0KgCoS|5PbtwP@HwIs8)WGWlOychbb-gcS7 zo#HHYXf~Q45&KpxV|b+V>D%A_cKFZ#xg6@>!ScCa5pDht>f^8A+xW%XSH`$~&Pmb^ z;+(f%aFMZF2n%MO2voE3tQT$!*(9x==^l1sk{Rwm6GEe~asaA|DX}cW;3BV24^-um zVuwcR+Vp55+71N<$;uOTFZFhKr-PiwNh!Ss(1q=p)78UzoZs(0@j-UGosb?uzetLQ~f0 z*TKv&@*lna&=xGe`~1CkpXGPz3qFVjRk?)JgU;M{&qSOUsEc7tZ7rt5#GT@R4R@+I%k*p80V`aRud4d9L zP(vH9(0z-5)L%ghmQmg7-+^>b=Nb+~k>Yz9a?M z%=?45;yD)Z8KefLO>Th6lnLf!AUDFtB+r+0x!)w%Sj?``K#(x4dISvrvh@yd=WCwT zUMWW6LZN^(tM5oRtBO;T2-v#7OxKYr7fI`0-0(~xDS3gRPVcy3Fy7YnFyX9P(4!Ov(BaAR%uO*=%1c@9lS{{)k{M#qMA5&4&`^|D&B)c_zjxf&)QX3Sz4!HDpRD&D-~4!>(ZxrG#kcf;N^ zJ-e0g7VUWWt^{yr=vAEz8FCNfmh#0mn~u~gs6|ig%z?J;Y#P~KXA;h29p)a;CSMkyCupUEZd7LZpQiI3OwP(PSy0Nd zqNvxjmDa&lMnyTjYdMDihu6UPd2y@#d^@9H2^kFJ31x!uzA+fB3H^}VL@udw@w5QO z0!y#5knWfbVN`jx{owi|mFj=F+}tG|d`2rofz^Vd9NA)|+s0J|8@8yNp0v3Q$biu% z7aZ*`)MYt9AAaGQh%4xy{(q#s>#ii%l_vH-pJG#hF|F3L9-uvT&wC7}8*$kg5t(tT zxMZFTUiiXeJF7kBm5e)*-^B0-G8ky4OUMyk1^4o6Rj9+;idJvJc0 zxAalN-d=q|DGsaFi^ck2<*_9Ul#iY7zy^asPkiw8k+8HXry)zt_y7QDelD7PTzWzg zFb|(IpK}5%{G?kkviiE@=0t;s5kEwiH@d@-x#I(hwM{xp*e~j+3oeN~6T$S4TAe+k z<~kc<1v!3Vov+$%Nw_M-fDPqpy-OIu>?S?$2T%^g*d1j~v8ZZ-tXAdgPB4G13x#ya z_OP-bY7s(Gh5Sw6A?(}-=NdhYx4!<%T0Q^1FJAr__~LYz!$!3c;6;GcqJm~`fEl$G zu?Mlqp$*hJ?XsVs)PGp9NE_4?&%8J5JelTO+xdV99*_kG*e*7ydt@a`OY`mJ@0%S5 z>9E&sA%gz;A%{=g=TGp$n@^M6Gx71135>&eOL#3Jy1nmY}LB0Fz<@50J)w|D5&mDai?@Q8ZZlp~MrMLO& z?rmHGY&YyoU}NfmX20gC*%Yp(Z!|~&;(8I~PRH7A_AT`cjEq0JHY|^Mg}(<6K|-%o zPRB$zg>EnG--jDp@tWhzA%X$uGcq8cio@uENTHS%P<22*&KX|1gR&J9ygFEas2%*6 zS>HiPK?ertZad#)QW5K{p&E7c zZ6_arrY&Z^BTi+G6VUr>)prA-He+|?S?tZEq?QWd9tfZa(v$UG8C3XVy?_Thj+BkQ zgTWP8K^C4bovPX5PrNel_u5e|P)e0Ra3i=3CW;L=I_F-&t={=#E@;!WSi{I6!k2m{ z3a3_b40n;!NR4?0ImJ&8*|RU0EuV^AIBct&=;2;YSvbG!5zLVDKK19Yp6=~&hX^T>0%Wo*DGY=Yt@{;=>03v{8;sR`Xe{|+awX8j z=dr1vgu0gCMo18;@K}K^td`G`3XvFs9DIC{>u=P8HK6OW%?ogrn30>iTM;D-s1S>$ z_X-VK2i3#gYKie2NIf~jGo!PCjLuJQ5MCs{Hgb>wfW$s{hYdkkPtiafta2hw_~1w0 zgfg@L%R&jD6yjHf$FyL)w-2AzT}rrVB3b}LDXD@_Dn1P9R?F6_>$XTtflcV_@gK+P z8lEh97qDJ@tRkUtL1jH`n-3T;t=c)?U3O-Y%Ec=**mT9sO-u+&gYPYfg^m~CtF(^g z00x$n6IvN0J}_B;3&tUq6N`AM{c<0IiQ;01NCrxPd?u(dUG@JD~_I^NnJxQddaqBj;{s3R}TX zw9B%>hldXb;3{B&RCL@(Xmdf!O*JaA=690+$|P6i9z%rOu9W&KLh*`Zz-EbAwx#I} z1$veORSFlA*pvr+g0XqEtLI^O&eFKhS<1?8cz)LdweAFjBR$JNY#PFTi=~RiS8+3*d6dm#kNF34`qrr9_@I8unex3@T8{AooPjjjCuuX!R?5E4nhDe~hapz_?!FuTQ+m!n2`}HAlCt7YPVasszrKEB&zqD- zV6I$!E@?Ck4t>~`ta^%`MoMuNOsqM{Sax`ZnK?`$)p`#((Sa7rk_{%Kp&ivkH1`V_C9TsLSk%Im^-H&>#Tlnfd$^~+44&*#NV;lanN^xd zyGcC)j&Q*Qg!M`u)N{Nk2@@n7f~C+Rj1YKA zZ>K!Tor2xr5#mV%i1qjmr(FfdtDU=i43R(#>$YwL7#y1 z0-Ee5o%X|ELwyjbw)Qw}0M$#B&+C*842!a$@Z>G4iO5a4E*-Z>5(G)FXdrf;WQ@z4 z{U-H1rLms|3nFP}??zRY5ao1D4!WdrS8-MecbeZk`{G}ocd=x^#@rsg8WRw+y{zaB znLegfK8%yXttU(sj$r?t@-$4HQsr;CPnuXx0GNZ;)WXBkO<*n;IlfQ2y0i@qlqrpi z0}u}DAK=GT>^GgBxOH2G`JLU<=R7zZ1ebx+h|#n(EiLB z6$q~LqCj%*X+b~iRcno2J=#gr(4&XI@59Kds8j>p6&&#$EsE41<9%}x8;G9qzd8on zh1?)@?w(+P;*WC7)YcuG4G$!f@`Qbxy8>(DtKz4yaUw3|^B6lImAFTQa4CWd%2fhm zTa1`7CYRi-GhI7CBdHN%fp`hm;xJ2N(mkN`<}oIZ&y@j1<30o9-<{%m1?aUpX4RQU4+9qBs^~^cxYR!iML{BX zz}_i9Ep;CR_HHx5bj+7fs0hUenj_IxaJWH&7Oa3YUuFu2EuTSqj39q0yU>{o)KAW*N z>K37|4P6bF%u9@iK5tl561m5U4`m9mj!A3O(&{_`df42kF6$+Fm6#Di4qNOSMZ>+Iz6!y(|6y5nZJI!moV&^3h-ZGyGfs z0+>4GBi|3no$D(Cwmv=sYL6QHWS<+?*u&Ft z9Nk3WlO_KbaR5u>`BXQ-=SSC|fIY*IS8v?i8Vl}ujkXOuRI@|ci<+?&QWceiEEeV+B?l;aqi)u00x8IRgn6( z*9h@k@BvgHp=q`~&IQ8Ev`Fqoh06HYymdj^RE8(;w#5cXCiWmF%!$2>gtD|%O5HlA zEiJiqt)epQHRiTHpVjm{X>(OvQ4~o9#q@d)4jY3^pd2;JP?AK@t5#&Jw{n{>AGjDw z=7q;5@atc=c|@1%x4SpheIQr6JuATW$Av2heftw zg%upxt_tDSjI3qewyLGfZle=GMeuP;wGFooIHu{^Xk9(K>x!haG8E8|Y^9Enu(76I z9lJ5)5nO*fT>nb(&HT0j>9Yh0Z=k%LFD*M zb9UGRf*wXwVcp4-#^yyG2IS~svJAGmVK3*P@KLL(fqb??T0M#*qS$6?X|=NS`Eho8tEx@NMY4toW@I*$Xv~vq<2e!d5MTSo*ewOC2}6^p;Y)$qPhW z<1VS;+rr2&fo(iBzK4mU(NF>lg`UuT}jqKm2f)7%#_|@}j_$ZKtY)RgM9z zw{}|CpiAQ=9lP;^i)TkZ6d32HA%qqu@D1~jTJ$?)e;xpOzk2Etu8aokeKy#e0BuzGuNtvu z@SsH?iI4@8bFj9m@BncrD-maPtg0UM}{7-vJ0Zv1$oDnom-y3E9uRI{cKa$6S`))D!9Oh3 zbdBZa)MqpfPO+87KJ6$U8-6ZbRRZ`?@j@~i6T9|+uDK4ZEFrx!pbE>bo}L?|a~u>p zugTeht`u;<06SGu_8j=6(KB0lHK>3yChzF+ipAxNZiIfT?VEzg)Jf}v5#%Uwpr_k4 zP=D#k0}trCFpS`+8FDE@+novU+b~(@Wt5Zzjhbv4_&!Vw zAQkTn)eMir=z_+XI(^|pJY*3}w-#TVu^TV< zvQ&NV^#L^Kh_FSa;>n8c;G}CiRp3rJ%0DQu49$GwTP{0?>4l_B{}_v8!N|W%zC&9> z8RY~ssE=R2qK8T{Doiw#V{mG~-8N~7=E@{d0y13QZ-L_na$8k$AzGkiL@(J4*Qytf0z*783v)RHW)+dz6>AptOH=dPY=A%Z6wC z1>In?qUYe)-siyT<=CI4D&FCY1AkowjG~py0-n@NLIlKzr4#zhxx^-v%uI!D^AQIq zn@`IDYzmR4i8BA}n)9)GG%;RtCXjQpKV^`$(hM3(D@ip8)+^shXCsmGx)1hrR}{;| z)ph-sBChgNJvOY#pEgoG5-Ju|&mH1`XDZQd;9Fo<=|O<%5|ayqDjjgvK;OAbBS)9* zX3Bz{4G>WFK+juX39&&>rav_DScf5bD-UXF48(0PQG_>1oQeBU2{1df1`G4-(>8;F zqi{1W6($@eRp%N>?tFqhow`zZ2yu@5--hp}g!KWti9av^eE8>o4(S(QoPMqn7!c$6 z;p@lptBR)l5;LdPZk39$`6vSq#QOTAiopf>wr3sK4IJML?%q03HLns88h|6Y;)l7r zG>CRyuvc`cVJQpBxb?AU_87ANj04Tq;&SmJ2e5NK%eIbrdDLxCe4BKtbLScjQ?*Sq zJmUEj#CT!-qFrxP!o3 zOaT^^$xsWy2=vbO!04AM9i|SJYL(Z?5Am{x!R}sjH!e=IOU_y?k)L}VTT6ooF&nn) zD2eGPUrigJSpCGE(M>`9ZXtktY2i6iGz`t1^)zLL8oTszuxN><{eJjf`p^@l_Z#Pe zq^~9>KzjW{$Pq~>J{`q17_V7P+ac4J-YI;>>c#yU%vjtm&mEw=A%jg>KcSm&RfRG4 z+G*2U4;2J1?g?p6qDDaXwz^8*c*h{E*%_1D{U|UQOc395)`moX7 zSNgb(C*ba6pzTmM49f2(K~5-?`4LxfD~tx^iBwPvec*>-?|v?Lb4OUYatDjl+w|`({W1F?4gM>>m~O7x zZPnUe?fTO)u99f>7KQV9(t?CP!x>SWJ>$7>-){-S zWc^D`Oj%VxX z=i9h*_k=0@sa~*f+oX$@bO`E0DCN(p;6k-to!SNK+{T$&9s0kL zlVzYQxdAMeCAcC#z#*GdI?L%%RTc}&N5dZILYVr)N(iO2;(?$RXzkme7kpUiB}?W| zm?iDQ>N<-|&#EdoJ0mPhR%yhWM`Kx-)ZxC-;jEGqS|y!`u7@XVpchd^;z$+Fwzz<$MwZRoA;sD` z{-Mizu1c!V^8~u{}(JvWne#~I=W3557awhW3PuU?!L(`R^RKvT8x9`WMiI`OSvvOTxI4O z6KGcoiiO%PEjzP|l789=Kz}FIHVveWpImqi-A23jk%%to)<%@}7U?%c7RVT!$?n}b z%28IQm0SglUxDQSs#J9mU3XCxT`DvL!elteNUVG^P8__jpo@cTyTnyS%zWmEM;nP^Kn%dw~P)!xl^tUquQQ3R_q7yxPR1 z=hi^Lk>x~4gL`TP8PxGNGM#Ga1B~CNjgo!x zxF&MY0r2W0gzVJDM7j(B5Z4Loa$@$d0B{r?K6w%d3Kf=mOs#MKUlF@M4= zDEwo(9GIrhTzB3vOriQd6!O%j&{ua5yEwXfPVH^ZI z#rIt^z8AtobIv8wtUynrnF?tOif1Ahm15Nb6z4#zv(yv4g;hYFP*$BX8W`-kL_{5i6C_-L z%b1Hu0t7aCwv&-=Rr0+5ZFMkZrb?;NqccOX0o>gSLSdx+aZ&^77-*Ov&qwu~R5zQv zyaihwDh7tO8{i}RA^som5B>Uqb(A#MPk~^-iCKA9JJoYs+-@ECa1%d3(RB9+*J=Dv}=hMc|6PEN#gQKYC_F*asX>=;YYnJmZTtK)@>mT-QF|^#cg5jJkVO6nbiSvUh_9EY30Rqqj zly9}Oi<^PV0EU9xa>+{=re^?9K(D_P+gQmDutvAG1f4+H1dnyYSO7VXLJ=xZ_B;D7 zyUJc6>|hnYTUCR?Wvv%{A>3~VF^g^E!^r#GoeP^JpH=j}a~f`a(L{Do><9ds&^_qw zhWI2EyRpF_dl{S=-%X)?=-@z>FyZbgxz!fs)GiOB++0g2NGoj*G1w?rDf{^DyzN=dJK@5ucb_2yqx*2@cPG)(;H|= z{|{`j(?t`_Y}Z+;jvMq7S4MHD>6?y1Z?Net0=07sM|`t)8Fep}r4$4lxzwHHD~dD2 zqRTIG@*%&Ea&N(L*ovAayWpI~Rqn5rem3lerOUxq;-~NL?+yT@qq@hq`muW~$^!!h zYFqYU4qR=(M5gTD188oOMy~f)AUX+NF8f$^m!6{wxsmz-^eXi0gxWc9GrOXCsa!X~ zeM%Pd+w+vWKRQwNDkVOR44yNrl}^I~_}4fdr3)&`b<}2lTJp0$)S;*&HedjAbfHsL zM^5lHlL)U^h0tPI^^C89D@EM#5)T(b>UP)Q-W7;UbgTGu^*eMq%Z9YTYQSeW`i(3}~$L`+~ z+Wnj&u1N{{Q%XW7!05Yw4li$k($CT7?%uq&?wZ`DsZYDFeo;3w!%1(@V%yz@51UjE z_W1zAPv9Laes4u@o8+~bR9+6dy#S#JtCQaBs@6;$xC3wO6p%Lw(QXhq?4hq7$%if* zU&akpa95$B)J#5D2xvi@OM!o{&^!@{wXH}Ha#TuIau{&hZ`FqSs_ZZ@?iDRKojNG6 zO3xw(1%r%*+OQ2CH*r7bVpC|A0<^dyhz|LUV{;3X9O_-B4#ON``xc-w^Uzpsp~}p< zSVB@FyB-EGEHO*hL1GF16TyES1mohsnEk!)h3|bY&GbJCuQvPtZ{hV8{0D#%)*B>u%5Rh}+H&SBT}5atV#g={ZE9ApE7<5p(WIxIU4juW0WmXH<)qs(&I(thd!vG0(!5z6CliK|) znIsC)PCE#@yBbwUT(u(m2>U^!sxOOU+MeHKa44tY*;vk2s&1iF$^k>6xHAo z%B+*50yM31J(t*Y4}4m%Il%~=S;)mr3P*QAmS7IlV*!AU@fc^jwcQYgE@zyod;=CYeZM&Sy z8NXTj25{U*1@_arx1_AuhqQ+PTk1 zcAy-`sIa5-8WbA&L#!2ea9;V_?}qQ2 zVCaa7T01?tbe7apYSs~Pto8w(m8^_r2z8uY@Eh)dz=4iB44;h1<5RnL&nRM!wu@!kl2Zci(xJFTD+D|ln%!=j>2&?H;8@d`9 zS}`sL(Se4rj~S%%UOVuP3PPptu4_|*5Nq{JshXXLx4<*l6h$#jZd`Q^)dQQyeIkEl zh8$)yDygq~cI}h(>PxRpn$|swf=I3lSE4UA2`CdM`8#}3dKxAJuZ$9SA$ZBy)#XHs z&>f*$y>BM;%v*E-ok}TAOSTUkrriNLJ=P+TgAuhCxaS6YtXBX(dzw#Up2NjDOpj3* za2y+{Dcn)tbYD-PB$pPY&k1Em(EnMbiPOUZ!@Y@Pw-ZENOMfGQeB+xYYhB?Z@Ei*U zq`gF$;BL)Tk(f|4cvP?@Q3s`br_>?@IBqRkllJ=SzYc#*W58eWUj3SD&)+!4;ytXz z9U6JuWZc6zB@i;KD$|ibBy|vyeBOia)Ui=dI?v!h6w-XU1D*6Qq-M9s?-+adUKldF zB-}uQzu;7CjxM84v%s~tSIk>k(|}fhbl3^OK+aq3@Pw%D^tCwKg-haqwyaT5RVHIEQlDeX+Y(#W>hxN0>m!#aE-b(4W zNZjsxZZ9$Q8PZ%Mm0eI`ayqjj;!nOs#`RoVc^)=Otsy-{D0LlGNx7@I-l!?VSd9e# zL75m!N6H>z(ojxhnpefVyQVni;|2Ha=(4dUSCvA3t=8yiM-f4Pr&l^w9TswC=(F4F z5rLs4C`j6`y5?W~efLHD_OCf!eIbX~EI>Yd{p96e|MH*V@eQ)cSK;Ne^k4jU`L{1g zh7qhkRN&N&mwNMw_Z*N9+5+v1uc+Mz4q$rw@Yj7--T2YA)LHdRT9yu4;~g*fTHFsL zn}rsIilxC7Lh)M=x1vLd0(J$2sn1=7C2spPIv1tXOPHZ|}BbW0yT>G-)&x zj4!Yad!}xY4@D$ZprjgHYgf%w(1ge**FXrtHdKmo zl)m%t^P&0GtC^(!)>y;u-b(fH)9~(RuU}iw2`s{OA_U|h&}a#b+z+D1RUTzz8jKj~ zkSzxLOQ{J-0o9wZ+7wb4M6nNeUJYGKwLg{OeB|^Y$&k1$BskDeHoi>~-@9Sx z8a3LHq$oEBbxr6jz{$^>$5BZn@~|KFtPFH=1{7I{Yp?y~C7C`Q~jzy9x3>c-X-S#9k4EUkoULt-H zd{8ZTcC3!21U|baP<$|Vf#1BdP2BSla^Qpq0096{s==@2*eg0}UnmTI-X0bP@)M_w zeT9JmY2H_rl1O(58PepQPl0P1Lk#O$7T!XlMsT*9@MFEWKh9_E> zZu)ps@W*vH_yC|9gmAeYMCD3S%%!7Xg4Xu(9bdU`51Xw>fF*YiE^tGpY)Ynj$!xzg zox6=tt(0+SsqD+5Ld(?Rg}O!IHclY0)u=M0h){55Wir|*#(RmE&Xbm;4E1%=aSF(Y zFm#5|w(xgHZQ-ZPFs(xQw=Cl5wD4`m1^)u&7JpCK#s9DG!~fqu0KFmY-Ht5Ro@Aup zYszqNFV>dO-m5Q;^@#cYsJNojuDSgmJu0EMgQRxeF0@O2rhuZ2r@0BWS*jLSpQTDT zv7up7v9&=tbTKF~AQ5@k88xIUfoLX~cBr;eWKbJ-s=sk1b&cEL@(2h$ZKrO9Qh{Wx`d;VGjfyatE8L+n>?rPe z{sA(jK6j1l65NZ_+@$POOWhxi2U)^?+F?>DRis->#QZl^3LkFhE`)(kvBa$WW`dPm z4*(CnPUlUfC;z0V@Yk=C!_*ge_cpxz(ZUiYR5n{cu`ao7Wip?VV(*!=KAfzsZkRtF z&;}}zERT6oab(lx?%*}P(=<*3T#DAZVZb;a_GAw8D8j8v%VZ|#P*^k5qT&L2*H>hh z3Ln5FMA{N}7|l@Ur{)Z{-Aj4uX7VEqCx@sll+k@>l%z|1R-7dH`%^sz5;1}I@zl{5 znU+#@p~Dmcy0Juv7J)zy%)%_zKy7FTZZ1cc-?L4X7g=9~TO<8_&+>6>6L|W%2-+;G zOL{AOE4V0sNhc88?wR;@R>Ieg)}#!VozlZeSy{eKhiqpd>v00W3{Rm7%I)!oLVM6O zKvEi+J(Fp9SmeI1TXcz>^1`k!`xV3o`2*N(%Aq(XV;@LHBC>Y%?z=U74W{Kl9brV)Kdd+O%_v%Rpk?~ zVr7F?Q~(46f^8xgFdVbgXmWy2!CJ3dhph)j>$lE<9r8#)Jy^0@f$E)5&ndm@*yeOs z*W|-qzV&AfbieOlfIB6Kw}pl}-$eRarRD3zhGipAFGNa6`g7bcZofox`MLREz(-@O zxAD&DB1w8$8efqmmFZL4yASd*5mwX04cc@zgjK)>R1(i;iN6KA3z#Eiw{kh^a!PG; zY9$?<^A7E89J5pd&!Gbo%XtqoKS?jsIuYV+Yqa+@HRS}T`3z}SeWMgs3+)wzc}j>7 zBBa`ZNT6_O{4j^n6oo2}t4{pJiUw@gFg>4upXL{!tH9PGDRG5Y8^(i3^@Bvx`vx9c z;1wYqrc^nFON77^?ks#f=hH0^jRYKyZ=Zq2pt3SVy7n0f@Hq_mFP>qxwi~B=-0_Ev z-4z3<6jJ)#`AAKp0pL+y13B^l`Q3I2d9Z? zPSRPKb|UE;1prijK=~DR1m<~M!kyRCU0)>2Eg&%uspdvr%*n{N#RBglJK+U5G>r|O zzW@F2ha|52kQ7;J|LXOt{M9d@wQMg=#{pTZ;!JkN9a3dWgqV2+SrPlIAXos@L9BcC zyq>uuS4;CviOkaltuNt_ps?(Nc1~H9o&gfi*wi(Joh4}k6Itb+W}{Yq=gX(~jw z!uHz%?vkih`-U-ealgVfPz0h>B_dV*&kmtQH)Ovp2$dFT`kY?Mt1uZUpuoRLarT1` z_^dvAe1f0-MT-3c)U{z1AV;E=2rEAz9E%^!i_bKgAcJx4{W8t!>*ZsK^{xhyzyu7H z!$no2L<-1>`zHCkZip`>Jg$zM+hDq5dZRfAYs&w6rE5B!uFJA$40R$wN9Y>wqKxr2w>K&iHH7mh>CmS&d~P0gUhDf8?8 zUHa<3y!;}(`)}Ak!`cO`H3Bj2Kz>ZpHtA}*B&rZ2mi}SSVZnKubos}*gnX;#Ex5;x z`Z3`e!H-GGu*~^i2V}_DJ9P}cep$s2c>sxunI5-so+EHrRTgR~G8`=e_kEmZ66B_7 z-CF3>+n*1^cn5<*pq{=zsz23`z9eTG*>o}$Bs&?t? zZm-pcY~oT<4be8Rg#x)A00vS%T-$M{Ka>)y48t!?xwMvG&3F|nrz{fG1SiOjm5b|w zs`Q)umQzu-Sg!^1M=e68eLituxl5;Thob+(g~euI-A>!SN=7HOO38jRYm&j8BBV@B z!t{nDPMATrivavd+mWte2NHaOq^7>SmmaGjusBDxSA(u;x`uK_nsnU832 z5q!7sJEHYYO=ckwuArp3LNz2r$Tz#8q#Q{xk`tsN=r${e?mYp~bNUi)WWJI>hd4cME!EgyWlUZoY$yziECKavG7MF*AmYU^GgCXk{CdGAkd<)D|_x?|DFB+5NqW_ zH)#+{(M4)zG4QdJ1EqZ`NEC~Xx2=Iy&rWv@1y>k*R0%&8h}XjvD=`T=DCSihT02?& z`B#7c58>~>n*;FMzx-$TxBi7f%U(ZBv%HT^_oK=m>>W&TM1xfc6;9m6m}r2DGmEE9 zryyxou`0qdi^1WyjXZ9PRDfqD)_JO+yj0S0clQ0LhHx1cUDydl2j){3pQ- zAUOPl7Rx~s3x!jr|AyH(X+fJPn7qKl{uNbQpSvbB`+^Jqlp$F6R;t3oX8%&g9H(1X zW^sZ|rDpGIdgT1xx8g$JtU@e70CCxTEba^HcVrFTIm=1`0B&qjf1e+A?6;s>i1bz( zg(j$&p5%by-4CQRB|Ldhx^Q$4MpSWj)*v6mo_A~u-veJE8SqsaHnJ}32e&JIeG#rv7$G_3-Q(3Z&;d#4oKA(NfR&gNWnIqxXTAn&dv_xgcQuxJ6RN?DIaH^!@1v`1M1Dz$M*K$eJ3BK zKfHb(zD;lc^5rLq{m%dJ*XeLQ`%}5?Y3O48(G970bwRNWX#|RWzB(#xWRDCY0U$o_ zk@^J_99EaPSb2ip_cXHGmciZ)f^aP!q&Hg!h z{))F^o*vXs0lg&-PI3}AXmT*5s?7SFN^468VLDcYm#OvJlm=Py(Kma4`p(~m|K&UO zz`u|GrRy)B?o(R~@`4UhK-rOcu{{`&;s@@$(3dFdN{Z_ilhUC*BV;Y(mnul!cFO=4 zwvf}Kj1)$+MjFYkxYIh#t^L?4$e1s%-2gUJCF&ic={E$7IaWV85Q}ifXEx;%g zLzBk^CcT)fdj2p;7>V!T?gC%H;Br^ybnxc)<xzAhO=UQ?91}; z*ya)&7|tJ{jK6gywTLI4ocIKPty2V}R?6`R7IR^Lh4eMugh}?1xa-}@h6fcC=R)$G z(S@y)N(uE4RW?B6wblwfa zcH|X%Ew%B^Dio0ZVnI2Irqc2XnoGLG0_#jRifPfilHmj(3Mp#~l95D)G8wY)H%;}S z)=CQMw#A-;89^MyxZH9q#6NLYgo}ecVp!h|qg`;16d7b!hu84Eqttfb_Js zn>^>OxKlT9!61s`8|YSqiTd9CLtS0s@TW6Y$`20%{U{Ip4!9MDN@cJ?2$ke0(L&5`%y)+rYX6@k$+5!3leXn4%nvBHFvGE%c zeLU;c)knSAB$v>?HqNcWREUZOE6L_U_*OaOl|%EsY4tea<|^lP48Fd+$zOw(0JH7% z2-kHFbd{rsi(JdIrUbi}hZ;Rw;tsim-ybSv9Ak^BK(8~oOQ6{}@(sj9)px9hYc`Hr zVAKmO=H=$DfRnQ#1TT!tvO?=W>mfmK;3Eb?OcFxxyCQ%+%g#)03K*|R0o5rik`);O zpITTc3dB)Wg>)s6OBrZHTYR#$m!X5-{mYB04u5_+iqWG|avgjisof(SC-73* z6Z$G8th#h2m>eZk{N!I8IB7(bs*X5`6@?prt@kd)eiE2BxJj%TNr29ljCuLFZ*p>$ z8{A8%h}xPE$L_esu|v-)zi*=bA?Xe}cjif(r46?1&=&^|9q3MkRm#^;F8NRv8eMYF z*9JVqgv(B2>D zFm$+itjZ%{4Xexx&Ni^{-vU~^DxP*N%K(fGgo zWK3jSt&OV@xN9?V0Z0iEj8)x(FQq2@!<8b+a6TK!4McdFyrb`2NcyId#qUn< zK6?2E5anl_zSGlFcQzc( z7a}$2fi1FKM0m4zRFjpGpTHRjv<(AY)9s2=(?yrv|E6o?qb(}$ezdG-w_o>xXIDLL zAwfqn%W`1Ji$zPHam^r5>TCf^>f|^}@6sL|Y&c!(J*UjIlo4lX%6huVMS`im8~!K# z^{>KrlQkIfL8=z;`=A!bc959jYmb2N3W!5M-gs zHxj%F0051kt59zA$|>Qxzsqo82_#s_TPqM7GP!y;*0@SQyqLtb>S-J3ZI_Z{I%Ag% zKHdomWiVUk2y%it9_*}1o|h!**7g}TXck+!%)N)29U0ceba_!RS)S7Eu}s<`7(J5xQ}I_jTvK{E^)Pe& zE-4Zv3X}6G--T@wD@2CL>Z_?t(gbJAs9VeHJYdhk>5uACa&~xxC@sC*g6;wAbtw+i z5%plUfzN@JxVoN=3e1=cF4iXCslD!2k0ElT%aZxld>*AixHy&ItnQlp?eb2241Xl? zEd`z^pUFu1xiK%W>o`kZJJeumj6~`{z=*Wqq)Je6ej}|AaPOQYP8lMf)G^RMKrD{p zVzYZYNT3*)mEL{)^4phRNI?JB*FQqe{^jT4-6yYq{PRD(`{?zvmk(9p{_VR@UVi=Z z>vtc&{^Io)`jyX_mVX&ulBS6o6Jjr(-l;dRucvOhHnmXx#O_tC#Ox&8b*e!ifvVoQ zxzqzlL7hPI7*?8~s8`6!#3sjzc`ti)0}Jb&M5i&86uFJDO6+2ss*exeCsuo7_CdIXh_<{rFNkxh;SSp9DU&c>?I6X z6h&!U!|#Xhm`ml`KmW5FlDDsa0*Lu%uU}*75W_je;~VHVr1K(QyHz<#dq`eTwnjd^ z_5PqKw+@rbX|7kG&$Qt3fpM!ccGMh<3iaRIM&?dN5;~{@ratbc1ZLO-<22uf+KOr- zJOkz=g-!m3s}(Og0rCm6TOAtIcPMnx=C`unEbCv#@FcOP*;#F0q)EV&W0XwO&d^Ob z6{DgZYQ~SPIRTABnlt$CYKZahfK+tSM+Z?FRtcXR9z4PGgdFKsZjWRW$La!TAdTU7 z!vBg@LAD%)DE-e*Fz78^=;|0Ac7Lfab7T8^t6GEh@7g5MZXC#am>o7=?SCt<-KazUR1iC}k@5yIl zvsB0r;Q?_O4Wy5dRL)njO+lBEVOORa(oF4AC!p;cWI#egrHqE5b7QlWGNfrGn7qBllUYtgk z*hDK^RHv!~OOg&2FgrqJflbrlX9<=b?mmH*PU;RQI@t8347Hh}EMd13C@n_1}kokpIasd;OCMkmJRP(c`n%pS`@ro7dkb;5`VB()`JROvm#_Qk}@} z|3~v)g~kE+r`G4m$C~aX#{U}_%sw?nYyO@Fo>Z+4XkM!po_la1^hv>!YdyT#mEPd# z<;^aIF`1}9SIPOvRl|sELNX-CmV~uPF_76!5^Oqu{Ly*g@+2T8$%S4VX3%gXQWeiW zZjw$1gM9gZ_L9=IJ%uh6kUKfz8p%FDnPz}Q(lj=wBqneF7NTg+e_=oMjam|f*Ke53 zzX*T+Cw=|ASJ#Ke@gSa2N<~cFY^8dKPA?!b(r(|~B@kH!CM6ueL%$Mh5@HLyhs7WU z#ru6hwtkPEI6IPmQZPW^!f?7m^JkD6QS!h9-qK7VRXEg0az~5E>i&j3uC1P=6qmbP zDTS3QCv2jn)P@YbBp9kw$?w=_7Vv6E;{*I|m|Z8R&8VMdA9*GlxLu}lr zsz4ngZQy9Me~Br!Y%kP-mSy_8PXN(9cC-Lm=g%=~pl_1I0O_ z%TN~0NsDW$(nrPq`F!jgau*6op1kB4@!cQT7-o1$=xgN<4x#gQs8^sJSuA({_|j_J zPuJ<1#H9c*GL0trI~rA+RQ_j|wl=GlXGA6GYx`*$Fbx;7Z1J2Q=A5oro}Mte#F|)p zk`uu|o?ro?34QYUO|hWg>6UAj9RgM-b63$X7Q6L)9o9?-_5$jFje8Ek2|n4rkP@ny zc)ULN;DZNa@k}EPFBV*X_WJwq`djJske_TFwH@JRn;RTI#gMqX?+WQG-55`H_ty!8 zVy@tBsNRRzXT1~Pf=@~}RTc7S?U3wUS~z06e_9|MG@T}Vu5WhR;lWoBqg=1z1}uL3M)38e`G?2u=<3t zcmsKD3P&_iwF%^c7(wz(<-S@4fWV`e#xz~>LICcAU>{;2haZmD@L4*DNU5nYxX*E+ zB7WSqma29E?&luP(fhc!uRnYJQ;=WY8nxn1r{$Yc^Gia5^dJ_t|CC~zR;qiscC{-Z z!s%&z)Eg_#@nL+4g$k{wVu(W$o{CgY#CFb6V(!>AM}H>M8RrXU#$q*;<}7WFFp5*0 zhl}5gH508`P>p#N+i~xw&Ots;>x=6EoVqlJ(|D(23{LFn0?L7cL%(GX*sZxBmD+Ky za!1-gg5Ex9dE{8wV}xucwkZ@FWPx4|y|Jgp=Wt+JnDP^fs=?N+@;T?i7=MoZZ$cEb<<%6LveZFD6cma=wN$Kg_yfaVmVb9=nbxRYv@Um zW;0INDSLVXvYX@%n{JIz%}3*g=|?G79Bu*W@mEUw_Hhut;YYgGfB}7*ohek3qKuF) zOV=N3)2rus2q5|dN%Fi4QYvluBypp%!Ov7YD$ZiT=eNJ#F$ha69a|HZrOAGvB0m#K zuHMgkP-sfp3tpKgnMy z`HNg`IlwC<+G95RJ}|=ZcK}7(6CWRZq+EwSEqU*N%)2yz1J0!t@Iql;56prgi|;N{ zYKWY-`M3|}KvBUTcbK-sys?J`;2z=V@}!%jpy~1bUhtVa9ZR}G)OJ$66(Q1Wtb^I3 zN^LoG{N|suE>7vSX*v zE^E)wv-pgktanU4vkQWb#{r^9?_6B2*f)$dq(SBSBzf47TmEyC7EFt;X|?_D3LE*Y z&2}@IgP@8qcr#RDw`MVXncA+*%2_DhB+y6{2U*jqa}W*->RMvDDj)e&s*;;MkLTbz z@jYwAUV)hw3nA`CCFn^-OKtRb!KB_G6&KebhUXi|bfpCf<SgiknYgLNWQ3b+B(0N?ug?sxL*cCY5^3zG=uJVft;ixa{D> zOh>Ci#rLIwz`CAO@I%p!_Kfu7xytU!)A8j1KKWA z#veNDGo&)C9>v9b5Oi7zyU&3d^00*pF1yjM|J84limHUN#KixpH7`fc2Vz?3>-I6VPSoB zN1Rm!9o9oaxx;LV$B{XBzaYJ$NNFw3toYzg%gv^n3wX1O>o3T~C;l5)@OdlTDs_Rp zD3;>(p}yIRTK{DG_iuvTY7ENk$--58@#8o^MsiEpniFts`vTBx04lm6oFs@H(rl)X z3nAI!s=Rn9F5OiKsJn$gi4EFaD5G`~Js~z{hX`#--TBU_NuDv=9Hjb_;vL3XwV~ZE&kndYo>L((j)A?#0CK~>(O21j~;O{Ls>1vF+Q3b@X1@d^M zLLOZ-6cL{uB0Y_c7A5Vd6@;@aVXNCk>%FA+9#vmYFRrdTF^G}0!SK}1xp4!oSKpR3;+%*q**C^D-foAvj_vW=?I+RZ1G zh@lQ+9n6>^)$--!wnCwC=NQ-~Hjqk)$%5uGsXiQq|9Yr7?k@g^elE?o?K}*fYkokn zsiD>Lge}Z+z=;8dB1`uKB@73| z#)nBMq-&(RH6`}71vgfHW_JkfR$kj@2~z7+b$QN%)hN`4z{?_JsvM_f&{$;{8Vn?J zT5eG6Jnk-c%3R^e4;YRtne>-fm~ve<-)Ae$-wq>W0IE)19DABcp_a6f#f+|*NYfFb zL6&ZH49P79#5Cl}Fx&1~z~>q%gmf)xI1!~AaoK0ZF{LM|u5F`^ywU}r*%tI~b5LhX zTl9|Q0Eo@jt!Lagh*p< z9mQfZ%|gePi>v$C@BaXE@DCoCabLcEK_i|o{PKRJ=+c*u^q;>>NYmd~*4AN}T(P~c zC43{R*k`7bbH_I}fnj~GgEjTr_P*$%gB_G;%X_Zm_}$-x!RIK_74ur7MtQRn)W1M2 zi>xSQh-X`b7kYKnA;=agl?}?|d|=|-PZTRj6 z_bjO3A|PQVD^?K;`>(EaW52%rmJZH`uO9}p8j!Q~Wq3`_*YE!KVC2nb)d;Y$A3ULY zJHDwn^fE(A!wH&d`(jVgEHD)HnYHaS`y?~3ECGPJryz4PT$!R*weF@y^GMs^WbbXM zVWGvSvNEKhs9lJ8f`x_!;ql;#Wt{dKusul|ypBo%96GABj8ths0($WNKF1rIIH=1{ z8;VLWCOLjdfGc~6&BRiW>LH&KoPCQtu7@CxwC)_q4?c{oeen;Pxds>dQ`B85QkTP7 zQMHb(?Gz#x0#**$Zi9eSa54v_!P(=*8OeG?F=SD0@sYODJo~~NuR-u6$rAlaP(}50 zI(z7lq?ct_7n6!Ub|twVL||MocD&{rR3N`%(BjFh3Ka>&uuVwc#{U@p;U6GvCT(&@ zki^|ZJybz!?R>nC$-k6Ar!8D0@?*%3*+RAuD8rhiI5vZhyt(hZ~HySgF2Z~$Lm|`S=a?cJ&-xX>R;EMo6 zhPeg(qM}Ynm@7LxE2bM{VRagiVIpe234!`r=SRJA?69E`;LS{wBBt0+5vtAf8Gscd z!_D5iT(QH$N_FrVQ{SO=3JI0-tnYjhBHa;(s8Wm6eElpb0%N}#L&cT18%v$^pr+(g zo!)@k^{H&v-^f zK$zXbNOh)gOUD z24)2PL>FRMaKg>JFTlr#Hge?!wOkme0+ux7#*)T_zllT3rIr9p4OLs?DPf=~%Ln`8CbQ8V(Xo0Jc! z5);5j$`AT%hXUeKC+xmP$OLImWG5P+$2%o6aidbXmNwK!)=sb1%w{<9_VpW-!uuMor(KIq zy3;~CesJxm4b)PEv++H5taj?M+5}pqSfAq4tXG)5I=I|G9F0XO53>&joq>^-HTpGNm7ro# zkvkk$DBo{!O@8!TT_CH&x^z(s^md+`VsspYzCZ1!n6uZGtmQWT8IG-}+>a5><<}x~&a8LCWxMw!^$j3Ki3KSPR`! z774juY$r5d&ioE_4LJrme3IV`MUu;oGjxyWb){SxyMTZJY9m`N1h1$H_YzfBRZ5Ub zvd~Cu-=@s1tCWj09qJPe-^~nGpfEEJwv?0z>a8P&7FPq5IMqVRGYv*Zvg%amouwRF z1Gubsip7wtdWf*77a$PTb8FD4a<+YDs}2M>F@&;ol-s9$F-yPxfZbql7$@+m5?dwS z7Eg+mo)Ya(Vs?h$*XmzKH(@|o3_3KpWOBl7*4!yWR9zYgx{jiLVZug^p!*r-2~r$l zmPFmOE5{EB0tmWxvrr}Ora5tGI{Wdsh*I0mlN40w! z7>Q6#dy+%vFa;3B93iKM##V_!JkbVHg-%##D4-+zfh`24?~@f|MIj&bV6Ke@GyDzh zEk0%f`P0j<9--cVr~Tyh=kldbUVof^&wm9R`MG|F*E|LQdkusd@ySztr zdjZj8*nFP)X2)g}Gh+OrlnbaYlg`^E4&aJs^gt+)&*UWKBs16&Vg7QKfb;-REGH?i z0eT=ATrVjF5e_|>LmJIa*09q}_7v6s=XH@E7 zP(;VPgW4uE2@e9<+qKAji2~623A3$Nxb@=V-( z5sqhzmx3zbBTb9?YhF1smrmU_;Mmo)(Gpe?m!79#js{8E<=ePYM_LE}Ft*1eN*M)f zo)u(Y2CX}@MvnT%Y>*QjH#l9TFJ41O_XK%R4@#2KvnatQIY=()MBl)A@)Na9O;kHq zHMa)8kJ?jUg21a9_GJjPU8TH!7V}s|1v2R8Y4Wv%g#LZRvq{atbOrAtbO%qw1ZKdn^jSKoL(>=GxpSBaU_0q4V_x4UTS<%IC>DrL7!{A}GrLNgcWaI+BxaRgBtHNfcghU| zoCK*XHB(G~^xuXDN5J1^V-pyF;O?CEr7Y5rA%$hUO+#B{)v$tuwI(#*M?b%yM)PHf zhj-ePzPm5Udv3OJQPo8?YO5n^`r;PlAZ?($u1kI=Z$ib<6c8+fgB#NDP6B{3igarY zw(L}KAEA!79`51gd|HERjH`Y1NvaCk5UEk)45>SZhqD7QMPkktdtgp6>a<%f*{F}% zryj-@S^I4$V2F!jfi*4~8R8Q$+dj2rNPRt~0UGj{v7^L%N9@ERurJ)hrNbOKy#-(= zxN2FYh>2$&n-yKrp8G)g<0EkLo{AFFsM-kuK+O-!LVDpr)gc`uC?GuOos>#G_IEwJ zOiwUS47HpLDh>>Luz_uHRgd+dkVYhK;pmx0>Yn~bKcWB8Pfmb_TK9Rt5Jb+;J_n!n zVsDXU41rOL{f*Y_$P@#d5NT__UsY=$y@4Hu{BA}dfDNOkR zODV=fb_kN!si zuMUXVrjHl;p&s?57A5H*B3c@hWm_n=zG4%#2Gzv2FSM$CHG6q~n36=Ij&lsCWusP& z(%y6W1OX^Ftz5BA=nvqgDjiwFCemP*QsLQp{(!$|dbtBtFHQKvij0K>>~VJ-4o(6F z=tJgl$B^xWJe&DO$o`qdC-uD%psS4JGpP1LgZ#jO^>C>(4ul6vQFs=JT+Kr!3@R_C6I)aZZw?TR-5v6sK7MiPv7UQae zR+X2~S2*J7AS`CjN~s9Q3thQZgFY2D>5V%3O|CH+{P$Prbg`nO5^0tZh|C8AL<94Q`rHX=nsz*bNKe{e1#Sgp#I; ziTNbxFFyv-l?r_~o$oqj8cQ21;WynXpTG;xnjMm^j?}nIM#ThpRYn5&0{AhF>W8K2 z6`y#7S(_z)eCDpb6_bbQb5>kv(`T={8WOnVR`gUIzV18$mnle-dXXD6A+lO~EGLUz zhsjeIeWU%LQh3dJ@`xv1`~#Ij6C^z)=~#U<-v6S2F2lW(e>8S!Ad+tFRx>$=uW7pY zzBH0G*F=-Ne3ZVbbo~$Y_5Gkogv5O4{|BWI!tK>0w-y(!*mMPH=@UFpES~AOl+tO* zR(b@F!g5}G)UVS?3#IJjyG;*lcOs6d=veoR7=`xQW+4@NJfMs)C>{G>gxvQ zaAHqxb^T>mHNx~-@0%sZuuA2HiV4Kx4$?Ytm{eH0bB3ne-i3D=iWyG^FCJ^Htlo3< zfdY9PsjAc$_}J8$X|%pV71%77?Of0mI&@~K1nr8KABX>_Zw`P_`sCUXW*6SQcYUqe zDiG!FAaZ8W48v@Yx!J<5yWv@!0^-Dvu5lG7KnG`Lv3RWTGf6fniOM(GZ!oK zE~k+b8F?!SEK&=opxuY`+2d6$D(lvTR;r*MoTfK9=j0?M9H>WU1uEKqG?nsb4a?zl zEC7wreM7P;ldc8?qB0VZtnQCA0FH1@`d0gX$$Gn}tW6Q21v(v&D{qvxV+9-wb&=}}2(g(eLwsRFycHgG##6^cT5+zClV)+l*LBDfmn z7BeYyxLeMS!L-BOxQZIGHB!;o>ab#5`@0Xq-#uU^zb2yXYwiRS1mO4YC3r(q{`sHq z)jzU~)33qaHh=9d`PL=Wfi)UVAi)+a0(!cWNu@ALE4q->w{GKu9QCT{KrW+Z9sYA8t^D!_R-2j`z_iQW!q`Usc}>Pg8%gWCbV@ic zeUY>THQud$2*)V(`!2=8s6v$_$H`Mv-&h(Kzz#aA3tY#2%LC)KaC^c_LR^PSaY)d( z*l|@2&AB)lb3bm9lVdug64jb`0?U4po)0V+J5N{-8991yteuv_pV{#{n8HuKR za-S3T4=lZ{lveGiGG&e$O(?H0Ve(Prg$H6l3!0uNuqa$FM@>pn>m|osiAuFPIbP!m zz_~7kD(0l;XNsR)!W&G49!4=K#B{dLg9+YgcMG-y8w38LAkX(hQMM8IFVf{gZdb)UO9)-x3y>KwDI5B z;P#Lt1{)EpHcL5=kXW(lYuEIszF{I&N`-)>GCBg4U*glj8s}7;l{h%vYyqGyQN|#L zzK6mE7+CMceh2VtCE5LG2oG&GbCOqQ6mX~Oy>M>i z6{Mog@#ohOGZLr0sMlVn3V#KMW@<>4!g3)cmrHjYu8A!j88#_N&qWQ6&sZMA0``84 z)9B*r4+pM-4%@>`Ca?^vg5;#rvZpDkCEX{VcQ3746uBJ1jENgsoT(?RUXry*w?TG(l_O%1 zO}U;2s*C;1@8^n%kL_I}glr;LuN`w3NID}YJ&i6C>;S;&Zzsq*9*l7?(^l&q2J+ZT zyhmG>ZO*4mvQTjs3|+9%&bZoYw9x}*>*;bopmb*|Kuhc@SDqO3@taEf(iW?{+UE*> zT&;3ov;27k<~+-X(R0!37P<%=w$xAWi$nsN>bsqWq{IJetNhPR`|l`fCz`AH#K7_L zU0DPz1f^V7Q<1#G=@y>22p+;vojEl}7gVF6ZMvjSzI5EKY=s6Q)@EAJ*g;w6^8FT0 z%D`D}9N-!!rHe212_6?f?z0K)R8nB^x?t|2&l_j>98E>dh;OtRlrE3OkLtH;r80X@) zFo0D+U=C6VuqKaV8}&T(w0Hq}54t>f4xHi@C6ERap<@5Zyd_`0dXNSD_3Kxr68Icr z5=Mp>GO?p~C~Yq`2u^;J>0<@Ya2lm;kMxntpB=y+3tREQH+Jw^jMzB$?X-DK(SjoY z)8UW|JJYA%)$j?gJ1+3SJH&XZmI`rV1Al-)Zm+|Gt^2$;QA#RTGMTi0wmYJpFvRD; z@GWwN0>q8&0FEAjKO0Hyi~9LuO7AXprTQW-X`Q#yNoGLAUco*oci{Y_MuUgT0d(n^ zqF-0gx))lGtB|G@Cm@>5w&Q7!;(hm2gL0FlPrnT?E&eHgFG3g3tTl5ITZ%ZL6*i^=%0V`9w%-YD1 z1?qT~77_ZMUToHTX%eOO)IWRuB)oj3grJu%l@J7a(2rk#0cqL0uM}>|ea&$tT@6?= z(f7p-p4SZ(qWkb{&}0qSNn!>hzs79FSc)k9?U2uod7f3g=tk+J8QZ4yG{LkESg!QL znc)Oh8^qZ|-=gQ?fW8o;hOP1k>7;maMn?ak(?qhF8Ls0*Fj88F?s|>=>R3Zq$EQ3Z zNp|ryiewcW(vCSsH7FKoekK>X4d(Tug-1aQ@mh2|^j#S)msIa$FM&1Hy%WdUl0VK; z>sq2x6$b1Xu|_||2whM7FCDgIY7Ndc`m#Rj;X>ap5EioOd1Xi_Lsu6MjmK}o%P-TV zmm@%kFXRccy64t*ORa882sOK&(uMM~=w4IEAy5o3YWd0R@k8rVB~BE-jqUK7ZDfj} zd>~N(BgU=-+LY3~s(KaU-#jU1%zD{wnAPsp7A1wxXvRs3rDTaMKf|-L5hV5&lr2=x zmcG*ju@L8eiH-ujI6b=ErCx+fDChpIlzU{DVG~0;2u>goag1XKd&8nX0XPgn0k8@j zjV3J%>I`fkuH+qIAZoG{* z-BEN)T^Xz>nIk3!5iDB6+O5)B(tn^=>$zSXEVA~ca|VcbL0|q103jthzz8zlDkf@o z7JaaT1^ak)f*{ycKATUD0O}M3@2H8efpgL)xfA|;hPj+^DbFg1AD`c6{?&{U805?o zRQ&j8o%vk?uWgzxc^0UW4LQ>SUbiLV<f_QfII+ImBpAEETVrAzuT0aKzIL4HZtc+tWUh5vN=w ziQttL!Q-y>cihsBP1sh3`d*Kd)Wz0f4hhyGQb9Nwf5^-la+bPOsp%7+?`&-!vDd!0 zm7`Ga_&3~LtJiUke}MCcl42POYg)nY7@=5rrF;Nm4o}(BK1u?Kl*J^Rp-7acFTJtsM zptIao?M(9rfwK+Jqp@sWH@9V1aDH3sE4*M#!Ajy(mhHfnk^+n33UYEzeE&?$;Rty$ zo5;6lA{-pAd(js@x3)p)8%no21$U_s;G`S@ioyg|gwzQ&TmUOITxiJ&Mu0-5qGbIX(p?d<)?bv?XH=aX||Ls^Kt^KQOU? zD`9_l$^&2;iCwG3`K3k1?^^>KUzv3@l0*o;6$ixLflxwwv~@I+L(O^$h!Zd$h~8tL#&TWkT>BZpJ%U zk>k^R*|tWtEn#Gw1@P{U_U!YjGQYV(Y0!tzZ5^a*4B{<=oHR*Ed_GcAXwq2nwFyxH zNH81deV#HllU1aOaTxw7#Gx$QU#Dy5FuF+$sG&9^Xllv$rdtZZ7KlpVUvs@&OL*er ze9v-k7G5T(L6Uf0vsX|$OVz$!jKBtPv-!-TcXXy~3BS^dXp7XfcjlCKykwYA(-1c7 z1AcAkt9HZ&7&q44x=+y2?NeQY@;#I@JuTAxDHWx4mGOs*r@(VVGHX3L<_}~543jtk zD1*ZvH+fP}#c}z$!baEa1{-ilXBXL%Cz^H!@{Ly3fn5-M;h7KGtX^DXY|Ozo?+~bQ z=07t2Cd~s>DLB6xU~ou7saPfT!l}=xA>=gSyx|Q-H_cQzf?tU7K&AOL<4`Pl++0vH z%cpNhF%_w90R|H05jn=*(RPiEl@GHOqiJSOo$k=9_hAE)j|Y}#Ix>o&zyXom!^kqs z6Es>*#Xe=Yr;({0m!pZ!LECLntd!4qF0B62uySwm>7l8t&VJ`Hk?U`tA#Y)}lQ4)1 z5Z?eRe5B2dCmJfb@d*a7?ni7+qiVOkQ$^%v*ZT;5$4=W^tVW&(2ltCM!1fq(xiu$+ zhJ=fdh+RjW4_jbh*&T|fWf)LK8>u%sDqn%{PL61+YOo76?&Sih;m8eI@x_GSQRP@8 zrrvmI1@!j?7QsEcMo59?7Qs3MEvVd;4DW)KQgXR~zilS0IeWmDaK(-(^0%F;EvI#F-75$MbfXT7MhzosoL^v+7;#bNKgUY=DRLMPAbS*f6-v^0{cs?Yi3A^R9<{k8&#jDc-|f?u%uV-kgM!nd0BU3;qfG4CKC*afCw*p zSW{GOTi^$*T$o6uTO^y3 zX9%Uv@P+rd7_wwFge6uGHHkwuKo=v42?MkobCoED~?mHZHs+F zR>58a%_~>2Lz^&fc12bAAhMHD4JD=M4jF8YnX^>9H%B{nc;;*(8Auz%7&YJT9h}d0 zG=@Y^dvaVPI+{Qtwn{*s5t~9)cBL?G=PU%;uWDYRBF!8?nGir|_Q4C%i$;C1S9NkZ z?qUbkkT9x6)r7qX#w3L=YX`RFaSM}TkraVGQTJl>rX^!0&~x<-cL;fp^;`BT(9pJ} z4Qkmtcd^Jbax_+{L%PTT2X^BaLY*S_@+NE!N(CRDdyURv0noIg{=Al_lgjbiQH#0( z&W8pxc+%h)$idLL}%XSn5C$z8(A28056QeSUyY{sh!+_L8^}MN2H9MPPrU@_` z`&PSz1#tp6?o_m>S}URvk5;NYyhxR74+VzZ_A`K{sog-MYf+QW0WX9`d=LT!dafNk z2+i1adk~Ujbzi`@_pJlfMJX7z0Ml8KHHh7*$Tf;Xgqk*dbEjlt?PS;^5hgx01)lW^7W@T7v@P-nykw;@g{K zg(qW(L|x=B+9~69!cG&*M7MEKOyqKl5|1JCV3iD5o>m?h*Y!)2*L!PEhmkilh4~0A zWSF43wa6+3Z8qCg?+4#(I5ee4xJl=PXT?$?yigVA3(2U|!|9=ssB1lULs}+O_$N!4 z=w~;08T}EPmr2dt0Cjdg1W=Yc$Pkn2nYh;{FqrlVlvfK@YL7OlFS+ENr`0jxP9HXq z!F;vJ{taqEtEP17vi1(rkn6AeJURfEIEacdxI zHK}qGz0s1CwSfY6NqVw|&I<`Yk@4zxHx9Rryn7x%!b@=jE`3v_@=}Te0McE9m(6zp z+*j2vAU_|@LUf){dG8f7&3dm?AAus8WdaDhR}aDX(t?>CYvP2KO?lYSFqm<9ij_g~BZe=h(3PWbdcKE8K*!x|dkpth9ritO5F0LSFJIHh@@F#_&bP7?RG z_{JQ~F|?HudTbsXYp25F@X9AuG&i}|@dTyLvpk72xO6!}J(Mug4qgKR05mf@t89L_ zYWFL(cd|wBP^yyB=nI<)PGa_&BR)lbA&}c4&5m-Lh1Xtzs8*7zV0BelGyZ7PlMzxX zyVjT<^*S(U)jFd$nm`>XM08&uJ(S!#wSw-5odd^=U8P(nhD!9=MWXgw$EN--!e3mZ zVSWkvj=uQg-{qX9_EBu6pCgqHA5#_Y6U;e@uUjB((|W?Q`GM9z7d@x@MBl&ypEfIv z(^d#knI526V#--uDvVJ}V8FnRB7k#~zRgwi^(}SpN0$PP{i!-RJ$>E+A^TG0*eW@$ zNPh>^P?l4hD}o_l@}F|CH*=z^br4YZpD&x9TV)H?;@qya_9sZUEXo zL-O6F6qS>F@ADLti8`qmKOs>N3^WR$l*p5Vl*>u&WY0~k)ba}Ae(w`i03#MkcS-N@bcpVEE|h`!MHIC>(qs>- zS?cZn&2BP?4V#1kj6~OiyJAbdNRhHzy5(3(TcwtD5>Bm|0yD|& zPULdEd3bNL>$#hgNj(e=@r%}MgqFwogn#w%D{l0Dr5}~z#(wsvT$CHc2~g*)bO^xk zk);W!3*m(LK!yk?Hrvj@(kwqV=vIdbb>~1si@alhN_*Vg;G4!iVNs(73(!(36^e?z zEiQaFPndGsO;5_NU~!@m9#${}%MVivXxMT(f)7bWu0fK+vtf_;0-QzbK^z&X;_KeZ zSxkrnq3hE6rr`$7i~v4uzR#d8_b53yCd7{mpQfzqH0}e}_6xdecY=;qI?9cF+Koi< z=u3JjNPZuBlqJMs9PqIl+zuF|W{4741-e#uti&VatVV$T(S_L1q#!j<@A>z!*u_@G zaRdie68X_yX?XR3HZhM6mJ#^d(xz0Ft)DG@#P+VEZ9L$m@vWseEZU9RvR7@ms@^OZ zD^O1quqtjw5ageBy8$d@H1AEZ4`gXaJ&% z)ZrQdrTNktvqW)2Stc0v$f=30{95zqU_8I6F|&$&UwzV`%W@~69|l4TZQ}i6*Ndq! zRLi7Vx_|@NSao>;k7zoBU)9C|w;h5$a+K_mU-nWBWL(>eBSa_^j6jNT_^MER)y~N8 z!DBW90(DU%dh;=nSrGT2?g~6s01c{ikHv>KUGZ`yr*^XI4pp)-mC)<7kC)+eDN%b7 ztL$EbB3iS0r^S1?w*;8KZfWsY12)s1#ub!dci1 zEuPsYA0yx~wjlWQjX(bPK)g0ESvs)UY}MW;D74yrYis3A&;fi%zC1_8q@ue{yv8Fe zmkYb%jECcXwZ`3dnY|HL_bV96Y1GYEf51r9!L>MRI|mUx2^$K+8OZEUdAkUjTwH-GlZ8!{o1;^3f2kJ5W)B8`Qyvq-< zq*KVPrQpP8lysAqYpZ*btj~yjBSF?0?@GJQu*;DGk=t`Qz=m~OQMgEi;eD5Huip^W z=b1BtMTgbC>i}an-BeP2yR#3M*Adu6Uv8WlhaJ}a_UZA&fMbn^L!R?#&esGxWa!6} zlq>Zva&i@v$9Hyox*?w_`k5XeuJ)(=F>doybtcG{mYed01!B}^7J8v*w38_N<=v%3_gbqex{SDTZyF9r!0E1s8 zR$~k#MWjlEmDqmEHQT+QksG@@;BJvWnCaWOA_jKHZIzH=L32}3hF_>f3Apv4N&7k7 zP*cN@)n+ zoCw((-@e1vR23Qjn(16Q=pweYxoiotf~Cv}zVo^^#qck=Q2JrGKxE3}7F)u)qY<{7 zi_!X5A3ysOh@8$!0`&{>`uclZUuP)uu{-zZ70Y%~x}FGqqd~=X1jbDjBJ#tj1HKDU zUXJstJ%1A!*-G1hX|vLs64jgL1Y;nRkCoe9P2+Hcjp~+jyku&56YU_NA8fg`mWH;t z4JD)qI>y(qIX({aaY{D<$r9E?`7`V%2FhDYJwrBqv1UrW?Xz3XIA7$a#Ll3j7=H!& zL}EF{PODK^gS~`QX>_z&BR|kI-D*hdxQPxXdlIRAswz41el8G7fNi*=k_e7{tna8= zwE-b>Mml3M85b1L7Qq*_fg!D@06MRi`go_NLJsR3CF8Yqp7H|j zxW1^y4)Bp`hLlbrOm_0Zqy0=yN8k8De1R@c4}Hv+dTq=UE@+ZU6R<4m@lk?>K2KHy`8<2xeXLY1x>%^lu<`bdSQDH z93Gp}%w_yGUQ9D8Rm|;4e}&4b+}OdFCK&U!TBY?Qh2+UEF`V(p7#g|DZgx+hZUQmxOaA`p0IayR_ZqC zK-6FXTHC2qah)aPMukIe%or-fR&pdK4@Hlg1~IA!Z=n~z*qBpYLrU)6Zc3lBVukK2mz%;;b`ArzkrlP{Uppo)q+RfIe%9;&DE4g4e$=XWFPubV2 zk&5slgnN-cEi?Sx0zviJz^&x@QzUA*c(y6oeNu${@YyittIy4|R@KfArDrlOhIuPRp*mifg$Nim{HqR z%ez+PwmTiPVr^The!+S{906pXpX+u2ymbo~iThbsf)KIUQ9z7z5rGG&Zz*fYiZmok zKOh)rC1Z^}j802oihP4x%xO)UwnKSoXcg!Tt|vh525kT|}O)uG|iUD#Y;MJ!-ZuB+bZj>cCCdKmV(9WM+o+oT#M_8#i# z7H2oe3{c=;-g`jt#6qe0XJp?ox;7aTAdTv-K}5_P=R|eL`l_n zM5n8;DNAzold*A#njIxx=|UYGDO#WcF6vMuovx}=qwZ@#MR)w88Z}ZrZy7G?3#b7o zqAI0LXm+^eoNFrW#@_!~UmyD$+%o0Iw#MynhnXX~z4nu^91K^a6(w_x3kg7e z(A(#eL<}s5@mQCJelOkL5yMlXwYKU{1anU9WbFQjbiVDfD(poL5bLK+& z@a#Rn`E>ykm~sxB6yK$Sl~e5qV^D}TuP>_y^SKl&jUN2`ZfxDTUG;PW*MYXOg**0H z6;_}I6A*(vZ8U~Sc^U5Fh1mazBu&hY{d>I96}~QXmOcFRo??&Qvs5zynAwY zBxeZ@ENad~vPeWo?Lk-VIhy&G_g{W|89x2+{kx{N_C$!Gi&XYw;m^H2g3S*t@n3g# zy>nNvm2DU0TLY+KrwLwkCWT ze@nm>xHOe7Ur=fF&`MS%H7S2NhcEi`8!Vv5_W;2EfE-5Z9qkIBEO7)yQQ|msj1`WF zRCREh;N!&Ev5FP2%2umo5^Vl8T;JHODxJl;sQU?rVk>CK=$+?%m^)X>9QMn)bXA+4 z#D~7TH22F@l0Z6x3Eg~t`jhT^+L2OsVDa$jmZ-Ac86<2Cb3iS4%W`%WHcq8;B}mpF zM?Xl6kq6`68&VqtcUWxHT4zb#yh9c@S#Z8z?A0VsQ&ZxO>6x91@svW9j_}fHRNyO1 zW!Rf-p&fx?Rv{7fVVUk>Jt|Kn3iH!sff*e#0YQZrO1Zgf;l}URZ+G(w}-BZqst3m?D1dH4-^^eRC7-H?CFzgkY|q)kv& zxN5@O1rSmf@vb%HZOgu{7Y+(iN)46u4YPY78Jm_|z1W@$0hP%CTr-Yt3G6nTu<6WC zHc%Q1c-45ra%h%&8^fysGbAZL<;+P<^2TKk+83RuP53XijxW9+YZx4l3pVZYT)-D_f za;U)BKVbai;-rA&48uk0s|$$vQ=P)Wu`m)t(%+%v4gtAHcRnerR`Nk4F3Hu6(tJ+_ zhJe&avw0PL_QbUyc%B-m?6xg8?5EH?yg>f zlQNb_Bfy^i-*PAo`K6V|vXc5&!lW#kAG%bux=}Aru~8|`o{+hx6d{WNz+oYWKzLmN z>j;Tm4T@GrgPz}W710CqK#aYP!QecjU z6vzX}zmHg+I=Zp?EF@%xtz@#v^@w;+d;d{z@>?TFl`~9<;~v2Cg>OSuL%zXS4{_A zp1c)#nuFA1)Sugj)@)aeN_vF;ZiqCb)tl1L&iGO50y)3bTm`8_dz*$(TQ7rU+L+hX z*fkNqiK-Lz|3qG5;HoioVT-rKz#_-{R85D;E|()!c4t%C5v?gfPTNOwEpp$Q024XL z9GthS(ALKy!`$wOfsFnE-vU1V4ZlC@cD2hWd8#!E}%+;}5TlDG8I$ zm=Q!Oq*$!gZFs8ImGmbA<$)=&$Brn}}w)Ch~N0j+|SuS>-< z;12Rj^rMBHW~??`D-8K)2meEgRe0DD_z2+>n-KN2!Es)IC6`bEtLn4e`-@ z_eR5|qvDo3tS$Jyczr0(ITtZUI{CN2y=5^2klBX9kuAI4!6C^rMOUS=X*;>N5|b>Y z;|cdkPbmAmf+^98QNRR1OG`=XXL}Yjl&)a*fL@lp#;nsO#h?D?$9F&d!}}lP_iyX( z|M30`dHtn&6#q}?VElvRwSO=TgSUKYT5B;uJm&y)olpW8;zZH|R3ROOADgUqn{TDc z*_ndC5l9V#pp)IoKE7aKYH8un`AA-moRXr_=N4%r-RD(DLd|j@Tw?>Mqx`8?k>yfI$ZQg=uCd6^Wu1o0% zj$cWy;leCdJt>1e=Z}8#{d=Fj8Qy<%+h2T32FSsoyI7C1ShlBUZmeB!Kmk}J+H8oj z8z;O{h#=Z0f4lVdV#tyJEJ0{0D697QV z?ki=G{iNG_>&n%_nhsctTtYikZO4Z}3XDmerR?C8*l*$S&w*htuGm3mX!+(;Brl{9YIMWW zx%gCA@XKsEJ=lBLT?e>l!1qEWWT2QGcM(;SONt5z)c;#hUrKuxASGsT2X0E#sf);@ z4`R_C!TkmAA%2l{YMcW)asas~Qgmknv7jTfst2+n@`ysq;op|=A}EpS_!d}tOO^G^ zcN`wI6kB_dMv0vgrf&`=vtyjihVx6wyO>vf-)=}!sEK>lCd_p>0J|fM=U3D6rh^RtmhJiC*;z4=u6kgA;8HqRDF zlx8BEuTVD!P+O#2qm+<#Rk2L!xD`jvM1i`Y9vk!pU>=lBO5Jfyq0|p|CEeVleui9z zB?>s^dZE0mYmiV6JSYO`aB{1v0kx`CZJl$^4PEHCwnL|Y4h6%-wPQ@)p)@a@fMG@}z8 zCuc$2im85#6$YfVA&JTc(mKH{DO4F)@{SaZ(1f)|dPZX)X9dDjjU9hrdT3gD&(FJh ztI>T@UgTr)uOB}TA74Sl^k*Nx|MbK6pT7U#(~mxWjJEY(q-`}Llk2?g>vnwbR2ppt zfGpZ)LsUvF4^_x}!zPg#1*uOu-nY(;+LSg9wKTUdRE+F4^(o&Ll}=;#N@EGdcWHW- zun5gt%ME$nmtT)1OwwV#XX`=)gKtAQUA}LNL`&?@sVvcW_W%o&CsZS}=Z1TRu0R0D z=%(4DzKv-Iq_e-lEKg1AMh$oQo{}M@6;Z}UM)_3M6I5wYCkq#At+16e2kui6 z6ns46LAEZAg55=AEW;;}yWw^wrJm$B9&AqPF-XQjEpkPK`IGFrd>_^80qPg) zlwac2$q3IF!x=%o<9vT@kJv~?JCGiqpyRMMTv5H}SAo{&hQwL+;P{61+&*&7V)?TI z(y?tT6qs$NyVQ0bg*P?6Lv2(6=on)TU!J}{)3ZA0O$lN;U)@_Dv#a}$ zkGRvTVl5H|tJ%^#pIwR6`$Wtm_&B#s0&L7{6&j$?quQEm4daFfzcB8WnF zYVowk)x=e9rU^nO4zXVX&9Aea_Ygh5W)5f$3^)fYKHJbznwgJj4gAiWXf7oGXounV zfHdyPZ%x>_pKxg>JVom4xn*W(fZ>2sMWn-GD1y!=Hm>>30@T|f61^Fky$G{eT(;B{ z#w6c@3kY@F8Bc!j{wv~Ke+xy|ufoUAZ=b&V@xR`GCcpmn{deKh_ujwr$G_9bucXs# z;cU@HJ&H+1lX9zQNgGC~ykfLO;O(XZs}ZgOW-AUEXLKJ=cfea=)@F}<53bfi9`ZE9 z-*H<`p!bCEtgj?%ouk4rg}u8CvmL=9xrjoiD715d4x%6yjfp3{WB7kj&j1^oz~`ou z42I=e7^vDDD-L<@swS;KbQpE)17NLIBDbqNQVZ6hRvOJXL3Xq8^HDNK%Bt2Ff`7(h z=7%?WYP-3%8NR&#hQ9~C$oCU7&u`^v{kLwfNc=O2p}p>AmV^{horZlYHh-jg?VZcL z!Z@C-z%CWFp_zBcS6SaIH8LFQQm&HgNqr<7nvxg;)Rvn4baekdc%KmxHS6l1Mnb^Q z`JPuQ>t-T3^i4z8kvKpFfSrISH5lu5`BX!MHmv-KuaGd;#S|VZ6e)Qk)er`GVyZ}K zE`Tv+*W2;%f^&Gf$f%92WeU~XX>YKj4eM-3#->$|9QE^-v`H(NOefBAjWj0>TikB< zvUAz*9@qp#94hv!ZoA=9(<7i{bh&}ib)PY0rR)VR5H~+r_B`H-e!mL0(Z3@qq=)w& z00Frea{T_w|9O?_3Ln3`TDCxt>yQ5(zkfUMWB>T^J-Yn?X-C0N#eCNdMqTpSUY_S) z(JU--AU9#sz8%@rdbdjeOa=9cMtZX0vl6yAq6p2+|Kx#!bfC+k=yxs{; zUE{-j3gjpvws?OAwInW$Q72c^Yj8*~rZ6-cofK;YXJ9*sC6M?oQCyh>Tb7e9+~K&7 zZ3jG@ZF*X{5(B%s6@Ds*W2_VbV>*D4=WE&lLxGkA4GaiebVcQ(Y_9{1LnJaA7RB<6 z-tXaV?cZI&NTz|YP|H=W)Q-TlwsW|krlRuIvAvNe$Wqb}8naxMkRn-WRxfk)r#LmZ z3qV3@U){(d^IRRVNVZweIQfR`4UCv}TMr5YZqmR@8)*8GC#GMWHpo;&Kqenbi3k$c zM|+KzQa+UAPp;FQ`&P8;2VDuJ>*QutQMx=PYQts6M5kou;xG}{ZPF>E#)f*yHy(DP zUGl-kthFhrvcC30+W>=iOKl78*3?$abdma`kM^^oWN172!%z8?u$FJ# z0~#=QcSe*BQ?a^~^*Y&$>ojA@W39NtYUSqEIhIq)fPotFv4}2-zSuYrG?bB_f1QTG zyOS`L%r>fo?TZ^63Czh|#Nd%G5wDMX-KY;HwkHO|4O@P4<&i3huV3IBdZ#N*QpexI zo_G`{t~oB<^izRNx6G9cL@s5(0zmW-Ds^4!S1^fF_Gn*-xJ#q-%ZLK3>QuIXNK83A zM~~p4z&2cREB(haHcE91{N8sA%N=uFdneSL`+H_Ao;UP8Ji`zxaEkLMFv(vS;s+a?uO7-%- zEg`9Gi$3Wqm`6ZSk;uHXLqAc)e9N%q{4irD-x6L6Y=YryA;3PXa4ZzDtb0u>^dvuX zg6N{#`YQ0&!L>zy8lvF_5X}-{&0vqW0$VwL$$ zz~&PoyZ$fotS{ESpe{gB_E=v`;MDjxQp6dsT-R?4FMCGpTdM{JYO732;!$G1DT`xE z*!x0{JqvXu$FIktgs{d~VL(@%vBW(}era@CRa{Pe+jS;*Bb})gP!IVQU+iE3D%Ngo z?WWlqfJUuS0JeQ$C$~j)SKu3nn=`k-sMRg`ly-iRD{e;*;71bqFeN5H&-IC)m$#U1U@tD;e7z5@X#@)+D+g=XP*UO+v|pFl z#tGeT_fY3g2&d%P0j$-hZ~XBa!2qI_3J_Uoh{4F?CPl>tHPbo`1dbx4V-rPVdXAppESna}Y_AM`u=SA?V@)QMJW}H8Qy8*d zU&F~-vQbTo@eE;6*0SC+?#ncEu^M}eciVr-!#)~3=MJyUq!w>%q7XxG)#Y~(;sCn7B#i?!=;tnIk<%sQL5Ka>AVeO-~nhGmer_Aj=AeW)uS zuqRSjvR@xiEIfmfn|RWwiP4|r0Vg})=s{&2M&4-H_kvh=)%WUd>HuQaI)-KfxZ%YL z5a2k0ew%`qs5(S(wYCcSSk&+;KvRPQEY|(f^wSzoTJh?@4ja8pj!g*{o`hroS9Tkv z<4tcj9*n@2DNq&Oc#GC3H%7jT!~8fl$se(M!9@jCT&wf_7Tia z(BxqUZL)nya0GnJP(XkvtJk||N9T&{x`DBmB@i3l{vO)Zs^*(ibr+z$WKu-=dE)wa z*NO-;aPW3EEiti%HI1!9dP~I2m6kYJJvzT0029Ly$UP4NUupDE@wL$O3aIXP^DH~J zw-UDE3mRo|@aHw{V0KTVgRa|$S`fJBGE`#nOY9=$+}u=Kg{zE7ZmX@$$4d7?D{t!n zl_xy#(07z`0U9t(^Ds$q5k{Q}84?9vk%hdv1tZbCGShH3Fx=l5C?LaOtcRz9r`T6@#17GCG@=b~8pT7CW zZ`|H6?s>>TB(LZh?k4I4%fq%K-X-Ypz@1iL-_|e#BA|Tk{JKKpMQ0r^x}CeA;Fowu zKbkD7&bx}K`nkcJ4n(PZOa||4M>vmEbX~S}EuN64FYjQovSb$x@NU$VRsNB;p3p7! zT4BPPi1-*7$3rtp8h`?>TLExnxtZB!H zwy#ud)VdSFuD&Z6+pELdxuUzra$Du>O;XY)YylWntNr4rs077?lY;f=rXx~IUWz>m znnzjVtt%G$v<8PzeZG#-Lu46G>E;50f!LMCEmxoGrP*DgGWRY9?7#Z>p8J8z9msw8 z0eh4Y6L|E`7vR+syS68>aS=bC`GKqAB}ud@Oq2!nN1eEq3><1b$dd!YhEsKxbVpK1 zvbu5%xlSq5O5@eDRV7R_TN%=MrIhF04 z!yB>*#yax1PhBVwq2Y-!@GvQ$@a>L{6d#IcpD$z_Y$vZRA= zGVy|F=>V{!#T7N{BI4Zz!oh@yJ5;G8AApxwHhYIjeC9^9L^~*zl~dPBrSD2-rHwU+ ztD%}ChGRPFpcFVpn&z3Rs)z9R2?h;2(DWMol^@Igh1koT+aslO?*{w>80?5Qlh00<@=jmX9JM{9Wljo;O zr4fR30KZEMhPXw=n%$j#zS!mIUv-Xo`Woo0<)#93datrCGsYAS6_gE@Wk&0EXhJ!Fe)ZrfOQh+F@G2n!2;|Rs>@& z_10%3cHPTFe_e4ZdzqgU1@^{r%#LgjwQw*hv5INT}w@1$8N{xdq+Mci@oS&ENhUM*5nT$PY-k zPV7WVfn)$SJyJ-x>XQ~tV|BZ@HxU98DzG0phdB z`1(opv0XO5X`Nu-gjY+j3vI<}wK`|K44s!*^1aXp*G(|{_z14Hq@kb2nJI9=hdgWH zu)UR)RFo6}(5LBq28(^{vX+&-RfNi|fMoc_6I=P*p@1v`u{h#@J_|p$iy8ZW=p!Dz89XtL6R=l@QfB*hNciDquK|bqJlbnfK zx(uWmWqfeO4X`}bT6Gw%y5I)xf&fuKuD@^~3dh;)D_5y-8bz@fuMs%C;fMIxZ886y*zAW##&GvvK0>yosqlKye@3esDiq3x$t zq6l~ZmhUgdhP^7B1H;W?zfUS{fR08Ug3@|TMQteSA>DM+DnI*CGSJp)m`&q!)tbC} z(FJ~U%RIgkl4oCOsKiMw4fEZG_s zG}hL~)!^)G=geEen|zG>3rt9**04WHKD8)Aa?cv9c5I=)o<;^M0L;J0{5ZAh!{#lG ztUcxIY)IN=%q|%25RJW1#di>Oav(C0_R#mz*`x#ar$T+Ir0jwAMU&8_4up4%5}&LH zMG@z-odLx{epPTLpd76k>^jFD>d?Dup{2w{=*t42*tA@({tHySrH6|WU!@{9*&=o7 zMXy7b6o}jy9H~*oGb>hV*v6fc?CeB5z|~BenM(fNUU~q8bome+0G*J8tXKe{)T8dW zeXc%(?cG_8N_KJvA26qsufN~1V@`6wAxLgRlOh_aHH&EHmpaDd=2YEzfjvBTH#pgnF(d$vOuE>W~mz?cj1p+j-dm`8eoxyXp2ZcxqEKBk* zJ^_3UY*s!RUbh1-sFh}iCFu+2#EO8v0qZcGFi&I(c;2GBmSf&i&r#tFe0tTi+qObuReru6x?iHoCuH@`e25@yUv_j{Mty;nz$#u<21u4uy{z6+#Bpq$d zLb_yez=kjL4}o}=X6OdMCDu8k#Mc$b^TeF}W%&AeNPqe9TMEVgfsOpl(A6pm5Y_V>Fm@&wR(`e-IISXPEwB%TPrQj)YINJz?RDi zBrHK+i#zTt%EYiwIOCC(4Ak}9!>hr1 zLP`VkUE2C-fQV!qR(ZoYW1v3xh`mluu+QXbR?^Wta(DPP?5w*?G^X6a%e_ptU;P~4VwpB)^nae(zxw$19P66niF$=fZBOiq4P3rl z;AQfl9wZn_$_7abd93#t_jW-Cth4qYrIh(RQkY~NGK7_h7EwqeASDp zr4b=lP-~Oi81Dx2YaCjy#5Sep4i>3a2>* zWED$^LkrtyX}iAI+k|y0CNlIDN6AA$ms-xHlfbv2j2)@j%KenA0wqgQsJy7_z-eHW z?iexATtU5Spxooe@``k@n9<^!G?|t=P%{=De*7mo4o2hs-|%{EW%k+X3@`Lg|0euR zPJ~l{8R4>{SOT9`N+gW$XpRN0N__L~Tb*rOBW;DpU2#_JC7eziO_gPRKu25snCO0F zDS6BkG(7N>e*vEiJ00OoBhV^=r!@2t;IjFyFRJW=EeL?@PM913SI~*Y29qPTQY0@) z&fZ&Oxt-Z1v9GyXsxvE|u_LrEoWMyAF&t<=ty?wGQZs_64s}$tc+w0GTw+1{nU*Nc zE^%eHFI)7Wd2v_OXVX}hz$mm}YY%pan1-Y8fjvs6))?9Ej@TxYFZniqFMRys#_{h} zXnV)4hFQ+;yTW~18n;E=8#4CSOG?l#1ARZq>Nrnn)pQujKz(NF!=KcUA8qU zu`ffRU&^E8W8eWr%yHH$i&B;&F*{SGE)hOPQ-+eXG51pk@{WwYsOTqW74lD%Luv;M zKHRnRX*&1kk`uv1OWNT_Ff5z9$V+m;#X zRszj7e?ntNpTTvIfIH8m8~~9>@14>6Ae9v#?T18Oum$R&R&#c8dY;+gBH<6vw@x-Uo7%fS-EsO?a6oLgt|I7fjS#f(Q-MWMa zT`t?{P%8bJcc~br+5BmOZ2bx|tk2!f02;*z0Xvn8!gs2aYuXz2xRoMz4I~5aWyxnG&eo`IDMo{}zV6srn9Hp!wY_M$ z6%A674+q2_;z?gpHSu_npF4$jvX8_C*azY~Dy@8~uu?iv)rz_vuoF&~ZK(pm$h<^d z47BJA=1m7{T5#>Sr*sM>*DM@cSkxBvF_@ZYj}@V7sHZR08Mo!Hhs zT{;s-j?KI3fqt=bASh*ghQ}KNH~YQe2lp{tKA&MNsJ5q@q0>%8<-yepI={t$^&D@? zQv;oa@uXUUI0^ae-lj8BVV{PcFe>5g9q=SpltJ4z6;tT_Ty^puuGB19`^vhRPP$6- z9f!ac*=ZeA2(6lcyb^hm`071xQr*@N03N9Yf7h*orKNi~i7Ztc<_7)ItZkvITlSEO z1PgM@hO~B&k~WQ)K+1jW50j-R_ERhcO%YmNqYeNkkUw6lgtWbpZ$V-VcYaAtxVWKv zs!DZq5bBDtNPeSkzj+llw68lC;^)PA#PuqHuYJ>+Ml?tZRI-P|ZMV>U>S%P$rtu0% z?Kp7UL%{(vG!F~1=h8AO-ay)K`ddMGf;7n>{W7%c^otXP{7>7SRZ6 z!j^}Hlscbz@RH+|KMZ*lVpStIOd~Td6fse*tX|x|faANi!1yqarB~hcM=BbEC(==S z3sBA)fFrkzspCFwr!3+cx*i; zVEo-n!^x<-JKPr)PQR~A>fL3E4JMyO!xu$B zknmm7rLcu6sWY17vBaQS?e;9w(WYEc@YLLc)`+fXEO$0RU6}01qQ>QbsUSn)4zZ5K z6`bI(26R*l=N?QI^H34xU(cii$h2KIIoQM_VO_sa9KAx0ru?f!kp0s)-hW2o=T13q zdB)gKf_Smp%g@n@8MbDpyOM`~zSym`134JKS~?|J%qFRSgUu9N+gB z0KWUIeMC+#45DgU-=!JCId-V_9&ATBM6cdDYI}ImpJKBouA;=_#fPBS z^0GixF`#&+%=Dhz5g@wZ!!2!wstVW+0PgSD^}9qR3X776Y7LcNv%|4~CrpopMsdj< z<^@g6nKg?7GOvD4r9d`ZRYexuj=4t)V!B>p4Np6}hH?b4(XePW%_z8OU4axy#X5CA zMh|6(vZzn@$O3+JtAc(~!|F{=;~I%r?UQp3u`hNZ!jdD&29?W_hKVdi#G&Nk2~3Wc zbx3^2^rC~D={20113ZR<!Uiae&M> zbQM}(WN%^S%_`)X_M4@e3Wk1=irp?wsc+P5grA>Z9&IPH}s zu(NVNK`_?079;VMx0K8bgM`KbrryE2M`;Q;pavh0s-w`H%v$dj4is`_^FE0&J6SI{ zrczHE)+g;42pq6d2Mw$(p;(;5!Q_UeCAh$)LGCaUu;?$J=a65~HAzs+DEM^N)Rm+J zJH05K90Usex^snui4^+V)wliiWD|nCi3soCx;@nl%#m`>?0C#~2z1UPc_gWBfn8;7 z@JPG%~aszfLZ=hrGnJ3yDTSahV z23;aRIQL&7&Yc7e2vgs87n^x;1Y8G8x89YrupYsR*cz{1S&jVi-2@^04y(}i){Uvi z3#a^N?Zp_gJB=?&*zo~8A%Su{sx&#pSN)Oa*-;@N+F4v7-}m0f{jAEMtz=wM0OkTM zTpbfXVN15y#87Gr`TIn_l!)5{u`fDxKA;g?oVGf;1Pfi4nP7Hvl+TRe)J^jqyG7W) zIoAlMjxH<}=6?F}ufpH{RX$$d`S>yXqTVoqhNDO>Rm-?>qx_tt&@$f3GeMaiij*A( z1kzPG=a_5%ZQ8H?Y|47Er~;8Cj*XfV=BHq}k=XYvbwTyoC2h*o!&A`$qu0pu z%y=n(pK@l43#i*$+ypub0-40l6{b`=3b1!z&vGh&-Q;a1&RvQehzOtT$8pj}UZWkd z0FJ8MrI~CYDP5!k%AzYOeq%Pw{$H7_dKx zy$wd()8?KkrO~qO>Y!1d;$!O(y3=t zkCw*=5f9u3Xfdq@L7r9|w{r##)C+xQGUQExAT|%TjG7cM$8B3gk(2k(YA(Tn_dFjO zAE?_Vk6jP2ffMwW#j_Q*SA`c2ou}Q&+dB54S$QSj-sFluWt;uOn zZD}@J%??F}$@Y`}b@;D#*WQ2h@q^q7Utfp+-5&s4mb1WvVHJChcHDhbgQv$;av=B} zva=o&hHCB;B6e71zZRk6JSH12DYu=&jTu)xzbbiJCavEg+rIL>f@Bcz(AaF}1_D0G zt_8?+Yjg}OdmUiE`Qfj%K=>o8FF^WWrzQV z+UlUo_8Zu$n)<0GH4ug!bEd4XS8tskkgNWK z_uph7qTye4YQntmg!S1FJ5=8G4d{gRw4sxjRWs?ZT!ij6_Q|uvV9P=fi&Pi$G|cJ_ zYW)#zB?r>&tRq!oGb)w-{=(iBJQrBFxwI*&RqMReFeltOp`L+(x9&&24>Tj>ZS`TR z7)9jN-!N8{ue5vV4LSd6FXa7p3KlE#0E9jSla|$QPg+j5Lu}94sNh-khp8@ESj&{*JKziPu$uo1bjj-jjBe4eo^ju(2$wrUe`W&MFjbXm(4i+ij`7zkqjpV#Xjz^4ssfII}!48#5ND zKPY6$&hP~P?UwbCGTKbW&B=bHuSqWJuT@m`HEgwxITyswq#deWjn? z8FV>3azvSgKVb5Ba~h{A)yP(xBSYlbsL|l$w+(#BGYBh3BSoU|RNp0-IAH4@3jp#s zf59lHRU0$!zo4<@L{#8UNVoM}v4x?nC!jXfc zFQ&g9zVUWcO=@cpTLjQNb~4=a;hA=|g1Eb-S#>~)J(s9CNaYY@{qP3s2! zz-aN1-y&g*s^n0T>ffYsftlOx2d?)G2Na@I4UV{i$I>Y#MrsHEtDyW|Xr zPB^zn;<6IkDf^P6yCo)7W0Jd4=-_a@topG$%C7*6u&w{&bUK8s^mg1b09+BY)GUnZ zK}J_Bm9RN;F}7BJ!8CSZ7D-O~_=#H7Loii;%fDI@lS;ehg812vz?E^3=`%8QuPdpB ziS>_U2P!1Ubz3oTZ$X8P`zzz6WCANZR4oljTzxjF*1b)@E&vxd`eZ%UBUzY}3Zp@z zaP2S7+-qB%Z2~;}d_f_%oCd#uL3$itqVu=_ns*Ig%$%@gzOV`A3CmgXN@h3jf-*-k z9@0uI3O>+ zVpI+`JT%g+9YQCWNBKz>3tQdu23-r-iI;D0MR<*GTOvfDg>B2Nmi{{$;s72DEyUx) z%FCM|onr}EO8o6Ki7R3Ecfq#Qjd^AMSM#sJ~Bf~tohY&^{a zrs5^(@^17&>J+=Y*1uuKv_`meh29D-sa8A6&A?Mkx3WE~NURHisF_p?B@)<8MZ;Rg zx1|82lQ9aioK|t=lIlcBqIt~VM%L00UB_eXe+gL8q%nt5F_ZFbAP!6I_vB4n#60}m zsYnm~l;5k|)-H8Nl)LgJGcK_t zdjdPC`*3?e5*`nU2@zp>*wQ8P)L+BYq4#x}I<=7kw;nyA(yI4ddzl843VDcMElXl3 zr`XASg}z{To71LrW)`uE%Dgm(?QME(!Ioxv1cP|7v8I^<<4rtAG~_ChYcg*KcR##8XSRmgljH+QXS)Vn|1s25zq0pg&qwkIC?FC)zfPKa{Q)e|k*967;V2!DZRXk?XxkDkdyt9xmjJ ziXF&)Kf;9sG%0@ld`OJm2nDZwrvB+WAHRV6&UfB_XF#Gi1fO`1CiHb=ZR6)_cq(^< zTNXuf18Mq=2~qiFzKh2WG@Bn6><%g?54dP5xYjI4|;Nha7rr^r+&Ij z*w*SQ@07@Md4x?WM;#(q(UZa*m;qEKfFR11lAF(p9QV(sE?|@485kQcM{4%t zjGg+v%_L9k>jf7&CPn8NmLtB&lXY-GJGOGQdz&T8rT8BQen+fd5F?) zv2fQTlx|g}?t7p68_uYiSHQ5l^L8Lt(PVMzW4Kf0J1S$9E*FC_9w7O9zdI22lUItV)Y=ioCX+*1>MQLw)tFJOo0~I94`1pIkfTM(`}C+-c3c)$`cG@}X#={lsKX9c zIXVm2_;024wZ#ddagS}u(?*8HIxVN&)PIy~_~pkR_$RLP#XtEy&lsgKus*4P4b6wB zt)QDvm5)bI?XG;N6#tQf%rmH)34#)6$QF69+gOt4xb>;_d(DL5jhz)mluGsBz9ufA z4d@M&{1z-LfFlWLQf}%t$sDz4&vGg;?SRH`XOCLIdj3AsD(#B^<2h5Ee3D+Su_2gL zLILCQSmiN%K1=w9ZN)P{&Dgf{=$I@jVLP+Bs1pf^XkSGb2BY{diE8m~LpX zv_VSJG)y<(irLdZ65fLtAan!9kMRGdysKjPi{vb|N;Acag`!ehdd!VZB>zac*7$V# zgLX9ojuXA-AS&v&2tH6#4l-Z=^W3BV+LZsPM01g=`NfB;*T~-sA3sCeBT0VrLy#G* zuoj>Ii2Mi;s^#Dr+gs^j@z-*1KJYScctS>onLS{tEzxU^d%uP(y=u`2=Jo{(T@cjn z23f+~BcCpy;3|1$&$Wnz8692^=bpqLPB|k~eVBl&z5!#rOTmjH?(E0W*oFfj7s&>ONjn|7<0 z-%N}(xGZwMu=|q!v}z^{Q7!o?>CxR>0DPQDy_TAU11TLcX{8}I#YYxptD7=zLgZ=g z6y{n+Z3I_JrfK=0dxH$lumiaSuawpe6U|&_P{jbb^}&f!s~#I}7dS|S-F%P&d22Il zlHwBPZ>eE%m+odqycK=6aznOBTMY}5lG67xXu?K=s*TH zW8zp$P?D1eH-CwGX>-K`tZA#Ma- ziCaSe5A57wwxqLK?B}4wKUV5e3)SplTI>ibq)WSfHD&k{kzy&FA`-<;{fNZF3F59@ zX9N0v{L&mKe<&TeMj%C3|rumFsF~M5Heph zht&(u(&qAjc=V8l(_~WBj3j}spt&ss2*+~;2R;3bK~aTb;9ixgY2YQ8C&X$3$0SW= zlH(-pl=(@v;PK~|3BB(qnPOoFxFs7hQVs-=7YlgFh3d zP?L^=18$wB59-D+?kMBj4*9O0YF?*JVRpwcmB~1TZnF^`T@_yEa4IrOrE^H*LY9xT zePK>@XwbrkwE1@bQ z@4pV$+Kp-S_u)O0)?QgNKjRk!6#!6f=p#E$VLWbY2Q9S(K`E6?EjTIEiY&iY*;>hU z^`)klMn>gkb_V?=yCF$^9`P8?4ju(dz}@KQX~vY+Iw(n`?UgY&7jkfmwJcmoKyqKk ztSI2X$}GimnFmyc4m~Mz0yxV_hegh%w}*Q30X}sEPhf-2H5llmv^2OBMkQ8D=NSV= z4CmJWg+3!7&EJ5Ga}+sHe9lRg!*yJzk*X;HE08u(Lqf$(W@lw$%#`dYQR_o69TYbu zosrZxt!qh4u4WeZ2BUwNBNSN$6 z*c<>s#zX7{T13Fb5q+b?CazMX0s{0pzX9%kRGyWUf~`vnH>d6Z%9IezctN^Qn9kf5 zDJ@4PPfT+5^62B!@$pM|mhwwk)(nC3s^ldl|He1hag$0y4NqOcZz$!6J{aRlWm{4F zvJc#rJY7(=%W8QxJeMOqQ2jc*MB1lH;Y#f;`P&-+#_O#qEOj*D%|hMkj*ild)>1MV z4ivMxd_c7lly)OrSnO!Nq`D~g(`N`GT)ds73QsZd21gx9K!7GbsOK#=#f2J)DWANO zpO8|PKV!Hv<@ELnW{6=nn^(OH8&{_&n9U z9-*>%#;jfrM4`a7xB?P>ePRA>R4M_(SO9%p=nYHFJSkYT;_o$o6307*1|C;fZA%)& zAb+k5{|nK;?Nq=U-=wf3MN%;jmlfP}PJD*8?*g462AxdX={Z%NaldxZ)SA{XdkI1- z&L>xMD`UbO^Eh1{E}H}HsIR8Km3F_LjoN~{{F~fox34*nq+JUTs0Imww>wn%sf8n< zA|v{(ElxGTps7$$;zDE$sJ{2{!73YvDE2o1Y zOhD${jpApu&~g|1K~)dlEa@JGCz>GrojpbjiO$k|l(gF@CSvR9CER0)#$*d;;T?NU z#r;*u`16Bm*BEz84v3mj5+AChcx7i|07IVEz1KF<_?JB`8mj5yuO?9{=^|!4NB12E z9~W>)2{Ngh0+gr~3c9mP-L|Sg8q`$Sqn$q)!TgY*hiW42?WD9?K8O82lP z#@-iQr|NBR^cPQvNUW#~^0(nH|JEXxG>fHDS2y)Bw!`znn(Wa&$n<hmBg)fjj{s zNgvml0(ZV1!Uv~)^iwPW7z>!nO73_n(aD5_V7Fr)fl^~u>L>JUc`9HRE%3ktC zBQ`0nfcYw!2&(TjXiHLnY{b|>{~cI#dR0l6xciJ}fY^(@mP1ZzKA0BP4SQ$575??bnC~a z%cNck4tYAB2^=)2%&0Jk87?RFNchUoYkeOB^=NwZgIX92(=wVJM^BF`={GW}Bj25! z{XZOK4&OJG&EadzVw$!*W|~>GK>mSRcOlMPj`f;SRVD7t;xkyk`pUYH_ityLZDSLY+`9(zKikwal2_c>;r0Qri`;YWW`*4-dg{%xFlX=+Vh8lZ~4oFr=4N7Tlw z;)7b3w_Zt}w;sDsHQ{mmmBJsUMJ3L?LWVjXmm@Wxy~+;EZ&3jj6J=bUR9?JqhBM6^ zdZ}=3(8Pnxb^h?YBKpKK0byYes470&gIuX~n|oS9Ip@S=j3M1Gq6*WXLQJ^*k`sW{ zj1=7Okr|g0&^WEdL}e@If&~*ZP)@ELtkzDn93d-=F1C}g*IZ|d%l|91UP19|Vs8y(iN zPq*q&S{k*8jSejvlI3eB!6pnaeU;LLkppUI>=M2`s5MKzRQKuC>ks6YmOQ_tqeft+ zrlq=gEp9Uf6(Kt*j z)}#)VkT~5U;F@+S|2%wM|H~2Y%a1>V_g_lExag69l9CkL(K6H}^2uYi7nm1rtzRS+ zNwMrTUis5_^eRZj%)q;HV(SU=5sDN;A{!Ysda>nTi5!x2wjeEu0mYsgkF* z%n$7t?$+f>t_5^AQGyR7IcXde_-99+3UiF20mK}g7^ zVy?cggc#RCKVbQ3M_^LSUVa_6!XlUtm9QMEP60>VI}G40UOYBcCdDdEI2{BUZU7Rt z`<*Viie0g2EZJOSL)V_0*h^$Y^;4z`4eejUM+Su*a`nzJ%D%$P`s9^Kdp(*-I^-m_ zhvJ2XSgV@5E%1@!zYS=}%bzUd(VtEOJ5kJx$(YAJZiM8bl7roRYq3^%2Ii>r)2?Wa zJ`b}pz-v`f9gH`Zx*? zV@_csD-A@p6oSt^xa$~DH~R!}tn?o`qdP8p+?KZM;NL|7Wm5 zDAweV_C7RQP!ZQ;8tdAEYk*n0$*43vGD2pk0j1|{3@5iJ)H`DoJWCT#-nPNsX(e1~ zQ1>DFjK_V+YOf|I*GCsNg5!bQSSpmY4uz`W$4EpzR=%4KN_G{SJzc*OU89GMq9EsYX**mnBEcn`+qQQ`tU7l3wP8C2nBsB1g|?TCLL?`F18TFOY2I)X z85!_cx;SW|paoLi6v$3_fFpYaDOtgenij6Uj8HOs$ZUAG*h-s9XQApLp7KIR>_JZT zwR+c3YNee%hZ{i5CJwFEP)Ns}!_}}s0bsHr2E2w_RSgf}9H90~hD1FA=2@itJEQ}& zi3<0ny#z1G$XQ*bXC9rN5|iZ4+E*zKeyatL;uT8?sQ1z(7+SRpVdGL2NtdKGQDx$b z;p4aY2xXBY4#^+zqnN;d1*#}YhydBw15(lvi&~ns8DEa@Mh>5isWl zDqGjsG)HHDV2mM;*8Qw9p!a#kDQMcHgvGuDZYo}kZPj)P?c|fH;v{Lb|G%7ix0E(LwimJo< zAi9B*Z12knSGUWig{A_fBPkitvV>W0ciDDu~p3Td~( zYbl#{Ly5l94Bb-dk%ATZ&o*iMof>XTQvq}^0wDp28I@^ey?L-E46~0F=>B;&a+kq2?yPS5EP*w?mF*!;^?VR)BfYS19%4+_q z&6z*EC|z&VQhaq-{s=k5&8OD~A(qN2=EoD%!s|M+RNK`2iQ5dR;$H)ow5qt1UqR1h zl9Y4yRvq}(FY>9P4Zm7YnXS%8-kNARiG55(g9_EVl=gbG_6<^kjh)5{dI44}Qgam) z#1k@pahHXNanS;pS;7=+a3Jwh_Chsx|x%mWUp4=L(_AF>bgx|fs zhztJo{fEJ3Url>PY^l;p?AJIqcxXvRnQ?HE_&0GyX43y`akXY2RM)pvd}+Ffy-}J6 zhm#!L=(sG**~)1nVrxB}Ua(7*CI*8FIjI?FzWK;8FOlwcfR$~tc{B_!(le;fltC*2 zuqbw0Jp&7_mRW$ijj`eW9_k`14`CBu^pLe7?HFdL=9&#Ey9QceFLo3=^#HPIm^}OP zPo#ymYN{JJjbZZvP+wO%DPPy-Y(I` zZ+uCZQkf-hTy46LpFyIB@1HgqF)xZfIunCvpm;IpI zkp-m=o|8c2b1E2<>r=L(TW)vbZ!0*mw!%P-SANA96X z->hZ1OM+k)-IngXr!B`g`5r}09xYhN{QJFMhb>X4z^uE!JAKLc$9EC5z4IaUvJ(VOX9u`TF6D_MIScdOzSGDTs(E^ji ztF?)9{lJ}wpsM0;f+}7Aqot3(dh5hbC%#Q4i$P@f%3mDH@ zPQLE|xU>tYQ1|v#KI85>v-eg3zo<6sAE@V5Qa^zF9P28{>QGmi#p0|-?6)aO*|&qb zBx>OaTTV}NCE(^9Jj)NNcA4dLn&nAVds9&5n5{Iegit|{tT&Ziu_b#Zviu>gv$jTm z+t)KPtIC3#{A|;#n4O(Oc8$lDt@RF1AO)8mfS+M-S?T3Ty$0>;fv!kZq)a(P-O$am zsYa1cvjcG6B>A`7$w)KHvppp>KJ+-DHJtMuIds7K8lKAXYfph%-GxlaZl4RML z*t`FVO9~K%!jO8W0CN7vKp?IyZf`)!o3MF zBPEn-cg>jT<^=Jk9Z=<_*Q(KD@u4DW$hJI_KE9 znhLj*NPlqrq6-Yd@7##@d+7*pJ@7=@jT{ zT=Nk88wFL&)KMsy5yHxq7>uVdD<-LOMrjv1w&Ak^>8#Tl)#YAYGgi5@4>>h#nh_9P z4<@^I*Us`;7~hlvVDdbOgVY*j`d9H2RicRgQ0|m9<^5IAC{~|5JkLA~|!OHtudWIjpeew45^yj_|KAt0gtb?8vkM^f0*OrB;_a`Z{wq`4J5hzBNj zeSb(Xy3wo!NB5O6?L>=~`o#C6<;j7k%R08*IC-Y%Fg3um%?u~*;K*L?b=Y4_E2O^w za&t@I2bIFIb3l28|F(V?^gCYK&$m`vg*8uBhAV zX^vm1B#alNm4xe^3?2YR7%jDXUbBA4&Awq{v-&YEd&t~9Qau_UxCR{2tK)MRN}-6c^8bw>K}G= z93Nx+f@Yo2m41i({xsS$um^BH9bx&#Q4U*~-Hi!%Z^s+gB)x>n=XmL;>~NQ)BjuSb z!f$eh3Wi65`ayA*D`{`!sh<}3k0ef7dAZg#fX!tmwOy}tEj9r!v8SYB?9kN>t z_;PKU77Gn21#N7u&cfP~vUr}Q&9c)tDx zLu?I`bHN79@+c&Uc|7hVa+p=>tIGDd-!%rls<7TO-%9^wvjGX?;D})ppFW}P>=wA7 z7yo1sQ#Eu7@K#lDL5R#slgolZI`z8bTGm$#YqFZrf}i_jAqz!)=~;T89e|(|KO#YY z?_);RBbNI<(3C~Tv;YWc*LA2uKcp`JII`Azi$IM-UVy`XFrc-bgfgHZm^L@GC))PXh-9uUXxx2H~Fy$ySf)q+f!T1kkG+ZLrzzu%3AF6`9! z2$4WvsrQC>#)0Nzg0cecniG+SNt#%Xm)i+tm83qdG>U?D zL;K1p!!!q_-rCzp<-xVg!-O?HG0dU(5f+QvUXuEw+H&i};(MT$tHx?0Ck`(`MJp^ujjay( z_eimZ5-m~yO+d20TtG^OhTDUTHaUaxcy4H1OMXHUnOt;-j+9-e)#%Er2ti#tT0=N` zWt<$gasT@LpFa|edHZePi*%e8^(U2Yc4ABRh`x`&N`y$|6$m_-52gX9JUM1p4FRf} zG0OCZa_z1Q;%8oh-VD3Eqy42VFu8tVOSbVE&zv^FgnikYS@GJ zxTemm?68itX}4OSJlx{(rpiXHK$M=)CarnUs7X3@5Z|?49^S7&PcSL|qQKefPRWfG{mbo5brOf^S&})fxs88fnR^$ZNRCQ?sIV5uF zLO?5>j7%}rQBEWy9S0oHP&0*!vGUWss%#F z)!2YQnUy!w{~6@4SosP!GglRttke{80p*+N_r^z6a-}T^U9q(txxTfKa>Yiss!!vy zKmOzJ@6$+8(NjgE4?dV(ohXw^8|Code8u`E`mL(FozAF$3mI8Wo)L| z21*CFY=fJRqFaTlGV>4~69!sHc_3}<3s?DiR;dUMpeC0dK>fhMph+6*KBR7xN}kTd z1QuY)h*8UhKpyEm7lmT)h>llyM7saW9-vjW@t_dvY!M==t#gD23|nsWbaD@@5m2#$ z4U8#3Ql-0C+2L$AxHvh3qiRpeKt3>dRby=FvDX@+?DaT1j^WAx0s$|JcMo;DyvQZH z$D0&jBy}m7bZy#)0^?g~(#!WW*P!fl#MMI-uFC!+Qn46wf2lXnqPIPJ11>e{S`H!P za!zFlL*3B>kp0#tyZpTrB^1}yR`iBF;NJyLdV|pK+a4iUM`y(Wov9riq?9@>Ukx=N zrHC{d7FiTqVV9$;Vet*>BJ_MEgQ7Krh_(fh_PVVIAUBJ!4H?td9SyR9ldch>CLm5g zy;9m`>vJ)N@4U|)ocLcN3iJ+^*|K$|5`looRoO)z3QUu3=xnoLR`HQofx1~hBI5*S zD~b}1$&BLzR{r0O@d7KB^ z=O0spJ9cZA3yfji6yt#KdYEjfjk{WpBQNMSISXV{zh(mT6j}TcFI`pZfizgG@d19wDR?w39 zeL+n=whOVst@=@2`i~k0P{U4C%T8+n4&U%|52d`A+3t37p158J6X5`G{(W zN=Ac|b;KLiVxP&O(7jkf7W?J7dc?`g{bU%CW4WGX)O48t(umr=$gVhA-S8j_rt5xb!CU zg{q%$3+lqvB7>H3B((N$sG$nUsypcw{)I3yjl_V<^90FCwMQzV%D#!n+dTpekN3-mxfOdb-!;#6c_B#dX@jes{x~4>y6?gPjHdyBU@LZJp&*NWy{?$=F>IY2R9IBvG?V$E6^%$ZLp)*O!Ub+{aXbBzb6VN)M zDO75e!>SJ3NFbRwXhP!~&o0xqBaB==?rMBv<5=D5QmsgDjNR#Y4M)Yb&ca=0x~qF% zxFL73R}}$L#dI*FLIoULOc;tU>PAz@FE^~x<6{017#y{x7oV)AsY?g1p2-r`AA~>4 zC*_;>&(cTA-=044k%ZfaFW-L^-hO*|!F}+||4`*=1J}yElhZ(lX;V(pp(M%hW(}~ zWlTD!hXn4!QVLL|P`9e2v*pw#nd?H6zAanMu2dz%7zJuNZv8z}*6{c3on#0KUZpn4 zPR*t(Hy94A6GyUGNl&)mDtL8cFERSGornp@a(RUn+~x?GcDy^$d+)+4as92|I1Hf( zvNj=J-v+AA)a0w~4OmwLXUYrgkWP~tcup#K-yZ2fp)n5A!urZ(aOsY*+@@;6VQfn5?cC6&<&VjFks*VGr}YY+#z8BN8cfzT{B&7vYu9n=1D%(geI!2J=HB$-(qi0uMoL#qU*5;A3 z=+GJH5w)-t_W**VwuWmpm|M@(`#@>P0kmW|IRXJfS={b;jc8>&> z>LjK(;jYmv)Li$121o&N1Y{%4Jmcc3V$ZCYt5Wpf4A|01$J3+YDC7}yjE~0DHH(Fx z*x71|NCA4_KfH8E(?K9Vv1EwzMJ1#&-2HoR-wWwO`ZXQAHoV%F;1%*y&zfD~qkWa) z)1>E&-dDf0B|T$tpw7dc4SS+jQnTcI-6z++f=qPbl2R*rj0d&d7Jw_D147DQoxD#u zc+LX6D9E5nOs9<~brkgn!J=kO7C@&`M7M`b>G2Z&#qV}AZ4jD-U~zGt1k`b5N0&|6 zyD(dTeFaI=7@g8mgzE(Yi-@LHZ>l%U0699xoO*VIeV+}oIXHoE38_jyn6ekYL9;U{%v^s`Nu-wzfJ<- z@*#ajiuSi32K|uGkAOv#(OtftKzag*Y=>g%F_pHy`%$Z2LQp>Zj8ZJP!srf@*#68u z!U2Ifaa~E?mJXIUF16ilFY9ah3h{jm94)0obZ5md?<~tu_ms+Cap3kWMGk7e!F{9+ zg9fv^F~fbkx{PIvsL`9&v!xSWoMxZ|<%QCF^008!KRo17ka#B152GGV zu?Q$amtjDRz2a3$js=WC3l{Q{H?i*l_a{rDXl|1X0wsU)i60K+nJ^L{l(imJ(_~ut zKKWb`vp7QN1rH*1p^Ir(R#OpM)_&??&NQ#00W2)!bYn~%GepbEDLXhnKdCEAZS@6< ztS>IFSd-a5d3ZonB@L7?lUGk&>YCE{nZ8rCZlbeJ&=R%gLi4GBChksq7YtieB-E)K zYuDVk)wL@0Tg)1`Bnh!kW;?jUDkwU4X(Ra_RPkPd71wu1eg-PAU;uAD2+w@GpG zU~0+f;s!80J=9`*YP=9tfYeh>?S`4-ok9ZZ0=+wGw_sA8&B>#J#9QeurGJy!2D@Eu z*Ok~Qr82RYQAg);>E!TO{QuwVzrYs~Wx~C5EF4y0-9>H}oZ|@R#n53Uks;9la~RoF zD(VWsE?cWhGs-Cv2&|~;O24gg2Mkk>BThv{m0ZbghZB_8$&Vc4L@xFymwEB$o(2Gk z&Ow8Eg*(^FWNLPxV@P|byrr7|0K~pn&t{exyip6gU$-TgLoFsxG-bOUwn(qlVM>n5 z>+69Ejf5IBYT0*JiWSr<^4!6vZmZp`DQamz=Ufw9bS$Ree+Htq zeQybZ-s{gWtk_$Qt}Y^pDQQJgq0a7IucETtD-Ev4)9t<5nppL=CaD*n3bf;0?kENc zaEni$jl+(|pF3E2{^_@3Djr}1F=mq{Z)d*aT&3zKCFR6MxLrnj)Im8@a_=1?DRCWwjRaQ zlS-GE#!~Vzc|yc;ajd(9ZMmSAt4?#7ysnrOO{612?*zT!{Q|}Mczd9kSZSlNdbhU|0)txseMCi1u5YN}2roY|4R2u2}f?8xR%oo~{L8qyN#4+`l%` z{8n4@@ctu$b^iM8E6e7G#0vS3;&mv2@6$rE{T?R5zWAwa#d9eYaSd{)!;7{&&Ozm= z?jsxnWjd&?&ijaF{pkuKs}^M(6QTc8V4*dupIB3VmoOE_w_VmZ;cJDxAQ9a zV#qPb%&H4cU8q7>hTOY#D_!Uyi8NX?>|2tgwS;Z#GGJjl%{7br1Xk5CE(Y>)y?P>t zc9-kHNM})cgeTF1>q$U~Ft)ZgP*alF;01K4+IDgg${ylTcI4Zvm0f~iNCx(b@i!EZ zTAGSu4;bklqq`!kh{3bF{7>>xWSWeS+8QkISDB_dvP zZh2rnn-GgD+cumz(i9S#+qI7m3*{=a&aoMsmTd&PJwv;AY)<-Q_Cx?=Zj-K5(b^f`ftVm%3g+_HiBy7V z8IF*E?N-oAa8|UQJB0uod?MS}u*uOAs}4$;*VYITKrC1x<)!oejfjM$FvgJ<`t}zv z8$dK%q5}vyv`bIICwrdb!9?JstDOvf1Cv{a>7P!0EqisLNMGq5wv?!pLOZl-9Ysr{2JCVLK&A%_ z!zc;+*ujIIpz4a;dW8uRl@bp7?S>bcU-H_kX7z#)P4t%PqT5UaKecqW_XueaTgP8x zhUMT8(=v4f(z0#jP-BH^*_@OoKP<-W^+~Q4;;AEjXAyh({iCDN z@D02cw=-AO+)Vd(0EmnuTqxGt$QF`UuD1trw%uo4TW&S(IE8mgSbnI@5QnjeS~RGW z+;p|i(eoCXAcpV2C^y}%KMa5V=YO69*vYZX7M>rKq2Ki$lkoPN_fO^5Ux&9Z?MxXg zM~Yu_B^yz{Lm{-!Y~2~vNx8+Mbz}6+#f>&KwF^KIruVSyT$79iBoWj386}!Eb{x>b zV}MFr`Jm_0yPrt8R&M^D9^RL$RBIa;8t%0CK*^gPF)-PuSf&~8lS+~5wzdK< z(vk0}DfL#LlsQl`0+@<9Lxy3fS%@k@U)Jy>_ak{rP>M&+G-mjuXoIH^G;~{W6Klcp`sb{Zn`0HtFSAvTHa-C%NT_W|a2l2Ge2K^*Rekp*`R%G1+c^XE|oC0>|v z@TRypETJ3st7*_oer-PC~MY+qP8MJ<++ zQV>kQgybq)&BW-1s*<-AmL(4r!P>2dgBP_tiWlhtta!K`s&gzYQ_`6sEbtx{cSY58 z(X~J8@?kGf*Cz!!9T_wlVOzKj*HCO`bpWM@w(+{P(&Y%HAykyaMxrWZZnptrxuNXZ zqHsGx9Y}qtFLnue=xyY=i#VIWm`BJOFRqM+`8A{R^ERDU5y=5u%90HOd|LTnHUzQA z*7x_4n81cWA6{mFE$Sx?t&+C3)80CT*ma2Ot?)2g-kvq)E0+FYw}qo(?e_!(*g8x^ z-VIa2bxPW}?-0Uzf*k}}=;AY)xwWMf;>&V7$J1 z`aM#p6C#?@)^$3GXMxv|y>g#az`-^rAtOq!xbW$fiXo<#m^Dd_bWyAhcL;T|29)Pp zsRp#%z%YYmEUnMvluu?e1ngH~y8u8hbOr68EExi<8q#(`uJBi5^|DiOtnLe*VxKamB^F_k`T@9Wb(E+r;(o$aev;kdrpiXsZszULl%5JYp zERRGx!{*NJGtfb`2i8Mf#kfJc9f-6oBP{0r<9Qw;cTt{^2{R6}ySVmyTT!VAv%>RI z8JUwq7t?{U1c~&Iq$n?-Ooc{~EanJuj*k*`{*qN!TG0DC5Dbc?9ytfR*E*w7J3>N( zZ;ID3MHYat?N+1dFwY`XZ**E{Vz{Rx1lC|=x2SXv;+Sf=t2x+fYdrQIYUpmc67gR^9w0)uUYC;+D`2{<)T`M+~P}{ z^sMYpC_nG@>NYS5OYMU=LJmq{Q zRah!(srXUuF+}MkK~BzLacI$lQ`_!YzCvS3O2GnF&n?oJtz)LQ4v-gE>f9tC_3+I-BR?qJrEO#DFox);9BC?V{r- zt9LIaa%dk%66=$KMC-&7xjf2g-|jZ`fd891rE@g5wAZuFK=MB;VIP#luPq{mnPrWn z=5Ilqo^my0}v;A&&s39Ie6)$f?wp?R!^l`^e}oz z&jJvM_EaE`p;Jo5pFKDoNbALpX`6+g`#vAOE`{}rJ%hI$fJO>J$o)&81TZ03$=#@C zZ`E^yy$f0aDOPL@lYEw#rBu~E__QVh@NFkux9_vGRjJ4hf`y<#Zt+xy zG#CP8$DXM2B@SnDa#O_q9V%6raRZ1b=Y4}F2$~r3hFsqv5{w(*y)3=$CzfreIiLv4 z5lJoS$PEh!3CZuRqk!!A|tR zsago(DL>f>(|Z6`Y)|aI!U_VKYmUnW?@K!Rv?SaB*Y*v`RXPDV1`=s8{j(=QEimXX zxr5akpu<5Kj&%>NzP?JrsC3^<$WI*MfxO@mD5u%`6i77hjvs)8SWUyX2QocbcApU7 zC2{$h6YUJ;klImTFo+`V4}yu)a?)FxcQ^)0CV<6sByRcX2jZLZfi?*W0clp zu?}H43fR+P?4u44St4eb0I=p$vVfF&dP+*vQ@m&Is{>C4Le}A&!I?cpQ=l4f%a+p8-`2ELkpMChr`xo$m zc*2W?$yqUri|+1D(txT_o6c=`KJ5jyQu%QM4J>645vLd&6mPRCAYesTdGf0hS z)ATgW&IlY>zEu;+Gw7)>9$n+fb!tFhf$kc3a5IVX66@KV;CP)(un~-V_vQs72u3tk zIkbvtFr2+NSMrp-SX@4Q>fP*6Z>jsi490g7D;2waz!%B04MuAOU6_;v6Gn~ptA>K1 z{28L6pv+5-?GtW1s;pt37+b%xfI3U`>@Q^tlrbr4P0@A)Vud7aog!@Qi{=du=j=rwv`SRlDnSH8Mm5RA--Tl|OIonn6!nODT1Or} z+y#0FP{#BooV-{iGiCG^yjYm8ugS6^@gD?@Sy|c4=(~mCMyhKuaJ* zY>?-WnlR;|k8yNPu2B_0pTy8ReIJ0dfl6_aWOX&X1;^XPqdJtR;<-2F?}bL0D5e6XBsnqX^i&(GfkK#te76f;%&l7L zu!gK|x^4fL}}w;Ip@H!rPDkE%4*p&r)iAaZ&N-l&#yI@Fc`( zyRkOfMmhiKEX-gwWsK4~U9sxpj0qD8_h(jIR0D)b!WFT{niVUQUP58te#mj!wEMXX zrAjl@i)XObWm$>fg054v%L+dI2w5qBUSPpzVFP%1bNG3L$=8%n95h!pIWgAeN(y!o zd!x3@jZXTxz{R?mL}@7SfUlG-yrIuH!t2kv)tmf;(%t=tcYTbYcELfCc`#}Ev_!FD zgI-HCEEQ9kJ~?FKoP4cc2fG{xO&6XCjV}FKxx_04y<>77=IR~ZN)e+K2(U}k81P(s zb)O{YEzhXpd~vL5wFk{kslL$yRkhk`5pb}^bYDF-l&VBLjal|vF1yWVa( z<|+KEYFAPcuYh9XkfqL)sWC|Cq_<>6DXXP*Oife>$B|5=JRgF4z8e||3DL?4=kA;2 z>ZkADynS);0oDPSx!CQTpJotTD z$SISv(=hVj5upVj%vhlrWj9=RR_SFO_m_mgXB&AE?gV_=&V_2qVdT0p6IPkgh2vy* zUSlN=NbFB5NYv00Jer$NNK_ND4|0I~XU8X@o|m^9rQ=Xm0Dz>fCR+c&2Nd%nV}~G6 zO9r5BTbwx9iv56i6R{Zy{yjvsT2C*lRj%Re#aqPijqH*S|K;tZ|M0W-p9H>0gAfxb z|M2&3zXmS8LSD@ltFfF3!7 z7f9wxvaOd*cZU<`Dnq;JtQfkYL19t@18!&=;#d}63{)+yus*H#erc?L1zBy9fRtuj2A88?R$3aMmli_PjBC9kox_9 zVRrnTOVq&5B}}`)Y!W1Cwsva>{Xxq zs?O&zxR9M3%Q8@2c19#%xWFl=mC){wlhpN}?0ii)H!8L^%YUNX8yqdrEG?B}YXxah z7;&h5$qUMXbiBo-dj@;1uxv&*jnq zfUZoLTu65<(eSs>H5{<6ssW2;RkzmQR+|qROfe~JRAR}=2?GSB3|zEAQitoi6-Z*N z3Dh-}c@ILz5iORTw}ujJlggUf1WHQ6ZE`qK7hwNJ>Ld=-Gx}Bvs&7QCW8R`esA9rU zfn4=oKcIVsFQ zmyv%*D*B?oD3$l3Ix`rIF8l_f&ug)7!Yax*l79zr^S^!j(gKrSW(;tj&(L2~fDd0^ zxBf@kYDfuXP=;r%t!Z%p%_K#t{CYbQ+h$yoMkKaW@-_CJgd30;Tq+CU$s86q06WdU zSh(uLXmfDs+Dafh)idx4SD9(m5pkqgq-n1gHMv*XJPWww*>=rP8Hw4d5V)m*aJCiyK#iFc#}^Wa?^EmJjB>$PoE<6l8n7Ke zv!F((OngeFf@)>ER9@W`?*9iw;pS>^_>xn<=fYiTfMMpb)Y$gh_n-1(`0gi?OpS%a z{~Z4Ke@^EQQ!*1YRga0=Zj|x9b*J+e7^y#DDy(ZGn9$hwu&->|B~(^4rw5-xA_t`o zM>WoScEL+6X`Hh8+^XB1(>QsB<^V8Q_U<;F@pu63xi;5;=RGw2R4|spiN%3N5W%I> z`dSZi&kRQpUd_h={lPGVi~(CxSWBwoFr%XKfci=-EzMeHIKRm8pY@5-d2NcX$Qx?1 zw(tp1Vx2tzkG7VqK5+$)PuL?jlwoPXJhR2d9v#P+R)p*xXnU2N*iBP2P@O;=~qN-Q* zMWytIslSxNbR*{+ymi>Rr{gRM!nnJw8m2)y)DC*?;);ZBN=N(%dv%G=dQBeMP&WLK~$F3#m2oT z2Gw?)3&3Q}`K*mA(8_ub|7c836N}=@!Q) zTu%pD4#4S0Dr&%*Z6Mru5&z-GZ$A%jHm&%(_wNV!CB0J~d}GA!X@s~^;JteQ(zb(y zBl)DJT(2&SmH3I&swlZDT|ogBHyE8n3$qyk$I6p$;VEaGHASV@sO{3ju{avJqp~~CfkE}(vXj8lP89$LjvpOWyD}Y^T^=7e-f)Nk34nAK z_8x755Ap`7Oe}Frp5nssK84Ium4D;Ob;79qM?+lcIyi*1#VT=W@9mvM;OLfl)G2WI zFo@TZOw_VN`cg=>08(SaJ>bs>AD$#>4pZf`Jf8;wT*}Ld#I?}BHm$fE@QyBY&d|>e z9z~dJTj-Lmz96i)E^7k%qUY7=e z5Fezs)qeb0h20rv(6PI19{fWbvjeF=`H)#%1IoxsxhR{Pq{7^Pk z1qr1Ap_m~aa(4zC)bog~$9LJL>zpnJPxe6I4EXv>)^-Dl@T5`o3Ece%+SE>5+T@*r zLDIp|r4;RkR7gX{)T^}gxjAtq-Z)>z8$=4_%e~?}%Pp0E)hamY@I0zHk_Wa5);MD# zQQ5#FId1o*L&F~1;G4PYT8sO`L60=PXYxvSRmc;EA3#6O=qSxA< zBq>ZfIe|BduOwOMpnPo?_yn)BVo;7P_Vm2z&nw5-8^yoZ1M^4@Z;HEOtsGENU=eg> zz)*w;5Fc5^Lho*n0FvX!s+0oiyu_S;))HuDIdV_esEAj^EoX#W1rHLlTCGbt89how zEW=LLBNGfpoa zxo}@-4K-0tpTmokLu{F7M;c-t+JUXh5+HEJvVnIGPC0>f;PNbrGd{99ZJD&wCDdB7 zkob2SKa$^6J`|}Yhan9$^nd^TTXVGf@B;{S{gR2`H}7AlO2Yd;U!FkoNgd#W>j#K@ zc1ib);M!Lx^E^qQ*ml)gB71UaC1Bvz#!u`MF(Hs}d~$D(r@VmxNv#RuP6$|1<*{6# zDdJ|zjzH)k6tAw_rChwmIaF%GWKUY*q_kx$hoJVg=`HB`lKt(C$}LlVZrlJ!usI@% zA|rRqDo9Q_FsujwVNdUHaNVg`8l-79!@rgWMU`={)3q4H$Cq>D_PKzw)9=#X=$F_8UPbUmhf1R1cGkB#(Qz1kSB zYJA3pokaad3r9go>oy+3V{rksf?rU|dDlS16KOMzYm1t^jE>{Gg6)FBgqT4S1?}83 zOhRf2&E}TV-YPbpg3A;kZ9LE;1i8f)hGQpJvl1B7$!ldr3Q8434#R(P`TNvl9v|v|LpvC|OD(7)+ zZJgBY(%rne59l4Uzw{~$cfPP(3HNqqG~6caG?OSGVP9n^ZGO2ZoYpo_? zFw&VXgy(>=-I2op%>0M{`u@H2o&0h5lRwGv^4swCDex4nZ9`vG-FCB(xU1vA<$177 zLB0jLy~QfgT`C~04oSf&)Pv8xt6QtC))eGa?1cn3s(%B=pF%IF>jqAaGs=)1lSOR z83ByF!<|qDzL2fHbc%vlR9!~p3xM;pthK2Vz{vISAYIHFvzK6x{(uAN%YH(r+Cb+OQkE0$FHHaIMt4>}7$; zF|2ZkYL`@$`r=z%`t%>`CDko-kY$OJ7I)52$}&{QRaHwOK%{Cp;Jhczzj%`rj6Pt@ z_Hs95a+;K4P;4%J=@U3yh3(VeOJOs_QjH>lZUgMjPW;bqZy4N~O!Di#EOf8c6_^`w zsYqhOq6%c$a4eY{*g+h@@W^n=k=#U@wpvBhk@^n9hCv=WDdG*z1MD87!&O?n`qhqx zlvOrK+(YBqY0C4n8^3X;qO8H*pulo(uA4mHY6V02q4t1lQ5RZ{8IvR^xM_a38yCJV zp^zGqLmd>FeO^3{VW&zb1~KxNJIdee>i*aBO&3=Q4^_28ci0|%^l&htqdOt03#v{OVaK(Osa0kpp-Unw7VSGpZ07|NCl8L~;?1Rlr$vafMw-uAv^sawW9 zBpshs%TY%BVXU)Hth6q~Zfr9^+cXN;9))DpuRZXt&OXqc;y!!W4Sw1aA1#Ssy2f;k&Ak} zxTql?lS(K{yxA{F=qp*AwAFOc2rG|HCiM)*6s~dgE_`s)(g7Bogi@7P$wG(yj9sz{ z>D0K&O7kwx&}6n{?0GYc_D$MN>**v@(&?#Pu>6Ts8CG2bo1M{m+#g(sL7vo>ky?oH ztLsY6H&Us62ErYt(US}k-9TK*fDw8(EA7Emj<$TQ!*iuuQ&RF`im$Ds(aIl** zOJo+#pB5^8b-4l%dtwy?t_UeWCOGyQ8U1kkBZM~RU^@kdJPHpbzu43)@Pe4 zJIuf0ss0tPGv5pEKfwnKD834B|Db>Jb!u**Fe?^GvGxK`wBA=IuWcr1rN^N}LZu(n ztp?&pzUStm`T%$W-1xI2KW1$e!$}LDa79(GJ3D;Aoq%@$XZq;4q!rp76*Y(;0^sGB zLf^A3VqGq~y5vFm76UlgP;OrP!_GoA>Ll;EA49KGNV2lyqKoi4eD6!lE8lrDo;DcQ-vB(=e|a# zuH}A$(CBk`N#SkUI7X@VO3ovI*`*dMxF5}F!BpLo-PB5tpapaGmlt~nN;}sc+>lEV z&afSQ6@;XnU1uUnd9T@1nG%Z|;4FlsN+?S>SzQT3m<r40o*iQnjEpyin5+Tm^K{N#WOs)|j@K6_($7P|^`K&*LnmNG>c2HI8`&4lm z2$u3kMzF|Q!81jNr)*<*1LJJ~E7pzxFY6tC*hF z_==p2S^CeLDpc8w@TSH+auqqo_qM;UOY8(^c&u^DRqN>2IL_@EK|qOfN$GK(f%8N3 zVz8?rQH?1-E|Fw~L7Wm{c&Me&6Lya-RL!``09y zeNBVKpVMIRXP2iUu-Q#N<+4jTfEX6sD&vV)05v`89^@i6G-WkKICxTL#J7!5@f=iln_#`Yg6wJOb1{NO07a-vP{}eR^wz$31X04LZ;s{f zRn@8YxFU~Adw0EBNE~$iY>QJYet~SwGn{I%xi=~rOhxU4mq;64sljYFy?|MvcR679 zOc`OddEI9^oYE$`Q6YMnq3|OP;mS$}aqMWSJ>0FQ(X-=1kT0OhuZ)UMDBv zK(+t~;>3drkB6KzS9_enWPuETTVnx!E#1bk0K0O%TI^~pmtB`u{eNP~c%`!0cqkig zdkTXR`+fyxyA3lWh^?)<5UUcbjbsXt(}q*ba{jfvMK7^RFT8Kv!kX&k#hm;Yc(@R2jY&!Fv{UVLV;DH&G{COY$sdT%8v zy?S)nR-H&jE`t>Mxcd}V4nRny3Eif#{vav}5V}4Bx<(oqPD>;}e7Rv9;jrS&}fj({^aMoeU0E*tztcEC2yHpL_CSA`6tP=kX`U3c0V14H#m2iq*kV}pDC#VwyyZ_V><>tg017`uubpf zYPn)NaAQ)$ARTQdXc6e`u5k;o$V$0Dc0bqeSWv8!u7IT(^I7*=g_1a;2TZi=HP{Vk z{hE`-L@DPKiblHfbV(y6`N@rTm?ktrF~uOHwBqJ;39r@}LJ2<|fvC>a(>NBkK`a3~ zs)+x5sBt(@y*nZgFyIYWh8^ABQM*Q$JC2c4yiXe6rV~?H7%vaZwQqbq6s?NT0J_gXY;p$Nu3R^Ou8k4)|f^Wo5%_{EdL*Df$ zZ>KRG@?Y21@==GW^naVBxig^)l`500=PadhFMC(98>fe47jt&etwaypl^XU;#!RcS zF?A)yXJn@Un64GyNa8WO*2>u?Dgcgrc8Xw|QtTb!-)-faOrV_IVLmD7=Vf{&`PR;q zavbRlIYEHbe#lb69WK z5$3rS!%Ae3LieDpy_RRoWINX@T5hN%!>JVW7QS=+M~j(nq^7hn%B>3oiwtlvHJb zkxn%&oLqn`G6C=icR)vMqtiH~-o3e~E^M)a+hc?K1?pEIwkXPXIOY@gtMF!;BtL%p z-rKhye)Rrjc>f}W%gC{l6cvaxgi}81rgnWD+!;HB&^WX}_QWg*k`Z0)i%*z`O;1Rj z1D?Ltk^L2xT`d$?RZ0+Rx)nHs?^xifRik}*EORfIWPf7GS^lsbW$-L5;z@NT7i=J| zTi!!~#JhMk$-s=RS0%`WLt7;8bxfW-P7WFmBGpHA#N(Nhd$mkg`VjP4n+B>-<3Tft z7wJLVuVTNolGR1>*JlxbxgTIv)w6(%dEBhU^K-0r(;3S$ZB*I07J#xmGM*dIv!ja5vT#o3$r5!u3#}?BX{7 z2(se#4Q#$uRV>r-teaLra1bA}==X_SicS*pBUx8KdejhON!0w*JfsGJ?NE;d8Ld3( zeG}WCrmG!F{T43qbxN~WIUjN*?-Je}7!CxZZuGhFLR+8rt|yCiP+lUIY&s`qbCHSW z&6MouQ)t9A1l9Y}aA#P*C=fF{P66{R-$qW}r8=>Ky>EGX7<9*R!i(J$&0Hy?*Y{8O3rqaP-zsd2Pnkx|qgdPS4Sf#y%TOU9)_V$Fjl_J;H0)KA*1-`gY7b7Ir zko@}F_wU-|zI_?q^3?9_v$r1yzW6uP5eep%>QwT|Yp5TN|JG$edX4K+k1WhrETo)S zF$K_@u>i~N8yLvJ34&}u98NaJbrK*=Z%RzY33i`>Ly2>4TpjOmJEE{`@kOvV?0=!GpLT;S!)jiq!#iXg$?>rHGk=MrQy-Y6F6M@ zah!#Xfe@W*iI8(VnKRv{Zs(W@4;%R9j~YqcVy{wyP*c#;{vH$wb0R-P4Nd5-l1C8H z%%!Sbai@y7Q7gMBbBNSL0{vl_uJCxBvjpsJ@xAA^DKqGHh}u$I*hxS&ujmX?%6z3G6Mi{VhT)Rx}>NF`F5kgA}7 zHCM0L;a}PYLrqqp@;B#wyqk=JZUCNjqe||Tl%3WkNm+1(@N;L+!j^nPxJx-gZHNX) z+3pu9lp6WPf#|41l5@3j-r6zbMK1F$+6PI7Ph>BW%Z#V zB!BT2e-Zu{Ru{hw@89zEuZeazxvRea=5okEv6^Fo?1Nm|b^|@WX`Ie8IA4D#!M22+hMjuI;6Gbq zVruSze1JU!MBd*3Z9kc_Cr5%5*FXIA+pjRx$1wj6AIqp^K1G2loax(Pnmi*h^zQ*bM{<}JM$Okju*sxDqoZhKLCuzn@Y%qDtMa03NxAsbK zu_Gm6$))uXN^iM}c(Q*1%W}_}jth?_+UQ6l=skA<>Iyy6KNAu<$_TR>B2#%rolDzf z>I~=_Mw_}1x`eeVqV`E5jZ>quFGmCEoVbNO+Ie{bsOvmEPe48(4c%!^@$YL{mKJ}3 z^_mJ_{eaMAce6vQaseh5B1?|C9wkI`nou1Ic;(@(lV}!7>n1`6T0vOXrB>q}S`12! zVzXipr3ZV3zK5jbmo$>Lf2H29xZu{+Ng|!*&=MJhk>6>PSxtamwl-9$>aoD$6GR*f z-SD-YF#N4jD7I=`dYUS}%6&h%-ohnJ>ErfbD1(8xpH0WIHUg1e0E~Kz!OV$8QYj$3 zd&ROZYuw~L1k3o@`_G7#6h&@+`u>maU#DL~`oIYNE5u_I?{A;75c>PKf297&3-EvN z!cGD8**5tAB0$3mFa2l`Vq#2{ZZXhUR+Um}6z?m{*E`xXRaSwt)XoJb78|2O_YO;2 z(`g2b+rgn{tx`X4js~2easm7dRY3qC%_hQd6p=@zBTrzI=N$Kgmb5zc;OHWSW86I& zuHS4&J;av~Uze7>r*0%9nxIO-2u#koJpItpgrVBQsqtV(3@R%vWilK)6NpSVHg-&v zv2H-%T?L=aHz6((dvhF+3=EFIvewnfm^rnKNYF|zl75hf5v;(?cMr<41Zol*Rk(;a zV^C4I;EbQA-EKbh?d3AIBWP|?cS!=|AgypM(*o!>x^rN3RiJA;fExl}QUR%bWSAQs^yF*xGlrX!1S zD3mBlFMJ0r%$X1fn;)V}CCh=^Hf6q8ZHz(oB4sCD4Pa|<)G>s~{>2*e3=-z+0oa~3 zIDP{tklrfG3cJIdYi6l<;UUI@P^xJV<%|^(x6uEmG>aYSkRYSX1`-Yl=_P7j2lGPt z?j(O+;KQ|j;oL)YUo!3KY5?6ILgoJlVZ*Qbdk1D9YvKimbur>otIGI?V~St`a z&#t8_%f>~z72pzm#M8*1`1LiksnV5hiM|TZ!8Xw5uC{g* ztA&{9Y)Z&Ys@)TTZ%C!X-axjW{NV-Le&?1;oDV+A$O_r8RgGGY+FRtW1x%lhR_1ED zk+rjtymZE4?@IR^hvX2x{R!A$lWu6GH@A(YYUlah3@#X#I5cXaUGfmiEwuF&gzIKA ziu~|j!~5q@BzZo~g6oMX_5&hu=@deeRc_qWyVk-^5oZ-sSSq@6WvxRc;C7fOXls5_ zPH?l@9g)zFYP_r#dMfz@~-aGPL}Xex&26N zLe}Mg)J?8tuk`>q{Oh!54Cz&U%hOreq5oL5sP}6!dB$8eSE_PrCj`41Z{kN)T_M-! zh6O6iY0cJQ0NW#zK>JLZENV4rrh$FzNkfiMRkMRtK#x*iLTUXEjTDUD(6DW%boZ1> z#>$>&e7Gewel|NHSY}yV0ycnKf7P3?*RC`smy6i7BXun49hfYRNB}I-l4+ig%{*Et z>1L47Ik>>KG(D_XP|5R}PK-QsYaz!2U=9E`$m8lxEUW>#{wt8Xc&ciPG%iZf(Pj`h zF(OC1kV%5I^0i4%yN9y4v}&JpbN0Y(Y5@DTb_P&d4w}lmONfKw`r5(YV|L3&qnV)Q zK4(ZTl~b;18Dy_pbvR5k^-L~RWzKj}OocN^)l9t9>Cm;`Q4r=Opk&giJM}l{qBwh9 z6j%bagQh;KZWWP8vIw!{lSZA|WZH}T*cziK7b-{1lxlhYwNFFb+9e1K~y{!Re?C7ssSFQkR zQqB~3m=Ne!;j3p$TQ4+`8^aZl>)92&8E7kgU3|e&9VR11=+TBHzl|j1=I^LJC{3sG zP(FHxGHcsR5YD>W$Zx$tgE78Rn4oGQ@4Y;M~shFCG$4V zNb=)y)dPz0CQS}^G>2r*9p0pwzk#7QCL^E)1UfXJbLi18b995|49tSyqdyzisK|IJ zU*Jj)+54~Y} zMJv|Q8DIcGH87_^rwqGqH#w{8jiL_00j<+jY0E41k8kS%A84foP^@8Rm3(AL!@FBL+9R@o?pq;G29G_7zt& za}-EjKiP?UTy^-ISnBN-@_UKw^}zg=5$kVj(2TyjZLPt}L>n z9e`itW?HRw-D$LhQtLv*4-_u|mFc;~>z)yISn0rkmZI(hk@r!ucw0`hszWx}=MhA# zEve=qz8=uRhew`UIKl?fYnOEU8e1)>z)1F@P(Rv@1PYw?z2IPLM7h*96qVF*zJ-`a zwjx(8eb>%|)FzNOEcam?gT;idEc7!ks)l00MsE34%G-s3rNKboK)4XziJtwELYTju zCu=cQxJ%R=x~}nM0*#jWc9x5`LNPE2H}bmz2^xk_nV>$pkT}^M(7LFmhPNWQf~J=) zIhbVXfI)&uOk6K!73BMglzGF@R=#QIb=;aF25#x#5;*M$*5-0nIcN(&xi2u*uH%67 z&`U6s6Ef8H2sb!Tm+KCurqnI!yFjH3U`wU8#W?CEVG;pJ@Tyo6{6$?`c^WIY>bPtO z(hsMym?GBLzt;OTM-E+C)jl$X2+S4CXP%#Mi;qmNoL;=XM$chKMm5J9l8PO z^%W=v;5$k1t+F=FhcDlM4okJq-@kePk=lZQd8r@L??aaU@7}*i79oFU!0+c|52)i{ zp6yD$5zJTAg<-5PJjLu+H+H7}BsWF^EYyOk)9hBFXHvno_yWhvaA0J01anlh0JS6< zI8E4w=_7yLWlB=5N_cyK(=ba%Y&!N+iN*3vY|?~jN#i5^8t|+Z7(@%u=#JG|CX+rS z0Mfw)JWRE(g-+JMI021OV|vzJjpHKppcDs&y8CoXtmeC}j9G7WUT@X5=m0fCj@+$2 zMr3H4PGL1Qtr28mR938QZdu^7f!u;aYNEm?on20CvkK!wIX45y^gOPBViQ)Y26^^! z4IPU5vIDBz2gk*v7#a(FI-#Y9?NU-?OebjZgwFoO+t+kH`uZYg?{{$P`+m$U@3 z4RxN>Uy%YlN!qpF+{+A&-k~o*WHZ`p7q$j)xhW9tt~>5TfzqW%BZaIRSPWsDCI=c* z?5A58iIh7eY0J{n9lcbEj#32$+l5_LaI0u}9BK@G>J>~Q%dyQK+%0d*77tf7Ywb;} z7Q@l#h(^g*6W!b@ESZaz@@$n}Q9BC|+jfE^md&xuY}h7BSl)YBSRL&B>osR12?|>e zEQpJrpjOsJxU#QPu=wyfwBNtMsrWj)nG4GQ8Q#9S9Po+639;w!i4_e9_0PHpo7p5M zGDvH06fmiV$Z~#OU1$*Oxmqiovj~}F7ic#OT!Kid$n$8_?bE1|shl;!RcahrD8(6? zT5S8rKnAw_6Y1MsfQ+)G9hPkDt1$XwPt`VBpE$q`FjK6Jx3-sRx5R3xCPV^D;(^Lw z1Dv44la+A~XFGct8@EVMvyjp?Pn2O@WGf66=Qo*t`-EKB$vh2o4Rli3X=+#?+@4@^ zn$JZI6C5RxazBTTj%1j6NSi4`s$n>2L8J~gF0PJny)G*1u1gSk0Or%MQT~b!;&jPb zn@O?SB4K83!+{o>;yv2RbjkoZ$|tVGk+C-tpI&WscW@RImjRFoK5PhLIG*zK?@wQH zX`}V~zq%Zin+rc7U-?QtEuug_L4o3>Rv`*`s3Ad-RBNOPk_h2?Kro?NAOMlx;lZqQ zB>BQ|3}!H$JXS??@;1&e8UIO>gajm{ZX)18Afqp+%IHa?BxVQ@pq{Nid_pOXAtzHk zo~<03*fUHW@rF}Y(i>kf2NFurye<(Y(wL;$ zi5(YZtPoN^Ldqbnr9bHC62X4)%?hMMNcWU)6Pka_KnRz8O+C`Yv+$J!N+^&8?M;~M zUKH)rgXJy}zVx*kgo3aZBG}{+h=e8bfz7BN|)51ynhbQRF$Ple;U@#cDjyw#q2Bn za}twn(LJ5uMv~t;kFgHWlm`s_7Iv`@O!+ya#i+8pY`qDxNeC{i*g;T$CxDdw1d|n7 ziWq%(RUHpZeMVQj!fdl`;z0AsmRR{!?Ir7xfpCs}?82~@w;MTfJABDi2*_n(B-U%Z z+*;LF*MV@JlDNQH@0@V;*OW7TP%>dkOHwIMyMV0Ygg2^!$^pM&r`LJ>5M zF>q`R%&0l2WT-=s{cegjECe(ID3aiE%mrZUD~V6VHE`_qbm(1_uFP@TDe8o`FU%ss z%poj%%vAox&nBH3>c3WRcJw@|a;Xy7<nppRo$2=qUL)mMMtRM_sVO;W< z9<2R`GT^hc*OilWtg5lStM^*^Ll|?g8j)C>;%cYDE)!X|N~J}KrxFq-Ni1)5ZEd0} zZQ<-ZYjMcE1wCU*TzR|A(7Cs25J23MS;+$b4@9d?I~;js224QCou<0ruv@=_v(-(P za>-(8*!_ggiINM2^i}*|;5jU${b(=dS|hg+FreZX>YB}88pywGk^#et(4!w+r8r)k7 zTO`rRF=IWGZJy7`Yu=iL3!T^)J-VoOA^$)k_H8h z*?O$$x}d_SVMEeovxw)cQL`GHB1(g)ynr**iV3wkfazj$20m!2m>L84F(KAXo>Wa^X82Zta~Cxb}P*knk5nZ5r^xjUEJ zh1|gA#=0F^I6Q)`4Oh@(45nl*%M(A@Aws}$$pHF@y@o%i$+EPKr~3$~kc1*P%ZSz^@XbXiv4$Aci5T& zd-WN#&DKrP^;?v_0qFYVl4X4D)|Z}Yw!U6;`)FrvJn=5N*si+mXzMG-9aVj4u~|=J zl}w##M=dOhT)^WNWpl@()((TQ5am4RPY=1R`{i1zppEvGXRV&A#Mw*T+37E#D{GZ$ z*_0mv96&zlk6ezsJ~&hYBtniHY{2BC1Vd(`pbv;ya95=48RlZ`bdpN^)@`xB_x|PE zXaD`bhX0;Fq=ozYkM!5i_17PU4`06hlE6aL{=Yo4mVWji_Jy1pbZ-+MX7267tI4cu7b3_y<9eD-JJvur#;TSId4@|S-{Wtnnu6m963}$+i zih9UHsIZGv`+MoH#D4_v7AI_+sKbRi&WOqy_Bi`d0Sn(-beK78_FXJ+GohSHTA>%0 zPhez8hUo&rA^J^9Q7IYA{4G>~gu*hz_JDn3EeW`gy5!km3(e+2F22-yKt6X-^2(0@eQ! z2rGnfCJM$H$@;Zbu+YTKkJN`c%11J&4YMejW>us<2gk`^()v=U&p5dgZZW=)kpqWE z&i~;O)NHq=D*C7#TPr+@wgJf90Jx|X@q_W_!ccOQ6Lpi8{WaRgy)1XAfVk-SzY8D! zcdXh{WcxGy+}l^6Gao8}XzPp`C?qUI0YHn4WKhhDv{4KCc@D>}HsoQ6diaP;c{|4N^!B>^8)bbMcV@UGS7qxbbGMLne~g!i!Z?ASzk zuxaEwmTqOORTR3}4`xhY^P~Hw00CeXmpYKW)^1Hv^aM%S*u!RZ{Hj z{Us47fi63cQWCEr#mmg09ng}S+d|Hvuu~E|1Gn{NK%$zZNnZPNg8ISILeXlE--V@;mU3Y zX*u=V2R>HHLhmjS_F``73+Jqd`XR96gkgzfk*wt{M`ZdX{$2Q+bO`?U;eVC?a4<>+ z{A0?C|ML3VZ@#CS|JR?Z8i8%7)%pn=d+bjyypJq@G2LKvC-0R3$c9eQiCVT(KRfpK z5FK_nD+Xs`5}z?%?n>k$$%s&|kUqF|X14*B9fzimtq55m?n*QE_WD}CG@Y1b#iE{i#5zw4raB)bl*sxY{% zuZjrrmcE8BK^K)y8+~-N9LsgAms=~ zR5uRrM0GVp6jTrXB5_rZ0P5LoK@}yWv%W<6s#b(m62VY)W7VK3?04by_t5N;%I4Uq zgpHV`)+Ac+$-Q9qu|@-bpNQgxO|L>k^bM;j8mOu~Ru95t43w8&_cRvu1JumOws3uh zbWt<_hMcC?YDq#9WpvVr&Xr0Rnr$NHW+R3H(?Wp94k3h*BoL`<#w0JtXp&ZmLi0*Z z^F>h%@#&(Yu#EiZaSizM_KHZrvVCDJ^pb8bw+a57)`Hw{2}@?SEfddfDd&(2kUUx> zxgl;_6Xn!7mUAcNeUrDHsO)wKS3}!kV1Bzahf{yB;4DbkY;;9-Q7vanO|`bV()D|l zFF!|a5Q!J{MOo@gS#JrXM_%VF@h08%WvmDY!26^BOj}^Rg#GLfYy&v>h=VU3j8?MX{D}4p+m?RSj8^ zlNV6lE8ev%e1*n(mmXql?0u6)vJcszLwd;)xJ)}NAr1i%@RYy`{R$6 zJ=X5W2ELGzl_W#+*1dI*mc*sf%m=FN3@TiB84|TM4>3;QnL$}Mk=aC|c9xJ-xUf?$ z<=weEk=NV|o+jrSK_j%zXSXD`1AQD3Uj}4{(YV!S+ICwdH(eD9Y)>#bwd&xSW|!&l zv|Q^93$17QUh+!;hwR}0`YNANZeSk7>!vEC1b;}zUN@hVkjfOUQK@z_B;i!$#-ege zl=M7Ean1!2YS||OUU=Gh7R5OXY7GikGWU;)Cg7qm`ODX@ZM62HFI!SvFaQjXx*D^@ zHtd~j#nokiuT*|7FV4hOaJNekj#E~>0XoCAeqwgBS+R1h>bsq{A--IuElaPd8a;i( zmmrC&Q^GTFL5<3$S|n%+Gb@%pv*S+20hcG}8pX#&rx_^((!KwDQCi#O+IMoGps=y| zVBIu0!zlky)tzdPWLbbJxzNflDG%Y8tL%TKk%hp$5~{LGRAnB;oTOJH1QZB$O@Pqs z-PP+Px(1N)$up0-BBEu7@ia4oPPQtyhKS>s49%&9GH5eGqp4l;#auZA^5BD|2H41r zlrS;38P5i)gqhp`oQtkfDP7dvY1JNU%wp~BR21EYvFV^%kjbtB8X1&KT2(_ITdFO| zlTptcBxcMiDF?k`=Q+k!4!Esl|Gh@wQ?YAUrbBCltQajN+#q#l9HeJdWlOt9fNzvq zEQQjvZ(8*_r)ffc0;Fx$VBglu@cw(Re;9MOjvq|T3YQhOLC@ME*BP_z{ z1BP^Lbh_ub8W7)-(>fCbs8RxBH;|p70L!bSgi2jNoM4Foa2Ya>sj7?Oklvky6!|K< z4tJFV=uy8oBpx~IN$xQs+WLM%O~q~56dc7+YR}5gVhQ5p)~~$B8vmWTY7{&zc9o9!qcXN9jaP zLWR%N%DQ7^_=qD@+dkN3)dTezVkIVmwn1(QY$?UbuhE^3onNet>T5yXQc)qroofXhXH|sGzXgx=mEIK9n=AA zTy}%XAl^GUm+3+~%~G_tdlNG0Gr_~hT7?aYDXU-rJC?$$2^2*w!cMEYiIYO`Bks9E z>$7!l8KoZ?Yv~2z4!WiLBKDF9T+krgZT20d9+BIOPCn}G3exH5ihJO}NZki`B&=Y# zWi0`AsNK-6464hPPET+_j#X0E)?N8~C zqM3yjc(2E1C8xJMco(`t7(ZrDLo4P^z#O0txLv z*Th_-v^pZ;Pz^_o)%@ydy27#t_HmZ=kRErcL(0JifX^b?hHHTS=2{?9CKS`jf3#Zs z04@)d`(A*e_;R)gtSey1%W?}yf%LG(89>9Z0)mrm*SjMkQkV&-$k}Iu;xdUBX588P zpS=AkyncbYYTLuKX4c$fx5hfFvN8Vwc25|{xLJXksRxGuLzxug5qe|xGbEdrjRPgr z9eE}>=Q;|IASI*)7v-DPcYe^dB_|%}JuzUNMl~LH)g9FgvBwoxnh+VRCJy)e6W|_= zCZ+w0Cn)fA77h|^K}6p(d5j#MUH+s3D=zN>QO?{&>B1559*Os;F7^m z*2i3TtOMe1dSI|%3r3J; zSEQgm6VQkh*4aS%^AqUostlq)KV5X8)j2K=?$Wjm|L51=fd>2qWb7)C$I_c{WH=qn z#%_6WWP$a7%ar1g9vWnYi`8L9UbD*_v^}#lv_zF5C3Ew%1YZ#?^)UveKY%z;n z$sfT!)P7buhLzWxV)TH0U=Mp4?!;#1gZho-ly1Ww`8I3ZT-#QC-+w zt5m$G-Np{Au{5A4XAxpI3Onclsp;afDAtUkERz+6iTMW*2HkYfJrW!@K=Y(a-Icu% zOc8V_;I3F(aWLdMLGF34@A{g%+M9es&}zDa&sj6bu}Eb9G^jqgGR6<1S~hz0u{CJJ z-ec&$bSijB^TtNr2pdu0U|y8MGG1k<=( zqL)IS>NvgLIs^A??g(bStkU|_tf+!|=NSUy4!W#E^}{<$VVzWS{b@+MGyqYp+=HXi zpuS2k#i1^(2U7)s+X=D81kkG1FcMwO@w^`7>pGPsUkDGW@n}FK zEw?oYsQye)u7dtv?D-30SlB=w`3N&sJRnQB?Re@EId?-eQV6Y$O}tAn*L1eZEHGEk zF0nNrH-HBxjQ&Y;3=WzLRAKr`5ez!VNPh#Y0BNmNwJ5OE{i!ibk{fzyCIxsTGTS2z zw!N1dG!-QGILt0bv!UZVNdh-AFYR zxoK`br$uPsrbuCi?Nz%kb~-1QdY1pA>T~85Ae1f?n8`}8&!X&Lue4OwQk6zxhrpV# z#S<7eWClnphaACY=o<;4ZuYYRRH8ylEi zVrv=j))m+j$}x;y;6^jMzG8?fZN{Zy;zQBo8(~)%3R;ND^>3Q==1BQcLv)tb?$a~y z;$w7NtfaD;s3hf;+?;J%qb~j+7Y=>)Pe*;LqQvW_B`3lYl!42WDge_cY|}FA#E22SD>a^B!o|fiZ;3_!U|{MpvAb-{!_#m!}@9m-0&e;Hsfh930-9 z#tG9jLH@7(82($o0Dpon_?14-Ki99r>nE%}eiYt*d3m&%bN|2*xJh1)MM35dpg6V; z-BX0R{`xM5$K&PNeY^;nDKGW3wW^ zUq$K3_g}pJ98P;*y#4O=S3C!P8h9pr1mA@;rhb9fgB<}!Ut#n?_pwJ<_NJizVD_RX z#~Khhw51evmh!{-7gSwb7cuP7_$>`GflNmMK zdB+TZ{+eq!=n4DqeI4%bLmKj9i3o{xq%6y84MTlXSS zUt;O%r?54*Ql@*BSZyfv(p8z?t`3pV3+MnhVu2zDWObk$t3EJT(l`$jkY0q5Ey>+U zNxgBsfQrm@jgI2g(8Ed$_0l6iR6${#8qh%HP*tUwRsbw*cJ3AZ1bG6%?3o)zN^!SK za2ql9)1cbc+&VNH zM}#(!Tye@|XLpHVQmy!w3@yyhY5VCnc&&!`V+bQZF~v!m=tz`Np6d zs{yWWCM%peC2?K~ePrTB_5`)bhZD^);C8dP?ywnwe5^l*$$$xFRH(s+NCOcm=z#7; z5}szjvLV#0o;Dj=jc7#Dvcub|6@2=!?97La2zTajkea-q0s`n;`>Ik!k^UhEqq-!7>>EwVId9fQxA%D6sywi0ObIO`?cTy|4T)J*F_t^#oA3Gb3flL1 zxPj3qD`JVJ2ffMxG$NE%&Nr|>xesNr1yfd9MxghfobeQFCemV}aZ&8grNRD%tvU*X z>ZIz0dC`OM*C{}5T8AC8RTiQuTE{9=;bRg%!yUq$eD3mS6X!!Q1GVA)W6N zmxO6}mXx6OvX9ehtZ1@FXMswUA&Eil1=va8k8I|FEOD)SqgwoJ_&0x@L-7}HpE#Eu zYtgU5o5=-z@%9JEl78{}>Dv#}E1$pqBD{T?9{BHrK6yz99jSU6RiJ9`4 z3b{)BVIOq|u^_2N?j4rIOQ-JW)Z^LvQXw>~*yKQaa8-sIZo?W)9_fQ{Gg18&l2~dk zqtM?DH2q#qSGVZ}3?6c5z7hjUpyQSajAO$>L8Yk1a=$WUg*0Y%c*~U0V^Wmf&ptVN|*e6&a>mA6tca+RbzePUV+I4_kBBOudE~cSU!D@DV|s zx6q{DzXNPQWu2kotm6>sCts6_83H@OFH>AUZ<<+`OAYvwvt#-@e!@x74<@vwc&<^m zU#2TF$u*Miw{gl6>K)77OcVf$$R1qt+G22_a|HAz*#UI=Twf?*&C1;8+@C`1OpzfV z+;_l$yptq*g#q0CteW*{c>RU??HKwDHqc8;F6zF(J;PN7)fi4w=_UuR_UM1%t;ZUZV&}9<1Fw>*_N0)s8$TF|R*?F^ z47=LbZK3AO36L!3JvRDHZ+L*cPn>Jdy$H%oa~@Qv0~@tTH)@@n@0~OV(sCU5*=!5j z?kJ#-(_Dab|2XK_n9n#>l+0aWZ0eSdJB=%#7Oc)%OLoXA+IS~c9^_IQj*dVe0Xz?u z&W^GRq*eK;C3X712I^V%bsjAdk9T#gS!@N@M;{{4pcIBt#|o_5O|@^y@#;~ae*c1* z=%(8+j@^?&X3aDGohzr$O&ENk-|U^v&N)iJy2*ThQ#=DIW!D#2erMMQW6nXo;ifmP zKP`QIGU(!b8dZYM*IP}5YLdL!-f?0MD{pbC*#X#1zuXOT!+In`8jA({HYix_j#d3F z`Sr6C17-wvxv|;sg7A7J$4^~wCwI!wx4`0C${4Z+L2Q;wQlavv7-0uRGAzX{+sg|; zy}@VEoya#Ms+Cf9&Vc+R+_-}>CeLJkHF%=7+j^uE9x$Rf)%v0x95<^OAl+R#-wsp zf+hKE?3eXGB1e?U<=3?a0WU3FbFkZ$SYrc);>yY(#b2XsdQyli1sfnG7&wevYCsTo zFUVB&Yq-3_SH={p0byOip$}bA+G(qHG6upsRBW;YodWGyOuOsBp;*JzA4R1)vKG0B z35z1NjR`dmCP+AqzU-5>s(T@h52w3th;E9;DA_$-4Y!6ph%4$860K55Sp%aa*J~$f z#D=n{hKPB917joaF+5$2`jcKy)XEb6my~ryv#j${`IS~?w56HCVQCjvO{%rnG>eXT z?)CVA{M)Zyf55faC;8Q%zgk%-4=(S26kb1-lJT4Gg}0xj&w(ds@1CG9q-#MIb5Wvf%;kLisFA2G!N=Ld6JI{R>7d-c6zhL!auTd0$Ia z8A{J2E$kIGa6Eiw#j8!WY;dtxxdEI?d${e8EGWp7A_ra{V*)UtP)xZDbz5Zlnhz2GUzaQg|$dZnNoS2^tjW? zzMLu|2Z4F$h!TbEDz=m~2nAk4YSITC&TwpY$&E{K2qC(tL>=1mIc>z@c+f5&PNCxt z7!DI{j^Lku^Y{E1zWsvbxCN?Ope;VnNJ({d*)Z^=JhQ~yx+j>`9EmZ3a7$mOw7+0% z^7LUDw8X1~mEqBMW_LB9DXk+x)hbuYmsBvibtU3ikzsjPOL6PFLUuVqlM|p(za}P5 z`S&%^A6^_vb{=m?eQVd>fzq;?bMS1pu;kYXQX9L}$PX6)qcGR7bSGcJ&Trr7fs=hB zWrOehll;c_`l9lP<3TOfMGF8r)z(V^k|?25_%^frsbVuK^>6c66bCj{iW`QWYu}j# z_%6v(?n(>A%mu9Ol*6hfNk#ZsM%C0Lc3YhQ;4f*1E-lySaRokhb_RJl04_~=s;FW0 zr*<}&Te)(uYLi+0SkOX7&ugeAHsjR$OJ^~$*+;lKDCZd&<@U91H1?w$v`h;|hx|Q1 zhHt-+KI{9hzmu-swcmdpUQ@n)sN8@7YE(a109Zh$zs@=Nl`>aNCCD})2WQ8KN&Ta> z*y`$xRmy|x2Ho^qdRdq9nfuHOvOh%Jht6U7ad zPNY*bs{duOF1r9aO)dzGR?;IViHu(8$6_suF*)1Xr-E)PZ-H8r^78#{_%|mtm#-+E z@%y)*rdL0G{b7K1@jnBc^Pk^-e0g!zCJb5~^NIo^S*MIs zUE0D}sLd8v2>4~qovWH&T1S-O@Y1<-yEidybX%SBrshD>6=Psk)b%yH<)XGyu>qQR z#0A4sQdr|n$ERc$K>>U?i4DAd^7e7M_CKTEIkbpB4kzB2T>Ey9+XV=wo@0e%l!U5r zpyKB-rpb_vE>^i{YkNYPN~PSXr4eL4*FEXQT2+`hUi9KYm)-F(Gy$YBU!uZ6rQjg4 zd_I<(x&SJjC#n6WK%Bj6xcZT=@*~;sd%3MD|4{~7H-TLVV3nWuXx%MI9Z+Ef6}*{j z-YBPa67WH@ZR5@!Q;Ch#xL#$QRs;?5$r4>n;)cm;+ey-TcKuMvS^Edb6M#4Pci1vq zdq2CUNivkYPr8VLj|b1jdOV4YB2YGOJnA~UU^rA;V3x}QGCjo2+oTw^=2$*RYkeI&OtEp#hld+Brb8 z8l*^=GK=Abssk1kl8Z@0g}T=|Y=ZDu6<6yMuvP;g)!m*(Z6d8l*mXP2e=q%my0cQK z0xIA)U3V$(=cCgWL&rYCTpNkeg$JoT_QyuxtHSu4g#TJsiE>Sif@PKz-(R;aeQJzGjJ_oU{?Yj&rC z#l6`rIfG($l8%eGyMsFlqs(#5koR9;`SL?>U;E1)%)z^)1zP4x0SzvlQ?@qgH?RR5 zn9x9fBEJzpG-tJ85sdwZ3ko2J7-;}i(TM}itLHNL1?u}nNzGgCOu-3f_K9*-E7oGP zgrssF01Gv>rUsy@?OA#f+(~EOmNT6mY$3IQnJO>Fv?6qAi^l1eP~z`i_aq+U;bqO!l$d22gN3@6;4vl&rd}ZtGuBtutgU4Jd4}=e)y~7` zv@GYu5I4g_-(7WKxPV2=DPau{MeLc$6Ym53cbW36G^%`VTm@H53G1P8CI2U%oTXzk zR)BvwnuUoJ;p#gEx|)F&wHe2bGJ!EZdixCz%s(hD=vy9`FH$b=$@3Dtg%7NAI>|V9 z$-1FZhn$7Yl<80bD>lKo5i)MX2^$ZyY3@}^Bwb!Fl~s4Hkeh_Z9;{N` z@b+%ZR-eA(ExS z$bir{s#1YItv6Z~3a@QFH+h_(^wB!a%TcY8=e!`D|5B_aF zG=Ki~W6q0JR~Q<^pS*r{(eK1ae*sL_SVc+I>jdBeP;5`Y$aZCBX9C`J zGK<{WJ$vlQZ$h-BR01>H>qBL|q?$Neu-)7aSXX-$druI;sZEzgromx?QV2I}GxNp| z_x9awZWkZs&ziM+Fx&#S!1Bw=RrgPxaIU&nI)IZZERErQHVRH+0qjlXSVvWlk#c?& zds5c`g+TG)o)RlpB$Cco65guVsRsf*CfwSfGisuJ;jSlTu#2N&34OMVo3*OlgmbiC z`g&k*ekJe%7>YJV?@-`5(-G`mFXu-Cm8IxXlx2x$KEvg{-xlJ?7sb37XL#pG(5#j=vq z!pYxSl~f5tNr>OE(qszzrCbt*#)N^oJAVO-$09G4Z_CTEO71fH_)Xy}W^__=LI5Xc zGV9uy=JVXnOEBK$U~AnkM{4pU`^%9?1!1~@ScqwPkt(KM7J4Q~5eKaoOQ+SYrq{N6 zHYs4nGlcy~gbUBkFj;Gt@2hkf1{js=xg_`{EHw6^;4Y#}?wgj+QA*K7bTgeIZIoRl zD-lbiKeI`qrUl9$tm;^1cY|(*9n{W6in>{TAS|VIv)v!yB0i*?e5vc)%O88#<;cGg zfbzh^a!&G(Nx43(c^39Sdt62X?SX&LP!NiE?*bRa$2NiRHst$INw+E)wvEWdKD-w!Eh9~xZzSBlAF9| zE~Ty~C_s%hTB;9}ZLN}f_5_BBxz~Z!U;*%?+}R9R4H1`^gniShdaCw3wsQ5PWBXJZ z)Z2}|2uY`(<8vs%!++}+ zuzl$_fA`^m^8Wj;zflXVe|r6OkUxHTd5JDE3I_gqnwXEPtzkJ3gounS>m=Cc_ULik zmL+FdU0U*Iz96JNIvD&osF^;oD8y@Z=>xYl7|3F+Z$L@d4jz7fgo#|O^E-6QPRn1p z5eJ=)+4Kth`>}`%@3$pPHz1xQ@6ta>N{qz>k%}^uB>qdq=>7_2*l|-N;-2KjWh?D2 zNaBfBC*Zi;4d*29;j}qBqOBnn41QPU$wJ(6qQ=RlTJ=g>X$I|bh`mRHcB2JPHPz@u zusOfN%V1)nM>&`jE?s=<#MXoNa`0IJjnPW11*P}d-9TYcxE;ZFklR+Nb&4%%~AA(*MOo*SjR zH|b($*pc)7g%GyG>o?zlO6?um6U@@**bv$RVjSB`(l`Kja`wzT)h8h|kmlVjVC*y` zcW!F>kVgTM_9slwkMY@(YnA1=(iGD|sz<%Z1!NZv%dsuAz9q!QeYwEUY=LH>1BW|H zZ0VVlw5%$jjk?laSMI<|JR@#oysUmC)$9l8) zqD8$PT_H?LITnz82YJ1U;B=s*EiE+o9^z8AfJyUW z=WC5sc4abOu{{ac$bH?NcC*k4SxzL2FW-Ltp)Pu_kO-agTNwoddlh@QI3OITWs zT!|es%fcO@rL5#ZYg+EzO^!549CB-=P?ILcPCMNHh$IM8CSmG?Z9~Unfw(Ic#$vPw z{`MrBkzPoWqS!R<7T19wt+iIqH}^Zbn%AU~0_>tL-O1}=p5_{Jxz?pApeZKj#)|_p z4aJEzqF`gEI}lL&N#j3>F%F&DjR4AF5ifV_YAIAMU155f>Z`1VCOs@S@0X`Ihs@Z7 zzm1>E*Qu9$D*Zz%Nk92|T9B(wKq=*>k^1G@)@w={QoBl}3F?J9SFdce#_(cVK{%tP zYiOrsnW%g&=~V%BDfo7nZP8f<@?bU1!r5HNwSK|y5C9f0lqCZ)1*XvYRr17DkJE4d z;k;H<^xVQD6^ZQ5DrVc4gu*o#8Wu6r)kRRZyerg|5XB%9vC=|dN0C62>s1vs&k1#{ zrJs_6+>cf*`0`4K74HH1Dnxa>A{1m59}b)je3zt@Yp| z*YH%cr-6f@Qz|Pe<-xz@DCN4#O>Ou46=*Qp683JX zd&OZf_q=2{=xE$oO%37@h=8nNf>Ir@uyR`D>n#=cNn?)4QaOOku1W3Ej{NX!^Ddo+ zIgtyT{-$v}@I%TQ7h?s7^VX3jG;W~14AW^SpfFyqHpdzZ=|Xa?9cReRf%E8yZQso4 zf*L}+C5O02=!O}1U(%pf9Qy0(O-X?T58pMw`Jp{*PjHwq=t#VXFEPCT-@o~LH*cQT z52P^H7KUSy7@$JVVwbHeP?WfsdY6Yh52qbvNl9Aj1#@$uN=uGx#MZ#l@-;kWJE1!%grTlXxVHN4mJ`hc zDjnKdvDg|?woF}mi5{6OiG zvFIpv_NhC3oS7%K#~HP!RNxWNU9L4@S*u4%Nkd`)F_%sa;j~nBF1n=q9oT^rD0-b{ zRd?rpO3yaCoGWx>>~34-i{gNo!Ch$Pof0)%<--Gj;8rHk!5fiV!j9uCSuJ)^X~K)Y#c8O9;o+RO1$q35oYln#}&lLAiJlkXl? zI-LxJH57xwm1u|qy4;EQEA1NM$wfrrW?b#I{)8md^F{UPInz{SJX8TKm58wzdLnJyRlb%T z`dtswn4^)JR$=fq-l})#MkwX(f|~1)BmNFphx}#(S0{C)`N|0tPdB+I)?o@PPFI)! zCx-&;Q+rA|ChG&F*wJZfJti>4=|Q|`_tPm!#97&98FhDv@J`5-Y@zjtd~@| zWBxy5EN&;V;=?okZ&h)~lF|s0!X!&lC~pF02i^CxSEeMOWzB5B10^|TnPJe~)eF&{ zA;c#}AHUF4!a0w}=qNuypsN9l)hW6Tr}}v78I6N2Y++`{mtY!o(u>;Y?s zi}Ix~Xsk3IJN1~Zxt*(20=b+(l4J?mLWF2!9#v3&<$ERAlUpn1Z!PjM9hu;^SgQt9 z=Pe90%aXcm*4%E?tjvc0F}6EET2gr4>E7sy7+B5Hp79gel zRUZ~%>-h-*2tPzu_Vw$JQUt?A(BvQwtSX=x@qnPsOHLZeJQi~WjB!&Q1B`0Ih(!9G zQci|#X6L*CKjr!su+re3WF39{v);l)eKGi`I@M?0CN6e>8W`YyR-@s1kn<57N&Rl` zvZ~{J#h_^R7dxcKcvnjp63*k(BLbL5 zt^QJ;;+@5+yExQZA;;5*o zQo`1WN`LVATiXYbe=Yf17-5m-n`#l1BEjz1LLxS;qOxEZD@Guyr{kh>vy!|qLGQJ| zAN;aNFqaDuP3ak^tT|QxA-pA$oZ^{3vN|I%k>FnoF$nKr4?wAyogTU_m&AnJ4c`j~ zJKj;-P|e`ZK7E-e%!EA%B(Jb&MOZ+q@ySB9)JaKgfwDlQzu!2rpP>zA5=?MvwG1}P znOAvKtNu_5J7}6)074&BwR@}`TkKHDx80z_hW?zhYZY%|hJagN<5&&=n2XxSR^>@U zy4U$5mrHU(-rb0_4|5|OpvsrfFGd|?9fkA+H`IC|tK}(}wNE#>oO7pBGKdkWydLF8 zx}+qQ0)D6bR0C&Q$l)4Eb6SQI$mv?ChQ0F^>wBD2HsQT6TfGk@5;A*LV)bOXAm^Zs z%j8ElNd^qjY|@}9*H-Zu@n+qTP$y|9(3&8w3YAqU#3qgqLfawwyNk*s*nS4zn@b;f zAyp(=sIRyLIE}3hO!hfZWuMzT*Jw#!lBe_~=ei2?4{!ep0_mqAzW-0({5=#!pjq#g zf>tf5Xz{7p*5M{e!&|spU6i?w0^B;r+3Rzy6+x~r1i#wA#*`h^Y)}_1;wuy>qu7gxorKFe0IJ1 zFdpk>QqvE3Fpy@Bl-3zD023Bzac2zd`x6*m4^N;9{V>lqLy}-u>2B?qmJ6N9K*K>C zuv`)y7P!4~mv@ffqh)v90WJnFK5m8W^dKkpJ_mx4F+92vVFI*!E{$3^)#BD^n5i~4 z=FO5sBpRJor33}g6di9>18o7>3>#2zEqdf$S`TBP6eWBB$9{HUM(0{34#YMukP zUyt^Hn!qDvk;g^t%^y>Lm7v6m*s4g}pEfE4h7;!(r~NQD(y;5C%d$<})MK_y*HUbB zF#TY`x!4?Fom@_8&9)h+Jh461)FrGd?-c`Iffb z@)(5!aRSIO$97F;T#-AddB5{MQq{RBhVq#0)oI0~U>o^&;a2>Fs-<*9@P zR4N)}xp82QcF2w=Nu9G2FSlu@oRGWfDFfFbL;(02;;2?GjCULBJ`fw1M?)$TXh4$K zuj>Eft%u>oVk`-*#oPxHSa}hoYFJ++QLG z?;#LAe*0Gh!pEGt{L||na+E+RpNuE~ZEe!1ni`pF` zG1qC@3UZ;*RW9B{tjasQoNcJqt!r@q+Qm-e>X|k`9f0Jl`~%--#AkI;Q1n9ehPj>O z(m#W5SyCf*M(>DCE>uT-HCX9l+Ts8+$&6G3t;{j3BUH&$9EgHv!DpU8zJptZc|4ng zvDEOFbFIN9o>K0qaHj(TNG(0etB3n6t0@U(1hM9VgpVONAP0iIEi59j`{}4D3}OP` z)vg!};ojD|+P&9~MV@ClSMleimIUnJd6)rO$SS>zM;{ywjOYQN)(#YALjq$5%T!k5 z08;V^u_VAyI)$&0O5ZMBa@x=}kTYqa-I`^2is-6hacOo{_RRu&sL|A$1Y1b@A+%H@ zw?pw0ehlA!0U`gdy6UMp!G2UrC_Irqs7nozWGkJdMGV^xoV<#W0h4Aw`Zl48ksvpY zWj&4#S>KR_Yrx`HDJwZ{0xBNh`gIJwfh)KeUuuZd^{3hX$$o56wem1l#+-QvYiiYi z-%RRw?r8Wpqe?Nn!C26YW%A8oSLLE+=)i@yv9YHW2ECDG=pgEZvWwe7Fnb4k0<4mXpqgYE)m;`pgN$ zNvUPhvumwB$ej(eYN-$om%bV#7*&F~^9D1Rf?Cy`95X9viAiCTUl=OIut8g`h`=sF z3Y2mq+Pdt|`WYJ7(n3odD`OlBqlNnP%6RjdJ*f+z9C6X%r2}|eM+oVq((dEG34irJ z<=Fn}?FSz!2b^BusQgn7(0vZ`TO@J)kp9%yU(~FTD+zh;;bY&PV(_m#s$PUmm0g7BvGdLtkiU`J(Tk9A&`bgt>HQDfeP6Yzg^ zCK-Vo%(`>wq*j(@ujKmcDp{$8NwU116OfE+Xvmyrn825flsv}n(8CaS$4w-tOr|0Yt2ykLaqy-9Q zI{j|%Ufk1SzMJs(Jl$%{Ez>ML-3v(JhRBl>Q;t5e|L&P(H&8izh)-m|NR@Nrh)wFk zclg78xtod*PcY?5$3z&cvKcV}l4RPASKKq5_xnp;S;>9i5I8wPbX9uQN0|GfW#?a2 zQnCO~VSQ`^DUcd_tvF&)sCT&`T$a^=5Q(O|pd1>dUy<4=DCN^`0ltG^p66m6h=M^< ztHd%EF}LWpu<}!Y0=uMQpP1*xWk{o(xd5Bg-~y$0Q5m!l;7kED0l5xxV==zYGtsu7TdW2(WQ;<&rNCh)rqC!*8mo-tET z$mDP=m_uQDg$wU{0Ik`p50aj<_WywEll$`loHM8=qU3m|Zeh|Z3=niP~tVSoztEV|IwgW?3#tkD7j;>)wSOLl`;Y(KaYyN5ZA%oU*BvziGYxs(U$tU#C#5i86{sG}L#sa|0v^ECn`^e=({3fVm4i2Sn9s4keJDOzL43Iyh?3O zB~(&Lt*Dgl&LinN;V<-~VI@9y(FS|qRxDphKaO&PP7)g3Ip;q zSyc?5ln4_Fd~7tuf~r);Uy^Duw-R_gq-mrf)%I8pUHVhYQw*D-=6bTCFi<`OW7vT7 zO2tdBKS8Qs2A*LmBPRS%YoNQd+~iGbKLqB{{CSne$)E0uy>-S6C$wcPwI0+67? zwJI_1E?WngcSEwBdtv@Av3;&GSy$az>a^y~TRphP?Yi#8Scu%jKDOI4|LUt(@@rocPxkfWx8DRl`1VKtchV%hnmNUP zMjMfw*|~Xr)Vhc7xHw$Fvl|O60LCM_b)r)?)zv*MmYA4IkL2cO+K?vqV_S zMNKY9K7(dLEmb3q*>@IdB-YQUP5`9dA{CE`xMGwp{ux>UZJ|lS(=VebuQJ1&X?66$kPtom_tXrvw7i3 zap9I|`10{2U<0bgi{r%FGznwMA@#J26UH8$u(M)oQhu3jr&F&%+i z09!Zt>=7-yl;RYPdk*t7$bAI7FCIvNw7L+cWBR0XHhWMt45|-x{WK+EH0%a32&V5AnMc>{C@q^R-QdPdQO$fIp%TxD?20%IR&)U`sZg zvL?;8CN5@1xjqFan1`%1u>ymH1Ig};yQ#rjPKN;BEpH*-?U4Dhqj^!$3mbo{Yx3%w zbj-HW89J?~Idq%T5&brV@e!^9~VX%;)XyfRST*RI2sK zwQF{pl6{v_@~%_%dw3F@P2+xs1;pAVX343G1#?}=D_eaz8Ii&y$hk#n**WcfmRiUrA*9M(mWJ+}mjP-AHtTHk?wg*wua+Gx=ImMtDem#!a@N=7j`d=Ch> zWqN2qJZ2?KNy1lbwoX_$=q&c~nSB?!PNGl~n8l%1RLsZVhD+t5N=cTDr#nPWEL4*z z!&58*wF6ry{oCLVz5 z518`s4r#vh5N>ZC)@3ijBK;P5>*z4@zAN6i-~yw)F-eCaR93IdEZZP_=bH2Y-+H0h<#@9Iui5QE?95|=If#KnI4hACEoz4s$vR-<=a(7NR0 zs7P!}gD}9`nH)PFxX{0GElcp{?AE7x-g!dZ*K?Ym(li^Wqh?a6>!*5hT%^=nvs^d3 z3$#Vcvz8Xkyn0&|eIy>Qtvk#*tRjHKQ%}sjcH$0oO)D=9jnM3?0|95K(!*tuPuR04 zuiv;$wJwt@i5)6@z~E_7vw`#RB06VF>p-4qW${ zSNi(o=X>8twtq(!I}GM<<`5|Y+h(_M$5d$HFCza)5?qCE63TtHKtjJ@0i!z}deb6) zEL+|H55QD85{Nbu(FA9A*YN5vqNt<$==hq1u(1WglQ-{ej+n$(_56aA`bg<6$ZfIH z!9KC)b#ZKX#7K(>GPInX!WN-$9Mx`~R){E*b)NbXd25sqc-eHiK-hPO-Wmxza zOowy8ezi$b_hp{i*cMRAg#kSJhu_;bVke%Br%3Go8pt!fftWLNOQ&ODLrvHP>OqXP z{D2xJs;IF&RhwPhp0}(|($o{qz`4yr&J9X`z{a439uG*4%h$bja>!hj;CqDUE)C1E zTd+3(R!dWr?ZV}X*wVGCXCRW#qIBq&m+bakCgUuabt~u<2O39v5@y8_^rMB2q|{5H z2;{hBVyT>a6A#=%nVAn$^Jyp7_6gDO7SM`b$o-EC20^u|Vffp{&Y63(Kk=0xvB~~X z{=6^WKKoYx@Y%N;jL$x7C_WFb-@m;7VR-!tjG167Yq*D8fNz9<p#9dWW-?J8hn$8se~=#R zYRaB-7wnN*!a|7M?M?>*x?@%KI*l^%I5%utHaT|2gyzFIgbjIpjE<9?u~Q}FJKS2( z%E1hzW>Ia6nyFBJ;>nl_?QO3Dw9YC+$YJo=cBekQ1V0PHo){W)==ALU=pYA={p8p{ zQ&XicNj|wvK#J5HfDf=}f0}SpmK935joZHs@@{Se*nmWQ$o)rJz4}x?7}&ZwPuwsj z7?p((debhmlqZ9fU$UzxEw(YiQM=LgoT7zP!Mv zg*}40tDVH@^eEUDsEaBoitg-SnS(NOV$86EC%nWAu)cWvI?z}32XCLK3HC?Q#FOEZ z{^tJ(ufGK&ld0(*QNN6reNL9AHjKfGRLM{U3f*w6y2iw^6{D>>k8ELoSry*(1FOBM z7%n~Bp#h#A#pf<>5;hnsJGKx=!s^JKzVZ(!(0_$lZCCRq!h!OV!=-jRn*!K7a$n|mc@or8R`c0sq-VHk7{?{cS1D0 zVOa_j9XmSEG7*zCp2xBf3Ww`gx*t%aUctg`raoLt(q|g4yw)}mGNRC|GiecdLEc*M z>*e=lJH7yT!jq~A?uG-*^P0Jr(>^L0nRS4Kb>AeDVXKxpm_w1!S#`{;m~|BsO|~lc zH7YRgr$&raKGH5UC#2z*WVU_v_VNGA&GU=buXRlk3`TOO#3%ks$B?}BaE4Qv7)6Fi z>b5QQU9M@`RkXWnM$3&5vez>*P&nNrb=H$O#$?Rs_W_J{7q<_F=~6}NXIH7h+CvYc z5|qy=CglV`4pm~6Ahvg>!BBE3QpK@Fm#9wD9d^}Bsi=dG1Bfh5+_Nfj4)n2{AmsuF zt^-6l9oxDX58UlnA8(=bm>oSr4d>fJKVc}Kge|8(Ii(Fx(^C1T0j-z=sXlnAb?srX zShiB3DG3W%^I>@Z&K`>g@jYD5sz*G>%1@fqPx|5IK6nn&-hANNs@ucUCQAUYz z&y}9ikL({`=T2;{;pM3Lc^qhO|&Oz{B4r^ zl+GZMBYDpo{FDQz0+tC(-9;_miF>ggtoz36gd3_$Rtb<6CWr~dkyB*;`t@JK|CXMb z?(0{H5JDjI0R0s^gjGG>)}qHS>txmL=Jnxc#kw!|I^0~u8Ct=v8Wvnc6o#pAeC@l- zycbwSK^)dgT&w>u1m{Fi6?aEn&+ipRj(z5U2lhriD5NVnIky;0dKXy40Rj*T_D!US$0i~?)p-`)Frb)TA)*H z0UjoBsv1@NsW#Ypjjvemlzr9Hw(JmP(%%dri4$4~Zn^eCSmii?6fPU zYF%}=qO$YMKrggU8<8fgi;TUNZRxSp-)&OR7%zVn{wyb@FW)}pfZ$Vq_4Q-2C4cey z2S{uFIK2Jo0uB?h*4OX<32e!ZxA^09i*PQm)i!HFan|l>Sgvl|7z{MKbO{^{NYfAJ z14($}WPFmucufx>%QdYODF92ZJ9$0J$yP>U(HG1VblGUdC(ucKTq#P}=~Mv9XBbIt zy4!>3w3JF1ePO`XtBg`6;>M?7GHghEoQ(m-MQ5QXCw$*!Il~gX%v;>AS7q@%)spmV zbp8}f5?f&jc69UP?yg>7bSg?=l#h0D5&K4=>~K}#A`nW)w(SF`GO;nQeKHAO8ObYl zUzN%lPIepA&n1Xdu4;&><&=T$&4I0doe4yj&dT0`3iZsmIe4=*wSk1K zhX};zRo@sZ==0fB#D^jU{MS?itTNRmNNJJGw7Jow>eE>tB0+ENGKnEQ$*+i8hvtEO zr%tPOXWZKK%&N%5ri=wOY9u&^ln%cu{{{J99)vS%+kuYmClavJNxqU*{x2^9T8f@9g28&q64e? z4$>-b207z&{{rB*6F18llk%D9IH@XHOq#j-fZiuYJ`&+i+7YIxJeFkS1^BxCYI66? zLW-0MXmo_wjh$^%UOMb0>bwxqp8VS7ppR(&519NnWf6WDc# zDm1VvgPqF>oOP>oQ5Uo1QYn3lF~B8V?o?s{0~-!nV~-kKsz8D>7FUg(>lIgS2`{l9 z*y=R=%>j5u;U-QGDP3DUQAEF{D=I)dkUx5}NYN{ooTL3lyIva^wbQz($}A{4#&No) zqbg%OLS^Hkr26C@HIRm?DJ!d_N-Qx6x#$~gM=t*^{H6StveXaWJ_d^DMQzIL$Oaaj z*I?7*n@%K9DzHatLNBdIxK311+4c$*k#EG4?3==7H3v0`V~!c(odwZ5%!$Yz+Z`M* zEsZt^ws zHnJdC@P!d*?dLs`Q@?{FKRE$>!`#QRoZ8fVARW8F0m~=g@Ai0trL1a?NthP)QACZ{ z3ysI7@^<7+sNd}>)4_b_nG)iNfL-jX4}Fk0Gvt>NeR4$xCcjDEa8Bg0u{$LsX}OwO z|5nao?wJlr4+Mg?yv}m&)jr$YeZmWTXvqCMDCMUJ21n^LvFZStH&cQT>_?5=j0&60oJ z6UFAGTb`WED!fVg!@7WfSW)u_p0-CY2;m5f2XWAc_WkK`;X*2y8{Fiu=CfeV88BBO zodn#q!e^^bFoaBB=c$&S4GKJmdTm=omyk#tD-5q9Mk_WRALhOPfN(MllYDEkrlgxA zp|ZyyXC+ZN?O@YcfK^H{nSPU8F6o zo%;*{sM<@SxTf%db=$#eQYjJ~9HWwq{Y9tckFH+jh;6A`5^B>ZIYPNzAm9rF>{0E; zUB4Kh*E2i3M+HpZWQZMFOM^0wZ)K~ZS}FsWQO+&4W~;X!Sux=%_r7JjHn7I42MaVT z!Ve#kt3eBPOcqy_i-1EC2RU!le09CZ)l?ZWyOK+ECOuBZ-fulS_2rbgcP>ncO?sc# zb*~@4{hAbwEPK4AL@O%6pbNfFuxh6$0fB> zdCiVkh^x{l5HciHpoF$zj~YTz%u7*HoO0q9^l@vvwb{`U=@lK6eL0X<6!vvYSK@y^ zF_W|pm(IU>{c(Qvm#<$3KHx`-_fgI5;dxwNUL0|9)Jh(odX`WRNu4mv3@%opY0weD z)LgKj*PSqOpQbyL`~XOp&QuV+BSs2{HPAaV@lIZYd|`!Z^^jA8a&r3ziX7`Spz6IE z^m?r^B5@P=2ne6uGtE7`Ow-WilOC#|Qup36zFZ2}yBgbju61W*P+I%T9Jm9(ou11h zy~nIv-3`7xw*3e8g{oT&n5}h(pgGrc(i$WZq12icV-XHs4X7*&YXN7uLk3^c^yUMz z8}#!Y9J?T6q{Dxbv!~-?Ny6KlH>X7J&0>;meMORT(^}l#eVy_2_2lNmYS;zsP6=l< z8ZA4oMU;KaITJX}NcmQu15jafco%Cx)WGg%aufJ1WD;(nvTsx?De^=a)O6dOzYB)1 z*W}-g*FFvdx?j3;!MoLIe-I|g+l4^6P^=Xw3;#d-|NIyD!0y0rzUSzV4^bfB3$I^8 zN@q(ADq3q|2P7%o)JxonW4KwKawSWN&tt$IPJKWe&opIW28eU4=Ib)pY<6Wyi}$sR zL^9Q;0JWZd>oHe#`kmYmcPzN}ar4zYwU8k{FYn?-Wo9{M>fEj>Ap)aY!(!^$*GZ<1 zj)A?(h~#Y6*Qy~5=8K~bZx7|ez&&>LVhZbi`BqSaSSBjhTjiAqU2gEGGkj^DW(V9a z4v@t3+)yALlEsGVt$D3-|?}~Q-1JM0T!>bv-gLyMOurLGt+Q^+z1qn^w&~y#6#Ksamz3jg?CF zP1IXb{M?8<3`fh&6@|AG!w8De5rRoA$M9g=0BA}U8dt8Gqy~e)CA$l^JeEx6qT5nU zSayYG*5G7Ps5a;})!u$=odG98{Sk|ua__a=OkB#1(iOx$lAUC`SY3jGVH%!nI4}9n z2t*^WZ`-2L)k>-}IMS_+s&>sZ+H)p9idZg)t_R#94bYj}B(V5-YoM1>MD`Cvx<=09&D!lrLl_tzncx=N2A| zH(PNIt@KmX(;hbJe(AOsDMB7im=?NA>W5NhKY#l?z54mvuivC@`TX^Vl0^GTg(g#` z-$%@yBpk}@)~G-xH8reVe=b4Zip~X-wSvIP)RH1Fkg6{N)~`i9#7c-o0DV)A%DgWK zJ=aqs+jxw~=9c|hE*jim9Ui@O_?+Nsy+uN;<;;gJ&Xa_C=Y8`itt*t}$%Th3DeePH zy3@FYr(HfKUZZ8=RbHzamsx^gFul^T0LBjCL&8&Jjf$#2032q|fD4lxcGLX;na~vV z0B)6gFDP8tO{1DF>1OD#{Ia2%Vv(W)64d0*XAckn2fk1_QfM#(@BW6#{i;M>qed*9 z@*5s(@TCS19CB)Z?5aChggjOhC1vg6bg{adg9PuA z&sc1H#?1d?dg6SQJ_2m|(W`okeD(U(f7Gv|s*$z|+V55gNG=?^Dr%!`FQA>CGO$+i z^|z6)<&{;OdiP=#09`-)!jAx=B3MbYG$KyYVDZttNwqLQYfp_xYs( z=mvWzmBQnMrkIpN#sP|Iv8o>we$I|}QFY|);Z06}-tHu~GLgH-f)85jm98tp4xu^LB*Mw-=C2eTdZIZ#EFnd%`$MuDVZLz)tF#@-0( z6)4>X4O-AANzMh`h>=l|%mUre%?U)1^dkspkP~HrU(V>(r4XqnOgm!zWgD3OfXZDP zm$VRup8t2hYo$&;B7PIze$PVaCq(@GgdfxA{ipEu=|!bd9(CdNM%z-qU|UL(s&WXk z_ky7Bq#UvlNQY)R6h)h_K zZ%9&+(_zT|Gtcjk0?o68VKO@gK81W>7Kt5jhr_wdo8l$ZtYNdwHq$@VLW4qSR>dNfa>vB|D zX2Xe?TOUj0~&;EdX3VqrZDXCuDVf0RS*D=~+5|p`W%|)i4J)3`x$l zR>qhrqD_yd0?Uuns>DdGE!!P=qofs6;po6s#6fWVJwU{I0nVq5PPa7SysLqaB=_Ag z+euGU02D%6a7(^o;j=Ia<{t~ghb;mH*0k_F-XJbvKM;2LTm^xXOQn^5>wxF-NZCOs zpjHrYt@@{gX4X%U#vJgKj>yOx0%33=6v#r9tacCF?~mwYefeh3mbSuEtZLIj#M+iP z{KC8rTg-uNtlVjNKol5A#}K{i-F85yWwsB#F4K!j0Ph?w`?#!v!nBVEq0FG2%`|YP zJUdMvIPZ}&KQ$~*Q@@kZkB#41jh%>CTK;VA%Ea$ED~$ zVEWhivd|8DqO!XJ!d$g9<~3ea8otj0p|t6q6%r=R9jE&rUjO)k;+4MiIX#x}i7d6g&y+3K0Q)Ef7S|}B@G?;d+I?1^mE%lP1;VcCyf|&3?T6f z9HP4(wlD;$SE9?IkJDN(%2|j1Qs6Bew6P34*eDv+av1U;dY@hwUk4u5$X}g1AAn@q zoYJx!o(*;xfN55k#l=nf@$4OBRE%fGa=z((RI1We?k6Fah>*A5>q1s zT@#PQ^c{2ck#gxHaN|?Y!2!4j(kOt*hi=~`Z!y>6PjXf3+bOH)ERNur&k0o*Bs*Fu zo(C=vXfXl+GzFyq_F;<`J8Hq2Hx>n!-?EM8>nGOgBe6>Z=s930TWXzMPR$HgJH-7zE%`;GvsMhRRkL%)kM&-_|{tJ(QF5f+;&Lx&f`FN`LCA z8qn%Wx*rUxR2yid?bnip+y*rj95N{$s25*z4bYg9b{fJw7Y2n|5#+r^<{?#2`ZyIs=K(vqP{&B%+_UTZyTv!$o4d;3N>tchR1 z(5*MlR^;%kYL!M??ve&B<>*qpkbaouw3Q#u`T66q2kh`{$%W&q*{7UOe;QuD&x7?} z-+r0?4Cf~jnlBNu9trQ8ViQhuRvAG~QqQB~qQ(=84)04F2mz2x46XEV7^W_8Gq6P2 z&1CYsME+#%8&2Ip5UyH^txK+hutx zR2np_|AjKdC;AC5wL82?E5moYAj|F1N~dSz-G@?SARrELk7#`5M`SMzo|PmhYg&M+ zu>1b5s#Vx5y2}+&-_|kUEXwEz^#Ns|v{DTYwX-V0f9|QU(qJ6~ zUdN_uG~_(P)!GWVD}jGY1}`1cU!>9X(EXCTz-{%YegNL*N!-z$u1v>u%uU1v=u!CPNDJ3)~$5nu&elXaEvkR&` zQKzm`IluxSj7`*!@>@{K7up(jYOCXPs2bfqb)y1Yd?JOr0ScwmVt?9k2XxYngP>h4 zXqV~}8Ih_(U?Mj8uAtmq0wJ*iU8u0uL~x7jK7kanGz1efbnVoL3JS~_g?6LlTf7n; zfp%OjzIH-jT2K1VD;KE5Wm}YIvAVY%eZCM(OmdrJ1v3PJ8$l8P}@_2t@GhluSd)|sqeI6_) zPpxk+0$XKAE%PYVX;Nfux4`#N-B9GCM2+2IQ@Mc%veb?f#|%}9IP}{)mq^3e6?TBX z%c3PHE7nM(>f7#Ne@leg3H%!@2APi^o^N-#6|en%y&jTZsk5HoaOsI|QB$FGRScfw z=xvo=eo}d8$mpn-1-vmV7Sfar1qw%@^{iW@+JvM5ea|b*9d`i9!R4X=$`|;S0Oqhj z)pV)PfQV9pFzn@}#IZ*?;$nY!N$@gSmLL?KENI=K9!e-uYvLoys*ApV+@AJ2)jBS* zg<k?J>6B!BaF;hVopufg{8cOOhmUkI7T z`00MRm%Old6z?h4aZj@3P+zl<{LBE)AjSw);xKz|my0?oCsl4?CqYRT*J8!i0&SpA zQ>T+UDb#?XSyhJC|B(c)G`os@@}&hv6mmLd@4*C}u~QTr*tp+pz^0;8JvDHqYC0>k zL&~N%6^CJ$tYAz@4H9zKN=P%2XfuNJFNqv+lp-8&O*kCL*w;s$dDNWr4Zv^soqBMu^Zp-SeIx(v0Yky6T|TJ5^AU;9up1hctVnB=e=6X&zDP?pOO(QvB%bc!joen5*! z2`MdQ-DcQKF%2JDEoD#ULuw)XXNkSHp7H@-$BSbavMv{vrPzK-BUU%sQM$?ChFsJ# zsGvbjxPanz3;`tddZ$9Z9Fo+2drIiQ3z`T5IOiNNyOVb*zR31TkLCYtCY@st{`v-(KwYfmgRCPjFzqS(_ zw?=a7etCv%&><}Om zjFECfCH**1U+RZfZ31L%usS?b5ToXwFK%Y6@q`SmMc8nO8rJrQ(u+f!RaJ ziC%wbA<-^SnJahc6^D};ucSz+gc>Q>3{V~iOtY|3r*HPNl+bh_z*&D+MD8Zw&I5)Df z1aF)uoiNr9q#IIQ7PV920^4z;tKJQJlR;c?Tag5~)4m;KmqzvcfK?}S>ePd1??c84 z!atf|s$(=tXy1XCcaVGscKS)x136jGB<+TT!%n@MdeYeG4tc0RK~98O=-5#)St>|~ zONL6N4P7(rLG<|umosEiL`JF^OEEoj1{Y_|>eIQ8Ia=>}VY~dQOO=wh9s;8lcFPZ# zcqIl;IQbYWuoYJA+Lg+^TNS(PyJG{CbK70Ku>@NFgzH+)&ULk%2qyUulei3QLL})e zAyBlhS?(B8`3|r}hiC9^W?b8p0;Ol5#F!A%tmm&TTGhWWp6Lv9T?#gk9<@gZX%29| z2B1PzpXBxTkVk%%>=$1WgZTZwy#6-4eGMVcPlB1k+#RF`2u>$8wW|+obS9OSml+!6q-G{p1@>-mE7zcsLDGT~e&#<7LdfZur}xq*tA%YN0`EIp9~ z`NbX$!Ft^QQrvAqqOvyV)6IQ&xy-?I@JHx)!R~UKjGrudU6Y$Sqk1gZm`5k5gCuh_ z!X9>IgZYL^jtPe*H<1{Qp)A#FmUErEBh-6I1Tk;7eJ2sW;YbO*5Do<~J%weKK6%>v ztU{%9dTonar71D$3awBu*39rrrEM>@*5UPL$ylw1*(^}29gXwN?Sl0jGn%oi{%gn4 zNr{0fRXun0!QzFI4J&DgEHBJ&PIP84JwJ4=JH3#CH^!CZamu>a7AQ}BH6XqysrH(B zF|Iqka~_BJ>8Ki}T$-{3`~#pg!3^4rZQOP%`fPbIQjMpK$*ffOPk<2o-%0iQ3^ofJSR^rQn+4Q9i z9OD4G^JE=}(?A_MJC!YlWELDY3SZznmJBZqgX@{Qv_7X;N+@V$flbQ7;A&F~k`K&RETe0l#* zuV2CO@TcM4dj0Wu!DMjUEh7XY4ekft!pQM}K?|P~IcU>Wrr9!3^%s0G%mP8NT$PW%l z7m1Pca+ST|KrVH8yD){@O!qM)&l9U~X;_rl+NFD;Xg-u^ATr5gSH|1G7AESbb;S2`oJszV!6 zK^7 zYrIbjIrhW8g5#2hSjxvg&Hg4R7x^%8fU^zGcr>}wD@c7&np@h39y1D}=zbp(^BPA7 zm)buj@kZX=E~kb2dajZAr#u-_qaEWI#IPH&1xhTwqFL6}N<4BqpdzbI$=2*7;wE89 z@X@hCTU`q)ok|QowgD*S3uL`M|tb3Y9!joMX$J4lCn*DSZBG< z-AeF?mI44W0Fg$3zNY3-g?YsH&ecI(QQM+1{c8VcRo-3d1dJ7deB{)-swXY{R*X8V z;@4`>NgxvQ;7uX7fo{7S!t;3cdjs4tJ%Z2J?uTg-hPQ3<2!v{{I|i#WgF&)u$y$`_ zoc#<|4B6~Nhk>W-f~a9Z^qt!7V?M(rwZF=b>#Bo@OkGzU5jBceUoUHQ(qdd_mX&!AK0KV9-EzwVP2;@BX5u(RNv3Rm03g>j?!483Z9tov7OIIgRi4zw z_g<^}GyQY|1lOA_5s}jFSk!g|&1xcykuh7fSi@c2N7Zt54mPdpcRN(LZU4%xG|ms4 z9)XNcvVd3ee=4aHDiB9*p1YV-1mUV^O!b`FJF%J1ka4Fir3gXWUQ&8so^erIdi?EmFT2G7&>41NOmx_gFxywNr^>L z#BYD3U?$LZ4<$+R_?st~`laE-B44Y{lf+StxU-KZzz(p4iogKeNg4{3#MPaaJK)W; z(+yB137{}ZMD#$6NiRs@KVOuDjHzdH57ZM?i)YKw8)c_Qa>qi^mo)mU@0y3&GFouJ z?cV$yYuq2%a(>)Z^~q}d^m07Vt&Jy2Fl1W!%_@uJsR$YAzEW>k$ew`92N8-AvvPo3 zGgu=^x(F!($(BG~G2W8wC_-q?ojKXL|Aq?QEy#N2-W$C-sBw+-MPY9ZyMro_ zq^-cU9-U0d^l1(^vstRD6U!5A#1n(#w)p4_E-IF?hg+Y6>Pc1t%qX8~fEpkPhXuLj z!7lJLDHJF@=_WPWzN$Tsfjf{la(7>|pEf$f`_?jpfF4ws$#pA^?A;BHLuQr9dHX^J z8Q|~$48w^c@o7P)r38d7rQZjVWIqdUpI#)KeT)Xx&(V_lufdA9|JBr_4$swrl7rV> z-z?MJD>NzWZ=JK&9>_ip2De94+pA|=ZkVE@#Sm^cq~tE1x$_W}S#$ga>~W+$@nrMk14yl zcrp*#GR*7Y`W*q>W!Q^`vSFn zn4aSPH1!!))SnWjqLw6v{{{J9+6+H_ z`vp<;hsra;Zq|5#K;u&}2j12cAT8A%RXfORJ^->z2q(sioDT1~1q<9J`5!Ahfr*k^ z!GGh?w@ild%gXnmm~EYv2}GdSwzSaDw+^dMKBordTv}xeW3r7=8?M=QW+=hO zvqcA}|HLE~UR!c(SxSK1cLN|ldRJ>B0i!Ow|Fvap9%QkIPAN6*x7ma=u|AU|(lIMX4-d1)D*d2U8G}$m0;ZYY!s=u-Q zAje?I)aouvHf^m{k^)@ylf;3XGW1y0fTkMuDfp*Xr%H`{tTr5Xp5UugOWCL(d5UwY zShz`$j>Ok}aPY?h3i6KF-jP1H)VVD^*L_@I9zoxsIpi1$#eRc20;14Ec(pNT4=9D~ zqiE%I61X1T1!}>QZ)JQz;tN{!#v#p7Z0S(alHo zzE&#=l2DXsfu6=Po+SUUU1W=Vz!j2cehV%wQs1))8BA%4 z8U{&$>iwfubS_1Y3o&$V%Luxjt!Wj6H=)cMnsqTklWMwq0VRpVh}jfw>`)#roHk%^%~e@L_p>XV0NA zbF|p0Zm%gqK$-i}E!wA-lHgXK&_4+jGz_c1H0nTyO@|{*g~qMxGm#1VHyW}-vJ#Bk zoRkeES&Z5jFq=2%0T~zoTPed;k#-aFgLY5jL`$&r%F{3ok+|I02(0QJ@UES}{fQiP zpp6vTmbCl4TU9&(o&n{9cJ)hQrQ7G!XZZhSXYD%ZI>mcC#buZGgRIkEyl{a++Uw`x z{pW8Vzb2&R{}z6bVs%YV*aspa(fx8V%_PHwrXfQMl$*Bh2QHFF*oKq|-;ZFq^&MLA zW$;Y~Yfutc?@)kqLZ=kvWs)T2b2)w4;(#G9jeanznIVYXjVI;Lbw&nkJ8;&-!$&u& z;&z5Fq8gNPTlb=DUo`w+K1;$(4FeG={Qw6vk^MErP7uG~XpqeyA&_oW$FfRpn~o#d ze5U~}NQUl8I9>q*O^(Gmyy~cS$K?Q5iX8f*<(e za!`uZmK|S78a1eaYt|M3U@5o)^Zx~X+~RbQm!-c9WV&gY}{bIOi564+k5v6l)NL>nhw_uhTJFv+aBO`E`Rg&K=k z?J!b`99Czic}0!-S+dFs!^z%7o|9EAIz1@9P98;j@DW)VrJ&&$OmeqdPm2+#Z`;WR zBuLF{Yz=D$sme2{raCXUpKVMEsm6MsRj{VbD%r*rZ%84*OULp05!h&59~c}@-X~Q2IL|5^E>>#U z0NwDy;gd-P#$1kmcB2n4tW-v0p9!3nz&_|SW91qL0eV*9#FIVU z93|zQT?!0i)`pfYQ-Pwh8!s>zj1WZ(^=tJcHzxSc*}0;RTDd!px6B7|;;C0elu%E1=g8 z4^*VaVWnBNc5`uoHc!MLkYH`e8&u+#eD-{8esJv2ViwF=!E!uJ92FC&L^s@Of4EN|kN zT-C6+BdVl+#>6bk;sf%+PK^{?oiZq$+Z!y+jwO0xLua|v>(3!_N#x0|&B)>XN8kSF z?aS0CKR*utqi;xtC)lf>B8peXh(n{gP_RBC|1R?b?5o*f)--T|IOzatnj zg`%hXm&6xLL3zHX*OmrKI}_^1ZbPpI^D`)ID>i0hb8A4-v2ai>7iuiqjCMl2gSlD1 z>!@S&1ARwMMM7fX5$^Utc)ZDG;V!t1c>sC~g}HsoX4+Gm^J$Xh0?_?VQRI*fGoSP* z(ueY*sVmYBwi_h<3G_;pO{r+=X_b?*10G6tg90d%ic+Qpn>f)DPiDJDuA?P{i52g`abU6ouO7w0&C}^ z$J2Bb!|rrbs|ec$a>(%3709uOm{INs_nZN!zM+=FH>h%dA8gD6h@Gq|P89`YYc(tp6up^id|~uYr%FM3h~O6b;t;eA&Y7u z9<<~}!Hk?EScz|H@XLvp{0O*fSn*PO77X=!j{a1-`ckd=NUM5M){&pZs^GhjkbFC_ zRi;rD*Ku~SngH9twmE>YT#?;Wb$1CEAR5}blxqVxDOK=L6OER70ph@VC((X?02Qu( z^PGULBR_rnV|e`&@LFHLeVru;{R#9GX6PQJYo0_1dsmt1v{{z8Bn9;Z(U8J)-b%q8 z1NJ2Mhb3Bb=F?7CFR(@j5ZMMIeqjLXjyfn#nJxHmN zbtji>DCA*mLwPJDTa|&bt6P>~kl0%z2L(kY9b1E>Wqs#L0nphi)e?sNcd1p39|N%i z_RfpYSSAYU-XigJ-C-luvmXwSs;nx^BH?lmkcaGTC~#V3-|j9=f%wM3s%&SLUXof( zP|F!~*Br##g9HcHM}Umd;+Es-Ze;MQ=J4>0vr|JZ=~U_Q&eh6X%HdE^d6gj{SZ!6J zURx>S3e4${xK!*k$<@7DRBfuLZ9p3XO%m=h@AWurC98wsMVVkU_gF&~>Oj!t>u3>p z<1FFBtO*GZo*O#pl(2)6=AW50B^Y77z#d|?_)&)jk!-+C=R`=QFF;){^cY{pjD41%a91IL)t&;}3GCax zY&y#1YFAJyBYuZ9b=`e;UMDKn$x%eN_|$Ei$XeiZY?JT@wK_yoPXXKvELNFMaoa z4oMB3vUf~7lD49x9zP3j$v))u^Y@>H*DocfKzB)}n)N{z#IIZppw&)Xv%W3i1p$$ zS49zA>Yj6;qS5Nh^ngD7g9~?LbMAv+X0XKXOcuCq*$JvMjm8 z-fw8x1-IOm%7m#Od-m8wypJ=H?kdx|WzAN!ZtVwEXOJ{<%ZAAGH5LkN-Z)E{5u0uo z`AMZVS`lR{^?yfir(1fL4Z#LnE_0yvnH(PBrJGFNX;jy3D02D!^Tma@S1*1xt4oP? zk)SbiJ7GFaD5URPx*Q;{iI1AedP@5ceRu-fS!+9~8z7=wWn~uHhP~HMC^{_h&O%?E zE5mnki*1Rj?ga4JC1 z9D9}IZ#hGRr?QK@qUw{~FSp%rn-bdVVQ^Xs*onymuOKWWTb6)iz!n33YE6ces#y{= zhaUNg?rgH)fbF>Av{erV6GGK`S#~z6T0aS4&}=Y}CoA3LoGj=#APaTax)gOUJtFJ*JupPL8aJ9mCAQ82MbQEAk6P(>_gdLwGJX#Y8 zNuYLHZy78R8unsv{CG#8tvh$EZ$WCNsfl#9lgA@!;3E^tPj%qnksuIcdS8BB9kV}Bwz(m81Vvt)7 zKA$Bq5&0G2D~O|Bf5?#|_uBzhI;J0GS>pXk#$jY=6d}en{lBm<|LOIo@*sJ1KU8wv zf&^4+Ib6e>6>^#P4z7iib%$(omiXC{b)_BIq}FBQO*ye7NesW}L5!CZq%>`r0oRZ@1B>6ZOPVTz(nU9vf3 zF8WpF~&|bs5-T@EuDn%&bW;J=~6CTGe=(AbHyqfL+TuH=BqX)?4K@ zmg)>kj*qx(iGoD(onuv~X|Y}QoF%NT*!|uP8zFwf)|mWmxjL;@lJ;87iJ#K7B(q$( zrHH;td@`geZYM0P+uXT& zR$GAu$Oc$;&@n;Bb=fx8(Wo=cq$VJeZ|0;6J&mR&rU?^M!V;?B7=)Fz&8?3vV|~*% zwCUK=)S7EYS3XUwmL&i|W{3XvqsC;VLvlir`pi;L1Dj>}bwj7`?ko-tx^7z6*biM9 zK$Gb`F_9c)r5qYsX6_?!oknK_*SJUN)4(-EW#23{hhYO8VUscMx}A2RTnzNbz)8bu zHB1UnI2^h?ra&_WOy6vhdxV<3FdUj}g+U>r@9PsPZvmBRIaJfl(vxb+LK5E%-~Z2P zC4v{`jxnRr!c{->g?0-OSDac{po3&@LA9a*w=X@L>kq|YZiK?5w}6wyKPU*= zJ?#NkdZ9j>s$%sjBWlYQYMbf1Pk^l0V%t{q4j{eU*N{fF-=xN*7Gd{F=>s%sM~ZS| z!xn_xdQ_uPhG2IgX|g;${32JX;ar0Y(Ltf*P~mb;CUB@Rj6OvmnX;<_6+DzXcH<;# z3y<#EsyUTya}T3c_NJMxLPIdqB?|yPnhQ!pw?K?{iYy&x-5(pk*`kNpQ~V(%!7?fV<>4 zn+Y{yHZ#<&M(zwr$h3N^*5+m3dvNH{!j<~}fXuA5iI5vpDS1*L`>7?y>5oLo)sovz z`L5j!!Z6dQos`xVQ_`zQ*)OgcvkDzrb4=ghHxp|-$%U}>wJTDN_?J;ZtDEGzlFf!^ zr;L>0fj^`iA>d_~NRFOr*-5q*n?eI+PUzn=x zEfn3$Wt&Le1ocdov*D&yW{M2dk)8N;K;IK>3C72@Q{}we<=qFM6gQ$LXStXc1(;U{ zvIaNqcpw011wAazG!N%Y{PB8XtwgHo_*=$gH`-ueqZSSVT#j!v?}GnN`6+ z(3N`HQ->=^`A{Bcq{@f7I-ac4Ig{@hmiVPkNesCIdILt_>Qv_nhNE+YCEY=NLbF{d zNt9r335DEyH~k#7A!*J}oG(0bv7)OS!EveO@eo|G5V(6;m}{--oz|gN@!ewQ5DnPj z4mqye*yk*+j|(UVWfB@#B9OtF%o<@@77qda5@eAG*^ZMOdXB*NmU3_8x_8vd2S}o( z24_F5a`WEj#(eoJ7Jq9Nkdkv3c((sjK=2D2*XB|xB;!LQHfX* zo8gseOspF0h?{;cwnv^OcdPG4IM1R)?K7IbYC@tV+JaIi-y=UOyOryzQf2FoJm?$R zGb4w)rKYkgW!rp@m3;*GK8ab=s56eK&xlwIY$ZT17syJe*JWB80RCsSX!ToR7kFX( zmWzw=7sLm3S_^(i%T`+#mfFQ=B7`*@nhuz2IG9a1u;lOlF8tl!Ov*`{Uae zA7b=RFEE^c!EkOqWj}uVIK2HNnJ#~01LBk}zrgOzY-MR341lOOHvw{5(yAWxU(#Q6<|_&H-OoWZ_%LJ} zP!i7)FqqRcCpX!0+L!IfMzxZ5 zR5htyX!c5ONWMZL#nl~<0aFe@E#VX0PPy@t08$YK>!p{xuVfAmC%Wat zb4DK}E$gEDh@(E{Ua)-&oKATC=<@!*e)|u#Zz@SbV&$;hLGF$ za9wfMUQ|u^Y1i)Y6mHZRoP!oUwt)9s&B44H$krtj^;by%P8KgRA(&2;uWfa0-?U6N@k z6v0l;f>;ZcMh;2tvS%!VfCof+gp~mN!pqA6<0&5psnOH}Ut*=a2?vs8n@GqJv^!@Q zg|>@;t%;T{BE$k@mlTVirh;t*Rba6=`R$Kblwor5_IrH&jEY`3^V5;9LRXf;Vr=$8 zy>2Amc6{zH@`kG2y0jpPs?cRy_J{39Sx?6qS-6LGptgXUc59!aSvXsMK}WR`vuJvR%b<3p1CxwO!YG!MhRCEh`uXj}6J zSIgICa_c>mvO|{X>Z&|0k@XEAP2W$NiAW%476G$lw~_=M^g*6~AEDH@SruwSK`7J& zs4ZD?J+&&6FgN74A_hx9=Q{1i5=38H{ z?Xa}dgVDcicO9jot;PTjLBP(*+L&=xso}xNABtS%Xsb3q+i8{Cj>biqoS6wkenn#g z_8)}5OLfrUqq5hsRcErK2kyW&@M8?I28or4k$tGEEJpxCm90VpR1HVjsT=NAV;&3?$L)bcPB;4v+8=Ts9_DU!Efm`zmRv@>25djXi- zsHp5&9b{LPqQVflE8Nrpu5FV#TcxKG%B+_&W4T|Zs~i2uMe2GAngYG$YkWV^$=Vf%xA2_~bq^6qAfThWKtYkm%HBTNA2M6*<1B?zv)9QNI~hpY zcjSCyp^IhDZKSk5qCe%9Xt{+}mYk)~)XlUKw^F$#f{dhr+&R;v+v)(_ZF zB@YjZ5S$lcC|&jK?=ZqH(= z<>=XohYpkgE|QG5S4%}J8Isgu4>heb;kW`Hs0Wk*vM)=>L#3!#MQ``Z8Fie`oImp< zI#tL2`t~RL`VCK{Kibzn1G@5Qc>AertFklMavVrI*7hc8VgXOHwEB{YX{M0^dgF$} zlA4(Ez>EyaYtzo@v9dNL@tN779xFNf_Zt(hQBL8GHU#iMl^keD4RgQ*YvA`PALoL5 zx18uwP%p8E%ZaTQsqliaFr}Sj9ZAf^P+c8I?)62<@QNha;FsrNqJbv)J`9ur!&80g5|KyCrU7WIK1wO$^)&K;`&OBcSx!{O&C?@(*Sr9 zR&FWG7wtqVJs!%UD+a|vRqCH(>#zPmo4tU%7rY&0{b6ElK=J6JO%gtAnjBr8PMd-s zzkU5d)8+g^`dg}h7t+Y*Io><#I_K8-9GcQ%yo8RG1j>B|9wdMI4fPNQI~i*)+b?!w zLRDwXp1f*AYi-VaAo98?->sAsr&1C;dZ8R^ZfH|;OoDze(Ip9X!b1XzIXeVC*Vyk4 zk3|oCu##b^ZKqsKzXtda*~uUnmbP=?Y`9H@>krVE3~X!b@J?F|HaHO^QXy2V-A6TY zk56Q&;ymC=kdHfMIp_g`(u6Rf=*2KWp|BLbMvBI|7h$w6ZKQv-c6GHrs#HA^5<|wBs3;Ty{&j!#bSH zdfCUaRXN;Jsop$_q(IK?m|PK(W+EcZ{cSbY9R) z!|;g36(j{x z`P0X&ahQ8_@ZlV~=gTxG*f1@2nB!Gcpo4Hm(#?>4 z&xHyLybjm`uH|VeTck5oj|RG`;=*;kY3;hp>aoFr7O+5^p|P%n6u@KP&}~v?vN4RX zcwky7dC5l7ln(MeQ^(zx?>7ML-Q=*+c~8Tu58?rvT$;Jh>;cs(i*k`bm42gKrdzF6 z6VT3ue(eqbogD*kwK}zG%V}_?qh#&eA-#@uCLFGXrCcgD;DAMCxx(eda}{~l(Uo@l z9uA9R1318n__h&9i{?pys3Em=>8uTkm zmZ6K^*P*sbU~aJ-qgQ}HVU=w4kLP<*K($*btG0cl+yxcDzy({2@t(Jk z1}N0))a%ecIc!B{2KTmeK(Id%|9dhhB905*;fKGN)kAa4iisnB+Id7se)$6nljAIN$0=r9crg~+!E!{rM z?b(8E8YS?@hsn^(8buQjNc&l8Lxm|k`R?gmI1tGpSz9ZV%xOOtRaHk;9YmjS;$-jy z2r}rFq-H#7>mZ9+w%F=o-#B(CuZ$_Yy=^pB+$9Ddots4R>>9`5+SX2^kobI{;?PF$ zgIy$v5DH8f9a)C=SRy}|B`rMz9MMir8#0|iXob&&t919{Jlg1blK#~Ovb!{ekKC`G zL&2A6Asz;rm?#qmV#J}r9;*ALL_gy}HB7ZxiO%>%J|~B_+l@#)v4*FUfK1{q=)yev z&%J&5YNOOI34v7sG!~cgK$lx5*GCtYD?I~Wp8NO@DJ*t-RAD^Lo%}#5Kr+Ov>b}5j z#!TT!RtFi}B%w^gs`sie&#%*+72XilmmV%`qLfHm%| zw6-dz%arLZx7yaPq>kqdhwkU4iHW5Db)r-V^HEX4+n58B7d8TGFZ%? zRF+K&zHA+#05*<*1L07ksu(YgU$L?=EWP(Xdi{cB#WRQ-w)PioAr*3mUaVk1 zEm62(fm{%X=hPcWq3pB*OxUo#7zsxhq8n|=PI-3G;~L)feZ`{O7QjuR&gr3EU*jQ# z;R?;dULq*@^YYPbIQ~RMQdmXXgr_0+;EExRA5B*!|5!r^G$FUQL;JgI=|v!KPOrWm zCKewGh>F|{^k8DU=HIKuzf6;D z_ZK;`fzFkMXj<@h7@x};znKv;iO^AK8OC3({48&OW5lMyvYeZ8?n{OPoytoK1c0K!&`V;r(1vojD9C^y zUs$-ON71XiYnOWlFyGZ_dX(G;ClYB6b(YDldmV>dsx8bQQXs}>5h$17tDp+|K=zbO zeQjyOo6nZHWNpT6Z#zk|@+24>t!coLKUOg0_Q6#FCDiTx<^9hjMS*nXCm+d+1+i-beBIcf{A$Pi%H*^PU4SYDhZT&wCT6FBuy0ho8J z$!vQtCn?eM!j!KB+^D{kRnQEZGETtnM(Tw^JYY{6A4DG}7g$t_s}t0I`SxY__8;}J zj(y5~%XAn7l5J6<`rdmPj6PpPzj9RDIDG_3iLImgkt?ii5pq4&2GL>LyiDe42|ZvG zaBTD~cj|7YtTQE@f%AK{JM_l|rUe-nKzL2DdvXfsf%SOb?cN2~n#djwDt6da>ZWB; zPUXpQ2=(2P9W8s9Z+eE)LrXXDbn9BBevgybMpI|UAJoT<8vPhVHIz#_9qpWq?i+gT z!aEZkx@z-mA&Tu9(Wx3IN2u0NZ!)IWoWznPA|3oC$!SYsDJF_eGp}l>?V)qP_lgO? zII^aL!l~SwYA?5$wDF|1AiwTXblSFgl4_B2{Si1VJEi3ku2ewMjNdMNgj9IZo`Bu| z`uZz=4S)H9|1GJte#N5eS5jUDQ(J$*uY_&g!}``LC9lSZ5^jd8cSF9cu?#2c zL7=FX1Z#0Quc&9GJ87k!!`)V`Y?oqs2GgbkiJ?Q|Oksku3}?rGNfowx)dS(2`XU?G z!qk)wj}`gfvlLQtva+feI%ubm&4rj*y6n-)nc0v$i6CSodtE9_=zg6Ufwvn+BR5oo zvN~0yFs(@?#ZPk!R3Kc*mJ@#nL$ra)2u-J02xIML6;~YTdB$Rl1ZHh=l!vmOJ&8lZ zj7wLW$6-~F^yWPPi0(zO4OoH{Q#K()qZlDhReu0ub?Q@uF=`Rov^L-WAK~q@WT9e; z758bYp8!1y*Ln6^UB^m&qe`2lO2m4SymL6zD9m1p;|&Ih@;MWG`?Or-x!l@X0-U+uYeD1T>vFH*JIzfBo18_XBB*unaop;RFXLtsWCyTimbmwv>bXujQ z(n69qF>ZSQY>Q1ehE?+=J(VE&tOfRq+N=RRU&J1>PPcU60@b28r!;gH)xnLk2826I0e?NTFGC6R;1(t7RMD3 z<43cy5Gl}{4;ImL;2LV6cX;yiT^0P&x*hjy?2h6^b&IOSGHDo7Ak+eGrqV+Tfr zt96;8`5*a}o)R|J`)3J?Uj_a0>-5S$L1Pw;DDeGc&ytA>wiSUE%KvAveD9e20YleB zXJ}(_IxdJ!4HGIvb=ulr)q_HI{j)vml8<0Y`sn&F7^Dt$og^!mx!%@Joix#8O^cCq zZ%D>L!D!F|`RB`JXaWrYpCHHQ>Ecj3l`z`}qSYqvuDm%??j_XLHI+g|!Ou2FMx($W zPI5+5S)i&Q~wb-Bh{D*dsg;o_Dw*)fb zX;cPo0O+B!w5Ik%q>_l$OfAKDswcGyL3M%1!ZRB`-}? zqERe00bdBQM*hGt#R60^XYEdH19w}1P$m;Yo0#qWggruOR#H17?hG*KV+(MH+(2l*^Z7CM9);!M?4 zrM586A0Y$nO#DM1PMApmdnEg%lofwj!CfqP_;XOU&g~J#=gSi2hlT0nzAXzL%9o7^ zc-ycDB~!s8J$@W?|FA#Z?iUu7< zGOIvKGWZ*+f%d2tZ`#=c?WywIg26nhJ)}LC^pisaKsRcJUW^2CQKS|0iZm0;m{G1q zZ;d}n!a=il-q*p~>g(N|fV>UbLrPC>LKD+%Dr?odr;hwkE2_7Ccqo;%2(l+l9s#9BwLC3WBL5TJ1@?c{%|o{}9EGUjR9&Q5fa zYnG3TT#Bouma+VY=W zEwx?_l^SsE9863bd3QK3Y8VL&67zbuUImV(@MNh{L5T%ghNa>%l@3V3LOGQ~gVPzH zY&3A@47DsFx>BfZ6oE3b7U}bV%?+bUjp9DypXDXU>Gr4L=C7DH{t6tt&t88VUVnxl z_ouf{!>P-C>~~2FpWsNtczO@fB<|$46*~-Y=>4wQfGoCWWUoBMA!}$;mq!w+u>PUs zA?PM#L`(w|^X7JxQoBzJ1ymrnsak~@nz^FGI%RaPk~*y=F6B4CXOjsAuPP_gOr%0Z z3WLX} z0t6ddxw5qnR}5AQp1eRo+xYAJ^o#KJJIJgGJ=If&aeEd+3 zzudY<>rz^^)6XzfunTkFu}9eB-W`Svo0ttIkW3assgf1Ymf>36G&Ntn1quKTwSk{M za8+7rg-Qc(SZbb6IC^N)n|rrs-4sbAq4QzE6`Bz%2j6q2NEQRZPa039#6%rJg3e?z zwX&<`NEXJvWogL~^u+YYOSeHgpq5o0fb#jEPM-3b^d0{kD7AtOW$Noy ztus@M_PVcy8|12B69w8F)Luv)0pSX&ML1aU>w^>fl!hUfn#bX&I&09 zAd!$oJ|Kk3>5$5M14Snfn{GQFjc}YXG`4&;dF!-s*8pKDGpyL70dq{YiWKw2;d?mg zS8)v#$C3bp!4zROh0?)PC=n)S+Sf|zf^1~9Aw%2aO`gW%15EDc9}L!!i2N=|C~LoE zsP!YIAC|229vC4a2cb$P3@L9wWZJY+E3d0XYEX)kMy#ruoq_0AWGZ2d$#(Kqr^PtW z)EulbSZ#(0yv1XyXHvsEJ%j*D#S#^ERqX4HPqL#o=DUxumbte(+`~Ynm2n4+Jv{+t zmxvA=)AXF|bzDl`Cnif0Z#QbQsZ5(yY)|O#vwsCV)-rj|YD=OeX^9?{8f4tm%7CB7 zqOg>aT*#f0JsSAtY;{JZV~tlqHJ zfZ7pi)u6VF7!A?$3KD|UBa#rlsofUm1(LBtSj)7Crmco_a3IT~4|I0NO0J_z4l3Q+ z6gihhk@&mS=D66Fn3UP|HWoWN#6`yz>=$gkevyVu4~kB12Kclmz{t4%#15h$wI`MG z4`Crjz^;~q4;QX%mF*nZwNo!7kRl`_u>HNl=-l!dN#AG$!lDdxwscXSJ<*kAg6S zpx)Pv$Rq37M%z)=PRKMpNnol9tnQAw0GiUYm@q(55Vo|D^0crZskiuSOSx9$xzvC| zp`G$fr=Z4g1*w-0<2j{%%3~-{-B4?DRROE4&UHgT+o?ZZ;_@=%STKsNCU1|`COld6 znBIG+rPiOB=JVdJOK+E=5986MOW49ta9Wtj9t=;*t`QI@zc|IV~;*bjISNR$+8{F z$;vWs?*a$3Uvvyi8SFJh!&@I6)~bT8CgsNC$p6nr8nE^z*5{My)T0+)eH- z6&s%vyJX!F$;@W-)vlM0sM;abE_I+23%j| z+FY){a#02b$i2lUZScgIx#*|fVNrt%2+3J=kG%~Y!M>6|ZazY$3jkUMt_uuT5IHzW z*#i+Us7sn!$=|(Sw_t4E$A@tci{w~eNaB>$ZRMHL>$w9q6{<+{A!@E-%N-i;l9~M={HIg>`t{qdgZ7Yrc{aGg31`_&RD*(B#|3hSmQZ>W;#GSs z(}Rr`c*q({VhC+cY918hLcPkP2(!$Qwe=QnlI5qIew8SL)Rs^m-4wsHYr!|2Vfn+haG zsrFmyC1!6M@aD2_aq>*bri9p@Bl!Dr%$lmp(1%g^&r+v5by#UWhI_r5>g(h_S<}g- z4Ipc*L0FOjxJ`cBzOtdA4HKum?Lb5jAq_ZQivG92lJjX&Exr}*j*`JNAXZz{j`zBP zQ7o+6x_7GbmSm>)oBvGp&*2mf_HCBS$OT;htsO=K);5rs>CG~<0prKlNK+%d+v(pY zMdEk_v)iymyd1C-yOD7KfKPRl98ZH72-RhPd|ihWk|(Y{+Bh_|E>9j-)eh^Vk&n3= zDwQ6!IF2Kk-NeN|V3~kp4B==b+d|#_s4L*pKAUxO)hdbCi6$4#HB8(>Una1vl^C4S?f-9B8l3CTG)$8 zjxy(|(f{zSB|u>eA>y;D^&KX;Ji^PhwJsg z7bi@kR8TUqMS9g&ii6VNFba`FjCNLihxg9EC-?0RtMz0fnB{oCWB-Nk_ zFDOqg=eB!WV%Vvqqe8gjwG9L5is%?=>{jBK3Yc z6}Xj;ZXuzSAJlLVVcQ50S38zA09yca?ksAnvAISR>cyZI(OQnp%PXsaYJwfi#v|nJ z?IlzUlvCa3#1*xt3;Gw`nxOEIr5?yMjVGL+RL9DC%0f!A_o5^~ckUl3L;_Zno(^H= z(HDW{X1O0#-tGh4Y8N_9;Jg={7za2+ro?ct&!vhpTpA|n8c_@!b_(trWd@-MLs-cs z=V6OBC}t&#)u*W|x=JZTOiJ%zEm>JqYG@1(xsmBuVFe;8B9-+^GNs)(UwSUCd4 zIrs_Nss%aV@GKq{OyFi)(dQfs=s7A9r1D;1J?ajm6 zIDuWrVnUC%1#qct-8ni!YfACC=~)r34^-V#o@(?eTjB5-?6%#3N2$i9Im{OPD)nJ0 zKr)dyRAw^>BGoYOGZe+X`XEs$O?H5?tk@fk&z>|0uPAK^)Zf?cvg?cqV0N zwJQu$0*B24WF6YN?^bo$%^Z?@-A@X)2A01|w$N^$jXPTKL&4k#@X8`X3<0#hMSs|| zlI=%X+IFO@EhoLnU2O4K91CTaf-h90RsZYo`l%cTCq0h`oa6>@v>pk$c;6Eg?gD{; zih!2j9f@rkF`4TYx?_xL4Qb5Yvijz?{|jkc9*kSm_xOhZ3%M1pi5rqt0!UYgb74Ujc|`D+o+zlL>=-q>~14 zd_%p$o>Z1OR?}W=xlf7dz+w*8fHf-RXIQP76td?W@k!0cAzjS;M=$pRZ3eH5e! zJrL^(jqpHsc}t+`4=P&L&+1dFUSCFzi@1Q7*r0sxrEaxpu?uOa75MMnL)jmP^ON*9 z|0TSsuFcPb!NFf7d2GTqAU63QH5=x(GLDD-QuXTC^*p92>S`q5U^rhH}hgzniS9+s@iU z{TD~B{HG@<>oaEp$J6NNT^HIx8?AW91A({GcthQ7A+eFgxfX})pFK1%F2c;x-7qD% zOFeHDLMfj_mh+Y6!2|`NftwPtOU~^qlndrY9ZR=usP<)7+HqPy(SQ?2_%MbmVcJN% zSWIgZ(KT3;4vR^{{49MX3G1PHd<2W3?%)o*12Qs63YL@k4!z79InOQqLM`jSP~x2h zW(14LwC)h5CnCGhh~6btQ-|M`FNWgjvSwj+P!t(H7(LM4-_XBeI<9$Rr8c0J&&=(C z*0HT5TxEiCXQ}L;opvw{lLJo136Lo%CT$1|NwjKO3=lhk%L4c``_s1_)F!J&(Y~@r z;r6H{Vi$5X9+wUQ2rlF%;59&$ObQjCX=J_nzzV0%#zxVCDye4RZsBVY?TBga_Inx( z-JC-M{LZ>5ayEKC?xY+E--*a<{r75VI0+sj5VMNur?!QHDIz6*K?cZ5 z6Ui@TGt83p-mN(Wn;XQKGNaE5c-}$mXz3h9gZ9Bjk{o>e>_;O>+1P50J$^P2ia8Pd zP$2k^jG4(DG(G;&>%U;?kuJQHks~ErkPknQ`_|T!g=7%Uv8IOUw)xwd^G{me&nS!K zy>?#9ZEkpk**Zlu;!VBO?O%n#x;ZKt?Q`R(>dUpm#uZ6Jc+JZTmn|*<`I;I+B&Cr; zQ}U`6PylNA0v)n*p)Uj`BFP@mbxO}lPYx%ys2qWRsJar?8lZnFo&oh+fDI;l60$!U z4vlZvvXTwj34fDHceY1~;x9p-IWu^T|7hVXorU{9Dv50N3|Xu0Mum7iQ;+^R=49T6lA zxP4%qB}c=%y^{<8?`Lh5LAeotmpTFq#qE~V%_m(Fi1N!??BQ9~W7)2%U_KHoIkIi2 zI7txWKhQI!2$!U&>>+{+sqEM3&cRZNuHxvqyoBJVZoG^o6BM^5huo3_!$8KYdkJCy zhh~bS3J)k2hxMQQAcN>m@N&@rrq2OZ7|`K2abHl&QX9#cTAij-ws5^0Ez53(T3zZK zN?l@Iq~-&GQ+1$gV`W*uHMHq)tkWE=!g2_m`gy{&Y zj=s)8TVk1^BI|H!$rt;mLsXmhLD#XGHlV-Za<(A9{S>^G`9%DVpGRkW=y|t=7 zff55;GW>6Vlq3NzEoE;t%*s`guzPn^X*SHH^eoxUJ3>JXgOq8 zg)6!)!2sa8n>zNg{2tyw>K$cslX|3(K+0Wuo49vw?QXsBr^(yGs;W@{i|3F!$@7e0 z-bw_ncuq8%iR8dUqq4#ez3``t`V2P^31hzkWS~1$E+m%K%SoTNM9o$n@-?b}bd!BG z_GO3=(;%B{(%@P43bA0dtu}UWv4f!r`{GM(kvBRpW5*ROZ-kr05VxGgxx<2X^T-L2 zPI4f+4-DZ`AV5cGtxHKNqnd}<%EeNQ`%OoCT&+QF8SHp`brR*HEOfL9s+JS{>q$Ge zhNrdMB?-C%db^Yh0@1Yg$G}8eEf(msH|*dN3^k1CE|7C>c5|^EN(?^lH90<8>q@^` zQk4+yH-PO___6;amyCGU&KrIT5$ zO6_Qfv0H4Flp*9&PuFk$RPtu$T7DwSk!Llp(nMEf21@&omSz>J^(acUDNx6X3a7pcRU z!6N;TbPoPQI~VD|_1YnD1-E}z8zPQ-!7L{h7l09YUzc8e$|W=P>O{pd?NC?0@a()2 z>gP7@7x@6TG;39|7#*W1$E{2IHYmXcH$o1TS!(Sg@CD8vkd&b4P`?GpE7qKkuoDX+ z)+AM;qD+9tNUIa(^+aGvHF}^m-t}P3E;g&Kpd{~YWcjcIbJ}4lmk$g}R3O3hkdw-% zBo$ByWk<4@j#B45>k=(RDFDB|E$p>b^8ausYuFl;q|yNK-^VQeqqjer9m{vZ556P+ zmsj_1UVp~G{0+R~-hO4++`t@n^g`;P6Jhcv6=%El)&ROI^G8B5ybyQUo2FnZ6=RnJ z2vCkESShA1N?GuR*g*B_-90Qf70{6UkA<6ZeeH35y@vWs{0*{{FUn11zZ&*hFsHCH z05Y-gp@GcpgVp^?SpsyzMW>Q59Re0Kb)=99aTrZ_nv0v_1)U~9gmj3Kv0_whk zfiY=&rtko>^$*a$P%N;fZODpxzbr{$ zCoU?NxZf@jE%#qtz8AieH(@rc_|soHSR|tSOSqw7(vtiEKEwo79jI z%<%@>io9$bsSn$#0ON1T*&8TFWu{Yl86|6<1Uc!H)Il7ht#2I@Cv=)lxEJ-HhiHAs z;?hdMmnFOLsRX5t+WVvYM5#=mtUDkP9Jp*{Ij16|cY*jD_!-7&)X{azhed7Zw5LfK zQG_`n5pL~qX-WhV9xMrImGN)O8Fa}+FtVjQCIb|nNgyCFds-&$JBWIs`k~UP+L`8;8R`++tSxV+)Db?+~%J zH{ueg<)*mX#}p@aB`r!4VI`|v7FD$>6okta(QA;Fbty6D*_NmTevazVnd+uZlcWh| z#LSWmrwXlqvJunx(UtP95IIfj?0!<(s?alDbD$;i98>^!rcZJLTLVOXwx#LQ2Yg|S z9l@W>;BZt_nD=a%Nr#4=q3eY<2W`X*v}awqA&-|Apx<@!BcHtMLBs9}Th)?^)zG3} zn7_c5W*P|40?R`_$?Vc8QoY-{Q9L__-81yPGmvFO3#CKJQPmDOgFnpXC$wz&R%HU< zkApdpbtNbIDfTE&vpCh*Wt!UE>{? z&ZCJ za{Vzp%pzEJw48~k%0s*pcMm(&Ow`6ei2?<1fQEBwDgVkc9wc`$*V;`RYP8x1HqzS& zrTC44LDPb3Jk8dQYP>wScF$n`k_mK$o{LADYt&)?C0TSKznQGBPqs{$q05O`k2s3cXQ7&~G3m7_W8NrP%#+H|^IjTU^eVO*zp|_L!7R)F(YVf@a z^pko(f(=|7D9SR7gq`)1j+JWKn(C;)9s_As6U!x+{usgb-e=VKQiMLq&EE)2AG4L% z6S{HyiJDFW82N@%iWonA@#B#`97^qp1Xz<|9>KKGwS zjQy7Qg8GzXR<&NR)Kq)*Bo<~xAGt=}!4+CvWgsC? z%4y<$+QaqX5pP?8|K1>`M(HfMWQ>C=WXh;V)Jighm8qmBo=kHxqRS)A0mdqwi7d|m z?%arZm1}@JpzPdfw9jxishHBg8R5jeNm4P^c;o7ipb{6gPc^0LGPN>bn@+yFuBj{4 z;siccT7zhGrbivz2cc$7yRN8yAspOK*YMn#sxZta29AsZX%~f@X_Cm_LTSgXEGaha zVdmh-5UV1K%Tah+XGPA07<|!qv@pl{J`b&+9|}+o)p1H`}K=!7S$uj z+7kr2B%rg(0q1Uv9+)3CM4Bk-ilKr!J%)nJyXt|Ct;@eXyq8yiuOaV>83cyW@d}5p zQxp!5ya@pAJ@s`9rI~c-jRwcp6bfa_ke9P&+xO(Z@V)Puanb9SbSnDj+rNMP7sCer z=M=R8Gponc4Rxy%D3y&El+M6UWE;D-Zgd`PTL8sYD0aJVtE81SySUPF0wR8D!pm|L z)L%aA&r`Tn6cC<=jf1Z>!UXTGx3!h}A`RTBUu66RGPsD;WG!3Mb?ss%ntZnFR zxZ#k+B^kK7#tIW5Kx-WE=0Q{o;} zj3s>=MwhuAz(SY$h9P!Q!eRPhhRz0{0|8r&+Gu}Ub)gw4)&YG&3O&c5o7+(%41<~zFGV!*~RtOnSCkk4rhg3G`DUx`u|+%wXSym- znh6k8;VVEnENx3v1Ed4?z(U~LpTg@O(z;VAn*(iR_B2|R)L%ixr#;&jXI&!yO43 zCFVljnkb>w&jAtK2kh^KXw7rgC2AmrRdJY|EX1!iltCWK9v`HT`9-V=nsk>JGv(Msw;@7Qm9SYkMYv$!)6!~ty%;3wM7@erhBp$bN)FTX~1>aljA9nOJ zoV!11?qQT0Ioo)&A#HA%FAh>nWqGd1^c}_y1QGa0MvQf&R2qAdG2P__mp@0B+$=YQsrkXakcfQ?}vjGEd#eCA_E`_D)8a{MyP2G!SVz zkMdb+qE^B6o`HVpq>gk6O^MP2L`pbbM2nUIxrJIQ(A*OL4k!qL0K#bqW{DMK4j_?& zBRQ?u1wG8OD|AGxawb^?dxCQ~|M}}zY+?TN{ZyNoUIB##T~hTS2VI@z|1(s|hPGRr<;;a8OT9h`Iqhc^+rbUnfI~cXj_a4*)7E7#(CP*QV9guB1QtOCpp&gUEPG(JLRTlx z&GKePMX_hIH`$BoPh#t44mZ-&(78r6qUeH^dj`XF`?vCL<(FLhy`u>)l8UaJ)VG#= zODIWlnErtApyeY{D6X>k$)Bk=Oxij7>y|7t+)n-WBA>-(Wq`*3f-K>-zS;&s;ci+c zH9#-psdCZJfN`z5YpFPM?K%ar7a;1msG@iq4u?Gbka}gn-qrl*!@DcA_g6eK^LC@(7lD)ZR_3%j9L)GNt z9CC2wy%gJrY~FcAE|H}tpfSnG)?&KmwS)tt+xO%GnUU~r$eu0c2XSRW>Au(l?-b7X@7Z?`T@2<%%Sdo z!5UYO^vV0VL+x&q$oG$4_kq12@7QD=(I!fdrqt*x{W$Dl$1Pckr6fHXAk?@8p)|gb zDFpkY^f2rz9Xb6U>iC{V3KsRm(LI1kNw1<#JBWZ#_zC;a16cFB&hwU9#q*i=)tQ)* z8YaV~$}S^vGXa?*Evm!}%DR%0SuGPL#Mwio#583pC+>iZudHqRvORi!s;3aOC7a*b|>r%NnkGhhh z)&=+h5qPnO^1;}y*(H^gL}YjJ)wW+{OFE&=<(?E5iCtr0-kC4AeYg!_9S}g#*5M+)aLpl32ruKDwW+;u& zcX`f-Ls;xxXV>$~Sd3Em`9)< zx|f&U8;Z0XtueP;VCv{rNm$zxr?NF{ghzfPC_P$9-Mfc*RfB@hvZ9A8>fYl~rbw$# zGQAsBmls+h-pWz4k`;=lp06c;UIGK!72!uB$}!tb`2Kf;X8FJMJs`EhpFix*y#McS zABFe-=j)&4!H+NR|6BO>AEajP-OC-?Ee@$j;Fe*B&mJBQn)miAU3TwN4?Od9x#Mtm zN7TCx?+j}^0*f`PsJ>z-glE(<89kOP4s45QR#{b}B^Ed)bsVC*u#Co6V8_aGRSh6vF`jTL;J zHs@XtpKr>QXx}}4y?*29xauA#=Q?9V z)1aEI>Ufp1xMPi_7P>BH3FL9-e5zV`c3n>{dr_~L3Ui#RLsfem<+pM!`*=Ju^)PPX zHa*BaL6ya81dpw!lK{quw@1Dji+}VZ$Lrt^myX zVY32nZbvqpY^AuGm`~y~uv~S)Z{N@|uV`7VfX#LqI&3=lImA&77%fwV(reL8?*0om zcn_y+yPy+QPSjf}Anj*cVb|TV()R=8tn6wGA&S^c*gtB3$yX6k*3}K{N}mfO4|Iw_ zG7lW1z0n(Ru-4Fk*CPosja*O6xM?QQs^Dg+lHQg^Di7w-)@Pq<8aP}d4DWgu=x74P zMI{F;YD?NxyqkRq_Xh${GrBt#6y{H2X(i@Z-iIqBdKOt1zlcd^G(E{kF^w$jXTAMv zTCQLTev}$jpI%-j?-agB;<(%K6m_7pW%uYifLSNI*ID+8l_Ohy%lybqGJigD`yDws zR-JPYTmTpWXUDRjlJT-d^4UcnwOImVxOxGJ`3ezKqpOUNrU5%O%1R6rsU4>E_JMdX z@(n7f4<$<`R2frA?RdcCP{Mkhs}Py`#9%4n9SAYY`TB@%LF=+4H{AqMPu>(#LP>ae z$3}0>0^3QQzw$`i*!AudsIn6iwz!IJinlH#BgICbRqz$$VgN)rvUpb0H$63MUCE-R zaT0U|X=2dHPDI?!Ls-ZFr!F~RH7z8M!dhKQNm8>7TnTAwR|rPCIXX{2O=njlLE9?b zp3Z_`Ey^qE0|#rdsfg8)E`$p2cnm&&ny8z>7WI-v-r}_f^nASh@Q2}tHoiqq>sP6@ zmD*n~d$76G3v6c(TdSCz#X|!0HT`z&%I?bhL=~cX#Oo~YIm0e#VyM1B#Kp+nO9C3cEDK^k&EYhkpIG0WXpvo~Fu)uvG`q=dJYwG+w(tro~yMht}D6Ba2Vge^%G z(1f9ZMDA;^rWtbo%_QYXdHlVX%So)aia95cBX?ibF%twdxwZ`%)_}bYb!2@kf1y4# zjoX^sKv24B`qQbrjp_j|%sQ`tY-90e>)8+dit2`Q<<`f6tW|YTMZWYdRdVwD@TM# zMi5QB#9fhAx|0pI4z)=nISyp0%Ka@uMwKjeH@dTp!cg3X0!ElAp=@%MDhJvU^>zO+tpm1Lj%F_8KE512*tucazDaYw+mB5CV#7gM_SQ>51hK^GUEw?$P`G@Hc;BAh%E6{*3X)CvRUF3G$Ad!+`+%Dw!t# z89+g6*I%F;m|pOX-g;jp=nM{&TGb@Q4`hUF$Pi|(*xK(OI2Npu8V{VuNhwc>jAaN9 z8_q?_%%(F|idY~-7P!jKEMws*%Z|>hc6j}L65f2Wy*Xd$R$S;s`*&`y1kd`a$f1SE5sYuHheeZGvaY%^mMTzav<~(7Lf)3StoHQArdgWGGipPL!k0xkz*Y_)^veM%?lP zHs}8MDH7rhG(np&#FpNoTBV$-P3^j7vXmq;Kb2GB|JOgm`HB9P*UwZq#CD4s^8i_y zo}m)pXOuJLb_B2Z@AS2mfO|t-&`ftKGXN8`Y4s_Y?~qoaH;aw~!l<(I*r{LtAI9FS zNtWa~6MN5J;TV}@Lo*S4AI^w>L^8-@$%x2|?Z%Q>Q4cZ=Aw5YCdL-Y-?nW=f)>sKN z0K%-g@V|7vf4~!*DAit8U#~+>f8-Tkhy#g6HbT#TcMjJ=(DkXM&KRL^NDm zo>WMk)OA#n&?*-a@o|F2CGOu0w~~!Xy1GjPkNg4}8elbPOW^>xOxShXq@SW4DrLFP znoIRb5;;8@qz=A}5I5>8c&|r?PXeyyV-B@~?$hpwR-*LN!x@~ARAtons{jmwK zG-UlhVb#P=Z4D4i=liLu;fI-aM3QZg;;qQXx5`abr~!E9LNEvdWp_<(qnyAWY->DH zJjGVU!aV99DzdBdX5DT~wEXB?;o&_u_>*6XOiw1OGWSlO+S!4 z^!SR`mIAnxUw70}ly|y=SmG!FO>a~gkVcA5dKr+Fy!*`e(ydwXO=^fi z;k_h$)hC#kWV9EvY48YF#hlZ~ zCtP@|buA&jkbSK|GOziuVXj~-kI4o8mO9}g@QW@3x8=+#-E1?V2FCF;F1YAG#dIi9A*4+42Jp7D^?{)%FZ z?g+hPrxFJt*6g!q2~s`&OLq!%w%x&J^6fwT<%i$? z+8mr;K}}@tVdzt37^ya)8g!%NrAq$2?1P*-wU_GZUl=d4V=bq`SO+%r?tU=F`#vkQ zdm{;;9^@QYA@B+bd(U*R<1lsYZL=y1#rQGt2$h2~B$v1YCqs!erQIKAccNRkrKi)4 zNTHaVwD5WFD&u;#+V-{YbUx7pFpxt@IV3v=q+h{hadgH5I4%2*f`Dar*_#56^Q3g3 zqzms^f9+Oqs6eyH7y2u7-%)`89yZgmWc^RfR$s#{s){vEu_O1&^n-C=4_Y8guae!l!M8M zGGHP6Xxk>lZU9k0uD?ZRXqdGPZ_9o=;9r*Mr>jc0bMOnyunjuad+^+GP2w~(|CKMcQwKNIzle+X2~zo+)XhT*(G{}Z-yf!z+$O5NkR`( z3s(7QgB{5+BBfpe9ksx^N>p`Ro;IlJ1)vH#|K21ZM=1ipf?u)(8(#innwFMR)egLq z5(${QVRqwHl?XgRL0c9LS^5u-qt8j&qflhP$zi^k`YQ2hw_1(9>rA4RfD0hEY%U2K z+z&8BA!=6hhP?d150hiSG+jUsgLb0sjdGefxmL+fsg@ClCUrbwnGjA`n+h;GE##Q7 zsbYbFYGV`VGNQhQksc-`W-xLl+45f?P62@U5bn|N#%S3NJe#2Nqhv2js}5PcL{mnL zf>a@H?8vahey30SbvP}gQvi$m=O z!65l07gzj*y)kSvoZ{1j+$!C?c@9X_6au zQp=vS&mwXjdAaE)zW?t~MPIXc{o1%Uhva>`BsD;fTKH0IssiEUY3?IOc8@Mw)GLcT zLwx8E=&MOWUUO0JNVfo-Rh)z{Vqmx&%mboL!RHJ(f#R-gMM?29U)I9$V~K2(>#+sC zr4=%$h250}?(~*IFO=#2z!U%gf~(Zvo3}oZJ1k&~nO+{Wd53O{X{DQ&tI;o+T-Hlk6p`tk%T-Wlw8a7*M8FjlHjg+%=2pOp`oI*?UNSEfN={ zDoRc`Jkuj?V5f>5&dMvoQwrWWLTe2P^WF9Z1|*JDivVV(C-67nf680ooA=+b(UZ1< zd6S=Ex{#$J%AKE)O^%pu+;oJ^*r_&=+mdU0=YC4Qnf{4+44|>x~ zj{%`_Q$8#b2~|&r-b^R^V!ZG|m6K?bQ=l}q%rHJ3{f8s_DnBhr%q+(;(khSI5=PxN zTPImB#@L9cxv#ECi=u)G#wd3z33+wM>#L-sR)@;FEoHY>A)DjO)QOF~I!R@AbpwIo zjT0RKm>faDC!082H!C`iFh;U!IJ1?iw5)Tsw}OjGz8O;F$%2>EfS~@e#o3sQZTCph zXOMxgo@hz-;k--n_z@UjPJ)3a0YHh-uAYH}D=nwAjJNhf538_eF&%7#V%?p~JhVWq zt_8Y>1ns_?ygCAfz}jVD1Y>rUdxY7Ob` zlZX{H|Bhr&w>>l`Ya94xZ6~K)2!A`0TWxbBe6dUn_1!mxqRr?m8~5hpMsbATHdzC4 z@j-AbI-U60O@Pe!<*&|q%bK?QDbTMWF*3gjcJXzR!vC@2)BZWZ)V}&}K!JYsZs0X_ zp-v%Q3Ni^+P*+7oWuX~r6zVZ~XLcva)`pn@JCndy!v2_y$r0T$D%v2D`&1ES!qEpP zx%j>8=eBcxnJl2OM&fU5EZLAmp?=s^UVO4HkNVk{I_k5n09OUW@=Pc&D0F$pG{xfk zzV-4?q;zuZ;0R?&%GlMtYucm4>}3Zlrap6EHfN&tDxhLXeGQ%r6^mt=0CWa1O;D-o z(ur3+`dNqRMwsgKaJl6i zAOTknO2zJVqDYvJI5%|@3DLerz?CHw=-z72Jmf2VEMffaVm&HYLIYv!uc7E-2Ue!q zz`>q?`hgP3K42cO*r1@m30y&7L!NMt-YBz{L{>`Bj)kHoTYyg^i^ zDpnBV)QA5|_?xsTegYGdl;wQ;MR@<|&(kmKd2e?iBUf-AQW>I&g!hO_Yi(f;1C0%6|$LjQly8&SzKU?EFAm}<-M*`Tin)q zu4DSF8-z6FkeAl%2Pe4zH;o1=0Mllm7MoPjw$%3p+!r||VN+a$7VBMJ=iOJi)dtZK zQa6Q-pK#3(D#+HOCK#4q{pftEdc^ADB3v>QAN2Wp`M1XCyV%M8_Vkwnj!l2|D? zRge)z=2)GSLbYy^F~D)sW@LyO26AYn;*pBQwr~MgA~b+vc(K52D8;J1#VfM>`k^X4Zk1owVUp-fN+={6+ODU=3xw#s;Pv%BH z5$wJuk`U@gNm6m(8G_@FBtYz!dxusJ1emNl2#jI$8mKA>OHx=QxB@DsAE8RO*O+9A)x{xv<%e-@5 z?>b=yYv;s=-POldRsTzui4tQlfA%}{XWg4Y!J8a6q=%%;YIZq!@;%(_FR9a*cGLtQ z94kr~jo6}2X%4|;d%vM|x;TG-h?Ne3R$D!Ae^Q|c3T8H0B_H6M284%k(-y5oba|U? z^a|Y%#4;)SNu=&J6=1T!4QQB3rH~9Ts>nVLGL+V78+D5$X>CEnpcr1QD7b>FyO1c~ z13R8`_^Zu3(kAQYR;BGY>#F5;RoTJLfjxmLub5a+Dja=WdB5Piwo*4}su4o91;o)R zcpNUcf?gLNZ%FtDsE3rnhosyb!NJ;QtuN6<)g@g2&a8qz3-7U>ivBlf!WBtq*^VXL8(CB@PWfCQo^A zXNR>!qjO-pK%U0_qVGj!d7(JN?k<*cZy(6jKL??d;8N**GxD@s4|;@)`Db%dB1# z0b1#CR_Al(Uvqi<{^$4Kzx^?!3w73R_?El|>b-ADEC6N7jtI~)=>fYeQPq-iBU855 zIN__Sr>HPXv-kO9(kyh`X}Aey7+Y)Wc(5ZW;j~bLXN~|`r%6H)oQ-|pQY;gyrMzZ4 zXqoYrMZ%2{NI;S!9b}H&6mo2ADh_XD{dk~LWE9z}S~L!vIiWIe;rcyP4n}y?DTPfE zoJ9>mM4~vA`I8wUikg(S6zE}-umx|by0rU{Jqab0q>b1jt*|BvEdRi(%3A~f=Q(0FRs1yjLr<(0X`iQ-Gp{oTAI$? zNoO9Sq8-Wpat{LmZ|*2EdQA9YNOikTTq$S3me=XmZ(ndC`&(O*(MBaljk@3|;o1)W zXHt<|xBW_d=B_%|PpoN6yPr-tdtl98cBf7Qu4~2a1ha9x0{PG^b?V%mMiOQ~`F3TW z5DvMjtK=!^m9qi7zp;avY4(a>sVqm>;1#ZNxMMpgS92#v5e-)6oPZx*rm=^dR*fOm z@Ey(6QIQwp9R;i{pJ55+4vWcax6mn$(nm;=ymzD`$<8J1q4E%Xaom9?v1(LV{+7Me zFK8mEUZXt#lK0Zh)HNAh_4qc)-!z9gv?hz`s2lRHwp?N+l5W}WDX>eqI+YRJNVva1 zbxZy&w@St|NHd@*IG-v!Ra6leiF)?XFCWZ!Np$&DB}AcZG4y?X!AjTNQzcj3a);r#7;SO)Oi+F^tQ8;4vDypxtNNMD~sfzOXnm^ zh1Q38Ls~Sm6zM9FX)wi67~Pi(mp(ieYl$nvE^pJd`(TOcu&m(oRd$>Win+uSgB_0% zt?I*DLIX7gdif1N0&J6GY@Wx7p9U%qB@%XvB`6^J`UF72MzTT@G_C4D|L3(+&t}^< zH#EkK*S@WoG1Ut3ze`D=Bov}QnqbCSO>(n;Mml1Fu2t~-)6sC63^P9B&6+bU1{{%{ zrdf&FWjAUx?r9ZN%p4SJsMVkt& z!(S2?$l9=w`J(LP7Vb82+ms{Dy(q`blEGwXPqi*X>Y#T>i%M>y&>!u}4ITYGXQ^!^ zu9ZFYjq!kQJoKE7i`pZ~&g>c9$KZ6@c?8O)UM`LHYK@+bZRyF1RLJPncptH>vGCP> z$<`SFm1-607`8e(qgS~oX+=vBM>tuxV$L-x9R<^um9o!p&u(#OAcnh+l@z<(oQK>6 zTFLMebC#tp!6&=>MIpw zJ*Sfl%M)*MmM~U`Jt)X(bw%*yQ<=zVt*SDVg^@=WZWqZ!Z?c?TEJFu71*}n9TQRso z5c-0|OK&Pkw^j`?X^Oos^ZCAZy}F=eQRsRDsMQ^>MpZgqjvcTGrsL3Z$?q+kK}W<= zHYc&t54zySEzW_ekBJpnxxIMN`FII*2{qfX=3|=Q7$$yFR}L}&7fJCSQbkY>8mFv_ zLrWyulb%hR4Mhg?lC+yfr?gk%D|$IRPD(K9x@koWtS}QRTTtI@;Q4Z@s`Ll zhFV*wQhM+~WJjz~Wl?K120DP&TXGyZ`v>V20+TiBe@Y4H|Lgsm@KJF>g9f%iGMvG6{Yp}8n>WrI>Q^k#{=mkMKw4pvKAx@Vt>ZbhJB zmef)N1CDl71A+~Oca3x8p+*22De6jrn8KgZ2imhjiO|QxL1wwg^BnwPz$PdUVN4 z*4BFcNNVWG!`Wg#r?!ArP6U@-16_V5lz^2ra5zxXo{g)UC@z8BoIWcumKd;4$q@+1 zn%+}nXuq)-#w37X1@-;fK{y<0`QeY`b)y_uM_eY19Eo54SlrN^fb{0=UpNx@d4BY( zw{Pt0@4kB<{=a_UyZ7n0X7UR06hD0X+@{_SZGY4a zI3g;MC~^MA3i??pzY`AZm8#ml*bV|LT;4I@;;2arvSiCGgR-}0A7+LBPra=qvOtEJ zG7xQS-Sn*pROFR{e5ucFZ#}qt6BN|0^1{%d%hO5>=|iICrA@a%sAP!Li9oJsed)QL zAlD0$OkWd=1iQ1eH9coml$7nt`jG`kccrA;Ce^v~BwyjFK{7wU?DfVI2t&ze%?b_u zfo=$T97!R5X5!o?h^q2$cMvnjFu}UB+EfO1+HU*)Be5dDOe5h)vaC@jNF7^~w+?VM zpUvW7Ox=vMZ$N-XwH}fPCmyASG0rgfknYDdS$aR4|=4(o@z4&>;)3jp2_?-%fdFd9?qQK;mAipRou z!R)Qh%$8Z+wJkF0&S0$DYKQbCCTD)c4*Q)N!vkU?M+(5TIZ6iXfC2g1l5EMjNuhqF zvJ_P7TvQb=IIFjxAd0|#Y$%zt_exo}UGb_eY`{{iK6}G#L&bNkwFMmlTl5G&oojB& z*|d*v?!_q5s%M~~nw_O{+yR%)@<-Sf_zb7VsZEQmGP_6lRmIjB0%-LCo5XICqPZZt z8u$Ze9-v+X9@Fk5vBcg{Xe3aiEoWx(yZhQYNi#&&qLeWErl zU?y;SQhqxjL8FQ?8rMY=eIlCyS>d9PPqxf+eDHTu!_jrBbS#`h(>hJzwsUMSgv~mo z+HmhmSK*Yt zxq>pg%Sx`8=3gr{IR3321DDn0oG^kc~-#n5yh)Z1siswqWecDf=bfG@=_M^ z(MnOT70KwmHeu#E5$AIC7f+x6}dXMgR4{O$xM%12EL5RHrm*J=QXr0e%8q6lJ>;TrmPL zZsmK}TtqQLm|;;yM~u9W>X91jHH?~>T;5%${0HEC4v=Y-|EWxvwc~JM0MAa2U_UoYRgQBg5`^8Y9knlT7n&_( zEBipJk^{I#qV)^N7TO*I7tGdg(AW-TA+THSU`Qg%A^c={QGM$E^pkMoM&-#3m07)(PEal4&Az z>NYYBCI!4D0Y5DeAPu#|oFm;1G@1*#dT0ix2E5REctIP*sEkvB`Q|471aU-D8LHZN z$B=QOe%Xr=~n+kL>fWKg|`j>Bv8;@~bj=kQ5F;Z;0rD-{6a zx`vaBnYU=FTclsq$-!z~MILdifJ0x~4%6VolqQL<%V{u#dS%*!H{7QK*K2s;WZ^n3 z<=#6SywW~px&(ZvOh3U={6JS4eO!pmuojRt0+iGeDXan*x>fjvMt_9kY-NoX(09si zmmmo43MIfUcDA%O>gMF zKZNf-@ZJ0Tx4wEaYs#TcrTINp7itsofx1z?L=Vrh^EO>50SIc9E2IW)TwD?;5%dN~EY1BpV}f8kme4Qc4S- z=>25vfl+;=+T$%8o*`+I*>;KgbV{OZk*d40uZP6Q>*ac#F+gO=j6G#}R2ZI@By~i9 zqMSSO6v;a{DQh<2SdlnkI%qRCsTV2?&K#BZ5{Ph`!H#F#N zA>!JGX%^LF<$eI^Gt=ysS*Ju?8fC;-y^swo&r6O&n`ZACJ6p9`>#1xib@;tjq?qi} zwEFi-DUy~R#1Fx_n#buSDpLAVKl`tl^-?zQ8cms zHA$~zXTbO0s>UL{1b+DT8-9XMK+Q0{#rWh^D{mFp&U|E9rJ6`hXdBv5b4Y>@=}0T1 zfyySBdm4{~^@J>^VIfyihtr+p%>Wvv8#{wfJhQdNTrKkLLMPjkkrnu85bvz;A2C;3xC(yX}m4?7{K#j!!QqNCa$zq~j!>uEg= zy?MB_;XVVbLDgV?=X5mV7?wK(1uT109&W_(r4G@)wQ&BhJ3MR4OJ$IT&T=D3`^M3i z;|fNKGgM=a^{dL8*%sP3KY-^=soKdpJ!iOr`ZZe*=xE*L3+8RMXC6w1sZPih&&4JH zd9%!mw;!&u)s>AwqQ`()Yo7kgA=A_!CC)=EPQD#3Omk1Jwyt%h=u*2$V>8{o<4&=Q7r0ee}EbX{~zq=Xb z*aMlQ3&_lfrd@^KSNGSfc}as#$zzGc5dZ?xv(*!Q5GDB$@e@d}gncfPqIw5lbbyR=jc#iG)#t;3&1eCt|AO=5iIW-+*Dz zIDe-UCb%e6z6Dzmq2V5~Db;@p|Isi9|M2z&&^n(bhsCWkO@+sF;u@e}^r-#N-FJC} zhr@2lP{#@am-UuVmvT*XohsKD?W11db!0oB$K-UDy>IP{@$fn77&r7;xwSaqjijK#%a`Y?}<;A+NfGs1K!ncq2Y-79!Q+nO!TA&wA{vg-ay_f^=q9sv{uW#a*AW3H+dvI#v*Odh6= zXUNbs&X%YaNxD=8&~Bk$6V_#K3PN8_rl6gq1kP8-L}hjv{CVEc>1M4pgeIpGL$t+a|#)+|X+w{E;clPF3qMd!;Hm3S?c7=|b(jKDYV zUx%}3LH^D!-VG=4i}x@6QJ9AQ3d#qcP#Z7FQ+~ti&wx3QFQ)AZ9s?J{vmOpYNRqZ$ zTF~+{NNQAESQ1)r#akD4UBdpr5mZvQepQiP>YxCsvM4fy&=`)IBwx|;8sb}p=OH(M&fDFAF~2JG3vATR7$P0UAwWn*zZR}C`wem+_*qVfLMtJr7UsN`bt5tY34&)r=vZz+Sqyd>EMaa5_3E5<4;(3Y z6x1t#9`XffCIT?z)7_>*_HE~?eD~amy@RdNm>xj~!-xj51;9~`@LaQYnj+geNqB8U zC@GtnhNz$`0Y92k83qJ6b*b%Av)HDPP0ap%P?P`~u46h~zszU)9x5H8e>FpN=}15v zIpZxBHP&e($%i1KEE%*dB?P!^UOOlsf`08-(fgg;?^5FQv9B$r6KP_YBKE%RgO1;6 z{0!h4ba`7eU;Gg_FaVVS^o3-{WN|jiQE3Cf(vK;*l#?O7`Tr^W^o3}4m(_fa>8jz1xgN+Wsmea#=?01 zULUGR!2PN2lojeJ=GV$?wE+Hbb+%b5T3&W#nK)w|?*UizZ4n!2PsW-Z;#heqne3&| zMp)&#L%m+^J+wXQ<)L{4pT!7GpW2w-`m1czCiCeq}N;omJ<#~X zbgXURbr5)##9cK}Nc3|(0L5#A;FnlSS6H7(9xl)Cgc~VMTMFHPTJs!mTTjBiw+`kf z^l^ihuM6qf1ip%k9Ed9U=uqCoL6!HsJTiw9*fu5m+SWjduYC(uCo@nH`WhIGmw7RV zOdCW1pyL`Stg%whDEVOG$x!D@ju5}JeB-qnhC_M1cJRGQs!BZJJ?sNPw=jPsBSOU@ zT|EV+%7Z&dL2l8i;iG?Gl)co)$VTA`Li*VSO=x13{p7f1 zxt+X)B(F_bpOz01rY^thMwyurjq!Eo-l$!t7l6V>iJsJH!T@t90S=(cro8)Cm+Hd0 zuq?k=A)@b+AUF-u6`BHGWhdi%+3e6P+sKTSH=Xk#SW8Q6l4{R(*P`nk_4E6I*9~IctQeTJIJR5Ty)cil9-6 z<7x6ObN5gnSuEtE4GO=*f7;z3WFKMZ=A=5wvP*yy$C`veSv(uuus~C^Wa<{$o?Ax} z#bMG?)6(*x_cmz_{b8rfR%Bi$tyeW$c9jKeJ3tR6M|<6Zd6D#St>_^N?-{VfsZMbp zL3$y>7JfYsbbr!oQIycA^(5yMXiU-RbAk*O_%28EmMf(k>PNz2))0X;m?5lmcy>Tc z0OtmJB1LT^Dwxk~?)s^tgb3gtb!3bE0B?LF2)j@K+B96^D~7jSxl?#5?kWxFFfU1- zu63S@S4?k^-^hn!1C_t~UiiE3;eUGfH{pNG$H-T2pQo?E@J`QmN~$F3PF6B3ig?$! zP#o0lpyJ0MC<$5^+m_-MB|%V~eRpn5stT%jx?Ish zjA>h5nP&b=oEv6RjiRr3gBMq#k;JAyCPv1hI6<>K#IV2X>+)B zR}!0n!Zv~wL)x`h+9gZzs|p@jiVnK%(_OC61xpuL8TPr=AA+f+)o77lDoCfME`LNB ztC*9Ljn+~r!Y)>>+8`lX2?TUUv0Tb9voEN?=1k*Ta9(#P)M1`t>OvB8F-cTKVf_j! z?$RM=u|)1QG8cU5&?b(f4XU6jSQEir>ge7UAcqnAcnx#JpkUXAAk;z#xF4eCA#rD<7Y)r zsDHP6r=oRYXYjqo++&E%DDm4~@-4d--9YOmYaq$V21gNS0~=(=n)p#rc8vLkLAw-* z@N{-5g=z=8#-^l;wkh)IZw7wA{LlT_LZX0PsEB(7=m5 zU}V$7KD7w96(Rx)sYOZKQt{NEyKJf?A5ws7D>0Ru2WFf6;Y@CSs5T9d;}7|+J@b8w zaw4Y}tDbBd|j7n;|1}3zt#mS`QY7H}JU%$T6X%io3x>{sKEL z5*0S6#xXm*;?&Cnu5MT3C>wC00l;DaHRIsNYdMnU2XnWQXAq=KU26<`-(M73#9{s3?2mz!k6%JiC4T`7u7?TQ!xvAVwK+`Sx2Pkl(2{lI^rzDl%D} z6Em}EnSq|Rp6=i?S3Ds3!@e|>ZgXLYMFPg?r3j|G2V@APV4L^QxM1K6QN^xQVU62P zg~F%@C#)3Q%WMQh0gj4lU22=LQoBDlN*L4w*hPwmti`LbZCL)a#|zS%Ktv55x3GZ9d{-DIo(YzYAv+i!)B#{8p+7)aF-~7l{pw zMxt%cD%|4ir!B@DSII9{CJOS9(x=mn(=rP+Joc?zAk`+?Nkip!=4RLQt2I|$CK@D;4)#)qp{p7Uxv)rIQwtstkP#iPu1vFwEWzB>8QGDNCA((F zb&wc_p?3BU^>KR(9-S;yDd91Gvx=k{d34r_Xpm~SK*yZ9-yVD@Jh4F_XY5eqg{0O< zs4PN4^D$sI`!IMIzC(cMBhsp#dAF%3`?p`beNIu4 zSBR}57NaLQK?M_0ck!_qtnJvzh2SnVBv4b2k~aI~X?r2mZU>#8f;32|s;-eArA+aj zctp&1JFAbSjTQv-}BmRc0pcJPcx!~Ch%rdJizW% zAQ<9+@l0$$f_N-hY7pwm z+ARSa`kQr?U3n0*F-8ZuLm{uD+mm+#TdpH&2D=`(@BsUCr*JvUkEgX6qzvlMPSsVtiM?5ZJA9W2(+{DC|b&KhzQ0StiSoh$N@bp_#=2%P9yGMeo_xM z;31u8Frp(2^F?04Ab*s$NY`g@L1y%$x&^>J5GgY&L)H`IDtv_)nIZIwppef@Pej`+ zWhb>{P&2G2J2TT#xWE$n%mgF%U7QfWv^EtSb)8E%>qNVsHncHajAc)p^ar<~q zIgC)828P5k3V@%u%~a_pC1%{(0NedB5DtNHg-cSP(wIB)y;E=YN;)0T>e~g69rEss zY|^56hHj7Fs=QD`e7Ry_1|mVmL-wy>8EREUQxy~)ajL+f{n|>0TS?UrL&<7-LXC)x z5T~vn{XHYA;8h`SzbUNuJ0uOUo*vT?JeV5BNq)CI%hL7Sirt5)g~}J3F8GU;kGXZvzwr^m$O3S%bQhdo|+(!EjN}rd0 z_qg*=zF}do2u;A!p?)mVPQMlKMVtR|zv61`0E+XCacbw&{Gi%292}z^Z(L1A~lBqB2t8jnZdY zVJouEQg|F{&U^?jlK;y>TIWQ#DOvdf0R_p%R|kTtu%?s?Po69lAQ{_*-A$k^EHj$` zn$C!Tkw7geq#ts^Ad4jg5I6_5{e7}6iM zFz#*)e6Nw|ByroTe1X_NeMbTYF>E8+jt@|$9n@XFv{CyW?%RT~Jrv`Xq$HiTpfWDf z#+yRX$5&>+xa}JFr?XWKVwFw07c~;2O_98sF0%ouq^v4&M~>cBb~pm;*U;18?_fBTAG123?L z|24e*O!jXTb~aoeXim@6Swq{ZqIx1&bTN?xpTI9HdI{Z1D|9!t=s7laoe#_^y4=x{ z^JE2c4w%DfK~q6CAJ7`jKHEPJ#petNL@?WuLXaIYYF0<<-})Mez>s=$_j$95*g>s| z&MC^ZjW4LXdv`cbpwQ{6BDxq8sVan>Ne=Upzi8H{$Rb7@N-L#)N;I{7G7g;=**I7P zX%D5&RkRAEpR^*EFA*p}0CrC!p!*Wxel)Q-S_w~r$|B504Zx1fPPXD5t|vVuW7WCqnYR0+}0)e&F&IMn6jz))ZCjb0ea|q>oT^*rS@G zjuL%6c`sGviU@c4WLk8Uu^ku3V#sG?$<)W4sb9T+kskf=+t;Ab{^b47Z@ICgoBcHK)q+2y|r^DhMF%IQ9Fu$V* z=ynR#n;b1J(~1%ZKy3)cg&Va}mK96W#$ENes>mYAf3Stsb_ca>>p>DfZ6!FmSAq|X z0jloxm7i;k=V(3Eyj_SrOLj0QRuMazT*O0lSjAigy2WmhX8nPl*9$F@rh*I z%6QZ13`>)WO9YMB0?uE_e?k8L-`Kq0y#F{oDjDhf7wONCzSvG2z!;>m*E8TlAoI4% zyxK>w>U&>-EVoDZ5p95k9X_}xB~zmn%GP11u}~ltMLboA%kK=e(8KW23EGIzGC0^? zR;gU(uET)k;MB&xM(cQy#Px+7+*MVuALvFyw5skdi|QWM#A=qUtYY~cA9g~L!8(M` z{WPPeM8U2($?3w_0v%}dFr<`8pOWGyEM4s6GrHmQLwhoxdOcOw`UwqPaA0g>K9I-v zaJ8jL8Wxijbg3lUoYpm zZp1Yz)TUD@VDA(_lcH0DScN>&AU%yRfg(z`l7rUlSr=$-*$%-_;X&7s5tCn@b%0Y~ z9KTDsLgjfheXb5?D7ury$gjfNznIy``yWC&!{8+X(qbOCJ*QA5=O}yI^}3iAZ`C|Q zHQTm9eoYOaofPkV^8;qvVdys=vOgY3m~69{8MuxtX<{#j41JPmCa&raOTD@5HZVXB zJFKJzguvfZ&ZCR!7nhRj;Y!!l4Cp~_0WR<}t4Pu92A})jID>wdy8zG1dcp}cJG*)6 zUCC~0Rg?2@kUex<6yrgVv0G~!q9O|u-gd9x zk(S4~@CQMA6{V0Y8D;_vOm$L91{c@XI@^>2(upiHv1^Z0kSpw}U`pE=+j>B)dUM7J zhB^>skSf?Uv+*Le?{2wS4WCJLG)q5`%Wf)BT@lR#iG~k*T`B?}u4xz@%YJ|{I0Rf} z2bcyOB8*K!t!$B)Gn^jKNV_z5Kb_t<;%%G7U%y3x^-cBUhdFL zk=oW&8tZz7rC-+rdVbb)K@qf)f^^%}0ySOB;( z56&PZ_4cld9BG?T-{hu|6|-;bM8k?vs*qH#Y4&kwo1w{gyCym?4?%sOy|^tA)4-#J zVvZdOJ6OL2w1FAHkXD@B)KH)x?@mtQZAZh=*l*Zl!%mi(^0zDP)qz5L%Vs*?3x9V? zjs6(kf0V9%6W;!0@m}wLNfoYNn%b7m|4rC>^n@cRq}G?GHgD7717~oe0|7Aoqi?(w zelNh%%R9?4X;;eeJuj)--$B`lKu;JkDe4%SO~lOiui3e44Y$es1(zpMf!NVd5QB>8 zi3vOsWR@>I(B&S-!6;Fqv#hMOE5paC{(F)cWLTHC-o}N=CDuh1sL3*{_ozgW!Zyh( zI;`oshWycjW#+YsI__CYq*AFcu^}J=hBb9<#r0C7UYS;cxg@~bB29Xtlp8@AJ+P>T z!rYEdVwCl936RVzn9sm zW|=hQkvBe%3FLu0_!KSENi62wK>@NOlwzo6KU~%iOhY)X+~7=YkgQ%2il8rA%i(Xs z4}S22zfBAKN0QaQeW}@e#nBbUjd!9t9w=vyd|BH&@#qkzn#Q2$JETN8SCv{xK$XB8nNMHrlc*bQAKj-;;dF=x`G}R7lT4Roxs&Q`}sj7=-m4$G_z)_+mnioEB z#7P0%BY>Tq@29Op4g_VKtax42yQ`-c5e}-6*EFPsEO=C#oRZga8K%=Av0tLIonKY< zDV@o%t%2tCorvUEh4z5z)Cz2y#ra)5Hx0+6+ro8d6>2DT(h6kK7B8z>+CCV>VMR(z zvAoZ|dZ9x&HcX{e{R6wJ^wq7lES}O~Hb7EgXr;0Z!)kH8WU!coN$RUdl#cgZ7 zU}#8D-vnZwc1R*7&^`o==IE8JnvpFoR64{~Y3=peJ|jih(MB;yFM1*#X!{+_{DHy0 zp&kH)tT9mFn0}EQEIzX`<9&ioPLv#Hn9ume8(QSDe9lerTZC~#9J#W)V9EfU>pHa$ z*m>Cw@uWj*YILH;uDstC-vcPP?bKPagJy$vI4pQjJ)GR}t`qu$yzcM4>gw9aUy6%r zFD%|%YlXC>YoycLq}FL22Bi;T2r7B1PQcnRNLv;17~QJ`c86k`rWZ+i=lYH$u|tCwsx)i1IN5QTY<@9 zfGUIE)~dM;=+Wso$wF>57B;&0HBCgcm+ps;Z27GIljMFSXw8b*dbP;E@caNyCK$01 zh!_KYPCD9%1i%19W02gjmIPphhu_LQXH5yPP6OkJ>KNXVV-veWv+D)i_b|=2jqa1A z3#DWn-qUTe`tM!6plpDG65FNU@A8?FuwvlJ(c*S;`)z=PHpqF?(cbzh ze}lyIY1d)S*fLO7p1`YN4|4zJQk~vvHEL9?Yp`dU2-zoXz!CreaTOc{3Ios{)Rq2h z9sGW;HN^=Jkk*n&-+Efg@~i5SX%*-t%T{N7LL(M}$MVOZtd_LGzx}7Tp9h0^sSUz+ zJg=WRHcpo<+L>v!q8;Ya#Sg_+dPB77k5c_qeNchoas3ELOJO*~x7Bkle1LYy$cm=& zTdRbvk1;DSx^grmL=DSM*ZwF+6+tT~L1~Z!=_ET(PQ4hoTRF=XlOfBh!fYKQY&MlP zoYswp^*q39j7A`+Xba5zXHVF4zQ~4Z9X{+6?cNq;mh!boRS_{JB=TiU2!j&utDQZE zHo(2-Ce?@HCB|@HYO+#LG@xl{NP4_zc5nu@6ypix%~=oyZGzb5<^nW3B{u-PGHJ1% z(Urz-fKK+x9TeQrwb=&lKyY_?o*;@4tTkBfp04K9GLuC*kc6 zm}7kM_Idg{)BNW_@%?WrGvs@6@7P0qx+iBhMvqe&ra5T_LNGV?!xCopmUm5;)AX=9QuXo5P(9 zcQu_>)C#q6G2ENg5=WV%#1sy)`D>%!O9G};RQKn^N$~Jd)Lmr+T|`%Qip|U=r)nwY zBc}`v-$sS}0J5l#0YtI{q$3y%)+NlFP-j4m5=5)kjnZrbAmia-f33CSjY6LyZjFbw z>cJP_OM@@}ob0 z`zm?dR{me)}2F{HK8Pglz<`SlZX_3`JFEv^E>7_Aup@ z_{%XP!jIXoLEqhiDL%fwmh<0r(4imScV>gMp#imDw#?t&l$~pv0n3;2hLY=}`)LOh ze#)~OW$jtY)gFPL44|`CjmszOR>w1xL(_(t8PBGX`Y)5D!88_;Z2PWXsOr!up37>M zQtcI~4-c*gC6s%3>^vxpB0sgBdI+GvNS&VcOY%ijd&IX-B^#?;Bl_Oc?LyHiZ0rVh z$ZuWtq`#rx`-FXu>&AzQnHL~lEbAI2({soXRUW`5>@b(gsO77Y^XdT~UfQ{J59=$) zB7%psSc{^Xw8>t{Pi~5>f0fIQ_KBwvy0%uH?#2f$HMlJ^sT z^zBD)-vnNyM}PG8tMK;Qv}Ja+A-od~`6O)l2~zHO5uCvms{Nzri{*eitDZf+1>GDoJQ?7ON|g=vGN$7i4B zq26G{0=)5d^cfeXHYC3J(0&=9e2O-19){mJ7+0mnZas|+J7*8hbpvmB$95+f>pGew zo!-J#?bK`DcV5lZw^kUH?d}n5KjiO2ZcIEK$DB}R4L7hlM^LX|V=w>!X1X)W+X431 zW;1axpl><^GdQBA*~6*zyp}QZh*hnUn=Za!Coz~`PHcW&G zuU2%jZ|oR@VCti*v>Q$2Wu-{@D?z7Ktz&=L9M%G?>H@B3 zSOwYDqCQhZXzq>k$|VUzI!ExHoOeZ|Ge$$cp~Db3CsJM3Ok#Zd498NkDM`87G2N%| zy0b|z!Ss;jkere)zQU&=L6>DC_=xW*&#|rD-w%hi3tmXx<&85rjl-2IZ*8I3aw3!| ziHrktDQ?rhX(fGCkDb+-3xt2H;DO3W-RBw=l69w%6S~Q)B;ZA2i3gj{G0sI#o3UjXQP#MLd>r!8B5%ymRzsxEU3 z^(tUwH|Xqeu7Z7+%?i+Go4MvIjzA=s9~|0#@Z(kmrvqX6ii0mG(=D}q<3d}q;&Ggj z+>XWV5p~wyT9+5TJDW+uj$$DcwzJ^lW1DblG<{|(T0Ytom4QcDLC=Hx*VW*PyP-ufZ z(*9cB9UK~mwSdh7!F_ucS!xoeWQQyrz=)VG@@-ceP-If;oo%!oza6p&%p9v4TwNmh z%_$>0BL+wZkoXRyLjz<%TI(2@eAsIxsXsYmyj~U5#x8K>+t5U}zNF~ZuXVgAiy?Qv ztR3)-2r4G00`@n^grl$7O?ALziORq9bT4O#iqm#k>lcXlwNf41I}7LxCnK75x;8%g z*dKOTj(Y}=%056>y(HJ9Mqho1_Y7RxFhJ9)4DO=^Jm*}A@{kID@mJEfYJ2nJ~60&7=p=5T*6YB%0ZIKJt zZIfe^I^{pA>s(r6N2Tl=m*H>2JX-+XLJ1QN9H+r3i0K>pm?gG4!_YpWWib$_9VrD; zOG>*d1laDiiN0l_yBhRDTW(KRQ-qO$7Yy;)pPq0jTNTqxiCm-u!*b7sfH7Bfm$coj zYR7Psm<|js=M4%&d%eI_T>{#1Dx<%8`-y%1;=A|ZyAPzl^^+hc17f$;2CzER@4V;~ zZy(brLsB??4%?#5Pjya2wmx;q#nam<@|iOFD;EW?r+tHPQDFB4K1@UB z+0LL$Q>zyT^hqEWjzKh@k}YMh%Ivhbw~-=8@=2yBecRC&whr1268u-Tc5Xlnaa&@| zU)nB^;m=&1lp&ccZR-U^w^)x%?>AK&2sa(;;mbIb?*tlGP{DAb~7_J5> z2Xit(S)rE&^GyirCfj9OvuE9+QvTJZomQ9qf=!x9B#x3D$Lm70IcTzl^-D^OzFq2b zU!l;NnXd*c=>}32d)trjMsuSI(J2VC19pxQ7* z*{c3Ld_Uj*F1-Ib-+lf5WBdAPunTKKee(W?w;zT7kZ%47{sEs|;CiFhH{>R6?(6|F ziNPDeiJBPrc?tvkABIB`cxCZHl{@VR5W22DDv;yg2p(cpy}9GJ$}UmT_&1Bdi73oa z(`SSB28XeeQm3o>GD6biZv8Q24)Vrdb7aRM0}f^Sq-1;6Wi5+)V)}Ehz5KYvoYmh@ zh{$(LUQAVUq!xB(v6wSO*db(Hx>mMpSjVa8IKgVL^n7nL6Ha8DKk2q3K?hB9DFQCF za;2vEQdQTpQxJGTEYVbfeYkGe|grh*SC9TA) ztSGf$mPJ%MWaVh4GNK(Fj!{Y#Th<*4qmAHNwrG@#@Rp1!o)8&7p{wQifRLhwTdRj% z+w2jxv<&2(17|CGe`9YsKz<31qTluv(bJ}Ei$z6KlA2KY>K93ltT7{R2vQ*q?8ZZ< zaL{~a)-E}xtZFE7E*Awu5!{#6Lcs}KX*i!ax6X!u&1^x@z$6~>q)^RT!n{p#zRf_U zI_d}H+iF(K5+aN=l|MMI8JLTynYqe@@QV+ord9SXg9x1vO9d9J|a}1{>B3jN!f`v*q0c2n>Z;6j2 zAW~GY@>T$`9HELOEl+;rGZR7=I4IP`2SPs?xhvtc6 zgC(!woNUbXTa?4@@cML4PZb)L2JfXaEVK1A%|3L|JtjgdpYG(M^Mn3?E5O33Fm@fR zl;8n~j&YtSyFI#I!jMGl*|1eVaZ*JkPt(z)seH&k9@*AI z`y6_JioPApr>9k9el z*PI#^Doj&nu^5QyAveFXKW+LWPOp-EK8Q zOuKLL1wD>u7TCK@^&oMtSD)pI9Z7j&)!yGDhdCXUT2;0dQr7fH+RVlB(k5$bO`)`b z1FZybj3k4?;{d(Y@EFG+n>f`2x*{a|$Y;>>E@q0{&OWB5B`A(+?{E)v|~kBOD` z_2s3*fI0<&XDi9o<}y>5va1BTjiMfb%WenP|FSESu}aol*;adtPdP0=_lc0 zJRHOJOWlHclxM@L-FNH4EKvd3=>{gcR;0#Y-YApgH1-!Imx5Pi$QZ!{^qG*0yT-(* zzh$Ek`54u9^4ur_3E>$BPKHo5*_xMfw6#8ZXt!dm1L}q|i%9}_+yHbBNlqE+F9(Nkp^o@g60K(uPmf7=p+=?TF*$7rJrq>uI-mgy;r z_Yu7VqjfA90(xw_{LZZHk_(WLm@8P~9HjP(vTD~lvn@u@0-wm7rzver~+fYCua&SDj+G>{@kptu&R7*VzEap@Sgj z_gw3UwN*|&{kY;dwr_@eO0en|opGS8CYL>y^N_+#t^LbOYTj}(1WfQr86E>*Iac6* z3-ypHIwD#=WO;FWhMQu>4N`&Bx9HaE6eWG9S8}L0)X+qQ?JDaDp{ zu#T^&wTFUYRPqQ?=;Ur(uZ`5NrXdA3Q4{@!;TG6c^urx}4J${9riQ4L17@HIRfK?@ z4}8`-`*+u+x?I?FOeIj{-|sKWLq#7f_1fV|lrH5L`FvLg4B4*wP+xR(|WaIDxF zH(jBjAO{hJ3C^P!Z2`^^(uJMLG~j7ud?6B9s3=#E**7AKC}}h z9=sg5O;G-d8_J}jxODM)RRo-*tSS1UuJ+?hsuPvYaU)A$R;}-=q|&uqAYh#~_G3D` zu}fwDG$H83tu_}w)YJxZkoN%fkYie52ukF7q3{vQWDA7m@-9`wv0fz$gI9QZ;Rj$kwlv|l zmjbnEy%8L){NhZ6Zl>y*MPN4&wTasU1Bv2L5$Y1MVDE8sCmZBxN|;Z1T2E7^Sr$B0 zMO{xrNk6-_j8V%>3r+k&*H1bfj=O|zvLfIbW%~skYwnQOS7`hJrMC{Us%r@nsw9@q zMW|ES328+aw38?r^-3vhDSdHr%fI{J0}C_8Q9kxv3K+%dE(hwA5lx1u4g=LrxhSz* z?U08QWOg{oerG4DfW$H-){3qIG}67nz9;{M?|qMD%{MG-z9Gc*8$w)($$S5Ec>gSI z9&}{Ng|N~m3@Ry7BQcBSC)&HGM2$*W_UIl|>g-NXo}42STfL4{(L@pOquz#4df1;F za1uPJ=EMR@cqdapFmVa`hRZItVB8pTmR7|AU|rmzyI|N<(4#Iuli0G~vgHi;Zw=e4 zi*kQRx0C&ib9eM2zB#F>-gj42yUU7_rQddN4l=+gz$3=UxudkQsYNBl)-5cQcv@AS zW0-O`NL40ziJb9j*OGlL!=)vRqS4MYTBZj3xpGoaB?)&a(IEwp(pF!qJy_XJEWmA` zP-9VWAGP9Ay-;r1wia0JJAU^nfZsx?D1s0a)8fq27jd z_yoEDNpJr(5CXe9mv=iB?{aL<1Qty_?QpCF8gg;JWCAzKI-Ew+l}j`v)nJX9VxG{-7VB#3F?fi)HHC;nK>m-v4Z4`e`0L*!IZjFam=X`~J zz=~!NuWO&|xsEg>Q_(uIRgY<`nb1c|!)}3)txi6n1O}{kd+)mnz?HOQ(JzzjdYzev z)}>Z?276Y?WZJADG&hqrgQO5nYreuj-vRF_OlS8PccaF9*==AF+?Dnef%`xOqF6{I zi>BVK;d=>HmgC5ifO6%dOXX=5$r4uwGYX)?zSg4kkVG($Go|%SYK^Iy|I^!-bkTc_ z!PUm^s{KDeza@I>1vJqHBd$=l-HMA^{oqQNCZT&9O9-{h9aN=czw6X?cMO{R^^+3_ z&^>MD?JL0ggv*(CWrNW1E_4s_#-z03!0BUqc%T}#^gcB9u1pf2OwJ$5mc40807L_< zp&G8RAYZj9?CTfCKP=oZyPABCKv~O}H^1bPcZiVR<*0vN?%QaS$9rGTACYNQav7Rh z=JALb;aEwMEpHyM6}92PZ{bFwjjR}&$v0zC7*g^6cmc;!7o1#GP4c0_`>Eq^QE5*V1-7Fb|9<-p%UT}5d^uMpC7srKDzoonhxH;gruP8NXIbtxhA z=C(0v2*3HILER(tG~7<0bP*Ef*j4t#&xNAhS5nHhM<_FbE^kO1cgQDjN#e%o9s+do=QiB^NGt{)`uZXGhixXar}9S3+E`iUkXuGk!3! z&7?FHyanhqJ`r{3axDd1~2tyykw?F*L4?Qe2>`TirR>g{^*a!55=!^!EI7rr66u}Lr`@PU^ zKi?G{me(kO(rsLr+}we1vQtjd6E-O^LMg!&MO9=W0$g1Oek%S1?7N-;B(xoS(Jq95 z+4y#W_zEx~m$s8EFj58=&{3&qc8O~8Ijqr8iH(kFQ#3)gGbrhS=Vkpe!f7`3LL3+$Wt&>Ii2Jj)1Imu9fRV#$Qad8(De@n*e>uS z-76`Z5$Dxw#lb4@-5p8g(~-MZIbZ`n$6E zTTvxq+205M!d*XgMyqTB;_NI1gc=E{~+3m$irGK&ffI`4DklO)uv0+>+o zftsA_Ks1Z;@~MozK$?MiCRa3E_}*M=e**B9P3$)yd0%rSJq*Z>Q>z%5AI|?Ik(Mys zvDuSKlIUo^%EiD7>u1-PhOdTm#L7s#avA`C#dwP zIaEk|UPr^WXNm4~(sYv>JmH+j;C$K_Ck!#vWe$%;B2sKm?fc` zewX+7l`S=N*XG!xyKqMvA<79ebj{+-fp%9ZM$9=CAWnW<3luFL?>2LLCtbFU-iDV$ zSPogG=ncfxaZhNG1-=6+XWP^DtqSqp zdZt$dX0@AZYemLPe)8?Jx6hs02Qb3>&w&hnKhKY(nEbs27q|ew{}y)=Xui69`;W+x|KaURx%l$( z3M@%^xB3CfbO1s!_XPx}ll(vd3|BbX=rs%|wkh*RSV4MD3?r+Iet zD}Yq{#wNP_PyI#NhAHLaAORQYE1NcOF=ABe1IynPKt<*P+WAB9#1)(a8KKm{&tk|V zS=v0I)NQEbx4?lz+p)5=?U1gkr7H?qM}SEHyr{A;+2L&}A&fR+0#~|L;h=v(D*f4Z zbj)O_KEn0Vw$Z&??&|r8%?m^eHG-5jo-XD0S}$CR)q8!pNfDP33PqI72aSQW54+v1 z9hx?iZqj~t1 z_B{BP3|GZ$kK?65p>LGmE!4%?Hfs;`6b%mnBU{jd{N3B1{@3tVf5Tn%dHBnJ)$2ng zU^dtHd8&uiViV~nW|YtZN71h8~`IbFHZ2|2$X~;oJ~6Q(zUWpZL{p5EH792bsxh6t`J1LtG=ST z$Xq+9cW*XJPfohtNta-G#C}s*!v))=iU!=SfVRC#J&Q?`iuY#iUZ5y?I(=7hd3ITt zPHOuVIZ|rxEJW)w^N~IA&PIL93$9 z&7&QLBytcnJAs4y9Fmc6+Dy+7tIFlAA%W0z`QTY5Z~PB=IJ559C-5;HIaOP8cDQ2c zD$$o2uS8q2*)ds;5Y8$2K<~DyP)qfbs?>s^(fJc_1#`sJEXN=D?T1dUux=wy9yAM1 z8Rb$p3H3yL{=E0{dLj6(FfHq1!ZCQg6BwlyH<8qWEJiq@R>(3XgKXO%HJ#lo%*luD zG`AmW#L&n(X;6(B3Li!E1lggL*Z7#0ns*qg0wo03LfBys_p~uj9`}8x#!F~_B|{XW zYV~k|rWsM&x@SrR`nY2=Wz|Ga;!c=ED9Q$G@2z_#BC%sN>9AO8nB;GA_uwDn)Jq7=BQtR9+@O$bVLqF@xHD* ztiiekX2!c`z*4kO-$m+G$+af!v()g3m0%((dB{eOnvoDd6(L1gqSXsQF^&h35K*|Z z)Md-cUpu{s2E?i#C))i4T!GX$B|lkJz6bLfvSN_{_G!=B)i9vfkO&}B+u_YM zlq(W0(H?Qo%X;ssj7sWyJWCe_dju-rtq_pxN|iv)ohk$MP`pBdaXs&ayjP|Hf@BiM zE~h9U1G7Sv?rlP@yiz&Y9lC?v(JbT|icK|IkrB zXInYPiGec!Er!pDEe(}|qIbel1|@+hI%v<;_aJZG71%a;dM%CyYMnuoml=8wx2f1y zS&*$yLQ~e6uN%dJsf*QT09BOTc)4TrZG}}UhmCyiE3V%3!E_@sHfqy!5=QJyC?yxA zb4mWpCD|Qy1ZM#po=OuHk*?wBljYT=mih|4@x|wJ)f|qg@#2LPGaC3BfC3TXL@tVp zvJD}{weg_=x?BXIs=Z?mh9PBE(D5zn5{0_O^RV`*n^CqHNpl>eBQ$7`=b8ud&?e`*hSm z(mq}M^Vt!!p*cG>i1wwJO#XnNyF20<(@QN|;K9TyX!|H4PY~=W=nMpzyCN^96~arI z&m0jvWleRLWtRhRCX=n%jW4R+DVYp817t=K7IaQO@*SSl(TQAtdDYibKQ?*vSVH#y za`rB}vK&{I;5@##(T1x0R zsztbsyXZ4)d_J%%z*0^RO_%fbT0+0Ny*+^b4~U3z!WG=v0eW_hLzSQ53T=FGuX;+xzVJBkoJHrn9a;@&;R`O;KJw>lL5=73lyNjE2qG4@v> zwh}6j-1-oG4sP5Np%?@?S4dZKdmn_Aub?!5{AfMQAN}Y@;UCOg<-f7*_)Pt-vigwH z&^DvgEfki$H|qUTAriv#mdFBiL!Ye6az~; z+3GGxO)^8117y|qICXnQa0lU?mtVQt2*%airgfNrgiXr2rR$?4E7tpOT6qqW<5Q3j zxH}OtGLoU>@p3MwSUIT=(I1JBJwD4RXoJ9;`l}n*D)j74U6T^-8hJo!#sxB=?po zUYqxTs?SKiU~N*_PVd&n2O07*GX$wv37sA7X#i#j=j`b=+$CSJmcHC(b3xLRJsdn= zfCcCqwKXyLS18VkGPpxX;J#(6@28a7RPS*a5fpN`&3z#EXav?>uX^wn*8p~yQaral9 z0mizLXaQvzM8Yam>=de{la1AGVMq95bmtNt@VocJOy&0NU$ie|mzUkINY$cqz0=Te z5Fo~e^EHE-O1!?uN~c{gmcqx{PW}%0*$3eIDRW8glCK#Q2^&!vw~?je4FsI0T~^AJ zytRNvtj=+zMsh@pDW5h_vB|MSo$e?)fRm%dBx-@c{>&%_gVH4xr*bHuu-&UW${;)S zsI;NlGzYWNuuzsmp4d6kjJrM!Ht;nx;EKDX zBWS`leN^?$JhKO1__k_>7h;At_!7o2=y!PmXUpub2zL5#fA>o|YX9c-yF5P1z`fLDX|#$@l=;MH%4B5?z;PSy|`+dE2d1RAP6z?%D1Pr{kJW0}hH$ZIIbg zE76)IHVHDe!~ny4o)ck-HOd3JnIF(Qz#(aIGv;oW&v@~|%vI19n}(K669X+7xE69r z*7F7zKy_x+7O+M()>QQw#V&@XphyJM#!@ySduFj~4q_jj@+NFycG)7Em5>}#mqt=3 zh$yq4lW9YJcGs3e(7NTabf$8xoCDh)C8%!k8AyOtt1pJC>#)m~$>Dv%`Qt)ZP?Z`b z3L%_>43RfRa*s|acrqNUVE};oi0p|Ax@Kr=XAKC}M-UdYTbxu19LJjEkfUPmDP2>m z)S~SQbt!IeL8|tYUgVbqrOl3V*?ULS^%(;b`1)cPZ597rTVR`SEAUEN@G&hR0{@R) z)Bj1`v7dz3pXRF{L*)Bk-+rbFsccl&;roBVTha5uRfW^?Wp|zwa@!5}9W}dvu?)Iq zay9Q7X>D_GDH=`KYkp*hIol0@>NMp*$p~m&8pdwYSWn8`IOrd~8-(VgWw=4UWZ1~s z8b&DUhv$Lbh~`0QL!{xdJEltpYt1sL{4a*C1W6d8Tm|5+T`HTkL({N}EdATCd+R#h z$bfgJ_Ryeil^HNvMb~Dlz1mJesZb<(I^G=J=Bi$H>f9{>CoC1`!a3^=oj?%B>sW2n zg&LiEazh6Oe<-y5bV^^k-YP~jdHo~215Hsy9iT`-=_jUsQa&IRiPsr1IK(Rn4YSS=!E>uADRu1$VCH{)0hXW}xB4Z5IIMbYJgf=J! zPg3;1J9GEIXeV*+l-oh1MIBk7ts&)D!Oeta>U1abxm$*48JZj`)I656ZiL3!?z2m{e7CB9AmLme;m=Y2!|imr~oGFQj%Ka&9TF?{SlfBo?LU&?>~ zz%cZOx1Z<0^jm$AKmVaU!ewGs`+&PVZR@*XXDCevRMJDK^BjKK235^IRxMrDV;Hpd zX9F2%JeN9dl~3hVG|8$Yr^SbcBUy}|_~{u2b>Y4abVYr@-gdDF2Ul^4ZfB<$?tTb% z0LV>$!QQv%CWrh@>JyI9h9}}iQ?PwEL|1n1A9R`O(J9JTuzkj)sg_NyY6g$Mj9k+bWRRC#`i?xeksZ~Qp89f)E#xcZ`VXM_5y zk_q#uS4nlOh5>rEUIGkV8qXqX=<3)pfTktFD*pKdjpmRT?pl{Ws3gZGM&gFwrCe>P zUvL~VSy6d@?_Pm-1&SIV`3eh>oZ%*^kjW4ZN`vz*0NfDTM$wDIZdQtzcry<=ph%9| zsBjG#**1{J^t8QPx$x*YEe}|Vb4z0-Lzy9&< z!~ee@!~f_X_V51t@cP02>Z`X8_%ZzO4aYxyeN=IV9jT3;)u!8vC&1rwa)v`oN(`IZ zERZj_Ko`qFknl~$ zSnSA)ZC1H*ITeZ<^IHiH@@bff+c#4e_^jG&GA;eEu^->pK%3v0vU-D1?uq2ThC1tc zC_~1PLtcm(p1Pq1;GNhEB!a&6C0bV%+xhJd&1&Iq1VwHiAa#gPJ4)jww{P9eYasg+ zH|DK3;93n%m|oDN>WLeMh^jUAFk^x`aY3p~5$Z*D;XSapQb9-$g$X8k5Tnpe3>z^j zB#OQ)BX|iB0LIcMyUu{Er)uw?6*#GOk$Tm}Vw(-*E)ZhR2dnwKF=w~wvdAx8VtXC`%c2%$Kmzc)A#@K`Wx#AZBaFkW>YwL2?h{( zG~my~12gKrceB<&7}AnuZmp@_(92HJO;c3v&)#mBsHiiqD#)T5`17)Ah0qQ@V7)bR zsL0kR<<@9Q)k@4H5)bMQ)o@36yEXd+QO(E{kYdTH1RzK3jB=Xg3yDGmGod@4)$4}J zZHz`GJP$&Y z4dF^9#Z;qOvRzVOsdLB3qi|KOwQ!K%pv@KE9rE{BcMZP7ayZ-$V-Km`V7+8#MCQdy zNU(^OP)h9*&vi=tI*CWKBq?TQ21tWi{gvJek7~o9q7Nm7@;dgw)TV~|EvWKl4n-x; zh{*YNFy9M04Ef7aqhrb?Stu`G*h~k8-oa858s8H=Mc(QoEqP#yC7!VF;2(|%2ytQR zyP&~vRy*k&)YJ*PP1^qhelov1K$wFZ5+JG2#w?AnIZCAnR*AllYr85;?F2x**ls<- zqDeNYaB%O_Ow~Mc!9}?Ng?;5&>azTM!654Y0lMKg;q`OboMmzp@I&s!7)KTVF$B`2 z0M&^(XEhMnm;D6GY&ftRWuQk8xpgE4ai9tHHt&_!80nNlwda}ueYhz>@t$Tv4p`G* zxl_iz0!_JkiG>Wa(Y-HUYh9J0-RwsLLr?FFq&zVTNx)J+ zO3teM&9D0@03nIeS1Jl-boS^->)2aGoIyW-r$|(T#2Y6GRBTc~q1((Z`Bn~h_-za`Wlm9BN)cK2bD`o_&8!9H z;4R-mtrv01XoVS?`=M=FIUZ0#$$7XPX8T2Qw`QP!D)q~CU@dCZBmChEJJ-oeB%tj* zABAZQ0Co~bO&0MSF)~H|%S2V3@sfVrZ5Lx(td8qKb1@J?5LMeuFaKjO39{eo%kO^< z3G6J$m$Ss&Ri3?ZhH-baB@P3-J5@^7>Qm zd!{1Ll(7xo_>`-G{VxSQy8%j?h63mp^ib%sO^7}DZX2LXC3ikY#^ta$`lY4zoF8RTQi~j*f|sy|Wi$c~#@e z{d3Ffu$o|P-j2Da`Z4v6Kl68AKXgY$7>54x?T_K@J9K@1{rYox_0ikMk{*8wnWwi; zmrJQ2e|vgJU9rvsq4zDwu^Y;~4rO6#2_S~h>YTh&3|)*I z&eqDtL~E$))3PQ+tze|Oym<$RqA}R2!O@O}o$*Kug>5BnN4bl#?=T+C`*47?I3MCv zH%}L3mjtDkqd~G7WXbeSfQ13fh8rS7`!HJMEC3WDNK{gnqu^e950m+dCL~%8(!ITx ztYJ>jB@&VE$v_&q1#lk7>d!njj{TntCzBYF>y5U1Y^ZF`v8Gnaif|Xt= zTuo!OoDE-BA~9$GgzH%z7A40pQ3=!{DOLoect@{f4*h!I6xXr6D1g29{y%K^2*izj z282?(3*$Ux+yJT?_)(5_j_HBm;DW9ovM#kvb6n1Dw)3mJ+Jc=yz(s&SPK^KxMY-B?3qfN@}h+GI8P>z!Pt)a$gQO!>dM1H(;m-gL$RTiK&b>>=k{ zts@!8Nsd5Ok>oPV@B%&rbIJ z*Mk`##{W!;JCv_b`aURo$e*UQhx;DMPmfwlv6=s#E85LXS(-W!pIZ_rmg6pgd;>a^IE;uj^*8>lp zKwcBk-1B--PeY`0VD2C%O5bK|Y{_yFx=T<)ook7!lF3M}ax(w}z^4&t zg}ZE!y&*iSqlAyj=IDkD>Qb1+3C5LLF;Hb1EgMJk20SY^&O>E%iB;|u+&JDajP)joz}g$|1Bz;_))c{(V&?7J*N zQiEULLepEDPxewC+9I_Ql{aH`h1wk&0@ZgwY9sdC#_*{9H}LKQUXgfLAD#PuD_mr&d3bF|&3 zNwVxbN5`KvPkT7g0lDbZP}lVnI`e#-rCom)@`sG1_yCit@cL8mpgsZN_80R1Z%*I; zm@<`*Bu|jTW#n)YwJr|BbKd2mP$Lu(BdJ3Ru>5Bp_W%bqE&vPA1xk8ay<%$>s@~xb zdhRG|wokAmk{V3CQ3cak;-k9)DyPy3vv*aG%P-;$*{)tgxdj9?w*rvumWPW+^%j+m z*>mf$3B>0P<2cM&Psz5Js^3$1HFVZ~OJ!gMD?e{h%Lyox%}FAtQNPf6ddOY?V~8U5 z{XML$TB4UpepjPTHKnq|^J?D4?2_x9#d>u?9?6W(+IY40rS{w8V3qYtR4G(ZFyBEr zphe@mm7}B?je%W`yi{)`YfxjR*EZOakAX2u@+2OHa_Rgw5F-KR--JK@OtKxGPx$H`Y6$orMhCE}G`um0 zfHASF9x_3cc9N2h>p0@>jPoY-EC)83IM06u>};YspiUdOJZ*wx)c7yoezm{*+t;r- zaQY&@Dpv^q{q-*x8h`kna^<>Y{nw6JW;T9h>aZ#X!!3)zKen>IM$@g@@vAk+ z2ulW|!kont8s)SVzOhi^cP?o?XF`c0^e72?+xCtU)CBuNA{c(dS)m+xpE*xTGdBzh zHJWu^!Y{x`552>iRx}ojVHC5hQhpK6?FqhghEWG^mwgq8yS6~=0im;aI;LFllI5L* zq^pWTVep&0Y7gaLGD!x(zgVL_@Jrge4| z*X-yQ23fII%H#zseX3)JA6{bVc~ z)vUB#*;LK$qF2W02CZ3FovAaIoHixrtO$S6>9p;jwQbSBJJ{C4H98R*)%aLk0(~fb z+yoGf6)MnjcA<$-vzm-jH>wMkA5fGee_xvX@Wu~6=CAtv?VGpX8U{nvmS4YAiJI46 zpEhK@&wVdRQDqQ|+GYTc^Z+KF)|2v}RXg3#PFWFomsV9lo6avU>JsqSN95RCI_Nyj z_dzmzYAfFw^(>%TA&4DXnAhvF`|ZX_DYv^Cz#PMEmQXf1^W7E~HvF{fLF_EyDIT1N zMtI1X1>@=!T?er^%WBm^ps%PD(^}&PI&vyn3n^#2==v~nSn9xR zp$3*L-)gWnRW^UO%Nyj7Bm+3z;4@4$n5Nt<=p|pU7I{M&hFrxb`1c*5D*Jw@*V*wS zIecq2aJt}#K$}YrA?tEOA#I?Pp<0!l(ppHp#7RQ_CkY+-7cZu!YcQ{dC1vA;)KH776Hpi4lzR|eD{Nh^Ru@PBsRIm|2N?+Q(eFRX^_-#L)0{<3a%_r?AoU3!K0(z>|g2v6Y<49>^wcB}gsB zEh|jSfTQjT6YP+ng-pYlaAS!i@p#j!2mpD%7dy|jeySn*rMDPnv-899bMQcbuHRPTQ3%O z8ucQx?^|{a^1F@kMUf1){M`{r>gb0;!|bR7LE9tV8NL2z@;!ha(d=^jhAoqXV4f}E zi;k@Zdoz}FA(I{7TW?Q-!FL(7@JAx@Brb%vZy`|&{B>S6kLD#R#&NVT-;$EzibD!GIkqsl=ng(h!3%{oBt zaZIj9+ec4Nb*gIXQwg6^pI%7l>jP6MIdMYGkw`&(QY~n_VnbXEP*Lm)min-MJxO7V z-j~yK+NfAf+VDc1ie+`T%PgoLv-h%K%Q3}@%`6N~25_?50rSQZPOb`*QH29rM=%;< zH@r+2jEtNm4)H(A9Gh{(xO;q&*Em$!K`R0h{gBW}>E5CLdroneD1jCM zlbWoQ<>Lqtch1Ohl;m@kLeQIFlMZ%f9K2k!7gTQfy3Jaxch@Edq)ZN7k8rb^BikkY z<)COFTdUoH=D|^}a;FwL`{?x`x+8Nm@I{=tR58@UP>!UT86-;n~u--&?Dv&{Er{l#M z9(Ypy`1lh=gh6u#IdYPcp+RPi%jr5m4VYrM*GTP1s7(&`EoBiS9t{>KI&d^j@WokO z{vPAQxruuRdcl^hs!c^&(N$E6MS4lfm^S^^QlSt`Zs4;3GeFG0nx0fwkg5UwEwqW) z(=SzobFO6{+uKzU0m?8wV9!8w+7FZ+70sDZLD8}($L0~1IVd2Bety~aHDBWt z^~ubjDWP)So$`(oHDWV%T7nW0-Wu_vag6xw2g)N6>in~}1|Tkmyw0NjO)|ExfzQf| z0ABGc^R~y13kN==IW_W~=xfw5)2QJz+w>n6h#i$OQWeDIKH+Idlx_~bWVTuMnYM!*(v8;|8kHgKp#6?Aa>QM zxjk<(0<;k}Zeb-kw!n5g{nI~%e>iN$*FSJGIw|AB@Ynwg%uKZ#!#`4T?!ZG!HB0;2 zy?n-fs%cbTvQ-e`m}e&$d05LHgueiOl<6q_ zi+RiF`xLr%)~be%R<#d5lZk;~ab9v|b6`5$jDsZKTw;PVbI-%BYYizMTX{n!O6C{x ztHV`JAxx)paJ@KyWBF@Iu67`B{OCvjhCh&(o0{XjuZ_AP*yiu}5^8T#KcMpg=cvs( z>>#WTXhJ^lFw4|Xld z3~+JO+M1qukXgCOdm0zByO%enB$}-X<;puiDf6wn6Uzz!Jm1)G z_?FQ@1?komQUO~$vS3Qh3-e;cObd#T)$c>Z}dDJFzZPg84QU z&@^|AuX%%+O3u{pY6DoI2j7OVg>Ypl$5@1f81>2hCS(e6|dxZB+6Lls%iNJ6f#5JkqkwGYkpX z2$R3_Fn0tVb8d-&rkg+ha$pY(E{Wb34 zY5?O)xSy6eyxbXYWT$VkPsd1}IFv6X=p;OHHyOh0YE8o>sCTHHxe|foFwXn}Zr+H2 z6EtyTJ&QMkN1{%UvY>BXg5c=m# z+PYItvdwK;I||LErU?ozKU}ZDP zY>k8sFc=!VK*)`c3OcKKx2~w+9$NUtxWjYsLFXnbtXKVCC-g|&wYMU&S+f-> z5@4{mllg|)C70tl^-n#Eo~rUNH(j@@plAh{RZkQgbwc0L{XnB?tJua4?61L@HStsa zefZx!I=_Ar-u{ej`rYfNYoSs*DtkVuA86kQMGp<3hYBf7c1h z)pjYngzyu|e#}RPGM57+LfBIPP=2;jSLK(bNbK&E+d@lik*Cu^JXo>}$OfY>S<*=n zz-n}Wq*8vGA#?yY%vVXlDg^EvK$f!LD>njdm0jj&kK6Xpv;W|W45i|py3UB0u{(2b zEudK2ZONfeoCzgTs8ci;~9cFy6CP zeNuIT9RXQjnxT$fZf%GriD@SlgDQpuuURtsO-l&ad4_nQz{Cp8zlOX|uzb#&n$mho zjt;_;t-XVyI}piU;RPa#p${PeEZ!O?$%2q42b9gB`)&2Ayn<_n7R1L7M$nkUx+8(sMvfhvryS}UZ_V7qtn#(|z^a5Mz z2PL=~D97zEQ%Q->wpC{Jom%oU!ZO1d8yqu)DS^&^F0i z3(#q9O~HJMRlPdu55~v~g}0z^;q0$bT?=eGtBE6~=sAMIhZcGdNA-$sgOHQ$+<8{k zys3Bq#;P8qG*VN<%z};|{t64Fia%x$UEx<@oCI0-u%qlH|KRut_G;6EyeVK9JQB7V zKZsfFZ`)ZaHd%aR%|Xy6V2sC6CqNHuqe!gnp^pTGV5J1QhOyc^R`!A$`nro@YkLL! z#Wt?qVi~;AxZ3GoCv7D$y{#4B?_CxywoJm6d~TC;S0Xt~vzaJ^dV6lv2WKKIP#FsD z{D@_;oRZQ8t^7`5C6_|}Ng^_>e$egr`JUW|4Q+oL-xr(u+vaO+CRA}(qv&Tv%MhZA z47_1w49TTE%!B{MK{E8Y9n+O@7Z1!2;E!UB|6y%C!b$kw{i-$M%gyi{UgiDl_)zYP zUH8jA4$VotjsA42xdP2gqt+@G?_ulk_Pg-*-SGtZj()1|i&Fgczwl%J*N@N zrm#7l0@+AfE@~BDC))N2t0#%Z`A~l+VUm~&JW_XOZ8y1Fmbo9GfrQm|IQnO1)#;(1 zEcvvK-WIp?$U94$^(~#~Zm8!0=R@Dbe12E;la~5aqEE}!eg(0J+OId#V;aRJD{u@z zM#f?|s9xmPuv1qRAuStjDi{GR1dyu(>ds2aP*tQE++z)ZhPE%Uy$%{gm)1NpFKPhX z$;UQO_w)i6Os%o=o&s!yqOh~tTKc>@BN!?jiGha{lv`&T13aUo{ZP!(oWD_SyR+X} z;vXRy&{RdxXVB~@fF4^|tWuH*V|f~$I{x5?f-6Rj`~3A22&sJj_6tJ#Fth$V53oPy zTK_7%W{to{LothomdAE^b7eEhB5VufU^qc~MndMQ-iJg#%kwt$Z# zYQnKh%nX#;G#r&4W>qMTW1k513nr~UH!W=F;#rEI86t~pV9kYF8iN#4;_PK z%N5kKlfT~`*VzELA5;=0FjDRR9@HLnf!j}<)fF{PvOO<8QiHg@d`{PBTIxuGF1f`~ zr;F58nJ}Um;^Z(ZWd(Y53RE|uo{rVwerQlAh&hcE#;sxgQ}QNhv*5utX(dNvto@Nx z>s7vo?W;+v+oer_04|dr7L|i||H5D~# z)CA#yWwl)cy`;IAl7|;Lk*J;o?Q0Im&wxNdDnj-gyx;As(fgnVr&E<7A*)!EU=t?f zc1UO~*RA?30^Jtxk=7~^fj@PSL}S}S)zBYG=Cl2BPwfD6Cl+P*h-$@-XvtwZ`MJZU z=&0qCsg0129l8Vk8c<|Fg$8#ChTw~wbT>+yX{&qQLdR@&J@^95&5KJM)pEuUEJJ&s zc$*moDWvF$R0ntceTw?nObzwSFkD+(Ekg^k5QD1j6wF$|Qkw6x64VGQyeRC;kRH7< zVId?jK;614G|aeBJ%&H@l^RsC%;2!YEnwvLaQij*k;<3=1~0dKMQpyZ9k1o1l)}shr#3 zY(kih0dtb47zJ9Btl`$Mdj-f*HjGl7x?lIm+UE=y8I%0;x<|Fl`qu8WDvir0fvsw> zXNtSAp8CT$(5j$!Dn<+IDWb^>!l2nkmK?MtS+*B-AEhD=L_8-*o0>ns9ablnHcAe; z66f04h+Co@9kR0u3WpE)%UMqK>g1aMxj-o9!c_FAw-upE)Vtbicv5g5_GSDTF#TlZ z+PTeew}y4iM!9)CK)4qjZdMoSD-b)_O~AmtC%zi-vbQCFi;}7lv2=wPwXKvZDkyd) zHaWj~6=BU@-BMW^52?%j`(tw)-cVb(>c{BPZ?#&h*n|!6^?}&QdY9Qk0cxBFlg{&F z_kzDx{@x21#E-_NJ(5Wc>i2A`quiy@;77FUY(vh@`r7~o&U-jNuZpn@Pm1;cO5`O2 za9i9Q22xd{O;2p@O%{)pj7q+*ZES0?e?WBg=da&}w+~KFuSqv}KiQ-$DQ&PvUu5Qi zEyr<;Jog{9DhXTGeh*b%jmo?`ig2Us^CWXo7acz(bvo|iYx9a3_zp4!c7oi~8Mc>k zH^bHGzbz>Yb%~goz!PhEC{GAegxw{HZ3hh41SqKW_vEf`SQB<|u5#dR9dOx!Mf8X^ z`VuK@59SycHN#S0R;oxw%`NbG3aq|q^FrH2b>`+Sg(}SlGrJEHoMO8u2V+p z-YJe-N=5nRgL?s9WJ&d>C^2gclCjz1hlOr40ed@xy!0NE@Au*L*GHS$Lzgc%`GWF} zzR2vO{5c=IefRbWXYHW)z5VvIL4aeT!3=OQh6jB}{b+qob)63Mo|2q*WbBe>FGm#B zxh+Qifxk;F!k8OiogVO&K+>etN zIe;pi#s*3^5Q-k5YGxC2Vt`GSAzuR|Y|4`INU>X~{G41~Qj!KBl3n(E4p+sNgo;CR z(6G_Pwk{ux;9P_m6YoX|y6902Eh-TgEz*bdOe6C=-yQR_Ef(D|iWe7%JmQP<)BX`QGm3FDll3O4WFyJ%)G-k);mk#J zJYa~hiL4`7mGW#T)qimaZ$`UIC@!el(2bKCLZjg}pmCYEQSQ31k5k4D-|^x`9!KF` z#Jsh4+cjXv)HTtII3nIU`~Hj^ZU-^$ed-uEGCc#A!jl_&YCwMg=ziENO`8)q zM6?L zCYdt+QVca$&z=>{L~8u7wn(27w6lOJppX_?uNDZCt>_ul139N$Slw@{I&-SPKz<2+ zs07a!DsdHne*5o^3EKz;=|n5UwW@&iw}>_kQrrPw=$Ww;^77wX+M8!%Y`Y8;H?&x0 zQIXmTpoqo4&3)bbK`CWB&bp5o3e~Jg=^qW@dK$a8ZFfkbGMO zm~#4XX?pw?Ht?3M4BVUK0gf(A@6>%+?qHd+^-CMGOk_u6W6Ln8uu7_uGa;aEQ?fU#TnT$enBK3Ci((2fRGyz3y2PH zCcvKVfDl9#ST)0GDxFL(F@8AdEnYmnsDSI8E;i_=t=5hh6vq*UhsiSZ68UXa*1@nh zUDkgk6sJRWc8TkY#fDBw%7LAEXt1LF@q*E@7Z0~a4oL-Xw9R5uRv<`$6!W?*p^Jgk zwej(;JksWdHk+lFw}9~H-c4p)HZPuvW4p7-0qR)=YiHLK*VbYuE41BV!YIDHZ``Hn zxhqc>xbsK^IL(CO7Y0E2B?xp$g?{FRmf(^~IUqG6WNjSTq(CiO$sqD4{8RY%|J&(5 zgunlHd3B+r`B>o#xs3TbbQ-hhj4|`jXIc|# z1_S@08mR+f5}!hlN^H zpwU1s>VlTj!Ab2ROY1mw3`GKXj?}%lD0INWqTfOUZa36|?LjKxKyPQ!WH zu`rdaf>uWa(%HD*}~z)-}XL<~_>K%PIw$ z>2JyzQZ;nF?0pj0XWF0YEy%6~38)b!kJW@Q#3_lEXD#l^lnI4r63i0eS-Ve~DVT~?~d z;}aJ~8>FtW>#I%qiaU zuit(zpZfc^KjOcyU**Gi1}+nY>C+y@*4gY@cE3*!Ho{IHT29ZNhe}b3*pOW6<$)z@ z=QoYH#I+=Hm1gbjdFS0|Dk|FmJ=Z(TS&Ux{BxBcMhtJ6SkY528EeI-%w*;DlK2X+3k@60$Tn zN$90o!Yr1JX>^Wzl{}RqQpK&D=>hbV(tPZwIFuur!xMjZc5x&rtbm|irIvGUmhu=B z=l}_8AmsBuXu~eww0{@A|7Y9WdQ5y9jz`E>M&tSl`VK#M;}{{yLw|Ey%x}WmXDa+a z=)Y8LqtRP?za3IX_s~Zv>W0EO3$QB%u)sd%Q;G*0U{KJ^dvOcp9lO+NFml}#)Tx?p zOytma;k*}Z5)!toWS(8~2MUs7_7yu1FmgTmkdLypp+6yu=f*cw!In#5?C3}iu4g>V zhp5++^^zu#E>i!_-<0r0Je>kmxI1A|H9QDV?jriX)VbPvmT?jgt_?K@TX<0Vm>*Kz zL$4sxO%l?jVR3N}Y%ojKfn|cz;|dFgd$J@$`BUzk)UVU5+TZ!#@>qySEO|Of{-@Sr zlyK1cz;;}gdbE*fT4e{RYwTenk4a9w;RCG)lZx2GN^o~=CY8xHkx+71cm;90&-L6B}bC7?I8MY8|-{On3Dq#fvn^(;J~al zUI%p=KM2fys}k;+82+b_iBU&Kh0V>TkN6hw;P_^m!oN!5w6!T|mc9&Nyc=y4AR% z$G~3fcUmIqIH~X0o(l8ob6TwCi^`!c&ElkQl}*|~We^azYbj7sLAM!=T{kp88Qn8R zY9O$c){<=`AS!G=0=CU?>Q@Lo5NrUVEpZ2Oqo2=pvU9DMUwdV+D}nM-jYwd@SFZHg zW`{TRwDlqA*tF{MB9$qJGuL5OAtOR!fh&@V1S-{Z=>sbTG_+~QVJ^F0M?Jto^gxwR zegoiniTnltScolQv`d#r}Dfn#z+3+-Bw zo-Sc9%NfD8Jimvig|Qii#6BXOTy_(2Y(%+{&=aC2uw&%2Ef__&aL);=?ix&R8Sf^w zO#zhp#%PDlENPv5t8L^AHA=?I(o5C2UTjC98M-+&VqUINY9zNv0kVePCJQiD7O-~T zSG6jajJh7i9NGE?n6tRjElDcLo-RUCR@%Lr zF}sG^QKu9F0?|~!mrBQwOet;|X{Iqrc8&ciG20kY3;L31(*>n3T8$Xg%)B?Zl>u2#h#O!^EdD@5?4unFtDLho z<$|g=RoNRQi(80`?E+I7%|^$@l98$jXYS`owS`CtRs-kDs=}oCAO<%oKpWZ;=u290 zB%LmDTRp_7c@WNP3wSN$e_K1eOF(~j2Tkbz%1#@?qs;i}rsKdB0z%C7uwNRm1gBsF zh%72>a*_F+jw%f5soF}mSn720eb18Lz5bpsqn!5rnvD@-{eJ$}e|DO|Pu@PEq&LPe z8BF|aN)|K^RJp0WG?bu_TBDHC~pie!vRT-%n?C* zxF`jI4HPV8t|a(c+Eu@cQRJ_)9X}1Ajb#q6zVU8F?}GY6*b_Ivb}_G>QPYE+Gd!#WCuti zf1i=#G3RvoyrEOFKZi^;I=?3GU9EDe-Rx|w)-X_IZ_=4Qd#@FAdH9=F(51AB41RZ> z>|Y=X#>V*NA{ipwE1OA`E_Kpobv`D#Eu$%frWky%dX`hEO*|tomg(XWhamJh=|~<) z$7rOZPD=}Gh@O(pW4biZWFcC5xVo95S6n!bz4AOO_nV9O~~p1S2{Y>!mr5?8ft`*;M2RZC!N0BnT}yvz?49S1_}vLM;6!LQUGEqMi8pV4aR*$kuCLJw*}DeObMoh%aldFGRf{l zPlf7!iU*d!rp7a+%0;+mpGqU|wBe$~T}{ELD?9|q3@o(mq-K5`E2#d!nYbg+qDX`o zlqO>PJ35dshx>dfL3!a->N#D_EsVSDCL4rltIz(?57_6>z&Duf(WZr{>`KvatpTE~ zYXn8tv%eoyxMeq8xk<9A8^aGaO+j=ElzRG}dq%RJQ|5k1^=9WGh&|@L9yM#w*arQL zp#!-`KcK6iTll2qxWWhX7ASz$I`z+iiH4?xlDt79@erXgX^k|5kpm`Cj|s@PylvKI zI;eDk&T~$+9QnP+#W>s3>+1eg$|$H$cN;3F$@h zMu3ADFSVHSPWJ_m&zdN$=XWI%d?MCBttWN>te@D@^h5zc6;<>gfntSr(GCa|YpTW!oeFUc9%W1i+J=8|YR) z>ChT4B!VLJS%{*#%y09s_?ygi|3ZV{Fh;wZFRUJ3q;fWNs}wnAAOj-`&L$tbFq-6- z?@sGEuyT_c7Is?RTLQqx6y+7$z?OhETkdYGep5#*7|kvNkQs~<3-0bXk}Z!$E@oa9 z{nn}3;zf->Tk`>(r!ZO|8+4K|_eu4Upc-b|y4`Jbp=wXC5GXezWI{m$K_{`f_@99a z(~7%w8V49b;vm(tTf#NxF_1O7KJowqhO^O)r-2N51Gmw$S zCdu2iRljYE7pcF>#wXMfYS(9}vLLOBSV)0d)XvEZPQHQ5Mnf5gX+1G(sj*69y_N|vd)2gOh3+oU4W zbY`#??UFku+}NSd-chhxIAv2?2c1u0b$MG^p(o37R+$Gp)g?CmtR@`Y0|LvaPCSg@FrFm{B z%eJ`W`oI)j;w6>`^`GKPcp)HNvf*tY(Nz*UxV3u1+A2yDlW%*YL<@AC3d**1fp{7@ z%u5Uc#@g+opL@iI7=(EYRLc%C(khbB;7YCJ&@O67ZI}GeovaWHF?KJVFeqPGs0moP z7WO}uI+ipOt`;@XovSoo31nB}EY>BYEEu0%u zk1*bZHcg-hJ@}m8xca~j5xtEjZV7y>oVo98Q>nikn=dF${Q4|OWC5mszWaX{{&wFb zU%k=Q>GgyB?*IGxsr>(U^8ep_|C6`R_nylJPdOXbOKN6E(1zye+MXU{<^suRqb3D4 za!#NQVRENWm@I}D>wMlcgSR>{OJDf>9j!GBZ|9{2P}v3BhcPThU7A}JbfB+O3%3#W zXQY&QG(-eS1?rOPYDzEh-mYV|W45q_fexFlaHcuu{W1=U6y&zUFsfq4t6NVsek@~M zsdd*6_W`Aen@X6x;SP93w^DxX7uz};!jD5%0Yz+AH8mrC3j%}`a%q!oQcw)z%?Xo$ zkl9q@I`k3TF1gQ~K~Mu*s0<3fbD?1HW#T5z2f*k_UM*cX7;N~zQCfOD=5C?{EflKgXx+#Ew+(ufvm zXC%i3Gr4{jK_XYmr+V?4W%TDmNTA8!XWR(iSo85WkU{#yG2olxAM_wsntfjDI8w;O zmFKtE+J%Gzo_Cpu=?W&Og+)9U1LYDVZZw|VtKo*6r)ylOlea(~*|vi+y%6~&0e8!J zuplix?6uVZ*^_-M$WEh5lH5wVmk$86b(qBE*O;pmJSn79yA8Ya(R{!UsXjBt>-2OS zrCQ?NC?KtW0?U^Xp-+#TAwnREx}Up6eTR7}v5{!W8-Agc#a9!Z)v3Vg#XboRLa5r8m8@O)ohPS>++-IlF+)%T3s>56*Av;twtz*epqM=TEn9K$PWh1b}g z!XS&{4b`9`d!YZyLs_5~KrAa@vfZf0O-!>dl1oW0uC~r6(13fUW`k=rmbErTxCbzH zKkt~aI*iJzC}?Fi^v~ob##uzle z0H+Y$i8Lw2({31Erm$}{?O3RE5737*+B}rLTqJLb$*~qHn`76=7(>>oqIeH_d3z+l zc!~2P`90PiYqd#I?R4uj*~xVcx8>A8ET9J3uR)%af893Ep7W}NUBiPZ5wPd3G7EAk z(=BZc9ONV}3UP6RX8AX5sK-^6_IFvv)Pnu0R;L@6?~ub}8FzR?3B@Zr0*c{DQLqBj zH6C?Ely9s(8Zh+~X#@q%n_77u95G$oK%Ul$1vyEAV3Nvcu6P^o+)Vl_TN#4Ch*?t) z+R@^>pao*tuF>CtS#m+NB;=~8)2|9y5kerS_bq~yE>Zk9e`9!z{OaH6s=u$V4u#B* z933Uw=nto7M0ahI-%d`D!FJWV(*ubTe@N!n-cuDJudc4*mT<`f#Q17zY-+B!D2hIG zoL)c*2S;}8My3cdZitB&py9HW56J>oJ4KHlusjPtQuC6OJ+Ga+$V=T01ns03aXN7I zM<1JH!)Xgxm_Ev(YFXE|+k8op-8DFAKDBQ>UM}Q_1NYI{@eZwdylkr00@@&-IJrD( zzfuRIPcNABTDXCFyDR+67zCm}k-!>K{rdO5Wfv>?KDLGcU!>NFWS&yJ!|B1U(ImfG z7eS|Y(}7o@zOa(a*BlCiR9rc*qq$;B7`9$EJasZJml1=Tm1;mhFp#M$r>aZd^^${K zZBwte)jAPi+de}x->6k9n+C{V=jO^`@MP9lBJ3qeeK`?3#4U6VyrUpF>P5NlJ@kQF zWA@_&(u&jeb$CL}@_mM{&X+X_@XdLRbX!9Tdw@XM{taaT?D7ycf;h$&m zE}U^FB+K?`A#tE`c~^KT#ltN6k8j^nqxSdvyWfP@FTIWMm(v5}ZrMmDIo&(mD&U27 z>PrhtONqHGO&(#fVHFyCw&tb!G?@M1Sm0a8*q!_ea{waoAy~ljqfrN`e4QW#B)6fD11H zxOhm)fS`unkm*x4fPxScixfB#9oV||bRH&NQ-K|zW2V-rSzy&stXU3_nUH!67u@Th zN(Y+zYpw zC6#Q3c;&<$mI*fLy{pzBp%^73xvrS`P9-7!AyFCYZ2XTOy)VH_vFzGhcWvn92s0<^YOa;0IE6{OXplnG>7aE%MUw?$HR>KD`(tR`+Y(^A z08qchhAiS>JEB&u{kFgGtYS_DEMg!qIBmNo_yi0NN{+bWEubN$<$Qh(A@drI>v{EI z%qXjlzv!rVZEKmKnGLJl!@vpOuWJ^Jm?BTco*n<}{E-`Q7C4@iD{1ur@qz2jl@v}l zi6|zTI)rP!NPXXECN{{~!V0dDZ?+vwHPt?x!jJW=j_Ks-ZBZ4xYT{};ltedWr&2{3 zF#Fx936LNiDV0*t)`}to-wLOw(yZ2Y&~dA5*aSTBV4cIFS(;~pN0`f06q-6o70J>h z&vNooMhLtSAThu=B;8Q6RJ(C=24Hcqvv3D=0pK?W5=C`^8tjaSXBEG)qv!9!|Mhpr z6aMRe3zvODG{xwEU@qAH*jiiH56tmF4qWz5I^;WhPHXQBu`58{yUUcEsiP5dv?mOi zm~{t8^pKHnW{n{!((6k0f$SqW!tDHz3Llh>n**CcIwpJ%!(q>q0OD)+SLuS;*zUX; zgPe(yXF!J6DcYbBxDMQ;bQ`;d?D$wi?FIg1z9rm5K~;=;T7QsK2GK0D$9N#JwX zQh1*7SwP?mWX?(B!epM(aTpA#m8X%j63*&|`dfhMwh1OVvJAk7v3-QDqKoR>q-dgI z@p+%(fFwKtgx3{gZQT@L;3*0L8S{3Q4=^G_>A{2M8WM;VR|p6>oOc@B#=) z6&O*;HUV0D9Zjl!BbV?I8SQ=;Ep2Q^Xy83XJz1~1-%IX94}1|CK&5}tU~D1V7eO;8l7+#A;?I$(2WHKN~p61$7XQ3!5{6uZ`nINqtwHp zJMs3_U;h(7h9ACR>M7y%7e`^SAHV)u{X%nWmE{Wb-Nd3l8~DyO26OgKVMEPF1eLcK z;=;WssacuKk_W2%c7~xiv7NJOo+YsY5E*%i>fI<>5X$ks1H|#HV_rZrxA4K}j5giT zn0NIrLf7GESq^+A&f$zcv`%;I4g4((0;7%wOIQ3Iv2q95vpNxCk}1W11!)@%SPRQx ziH~*AHXD_6|h zlXF+XJNWC$Nm{F-MRTgd-E@ZGZ*-YVnN|`j#5gA(t4E|!93>})q`L7y6cH{lw6GL7 z!4{}zNC{33N`=(XaKxq{K6J_>e8$}EdMIL%+sOG`t8!4%A4y4>9S!w z`0;`XBfs*J8pwA)!sEex(+vv$>!a;2v^#9dx*m<@(JFGrlkB_P7PdQyE>;bFAg~1U ze$x7L$fwc`g%Ff1`$fBtAU1Ml-SiM4qFR7dTT)HY3FktipQdbvdF$2t72*wqBUWg* z-3d!rC}g3r4GsLl74$pIKxeyO`g_{9P>2Bcq68(|uaF&Zg-Z_05Wh;fV>aa}bWqz8 zyE=s3Un0`|;0#f+;CkB+7f_08xS!$zH4f;1I@3O0$sdxFXBZHaws>%$`Q7U`;Xmlh z%{5N%p?CY*X@xsz!F+29zPbS{1>$nPCw62Z3VTzV_6y~1l?JXx1f22DuiY! z@Nb7+#_X@uRaA~!yH@~55>BfQ>`KfZTHVBC98}2tr@QyqKnh5tM7h zRmw(5jW_bNzB=S~7@*rL^>fGgdYxR)IlZX2F_rEi;_s6vXX+G~x_hXRlV3t7$q@3i z>w(i%Wum!d=|$m-m`F*UyrL7Qz8Jg3D<-Ad#IOKUA8b{e{%hgmH*bcp`RVJ|;PO7B z$Kq}1v~x9Bz6ZVkeMonQ^J@Vjpq<(4PU4r8^AcGvEkIz|Mn@k4uvmF|h>AsI=tw#V zSGonukF`H49D~SPKwT~I5zUG=on&JmPiS0>ULw+I8URe_50us^Z9O_kyIO~uoriv1 zAooofad;j;F8$Drt{`w{LPpr2>U(2neu7jkeiG_nf4jv4@@bF3#3AuNqESRQrQr@P zRN`n2uClgfOeC&Ux2M7u7?)`WVtRgcX`qF2*{zuiN9W&06#R8rn(~jj7>< zJkcq~7f>gvP1qj-js(D^{cxq#;f%MkOYtaoMbty8xBF+GS5%;Dra6qJo-m!0Acm zGz^kmCVlci{Nh_%Fbbw2r@ub_@LUciN`Jr+Kf{*N4D#Tgpb?1uqdLY;A z1S4q*wf!NT1}vQ&x86wEWHq>0b6EDnBx|%&tEW|GWp01yE_Ww+UiRtNVUyizQKZq9 z!+KK9aE!yI#S4OZJwpoZRIQ!VTO5?F>eFXiyB?6Gt4e82gpAaF)=0&+F1p9c@)5Wh>76rccZ+~p-r){Q44w}IUbn2dN+TGFL>_8(^%zHgYe!- zZJs3aUX5QfJ0Vr!O5_|6HlRRbTh^UUVDdGHRaw>CLTeGu=BorTChJ;6KM6)2=#WO0 z<>RB60m_XoHv=Q2^3fFaZf~DG3~w~g(!o$qkQrj+=<4f8R-1Uwd_`^FR@&3IJ93k? zO6_vs`7Wev-S&hE87XO&%B__gP?9=>Pe`pha-TpdsyV^!+11b_V#4TY_w%3&bcIRw zbgEF;(0Qx^m~?Q7VpXYpK&aXBP-Hh~J;`s`JQec7IqXID_9OK!P`KE!bqRyPmD7v* z)9$e{NgRD9qGweqE;Eyj%LuIEU?g7PsR-77@VGEt>2ZA{eO62& zhBaI2wW=I=g5fqpD$*Ren=G&A4GxtoO!Kg>X}vK$cTqJ&>s*FHPHG2=$iZvhM3rH9 zKy2tMZit8#3p!I0RYXH}C2?DfQ47tMsFhJ}#2n($P)%+mbcyT$>zhoaukFl`bk7bA z82kYyLTJ^{%y1xa$wc%oC7FhW+D@!e1PPik%4Oww0g+V3t4=aTTi7u0;*1baaf}Xy zKPMlYwBcq$J8UTUHOw?8@$o*aLDT`+HRR-U$AL@aJC5_(atlDC2HjCP?;)TT)7msCVI ziY@ld&hu_lIsa~5d@hHMikvU-1dxN`yw3X^sf(+7$Y%YGSvMu1b_zVqD;RVDTi7@r z>{`mmc*RDpoZp9Nd9GI=T~whX(%=&*RnK&>RC1)h%otn7b`X{brD%3-_F7KO8{NPF zxeCs_YFibO;|7Ilm0eKYIRmvG0R2-~5t0>6FB=OG-}cbdp{~Luyu3i9jnKkDAFo4# zN&+*0Ka?j01BS{t7GO%TK3g&C&8WmKqVy_iFR`RpmpB5Glgg)+z-|qv2`(5;G?L>| zjksWCQ$cHphFM{YIkQH)6Nx7?Qn-=x3KQ#jc4*Gn+b$Wb%R13|Ovh4=F`TJoBh?ht z*RKZE4V5)U5&4R}BJa``)Vj?!5;nOvRJ?p`dNuZRlTTVVkEF1ZAh878369@~GQ_2C8 zuo=v$w!K89%iIpV)CI$807WBw;@5unfKIOIjEs%GTJpPHh|7r=)d0``@Q?p!rp*tX zL(8ukC$2$>^A1yc)TXnZc^aqn0p1$qKB%Ci4nhTbxqjH?L`fl0w1!)TZE!Id3=qZ> zxcaQ(=MlJn&v5GD(V094MzisG%J~ty{5$mq0@ZQXr2xCz8bSDmwFHLQAaxT|J1n4q zz@15x@7A0%&wNFA+&dn7@08m(VsO2LTTjs;vjdpDk+8C=S|Nh~E;?~CaJxwAlp-gH z&8b4xIJdBY4rW7idB2}T?eGlVQIRmPs7(gEl~^FJUq~vWA!TU^33dt_XeL)+ZDC8S@S4P;#e+V1yQ*cFH zxw+_{c83X9y6sb;4E58QH@4b1ZzwdL^}r|tLo^OdHAxGOJWxrGIzH6Xd9#g{y-RHa z9(%(QX<+_C5hhld$^OSLHjq#-xd}tLkqN;qZB}k~~J}ZrA$!O9TD9 ze+qnQtVBBnzW4#Te9pq0_sKMW9@ZUYepI;`P;O46ka6N;;bK2Imm!2iG^Pg zn;W=(Qm5iluP{Wm!y@UO$E1AG78fO*AR@7sC=jBckfG8D518UEW1l>~LyfG>c>+Yb zu&uX~{;`rSO;BdvZES&rlq|>Ma)J{Yn{X3A^q?$S!&9~fbSSHYJaeqA8k>eOR{LrI zV!1f_I!WCZhM5Qq9VB)kF>;Km%p{qovTAp~Rrw9=1X1rOyjZONi9(VF$&Fev*>wq- zT05g!=vK%Z&S3|l`9=uCwFq~1O}7m0>T3@6aoB+43`@R~0&Q}-mJc&TAuHw7Dlea5 znx#O)rfqcaRqlzn<_EoO6m_STvt`+V1{Zi?@+^}R6Zm7PfK~qY?roS7?QHZXnK=yW z4tJKvat7~$ni(nuZzr!B)uTh|rLj_j50+LX>fV-!V;GUT6TCVtx?t=19G08}!JWPV z53l(I|vGp)n6u9eV=%>wBt z7swwy@rLnH-k>`B&r20%U1>bQVHb~wlfT+&1eQ8)Cz<+6~G)LrH~RXWd%6-D`y)UNMydo&d@-TUA&6cYWtIR=@13-dk9!j~!(7uz;yYTD8O z2FFpzn`8k7eu4G*Ea@ZvNjsZ6i8k}~ZF*tz^4ozZ3bW=J$$v*-*IDfssbmUWKEm4M zAzNfdW45IwnZoH0spXXLEaU<3(1-a1OnI_ZOnwWNr_Ay>l~SX7y^@VRK@zqD*f~6b z)07kc%(1}`e5x4c$zm-0Bu9t8)p5ysvAaA@3o)_iQ5u;$kLGqoTzW9 zYFv_th=T%ldBA`1jvT-FZS z#XC60q)z9Ze9sgsm2j%)7zI^qr?~0XWHbb*{elVlqzpe?_2?n%_b1!Eh)SorSnhpR zC_cub%+67_oiLMtDgc^B1B6#6dK9-RZgk*G7sHCDw@X9BbBPW@Jb_~a4aJ`^5B~!{ zh9ADcj~?a}1(Q2b-+%De|MdD(n@8k8xZ!Are8{FKA;!9q?NekOs}Cf=rpY(+?ig}t zV9fI1T1@7q`M?@rL{ldDCPzl14)_ck);pnh$b~sE1c^YNzwIbl5)v;Tj!>x^4ov1K z#cP|Y#_{q~<9hUyB4o`wH6!7C5es&*I9ef4FKyTQb? zXb@T_Gx6vWYNZR;b(hd}VyO;5I&%Gikd{sziyo@508%wivvw^uNMezGq^hUZAyemA zoBv@iOserSOObVgG9u3><h( zivPCx?(fMILk8QV6?;fyyobn_uRQ>lpu%b;#E-)NsUQDWlY{#k*3Umb?9cG}ZNB<~ zowP3y9rMLUeCMN_w0<1$Z~y%IYsIgy8fcU5#@AOCtDcK7NQ0UZD4Xhw% z_C4fw+iuRzo69y_f*F{s2l?hTa4v+XTdnNBnKI*fHBE!%B6r9PDv-M}QOCeYkI8j} zC?Hk+FZi|?!-HfwE3S-V`g%W@W@X0u(J;1qb$m%db*Y>p(O^IWA32(2wAL?BU9otX zn9Kn6ipr>3Z5WApx2f@GSPrBjHB?S+c(G^AD6X4IS+)agK7ki^uUOgTb$hy{2MRsg zX<$|4%p?~QlKieG7!6vG18^mQEws5RYqeh02{Qpm!=88cH+Iwt8k_wq9&j;es#W$FQbR5)A`>THWg4M>>N|=I^c7a4goK_U&Euyi-=K;cSBiKRM<4MhuS5VwQMw2&6?-xVs$lIlWS`?L(YKR`ql6x3Z$O1 z5(HTz6$BbEOk5$xJY%@nWzD6vCH@)J1myssCL+55(WBlZoGiQcj%vT`5?ejY7Zqe8 z@m&uEBy|=>B&Vg186^JUaq8v=pkzsjXT#d_fLcV&$k+%Oy!wR0l99L?mnCU;Z_IP( zjCl{!j(#uEx&}feidQ}aPh0}@_;cl!S0x6i`cFQqPf z`}FNk-+%J<-CzH+y!X}XuaJHI4B00>sQL5HK)I825*es|$lvQ<5uG+jTGap`G-O`L z8FN0pNS;M~@2EYLwxO=jBktn~49(r293&RoSlgs+v8l5pQrjmMRSrf~DqOm)>~zmS z#dR9hI4Ygd<>T(3Z-|K0gs6uRK}2rvUJ2ICT~=dhv(@?BHq`KzQ~+JahQ-6n)9i*^3avJAuZvsYqD7p2D;cwgsKx@Lle8WIu)%qO@r2WULlU{i-=`BFPicaJ-z1m||^#-?x~ zsB?n{WNDq6&yUR6k0gn{h?D9w+Ugo0q@OPn zc=O;HKpm7LEigIFwidkic*%!5&UPEiqmjNRF@+=u`SZJ6>>I^x4VU7SWe9l|-iBaA z1G#GMkipf?bY4DCaL0iD)JzwJ5iWE&l57V?>${4V#LbnNdiDeayG{Pc(d~q4#SOd5 zYzs+WIX;arJ*5f-xKrE^`EA_y5(;D0w1ev2{n_ZDdx|KyfstzEt^p8DwHFv(jgw!_8FV0*|Y&2*+1V zZ38BYw%q&iQq!~qqHw44Gm5{EhA*8mb9u#fw{e8uhbht~s+;H%ePur(Nd_(uM$ zPt+OkzlOJ8oN&W}r%BI!^r3FklBAi^=>wP{qGg)GI8p9`*Nw@BDw zKU1Ead&Bp^F9S3^PfO~?mQ+Bwxh_^83C^0e+PDIK=$#Mf(kF(dy@8*A5^y^BvQ9_+ z1)Q;7*_gK&6V7*mu65%Yu7(;?`!mxF93|*b6GDZD25n@=ac^$aN;MtHrk(3Wa#YZ= zx;S|SHF16ms^9njVl^zX`K7mS56SR#K7lagS*5ZbK@C@CKtGd~Blm8QpuGb-OHv7o z8>U8mLtw#6P;(x8Rc`P_nh`$pF$8(C6_Y#o*B|ESH`I~1d-ClXN;q8M%V(c(mBY2w z_-F0;1`t;WpY2rh3v4FjTb}al67~YFOmq#MR6zuCg8Z=GSRPpoPs<8Ob{9UA47IYe zs<}2kC`vDQwpN<~Fv%lHYD{)I6jNB*;Z*pkRYny8<~f80&^|1Hx|o~Y%Tmgw)#%n# ztS6Cb#^=n)I3@VpH!jt>?vgIql2A^njg-d-b5zsL3&TzJtL)L&KWe@R%m6+pyYAEQ z_N5w5zkMM8{X=-mh@of3G+E0+R;%FzRQFQCf=aP2HSb1Nj)tB|eu?%3AaP~bWrL!u zX0{*TA!L1d=;9Fr*X-c98i@bh)kP97*P2u|g+*O;7DVAq(%e+2t*OfZO)AxBm&nId z?0Dypju7STA~u|)SEunn7l(jZR#vItIY*WNSi&ZM-@5_2O1I||v=+Ey? zLx|pM99qxyk4Q|8@z^2h)FJfdBzcJ2ark74L>E}VP#PSPwzElFUW)CXlLPZ0Y}qPGNh_@2BwS~=Fcq$RcS4lscKKCgwxdlc2&wA-666# zzM)7{9=Hf#9u^Vm=?79wVYqXP@sc3zl%gpMZk};+zO3vOpA*0z1ubFJ^Fcm9)vrP+ z7`SJlU$Mj8BK*+-7_>hFh)4`rVmy;%q@#9=>g~Rp;u(6xC6Bd#2>*xt?}Xmuhp*q{ z82H{Mv~{JRD>0+8Xirly0@-pjybOa1@8%&^VHl( z1%g{5a~kE?1N0>o1qqf5Dir(Yf=^Ns%PotUTLhj!xSL1h?K{{tp8YJqeYDvCx!HN= zL*V-ks2Y^cOEi3~RXnBRMn>mFKfz@yR;ntE0Qek4#`-?P$DoC--E0rQ3fPhJp+Dmc zAau3gLUortoebpKEup=ix|`}}NeLif*9Db}y@4awN*q3^%Msf9#nAQ+XKn#iAUHP8 zNzWX6)mJNcWK5lIjia(*KS=cdb(qsw?{fha|L^2(4Gg18HkK@yX(=YUJASSi?n#e|e2pT>G6J|>vJQpyXX6qSQUpYGD3wxFcG0)B6aXosi0F8j$9<;yk`%CQ zrZrjL(l_7b|0C_)dSuD2GqLyl6}x4RC5>h3eLN%jfB3=J5wSBeG9zL~$0f6(UBb)=g*wOth^Yr+17^vh=Dhvygoo=FPEv#}UKcEw{JV`j$Dh>W* zcnB&Nj|-p;Q1D~H3&T;HEmTBoVRk#ctN7;A8^GcXGmL>9`&^1NVvRabTz-L7_<3oAOGJwHLRO&2*I19@izgUK4 z_BLVmI)(?;&lQUyH)(Y77$Csf!xR|I7dIs}G`db{(E>@LZ^PhoN9DQK)C5$V%BES~ zaW6}}DO`1iIWa#$HKk?&0`hE@dujz3otRyTTBsuTx|pZamt@=l8v=kgR`4dM(otJV|?Yjxgc1i-k=l?<_h+u$P)7s zJD<9>o9-Q2>}rTP+XCHcpni8)CxWb7W1YQGTm@nEl+)4+TB9zU9fB`Mq_mdK1`zH5eo1nGAWC12s|QW+cYDk_dq~ zjBi~q=siP`%W*Q$<)mb944)cocPF$YVv{x1$}TS;X&@vnxL8yXoF*`j`Pl< zwe+7QTS^tW!^FX>)vMGhXG%+twJM3xbD(=Nl_|*fI&zQssD5_P*Dwu zeluDFbFJ}a^l(hU_Gy5+UGvjC4o6#-2=t*RM2wk|=;7L`hsv~gwaFCleCRkvH^ zj>&F>RD(;q2b+#SKTT@c^nzpGMCoH4^5m?S+C|Y&0PM^9P_ZFb@HD-4W50aOzsk_? zoDu(%KD*0rpKP$PEBu=4%N;0#&>1D;fnah$5NzhJkh@qGR%2!-0<{TCg{l>BEYq=! zLoK__6ot{{Vw@$6veUMKRZEqGkT&rOfngy4w3uB1!%aECyi$99lHOJBHRO`{kY1Yu z*DI>#UQ4CAn2d79GOa`mS`vqiL40D4)&~z$s3mloVs~>G2g`9UcL(%yDX}%Adj#Wz z12piwHcO2oeA9@!=(pvmi_p-vFr;Ue0z4M#gIurj67(Ocm>`=&uDx3i6n~qQ7+9{u zWGN9Uc!al~(Rdxw7Uw`VC142tLz86Z{iNiNJNbwzMs4*|BcG3bD;9RD*7!tKEK70E zNAepgfS>TQy!&{d!l(caD_rqZoh}5}JxboLeN-&Dv8xZYFL?&5bgLxqzWj-Dvb{S0 z5lDUvgek_Pf|l@yE$`ANpFHhQBtE{N^Jn<_6UTRb`TjX$>uEInWqA8G+Q(mncWE^L zHvI9g8DSul*zWL!{$Y>ITVBi6tVkHUKkm6v+bpbUy0h<3@1ZdrTmVAjz{s16j*50h~QWO`5DHZ@+AuX^H#rtbIxPYU2a?9w-USEkCmD}w?O`7^5x2r@hN|!@4x5NE# z0t06xULek@nT*$z$Qjmc9wBTE)65Kc$(pmM0aRP#U#cExNF2FL(3Y^l(x}zl(~w$H zT^i_1I-_)2JVG1EVTVG|ppq31{w|ewkJSXa8Vmg%dn^2DKl3VW-KeBpC#76r;f8Wf zy02f_z6cmznwE4JZA#wc>E59*Gk4=SUhJu18V%3Aw-3^w@%lAp*Y`14K2afRhc za=SST4b0V*XNmn$=aTJHs-I2JP(oVcHg4g3CKmgGw*Wt&mfIMs!7x5-OpEe_Oep7^ zO$zw2OGt^N&89OLc>sWFaImIt&8*kIy=Ey@MtKY{u}z-J~fV= zuypDAm@!Z^VQMWV{U*d1^lWgljmE_1ycwWQ<={c4jK{7Pn^wZS z6(nj12@E{uoAbt`!-HSLddyZp+{ZGZfrxId=cu)HiIQ1bXFD%yV2P2N=#vn^{_uTA zaw=Gj`K&y?S>p!#$d9;|fZ|l9aDcqY;=RI}+X$MeKm1AJBdJrO9R*mz+Ojk*j=K9d z;ZOdgGp88 zk3x2le}aM=CB`lSLET1JQ&B@S|`mj`y7|PHs}f5)%A1zxqFX-N612Uw?f3S6{vTf`8Km>=(yZe?h9WT$E?Oc>9j7 zL_d4~EWG^!;D&DpY7my`BPr8Ge6&e-K9lA~#VQgzn)@xh7)4;+aR68@oy zh-(uRn(7R7!nppA-?IF?xqhsXl_j_*V&p(#wZm8XRFFuHyyqg<2JD&!GzVZ9sHA&Me34SA}~v;*d{bo4>y#E5&$!cL51QO5O0iU^SB*$qPT{r zsv*RD3?Po93c{$!sxc|#msX`JSTLUfo5IKIEX7`$NBeDhEDl~@jV76K46?ypEhpdT zmv)sq>N~2ZU2r4iN!X@5EAqaAT#%`Ao$eSUDU~Y~b8CPUB ztF`Ok2lA2-#^B^hhefGiNMNy|gucn1yg~@IW8ra<&)r1T%em-+Q`ZF#uP!&7oP6@> zCbd7b(K~C*i+}-&z2KlGXb>#`b(~OqO|1UAbv-876YQN!>?SZ9Gv`_*$X&ZjO=~y5 zl+yo%-6e_(6GOrJ)!9ra5b-S_HDGL3stiIQF(h_*#Zel!Csbpf9?B(p5PE@4mmL!> zjv!YRB@KcVUedaixdOmb#N9*w5b*n`#sTvC&9NrWM2cGH6SM$vS+uj~h4Uw}j*pBL zEKk!JM1M3$(K&OEah9f}+T_-F%|pe8@f>fYydzGp9iUCserk4_jY*P-z~WPRynavw zQ7LxmP(@YI@g|=5trY@x`6a3L4{$~-8v3U)rXOiOPmeJWTsg%Kma7$ zjWS@qtn+Bl&ehO{tV(&m2W&Jg(lW#-E&Kr1p=Lqhx@FrpUvp6hAM!o9(#tgt2boiG znDW9YD7Gn`$>C4kadKVaYkG3Il4?Fto6}^4_c+gKQrt+a6KL79A7%>SR zy+{De5sMI4D*)<=3JOi4EsuRoN)m%I$iHR1Y`wDDGTP;oGVe&Wr^XOdlK+D=_7L~M<1c*}ZS8v5Xt+YM7k6&{l|9z;&x zoTv#fwrbYvqks4B!e9NBUVYD$J++#^nMbXtWV>23m2D%Uk9 z2WwP(0*B_YhjL{0!r*+sUf|^s>&_jQ;dF&k8HdGdcS0HNiCZ<#Sj+-;zO%hHdG)p^`=!XRnKz4O=m2k<;SUF_h!YXP$$y zfpQh~s?H8@P?>|q8lYa9fn5Gq9v8g7UDqtBi?w|(h5Sk@`?Z*&dgtAFQ{T>oM$l@5 zMxEtZJ=RR^_N=uN^Dz!GBmAbCQaO!8;;4A(Mn0|*CR>H3*!p&ej8GtGQ%a&em@RB- zh~W}Gfd)x|ck>M;e5ri#g21M&$aSB2BT=@WwZ2(s%vI&C(OfBe1*(G(j)jlJ6*U@c|<9KvFVC~T%Ua( z_JAiwi5akx&8B#>)u-h0*(J?k`iJwYyTMdWnypx`XuO}$MJUZ5xp&WQbU_!Yi^&Z~ z3oU?BwiBeQv3GK-tRpdp)&#s@rMhb1*a4&37eW4QqnE+HCL6sJB{87^MIFBc#+3vF z6r`5-uq9IIG8DNs`yA@jUlcEFWAeIIMDNZ~IA*?}ak~upO`2+O>bjcBBMv+r0{b1+ zeUA>t@1-UKME9I~T8|Z>!G?YOt=L@If_EF89Mmndl&?}%m0Pci7fDlQdeg~UT3NQ0 z1JkJA7x^up@D&)ZU8Fcf_O1v#SDsKU@dOP~>eGT&2_3Y zb)fo4JaSeOyMC7-pk7n0I+1D7K&pWyM&hAi2C|u@vUvmW&axF~=$wuL$X)y1cAs%$ zE@@;B{2-DtY99$*YzwdtUxc?`pFaHW;r+L#{~7e2-<)=6YpU9(eR{YZ-!s0spxjB<;N$Ps1d4d!)e&T z<&?uLIRh4?0^@*6QETh3yvaKS*w0dvP(E@g1@djQLC;Oz;d7DhqGmsU#h@M7qp+9; zyL6ax4;iQiv;Bi)ScE&XKQ1CW8|Ur)!DG2VSLyK8yla9tN0K@UNQeifFIWDv8bk@!jk_SCdqe z=8y@mKsr77TNyD8w-T{?m4CpN$<0;mgA9Ev&A^!^K(Guxy@CZn65p{o-V=2a_9qvC zJ;Gq?1PkEj^W%Y?{}Z|69_wRcb(j2h!pi^5v!stz>JQl>3nX>Z^gVT$Y%i=LDUg+a zl6p|{SC{)o3+>F#C8OeVpDhO&BAN#nS&mqo_}w$hAq+4I=2r3+?!ni3lCsys^4dzkx4Ckxl7^iC4a1U*-4o6>_X(;X%10`M(a0y@BX{XrD{#*^LuF z*9+tgT4;sZLm>4R_Asq#4faq(!Jw;^8;m{dGU15lj!Y*y(#Jkwy^9G@at%H(NV|Kc z03Pz~wB3sE!w4=B*^AhFrMd13>e<3>hH}#5N%#aDB}RaLc=SSscz@mv32 z{|^6ue}FBf=z1r8K$hWGEAJS~zmO{TY0VJdYDp=Z!>i>Y zWmg`2Q{GN3WOR86Z5Gr`?Tk=s_5LbfQswvA#;0-=)o`xD+^CtKOBc8$%BkjKu_oz6 z#RVod4qg1#uTictx>mGYKu|yjnmt>kAd^G%HLp;oX^9yG4aRqns28Qv8n%-HRd$?QN0sWBmQ%ES5JhX1-m3=+rh!ut=7N56Xi3I7gXf1-TX6D8%pVl~GOiET=Ph?@$Ri?NF7mn+bV3+*pCEIxdw?=1B@-n6x5<_^n=$7Ky#fWaD3e z9(=vp1mCCuh!bj853|Z~Lazvg6A8Veth@{xH+u`FX~bfwANCA0kkoT@0*T=Tf06`H z<~pt)W2h=QA`aJdzXl}+V0!Gt-P8VcAh1ri@vqn^gsFw>RQS=GblpyXjYpM&e~ zA-oa8y|Z9+YsJRC$Mgetd$+KJE0*Y{D1$BC%`W9%V<)Yy8jT8ttL4YBgPfP=)? z#3Ub7XBBoU6YWSx~tA5v^~i;gjQH-J@stXTlXpZ&~GmYatE zoC&*@k9w$pm#}S~a>lPV$HbW8*exqX9D2@DrV{9Q|WL8343A6MJsC+s?L2Tv& zq>KeJ=aDLIQstD1oUtrY#yDhBzNtBZP)#WcouS*Myw@%xk)SMXM}T@SpoBibk|C|9 zEH}v2d`>_aJh?cH^iXATId0)aidU#JS|OX}COFqjKFF*GgB6)$9U9+Ytmp$thkzRL z&8N2A=w#I%vLl|s6*Ozf9N3?_^Ntld<=vdo6Iu)0jkw3rNXlXB_c=gEP4~nAzwGim z+a=IE7Q1*sj!No~T&b<%if<6((M{#;5O)fk>ZO;YlM5~}(P<{S);Ayw4vrHmLIg^5 zI;8*lCsK|=9WlVmlhaLmWDamP6#W>9TYx%BsOR`_q$$7yhi_bc*`Br~c&FK8VR5P6 zbFd=2s0Ir`n3qE2FAq{-)jKo*cuM(Y+Uz5wj4f^EK~$;6j-3lFhPEWHs-c-8M=RWN zeX)gd&E5Eb{*3X(=k66FHYpphIZCvH1g`qf!)?^%4d@IxAU&trsqlNsQ5Q<;KZUQW zM16VC?0)ny-R_I`-@SeL;fuG=-+mY5!4KYl`r*g#-=_iR59MdQ{|cpmlYi+4P)V=!mjxbou}zG2Mx60TucTUZ~n9D!{H`LG-Nl0 zYU>VPNIAS6RdGq%5H(xKIsYVqf}3zVT1$murbCQLD&#vEcyRSTN#p9GF)Qe?RD$c9 z#oZq=ZnBv$CY;MqfFToCz68P-ldIg0S9s>kjCtwnZ=NWNP3%E1uGk_ zpi`;%N;!9kL+pQ!k@xpf(|;9BVudd|5D zxB&xP-x9Z>HhSK?0R#6e>3~e$?~=$>Vc1SGsgr8MQ#RcM2X7L7?$VE8eQak+I^*=i zhovG>b}kh8hw%xpkbUM@)}w>`Yi)O4C7I6_ni=%Vtn}N=2EJ1 zDBjYcVS!M-QthcH{%Vy1Kt+5fms#vP409)l#;y*JGDOrf+Z$9O?%!t|>NjUCKwekk zjD+bqUqE_bFhl1bC{2`Wz1uEHy*tseFk=o@;;z^lQlhRA_NSGoHrTeF2`^^1@@%(uma^UDM#nintIPm#ZmAxo#HXgA)OVew z3WVZA@A0d8p2?*h!7%4Kqv$x!nviP>H|W%)UJpDG5O{pq05d#kEz3I<9?>^j#_fem z+o0eg2xbp4_`XGD#>hFkIh`g}l}3b}o~0P4($as1i15YRFT?vUEc|X(c)zHI+6zDv z00@Nxpz=_x(|A%OS_v_!vafl$6q`}2ym3^R$Z2$l*$P$k!F8CBY^;X9QMvcx%_*Ai zkL*^Iy9Fk*+_W%gm%?~(3E$|_*~^pd?p%hLMr#3OrFXnxz9t~j;w*vo@M*?`Hl4`- zQ46e+D$nUfx-C>&HB0J;B-#U=ZO{mX_BbCl4;(s`$9)BqPVKz+!f`hr2kdt@@-3jf zg$mINL^Rd4q$&d?sh||$6Lp#o;yf1m3T`5VI0l~|-!@>L#<=fR0!VF=zz1@xMwpV6 zs{)#_+&xC@Yo>`SRz=TcUz`Gl7}gg?xHQTjOSgHxT~vyEo~90p!Bgx{jS6{Gk(lx(_Yg>?*8{jPmY*fn>9FgXxj%2>#|}lN z#&*apNm|W?nFPlOz>$mAwAJ0xvS(ko);B$DkbfUx1Z*iRJOet&ixVYS$>&!NFcsA` z>VXU1-=viT8>D>qtGxX7^a9m?f+eVcganyXT|*8Cn2g<|w2}TZxK1Eu&I)#b1}Y^` zi<6?F7I3S2Cry1H$)^Weesw&qj;-r_jEnzgn(|Zv> z+PU?ah$J2#0MAG~s~Tb`PK4zv)dILd!|YmPuv@O-5fKUXcZteDXB1Wv@4>_o0r&$! z+g*k+{Gw&jvD}3Nnu3f7*Y61=yM?KHvB;AEt&@u;&rcXgxf7&t=05`QJ2{jA<%bIl zhSYFliR#Tk&j{rOCJDwyZi97^?pV8BvZNab22SJ(&aoZRfv#%QNu4$;f%17xXl4_S zuH}SA?cjjk(8l9h@w-f*K#ug9KbM84B_Om+zjDbPPn8tMi>e2T6!gzhaS98iUR|bW z!!6zHp>z3-@LYH5Q=b%d;%|TS)SvwMku<+%Z2aZh(~SFP;qCjU4?q6nUt>%3#rr?K znbj%OX%=ZEdm;yQKaOSs2!q)*o#o?z!=uzTmM*acf(UGRq>?*O39dVaPA0)_l&1Yo zZE*SLB%GQuykxq2*2kW6rD#q-fK1Ybl&VsL$_-+Xaie5QuFe}wFAfEy#rOatgdi@5 zK*V$*u6A~}n?Zv%sCw}s>ypV#Soj#Th8K*QIz$CaS$Qb$gXPw`4S8#s`T!rq%_qOb znZ0Tq_CT4GZacePVGl7vc5bZ-!Ao#TT}&yNS#cRA z8gR}p&=GS$&{;8;?dcr$zDW=M@KR)8F`+z=L`ohm?bs4V?TcJ@Z&K-PMj?-0Iy zmV>Fc=HR~9DrgR-3=sx^(LER?YeG#Vxwl2O zX+cy7S4Wq$LuI@h@sr9GxV0N7ZOO=nDHg>U_hja)H^ZWEm&mWt7rvKCce&Uoh@_o*v1Y zBrgf-8*Y|X#uA$(Rn_5Qr6BKXs1Kg4qw)a^ZdMVv&Dp2HLS^_!v%{M@(pj?5##%Bj+S(t%ZUy51xaZf2a z6Tk+aB`N<^qm}OktS_^bxttBxtzB?liOZ5YEpI)eO) zQ&~JLyjlosCbs{ofFZZ&N>W?};?2Z)J>)Hn{eWq=#ek9*II4v$L+I?c0b8or4qkK8 ztqv9Q8mKQhYGQK2jCArVurh_TpxhXB`IUnCAl^@?U;_cVaxh5$IVKw^Yul!f;4?wi z@aBD`@I?n(1YNzWf^hAmi%R$QR7b;HiAtes0rpItgM!gA5SBlnM7`ZkuYj5GSAx2r zLHLrAyBdixLzUdYC$#zLT?Jw~BI<$ADoY>LVfLkgyd$PWvcg7Ze!}3csul9&X}x5X zhqhfzC+8iMW#xQbAcLoj7#3nnd8)asoSYASD37*9&h&|YKFfFAs&|l*TfSq791={7y zQv^47gV@GFF^PMLCN1dX_Dt0?5D};qCBINSHBX-D@=>W>);9R#8ko}|9yv;fsjyFA zbBBSu1Dz^N=%^$S8f2w|?I3SJe!*RS{EKn}1qx*AF^bG7bq(gCa=V?dgo4N@aeYmZ z+UQ9u{GaT9Dw18YkwNVK{^UAnPh-c&#&i2{d4+7{` zThqMm^3em#>B^jQyn{&}5f{X_V`WOsYb4n;l~{nj0^tX`$djy1LcXMq1BZp?gG%?( zd4aE`8j&PxW7F5>r_ls-S@S4W-NqK=(@ha=W5vP7G^-dFnY7q!Oola+4`SXmLpij0 ziW7F?Ju{$0Y2DIR(Mc98I{fTYtKJPs3D}Yu zX=S!a@SJXv%=5zvmYa7Zm^WMwNNoY1<2`CSf|9#of=J7g5)2K`;teggi@m%$3r5eJ zS(O*8Q3M3R%b2q!K+AZr`@1kN4e`ZN5k!QKWDaF&wrJQW&;g*%Do-u-p}W~EZd4P& z_hxejU?U<12&4%Nqn?(ylaD5Al~s`=tAc)Mm0y@qwx*+nZd^eHSlw58;V>k6CX^om z?{)ThSsN^Zl~mOeAyTU#KzSCvl_N~x<=-)>3ZRAFzjr{2zIy-eQ}6ehd|A9pp*0`* zDp<9EPaB2Z0GBnYc3V}IF)3V>2yA1_iCTYq)OZUww82v-9QBb(<&3ub$yb~zH|UX!oHE!X4mUFoqD*^Zmo9& zGUkp~ zphyJ!Hfa)xF)9wW1`fo9v6Q82&VB2nfCuJlTmsf;qdV(ew}u7N3M;)1_5{ud8yBt1 zQ*3ba9^*^Epbxtwm6OODfa)&Y4l9^U8I&Ylgd`^j;$D1Z$B>b7{RIMK-6|E?hi|?8 zEO4@)6|6Qu7M+`UWyAv;guAzPpUWXmDCwMAC^uj?>&CtzCm5k?Yxh8Rl0vdz$}xe7 zTc{0&bd6IHbEHOS2OHb?l!=rpRBlkIR-s1?B(P&{igT*3;kkRlJU>5byVk|BHANft zdM&ayYVCB^f90nY9qQ2NnsCqSTVc;cNKiA1z4&y&`Ol;remxeT6Y*m46*=)XVXt$qG z@AfgS9A2f;|fX_r`Q&g&zwKz1WyFUp_Z6l0DC%bV~$QhcFmT`be zaXx;hN)C&IRV6hqT;za~2|Qq;5D&okGo}T}?bB=5nS?5|lebu>1rMHER>sj*3c!*Mu@QakQ zma-jTm^HpK#Wxh#v#KpK@EQ#r#iZjn9R2hNmmBSbr8f>I*xE{GiosyiCHc4!po05A zYO`n-MHh%|C4_`)nY4S@)b)}=(Ab;Va8D8?AtrfSPv`SN&W5;woe)VHDcdxn0+SrW za~Gm~R`NDjGb^|0p4^YBA=9uyO=6d!SQM2zUg^Gm|6_9=JLeUqGdi=pIq*#0mt3a0 zHS8iRobmT8@oC!!DG?@y zq4Y1$s?6)G=GE0ku(->Uuf@T!T*tl7db5*CiwSAf5f-*p^DzzVmQU?REa}rNbdzIN zm!y&q#i-8#L`@Q00X8Xqp*em9Pk+y^KSpBgcMBpTD@#b}~d5@?-hHm#E1SzE~=b|wOJ$26YdC^fd^mOJc0X46h;Hcd5-wQf2T2vSJf zG1w$YFgIR96_}robV942eho;iE{S=U)P+Nbt_SfIu7hh&J?0t(fbGLj@u}}PHeEYO zxOL2-gA>>Q2a%o=T-;vRfLvUQT^n&)ggpBURdP4(uz_YC>u-=S0WlYM0@wEN_VoRJ z?2Bl$s?JoWKM7C6iC@3};-8@~-K+Cg@4x30<*VO$`wIRduf90|PcUFQMqaLd*s124 z;{i(+i#vFbnzrI2w$#fA*Mt%dbm`nN;YBcuE#FB#zPPGg*A|q((Tiy-#+}X@eN3UE z?(DWQvDalRcenTh=?@UDMZLM$n_Yaa3r8?U3vk-jg~|0m0h&1-aLi7VM(M6*q8O*J z55Q>hBpUMuc-1D26xjYeC?Ua@mXg+tmy0%ogk9j=E^!!+A%;9tiaC(lW@Ql^s%1kh zopHI6ccdI^CC0jAsnetDmdq>Jv^Tvti2c|^BP<(*skVX&3zDn}1CeIJipNgV*1iPR`ONkk_chR5?j(QZaJv`d@_)fBp8kUVidP_~e`aVuCa-RQcNH@85m< zA^fP{zJu#P1NOgr`y!YN$twmhCT9Z)D9i`P%o^(fX2@pRf!jE{at%16mfG|_u#ihH zSR>16y0z^={E=Q&(re#YpS*mk_&}S;<3D$;*f3H7HrKigS;qZoJbzQO#G5~ewZx}o z%3dv&0Ts5GF7ta&nDcg1>}?6OUJ)+#b0=^cRw}l`Lmh*_&3>uz_0Gd_%*rl7EcPH$ z#Njkb*LUTLYD7*pVQ4_i3`0GDe9Qs-F{M=9$LzB3Gt_z{C%iHi(Z$+L(SzU*4VBKd z9bdRLzRlh1E3nX=wI2YM$H^j6erN>G;_`&xx_8dlxv9iiiDJpN?5(e1C_|x6Gf%l3 z;5^?Rv>CWF#deblIPZiQLzsMGV56yrSy;Y@f~9{-!s*n4148lXEvzLOC%7}6;WBMb zjFNEW9)-0658b5tb3Vhx=ZulA)z3h95G>e~_QzHT*~QkHRPZd3h)?Viq)o-3Q);$z zJRo2h@(1zYTr`*gSbj$Tgx>_7bU0Qm1wUD=pcs2d5v-(3J@6})#Bc(+27w^9hMz4C^ZgTHg^&{Oot$T~28;es(w&$P{mnEPV zLnVO=(tBarQj&kUClw@?tSC3CB9*)$T`p=3BE1B+Y)!Zq%LO+8T6D6`K}xYNDPbw^ z?tc0-^jxFMCo@H*mrDMHa=cux^q!c;NjkE*!TgUzWa%xzWSrs(@y9y!TQRuhfPE}8 zmoYt5i3qnu?zcmg5b9B+E}}f{czIw>!Yz}qpFo(h4RveUX18t7oLC-=UbHGyYv;{# z!%1sE>2`F&?j;3R%f@tNaOk2seCdSH0L~b!AfD9gOKRyRXJ;K_iLYA@KK3a9RxSBh zqifO6Ms!*5hiwIdX(LE{L+TF8f!RvbMD%Dnz{yQ1?}4K=uotN1hnqAQH4+yaaUF+nIzN;DL=wMZda*6cFIDnm`}rIyH#Iz%;3OL!Vo3a5Mfn&DVu9p*0r-}ec&y%#vD=DP*}8;f5kXHZEgrEXfbUXsAkhDLVCT>krv#eCmYR0%Ch}* zt}Dq8^GF3d>;ZHQ0JS$h2YRO23`qf3IqIUBmBxvAQ3GBO+S!4z40xp5qwHv7I2ek- zx_L=-D7`#ek8UXT=_w+D-QN`{r!$=576j}K1Hf| z8R2KuLo#Z^>K(osz@3$Q?Y{}%D0#66uzzk3cNd9&sq)J)bSvVg`V$84kh}(#wiWr# z#cjYRUsks$dKA9qp%5Td!Eq9=1>S0hhqP(-sjPA;4TnzHvQ;2{n0*3IujM8g;2?z; zY-e?yEbRilVZtN|D{LZRp931O)R6m7%kk&Pl~r9cdN;COf+_`oQ0&J8#sgRPI_R`7 zGB~wPg-RH!dSoJb__2J9o*!`F5T-t)3oJ#3Mt&Gru}_lRSjzzezOL!{iC(_#Rj$t+ zNn1d34%tOKKOFC84jKj@-!8#t3EN(w~*ri?qTsqBp1lMqZ zh$HsZlHY8clz}FAVQL*fWwwyjnkq4VuXF^fN9aDP0}xy2^Bn5aS!oY^MsZnn@kTlb z59f&Vb5Kam$nDZk^M*W!b*JN4(~S@plRGX>4s^i*-7S*nX@dk(D5cV!Enn+z-r_EC zVUWY97SJMFh4dK;Z3c3yR9UegbOO{&u>5c(D zW)H82GEdYB#F4MCcr4%fN%-dJgY>iisAHzLuR{3?9q(svU)qrB^x;3feIHU)^7k+0 z|9=DdWBL1MDqSTPWgz?Ee|!736nG7XRGf7yn_&rZR+~6GD(2xJ2R`J)Cmv)QyL&#D zQ(<=NCAfH>Bs)KLE)`KBK~fUC7&%fX=u-tffl5Gr_}1I64>c@+`>bl7VD-x)0v?98 zDU{fsl2q4hqc6wSMgk20^Jbf=sU~f)x`Ea@qOl_YVyd)rf-e(o7Y1P8MogQmK*qgq zhs?C~50KB`piH$`g%y-bX$g{x>`l@fcgvv7i&yFO+N@* z@!3G`Qs4LS0ns)`MUFeAE=HvD16JN*TXC0)gbKAy z!?Ju}azqcO9-#VC^DhqA2TWkPk+CsKP0`V{4c6%-Y&iZ)!`*YrC5#LDWYu$~p=bmp z+iLRjmS-LJkt}oWHq{E11m7;UGZ4#GT>(cQm$ZkA{Mc?aHxsX8LxE$;lvYMmNyBCu> zi*59lj#rn|0W!?WmBK`6?i5E@>q&Ow*@4D6^Vb%6$qI9OSBc z1MHo15uU3$cm#R4DPJt{v1*}H9{@d!1D5o)Y#v>Jclu{2f9dnD&iZ}nIPHAQT?@O6qcMI!c@o92Q8I$TmZdtq z>}{7uJ6;SLQLd%>XUbV~n^cHOLfV&3tB*0)%e)=@$KtI~{sVhP-Umu?ffv^#n@De3 z;%fO`o&a@86&Fy)OA9UOQZ7L;pRI0O+=f#^8j@P>_j|*J1nw$Ta^e;oGt(R!aJY2# z4cG2mdO7_TL($rQ0DgyxEVUlUQ=0r9nxcxa4b>y9U&S4EkoB!{wZ#9 zrII1hO9dcQ6jSbKHgZg=Hl@E5HHo zoVYcvPbwofDU{B!Itu*JyL*;gighBmME6<{bh5^#8-N^HINJfD&n9wPI7HwNp|FPY zj6;<6bUD9BQI(g3(Sps!G4I~xuR*=_;I^db(G0!#Q}K~3$Bp;8@~VvQ452`Ioj9}Y z^K8&$SJAzZB-ErW1_LO|hZr%HPJNh&RRX}B2^c$5?|`bTj=AL;bQB8J$^mLPzZ9e_ zhCE0a*OcJi(Wjo!E~8yj-{5*ve>5mZDh(47mc4<+z?PPeQodtQ<+VAIhuJ)d?8Gk6 zRx)aH#nR-zdtOBQ3G%D=Cs)N^+7|2yIsX~7e(aF>Pj5dD=m_}e2l@z4BYT(ReK`C) zYT6da0S)n_gV1%yTHgSaE!vE*m z;d|P|rkkaDk6(%0X(?~eubQ1wT`QV(J*jaCP<2o{I8I`?V;c`tZ_N_d$frC8Uer?0 z_tS=t>*5P#lDi(o){CA)@UgQ(!a@*^cauG#yTg-KolN6kPExI11v!fp z0T3@MHcFpbu%XjKP+aR-0KeA4#7%`61mrOL>AHu>7tTC zTVL=&JXGy=0l6smavvUbnPsSg=He&FO~ridQo6kL=4J|o_hTF4bf~mTpT5`*`HJeV z-2sum#7OT2uu)Lw$bF0HIr{gdV~3#Hg$+nVe2gXmw3m5RY@nR|zzv@_7)81uR~SqO z=-gqZOxGrP2cWDeIVip0ClnD;U6YlsE4dvoDGNxzNaaP3#yA_mc81;w4}Tp9sGuuY zn8fTfskYTv=g{NLO^wiE5Q1DQ2{at41~_T8*m#mPuN4+=n-uUsUo4UVR)Ncz(NYwN z>A*_4=PJMq?Ki3R1{l*SZLZ#`s<$c)lqb*<9=1$B ze*3;Fk(@sK=VHI-P4|-ByS(t%N|}& z4;7z>LN;N&Ywn+%an_NyX3U$r`~K5PJ$Bf~io zURyVv204UiUo=7oX|p>9*jd&@z*0Wx=Yi0Z$=!q&=8WCpU~fkcxkzrMTu|fCaDX?q zoB|U6nQG*HLt~Y2$tz^J`b;vK>)c!=Pi_WMxXK+GULggUmN8NvI3#qw1ekN2=Gl1%uj8pntXYE$9l(mm^MDmKH)hLd}EphxR)t% z?~tVd-~@v@DN&$k=g&F~6|l`E&LpAAXW!|cb;qO&%l9~VeHe^ zgRe$d=1{U$zalSqN5wp3NrY0Zr z9M$WY*K+b%=b4paZP7U2p4Ou}YF-9_G3Ce1G^~J{n;irrBmr0Xv>wS_jAmd{3SD%` zGmXfkB&c?&0CVenQmL#$Pt4;Gs7ha=Zu1fKZOn2<+|ps4c#8l5kq>#r=w>2tb@;Jn>@uuWTTG@T5p8PlJd_GGH zQIn`$V;ctXbrK;Gy_T!FYvCqQcCeN);htxM>mGF{Jcp=ki~66Y;}}HsT~Q(dTVmJ6 zawfJ5QVb~O;6+8~NgZ0djR4ZCp14Opd@JJ8KMZfbDbIfP{`+T^xKqYUUz!O_X^-Rvd{w}Y|+p%kFXA>dk>`%+b2r_rWsTY7PwsclX5F9 z>Ly^v|X5`4eUZbrTMOv`eHoB2e&tt_)%drd4pT3eY6ZaxmqJ#`N$5<_|QFF6((6DB;5JB=FT`U!n$deoF&Ekchk8YI?}r5j>4RFS%4oMc4n8gR&~8CbWd)2Vx@Z)WK)7{!hgHSp} z+8IDMER9YbDnJL^Vtz-gSQCzz#cdDm8$dYam#HqDfw3wm14kWE9SxcsnOH2nUHY8a}FwId_U`Z|t=Mz4cOP-#_ zPCkEJk_wu*1jwQzb=J`}^l;0i>VeKr;6NyJ&aD(*%faZMz;0WgCbj7GUo)grc)LlF zt*jOfr{F3e%v}_~iy!V89qh@O;Hv|a^5vao_^p*Uo6@bH? zd)s&L&FOo~%h%YVlXo&gm8^{E);r?}*=an%GqgdVS(~mTDLG&q2zlTj5$kk?kk6;9 z238&+~hTnx&k zUMeioK|hF{vzLPJ3##HyW!HUyTr?aT-=!~Kt?N{Y{9bC7PT`yVZr~Hl1tg!TJ+Pd* zoGjPijFSsBC^mTs?Q~?@-@W}RJdx!;Baq9ak$w+0p{1l9gE=BF(GE#0-o37rI8=lN zSO`9!+Msp=+W50|Fs5@DN7~!34o{VZ{T*-9n)++Gqhq^ypD^MQ>~Xx^wJBj@DJ5E(2PbCaBeENOUc zX;2li+qmW`>gie)dO03S*asQ{8m^U8ib;NAONE;V6CE-Pkn~C1Of5E>4FOJy$q2yevr2pyky7gy}s>?^eC*Py&b!e7~VcjT3$)X(g zh_@q7F~gKXamBXYM!5)5z;uYsh|)gA8*N$SV>qLADi0--5Lbz&S$?4fqFWrugZ|I} ztD!#I##PD^gP~%UQUnG77?h!r`^_DF5vj5EPZ?)0$$Th4LEkCyw)Ify^)D8qHusXA z0KRpF=t&(!964E|MIxagzntY!Ti&|jUu0|x$h-$zA45I2lx_Wn6^zfCGV%SWGdpWd zr21UdvW2BN%$g&kuL_q<|GogPA;sH92boT3Z}eDf_Mm5gp&(E(Niv8CR!= zU5eHpAGTeiWxNwfr1Hh9g4Xz1iBOhXCE3f_N%R!cEcq`fxOm24zSZbZT#A`SsWBlo zcgDOtb6CgMQ1pkFBz38A_(T3l6EBAr@MX#5fx*?UPY)fJTLrv@>o!zuQL0&u@;G!- z*-I<1tE?WY>J{M!r#_l6vv%*b*_F`nmM#RX#!Fc8>3=LS`1b@^6?=zYvNHbMo|Ojn zH?S@J@ZI(AdUY z$*&#6zUM24LBO5A!CY1+P)M7B7a+=i;+5D4=;{c2&Vr;vTT_*3jCUnYa{r zm?i}~Ni-9FER6*i#mVk=2nf9D;$u1Z3$Q#iVqi&WDmfuP2rw>Eb~}0PkPQLN9?h)s z8qz`Ty-Mwcym)scQ%%rvpUeLo&!pQ5J8o_&nv68HIeBn~>>G+>LaxEj3WO-B>s-e| z=AxJoVi(|`yF)e_wu7i)`V^PVSqFV5?}!xfE)EEXKg!d}%NR;}vYJ(Dcd}{2tgOT76NfsvS!KnijIEyRB=@Xdq(3+Fa%w?A@=t1th z^Hs#x3rh^MAFgI0w+PWhI;nr^&m<#c_?7}L{}dJ!lKJiXPYpu!yXUWd5k4sov8(Lu z9C?N1CctBMa=)T*D!;`Z9wn+Dzy(JfqPT>Zz1>KU(G+^*m;}HXj=y=MDXzlYv|f~) zmQb+*omE3W!`%MTb?AR?OS*S{1D3)SXnJ8g3ASbEti*PG-Tc-_HB}G^bx=(V@PX_8x z35;VVshYvcGPOB-o{F0bED-Rz&1|9d{ur;E*WpgQUIshfjM%d^pG2@jGSB~ z?^-Mbp&0|*tjX8X9hRa+PMFZen~L+;A&r3y3Ily36yq>dgeP>+Gqy{NjSBsp3Z9U` zF8Gr!hH`;Js|@%_1fC^bfC9+JQp29vv0nfkYtSKEKRBrJ*9=ogbvZ`*0y=3_` zg0DoAGHDm+z}jOBa)~Eg$|h%**fqCdq(o*)IlDWpOE=^P@R3t+iQ1@gYvmW-an_>Ihq=+MOX{hjtpS6zzp;{f;0&?lN?y};v$z3C+CKH| zl>xo2F#QD)5*)xg)d(*gKB;spPF3dAkAPNHmC$LryZf?R#+SDGyg5Hxjmkn=It-S` z7DOA;yIz|Lr`w_hg`f462`kz)az=|Pq>WD^573oV%5SFSpj@|v2Tq)9sMsN|J80|_ zHeq>YjB?P-n^v+G!Bc|tr=&b$mof+r7O|b4XOSqu6+*gpjmZS(wVz7#TMFyZhFHKt zZKSAd*%P@YTXd>P>@q#HP7QdYwJ z>oYfB^4@=B-uXMJD0$(}N^NPnYkc&Rlf>aaz5TxY8J-^iu<$cL5PovZaN*Y}oudjQ z+Kv2Bl>@heh7^2q7=qk1w`f%jraA-UQc21M#46vo8d31Ht0tz|x2s@7IbTt4N*j(Ew zvx5$mH?$Clr(%s#!%~9-(x_9Y@wK)bWHR-K7jf>1A8cydk} zxv6e9AdirBjavxN*m`j9fQ7i{5n3BNPJ8*V-LD!6*p{-&^L?JJoI~B8&{l@D&#q@v zXUvG9nay)!h84K{l5($Aras$TfajKTqzVbctN+K-s#LU@e-(s|z zB#EaZAF3M;-&gvW46Q$=o8yHo}W0g*Dy(SywQ-iNxDhpjRpWQ zIluA}&fDTMq}Ar#Fcp>WsfZUWnt@i8OWRYBe5;FdX#qUBL~6X3&65NhIz8W(UODiJ znDW8Jm&*jzjA!OX(a)Rt&%(c#z>*t!Img}bML3eccrl!SRI;Y%aZYn<{{qlI4_lPT ziAjkI+}V)C$MI@YRr#`2ibK`% zLuS)3g-9_S1l92-%V$;~w{F|g-IPTa;nur`#hVf-ggYZ}s!I!O1Fr6NGc7wh90(t9 zf;7XobyEtRg%fTWyMlr22<0ij{kTr)E@(@cL2*#nP)QEjhA#Es$T$QCgKhWXg)fIq zl3Za`qGj2rXam}ZF;8!O^ptiB=W?F`3;3c;e~QjY0jl=ol&e?YK&P#M8beed@SYZS zI#i#5Ork?CdItG?ROk)ORL>v-tSSJ}U@dEc&}MTXRCEOx8I4nH0u9e)~Q;+aJCEu$0Ggoyku7X<@NIin^D)%&nlB5-M<2n;* zT=H3NWU{?&nuO03BaAaJTN` za>8zZ-y4fBUii`EC8a z*90MXX?{rElv{@KrTCO#^Ih-WFVcx9dDgf_@7z;=z7rVM(vGyFmI(R zBnY=JGqA%FQ0|o0nP|i0gGZdBlHr|W@-zv>%U^AbA=S+a+*0XFEyIC~ci_#i^_6ht z19!lFV9jD_Px0%$+kZZT6^2dPH4bEFYzGccvUEGnPIbeOf@^XpI0E*7?r0ZJU#?!o zwd@+Ln+aNX5NOi0wknVja!a7Z~9-!~?+$4wau_1dOB< zgPC!`zOC5A1ZY(+}(Jl&nU`e%twOl_L89ks|NgX076%I`;+uC^>roDDjm6Vb?AL1>a!uTrP(5-Muxr5dP zp}R_7fbw1eFWpYrmv(M-pV4Cw!aR0IQiY$p+;>_k_Sqx>h9PjBXeucOg&uOm!?Sob zxFeDpM)p)?*(l}3Q4h{LAs;~t;hlm&g9ID+C-M%Mf)OEi^7;Tqm*f3HRE?Zf@@DOa zL<=32hgfaF`bjx-&goQep_V0Mv%?+E6Ja(!W|u8tLRE$v$uaE!+4v!a(dDuA2OGtq ztpfxE+6aSP+GU^yH| z%Vww=QibRIg4aSfP3Y6n`<<-8!sVp!i5y0_Ip*u;JV+NPE4~Ia(nJ)%$xL!r>~~HF zA!EJx(0J;AQkM74W+E5Z(+y%7lQg5qix<47)sr1D5V2$CDbAeD~B|B!}bvUmXjV<(+vH^?S|_&Jfgz>sFt*L z=%sTwZ>Lm)OGC%wrjS!h9Bo4t=IEHgA?l zrjDQ1l-$%bPu($ymeL_pGei;ZQV>fo<1SBL>JO;f?u55x3~}7yVpP(Ft7_bwT6>$q z*$}9>J7ZHshFq8Ws!76h5dcJ>qa|ReV_xTE7#%76PO2K!VZ$HpF22<2#5B)5h|W=o zkmqDYY*N|QL;;ZG4XU(Lme@7`bQiXT0N7xT+$3q}u|2LFbs9-|h1bj>f?P_89mS}; z?==H(R;dj#TI#Y!wjkQULg8W_3L*x%fEcJ0>P5>aR=N+C&)-WM5w6;uL>JNOjGs?XYVar@RwxyIN7NQ?NHY5U0L0&%#lI(FGD--EItw*{wI4O}uZyZ@$}fNZ{D zQaPE!R08*TF3}08$`V+>u9wfXJkE#^ceD=Bb+VvUojyyKQX*n?5DE5&O-#}4x=^g^*mA@( z*e~@dx?tA73V(XUu4C6K0$kD{+@d{}pZz6j0U)FuPX$f?bG(tRW>gB9e%Hx;8PWVRUjL?u|CeLtuI zV@d*{QZ=C1$Qd^3k;CbvF!_af`9X!<0pHsB3Dh9uja3b3UdJ{{r9Y*oaJ)KBgV;M9 zXuNm#F1Rbrc!;;*K@GwoI|evHN_h>j*dxnJMk?$u{#PjTY}^E)>KVgc1GiKc!f}Da zkW{|aH64HJBDLi64fuj~39Jy5?1Vx|k^q0-qYflyvPZx9&G5}n3ZC|p@aKR2d@}sR zPln^!pX0nR8rYA+`%m9L)2}^Th6k1tYiPDAdgr^%zUSzwP*J-awQzdLbItsKinvdT zu~lPI%y#X2mxt6pKH6Ef@Y*G{?vUdedT`$Sx-f$Dge_P4s_g~Bv)hm>xI7$1^GHn< zWoCsm+$}R}xo**|=7P|~F%e!x)j`rOt5}K6qqwi1jmJN3x;Nx}USfUdAi=AgeGZbw z;DFfGt&|4s1@UL3dLL@vX@Vl})5x|57&LjXVt8{?BkL#ddLj0^?&e~PQ<$%W9a|Bc zSOC~uHYGp9*JrY5gq6m*PcNOE4VJmf4m^7r*JH&VjX}B_^~dDC7RE}us(Ve8(L$1z z*SaaMsVUQcfRHBdPoa}9z3&P0PGVwUyrpnSM zB8!#_5>tQ+NZC9&>_^r-bV2t08|l3rF=w2({;Fwh{G zGCoPnDE~_S3k$EU!U4e%wDKpZmbI!$K)GJRK1$_f&1`|W`UYdsjXQa?MzHLC0=J|p z!g>xiqp4!5t>rrm9JFAlfbF7H%xcBd(l3k9ST0YJ;{QzRMTgC|F0oPv12c@AG6P^Q zFTL{ZfvUkhqEoFW`sbhxv2t6NCp>U+9oEzM8m!foBO6__#RgxG~4_z!}70+Zu`2RLM z**|{&$@1d!_wNJ=qk4%iAu@WPgNk2-$o=1m}H{@O;Hj%VOt6ml;1?`Ry)|@?9jkU z0wW^TEH+ogJ=-O4(G}4n%N|~L%i!tQk>Vh~A6VY*$yjnN?x-D)Bg}+O3yNVZsjz{9 zFz*H2n3XABf{BL;#zG^Hlt68FxdG@JJ#D?txHrpL(vhQ#@7bRN+-m?`Py)=?U<$(( zs3Nx*R#Bu9@)^np{kT zX=J;}XXUx{lD#3gME%7UPEk}JFw=Bg`i{Kys_LJ5`a|fL&4skin4MUkU+2Po0p$Dc z*4IVq2*4o93|1LHZtJjd>Jj0(`>-36e~S0@)h1O`zWW9z`NBNbDi})z&N?jCkxI32 zyTn(mn`=r=J-5bRzW=y9_aDRiZ$JD;Xz1?6u||HzULTAVt#B6|liic9dMVm|KS(pk zo14A;DpJ7Vid1K{;^S}d#gVsa$FO{rb3iJDXGSF^V=bJfJ)+de1yM6Zs@}gm70wz; zU9qv?PJIEYp)!!$a$qPYDU?dKK*CS(dKs@u-#iZcG10eYte{VN7>G(@gsuwV5yP@b zaSFqvt#=55VuC)3P;|PEPFHDHE&sS2|s%ma_X*`Oai2Ukr8 zOn(y(tqu9rA=&XHh0uf3ZyCABgZcm&Y_mG{OwXHR_{{pNu7ZCWRcgUD0)MKfDI_Ss zzSY8a$|tCqyae2+{v6cwYjT;3`YIFjBDTkW8vgWu(2GyPpO(SatDJGKs!_MkiFR z)Cn`ZW~)fy62%?ovOveja?BaS&vF^sQEE@M!j!*T`2w`xS7$It&W4|gTR*@vtjKJE zmQTSD5IKQN;LP|{zGi~dowQ#H|Bjv>)C~Z8EFa^;1n-te^zc*#KUKriU*&8I4Ul%Q zR5P+Ps8>g?Rx=%@m6+(BLMDeE%rUu!}miFmRa2eT20m zMa0^UcP2Qy)&R%BJxjF!bfF?x< z4M7rFdIPow7%W{lik2g~O(cupRqUatuh=t%&?zM)QCt;jhk-Pq3SPK!m|3=z&u+>e zGd(2_e&l%mGiccU0|v!E)g95d!dsaa?F!qooEQLx!mYPnwpLZRpimCjqJD$Chx$5n z8(yACFF@7KlCU0NGPq*Fs0P{Q!8pwdq_hfi0{(5@#-jkmh;7A8b*8S~{K78EB3d_h zFzzsHM7)P@+; zmAXuDy(4eLa8ei}SF^g-p=Wihx`to*I!qT$=RbR@d?$7`pA|jnAMu&Lmv}7Ke+!o< zvt}&mQ~IRkw5RmCgQLT4Qtpsi!ZgyI3ydvrX)V3ZB)Y-qN%IE34-21R$Rqh(5(BLC zR=jO5jPiN-Na9{?S?G76H#pGqYf0QBKP^)INO^zZ$0Y}!%5^T%0$~pu20Cd--#Ez| z>u#;V2wh`)i2g+#L=by1LpW!QOx;u2=$@t(VqHsQGpRIGmw+lHK=@8sC7frN1>aml zXoNao#QN5nzfn!cKC<2{5e|~34J}6LX$_EscV(pgd4H^@)b!l;Nl?o>pV(-HTON3a(Jp^}8XFBAIh637O+LQ-))Y&fqHd{blz1$C6+EYa`qixE_W zpiQf!dpX4O-Qs>$g-@sxTV4j#C@{?fE+Sc23Pw2*9tJ|x|3->d`5ZT!x!f0H~R4r3CH_=`TQ56fFUgUR*^88uXjJ zZ;;(xx>}_c)JM)jrviT6mbuvbd2FNa^^sGHNsf}Ym#1WEJK7Se-;of0|H%m&uH$LN z5F@q}E6DQ`R|qxX;&x>Z_bFL6D(I=8U8tj%y6BMX637P&i183{hbA>f2LxXXxJ$^* zk@K%R>|3Ci2w?@ECxdxL#->{95Gn~PH8L;dSFZ^hOf0;WeP>AE2>E(UX;n*@rf6p# z1$n}!R4$u^%eip}EPb$$E~2ww>&e|>OH|yITXg26oKA7F>oAym-B9rbNi`(pFIm*^ zLjf|Ek+U(O_nG3!x1E&^;7khx>Jj;M`MoV^f+Rw?VAlIjBkI*uZ5x~XtB(tT6H;W` zYQ~2%SoF<2O4N{)Z$7}So7B_tj6_zLE_PsmGseL&x>2iCFY!=DyAZ+;xAgc*XXU|y zOl|58bu8&j-#wOiS=X+Rqy@de`&)HqK z%MA8;Q~{wfn>0h4uOR#E3H@Xw=r=n6u&b*%m2`X7Zl}pNAcF1odt7p(P)`3; z%B*U{4j21C_@}B)l^s7xp2+BEmW?~wITY}k#XS~IauW98rML0XqMP0uJxv$jCz2A@ zIKGwY)4eCUNpEaBL}1vcmxV_DWZ_b-urwWbd8J7*it(iclF$mBNGx^!wBhY9V3 z;|gnC;unEPV4jf-wDp+kk|uyQ;Mnhi_1$_j4M6aQxQ)sC~QQ%-TVce1-jq9UhV@j&<|}>V{^PTa3~; zD@#7ry#Vgh4SreH0cot;h_b z*e^^ZVMR{h8OF?)P6bQJeoaFSS9ALeQitD@P6Kv_7iB@EfL6M5nO+raJcgD~1cU_IysO7Mi0FvXjw8O* zo}{=~@xO8|WgVB*d6vrwP}%>7vNu_lCb`bU_W2Y}ZknPsp*-_+$jFST zV#vIC7qo6t(n1@tcTKGbR29ZTVJ-p%0x-M(#e3;|$Io{>{vz9CDg*u-nRm<#_v2^y zhW?xdoM^WMSsDms5?LZIWif@AzRQxM(4&yD`9Z$y=-y$T-cVo=(FCw;04u|8L)K4r z7%fss3b{?Un0_=`2n?u+_(=v_0 zu#2~Gg2M-_A3JrZTMU&bY0Us5$3^a)Ewan5KXU`yW~6V@MGj!dLg{gDX}&hS3NTbQWLSSvr_ z>JPM&^vVs1by^e`7Yt(z`cm~OX3OTdl1I->l&a#XQ^A%5^*+I0as)v*a!sm7?<>dIBMh&V}rxu|z2RlJhSfJOCh z^QF8McOzRR_%hE$lV{p~gf z$Z87_#(1{H67*@Hoh=3a7OuO4*b|Q6l?VX|VdugL!^o9iyu!(M@LQ~)=bo?7SGh1);eM_d;N~ZQH?*Gy2R}7;ho*0k9KdUr=-_Y0mNHz!+LyrM8rTj! zFz2y=h@EB#oJ*41js}ESZ=n2<@3g8P=1$c5^dOQ)&Ae#8_d;+rxJgu-g*n`q1$3OJ zDtVua3t+-;Oa?U1ke-yKJ5N&G6k*v}w)RFq91N63=rHA7AG^593y}({V>&U%(||gg zB6G0S;6|_HJK1B&^Zng1F7o~o_Ku-kJmUf%!|t#Z2|g#hMZb{+G+yGJ8nNTH*Kqct zm0nV{4p~?CMBWA1&0T+j?t={jT}lT));9K#X&cz&wRG!7{)Qe1PvIbJLcxdO2{M&Hy!7U?Pz_XMy&tX-2TtUxcerK-TbCo@wE zV#_u_H6!+-!hB)NLv?8U`i>4`g?aX5D|PyJiIsMweTpelbjxEBWqZ3^y!0V4D&?`vTl^!w|L?XR2|KwSF9CD zg?$4l!F=R60^zYa;k+guba(JUuU@y3+YPV&xTqn*{gt55Cdi6HU(%(SZXMF}*ihnp zg^T0nuf7YFH8>@^u_hp-aU*ds_u%dXt-OmJl8q2&$Av<2VcJh;%mYoQ6}h)%M9JOB z8cAKf`@ZZ*M4+dbmP$QG`Ucv`c_a8&0rl<0zXk1N1dF4ztu5eOUG zW~L1vnt@^NX2;QKXO_vgY6Ndi@Wj|3vp{r^jO@0c_0XtYwm}M#V-3RDsMW~4Yz0FL zfwlUKvnRF?u7fi|K40}GyV^kp zK)|iA?=}D<;1rA2f5ESq@wdZ(Fu+TI`MK=uMGDzbgJ(5a|E1OG4f}SJ%3jhqw3TQE zFcLP5J(F}Yyhjv6-pkcts1hW@Us>6KW`pt;jP%h~hRBVcCR-D_hTc&B(o=yf4jge0`}Ah4Oh$_&`EE1M*%^?4Y>~Gw!sjwjr++Sw^CZG zr_dAnMvLL^Rz>(bEi}2e?iy=CpJ%XQfC7fPw;kIBn725Se1anig&{}f5-fX-#d~Ip z7ejxzPv-~eIRO(f`!IEoB?bo<@;ZS;8!ZVKU8@G_<%iN4?FIRw)S;Vc5dai+yM(u< zt8_KmGv8MUBX&~;PN}j40}uaUlG?cq>?7YGEo~D?$#$$RuEW!=P_#|HyRn53rku_1JvW7j;`X>N{VDCy^L+OV1XLiJrtU-(5a+J6xdjNN{EC) z72H*{3q6%9gqW)dxdHGTw#zX9)SX3-(R!M0T~bL-#+VutUC$U)t*^eR4pFd?dL6Hz zf2tAuZlfd=)^TOU2&>HjQtyNVXva^2EB9KZULIg`1|xP#8YM*$Mu`y?^zh~@)j!x3 za`p_W2uCrw%-DYanSHb}`O8C^{`MIR7xKmL56`}NTmJX|p4Z<&`8_A~FZ#AVD%$xx zqFbFmoKSWL-LyaL@?Vhudl-=8#)mDt)P$<8{SBv|O=&ENX));F4i`#F!Yr+K6^oZM z*lP3WMx2nGEI3}Lk)jc|oRpXaHNpscvV0ta-q7lsoQH>$PnoO>H&4N^05kkiAvG(R z@!bngsgEm+i4Yjj7q@-C^g-2C4Y@b5zo+``?6E_uv#9Yo$9(AgmBZw`^Cp|@8K$5E zY7@Hrg$FOrHrj*oR&S7-+amFKRQ88Su+!yeWuNqRW9@#6$X1OdwyTb8z8)=rVl*f_ zr=Q?f-x1^+FOn`>Qib_2YF5j)vaXOF^_Pp)MVF-DL632lB(KzD^^3gy zo&dd4Fc!k4BP>om5mdbf$x5WQ1|qr)J!#{G**utKHS+OygnjSM7TraxXt|UuCZBxS8xXTIK?wB)MOB><= z2Cwo_KFDxA;Nn(&}s$iner zTqiI`HG*l~gSyHAe{VPBJnCb^8;`rnoi?ySj5rP#HD`%mGS6!vbp5 zwv}=pbM^)4ERXj-&o(I=(J3~uff|cFk@W~`chbZWe|cuj&hT9A=!DiF`vQ1x^KOJf zve8~|suqG>ZsQgy3<_Nm#;NRw_a>eQkK0*^U&P_}cP0Ol(bC(S*7oW&G!lQ*_AZ*B z&^>_nk(uB`fyAJlspmx!fuZ<;f|k{kYV@4QDo8H?>0^Ug>aW^;ylir$!XO9}LlVm} zw-X?~xG(DQLsTD_P3ehbUn!9zCL0 zC2H?B5{lHzO_OR2LN1`cD~~>Zs#^-x7Dtaaj$(D|pjxw>{wDly=KCaR$X_v({pS65 z8G`(?@{DQ6{6Zgm%IAL(-o8A2`1`j%2K=MX-a~IWL$dQU2PwQO)4)_9L1AtnBFWj& zxMWX04YQr+D>`q1@I_@_M+zkZ4oAxKdiKfyYeg~#exeEEOgETW4YOUv4^8F#Rmwz{ zWpVlhq2EH$J&<<_gug{A$!QTsUOg%yL{oKThKP9agvk0u?*C9rzV7BPX~c-%&Nb{U zM$-P^o&x!Ly7559Wuc=Q*p(}2;8J+Fs1X9upwzd9<1k?TER$EO=}<@7Zw-1wBJi)4;~Y5vXT}il!(F{3J&YQmYLP)4fnlHb`aw7|_!!RDNk4AgGnm?L{L7>BeDWh8asFVg&nW?7pn5w z;(UPx@-H;&Ru_^4Qr=uRgiCrB3_iwXm~7ImWl;kG%PaP(cbTQ^269*FCknbvYmHH0 z^dfXrg)nO{srzB%3mr6ZU`uRJ>sDvo575&^)Qu*{IMfL5#bRyqIoU{v%@Ap$g?>sn zkSNt%P(sXPs2pJQ@|Ci~*HcDT=~IyCuBh&E!#kt>trSV`zonrHK5rj_1zmYH6DR9{ zQn2?gj{vcg_>ir9xv)V{{%Mc@RaEC4!)s54gYEX}HH9eE!AEPczQ%_N-{(^44Bn9ctDPW_yfb}23 zeaf8#S4frU0zn!!21DB>WdiN;OaQf}Y%bj?*6P@iqlkj)fn`<%9_|MdO?`TvhHE9k$! z{US#gaMpK7F42Vk0qd#FS$vhU3ChG^u^jLoZAMxo-$2Bb#8%#$r%IJ;>vb&cRN3X{ zJ{4)y+1^cPO!#!YC?lYLxpy4q^+)ah6~pZU1KJkbKx-ZnIfqEfTNEM)O7=&L51>R!51_BeE8Rh_5WMg4WWAnzc&%VQ79b0i=g8qM0G zu*_MuwFES4Ni3i*C;*Cg5l#2{=lN6-9x6C2#!Q>+d(21ju3x>km!jzxg z9E=abI@D^0QyfDOaHzj5C9=}ca*&{t^FbJ>S};(8RiINJ(gR8m5;(xLR@Hi!Rf1An z^Bkk+j}c;j97_UrF?eV(_{Lv{|0TzX|2w?@5WdT*l*AF}%Zru5FQGYhEr95dwdeB% z`1hbODj$tdtiV7ioR|?mx&+0fwZ4qq_G&ls0Z<@hpsZHCcXAI~IOIuw(x;QI!X3&r zbmz$CI{kF8K0x-SW;@zE-a^*;^}t|ze#3mwr~ZJR6~ylZV(@C(l zjuPagIU-Qg6?&GP^rv?OW5v@d9kn-%JohvrY$gN$fAb|YeWm9odxFiBh;v+mr3HVEsSfst^$CN}`a z<}gzCCazQ(KnXayR`&05ke@?^9(|AxWhhyFqt56dxy0ZM|D_?G7LBqrAxU)MkQ>Af z%T(FWQquj~HAtODTz%(k-LcZjv{aVh7kY~?Dd}tQhcG6x;}oVR;iHJqw{rP)ZyB7 zl5jS##TmEgu!A)% zO+ha;+QT$FT~b+=O=V|bX5FH#UnCZ4d96y$d*NXT{azOA&>@5D)+$C%Db2*$>2AV6xAW!j$axQXKA?y9Xx?k z3kS+^tTq+Yp@^OQC+TWDefVzx0{!FL*QX~;(ydF7B!T1Et9s;;kAqdnso4{UJbP$6 zR3Z517YN5&o*mQ=7RGasUdfJfD4<*<676vBt(BJ6 zlDamyN)Ekn0GDA$jgqXBDj=P~-h(pDX}(Np>|O}#k;AZ4wz0idl_`48t8@1nY*?R| zjG8JDQsAPFM92>NtK12c0u^N(Ax9x+pw#9!iBLW4VHCrPjU1#l*r@+9fK8DdS18Dw z)GSuLAq~{23T)JzDiX*r)|*g8V@24+s8a<~8>VRjOu{a?$rAqH>p^oU9E{Zzx$PEr zF41l0B?`o#@s?t8CZ~_>!NOBVI^r{|28FEUq8hzx5YOf4XY~t*97n9exsU$G7~Bos zA*(jWluwZ72Jh?D5qBW3+iu*`dPuSr^2Lpe_zS%-K>7Cq-9t`_e*KO?VKcZ6Fd4;KCYpBvkdyy*rCY-1 z7;dU6v%}W3b>{PdOVYydw!6k>(>*NrLdUCHv+7O1vx4m* z4m8Ssh93fy)Z_wvtE#fLd5a1Ma2W&d10m-T598mIEaU+XBYFL~mzP`taBO94w^%iT z7&Nh#Wp7!I8mXusc3mgUXl&1V1G?F>Un^|5!Z7Noxwu6Xs#Z72gH7wrwHazy(}Dzf z5Tt5SIihqxiq{PrlST#I`5B<#>e4WWXtfK4)jqwG^Esgj)RL{zLzJU>mR6avUqOC# zpf!NmI$f`(5ou#bLhFRV1ux?rLPq(K%DO^JMG7O5^FT~sIa_6)T7Y%&VsbXm2xSc-Lm=0jJ*?LD`c~+}Nn2R>YR4#LT zu`$P}AtmuR86@L}HmlMiIZRVMF@VOY4w40e=#MsZii}}qu;`q*^`)gLf@TOvxY@*i z7OzcswVD0O)WX*yU#t3$ChCBActWAoTOvB>rkq&2oF#6aZc5m*xd*5=jdgnotl4o2FOZ-nBF6Ya4M-2>|)MXYn6R1KCz0>)O&zOYPJ z6YTZymV<{Qrw02dXPOC~`@MyNk-bu=2p*kp&X95|Ug2j@A|+uN=}Cx^iG*NP1D0LH z?q0y+V#f}K+o1-nK+fOMBchaRQYqNj1o%PETJQkfni^@fq*ljxmq`TB;DZSo@q-sM z7~x@P4+HZNB@Bm!F7pk)LshLU$W-VGQR1gUiU~m~H-B2PDue{Qs+LtHMTSMMO^O*{ zl3+cNpIIucrw$`(&eODr{>j_g8-NvB=co5iDjm~Y*1%tbV*pwZB} z&k<9d;Auy;uMXuPU6G))e$ZvuQW36K6{xuPnQGTF*+tt9B7^88FvDG|k0pIqHEdvF z)jeHhLQdP+e!((rfN~P5u4?tv(#7=VtnJ##dJP?5s_C$CXIYW>^Kc=j1PX0f{!;sK zF3N)%W05S&Rh>-{DcA~$j~dLnX@r*AodN7dMB?S_?l$fb3mrU6j|=)>FKo+N0hr!YjK%snZRI`EzCt1f1DOgSt^$ ztPW9J)Go|5cRM+nr7m<@QOW!N(bw*I) zNWLFY>Zp|ph#!6g(ZTTHi?{E;e^0@U!6>`0(*b$^8sNBkQfmsT5XtEPlP5`UMw+WW z6z4YBHMr0Drrl90f@TB+Ob!e%Vx%{?S`J~hgLu(Z${4^DyfpG9L%Fd*2(@wa*E`G! zb!gA#BjgFTf}2<;wQ+o&);@43*o{Zusg!h7Z5gxNBDHsaMg?`jl3%Pj1^pqo>01=!0@wYhIBTH!R9b zN`wuJu%_uaa*@YSP2eDL**rB!yN5@Oj?=>7;0|2Dww;=7MpMe2y`VoDKO!eA&Xj9p zGk;>mWCIaJ3j&gdFVq670iIfT*&!;_Y7YBDR#qy%?E&S|O&;wGO(^lw5+yii%xrk} ztwaZF?pBb%lM<*>n{`eNv1(Ni7YbZ=QSv1tUSwtg>DU z`dw0=TkG;_oyQp2+|vx?U*3NGZ>@4Z`v%t-mDF!eAAb1uUFH0L4(|W2PA`&|Niq0x zm{+`@TMf3qQyhVz$k*9zo$19RQ|4UL`!44%8UT&S!GM`#&BA-AS9mwioXT(eQ0&lv zc{-mt1MH*Zu=v5+C$=bYdn%jU9t2lDlebw>!W=Jl>iLRZLhA(oC6eGj$R517-`WBh z=%+;g8zYLUZ#iJPlVx*&H<^+#8exeOX0R49YxPqYJ*A>ilXS_f0UZ0m;7B##5=#()G#B%m7J~()L{~mJzl~^j=gWgg!mYCt?{*{Mo@GV=TDEYS}uyP)8w@BE!UdP=sF5dQOKx~mKHX)l7sk4|3R zrpJrZ4&l)bAtjDYQhgbx;u*GLWU>0l4mN}Jv3i(nJiEG7pIQlcfSNBZr<*GQ@3v10 zGuSJ@7%J|c4zi9)8QzLB?2a-N{V#+6CeRrMr~PQWaHOAivv2CUQ9K2%ii>VqPxEgX zy5Ff%G6D8-T6YyJ2Nt#xv>j#}K=K)XE5HGmUmPJY-)%i(M#hgz32$SD}v^# z(#V!R$IQ%#J@vgnc&J={8k!cbukfQ7VMygCqbkyno;%EHRqop=%%isF1ZteTp6p0rGtd!k4Y@GbW~S1PJ&Dc=%TM&&NglyKgwkWI>F#uTFQg zf(%lpQ|KH>0C+)7XAc7DjcDa?6tF$AWQ~g)Z7abh>OnAod0WW%S$P}jav%m*jZ}SX zw}Dau4UA8A80nQ-c*YC!LB|S|IVrd*2aGfAmJWktiD2^_{ASHyMC2~jEdkCV-*&cO zr6V46C2gJWDrAy&C{#JU4!mxg^j(nX&47$KBHG7$*~?hjIq2t%%wC}vOVlogD!{&M z-ou2-rp=NERGvLyy!{?7PjYPTDtHDnbJ(h`+o9U%@h12x#0H0mzwGYG?L(nZ-Zkpu zh#N-O@GabJ5+Qkj4d*v>U-px(IJq0^N!=ofqFdJlPI52%T12PhKsrl)cIn!PA>c{# z$=^WWcT?k;j%uGMhgD!~X8GL9SAIt#Tg&~b5DQbjxg&|7*&BL&HV1R#IRJY)j`2rO z3LtkiL7l%=ds45FAA2a9b$Q|rbO!~_&^R=%>l;;+Dw0=F++Epyufw>@b_SS3XNgV< zsL*(zU`~XOddE8V5gt_XRY+M5(HtYn@?|<0!LF0MDqyeK3jS93_Fqz~>U-ai@0N22 z<3xPOXOAA^w~5fU$s|MX&^&nh?k+6)d#vT;@GMQ`b4R+7tx}`8)-I-ycc^+x$^}=Z z;J~|8*7!6Nb^o%k>Pcd3o*?)_!m|1gIHr!SG$qFhVvqGc^1~Jg2Oe(fWIF==;h5IZxvmnj1~qy2V|GA@+FYv% zqfXvo}Q6){wGED$f|X$C5ASOE)0t21$=9u4QCOwtqLm8!k!ZJ*>C27&9(E z0(Zccbc;oKf)J|*=d-4aR^s;EJbPc^tdg{OUtXlvvt*-D*n{FzyE3{3aqFdpjvRSCX#O$}g^T#t5w)p3lNYiuYor7&p}aTeqI#JSlXeXb_?u^|UYR)R%~p zrf-2O_9?g7AKyM>DVaCm*Z=ObKb2B2Nd)?a@INAWgBoD+d7k$s2?YunN>Y+dKdHIKDtih0`<; zoGfY0OdOm+tIDg`&(&BU!5y7)kF-nLi={c@gyAQYn#`44SanNOg%+vuU_`ikJ~68x zVK-#HJdmjXTXzS!7-)OnQgfPC+1IAUH>m_YSK$PV?D+)fSkVKWDz&kqztwmJ1%}7< zF0qqN7#LAr$%v^DWn5k^5G$9V8WjWmO`E~;VeStmEE3-v3Hn!zN0X(!6B2w=F@P}t zB)fMHue<7Dhe84aDa?lZ_n%AkIFWXL1S=rgpm40iJ}AFyQUe6Z4m zI2NYz0Ht5$=t2LgNLDwUyzT3niUmyrl0D_JkdzT1hq=7r2kW##-U6_6qUWB4)PgB& zBv8AK-Af=fZhh!vYEuamiwD5(R7yhGNhHwAX|HPA3xwn0Ddb~VeKhi18(l!oOcxV>`g0s*( zNb4h7SK@xq$=gSj-6@tfm_qpOy`*fYuEta){Z;lw7z+e-0|w#PCzhHmoYj8}ZaPu!)^QcY&v8z6y;sak^rw(P}lDp?BxSI{fFw-zp5b zr#?cFa)J270x+)~&uBt0;T}g=>-NB&V{WNsn{4oXgV$}b%77N^z9mmpKsg~ER~aYN zw~3~&TFX(menio$7HAk+b`KnE2Nfn1u%oI_A@gGI2FDliBLHDoz7=H)&1+PzR5zUZ z?{H21e<1ewzrTNKQ{orEHfhNGfMywat&Pk4-UDR`^ND+ug+Qn4a`E`Op24C_ z?K8YFvZk{iwrJ6i+@(reBLl~b9ACm7UCDQVjU~7CzR5HPD-c;9j%y5L8jKkHT5K2- z2V+CF-C;kdho~*IL1`r{X`fvwy28sZFhivVAP!Ep2K;Y`;J-qV@(fbO#nWDGRnjhX zJgdP2GujchE>adKbA|RmcvcDKH^YCRPjb>8GhVnCv3w75=l4K)GSn^Rq4s#5f%_fi zNE7pM!LY>&+YHd)^&nX~^XV?6a~7(jU}e`+l3ZTNShC(sD`l%SJe}IEB%S;~H?Gvb zPZCbsq6`98Wfk7Gj6r?giY7^;r*Gbwd!>$kH*Vxk)qW`_1)}j-rdKr(#{k+c6E-Lt zUR#9eH8nAT2T{xK4ICwQ!DbVDuATJ-b-JWnZ7@?PAOUPxj&usw$~Bu@%f>%&p3rfe zCn*pr}FS;AGzNA^!>YZy@7$m+xJc%{!hw1KQvss z;w#wCrZTF`V(6#roD+xM2-+J`@r%7;C~7q(cL(<98r;uDib(dqG{tu-6rSaa?n-LP zLG$#G3}6bdEE5nWJM36Do$mllKyMK+q);-d(1XY6Pk3G!c%NQlaQ1#bOLZ@P7g5uaVV~(qr6^1@t6cz zT=HvGci$BT)#JQfQf`RJADjDT#*|yE#fvOTn;?T#e>a_j`@1$>4&lAo>^ zGj9D<;DK@iPbaOEApLbwp}2kUBXNMHfdemUPkiM>z6Dq6tJPW(_7Jdkb?v0A29?E} z+>Dh|Gw)lOqe6ag3&en>GQ_O{n~=UUOGCK^xSn7TfUALk1%cdlUe7wLQsbgxBAIXi z7q%?6C|6OGgiiR*9?#Dr}LplFdDE+kK;y{y8nB z&=+c~bbFP$+8`Z>&sbztU*Ar5iGb<=y0@3n?!jGc6Hs)^ane&nQa9$=kMvP>M!2~F z2Uzr@Y#2EU+m7P_+3MpKo}*XMaGnCV_zW5JuGgNdR98|Cca2oV?o6lV@4lT;V%Nmd z&#CTIQJr)&$x0+XNO)M>-yRr{ak}_kwScX{6oo9bz*VNs1K8mDE-GB%ssgfqpXr2v zeUm*kUnE0)l|3ez^#r{m2vW)`I2?cq6M;aI?{0Zvw>%$`xE^c5I;R0fuZw{}YR^u` zt)Sju15xcYeIH~s4E#iZ*n;f$7a)1v76vkvmrf2&9P87uohrdmyF$(t?}&GclV#enQ*S^xUfcpg_Eo&00ysJ~USlsAH?=aZ&{I~Le1*~z)BkGTgex_ zJ0sU$Xyn@8A;k zoUBhQwJOG|2g}x7lapgq-W(_coQo{WodnkN6kKTnEG5Z>J1a~jjJsuh*2}q@fFf*V z%-S|TzI9Y+gaPJuaKNk>5IU6`Z4d^^>5TRo#$F7{Dj)@bdAa={i9=;KKcLk1j6=~U z$`XDr`7d!;#x=63Ji(IK?%eo#mt)2H>)j0s2L)MC0bgpn`r&P>enJx(lrSzfXy_(q zaBEjE`77u#ROl1@F0A5)tivg5aWWou;F6+3bdoN>8q=V@m9Sd4KnszXS4*!AP~N;% zu5PP@LZAb4`1w|0+qi0|z(*l28}Lts5za+;L3Y9p_}Y2Sw1lX5Ui?AnWx&n(Bkpg^(Kd1@6PW1AEO;gi%kNU?DI zvs~ovvyc zf?MVtf>D?LqBxN4NuPL(if=9()f)MrS3SXAwzqE1)o0b~h;H}BapM*J`K})n2GVh0 zg|zx4aWHq0GQQtV!qoVn_JUFUqMWy4dE8DjL1!KF#s=we8iRBwwMq1Rwi zv#87Cpi~fT+2tBDZ(xZDq$5jw=EmipT(j{gn@_PC_Q02G9j?2&ws(c0D#3GdUUY?a zH^ZQWK9=SY9b<}uL$eNETq!HNe)nVAsNAP#;DPw)S{0SB9gzys;sM{MEW7VEtdJ98 zs=EU%-*kp*@UD+$8tvFgoU?{C$gr+BqppY*vtEZi*STX29wE(!kPf$MNQIbvLsR*G#1)ja%%GT(BGIVCw)Yt0!>?fVGBOXfAAC0F9V}nbvTxk3p zff&jvw*}CU(nAK7bfWkABCB@ODU@?M&wM7sVt{AUWXg3hx!o&q<06+pstx?GRnMGuko) zBHCCPH*b@Dh@#tCUl`YV&-ff`#YuLCW`;Oq&#`5?OCFH0KP!r@H9o1p$?EbeDNEI| z7Z%0^*{l+($vw?3TCx)eTSUZD9F3y&^G01@qj|7=)*hg{(^X5n48Z2e#^vb>@SLfX zLyhAOiWqBdRX#1Aj?kDSzX*-66$30uxY+WEY7e%{;d%o}V(8qX<$L+Sgu~JMXZiZ? z-+qAq2VUfZ)ALD|(5Rq8JyaG8o>CJ-ubSlZG0Um2@G=^d(mmH56p`-Wy|->9z~(`d zx2}rg+d54S+QI0Sf@mGIzaZeSIE%c6Ydb+kYTUub3`{9^o_#8pbCLwRE7b99sG+$l zx@ts&B{WklC5MfjJr6Cp13hYt>d>~Ya)mi)7{Fy>l))QtvuO@We|#&$=XF=EU@N=h z%J$~vsY=n=!v4;>`LauPa7mt6U-mGWSTTHr$bE!_%h47Y;&8pYBs~u#1fF+j2Qb>V zio>@32V0hd zc!Wtpm?pkp4h)4#8+lcVW3{AEjW&vwDa@VZJ?S4jIAf*C0yy%p(0}*-C4spAk{7v( z0*Cj1p*P77KE^t}PA*uGHN#*BxD~}P%1u9ROQ46Ja({iUyFd?_4I{}ZDL!#W6Y>_@ zBbZfPixz5$0wfNA;ytTIl|1>Ga|wgn7Q)+=9i*Q&ZH-IBT{v6WAi3dI3}3uNH(?Xw(W?` z-m|GTezW1JLW8y+G3El<;?WgIhiT>+)7tSPLtGDb>DNFMmjrWft^&Qeo>UXoPS@_W zaCdJ#e6?*f1LQvR9MEJnk+L+QXte>9{$=2#(ZGBk=1W*;D40}Oo~f;DTK;J*c(0SA z`z0~b161zosqI~yP%T%AX?ZFFJZRk<4pYfcYZTOZ&ljSp;{JTc%UvVxtBH3xQ*Ux) zJ~*|mCubR{nX&w-_K8Y@m4csO2q64iIhXe?gs$6dX&_&C0l?X*oWSUgKkJoll2 zTX)Y*43V8oJ5zkS;Ox_&BKt%s|< z=d687js=w5F}YC|Q2KQBKvPyetPBZPIqL>?urRxIN#1T*vY(XWiIs99rRUmJFef+) z1>6DE_Gf@)kkgaR)kc1)m0{2WuH%gdq0VhPYmHGgzz41^)Ptx>*kaw-Rj5yGTZ{yT zKuUQVwaQs=K0+0;!A|jcN3$f5z0e`4JJP3=`!DwiZE1p<6y@Q5xk}=aT2n1U#=r=T z4Pj_GxL+|z(%Fk0n2^l1vvMC5Bhk;203{#BNQGQz?D7X-UK++HD@Z67J!&M9sYPS` z6eFEdW3YAh?eOQhru?%%Bd+nYvYCGO{#oD!VaY$?*Zt(1AM^Kp`u^FU{vpVR&)+^p zlKQ>y{%h<$2`Io-jq=u$9jPjw2E>6WqpbdsCBK}nx6A3H)-?3`Y3U6&7}{znnNVKZ zaxXGuaOTOQn^03YAET^(e?c({h_~_RW?7c$v|b+aZo)6m&d-Hn^()+BfIuB7wxl{5 ztYwexd|G1U%h;(x)SB)*J0s+ZLAtfPwR1SF{E=sr$18U}+C>&J0@LkD3V!CY>KlBT zoE-s7VczKI^KcWR)mSCknMirWLBW7CB9PfVz)gzeHn5KE5=B_SWDnr-#5?&5z(rYJ zH^{jLa3s+vy+RKXDcim8tQ;5VTO0uhqrr-!QeezNWk4jEc}qm)%Rw(KJ;U>v|Cppo_91JA=Vu@p z+rZm%!U+lq9oz3uoM@84_>>nSRGf~$Xj~El304RUDnboII*Sy*9AV7C2`=&Y)lT?! z1yX*?A}Nk_hj$a{0>M)#rzJUKh>T#%*f02V-{AjtqkoMpt7qw-{!4ilsvg#@bxVOi z!lhR~=rb?QJVtE9it84Nb*c`~W9fL1Y>*#v80ZG?CWX{WjRmK7dsdFM)q>%MlH7Kw z3gQ@UUGb6|?~bUVwsoo?CopTwWkV@Zz+0l}KFE%JdXEtW;zIEs2}RvZ(6Z!< z*8)^N2Op0}6?+D0inFb)8I~Cko>S&9g?!}(vj5)kzSSf z&+>1!TXDM|+=Z)bz5NAFK32T{So2+c%+W!kKte>Dmg7lWx;)ys zt1q1oQ2<1;epol?kl=RSd*>La-jDTLHM8&uZwpwB6HO-w8=g0ZMj)M~h6a8Ffm4`( z>;&&2C5WChoD)*>6{3nHr&fSu9FC7OJP5~=gkQK^9(+;KU8j2J_lBXa0m88yE{$i^ z^J!F=16e>1>kA_d0!d*>au*>iEvYhXZJN{{G2rz**f23aRG}Sr4;k??ZHxCxZsZ(w znyr44UH&XMYPE8T-{EMZS9F=_U3cBD|u#s5xPB*W*a3#w6ylYF( zScj|Q7O;ehZy=&obNbux*M|V{Ztj1-IGS_+5?Vibwqq1p$qC+miA##l{KMPN zWih@&zEBc__Vkb-GM*kvv!c1*DmMpQdGJ4SEC2_;$!b2{uGpseBRfARpeV*qE*mnR zHZ)8Sz)5GkK;^42g_O(b>SI`EuEqieMIi6?S+s%WPT9K)Y5zf4QJXg$*URoUzi3$B z9FaAKo3rqPnpT{aEW5YNvR7TSTaqG)Ca}|iAgmz>@S*|! z0j}NukQ2VkGKlsw&^znYV!$yoSE=hUhj8rZb)p^VH7beEA`xa=`-;xlt91g%m%F(Fr@ zG+`PPgCY?wwp0)UC+1mdZFPABbjcp$v@UWspiEV#dK{13q#B~lnfx|;P`Jp?q4z?K z(a4^qhUe7mwqPpgM><9E8pHKeWvV9l5^_#YS~mGqcZGfVC?B&4o&^9oS0r_6_r8?A zU@T8^Y+dA)JUVL?#Zlt=v-Zpchwkamf&nq!Kg}LpnK^%WkORiQhIi{}|C2*8<;T6S zdELv3g)vcnn8Mjo<+~il_YRgq`C$TGz&x#8 zD6!h#RwKuKhH{P^{M_*v?K;xNj0q_&w_pw%^K(;(&)2e>c5zNFexd`k%(dImKPhM4ZTOxJ>e zx$2NE87z|b_f*%~TOhpZo~UdgE8Y{Jo9f`$-j(&#S}))_RV&0MC2CpUK#uRo&Wwso zBcaYxXJ4W#q1I`F*!H1>Yu<--T~b8U021G#f@A7GKdW*QR8WEZhR{oA} z^CNK=sG=ysC+XtOJx357!~^bxBHSmy5y@)8@!OpCmeSx4BuGac{0(e-bRsCQg~1lu zl(r4434NKd>`Sos(%}@}c}Sye4}i7YGal5C^(_oX4B#5KAXT$IU#6?7#ui27o+O90 z4unL5Ilb0Y*g;Rv96(mvhrpcMO`gF-Y$wX1XdkYty{|u~q0*H}95u=!0x9NbtZg~N zxp$x+*%5g#OxoU1R*^k%lmi8pg1$QdUPjUu`*4%eT+Rh(?>TL0UDc=!(i{013KrZH z@zJx-*N5kv_wadnN~kDjt3e9pMA(YlVdFd~ot{T6(woMLZD?*IqyZ_Fk$sJiSu_zh zNxA$)@8sV`0tVzdaD%uLwc&SxpppE{KfiqsR$Z?cpUcg(jN=Ia zrg?AVw!C%bbj_{9^8~d**(#g*(vz_JU|@bo9%5R0_@T1imc={DYN^9n*CNT3mH4|F zd8>WLO!vUt!CN1a^uF?`0O_!`q(`fQuly0LnK498{aJzptZWvy15nx&<`r7j6FZ%d z#UNv#jqM`$k)q9+Tq&mqxg0ucwp|L^9jjY8X6A&MTs}R~qFbK1FP8DqsP1ibjGdHq zy&MANgczP-wyuT>aoxRLr%Wfi_EtRL(Nf~IqgUn`J8fhUBEZqQ+vSkX6bfZf`1HS5 z5&%bDk78oc!!IT|vJz2hb1_hG9BCBQBjOSngF!E8I5)YkJNb;0RFq~9EaB@01_tg+ z(;W0GVGaykO3M<$N@E@yon7Fo5vdEWLcvm5VCQ1tF3i*~X=g+Vyzq;{mM_77he=@83KO}*1h2q0;jx*HE!=jD+SlAo zuVqDG{&_^N)nKi3MX?WTN*ypXjqyAvHU!C~+X?zvvN+j3l;6-%Pw#6M@xNzG`6`&r zE-Xb2o%)=7lnHYv3{WIp_y+9k4$XNg3nB2@IlZk@JD~`)d;sPF1eqOj`E62>p+He~ zWcJp_%j#9LIt0?G#fZ|8$^@(Y7w`|Pc`+joUbxDu2mf$XUImEz3&w36-1Ua3T+$ht z?a2BZ-N#+x!<_I^bVnv&jMmWvc-X)tmCCQtiwqnOJB8U{54esWQshMoevp2*wUq3Y$`zeasGVu_I z9HT7=mk=^DYN=S%z*W&FJM3o<3@X$LCleRPA+0(B)8KU|WKqL7kxd&PX+>=2R*bm` zQS4=8Q$$G$lXjZ|PSWX70cMaG?C(^Zk>En@>gNQ{y2_48iJY*r+%Qh$oU01w zexj+z%*G{3)!V_&QcG3pd#H1vQ?8@W8xSfl9}RP*$~u#|F9!7r4ol=FZt9%CGYno*%sSN+OJ0>dQZrB{*tn*L z9YVf!r~30#ilRGtN6lW};MTZqPnx(llaiO5R$Pa>Y`@*LxND3FZ2Do2bAT71Rp*o+ zml>^9Sz&dW@V!`RZK(wW&)e`I3ENCdepHYYd&1dDkyWjVIiUkO@=StMTwoLbDqFCF zS&_W}UqGP0;j#yzKl2gbAXm1misj<;;fwblynp%O$M4^l-1v+4pS=I!!;i!Jm+#*_ zX>a=NOCEH8kgswvS$}Z6&d1=#sq{^q-yW);Q?r-zkXj<_vr5P|$*VX#1c20XO$mD# z5ZkN2yJoM^_A~rsV*`o(Is9Wu-i9p)&0@l3Oeu)Y`}Py54m|3cEPZV@Ug5 zv3FhJ1ZN~}F{47>L0P@*U1?WK z(wd{|Ex5?Q7JLu}5U3pyouf56he0a>w5xYcqI=Te<)t=P+u3LXBKYYsOL#N@jL(V9 z=q9}6uRbG{tOKnV&e)z49WxZ=RZu}T2`hBCl;MK~`h|>j0!>L0*OSs6@z-{!yXEBm zzC?scO-gplYW;;tf-{4Je?*S4qt>LNQq)LLwF`=_Lu6oJQ@O?|1Am&>c;YDw96DiS zDIGlT<>j<6E9fkqRyae<_1T`N)qs-vwp9C%80=qJ^NsWKuZ@E!9~ojkd;22%&-uYW zOTJ|2nI{r!Ij21bdAiKt17@c1h#^}0rr6_$lD;wef-WTmI!%VaLPKTA7SaZWDzOIx7Ap@z)l zXZe&!A+fe8YeaZ zh?guFfnmwiyB%Xm+0Z{cOzAN7e)$+R0M%dDnu0WLT-H;n6mnJOX^5>ByznPIB6*jR zNO}GxDPAs#8aW{_F-Q+`y(R@-1jyBqi-~5ckMg%gDI;AOK}*U^d9o_5y&Y z)d8#HD4*q6rC{tP)gDF>tb#Tglu;5$(^Mk~Wl?7ZZ;N6O!J%_w72897Qo+uC2}5OO zKG;tSC5W4Id%1>N56U%1I)*D!g&O}#n4}tI0VB|L*CkHOfPCrBVD_8vo|}>nBnDDb ztLTn5Umw{L)oPMQ>a{FI&2!ojhzv51zBT{=k@#FWF(sqqbaM;CCZXweV;>@?4j$3u zG>J@KKyYW%FsW<2g87ttOZy72NSs3^8FRl!Pu9UJQD24mz>`+4BTTX(I1Vh)w6FYQ zCr}7oq#N{Isj3ehys7F{f1(6gEJp3j%Qk74?<|FEGXNqEd}4V$ zpNz3Sdw+FkRMAn1dbZ0qtyi?oP=uP)0GPtJnB+O=7u|a^;EDBw`m}hIDSOiHEKW)T z7Y$PFsOdTDonh`ZEph%ewU#8omDR*P#84D))Y5EI zH8!Yq@P`G5Z$h@nvx{@s9wz|yyj2&j-lwZQGi`w00v2^Lm>L`-!gE!V!~B`PZTssiSZ748eUW=+vftf~mR8&3FPOk=xVuAsK$zXWSLu+fR!M|M1?ieH33&-)z@ ze;eL@aGW)Kqk#H&zVQG^$7lKS&OOW`JcdtlgBH~6ygGJyWj6D}YUs^!)}V!G`fyAz zozV)hzg2@p3ltELv=T$DjTl3bYg?c7bdV2S_dLi~9Zbmy=AF;WB6bWSP(Jw@BCpQ% zPVnL8ME|ZJz^T3<%3M3Cr`ISa&rL#1I*6SwAe$R`Tcu$nxuVQHnu$8i$4gd~zXCcsyKJQ@_76%9n8V6~|;2FBHPm7R&7 zM;6V9!Mz)h$4)yh5(Fu>0;dm8Kf=uE!4jq#LxGC>@s?h+sBOtdmDDTE-Rvcp{NSff zs^kxC7<}Xnf?`fp8uFTyWl1Oo#_k$6q6skUIc4n(slOf)5r z{_Q2eS`|qq#I%4{M6);!%Bb1cTgebW`x{boOj(uD)OV*wvX`?bea#r|CT847tPBq} zX)y3vR|ynF%}s|^j7urdHb~(DbDXHS9IEkDtA~9KFp_wq4ZnHLhxFx6p}*Rpht)F$ zU@B{uV10u3YS%BE%~U;*GljXMb_*Mjt%O~Jy}&|h>nLOwGmOrJBkbT;TTALiw4__c zssV&OTFGf}!XNu20xcZLFRZ2d>HBBl{SRQj{wkPoYntc4PQ_E|gpT~JP4%ls_x;=? z>CG3HWR^o%CDeY1DYPCn{JyS_gQu|U*iK!`*i#2@cc+B4f2JG5wuP0O0(Bsy#L z<9f8K0*C-pC8eNo#00Qp;M}@0!wjD)$x~e_z0)n~O;xw*d9sc3ZuUW`GA`~^ z9~6*#cuCt*px*KUFV_Q{2E>%5EM1lrW()x+$SqAF9zVLv(G~R991^nqde=cX%{ETg zatPiv*3|9%#JogGDYcN>zmPTnMkfGGOg4HbF|FE{oeYn8R#x-~DuHFG`3xuHIst=h zKtbwvG?PZ&QmA+=Z`3S<40aX$WFdm?2Lveq7B1!mKt#toF;Ad+5oxR*Jq7k~ftEd! zlC20q)atoz!GaT+YFq73g|NlNJtnG(wS9b%yFwC^vfNEDE}{&eDC3|0UY~rOWPO=n zgskI*hFW8%Zs>mM-J#fVi?8${Ue%>)qYuf0cW^_8@McLvH>8h1>|6E^Wl4cDkbTy$ z`Pg(rGt2JFdeCphAp&eR-5xVVn$gx3b)2AugU0oCr&;bOTd^b4(I`*qNRc#+$^VRbn43=K!^9N43HJ_BOVvxmG6;h>+Y!!jP* zUD9k<>Q+Yx#wA|D745|}dp9`?9@)6hsg^iHJdp-k3d2^i*=YvT=H{Zymlrk=M)~&3 zNFf*Y{e zsIfFAcdt`@H#sQ>9L!iA%&_6Da+$bLRExY=cqL~Gz{sGL<8r*mj|2}jqfQ|8J7K6| zZ6PNn`+)L#&paMqRFi$XoYV|5_!wVpaHEIi2Fmgz)Za*j|B~dkc2Bu;aipHC~p|_By-uCsC9PqTVQ`?ftqhFo5WgFY8 zTH}X^gII3LE9=Z!xtf(MvqMuGXDCitHNj5(IU{uJe3c(+ew^X7`w!nt z_VtHvhEx7rV#@m;t!-cv*VA(c=ho5!0?!{(76L9L_m0!mj5{?wk5~qFc>p4D{Kv;EZIn z-ANH`5B3~K2lx#s(R^o6`_hpWy&94YY)bbX+N?X>#^6WE=|VyhsXbwP92XTsW$V0e zXnQGNXuzWzw8tkhf?m*|(J_qcukOtgZfkzlTx%pNanG*@v>*$7>@F))Xr&%OVD^Bl zka!G?L_%}03|H&UPHC1pxv=sXUDPM&tQV-MXTnm|B_bm(dN}d-wo_SGn8SnJ%6t$V zQoAqe-=MZZMWw^tg`sv;lpE9RdWwk!WwX!dCf`4T5_T(z2|x{&=|nbN_W>;CKpzJ; zxev-qMdCoEPjZwc9Sz2nu8-2t=#I0KD3K7FV(X9`hgnIandrfxAdZ^GvvC-ec5ky& zIdj$81en9ggb>sYE?|!(@ST>mtPeTWAPm=c0~O)c zC47=EKH1~r7V6PlvsXZy=ACKCCFk|PUllPK*m^EeNrIJw5hcePSQ~2&5C)GHkkOk6 zMVvt);e+rrN$KgurxWX?1OIrkf??7m0j;*cM584r) zl`}Z1>se)8nnq&s&T2u)MH~ipvzG$e?hMW<3KkJ6Nw7%7RgkG$JXFY+;?uT1P8Kiu zq}H2N25jyD=E~2dR6rB%kYo?x1JF=b1XGA2FoL+YzHLT=%VpU3| zYUC%~$v14((%XWFokDAXdZ@zdNxODfL9(Sz567pgP-_v{-BI!DEEDBa-n<~1E{fAa z2yGS~i5t4zah#z2y8Ad)g}Ee{#Ub+`{YiuIy?YNkvXC+c8Qm@#(kk;=Iu~B zse+d+oK?~8Nq$7CqK@JYkS(oq&1Pw;puPc616w^y_xcL2_KsrmiyTwX$yktjs1nAS z&7tyVF|Ix<-@xStKOrOwo~Ipb2o8pf(DZ05kYLGypFptA+$o_uZj3pydnRQ_Kh=Cj z^?`tn?pn4pTF_+c+Qbot(CU9V(!4^>m|ny^l|e?#sYo;!!CGe50RWkXxUwcF*uW>G zXd09tm2N1e#s*CY_)qw)%M>ZjEegA@hn>Y(tBFn3$GxVR_h7&YXqQL?M|*L*NSL?k zXkB;LoB-%^(0qeJ36PB3c02NNzQM^vS6o(O)d5r^cj>ZY?m|gG$QY}j0{!7AM|uW6 zu5}wN3>u+3+5p%Efg+4w2hKSmePGdQEW9sml!X$mTw_BY)MQFF_97dLQN2k$MZRO3VF~WgfkE{u-aFP$uyRg1ZR4t%o4)y)_AHV-7eE8nmzr6ii3Xsp<|M20{_fOxxlu!KOPyhA9 z=kGs$`xMW-fAQh_Z@+%~^@s1tkNvqmV?3_t?FlRrTYGde}ZM}KfV9(^x+?9 z82$u`wLQHcrM83vqMO@emaCa1A0X~s4Qctje(kNjt2C97rocwp@~&j}UfwRkf>yLK zUIIjvJcGgL67HfatC>M|lf~DyE7}0iGl~w6urBXf1B}R-=0X!h$XC7OnMUlE4~E`pp`eP+QMeiR43IPiF^VsTNY{00L=Yg1reTm)t(~UT&Bx>(zCK z#cpS#lGAm%j6to6-88F%!uZzZOI(G=l6N>n`$o&9CDQ`9(J{hknMzz+-TXwo$a+6J zwZ>UJJRuKb8x+6>S+kHBM?Y-Aj4_iX2+;Dg9ex$)vdV(+EUFLFu7WR;6uBh#P%wmN z2_f|fjqQ%(9tBUA>bjA83*V6Z0Eg`Bt944Dl-4~gziHClw@JPCz+X|ArPl-3nw}El zR-M{jfY(4FYVmEos5_$j+NEq7LkMt$E0yvi<*r&v1-%hoRZ<9&-Q9%eAcc?$WYGib z<_CL(#oq!4O919zoAo#0KX_Ps`<^*MgRHh;AOZp7q{R=V52Y~b57ev( z&!D$o56?Iw#f=x;30Nq`-S6+*L%piQ!G2j&r~doY5Ph2)c?R(F5THS`H%zWg8K z%Q`W~mIqQ_H1ejs6wFaib!YI1ml#!pjD$mH9^jUU!rJ>EFW(LOA{C(iL&g@86~LRGrejW5f_1puCnbD|cEjf1KR;81y211?%k%|T+NNROYT6z`zVly5z9Zi=l{uvWBdP7|T5 zl1|O}fx89nPkt7t0{5LoM%`QpSWpInDg*K{gh1e8m>)}t>{eN*cG;GwBG^WGi*Arm zqkaW0DqWLvPHwKWW&NdA<6vG}?L9<>{a0&l?qQ2{%2LvMn=wgEte8z>R8 zW81V_ASK3{q)`E8I~f{P3G#udyc5x+WN9>7(xG}Rp!=6F~DDp zwmC74V>4G(IL9JCgLWlSWVC^N{#f<9l34;8fUIl*_1yN2@a|9ODOF)jq~+C2HjSE+ zNv_`Z&smN|Y84-D?0){I@U3qhdOU|=&riy;zjW8Ww?AglR!Kw~C9f{Tz1)?v5UJvV z>cPSdut%h*q0cou|+xBSAYK5-X9J`iM@$+6C@lz9Q8WP7c=tVsedf3+Z@J^LZS;muU zva>BR^~JlolI7WUgr3S*(QII^r!^D`YhxU&0XY}Oyo(}o$PfeSiZE|G#Rp?&zU$e>l{Owoa{b#2qn9z_^80p^kNZzDHT>`?+ zMX^$#TBy1GjUv+$l`T1xVrf7V0Tti@e*#HXJjp$&BIrKjfNDho-A&D{17TCRQ?Gzy z%rH6jgf_rzs}~ zZ3%4530HC{Sj~sBdwuohU%X}f!m~FMK#XK(av&Z+b3Nz;`B1I)yKTgg9cjJ9G%?9$Koj3QI1PL@{I#$e=C73ep4V*24qXh)YdWp^SFyOnSzcimqnB>Ug z2b4Nr?T}C{WWQoA4In7XfmJn9?6RUp+Ad*^*ux+e-S2TU%<3WMZv$9+AY50;yh@SDHUFdJD9=8Nk1!FFr8uT^S zie&Ldb_>PSvd)t71*+62s1T4txLH!rK$yBh3^6zz+F$se*QB>P14 zp^o4q7FC2hQfH8~(sD00oA+)7p7v%OnjQL`{eiHtBfV)to|sV#c^{S7wOc!V*EgBo zt+L1Q&Tz+e+IW}Hw_#CRdaCpSAK@y0$o5*l2Ptan#c^*^fJwA;I*@vGkA4@I4&2xL zr=p+U*?^85043UuWI@1q#_}%JLdUrV$@PC@&~7J`92XB@gW7PLXx%#EM^?7MT13{J zC7Y>{L8sh>#O~PSht5u~DSeoEEXua)pQsU_$PiOO?vQ680VM7u6>jL;jp_rz#G->( z{%8|4h&kHO3_3NGoly6uVh5R7=7|PeS@a>E+C~lil8Oq(t`W6Eq5GAK8{5fs z6XawMUjv1M`~aD%L-R91p_k1Y7W|i=J*&RU;(nAV?otjziM`vRV+%3uv-b6fMv%Ni znHsYi$go9HEAP9!cX`YHhU(uRdAR=i?Q4VMeE30l`)T&C{Hm}4{lN*1gn{l{*__*~ z1RyY7oERSJDZQZsWE&hhPqtw1=UzVBpG%P29$+`rlef6m8_T2(aNdT>NRrgTWC9St zHb`y>Y7Iqx=L8NH&s%h`b$kWC<<8GMYwZC1@2cBUyc6^%M@tQ-y0c`R*3?AGWxwJh zDPC5BW2=?p2rBI~%%?GJ=e~P6fQ?w4+D)1%Cn11(x((5-d|BlYQBX zjz8Q!ImezB%2c&5h1pqbHm}O^8KygR$>Ke`tn=ZP;IuODBYRj1vO@<2Gw}(&U3<&w z{)`ZA73T}|M3?kDrK}HU`mL%|D|JuK5~!RKrgFCR3EJpk+a?Uh zS0|5EfSI@%I~qGjdPFAIl_W}yv5Ms~8klwpBjlfLT23q#T(>Cf2b6<5>P_&avj<=% z4XnszBR7$_b{gvak3NR~uP;ymrMF+IjFQ>$sZVo)C?MuH!!uiv*$YB_WhQ;q#7%B^ z!$-WubB_W~{(j0Mg?M_%?J%v;4sTulNxS@nyqh~Ip&*zf?~d==XA$2&s$fEiUsg#? z=78d(oEi{b_Y-UmnQ}sn<_UdJlvouhW@vJ9kPW%BKrr6kt2nXJd?blCiq8aA>WzbM z^97q)(LK3zhs0VhbS^eV0llf#}HUgIjwe(Q&wS(CwA`?dTNQNaN{m!(V(m zuTP{m){@axy;a3`aw?OcEFx1VeY?IXc4|Rx@<}5LP}6O2(&*F^R*}JOBk0bM$5wsBLvqw@nDvo^Ij8|MC7) zUH9^ao~}1}Z4ZZQUnQ-*owAGIKIH6lE#_U_nB9m<&!8L6NE_|*isf3+GY;$NvRE;u z>a{tMCi-iE67}^XO+(->;>}FZlTTh&z%HnYgI?a@Y@9~PvD#CsvNn6yc9OMjl8a-s z$-yPWbI^NGm`*QnBB%CRCeSvPpPC)q`#3ehjCaJo;mjVF%>Z7s=di?Mf zwqs03P#8VJ8vUS}2raRJrUDYT9Gt z-LT_tp;p!0(wcx)=f(~xj1v1Edpp;oQ2PV_pz2<24`-@dh;ELB)j7htBKQ9;lS=dz zejN%-)tdFgvfY>cW0BH!+R!Xd6;j^Dv|;QsW#pXOtP+FN>a}x?EDTR9OIFc8c$4Sd z_kt5LouuGw?EF3WE^E?v=)YqCy<_gl87D;iWi?G_$xo;~hrS>{QBoplktsXf3h4@T zd{^6*P4#pPdT)H6Dz}+AK~dMY-~koW8~LfF)elYKhkH?VVW><1v_Hkky)hw?gXK%f zszC=i`Mb;x<0s(&{xk&|dc^*Q9e1N!4^=i8%`W#2m+j~FO%wnP3~g} z#PH~DR0+%9@ysfr>#Wx$E8Z`jLr9R7-N|U7bXk{ao4YVkcLJu;eYg6fo@ny4d3KVZ zsi^$kGJ~BKJ^$`bU0DcTo?zr@du^(K5y+Vh1_+*vjBFEk;pxEeE2n!ylr!o^_A)SA zfbvu}VwI&xG_LF*Nfe+|(pBuB+(tr?01s%^=?^u?O-sR=;T!#e5 zE3Z*D5@>!O-havI($9~oSU-FJv3>jzjp{!;e)dy7`)PUh z%lDs!48eHqsH^x$)kn$UJ{NKvV5fH4Z5{Z@w&=Gk7Rqtb1!`}xa;=M4@AGMWD$r@| zD20l4=K%z!sy#EcFQ(p;o)rob2TAbab_YMrR)@0~6ET`VJG0Sx`IXY&+X@9GyDz9V zkfhbUOM@d@u){6a%GKnDBM2tYTb(bZCkhEF$!bT5)T1^_uD0i&=<3}Fsn~qzGE6|Y zTLl7F88zBiXTXSDd|&Z74~20SInK7z($tm4V+&tQ#*gBs(x*pg7OT5c7YYLW9*D`8 zIC92x(@o~bDco+19>7fzvviFPZ389=^IQNfZTGJ{JTGa+kgHpL8ql_Z=GH0@plvZI zHG?{BJNb@iS-jzE$nfL`Jv`9KPmxFA<&=s5m=dQ7UaNt#cGLBTVzarRkt|!&;seTL zigRisjbQ+YtP34F>g}!-+^HVc&>DZR#tO+-%7fo7&OkYWgCrq&b?M+hDrzVdDNRF50Lb$S24bZ~owru{HW9_)TzKtfv_Spn1^ z5852D*G@*P552co&k%)!8^K3HS6^B?{a;C*GnDAB(MA8)@cz~5?MLD52d4*8DA}jh za_BS};PeWaV`fRna(5^PC~=c&TrE^{+~9SvIEQtGxHf0PIJoagKC;8R?h-!NOE$~i z@<__Xe>(@r$gg$?=14`16&9uW>Lz7lA_t{7J*^oS!CIz4$Y>EdfXpab92H>F_7|hT z3yXUz&QibBlXl%;4c==u@}$GIeBW*9)NI#8I`V||J?Vu=&dY2ufeuyo{&dgnzS$UnjRGm5x4g-+h9AW5p%@Aw0@GR5-KXo4dtJZFv2z@tv2aoszwTps@YILcHP|b#Ly^zb z2x5B`tSIZ?8D$j!wLwAslKwjoBl0p`{}L0*?8{*jt zk5Q#EI8`7GkOhZiMH9w-LC$uzOzo>#0KO%C(?kF)WrpKg0)@83`B6)RTCGEq2r0Ze zr9&AGHk!Ts@r!&&M}G)|uS1DYwc~2vdrvylW0e959>tRL^d!fhsCylYl~Pl59Kzox z-ln={^D8Mv4?mr0gu?H!f-iel2iA#`e1{e*RtnR>JGVJDmV(%ICK@ zwHaPo^ZGF?RbGWHr9)(CFFn)DwKOP%c8RLZ2w#%DX4EIo6UalpqqYvbpFJjM}h`pBM&dw6sc>m7W~wlLnX>f467vjE0WsD=a~uNb3=&KwT{bB5pLI*fEZ^Q z>}20WXQKwP`rc9(xDl$5x0NbxMSfgCBF-MCOCX!F&_7NVH%+2k06 z25YR)I;|%)r8rO0_&&pIAH2>SV;L*V3`uV-(0%4lF5_Un{&wI+e)h}o_I+SqetqCx zUYNljQSvbhdbz`Et`+a-&G~Zgaql;cxp1)br-C;RcNLqglVV(+Dm044I)!r=Xy98b zj`F|mBbE^zo2Fbo6q1Udu`7u|UX+REDJk1J2e<&9q8t=RdHmK%WvHOmWn)s5ORLYz z*S5k)in6>-3-7R2y^F%I*KV_mJ#x6W(;@z_ro=CKjT=C3;bH%RD(+C?PVPWX0d;Rj zWava>Nz5^oG$vCT|A>9v+urDqzAZFPz`e(Dof>zWG7v zY7C_nq_E)zMsB38-qM9fYx4;8|0;^GBSa2~idPX)fs_51lMBF8=K9N}9^T*!@>|b5{Ak<%} zlIGsYF9TXxD?qZ4x(!Ri74uGQbgnt=pA-c2;GycoGV$2;RG6kfW7*w|;8?<EY0Rk9&<9c7tT@2Jxl#5}{Fb>Kqi;`sw>WzJ2};irL4? zUEh@AHmQ!^{I}ThJ}~{+`)?4Ce)|50_pkJCy@uQ62^0cJJdd_({jBR6BrU4e!A0AB zze`s}+#)c&$LxN4N~-CO?TA!rD%-uYG11!*TCKgp%fnJS9TXf9@<)M7!3K-LKmx}h z(A@@K{G(O0iOB+T2*~EWO_3LskfaTO{2rK=n0VgNo)(McLliaUu`Lx~wM|8m#($&` zgM#sZ+PuKpP;PnZ9iHB)x&eD`Ddk`MB+Ip>7azvM?l3W)W)YUu`1ii zVg~%^B_o(Po7O3-|rP~61jnHg(FSPN>im%|pQ7ZtXnceXGsaYTEj&r;?qD|YmbW34I}!;#|Z zJ4c8Xf^-vW?n%KRl=N;L3j%JEo^lK)`npmn`uI}&nrpDZ1js{)ig1P!0FS#X>N zvmn|C$RB;F0scEQeeKb7ELEWJvJoIKN7we9q@L}C+&BJ3TeJER8V z&NGe!koyvSGWWJONxQ^e^sU}TV1wSNF9=Q4r^k?Kz?N3cW;&lM-m*<^WvYIA=sHr_ zR~nNr_(~_#$l)#<#s8uKH_~0bB)Bace(B?_m!^!aas(V zTjC3pLV&ZxQoWYah^0tF0UpT4@Mt&Dg@X$f!t(1t7HEMR=}_&fxZi+oF;XrVEQ$V$ zeLanz>#NDQ|ws2*4Qo&=K9b2V4FuG^&p;uXggUD{M*uPrm? z43IMn4{dg$I?Oqe<^8Xs-RO~iHF%HQHtUSF&m36#jFTJY=7JU`;YVew^Ual$jCxV5 z5F??(Cu=RtsbUH*8Q!GSo0YZb72%TODk9B4GGeWR!Yw~+5?1-% znyx;>T~%9{bY^faPsV84!@ArWblvyU8(!LN2f+BU$Qv+9N_ufA;U%GTbf4uV!PPF7 zPTj>5U{15!T;g563qzShgDy;k$=iBn`XWirhSdz6>wT+=UIxU~&G5IIp2 zrR-YmN|+vYZH}um^K*m^B_!HdiN?B8{R;H6tCb)9^a}d{0s|ez*zGy%=>sV!>n94H z#xl?i&fX)7%2AqWYa->7ld5b!q57!JUc)GbI2$yqCg&VpOq=8dZm0Mlqth~>ghWzb zwd{j(a3mNGzJ4iTxDI^deDZb}^Tf35!y{)Fooz1DegFsX2Rs45Z7R5F4zgiTBvyKv zCk8X9`dE{AFuJqy)=iQLeeQLKYS&$_x>&1E2Qk}jXp~zZJxCl2-;)37Q?ID=E%LqM zCdzN|IoLn^3>+B&I?Br6q3UI5`Jm*yT)F3}w-N4bk~v?<5~B;H)@SaED|g$h3M7EH zPN!B-tz2qOov7TfsiL5&lo-kfC;yqO>4ScY9q(-SkRNo4ES0(sbZfGw8|ZSOx3ZJp zgjl!<<

p;h0vKEhXpGSKyBfF!Kn-^P=N`qf5vJGtRJ1m9`#4=&3@0#4<>R*h$5k zg?q)E2Mhj#W^9Y=C$(Eqs4JpIZV|)rZmudafuADfm36Em+8SGdspV5#+(kxWY3o|@ z2UP{l_e)+uXMazu@hE9AwHii7d+dt(e&e!2z`VBkdy}{EKMXGREpXB2SAizdHZk6tcJ?x&S z0<8>eeA$V(0P)oMfxu5SQPWjYvt`w zrcfPgiznrW!p&3_BrPNp$XK@%U{ zEw1d-T~Y9%nzquwNQ&nNWhCWM5y5=0kLu=2#*1^ zEnl{BR{+PE2h481Q=o+CpIDxkTps|S*|`9ce0Nc6dij$UW12vkj>?1CjVHCmzdORq zNuBIZ`Pnakko)09_h8@8{|)B{`M)`KNLYQM2~mQY4~AhEcU>aiw;U~~;A5_FS)X#^ z75EA9cn=R?*N&y5XxJ`GDbVSM9q+f6dxI6x%NN_Kn1_ntR4^b8H|^a^@mU>4Pqny< zD7RyoqUx^GYeAw2)-{CUXQL{Pe|umu37=K$4NT?MV=_6LQmH*a)qQMSfUK7ji#y!v zg3SJ#FB3_x;HiSyaZK4I4Bc!VIi^R5Popnm>UtTrdmlBB)Dx{`r88*cUhfljCM~DK z-C=5=PPQ$_C_b+Q)R>~fx2aO>5Afv_MO9iVL9_!$GB>%QFRenfZ1J=#;mVFnqUL;Q z!(*3F)2cQPrR{XB)UKC$IUJ=CJdQ129o5^Lp@e#9(jzFg!~%;P5tg>smW29i+7GU1 zQXLQ0A*rEBeS0!)?33HdA7CW_Wxbz>D)*%h)G&_W2POHY0H45uNIW)8C53tmZCvee z%YiOAe8EIHe~3CaRth4|y2^)4{s<5Nr`T<(AF*Oz#;4>KZFro28Ej&45{3B(dPV)3 zLye!j{SxEfpS=A&1X6#ffSFIf{(r*T-{*s^Tjvu_M!Eng!kOXn*x`x7;41eL?H-51 zt2ecdhRab~0R)Tmn$IRWhExH{0z*k9JK9mlcAEN1s4M9}wI+Ej!_-eTAD7`E)!egN zy*AufRToDGF12Vmoy_5v2=~?!G+2cTceGLmvLc5V8I%O?#~ zn5fuldZxp~B4`E>*BoQ8%)F=@g3W37knWRu+Fh*;fZQ21kF{IZ&zFzWq6&ysjP!*< zeCvi3oKfFE4@$8e_xAO*%|_tH&=$xVk|0%kO7^M;P$dL`c$+x~`lCHY!g zNhbqR+SOVDY{nQR2ww|UlVoigb3tAOewdnhf7cmr3bZx!Bmj5BZxTV z6H@8Q-{LA7K8lhr68kEt>tNz6=Wvo#k6R1&+DE`IrP6~(qyKZL^Ru!Y9a=Gwpnzd> zIJ^P}fw@cBro*{OA=Z~dZb(dP8;S%L>JaYvT7KS6CZ2R+rWeW+yJGD_C~Mt-O~btq zK=3^?V6^{HbvpaII1KjD;!~xN8nzr(eB6=QB&u}sPHDUfxrdFmD?4a-#*ANf7xb|^ zD||$?m5ML*hs$#{vHO?8&`Lx!NSF%SZ^);8%=wgQcgWwZd#-ME6o5`N^YH1mFm2Ku zTS$nMFE6pTI|g?U3AZT&nmL1^OzV2K3zu&gTL28=>A#}OT%utCx@DqP;xoWPRBr;% zzdMLR1upB*T9tV^i87V5p0%;;OPem~UG zkgEqWs#+-VwK;YA@JK-!$PW2YyXpkSel{>v(35@GqYA{4+LWcSu_&2%(DR2QLIq3ACwl<^jx6Zzq>lv?uHv-$n-BPouF&-nEHkKygh%M(K=JDyJnTpR+LS=6HJ_u~Ap znV`P0rNf{pC{NM=grVa|#LTcdI3)3e~7h^+xHTJT`%AmYK3gmLF6r($|a17M63sY+82c)F(nj6M$6C?VoZrOdl!gLnQ-Bxr^&0wgZ-| z`^LBi<+kTVwZ!BTKiSnnY*w1geUmGoj%MW7$ghhUe*1ZTIN20pg+88?M_tM-p4|Hj6~1xe z{Z`hE2fOE5Rjo-+{j>1re=c?N`=8!__x@GL7cdd{!P`#*elg9{SBy@Xm4V=MZI8zc zaQ@(<_&kkSt;c&PUke_y8S#n5xFI^%!$eWq04r7iNv-Jm1QIcjx^w25WM_h)C8e@m0(D5O*%+u>MPXNohXoj3qsmZ7SRV5r3Dnj+y zlY+i&Jw#_zJGy(3w{w@1-$_xL96kLOiQB zosuQqTjZo6yDRy5uZ>h5OmTa3qY3o z$fOvsW4CehQ!9wns-G*sKRj;B zu?7Poo}_>hcY#?FUt?ig>?s_I*HCWju-w^vKD`-R9n+~2^?DhGfv_Dc1$>kM;sriD zCSS!cOQV5(*6xCC613#D8(4k-)+HbM-0)!yG%>c6FhV7U2R11bjgg%C(LU?9;q7Lqc00jVa|^HSP{hJI5s-%B%K>dUzB#tIz+AiCUqJ~6m~8Ev z57IU`3X?B^KE@G+K$xgtL4JHlh-W!O?zJ$8#wx-#5=VBm1>@3Q!*#kK5c!y@pYR>Y zS-MaCehjM;it%={X*FMbK7p(ExPZ?{dt`+o002IV#)BuT?wDIepi-45|&V^1MO=IA5a@RkaonDs3qZb3%)> zptlDEdTog7y|n;QNn0J;#T)x7b#h<}aIH}S45dU1E5R#*XCOBPl@OMj z>nfY<3YDp%CNq2lJQXUim@t{Fr$5p?a16JGST``zEn4jb%%v*%G45Qds98+r){^4t z=rUOB_hGORN8Vhc?uY!uMDI99GdFwfI?Vg^y2HzB<49f76EZCj%rJ%=KqRdoH<8e4 zlaAcMtCdm*(2z+5`{k~$HF8Xr20JJdX9H1bM5S_NUwH!_`eSNVI3H^%cO=?2p_>{u z=BTfr6cH#{rF(TrSah<$-#W(c0139 zD3%WHg!3rIOarw?;KWT_iX)`a6&Y*Fr>a4GBGIqBWCb@@cX{S88MvH;?26_Z%NWkEzBuH~rApVWem+c+-2dRNMa%BG3=5Qf*WVgw7hHd zOr$HJdR}qJx+MZY(yN{eScwq^=I|*2VO0|J2yOUd_FbTMyQn@rV>KYkQcBpLI5wT{ ze+qAwy)hX3m7J){hyO3U|5%@Ug;47!`@~!2HO;D)hG{(mRGU?_IjHi0 zZMdEQj^s<-a|MKm!!lDM)ViIDy(76q?CY|P63U3-``bGHG}O}iQ;C9ZkaeK-pN zPTGI-v9fs6wppK{xhi5sXK9cc;LR#bT(fA&(Rn>A*LT+)Fdt z+(%k+2D%E$-63y%+&5ey5Lu9dzY#5fpOOzL_M)mVLxNLQenN@a%c|~~d`}S|sjt7A zujd8Z{)LrDRy?uww^RrF;(Zo0GD3vBQ)>$fs778bLfyHtr#|F2bt3%I{;DQi5^Joq!GK$mX|T!-WjkSG3F3H*1^Xs}8y|FadeY&%`P9Qq6VRF7L5# zvFnzvjP6AE^bgrTBz+Txgon-J5Sc9xy0juleP&nEU=u)gm8z2$&b{TVN-8#lhY>S; z?;|;CGc-&b&hlK@uuB7^i0DH@N^&`d3V(N*Hf-yxbWq_yRusMa3P3T|XAMLtj0FHZ zDh5uv{Zh2%mA zELb>_uZ#TY454>xKnU2mYoOAdAV9osDfD0JWYb5G^JYv8 z%poh{a)3X0?yPRe>9_ zke4kpYlKLqFKljC1KF88RTi-a&D$R9P8@ggRn2%@@eU%{L`$f-upD7aL)YlPqjiR% za3PCc5@C%Pz7?=BTo1ao#KtBnUfBM| z1EBebsjuXu8%xV|%L0=Z%yGH-n^xKwH=}T$wj>u21o|>vQ||RXVrjglJCD|H$WQ9GD%S#p1y`i0H<)L zfLN=D3DF?yaal;5Gyr)%6g5(A2H+SHhImIL7{b>+g?j87`ai~gvOV0A5S z{+HDw=k}7cL%Z#}5Mgl${;q0fJ4*y@>JrEXJrA;;UIONmaQYVRb zUN2?u()#KdyaB~vYXyJ|3Jm?^gB|u|iL?dBKt>MoPKmtoIF);@NTuRKE6$@+Ogmn} z*q&gsukNy3Bv(KN$ese25!-Pd)oqhha?-{Ij)hE`xORtY>L>2sF8#QD5t-T_Ob6u& z6F__AkEgsyw@F)D?ix28DcVJcbs>;>`kPX|qp4BdqNy?CrmUxsFU!DYA%iO;+}bzI zJ2vK@K8DuX5Mq}|_9CsMJ)C`xrA13;FdyAED&Pxg+eI16!%R3;o_t;GM{PnR+Xh++ zg7KnSbCaEtS+b(^m1H$QhYhk#^jB-4*S8YuG=qv0SIBrwT+Pj~2$biOH(Qb9rPTD6 zeK!jDcJYKu!}dX9_$vpY(rL@jnkIHC7+<{FRcH)PFoZ{M2Ol4&SxZ1S{%Hkz%g?V% zP~D`^BUT-DhM`9fppMaEv-ey+x=Ta~EWt5lu0u^it_eJwEpc4&O<;7L57%h&KN8oo zN9E9#B{e*d>SJ}97y{NSdP8{RUjc>L|OTd#`H{ ze&r68d;4KALpvl(B{o9*`n#78U&8V5m-*RG-~agbBPtgCQ$CV%Gdl$aVHjFh2Tt0kv=SF`t~9+*L|5T3kkUlf$m-R10ERSy{sI;NqwH zjFd^MyK|RvwpWdvHb7PX6~@6Hx<-@+!}h*l{KYK)B%Y!MP(Gb+(>-uBpC0YW-l$K> zESePN)gQ2}UV`hxhZxd*cjnuJOS^&r#(c@cU7FM0zz>u@epBFQy4sUfUIM6W2vCmp z?pnwfpC}zo?10FR$xuLo9Jf{$_mLvjVk6 z7DS1`tO_HNK%Z*Y*^vtWkWq<)wtFQ3w({9-CZCF;>GB`L|Mee_jQZu<@AI$W?N_?i z|N1-s{J$aplK<9!{`%Wtu>k%WuYm>%^0iqD3hjxH%q;K0GSaRXJ7ij%*+VdFKWc3S zy)s-#P@v6AkT>MIgbHS>0hhy{4cj#J#MvXrNqAvC*0rfgSsaIFg*rU&7xqXCQtY=} zgn5fwI0OxygSAe+>0E)WBCkbGEpH#4sy^UfNa8eNLW`|?tvV*uoRst}uS%j|vA`GB zi}Zy!KREcP3=V0jklz}jD_PDe0L@{aw!5L$me#BH`J>`;8l{Mq-!7Ps#`LnuYqb&e zScZbbx(W!-t3#m%^?r5xhY=ol3^x#XsU%5qH_>AZLzlTRudpm_!-v|9DT8Vqah*^B zAbM=iZt7;_9QWs}@ce^>HmN8dAHcSQbom5k8Me%P7=h~APqHobE-x7Qrg!u$UoW!8 z!WoS8ybDb>6a3YvT%+7o0))U)3T${G_#S+B3q8n&DBJNscFWh(V@bWj$+@F{i_EAkb+Nz-bwN{uc)A-S~aO0yBjQo7XoTK6XB2|Y15j(Mr!aBjVFx2 zho6E%`qK|Tktpzgo9n{kHEibb245TaUrblrK3KHn=P?qS9{5#$aRaG`QW<8efiPQ< zuhzh{>l|7K`$?87MoGXPEF|u&P`6;tp3|5BQ=DvmqGbPAU_q zE+<=ZU7^`EOj#{w)EJ?S*vmmLDP?elokaK&&_n?!CEVzb$mvqGWF22SP+$wSqb|K% zEM{;G8N~y;ekcTtAAT+&2NaH@wP?YhYd>J!i@kE5Is}a^Ru;Ni;sU?5F-_5`6GK3y zVhOy!-V4eS=w2iIR~6Dkm`i%eUK$(ov;0&qu(7Se;k2?f$`Jug9@+bU5C6xJwtt^> zWB$3C`TOs}+wa{r=~wyrFW-N!>HWKJUvlsCibg4)NoDC32O&n@O*QqiIXa>)V-RS! zjS#vyTup^06Na~8BA`#Y!^22*sSG$o2(eD;M%0BaPgVlS}Y`h3YV^7eAZ?2?Yw)UEp(+es-js2WTq+%zjV(*;;!29j zOhBbD>_9PbpEbpo&|e;;j&Uvwrn{0WkD%~xj!5w9_dnRqiKvE5wEI2W<$w9Q-IQ+1Pyt2k#3KM|tP96&@Y-sx2PqaKaJw#5d#9)J?-M|nYE>h~ zG2WwbDdy=>srjCPFrdDv$Uz^Df3hDsF>(}ol`fPlo^N&qWS*~ZOJHpSNDeC3r6mqey|vcNadlbq9?7@C?y4n2 z7XC}O(v4B5$#|P^Hj$=o6Yh1XzJ(MoOOjqQi_fhCj;1! z8702)cDX?NDbcL)*-$Y#=M03otywOnC=_(8qS6!%2N6X$1W}<2I%KCNo9sbJb->V| zU{e5#Z$Pjy16+40J22TKQ#2Nsw&nNsm-4^xm-@dWYJ3GN=ySnA>8YPyKK#Go?KhXF zlzzFMd;+s)EP92VuMMTq@1Yo=PRsnSOO(}la!*CG=PyZJnAicx`#7+BfZLk~8`}HX z7pv>u$xTD@JG_>yeTRrGaF8@q0TX@hC+kDkuAQaEdAc~NWP(GaWldzHz!0wNoN*sr zT}n6UetlI{H!6Dot>VIpT1(p5UZy8v=-nPj3b8?DJAvJ6_rWJStlN*ohAGC~S`74l zyp-3%{&!Y*w_$@Jd%=%~0&-Gd*m}ZY?jS^f_%fiJkomU_9Zx1w8I|6pgJvdJ#*OUFbOoPgT1O# zko&nZQ7d5i*UL>lq_#wPvO_7882p=q?UjUD18QS;60ED%cu^H(h>1%abV`4njWY;x zsGZgaotxD(UEm9sD27>n19Jd*%+Xi1X;fp}JK^rBlLp0t4L;sTv*~h~KH2lqP8G*t z5aWMKU0x-x7)}X5{kX7ffWm=)Wd(pckn?cusf}lSZ36E?6{6cMLO{g>*s!B32D0MG z+TxEq@+W_SFDXy;C4J<7_Wom?BdC|#4=x}6=KYKC;jh2`E-pU&wRs!BgmiKx4ejzc z>j%t+nk)c8*AT=RVO<-mSdUyc-WB7lmkMc5>>e5w3aFlknLD0R(=IcCjGI4QmHXHp za6xplyL%?dBLw(x^&t%KqtlploFNacVXH6e0JI!e{!oOKRJtnkix8Fd8eSB2!}291 zfC++UD(wFQnL2H$3S!HILBoq-0U+TmE$RXbqqb(P@d+ef^Pva0&KLL(wQJ)%F@ldz zQzxMKt!e={X@on|QD#BJPP!SiCnxnSq&hB6hXia42M|lE+Byn3#%$mK9N&prjyJVt z%4ZmuY}?>Lw#j6zQrO4UD*q0GKFjmcfp}pR3M9+%AC=j#wA?(a1136BG^i4Qn!$pZmmn*O`D~<+Hb7%=xc*t4^ zSl8XL*lHVD>{d?z*~|Go%-5cZlk2HffP!N68X+Y%+GU)fu?U<^SZ`3HY!0kxkEI)SilnFAc4!LQtgYX^#iAqpZwOh z!pHLbzkf5=qu(1?_`^@%zIgvM=r2Fa&w#x5RsL@{KY-=qFC=aR)8~srm*9^B#&!i`S0p%(Ay`h%+?${MkoR+OqU#FISzKA zjA#!Q*Tq8A`e;=L3n8Kg_?{6117<+p7%nh|u8FWy4JA$@q-AKY&m1SlSYUH`jVg-b zsUGS*?W$aVHIHA_BGQ%|%d|c)E_dg>rJYrY1DV_fJ;2x1X`@LDE%Cv*)(n&BqXMg$j6@Lxie1ZZAzs|q&^Y@=J;GOUg`Df(;>%A?{ zEbAu_XB0}k%Xg=uzZSYAeP&w_c}HNYaVCPBmPmG>jJc89uj@Lt&48E>LI*6EZ z0DGY$n@35&6=)=dT}QCP@_iL0HOvy3*_l(h%8%A+IktPgW&cA*8?c1;L z-|+TDjw-vqzXxRVC9I0vf?4l6DHK*;QiDyg)kMWs9a+ceMEd zI-F@d<{#ioNru<@h2GW}k9L-lps!NwZSSi~c)}~1tSM;|G*u4u9FoG`sX&&EMWp$` z20ds*a7h)piKRdXju|6*3RJu%|Z-^7xEbv21jl7)%lW8OPnZE zB*z0*^MQiBT8lO@3j*h(*n^>U7`Wa+n0cjdPXbB2cZF{Bf0hNV%GfaASXvI!nB@Ih zK7vH;-WXnAxdp1)tRaFEY3CCy3RkZUaOjvu(u6}L>+A&1THz_WAuTkS_O(;dP6HI_ zc}fbb0oQYqmwRjCLB-E7umglqD&pZ(cz-r|qZObDiLI|3hQQ#!&br@DNZ)*$Jwr?3=$lIQp_lV?>-ND~Yn4ahOhXkQE^ECI@Uj+!P(y2UJFI)w$QkPL zoGAGK0WTVK>D15uL|X;I&85elpyCe&O1%#IMtxue2P}-DbB};frULje6`R#s6+lxC zNd3N(l*q<;1f(+;;{&){+`J}9OFQNr0FobMbd?t}jCTJ-$r z)~w!{s@qhkkg&bmN=mesIJnMjc@JKpmYLUBPSKYzz@ag=U@LaqSWq^Z^~E{)Aw&~* zD@!R>)c|O;6?Li7B&109B}fm2>!(Tarwg3Ceyt`4PU-8Z-Pje=v-oN^h=Nt8g{{Wb zN$&qH{GUf$`O-aCfAaOW!`m;VO9)?o`|{!Y;r;iQSI|o>ojj9-DQ=v$M~l(AJ2=CJ z4Eb=}xE5&=^eyE?;Ic+aLw@&QV3g4o)p&jmP-I_6fg#pS`KDi$c9$EG zS&V?a`auu@qQX5LFt~pt)EVw!OcAF*!-bFU(piAK0tJy`1Twmn8Q! z&S$}yMx)9n1Y4n%4$8I4k2Qm;3h0s87sYDOu0pSkbkkl+0fBrxpK*d;!>zoa5gFTSdj%$$jey~VxQ*> z{|hUy-@fECKgD43_uOXu;O(En`>)W)Lqhm}J!N_?!(97&ARg!e5x(VepF?#f9p2le zZnQ~J`H`qRS zZeK#b@F0)sKx6%oJeF>6cTQqDd9I;)CrC(DG2lAe~`t`Q19{t_(N$_95)u z;$fkUi3b225CX4vOOL#H0ElWG8ztX1P)~P-RX3V}Cyh(Yz^Hu+o_kb|q#^d{q)mI3 zX5wa&;F$YJ@s?j}$|N-;`o!&|Diho(6Ot+rIFU|PQYCWbDK8lQ0tv1iV-@`ybah(9fxB0=B>7ESY_#Q>PMq;< z_K4sIv<7?0?FZJt){djDp(vEJjR`V-j4(LDaVYdH7E|vM#VF#Er228~q5q6OrC!oo zjv&8z`#ooeCbsmm_aB9?zjOKUJxCCI@9mHB|6faY@ZmqdexatFKq zd1QL{lr7X3MqqHB6ePQcrz#EBE-Q!|CCf^X-+;+~aVX$p+V_cFMUYk@TLoCWvHNgw3QpdjvU4ab+u-`0t9m_Pn=M1e))mPq#%PjX@1#izzca+M2WnmBy z?e8a~bqP2^>1xKxM3xW0f`?QR5Z$JPs%|poCMnH%v#r+LLQe-8LLO9(j(l3$jk}3y zIWiZd$R)KVBg2h2R1fPI2Kd>;%P^9>G$@MaRpFKrFCj%fCMy*_}LTsBBOdtsUq}3d-CNHf&Z0=No{#)uG#-k{~C+>_o3>!#x*gQVvQDQIh?S zFOz?!-njb*^=fR#fFfzJk`(Ufh)&+gRhaS7!W|Yu+5nPcVG9bmn=L2-l_#$&atBtxxSMeb zg9iqkk3>&^Vt?lPT5ToDv(*ja5Lgv*F+78EgtJ4S1*V9JiVAD7FzRpdHLTK4Nxhl) z9H|?z#f-`jFtJieDo!~*eg8+rX#DNlZ@>O-9vpstd4()nf*e5pI$v9tS9tDSXa{PB z0mGnB5h@casG(Zuy75Tio|GbD((F>;<(nFRj5DxZ8Rb^l;0K(5a~txlD>7Bo?O*pw z*@P_${|PlHWh_Z$iR z#M)9COuiC%qL6-OC(PjHVjb;brOXBMPL$#jr}75Z;t^MGAZ9`RX7t(=toTk-SkMl#M?y2BWTlCafVuCfN6s7J73H??4q6qR{6At zt)NdkaR4j6_fkIcK9vgK<{?!~#z&5<1-5!*p2J^wbiV_oYf0#bsklV|=s!x+)nczO z=>T;F9onlM2vm9%%8Lw*5(u zIL^f=$B2ltxfe*TZ=|fT@#tsL9sPaKUw$Y5{XCnl{1&is{RJ`PetCWp zmdiskuK6<@i0+59zJ>Sh>N*IYvAbFU<~XsrSkVsSP4(q28|jANgn2)xVPy&8?@7s0 zeH6xWi3S8EfL5BJdvIjk+F?Xi<~oMp9>6kGejfTQdl-&3DcTfC2OFu!P?Nj)RY#BZ zM`1*pLkjL>lqP^(DH#OikH2LoYtGz`Ld3xUS^Po)c}cik6S4zZ&xtlr1$B8{lsL!V?6Mw??VS z_-zH0AI(_}U$K0mPz6)Z6d;JDmG+vP2cY{}t4AyOP+-7m573#kcbt`>WhE{-4*v0XpqKBY~-_r z3EVeKuKy8Ipx=A@hw$OQzJGRkIr;QSK7YvHzSdJ+hd_V)W zhyei4CH-~{?t|N_0$XC8y~SIQYLT>{^$7~kN}mxhZ70ezu2{F%u5CPnqj1*1Sog5+ zNI5q&$#WwqCAp3xqPC8t7^K6s|m*LelmXD*ThTP*T)ZXwb}%FI7%Z$2p4R-u6KJ zjghV*Qr^xji2#xq@ZUI6O5lna6C_@2ZG*e)g?D#1YWh zH^uz9gkd|j4h6t2oc3?1KxxL8KoZ6flf`NEfKaLAz^r|+QOVfh!WfM&MB!ziFc(*# zUSA2TON+t)>>$G95sDoWLAh_L5*l&tq|wc$lElPPa}kr5zguZef0sP#)kG3o0cJdZqO=wl2rtSv za{(S>P;p>~c;Q3auxA9&E^!qkNT9@dM?htJ=C^!|?@zIgxR*Wdo| z!}njm{anh-&)z-@`pXYddA|P)HRo5sY_g&EVh!Sxb~BG`Uq6!m@zBMEL0o2_Z!7N7 zR>^)>8W3UC2H6?s8!xB;4)Z_k-QfvbqGq;;q7c)q4u{Gx%Lj-TtZmQ9oMecgKQKR@ zAP1$-=Eq7^YO$%~x_)wRc&zSiycVlQ>NdMBNMS$@NYoI7T&TqIlSqMd(8|SR&)c`^ zJ8X|sR3%?$AEQN=b+)dD2olovjl_$2>YNxb-HGa%vU@JJ)C@dv^Jab0;{^?pTFuF3 zX6y#=9*5sSL5qNN^Sd#-Zv6{NBuX6s zd8Z3_M-ZnT21C-dK7A|oTeOH+Vrch!U~)0J3DBS7%1;`QS6&j#B&G8RZ?`d0T}uK9 zn7R~*DAb{EsW6`}rAhcm2n9Ql_yCS~oVbIh3{Skmy@-s*>($}H|0(>Z%!~dH;lp>{ zKG(}{VbS-8w}1MEe!|=5Z@&z@P&yO5Lx24CtM{LS)TEF3Fuecb{j2;p|MuL92@v3t z{+jsV8A6>1?CY$f5688v>UZZOoE4@$7Wcp^wpf<5e6W898ZJ`WNGN+?Za|LIm=&}a zmpYw+8gh9XP;qyz>gGlY`3uxSkI*?jT2-I11UOE(shr2)15cPq&xf}f43(@ehbYr! zC<8kAzMY++;E*6pUm|o*q-yG)W1vR)7#meYvIae6c{L=Aj?TwjMi@eR6Rbuo8pl|< z*KkrHv6T-1E%W|J-qE0arMsr>D&zzlfR#1U=^kWDHB|$2-fAGVg*~?9*rr*87-j;R zC5-42%5;%>iA+S`RBf$mK7cX~oM)xZIve5%0d}Qg3tet)@fJ+ogr)S+0X=C0Q8lwI zrpP^HLv<8~1|KWJ^$9azskJbU`W$B#nDM~E zFYUf6VGtrphXU7{xTWYx`^mJQFJ)Jf+Jwc9-v&k1!!) zyN-=&L(SzSx>~NB{zZv~>?pu8Oyt&qeI&QeY!6VgI?_$o_e*PqwWbIw0N~GHJGUpI zhAn2LT|jMU=MjCh<@ZraEt~V2*5Wj7i+U~F5tJUainRF{qEsl8R{^iDyjopdM5pM( z)3scC9p2nqiX5va_u{x844^M^gO`v-T$?chOSv^Bv7m3;%7RXs2WwJW`Cn*l3InA| z<0E6`Yv&H|98^OR9vrC$)DC9@xIToI3N$8*)CAb|qVzYFh2-kf3Dt_+5DD^bmh(p( z&68IY7%<$Xsj#z?-lfK`eGgy38$5m7!z5VD6p@un1wvGWDDfJ01H@L)KZf9Gb&5V} zJ~nc!0>DpR6%Y@sCaDn!g7)lDvOdT%DliZ(JI>h^EZ0UG%<7tlBfF_t7<-0|Rn_zeB04}hST9W!mF)F=2 zc~w;xr6uWDeMYql6EjQw5OuSVRJIs$OeH&(38QsR@ut~CQm4Ya^qBPTz`Yxg5V}~# zeLkDVs^U)zuW7b~gT80)KM=`VIuWR>zr`NV_K;&u!la*$zlBDSomwAn*l*|SaE)sG z>s|w)%Cjp_E!u8c8!8|6ETb@~7}6^`j6>BDaxxF)7hY5xaJ;bq!NO@#_N!b*>h-}~ zrsh8BiUp{77@l2PHSVayIaOFBJ|}dFBY?raQo{T@ayJimLW(Puu0LIYlXQsw!7NvO z_c(u&I3Vw4htg}g?l1Cp$!Cz$NyP#9s>nxj3hEHX(lkke!;E=N?9Y)z{V-2|1sVXW!ITeIL4TCgo5pq4X^Uba=@+m4fDKg-|8!#k|YCmjBN7IQ^9k3hZvu z6x`t)3Xg$wNJ$x;G)I(j;VK`5JDT<)nae+7z@*G^x4$e+w92s9_b-=Mn`oel<+EWP zXn6_^Gj6?Moukz?dI~3c%t^rqdg z@$^hF+P!caV%(qvQ!D?-csGRdD|2ogz=E@&fLZeI3}hIOgdP>VzBtm^XwrCK#*^5P!9R z2xMW3>k}U~Rb+RyxU)Q?7#eIw2Gx_D6!_FK>dE1EeL0k))~l6I0H&qeEH|k_HL{t@ zJWM+$PRi^l^$Bk{&2e+9GE%`$zWf!{*RB=~tiGm>%HSFc0a3D;B}2uKM!*H_)K^ z@WuNNgG8hc^4~vZSi%p`4TkrhTwY7pTgUQsRc&}nT91d^XMH=I5RzG`Zp;nC9co;0 zOis0~Ytmn~_SmUxl0Vcxrq)UcBOH4k)Sb1ttPjXHxdb&ZGz-?mz*L^f;5-DLjf)|7 z^$0&+$uopwN?y3L!$bexv!c`4Z#4mBDSgS@a10DGKLK*KS!$8@unaF+7GApXyz>zx z#OXT`U0iCJY6vK{SckHVpOecm%nFNM-JDR`O1YCieE0497WpuQseQ{J_kS67r%<=f zK*?Pdm8jH@gbMq;ge(?W&{xKw9gs|^k*Jjye7q&sc36A7iXSloVP?Y1K#XCB<5W@C zA%KivQ{7-OZaBa080tJyxg&Mlj1B!5!4{>Sk4 zqkMfVZ@&IEbmM2@eo!^rH4`(GL>iw#x|UErVbVJ2sMFRgQCnQX1flk>S~+%XuuCav z#{xW!N)1o|p^2{qKdtJ@bK^BYLPSMNlARBS^?SDksQ48OKpeOa zq|tn+5FjGUD{oI)P3Tl+io=GY;jp764pC|*loiqmVCspx#r03FlCpPK|0tyGT6($n z4#lE~dpnXkh0Tq5NA!w3gJ%2{<*YKa^6w;{dq+rCJh{;NGn~{R`f7+YD^v$3#w7TZEPuX#+5NZ@?e0bGyg~HkOzK_yiTI z)s%j#BYY+?+(Z{FQN>v4M>oEb^?M=8$106yA#7|+;N zVjpH(Lo_u#R-{gsubgFi9J{`so>h1pLrjflm6w=OhU+52Rgr);VWVF?u}m0B`4fX% zpQE_tVmfG_5YKkcRN6&CmKp!)^smYyw)R@JAZUsZBI{i-A zwo82IjAdr0j}&0XS*j5Vih$&Q05h#c|NLM2HT?Jfz(+sD&iO~`(F)2?t)t)NXTS6I z8!T0S1MO(yi5|LksIUxiS;D(Cr3thNgq`47RELuE<@gA(r6rqu%@4AkvqC?=4iwKezRM9>6|Es7 z9p(PQA}CS4HL3-R?-D-=jTOQw7>uJs3IV2>MoPl$|G;U<)2dSdCQOJvpp+V*nw&a*nvPs3Bo3aGGLrJ#(qZyVZ|;PPyh`VqPi zY{Hfrl8QbhNb3;166i5f2D)Nr4C)Yh{7aE)`_>S;^$hW9EGVZF+@y-iaI=&9%MD}% zR@w6Xd30(U^?a77*h=z;GNP3g7#;RWT8jLRn)b$RK%EnySFQS(lK|ChS^4GFs)jOO zYHeUJ|CHO#O2lguuC@Su1x!$meOl*{s#0(oxS(WK%YsX#vaQrklhiiTUTRm_1`tL1 zzO7wk5<~Iav0LDoAYXhkZ~^=a6^X~9*`|(V1!1Z~!WGgguaN-kGHeCKrZe@skRp(T zAk>K`&BQ`IH;aAqssqj^@ql&u8aYbo3elZO4#Z-E3Vbme_AQ6$45k4~I=Y9!r+u*j z#Fq5#>>sAr{}w&Or*Ebo`8|*;zh^j$$1@m8O4|3k??`llE*J6zs02$IE_XnVqx$p? zvEeT2epdC_u_JaH$ZQ%!owX+0+_UdcyWwm-MTo(=cWBWE))s}+OY}}VTTQ{Fy zX-1coW8~bjxKOMbPh~0(h0uwPVHS>R`Ygwea&ULouHDQr$Y? zhL_x8HEVfMgQ>JaX#vf1MzIh2B_h=zjk=W`u)W!wZ>**_ZexYp+OpKN9WsIAB-sik zcWkM~k+4>~=S8V%aSAMLTnxkL)3>Tu*jK)ciUDE!A3Jza!!ydp zms0g54OFcoJfxoL@j)-Cr7l?qC2)))$ZqTsaKQkfLUsS9Q_b-FhzfLz>Q1_}_P%aF z)nM#*7$4k%*#|dIY-AS94FD)KNi(Z^0Je3;g@odv1?Yz0(}Wg<*K*_79ib8sjcxpO zePiQPbJvylr`p1rpelU$FYmtqq7}E|-tU)kD-Ll;Y0;zyzo%CxW-cyRJZTZVguxCJyCm)ol5=C0TZ%~BXOXs1mUOaLru)ut27cOBSvoqBZ9WZ+3B=Yc#Tph15w4aU;_U{}XWI2}{{SWwx*6Lz`B@*a zDs%{!9M1vcjJmzrsG`Q8IYAsEC412|$bHw{vdL9Nda1kEtCFw^S7)Kc&Q5s2s^}W( z!Y&FaTrh*b^ZNnw)_|IF-}n2=MJuh2w9U$f-V{B*^A&!ID)0EOB8j(P|ReJ10qi79l(SEoYrV6 z=Q7Ag&?%~WO_JyvLrP50+Bk7c=c#nCG?tisIuL?0!fb_IF@)V``uZjaEhU3(uxF% zcb#~(^N#(X#lE=dfNpZ;EjDeE4Y(3ibrO#N-lwmb-noS!~S?p(N>y zw@g?i^4Nl%bW3G^34a;>;_~O=-(CKdYpQWI|(ks%w#i z#D0yVn?`Q(G1D_!X)9ON{+6W;qgsC+0Ckgq}tx? zJpp{0y!Brph3Z*+_sw^bIuos_T0SHjSVI{Xzrhk>k!ps>+5vb{iObxYvieNq}LabHx$r7!GPkFv!o}5W*y@_V9U~0=LqEm4L}FJQStsz4K*bsY%&6u$)`hr-QRz?^Kav^iOni! zu4RcYVF&6KC3l{fUMxnnRv|RK`YXal|2_v3JotyV-+Uzh`1UJS_P@A%_^AY*&jQ?c zO%zfgHy}+A3k@Gk6mBY~(qB|6!qfXbsU67EqeQz7F2^ikOUh@I4pGYmmP#8uB0}0Y zc`$EmIf^O_btAYQM438x5~SlZYG8j8+QWzg!=QLpxbL{^=OT_zljSta8d{F zj5*zIs}1;GP4=mEm}_8H`>=+hU0?t-9==#E)X`y4W-x`oETUqtAkh$X)GAh=-kd}a z15Z`&EGl$2;r4x@J}g=5UGe)pQ@C0bTH~_WdC z*dz(0E<6n)QgK?BtXX>^KY<>eJ^MWccVL)Z=Wm7Pk(8Gsal*^AW%BEwr0zB{;Pe1RAW*IARCNk?lhfg?10vAUp5^00-p~XF!sCrS?fbpQNZ47 zdYSb-`b$g-h$S9UYAzoy;PW>qxVmj--ZB@mnO%nYp${Xa)gRIPV)T_T$Fne?@V-OC z3mmdUOZPHsthw|{A~LXqow?ks3?>pN^NT6A^+mFkjT5J$c*3Hm;(QTvaEg`{+6rtc zPEQCM*1NHWH8?EpITYLh564gvN&xs4sp*7iQQSFsohYK02ab_1g0}~kFFDWPhcy% zdIj`PvD;8@tvMzn)i^zH3@_Zf zsx)v=;cCifWGvNdAYL~wWRA#$SuGU}yQy<-ayQy>msB8kvNfQc0$Nt@9#qjbJa!C9 zs3f5vBea9|Q0a8G^TrYuN)uf{U8QEPPSm?bMQWzaiZCqQN(le>R4(=A=!IoxB$tv&}=}=G+4=y zmBZ*UVFqL+1bB-UC9rK7uSu7y@)Nj51q76;$r2Vy2(?EEb@EwhnE1rvftsaA-6OH8 zd&)V7g!zKCX}A$4oggNfLgVa%SRG4DrLBMQ^|!-`fA)hjP8!VE9|!%#uv>rq_Qi+4 zdH*52_kN5WgXR8L`6i+@!4IGe%xbUer^(DO^l_1nu?1_YN6`7VkH7a7JLR2$LaRkw zP#Xs|UMavBvV79N$3C8$w($kDGp)ff$$kqh&`p!?N8B}4=yLzes zL}sOpiSDROYZVt>rYDtmuL)~Y=wQ;k8=+sG^bQ}yKqx-}*Y5K*a^B zztc9I;1X3E0k;?i=dj|7rfM#PMNS}Q>EjF}4RTPi=WT|ka}@yR@dmlx&iW*=7j^bg zAA^uyLL!4GE*$)|bByL8=AnvN4bHh#U(~h0AR4tIwhg{nTvU0W!g7-)BTpehHpNBb;Ykj=Ayp+8oP_jhyNl$VKsn~s@1I+n-I!{ z(a0DtJ9@jr#SVhu9B`@!1?o#5cB>Dse5YF)X7!(Xs_BHs2^GcxYL>@N5@V?X)xmi? z>m+frg3Adp-HC!V(-XWZ*T6tIxX9gGxkF5io^hZBBT6WE-nCwo&gj#b*LCTY(Uc^( z1J4aCX4#=P@^olup$D}hnCXG07YEd2gJW}tdSdHCsRUoLa29-0g?(m zFeW+f14HH64n@6>`37>TR#r{50sv)fzLM9tGyTgCatyQt6jn37C?YJftobz zGkQ4Cfg8u-0s0YXATZ(Y2;nAw<0FILUr?dz7w?~e&hcq@{}ZU7e+Xvp`x>tK$3Eqs zFeZB(;g%|2y{k7v8$=P5`4QkeL3ywe9TkLm=7l|y&X(jpl@g<>(pqI#daKm$AHMtc z10AfWS2*o_vg99tiq>Q3cv_n3O|9w~Z#ET_mwN+yk15QK991gi*_<+xzuv0)+uote zsHF+^Wh_i@xkgb4+s->1YOuw-(#+QEDy><}Kv6)s|V=i!M zGcZ1F8$q3cRFFm`R$G_2XTzC~3YluKV6TDR zue$JBeBsw*IO_%PPC9u=6mTTb=*r~UbDY?yz%IxBm9``RAGDj2Zx_R&n<<<;dwMdj z0$Uy^`Oa2;+@N7dc1gq@>c2u@;o88y&Jt#Ns!t6y6Y!AYZ)nqJyOO|uC!P?9cfu1? zuA+C`g}ednM!nciI$e6IDQr7py(s?_80bCErjG0Eqbs-j*>pffZ?op@0oyHgPuSAY zScPgv4hc7yRqxm9q#`;FMnsoa%=mX#2T)HFRQM0&kU~s9RU6XKpN6;JUnEO@6MfCbM%ezg4Bng8J>0`?P#u2qz#odi8|uILN?5tT;*!U z%+X%R6xe}IhquM}4C{*jMhq5!F0!f|I@acK1vDS!;W6tY7H!08n(|B7P00DjGGaB5 z%CI|?3wskMREJT4jzIlzi3u<{mF%QHCe#mT>HOlMezidxFFvg2k&o3#FkOScpF?#Q ziUkQ@hwqT8dB7*)1^u7zE3QyO!w6E<>HslUIh6xL1&x!}sYk|ldZ*fNNxrVt_HSrS zEPHxAlv}a8u$4y@48Kzs#RP;Bg>h_8Fbx(AQszWf3zriMqF7?&K{2giu4&gp-wdYb zAa&5Hv(gg6;}P8M+btV6*)vdeP_;R$4%C){52EKBmCKqE#b`#zAwjYg@^~LfDVFM3 zih!f&?;J>$^#2p~X3Mf1*OlOVeub-AZGvPH>s@W#RUguAYL5udjK~-fL*|Kml9Byb zW?gzyy-5%Tf&f8^07(EGWOnYsfAwD5_u7${C0T>Udm{4QGiA7M-@_WJ!%0<*Bjg9o zOQFDc*#An6BL-V&MebJmbwOB9A*b4OfaM`uv!Y^NoWy|=*ZCZ>^QE+^OdKox@RJ;T z6zTBpi`QQTN@srb_HVCNS$uE*>LF{lqZFn}ujUxELsZIgiKKH`%2?(?&duzR0p4BK zPy%YW1EXNzlMmOH~!$d=45oue+`Z?G89NX&L<>{X~}(Llz@q@zx|lrZP+wHS0CIAt4IHUvva)s5IY3@24g zaEU#OVq@h5=v)#|j|S)}cfLhS%Ey?UAtMn&*;enBnF|P~ylaG6Dok3^3Rh>z+UfZ+ z!WTYYhWp(VtwK?r+I=L2p#?6N(hERSkxHSt*lIU$&@qD7(xvfy*Xr=hW4W0j>q!mp z{1P5jggG?_6e#lZWqdlRz-xjt*vv@=yi5%YdV%<;3N}Jb##-^0Ay@~rmdgG-kC!96 zKhLmIm;D!87h99eR`#_vk@CHw-mUowiV!jOsk#^q)`q9b8%8^7oca8e+n&yzg1{R^ zV}NENSxe{%^|T#2nfRGNdAFD#vF!v85FE~f+RzYSUEqD9a3n;n2G%BW1R6F1rh#YM z?=jRi?36HJS>JyOKg!}Qk0_x^&MGsc0QOfh2)U5Zd$naEYr%%~cWA)jG$y#~K2i(v zuFfO*5-qyQCV-efsHcQG>FLWi%%G)ERcMrDshhS{)JYpWiX1*B_X3dBavr@zQKT0V ziG>7oICDsVk;A8PAs6^4JuCj`wj_T%1tzhJWCdm&j!vz7S*lXW7loOf3%p2}v$|!I zilAvXbPO;Q#(SEwjwG5}e-e)Ma%R6+3>Xw7b7PmFaEF*7 z<#CRIqh#Ig1a}7ys(n|$5Y~C(ZJ_E%-;h_MgwQ1hsA;>HHn1V>@aZ{5aq8Agnz<@;Hy zUS7gvrZ8WQ#${s~_3z7Mh2hWdmN-)}h-#ZO(ge6ndosw&vo2n#l6T3jQMR726W`rj=?j=_;x5Q$8Yf zFOn+%vL%Fa4r|{r5CK~zD00;{W-U_(n&(41cFpZ-NMhwE?lT;%oyVVU}!wvSJcu3kHmBQ!R?Ph9Zw!Y{yP1 zJi}44AUR}AsnIOA#75S$^+b?c9FCguk373rc0BngdC|_H_ax~rY6Z(MAYQVnu}P5=a{@=bu_>^ZN1|j%rBS6-4~ilcNJ|Q-+*O+9D0~2%$?;;lN<6hu z>Bg3mk_n`GrGH79k6*Dbi3EmQLf$Oes{|I9@M`b8Va5eiNJ6P2G0l<_1X!4GT{pBe z=;$MXRtpt2Rls~B8w-+L&r8tX%(gw&H8aBVw2-pQw2q3`N%Gp zQ)nf1ys(7_48Sh`=#tRi*p*TeV0h@(-a0t6Awik@-o!mX;Ii*k9#gUWmPN>^vVbps zQ>>2RuJY>_QXFC6Mr@QSJeuY5^^%F|zkzdW&|2)V>Chb-K@eU<+V`GbDi z1ET!r6U>S%r+@_idAyrLor;`UCJKyvC0Rvt15bJ-Z@lT@Ui{?2x6XD5UC53?W-yJk zqkvISToEgDHm<*eFd8Z?l5WG7d^{e-cxq7H3kDF_^ZQglqTwxM=H~3^8nE9ZU5V8k@3Y=r>y-08b zZqx=%vRRDj41yV_$5k$+_A$1R_)FxT<4#i$DQ=X>#;GX8!_C7Y8-FDDOGCG16MKcnjJUZumr$7kWd1QRerifr`D~9sR&4JJ~M%3VQ5{v zPJ0?UEm0t9e=4AFXhG$Y@P_M>TWtPFyS4`$Yop^uq9ysf_r$^I=n^aN`8-9e*lC;OO zdL*i=iv(P2o=6s$Uw>)hD4DrV*K!b31ee+$#ydVx`DnMzntIH)U2*r~3EKtpOk|I|~dbgDgo4Hd=I3l;L37j`igFos{*s`sgW5_gx}?-e8$0d`i!=#ca4=L@B5Kdq)*!q;?FSvu zs%RMEw4Fb|0HKbu=Gzn*2YS@ImVftU3DHO}faIqeo*CL0ZTKWgiPB--Al-#S+{-Qn zR>hrPJ9A3X>bX*_B1DcZH_Nd+AL>SGC&@Nfwn*k_wH}(b*mjG&a7zq8DKK50qk1wVxoMW!=>2R71ffBx398s3af% z<54eDv7P z_d%J7N5^D_CNekij;_ct>eYrtz5zvYD`1~E_K@qtyKCXUXvnwCU<`DN^R4Rk?c9^< zfV0gN`=ghGa}xVqGQ|_5VrS5(X0Xi!v?BQ@ zNiROi8AR4xmXq}HKzCIVnEtdU6#*h_8(1v1P?3X?ou1GwThj~AR>;e&koTfe#~lH9 zM`Bg^zQ1s{E4ydo=9lFNKsSQ^3EiU>nttlS?9<@k@hpvJ17398VZke<V zLB0=-OX|i&1TGfce_r=fhn!Sg{r`5JyL5Ui0z|04Abl$shg9;^PQ-qSh zCxdD<<#X2py$JdejXv7x8kpel7wTlQ99Bl^hx#PpCIwNihnD5I_|ln&ZTViIqAbMfP++{comD z&3AFFWOY?|bj$IjObUhuTNNELYE}i zS)NE!|2#*QFJC`{_~(~ze|Yd)8|JJ@WpEtICLuM^8NKPJ z4yrB`4Te5EYgtg`V;8nALsEL=&KZ!y=T`D<;sCB(ya|se@09RdpG(@H$573!~u3d z&NJ+(#iG8ov!FEmk+ycs|f7%39hXy~v@PPl4_0zT=KWiy@NCMfck zi{>`aoP)N%r0SQ0@_3f71DcM@3e^VgLnU3SB@P6L3{} z2w*gWx5=!I9z?A-uEQ?h7+x?+MIroWPF2V$1_IWQB(HCdGk4lL^jnwM&s6mQ z$u1GVD!&V?!vKEwZ3HUqk{G|hzOg8pYp!yfJj<87$!tN#DXT{$TDeJ$MNOcN_ zkEv|d`+$Of@*q1Dpg{5&!uu5vR+O10lh&uGa`2eds$;D)W{S}rDZ0>4My8dZv+-)N z3Q;cGR_d~9kiy~4d`fa`^x@fgZEo&3FU7MHW)^Z^& zBnt^+X#!bgEab^z8ZSrV`OM}@SWI+D3-26OHVl9zEV56mX#R1D+ia_{P=w5Z!vVg< z#C#yQ0qn{aqQzWzu&pdX)R65C`Hx$CkF63HH4i83)}J!sWz{&{2VAm3D_wbmeElj4 zjf72*p9-2T*bn?c_}_A1`h9r&q_|wvD;j$9a=%&>{^vf2#Jdo$Dp256eF9!I3cVCVnD=@Y5fPxV&Aw4l9K*c zMd1M?lQd=8;;eSIlE&GrO42b|Vfa|62xm%!WWf}1J7pr*0hyWoRQyn>x=IGTz|jp6 z2sr6eHhq?FVzr_s?s3+-a5BpII3YVjG}}N7e6nvHtJL3BtBcLuxolvmr1DaLYV~9s zba_IQ?<63Mu@tZ%unw##N3cBTAC-X1%N{yqiiS+}C(RyIg5` z5MxdBfdckMep`hZN-}4w_p%4_sxPBs)lEDkNa;nG8(1%lvd|j6C3i)0-eX!H&Zz;? zXCMPFx`RL}>oE&|KFgq2^v$RgH6R&Kk9oBHW%N#$7L^nei^EPaL&@vH^fZ=|Cp%7y z-{J|d`f3z=JC9zC?Y3^8iUD8X4G(;3ybd#nM)Z2QUDwmKF*Cg{`G-y^w^nDSejdGA}`IlD_1 zVCoe+hSzq;?9Ot&YjNSI5G4jo?$H7nHoDar6K3P#364u}>eQ&nTHeUp;npgt1=V1NjK!!M;@!4>k*Kz6 z#sI34wQyZ^rpGD-Nf(0os!-sGdymjYFEfm7Mz>qBZ$dTmJPETK*^|(3poTeUZX4Ud z;c7GZ7E_4%`RHhoXjo&TGSxvfqSgR`Zq(hDR@1>QV~Re>Qrs(GuN)#Y+zh9SaSK& zB*sQJmxZ1w4}HlJmgPXpVJ6nhj>zw!NvW~vd=8-WmPE(l-LQho%jD8k@C$us2F*(R zFu;v9n}Ed_^-s^z!Hrk44HZoX`7apyK{arxB~+=Hja>&fY_vM)tN&0D1b_e2@Mc~v zU%dV^v`@c$`~B-L6%bP=Y9K?1fe`{2NTkLJyDe#(0O!Vh1^O*0E z1YtI4l3yw70HB4ox=j@-(G*R2ka#I;3d0|1W_Gb`ug>snFOf(M0)&pFp}$4*zLn4JcuD z?C_^ehEyhm`Sx&zi}SF?#egn5#)}tZO%qs%k`p1S+h<`~ zD{m2lOB}A-(Nh7Q-r~l#QmayVVx}Rohh1VcWCurLW7HO%LnM%LItni}kenk3Zb*xw zn4HZ6wsa|B*g)b<0af<;Dd((PFxuSA9>7n_F#yR$*U5H0m{s`-S^=7QU21s`*?dKa zu+W`(qjI*d3=1JL3rP*}men?m1Ju^XAvuyB3b*shu+Wbs8ty>aL88LMB2}m~bI~m( zNB}|K_mCmWLZ_T-6}wWv3k*&dSjEgPMFIfJa+pVBJauLOa2;@HRUIj*R`WxI^Yi#L z62)1}jSe&s?OZ{=MnT%bY|nYXvxDdm&t$WyV((~gG1|J}?KctvB%1&~=Ucgx51+n% zDX+c#`t6T;^Lq&nuipbfs}2U%2zmGahPThuLcVWW@&KW@a#6jW2AUu1ng$gX%YO}| zsr(^3A9(KkS~!>J%p!QZUMRd&)PmU^7*~KXUE@d2vwIEy_)b+pDTBB`8lKG)&^8ZK z!9_K1o{0OkQ`nZ6&12@Vz|_GNV$gq`$7(Ab&5kxHODffG z$^0G57ZmbC6@Wxr*fLEuexPY|^Ee1OH><{nB0gMAkgSCQ)zO?zsAAayL6b|VxWI$}qdYD%Jnodm_Q#KfV;M83LHFa$p&-HX8PHzf~6%6^vtv)|=E^XvbB zumQ5^CIv-p?DYGN0TPtM+U%a04n>dDDxA@trK+4;1~EzabJkKWL*#P-;G}>6#`ktL z_Jz7i)+1X>cw#-;g4;w)KJwe(&{xcmpAaQOv`H<>LLjG4i#!8Y5SQRkZ&>6shyw-z z^gn0}U_r5PoKsb4F3Dhl$xw6Io+gg+O!3pf#iU%b-s$StFcoQc33NGXVb6OetX}ob z9}hxGkmj96Rp#hZvz*4^LMa&J3WHr?93|NUnw$<41HUHH8lgW+w6uC0M#>1*Fv^s( znX2RC#fJ->)D%kXCIna|`hlEB+rQ#mrG^xkSAQx}r)ptnA6%jX#Go2q?m8GrFQ*G= zNU9xPxY^X9KT`&&qrj0jE(!(M06e#|BBKe0>kTQB_kQ zUoS8K#^RlA4i%Ty#l}>6+Y(Fddtp|Y*&gsZ~7PE^>gs-Vr{Nz!^jXT(M@(6lS!#1q3JA7nS0Vvits|0EPCW-l;RZfj_mrV z0Kg^osxka>v;_~tMm2b`QyzO83n(Z5Gm)wSn z3OC#wAl9q%>xCUfc((Rn1iY81&+&fMu=Xg~e7Te^V z_l{vn#PoQAT}9`f1xAi3ZkYw4eOK#%`PlXDmYPsMBvGvg$&-SEa&|tTJ9r5s`C}B^ z;p1f2L{sw%BCoG~|20&HEChp#v$vg{ANQ$SCEwlVQs zmvPJ@^@Nj+RmE~y(uISb4;@iCzb_yT7{*MwXcl|s4>#3QmU9gH9-IYal&R)?HdoR9 zL*qS%i3J_B2jOmeQZHHq9!X?s;OdA_$l*x?hjjqZpjA9KrK*msNfD%IuV;GyphNWn zCcm9EXN$(O+ajSCZ7<`!ujXjL)`*(qq)sa;{KfvGUYpnmR<)ZU<>tZLN8vAz+h4qX z&yRr@`nS70L&J(GQW#m@Y)5&HD96crhm9^9B+v`WT78wfn1KGr>1mAw*U3HFJkVhj zJ>P5feR#@tP-wVX7U*21{dST7%;0SCd>^O4$tkJFiz3az*;5PWp5q4{g7Dhg-=JT? zIiVvm6ae4xjO^eTiB<^}MGRYK@kA2Sy!GWwD4+BOQAjgWL^EQ-Z|2(MDRvz<6{2jXhswl zkI}J^ZBElz?~*f|}jB%z3xH*n1CPJ~D4fnZ_4;Mazk18c}sQQoKv|XB8Oz zQ7a=*x3b-=Z-JivuCB8M(QD|uNN7Ew?_dfYEfCo&A#NXm%@<86ysG)95*gH-Mr z&fg4+B9tUH)nKnfUwwLNU_wx+Y)=<-uol-F%<8D>o|*6AXk7 z_{nLwU?~R21IU+h)1=f}?wWu{%RIAuubPIuW+^EJQ;S|lK!;->nGo}BYlFmnk%hbN zlY`qK0C2!$A$22Z?eJs}i6%qkaUYV$%f@h2xKLq1rwDaWp~{mi4A-f|BH5Ax)FiU? zI$AAh{Sl`nWchK9K6;m~iXG(j!MKJypCZ5V>t}FcZBqKf-v?ggDE8UgFW-Lt?h{Fh zz5wa>m;a6o$v1DmQ*_AdA5ian@%m{FfOmKR)QoZAeF$5Hu_`p6R@Xt_pfEtW62O)z zRwD1`hnS=)Mao_RzAUXiPgqCg;uUFbDU7++v#E5iatd4IGB2l@&Z^#aC{ud*{#n~ke6AsD^QF+A;l!+f$~Lvfkaue`_{qm7F;s+s8k2s%@R;fh*WevF63 z3)#x+te6Q)P+;&HT)MDW-t&yry|iqTqGM;Yix?(WgsuznN(>;aJ+X68C1sNwX%k@_ zTc5HUVBYmQLm#P4sN*WY$xykxCtn0j>)N3>Rmvx9o=DqET{dcJqyl%sX!WEF(4{A{ z1w{xfZ1|RHkqN;?=Fs7wDtj7v!^B`SaYDbb8O zzmmVg=Zf+8=eN(o4?o7trMhVsg~pL6SU81=UAtiJzeblmm2`uR9VyF-0wY-!u91)D z4b51-U2E-rnaH57pd{%E#02?c3OSAl>E{igcbpufo zVi*9mhxybAh+N2M&t&)@BozdrVfBYArn?F`IgJX()DKx=X1E6^R2(X`18k5xFAlYI z4qgXl0fQ`Ofh3CXjoJcYpEif)fbxS;hJ*j*of^F%ixc6nqXJNA2A40nXDF(oBl}eP z^VmvI!~4CG(F|Px3t4ppns&2@MGyMG3=rTDpIJ4Td(Vsq8pF)d>k-v$eN1!jjq(6< zvrSc#NKeoK&eK%)K9UDG_Qd!n%m?e_*0kkn;p}CEl9zfeSr)YD%#~RwB*!|&I?2U( z=|QK$Nj9D##C(kI6~~L=iK{Y}%?vQXlRPU7pn2U-vi#*>CZJ8;@Qq#&^P$U}1x@aZ zXBFW01nZ-mut7^%`XBxkiG!xV1DM2s0x7vB9p5=moQdr|cl z;lJbv1~aLraqmYGt7!e8;*kHQ*DA4Qr@{SY8p4^>K7cLCD0u>D8R!O~Rmb)>#xCgM z-S8#s6=<8Hu7jrE0o@OvN}zFzrsSa#kBFlmixDOPlo``*kqw68C8X0D@{EmP2*<~_ zDBWIMWfxlevc1w%Dr8|wU9PM<6zAgV&N1jk8p1BoZP!F_uG9qcBx?le1Zi^FHazcisM5m3QUY7r6J00J z-04PYq|gp*h&QPPohp2@#%aIl$$LOvdzEXZ8f2)eQ$K8>b&vDD(>XI_ z7r9cCX;rxe;JBWx9Fk3q;lIVDilbGDNkvnjJwyvTjG&R-Ihg?RTD=~YXSCPv^qDy8 z*zA;c=z1zcb9HIvgc;{dk0IFEFvUoHnTQ`s7`Fu<0P93f4pDku4UT3~{eBx&U)(~r zlCXAn$6hJMfa?$El&T|M$-49S)Tw?YyVr^*H`v(>z#zysgvYKXid=MCGVg_apX9)3 z$U+7WK3~$DBrec%xG2L>(!#%b_v6=}hQC5YdHv{+UHPv$&SaADvm@p=Qj|UY z$bIVXk5~T{sQjFtnGc>5kUlj}?U&{T{v4#EEp{pO=yHv_f}bdSf$?^^{dSp2%>*{J1P5hgG5T1)kY zhC-daH6PKzZt<91*R#1C=?cZugNzuNA*)E>9dL~`0ul?rjN5R%Y_7Zaz19}QKx$_By)z)ib`E0hYICjj`!ydz?j3M0%BXA3*jv4=({3=WHX4#GvcSfY?Q zjx7Fk?CG`)5o-Gzk}|6SG107LfiAMpb~~-#J`M~)pT2z`UOzeA!E&+~p#$lIud^+f z;*<{7lZtB^>3fIj!L~bWX_(ZElROiHje}kd4p1+tO~(;fUmPw}84>&78@Rlu1-k&% zNqnrlVF@GXvesGHAv7Vm2dMpgqDv84lumA5gTYn9#BJ8|cp09@))-+qly1=mY@M`V zN=_zR%kfa(g1IwX-12T7YbYC9I0)XAp2kIfRWFa0%<;{)r31y>5f7Vep+z@(q}<*f z^}4MDf;p8V+Q(#agwP7J;ML-hLKu4-28CcBo{ZPASeyuZJxsK( zIzDID_^QH1Ido*VuDGA-eHvvG4a&?ZEt*J;V~Tq9R`?XX9s@In8gvYZ)^TERfmvd{ zk`-$5|FW=IN?yS0w0{bo`K;m$)51d%4b3MXi}W(NW|^=3&8vrW2fCls2?0+Pb)gs`3%JxR#P20du1UJLN32V z93nuzVW{fZ%E7VPueBg4I>^w?vDi_EaW`dD?jd2fG%uRD0E!p8?m*RGo=n}b1@td~ zUl-4aq55IEn{vE*;h&p?PdZKW=;W)~>|GJl zEVbOL8ef?BJB9yKBMOI*eP&oXYXN~)=CNZvJm4e+gj$UyAebI`m7Kh-Qe7MLMt#?Z zvl%QxVks$ZN4xc4L<&ZwqD+?(p^&VbhLH>ry`$IUaZzVfe*&8T&fWJq3 z7?6;WgKZf}uwF3Rr|a^IVuaqy7>9l21aLJI6j z)JYHgS-M9Y)WOL@l8kRUI%F=lHKrx!p!sG+K7ze{k+SKv#4 zW3dwXjI7M3T6zB5l*G4Uox=$U<=CX;KV3iyKm=6)T@`qZ!H%)+L%2 z`7IEb^X;%;Z4SyquxDP6cd1xTYW6x%jZ-_{J?%#UBc>+J*1)w30&@mo0y(sY%jO_ybEL|uogNo4 zBjW7v5~_^PtSCZ&IGunzaBcr(o6nwVfR%xSM$vF=N+IAVC16otap8q*1`h*NwL-BV zhpo}aPIE#g_Jk^cT`>~PBiw2DqdE>Cl-xWj1M4_cn)*}beQ$ee4jaFz*RmG!>--MQ74tU%dhC{z|f%J$eyYje?~a75!ixGHQB0=qghG_l3P5% zxN=7=wk*%OnUa8^eQhvV@F&t-=HiRtL*6jUyJ{G#0{Yh+L$1JdbkBnr@T&IA;Xb=~XQz&a)^W+TuGKD39X}D15 zsBV=iy-WKw9CK(&L34nXM=DXSpikKZD0E6R=ldpwYy%vFLHA~w^P%;mGOCO;N zAqN=4NCy?y674X4+w?k-4CF9dg_FNybZ*FGc`Mx z`z^HTv5pFMTuudmDMs}`)|{{Agk5`Y*4k?}RgG=Z!;?^Dc9f$RZe3LT*i0Qd6&Auz z#3=J;fA%MHvwwR13OtSn1SX`Q%+DJ-G5JgG8#uLHJl(gBUaEJAQpo3cI~ZABG2864 zNFiJ3z>LX(5FZXpDDhAVik@vsy@&S6!% z>hj6kXVv|Jl!upSeVnphch>+Aa2Za^HCQ-l`aT?vvUoOjot@@upb^-bQp09>CcXa~ zAX~<8e(I-#jAEB^5RzHG936~#D(5PY1`fx_mf&zXDDNlaithHD&PrG~bpFci5XW*d zX$^}i>$2iG?pDoI{Cc=Q+t0_nO(FV2BvQYQp zj`tcP0bvx8_k86ab&2#C`;OnF@;CP|9^yvY{3l4H0-7oa+g zx-2pQktAT=G(*2&rj-p!)S0D>*KJVOBMdS5%X}zb!LZ5OQUiJj`QII|>ilZcL8YLV zjfS&CGfUfTD`5lK{wPTSO-#VpJJ=Fp@OK!S7z&JHo>}e~h(Ck_YcY(W zLf-Qox|m~b{@TtnCT^ojsK`AoEvgu=IpnvNr$Q@fyjLT7FiJ%;C18p)N&aQfd=z^i$4)KKkMBU;jDe5BZft65OUqaN6ilMy#7W zaCIU1S@t5yn|s6%xu)dJ9ZG~tP;5=!$%+bGMwFMEyWu;Rng~hh)oa(F~Laxl|EVRm))~kBAgYWrE8Sk-~@vI_if8 z3US%MXo<&HD76FUPOqhI-+|P(S@+zbY$@dv^iW}zRn`ZN&Q#Ro;(kn!D(k!qfgX&0#vE49UptCNC@Ipn26;pFm zG@Mfo+N0X-I_&g}MkCIE$h(|JS#>U6YE(eYqQ*J4zch zw+FPLWgekNA3j_fj>NjKOEdzNDn}c9JvWR+v%!u9%+0OzYH>h-xwW6JJM^yR(^ZM^ z9GK&c@77_dv-Umnko>ddix^E-Mn+?8a2s1c;OKOJ4_8? zX7}1PCR%_8aqt3bt)&51D!N-jEDC5D8aHw$L&vGwg%vrmvMK1nbzH~p0olr1VI4i$^P}suW!Kfbn3Lq9 z-r$q{iiImn`y`Qfv{8pt5?Iw}p^>Z(ZTfmtD^d`F7f<+W7acmsZc(!%PE#QlFku!! zv?^p#^GY5i8``(wvKY>|LS5-=U-I+O+By}i5WS@&B|N&3*0?DpqqC)2)~d5>1$RBF zo8X#y6ysTX=?w~6+ zzNP_oP2D9i11LcGZXjitR$8Jf<%PYyc{oJd;hw%{u%$(s>*P>pjxCqfvFO(;Y%2gyyL>n~Tz`0rJJ?u5kjA z!F=#;VLHgwVArz|jd9_4LmCc@wVcSZZx16=sh)E}e)MXW2()e9rZ-D#P&=zG?6@9% zxh~y_hL?nGh1A?M)0a<9Ml{^YP4THE2!G^uPYp<8o^)eImgPYuSb^?hhvmehM1p`7 z(IdF`sEjWS`WO)MFy!eTDl3X_`1QarJew91lvSMtGC*p`&eG7!`M3klr+5OZ2l^Z2 z9o-Qb5?mu=%5c;hJ>VeAsV~gV84~#DYGFj$qVHq{q6AktZ_8HUA(m@&Dkfm(Aw-c% z%j{K-f$~VR0?wbS5h-|(0D)cz8o1@hVCGzS6n2{dgf3Yp*D`XQ>iDI+dpEm5=?yH* z(ImUz*Oc#QLj|-PlH`dNxX;*f%c)W`1&C0i9SC~|_>Wa{0n}s2?(&fx9XooyX%?DK{n7}wgyZ{LTxUt4nA#p0i z=1{Gc#MHuBR9T+j9yReEnO)0ce)5NjokC_~389#+Q;C>K+4##5VZQ$1$AK6A>g&g^ zpK^Zr$0rfVkDe=#Pu@NYuixbBkKTU&`Uln`{|LLHe*~lPzrX$}$RB@{|9^AZAw2qQ z76Q|zWgjYpdN&yx55s{wtQ6=y2DE%t?Amm-_GE-~MmjV*;U=P%32_+vH9vrD)=mLc zY}EBGL&+`HnH&vg6Enhvv!a$^R2E+cd!a+&cxlIb4bUa^Wx_V`IET@o$rH}#D?AM} zn;w%=SD`)|MLtVWE3;?zQIc#IeMuq)3JobJyv}GhL}=Kw6{I6USMf;8WaT`R_Siu2 z50vUE6>N=9ws`VQa!VD7Y1XCy(}b~hoOD2Kp%4>LH2Z4~Du&oDwaPu%Z8)QpSk#rA z-G?4%j!4jg6dIVrN)b>U_bBA8+L(w1>apK?svxMS1oi4!H-L2_g2WjRD0T)+-lTWxGmQ zMmJQybUP5Aa|XJ(-h*mUda`iFM!#74e}+=2&07HO!q>NGw}Hyc)EpZJIUbZ1o3klw zRlosP%wMaf*shr7Fog@P<6J>Z$bBZh;IldHI%#yuw{kiZZb_o}4Ow^&kZop#b{O6e zX)CUID`wV0_naItUg_;jN^VivuVWoM5_?va}}aWV)4iY{avj($K6ay~>2 z)~3K(EnI{vyG@^#U4^7+H4jzI!-R24Ky0;78oh8(z4*I@cF+wrYyf6B0YQB}p9FH$ z*&JRqSy+pt?XAU8-JA|;>YBkBB znxI5Em+W(39Be3H`Ocdp_LiLOF6#i90c_th6>CbEiYXc}zkvCtpQ_03j{VbSeHn#} z&rH1n^%~j;fFlQz*9~<`so0DfwjMqFp|R2xXPTh!YA7~c{uzs|T__NNu*rbshYoWi zXCqjS50ZfJHLcG9aoS>AxgrpbmP47QgUr8FCEKRyUa!6&hwrpHz%{(?wf}oMZ&x%q z>>bUW*fxtnpVI8u{^{ z6iJE6tEzh9A3)%b+zUBL!SUW!vbs?iR$;jl+%CDg^)VOeNhEd_+-|R*5Z> zT|z&k)cPnC1&cSHvl$5FYu>|(d?A?{q%URQ>!Y_{hu2T+ z`t{4V&-0%lf5@-@ljLi!Ss6zXu@dG~^V|?{ic&^#`%h0$@*uQkW)jZi6J(dctoZlT zR=VwSL`0{S)3``at3l_>{C#h+s=tGUiG zp+a8@x-}Ns7Rn+k-3pK;y8}k;S<^xup%XwX8zeHNnVW5S0rFre4{zGuyebwr<>+u( zQ6}DTcB4dH!jcc(wRPO)vDH<%t&)LE`6ge7d8=sfmYkwHfs+rFz@Eb>Z2OD7({gke z!DPf4PHtuxE6RqlD=bG7*R~o~HZYkE_Y>L}m<0|cq(al-8qsaRt1?rY$k!1)R5L*C zFvhoBt5KYpQ7avHcO7dWbA1Gy7NE+cB)kx|o;{EZ6x@t~U=>+|`zimZO@G4K_mIL( z6#|de7vf_{6(x1V1C^H?SQYe_q|(Hz;M%5Y$I4q6Dv6r$hV{npu0gU*X>u~998#G# z-e6uHZNfwmqouJ>l-4D$L%W?MDeuAK99@+daU761Or-~}P?21m^lSzgwK(RFloxkc zit55TVm2%{og>FvY`R!99mm?}crp7?C`*(A6RH$Xa$Zk<0%#rQ$MB;c{V4ojM-2Mr z^$UI^Rr`oH0ctrgOUptO`&LPUk(Yr{2A%~0<*0z^Y{LWkhdUm#Y8L={Ghu9L z#x!oHA-9sSC1*b@Kmc^}d`7k9?WTkd8n-f7n*@uX+)=fNNIe_*$?%`;_{Zpz;SJUjdTMOSKVt!7wjy zOA<1~)wuCJwdbjhnO&!1HBzNF6eR%akF>qI!M~Q zlQ+qltOgsxt!*C=>_Uf~3+y5<0oB98Zgp>ZfF#3mND8&uA}vGdphR&TcZC~TKN&-`$aliF^rK`6LGPuRW^ z{0RuGy^SxfO^OBtrxucAxABCwPx+pVnxbBVep$W$ui-C_aAoG%zkB`UPsiuKe*Gx$ zf*+s4+?%;Ze*N}!e)Y)^A^Rb~7U65N#g*4T3$H)T*Z=+XSMvXF(e{%6|5|%sIpm?I zD>)DFwU=X}CTCM*M^!=rPk48*996i6~Es{pqbCD^3YKYd7Dh*?T{`INqekkx4 zjvUb?rJq$u;?h9W;d+AcC7IsJ*6gSwEI-S1H1RJ8b9_@_EH97LGO>b_Z_{ySd8Y*- z%vtOr+p{QGNIsl$-`+f+P}_YPe)viLOb7xM5 zLeXVQ1l{zsYR-im(ef?T<1>9zG8Ra`%~s^?C9`vvKegM?!rumw2^AK!wl_F^QrNU}Y!#hm z!3;ePCh4tYMGu|HSkThi1qxlLPYsn2rF=dYj8P++MyWU|vd%S6E}Pn=NUj57xvJf6 zXr`+ngGCuRvfA;!9FjK``vMo2yO8=%zC1%upY+-0J9)Ip^|7ElZOihUy5^zefy&qo zaBTw8!|t@_AZJK=fj``#YEfc%&6NY7_L{7TfC_;8O9@sRjVs_9oP2r-<$!`mZH7+F zZhZ(KfC1$zAiDbA%Fq&0Hluuy12i{JE$9s(w=*BYoKGI&%Q4%;iiB!wLIeIFW&%pO zX+bGZQbNFBQWeFld=-))#uoZ87SqxGQW0yYD%Lz5wXs=n*bnR*g#HOn+B-NUj_Vb*)h5u+6iGTIEHSRxW4{Jw}zp>$RA1PI>Zc}Li zOgt_tNSMwB1KXPiCls>+>QZK5@?#P*fioaqVwF|sw5#jZ5reIcXAH zPX?FPNMQR6KI&Owpr;HpMx2B&A4DLW_mO&T%G<&0FI2{NG<<|XD8Uf*8LWR=SbZSTCaW<69k#N6TPT!VbLf=3ra3RGu&YOyX3{`DA>53}Vi|=N}a22^h zc(STn^bJQBsXo<>;-+JvAmodGCPGQa*a5X#AK>YCJmdpaI^~9jg|Vu}$72uv)DUWB z2I6zLlXZZ;H~@xlzNil{Sf%h0mp7IlQ$^%ZpRNoIon%PBDXjA2dLmSyM_NaV;@$#qR57BR9T$3g2XZlrZV0sgBc zFA_iRkZ$rfQ-Xu669u<26AEf=aO~aRynRXdKrX(%3v77jSHFDyg*w%J8D76Rz5Dcs zzYlNU$w$dwkm!8>_F4WjD5FW7EZh~{;+%Ezjkp*2Bwvx8Gm#8PJQl%T!&P!6b#kl&!1 z?P`o`V|%oQFk!X7Yua=;9;$RsInu?wKxD+%X5)HSpZINX0BF?dO)3uY<$XNG9aI2}HQ z$ucTr)vy|r^O5%3K)Wys-Nx`xB<4Ac0W}A}I{0W`N|~`QPv?qbGNRh6^=D8@MM~XhKkKT>0jP$%;HW zmnNOrHUcy3VXGM}YuP#$q+2=kx3dMD=pgaUez&#^wAR|Xtof4f8uZ=ltiC2x(L|`@ zP7QX{-h--v!GTQ*JUFaSZkvPO-VH^ciOtge))(TagAWo*ccu0c0f=fcVq00v;0t z21p#Bbi_>#uX^k)8_K>?7EM%aj-zr61Bm359}TvHl9?h~Vq57f8O!N^4}V87z^^H( z{Bx;@egm20Z{NOlTN}0O&42&V+aHM5-1XeP+0)oZm5#RZ2Q9S>e9&?K{zSorF$C-l z&}cV#uO?V2pc>0=d$X+)sAY#-UC0N(UIS#Jy^ZqpXl{e)F^_0%?@yMPCewOp3U3=h z#3ss?RcJc?ywaU(mEXv7CIlW=jK^CVEn8pEC*F7+yqh4!ZJQ2NV!$>eF}5!FSpysD z+k7uI;aw8AMtS10CeIW#S%4)vW$l^qW_+=+QVSrJho`&ihZ}IpR?9)Ft2F70X_f@z zggRYf(0SmoJE{2}oda=zlmFF+%SwYlG~h^9LjQ@0(*g_w9X|oyq}F=`OP0rFcMCQ_ zd}@BfKV@|VKIo*Rf!D~gIt5i)K$Dg0CS4bvqAe=@vSt&%Rfl+MOK)=rU0wFJ=b=Ea zg`Md6C|Ge*jGKJCB&10OJ0E3D#TNjZs?m>*OB!MRin+)Weg~i{8@o+Bek#fAID(Nd zBCDNzZwUqmr=`!Rqc~Glv_Tt;2@!tni5WQ%&%iF(%*I(yG_HVL>g<0f$^!jCZ`$KN|yhm>RI7cx_dGtc+*yb5z zE+x%nX1RVlIK3!`XRdy!ujzEUX2)y!*m#n)!bH*iO3~MsfHR|0EyuWIQp#-eW^@$> z)?R8=q`*kmVn&;mZ_}cK`7UlV0q655tHZmjfN+C8FmHwq!wcXJQM$QAat`!3o6BlW zZCG9 z1794(jV9-1gUbk2g05T@kTcDXS~k~{Z(cpFdPF=aKC9nK7j6toVbwovzt#zCsf7PA zHdRm7<|;PtPOVbcz4yP6Kje_4Rupl;%q&n65U|W0I$iJ@OoSD5s%0SWnbN(|%LMnI z!HSl&sb>mVRB~eXr<~4)!>S0_0T^`jhw`8LqHjrxy|hTY<4mGbXZEa}+Qn1ZjL+`e zI!2wy)$8F*3hoq0Etr#y^vuPIcHKerVWi|q>Kk!XQSz=4^N9W*L-F7JUHH2!cl;OO zZ=S~Z-@JWKaASB@0?(xYXX_d7-xq3DTC1?bPCuq*H&68xn%VZ5-6q(JSAK8Un zW+cQY#(K6)fzMVc;&Pl0$Tkjah7y>-$@|PIO;w3WP=V}4+H@*xf87QLJe7!+huTe` zx`R?>+|&<8^%IBv!!1^-n`_Vi!$6DYNw%SJ0H&>#mC!+M4{lg$ctH-|1b!YVe2|c` z>&kW}43-Wz3GSh>fNFO*jMInBVaV!=EGOm=EZx#jrC*2lp>w|!sqA(a%>dI~qSbH^ zxB3R05J>`O-s3#KsQ$l&E);sC3l9sXfTQ!#5ZIzB8nH*E-18lSHS;qBN2R3|>bQq0 z3joHFSONtw%F1ZL>#z!}h05nBnbX!rDT*xyDo@*jU_Ho|zeW`a%&+Ol5Y2D={A{x} zI_L+|uHku6Z(0XVE@M_VgEP+S)K6NX9+*lcuc+JDRIvX&Dn#I76`PctY2X|np*Tzu zu5&lS?7UP*vm_^6?UOGv)C-w@Ctp|?pUp`H!{DbZ#oX2z&Jt{2*Xs$b>o{*vJw6=X zXXwg84UEGK&C6C7^;1qh!RQbMvzc!($HSmUN5fZ7WG+%yss5( z4`)6@!-aX&61EGfy*oQhXwoAgXdo684<9w4id;@q1( zpPQ72ITFHdgvG`>C&(kWruDy$2d)Gd=15Egs9+XVRp%BX4#K}{wH|lQa(BG#5Ij`{ z(r4*=m4T&`VUs~|=)cb>&RQwowgu$}txA_|QYiR}2*6Tu3nM|Laa%MmC}xIi6zeB1I*D@A7H#Gg8L|8f6$QJeeH=7e;SG#7K&0 z6d;(pW&$Kzsa}uh#D;ZzG%oLr69-zdmI}(=I6K@pHg2OHFTtihHt+uhflR+SUi}6W zJ=amj#jnEKN2;Ry_A!|)KY9I(O@#;0%_BF!osyM{o8-WSx#3dpM9U>sM$Wg1@Qcyk)WjXO%pBqsrloqQ-FRv8Z$) zWRV6iv6?rMhI9aF;@HeDL79_LX+pZ)xKA_WaTiF~OVUIGu>{GEv{AFL?x4SWKn#%c zb*&bo=o#q8BNLi;W6;hJyc?nSJl~odv6}Vn)hyW3o?p%J0iL_$AqM)9Dg^Lo!*d>F zS*RQ;{lV^ZRary>tJSemO;#3ORdTH_%NbC1yb}j9-Mati)bA2uhp27+NIo(e;8)&U zInC~|O5|Zy*7H^0F{@`)AK5O8X3Qy?tN{xt4V*tL94SX%LYs=Nc#Eqfl%z$eZ&y`t zyVV&mBA#66^yTcg-l#QOg8>N_`e<#w%eF&dpdQb1=2RpcClc%OoWEqI0P+MJ7%jnq zJU!tD5*)6h1Jr?TsmCKfKI50GEe4>g8MMJ+w^7eupCz1?=hZ9+w+X&srBwVX({7PT zqLhs#FFZ(+eAi?ahX{RawBbn|?YKL#uRHp3FE0?K$Ghg_S76sUv6OF7pQ_3=N->7I zHS*!&lmn#km4~^w-I~LuNynBPVag9{ac-McSqM)Q)?f&8a)WBq9nYUL#Ly zXn4OiE6n()kssl!ny-dKm`Md=)Kk*QH*!J)_?f6_kIccEb(qkd0JpH8?r#E(I$pnd z#z%e3W*H|1W>>9~f;=d|yx_anU*a{$#J$fUl#n^N#3;lY@>_^Wc{;rW8?fZinOkj} z!CoOX~AExJ?J(l@?<=_sxcG znx)Z_4KyICPz|=MkzGCxs)aj|22 zQmB$%N)lF$D3fV@gx0a7Uc<50hfO8FE%>QkW7rw~9OeLLoy*PAnYL~^V73gu6$c+b0;I)3WOW=%@Sin zOq^|i4V>ryI zWaxo`4v5`is8586-l;dn1w@&itvvbF#$luv2v)DbFd{re^CkKk77K>~I>eUAN@#S( z8`y6MQuKw*6Qe^HM@0f%!K74C1dDc3#kQURm)fcQX<2)ugv9~|Dt12{ayO%DO${8a zLYuE`@lg_+rvXPdQbijba5?TR2#y87Wi$H*g-#f4#)1B5UUYUZ3B&9SR0)tK-4C;l zr~?S~E~UT&nJw|MCs!qi8k7Fd58nMahrn-N|L}kR<$uoM&T>l5NuRJ{{~m7a-9Nql zG`!`p1+W@j0!og?93AKbH*mNvL}DnR7dDYn9XM54Rc}3EyM?&BLu8n|Dg|bIflwuK z>d-v0HzYP~vAF@qpkfxRN0HCwODX4VBO^{pUcpglJ%U%w05xShl^j+^)oQ%kO(9Qc zC+7-^mBq+`BcjO&tj6l3nF*k*#uGDO-_ED0l(Z}dAb?bK)!5e<9VrNm2Yp<@k#iaj zz&K&)>FWq>dP1_~%i3kky@&y9K8#_lQ`O4%dcYy*5immgz13%`%g7kRAO+C`Q_zPM zMl-9Aqs1TX*m$UshXFksd8EC{>A}Ka_G#cH59>JZQeK`ukfq=F`9{EgU z)|GE?lwA)Qw!uj+0NUAQeb~-QUXIbOi?&BO8V~b9d6?xmZ|UFNQd}K*TQPsfnzNXAlcY|blBr~Adgv0?g=-Ro z=7Nd9(kwg()Up*-qk8V8k}r4jIC;l z791O(C4Zn07J#;WWe*Z7Ej0oDoLzaHb!Dzz&ggpANYLVI@$P||P0c*OS}lRfT5X!g zZk#p8Fd^Y9S{SibI^C0@gSN@>m>U=Dx}rq&N^)@fhy)3wm zbuPv7fJ}xC677X&8J^2_lu?p9oP#4ZVL^{91LOi?Y0gr~v$uK<7xPM08%1<` zv+%=DplJVHc>VhH*xW7ae&ogXbQs~TU|*5|q1$)WMzeM$yIW&3=M_mIu>b`H-7&yJ z_0e)aBIR4%5C{BOp4EyrJc0797^?j8h-NZOD`1z}E1}=ALAjM(i?bXh`pnZjw%!X> z^O+SY61%pnG2HB36FcHJbjQ>sLg2wzB#`L9NUKX_P0WE0+rU6l%@?my4&{RIaKI8| z!7S&WQ0+ITDI29Ad(SUpWT%pxv6Bx-TP)0~m#SJ-93nE3ijdM9YW9ZZbAVog0(gGq zAj0K-2i>MA-Am__zP!knVFmMeD9LSZ6M8iE5PQY$TZmEaKU%VE@t~k_TvN($pnRj^ zSKLH!DYRBmivlD6n^uh>EJCSDpIs7fepM_kapZ`8hA-Dap45sBL)G1V?9fJrE@E|3 z4XY&Krhq)8g%=J@aE4xG1=nFIfX9T}uRE{8s)Q{Ao!4l?$2E1&ot&Af$ZQ$Ixw#eL z2Gz0MMQqPUQY(4!OszU8@KNfI%A&qN&x+p`WxW0S&ZWFkQ^AR*v4Sgs1TzqU?x|0; zxd}U*3*lu;C2mWn&=-=`w|U?|+9to5k(f$Jerx**lJi_q%+3a0g3{d4-6}>0=^~?{ zW0;C`)?=3r#exe@RuxbgT}>s0hn?n-ijp-TfeSM24QrX_Lr7!5d^j3IT88|$sH!#< zq`M_R)=HIoGHwNibxK}5#S)HxSUOBMb%dj{q{i#3o2rN+p*-eUtMot290<7MoK{TAghu9JLaUWc?pY`u8SQ2Mc~8HP%I=$!Mb z#;8RFFO`rg7*^hQDsdo!AxQ7)5~BGQ1dzfkhw2xA0a7!|+6LMQA{7i9WA$VR zSwNQM1^QhHYStDrnxm;xM4-yor=%zNPY4qQ6`jStqA`mk(r3lpUIXdwB84 z>L6P3;%Zs_xViH^iyrKp6GhGAl{@F2AQiY2-qwWoHCtFJ(=cTF zYsLYSEC(c;a>m8sBC0i}JWMF`#nx>*PzBuH7bxnrbL5Cf)qdpRFSRg^`|iMU$J+7N zrFy(N`FttH`&yf7#V9ReBqutKfZL z!b_yj&IrvWNiAjY#_2iy<}Cau&mZWyYdyttVKs5||@-LsT^g=g-MEMV8-7qOoyA6p|G(m~hp+l5K1)4%C^(&V|ZUi4LFh zF9)DP%#1X@P{z1O3@g2vYp9-PIl|naU_1uM-YHQ12&-C*_3ZXJo7z=({mCX?0ynzA z5^Y(#$#P*I2)*A99}8A#X$$NM!5F=>V2`S-r+$Do<;ikuQ*y_gR?%U0*#>J8wD2!6 zT_&hgC4jM|MC(;A0-3pyn4k-po^j;Bm*vQa9;bZUO3l$AyyBXJb#sZ1e!;@4q>iHt z#YNI9O)T00?JjnZX9ppI3ta6I1h>R7IS}E!b&2qO^7B<<-%y>>0L~FXXz1Y8%Ft5D zxrz-CRSgF|j+Isd%eLio{jL}}P=Y&&W?>|E2F^4&MDC@V(w4iu3FQW)EUaE!imQYK z&l%KlC$ngIwbUt1r$Tl>2NLglI+wxKf6)-SpiaVAMMGxKDbN5o0UIA0-+uA>yFbwm z&=B|bUC6ldhwMGW1OZuZW*s{`5^`XB_6e2)Y3o(#jK0Y!Oo%whk1XCuEZ@oJhh;>G z*n+XB(_}vk^f~UKZ>)R~pV7#P{IE;KPB0N(>L<+lat;uQpv2m)Mr_(zwpWI7MGq-7 zqz!)v$bjYbABM9-Z%U+4sH+B$@)|cHgCP(fJSb>NG~w_kW;midAWEra3t$4-?xezm z_r?oTqymJ%4kMHVcEt2cNNmPW8HM>&rKrHYD-f z!f>oPp~R8rbUs~Eo5D@vmP@Lk{;}>0#t){xT`*99p1{mT-LDm0VcZ}oT!9v^b$)%i zY!Gwc61}8wNZU(xgER$bP{Yt*8&Ks&;Wpq3*=Sm}zXV^FQ}c&gh{Qj48Tc<*z7}oy z#kSf4ezB+Dt6H8K&|t+LR!kVM(_#S5Wl6`x7kkGmB(Vi&y;%b?y*!Z|GimB_bbAU& zW!P2M$(J{}iAo0r?U01C`lY8?oeqNvE8F}AQ4pACh&T4}p_Wezi$we^*3Cd8`1IG| zM?d<}e>%4Fuirj>RtEW+IKi*YxA5KPZ@&vB-1q_Wpi; z9gWX4_-G8HUrb~cGnmA^`W$VE?W*-rDWF?Oci;iop?J*;5xr`2)Q#;{#8U0>zhK-xN)&9Gs z3M2XP@SlAeSBwy}0I8)s*7A4_HHD)~sg*_t#OTC_B>c-UryHQ_oj39h(T5|j^_jP2 ztcu1-Up>6|tV}9``T)53+Kz@X^MU~r*{~9j+-C`6gSEgE!@wzeA77m^!Ta489bYh=3) z$Pi2-yw0rne4Qbk&;_|E`^8Rug|lfwZINQZaLj%yV3jPPK1)2=dH$0UUnPJcOMfJw z$kS;}z9CL3d~9Cqh+gUgH&|wqz5;6x>OqoXt?p%o*|5JmMR7njhC?S`^+CG^kl!BM z1}*NM_wm0H*!!pV;s5U+9AD*^Z~wxx{%23GhPR*RJ9rQM!`nyi{((Hv2PO=&E)lx6fxO&n;&7nZ-=n=7o7ObkuTTKaJLri-Q zQbOPfut@3y#*y_+n#Tk7DJoqkWx7-kS`e7?1|pJe{Bb2oNfn{D<EmAJ)`MF-{2HTbg`@V`8m4l^xsR=8C5&%O=M^z!}u9PF1 zsb$vNXvlMi$}tfkXdI#EN}CKHnBllVs}U|e^z1pSR6TW3Lt!nS7Lz2FH$r?;(up+Qv}xaH-)nNp*Y+<fa&&?AiVkO3xBNI5wDjn~zYX}FH1+b4smq3phq$Yngn(WMiDD3Q%Axa8MeLEE8p4TQybFk=;VV+L4`up=yK zsV!?{L5nxvpecQ&Tb82I4}C>2b;#8#K;f(%vIvcueMhct=~+|_INM;dmS`}%1=SVf z#vCy&hFc>D-6P%NBs}f!JJh^>OCHb1{_5)|0oclqpziQ*`Doo`0o`}YwnJsQeCS!T zxVlC3stu`;ZQmf^sMV1Db40=H*&K3H>O1x2}MGG-A(ewRSglX9&-q|grXo=*IWeyI< zei$)VQmi9az*_Ja1?WDdL)C<@fKof?Ie43A+w|GgiHo@d=$)Cs_>leRia(7a%>hAy zcm*dMSts3Y)B%du#gfsU_|7&7yo_BRvoupfmfj7R2$OA4G~emGk~aZ2;B35M_f45w zso3bSLj{@y&RUmEioX;dyZoUd0I_rdmI?z4N#~(F4&H8lF-f9$#K1}wU~VY+<#8;| zl9edX@X*ehD0YfLAvI0FSjs~_*w7O?Ycz%c44G2%gEzPo^=-YYC-nv;fo;^DJ2wk-QH4Hd&avb z=z2B^tyt&77qAPJ74{O`piA%3O%7Rz7vbbF^EB2Db9IB-Ip*uQn zX&qG;tFtjE;$k_@vXQN_sO4;hsM>+4SW}B1aj?2iele-GF9dlE8<;m%ajb``IgBDo zif2I)g@95}IL4QgdLSzdIjjfTR0VFvtyzFVqs{#EM1+AnF?K=CcO>B=};bfPoy4#xUeaU3h|ByBw5e^`Lm|hIP15AsmqO_37OzK`q zWxXkqIWd{cfn>6hSscvnyZOI#zT@XR9xtn^(=6YOz#RYt!jGTf8z@*)E6m;Q&+eh* zEet0{b+^lpwhGnFKF(@M!*;`UBzpP^1VhWw1F`|<%E)#H_sDAGCA&hSoT#!suORh~ zkevc${>g3Qfw%o;hGRUN1>YMX#KV&4w#Zv~T?aMdA3sLva5tar)8 zl{eGsVBo|SY3I(5r!81ga+=2q3^s}$oHWtwUDgJf*Sf+7q9U{f&J(RV1(Z4RF=cJ} zql5q;O(gr9DairD)Yv5R+XciL(z2Go$TNp+ur6+c7W2+Y2e4JDX2QmP8@yW&`P0$L z7P*PQe?@?;*)BzX7+C5^SR5#&=K(SEVslwmgv$j;4830N^wZDD5obE~49&aOk2&F86UOS)%QbKJ_pj^j) z4*#nJJy=S7b$D*I%5tz1epmiOv0p}Ec3t2}RVRP2hbw^lBHuypo@~N^w`WlIGN4hG^9-DONr-lo5u91U5t_i8aVs&#|K_Ad+Tu5zj1efo8c`2OrF(VLi<4 zlksbA9hCsVu6`;Ml&n@r;$Lr_+7@u909TS7=FPpn&?p7?KgUaCr9j+*nQcK80~(28 z7O~)?ZS9+D8Fj!>2Ri6ONAzu4Rlvqay^`kNTYiXuF#KM%&r!=Xl{}n)4c)!D1zzc@Nn$mRmCWjG+>j*OIYu<#mHOwuUt`ap~PR57ZhdV9|m6R=m~0Z4(p?xm)b zNUR8ZtPaYk4yT*fGf9heR@cqOG^?3o-s32&I=jDlBXzL(5E|uhF)u z1I3b{#dTdy?M)E|Btk1kiQv2jpat1rMw>Gslxk_Jlewjxr3krFjK1v@cbDS+^k_bT zODnrF`XlF!3s364<3s1tHPSsKukP-ps;3skM)NUy z-4Ynl%WG!WA5#@-&l)8Nf)&QBO@&b>`&qS5bG)rOhqa7^o5w`1#PQtWX>3G3o}_%> z9w#sUp}jO!OqpFMOCsa*Nyby*$iWHm(G*?i<7iUNYBIqFGidK{x$2{<(SlrUiII+~ zU~QGp+N(#`4yx1Z&MKr!se!CVeP!Ff0}`FByLc>Q1$-cMV8vEOObkLiOJrB`1&6^T zV?jS(lH{Dn&hEF1no3_l1{^l86qN6F03E3!Dfm3bQxSGPy9BG`g_0N%a4cI>33`OO z;5J8*bGAQqyf~TjC<%-TYVBOYBHqG)U=|X&*UdOhI#89oPp2_0amSE*n(1{f zY2*Z%U1+}gYOQCbb^;d0ekriG<+hW=N)b=PQaA|EkY|Rs1qzJ;?7HNbW?7y3QA?&r z`S~Slujdo|&2&(g0LkNtNQ|K8v@krx5FG{x29QBXBsWe6cwpeJ7Mv8s6dFwLevL$mf8+^m<$K^`B9Tc|)JnQR| zR(lLJkSiJ;h&RB?c0P2wVRR?I%X+d?<&CAzLw9=!$SihLt`ACkUnL1z0LH=clZxe9 zR>dVLk?SJ4lPrIbIap_IkTm9U!>Ft}n3kLURTvb)AuModoT@;;F#Lz)wj-r_)FGaU z-9Qi75OHrdY&)y^UF4g^B1gnB+GA)oit6C7_ehbz=Iku18P(D)AA_kLna#)xai}wF z2PGMHYG(x(UCO;ct}EFF?P-J!xj!$Dx}O#0l6McFZ2RWr%Xc5Xd>&r@lAW$h+z434x_?p}ROXxc0UGT#&KRJ!wR(EL84n37j( zuN-j90RS98H}i^_$0Hgc6$>Z5_qZz2KZfsU+eoFXN}jgPbTY%btEZ0^pcGO@Pq=qw z^UIJ>Tcj8jvAGo=I+ZmLZgl~Qr!9bi;UZ7AQsNTnr;;7(m?_YGOV{9D^AN)y_azI| zX876NOCdVG*>S)?#5VlLup_r)MpjBBh-}EE=VHE6;`Lhc|0{6Ct<~mN_|wF@18F66 z=9~ATJTl7*K()LxDo6zJPDraJR$ZdKGoV-SKE?=;rd;%pKR+meqGXzqz?|V!U5ys= zAkXCb_^O+Pq6if}!4i;F=13jFS8k1U>|m^nB@%nfzK)%gG{{+zoIAKC0;>S;W=(tD zg<{E_af={5Iu4^mh&6?s0D1!eVuvqN1oW=qj#qDGs!_WZeXSBQlUI<&u$HHn&Ae$h z7ps!@9ME^!8R2a38*>NNs#Ez2vXBNg}nb4hzH+wRs>_&^;`3!skRgzir9A zHhE3?qmJEljzs;U*)+0OA7hB_e)BisC;IgVKls7Fk#v0Z`XMF#jKTe@@BZ%Pvv?0qQOPU}(T6ipL{>fZpzVq6eQW zHn!_C%RX2zljf2QdULE zIJuclh8Rx0itEZ6djkN1vGY~>$b#?YGxr6>)lm~EFz^>u>xhS0b=u~{=_GtFt+@pK zT-j;a)|zeinedX%91jd?Jz{AI`o;&TuxHxkRJb?&=0|Xoz1?z5Ds z3Ra1MVIOkIX2W@D!zCZU70<#^wmm~RTT{YeYnZ*A+X<5o$WrA-&^g;V*zvHawK=~P zsP8VD>|EpD>Tr6f-7WZ&=9|-vI~T5#_5vvZ+NsF3=d zTW^(0d^RMGO37@N1ih`123TucClYR6+Vb8{@X?MmO+_tfZ6#0-ijWZUs5P09JOI%w zKO4ZBz!G&k!&!GfyijkpBXm&3IjNsL#h)5X>l^FX*2?5^sS59u)m>7wmQ`5i4V|5` zD%1_qiSv27ET6FbuDt6Fd!dgtu@iNcKvsZ;S>)VShfh^oNavYg3Jj_aReGQ&kg_Y; z-o{=v!r3^B=u)k~OGwG;y?fbW!yATC^o3KqNEDqZ1fXNbKatIC=^?-KZTRkQ5AS{k zE5rwg3Yo2S=WZ@9g}7jt)JRQ~Wlde==N@Q>1n4prFm309RHrLKBdav%0NYEJ{N)(c zUaD!xT1OIi9jrjtOz<&ol2$0nWma$pE{?ccF<7D$8pVAbIBQT<@CYvt>nn-$J0z+}X}BmL;bY{kK9RRgfY==Rk)XiJSb{ z-~y*HGuu2&&hXEmw$|vZBWR@CJ&Wjh^pi&RH%R2eMC|dY)1%YN8 z;9UsK=7o8t%946Rt3jy=BH(BhcLQVs73pgOt!ASg<>4}kOGnJ;uW2q+ry4gfFl82S z<{{(t;t5JQ=&HFaM>PUGNpUUth>-$pZr!>#7YSWL*3ebDA{AU=TEC$I5>;ri8z;rW zbF8n5e}$Q--h8d=H3LU`h|Q+rgE=0VAoGXi?5mgG=E!A2q?vH~Y54DbQ|*4ji;=Z{ z`tm`@FXySkK>4X2BW%8#c73QPg+6wB1Uh;{V;oF75cA?n$9dVO4>y#Dh-QJxaLON@ zg7>gSot@h!|rn0Fxui?WL^8(`hA?U3wF5_?%0@cg0h7Fwa0*AX>_Y=!+P z7{;mKhg*e7w&VD-$^shNqO##-8`eg_k-YccP&f-Ef_jAY*Knh;hK3(*xl=?xGJ?Wp z7>V2-jfE9ju@^q}-V7ZpS-nybTh!4GJ|SN6_m)VeXE-w5>!H<>7khsNb#XDc4_NOu zG3Z-YYsQT_&hjOxTsb%$1)!<@@f#zUY#oykZDhNaSU2Yo)#b+P;d+M;5*Uper+C<8 zCi=kwOfhGPjP5GQO&oeA1eoxlnQP3Au?BVAK5CU@%lOL`_=z38b5Po?PT?f+IS(ql zWZ!~Ju%yM4T+V2d$Ma)?qDfmL_Q_TOV+~LoWgE>;b#A-tg&Nr%hfdqhMko}U!V{!& zC&DJ=zC>~&e_dYENfrI_H`FqL-xhjtdb>hvtJ@i>Xv$)hzNCElQ)nPr zuvwsk04>aTU2;@5-pv+a6X)wSC}|ZYnCpyN2Nl5ayxhyJ|sv~M=MvPh3HV3VkF_?y2D zKgxRY|33WWC;13P?0+h;4Ib71QlkFr@cQd4upyb*%a`&KuYY;{_VCb2S6c6!4|kStmy zj}1(R7VC1flo{2lfhYr?BFTBK@geCEE?&iCNy;PKN_O9NwQMu_2+n=0E4{;fsh5vU zg34V|rOmaz)c;BT`c=in$u^nCo_y4uL43AiouHsKxL$-DZdIYuowFzJ9ex1po2NmF zqFdV*Z)pz~$wZ%lnqN)HGEV^PIiX@W>#B>TWp#wXwkG5jHJmGU97jvEk3&4t+WOc% z3Z&=Q;x@7fqyA)SqK6AI2J*|G7N;T+3jhE@ zyQ7KIL0MaVH*U%Ys@<4JZ%!rj=fla zd_mcJ8i1?JhrMbJ9rlW2a0Fg}^vgfd-Y|ws=!7u)I_vB`A1Bz26aJtW!{DvEC7!o9 zyLbf%)Ip_aIGBuXXEaMXh1Y1DT)ah^Tg>QmKo+L9Q;42v-loR)U9#Iojj-3&)r%mQ z$iD5Av1O}68-TcutSXU@seFz_PLNOg7Kt6?s3?1;QWGUpD;-MklIo3?W>AE-!vQ`Y zjG7B9BpOvtM2a*XdX>ANJ)?dPcI{FdhtiRm#QU9q-mWlk|r?d&sESfKK0e z{xt{;WwRLEeo7yA7n30;#HDtJq`KNV!Ur&6`~VHopl z@&$$^uEhqI*gf}M71~=j;{e*K!w@<(1m{ckxoNW1tJ~QyBwn99Oyu!YhU(ZkVQOO` z>`(j}zW+dpc)ttZ{XHY&*Nli?=kI^^`Wc3zpS}K>ETd0eBoX@!#-e`;uYb-u?|)(0 z`RDvIKYjVeQ0sE|DZ?LHd5uYbJfuc}^R;)ZpbtwKcX)CD(|CqD#O(f$Ev721CS3Bd z+525HfPLDlVlnBS)HMrVKST<~WTd51f#Mvz{C!oJqK$^q-tV{_t789pWug zM`7x@$h9U7DpOk*I6pgH^4K2rvYCqh-rhq*Cug(3iT#D9v}j6X=f)5 zjXN=#4Vd|s%FU1`E26%u6c`mI7zEuX0G2f_Ay81t@xB}K{=8L%E&Sc&0&yR z=tO1MXPAxo;@l$n%nGqc`#})u?9uwmwqjk8Ku`vD54?tg&6xS(vbp+6tOH6R3nBmq zEY^-!dnD5v0cjujOq*fiGgd8{&9$THsih*2OT5WSr)bb^{+K+;VSk$mO2Ni(BQM)C>SV8o8&W!GSF4eor!$(f-5LRrh zN-10!cgb>?+`n)V^SoC#sIqXbMF3R@9T)`UX0dtvC@JovWp}v}Nm4s#4 zTU%xny*TZ;vlpK61@=`^+0b6Z=;_jZ0No7dGB&b+SN4B>|^xFpYd$A3@V+J^41bR;d z8%h!aOk9e)>LYTD)zJ;0Z?z2r!-AR)7`kk*BvmYv-5Yr=rgR7qxarV6z%KzBzyZ*3 zD&1qGqZ_Tsu3kkrAJSWf&dd-XlTZl(4d~P@_7TGWgew)Pmf^+Kyc%{-BQcedZ@s-8 z5(;Tf8Bkxe9U;h1-u&nbOp}xGn;FU}7}&e;jucgriTOwz71B-WgA-Ycjb`Jrgyg7l zZv?baAP5?Z42@DXD0Mozz)kL+ECs{@I#O|@K*AP|TOt<)-7{OaH8bWK4fK#)DG05T zL!EEAZUV;nEw*+dALU9s4%Ob@0MmumXI53$s^E)70bJhA_B-56R|5oqMSL$@BFM6} z@Qb3g-k@@!Z27ADmQAkU^vyAZvRvrF=QshYKK}eY;lN+Leuhc=yHCQ)=Lh)=ABTtJ z8$H`ncMKO#K19xTcd;@_M`)bZapxb}C~nZnUR$qrz}8f`p4wxeTBuwM5>z=jiD*Iz6z?U%urA1|7)eTnx13k&_{xzd z(0E_l3zf)DcU##5#P!HqOWJ9XwXk~sqg&fsX2ce_(b7_XFwjY2EWWpBHBs96EnWB2 zC^Y4~x!=i&DrI=bgp57wXml~)8I;Pu!f3$9}ws9IB@%_C1Dm4ksymahaxeU=| zQ$=KBsg3FZUxDbpK1twfVFicz0}z*bV|Wv&9gga^b7*B($~(A}C!jN8j=xw~Q=ekx zz4M+u>x4iJZBR=dpruZz0%$>yYVkfTAUg{K-*L4hoHYZ(#v_1sE8JJawA{NuZl|P z0~U7;(Lq}U6?uxbNCLARj|WhPfE(tZ z<9b%=t`g3>k-1J6PUBsQ9JwkMsZ^;rA7XjB2pC)mAc5eMR4IZ~a!bPEWDlrAqm$)2 zNZfe1M=zWHH?qG&X~{kHM#-JRMfUms5dPZ6V84C&b9nvw@a~u4g#d_u_u$_^CL<>hH{OvX0p)IinMqK`quW%D0d}b>^mWRz%;7v z0X?jT##(z=7llf`r#dUX^JOmgxZ?vY*vcK>2i9&dx;jJ@)~waLsC61eWFat`11RFb zdF)#LX$h`SB{{iM^DnM@^QNq~n?0B0h!}aZjsol* zV0Xnjy2mJ_TV}9j*WK7op@eo`6TLl*A=;owJ{vgG(=Ov7A&sE+4Os~UUJ-a{xiP5Q zZ`{eoQAecP>h`GYpdqct&SouLt7eM_ohYg*+*Y*q;Jg7%y)%5?wTI%8ma@__a3Y6S zXfRp1)vhbB33o~}%yK(g&~=N<3si(2Now0mQkO;QFUYoyVF+QlEl6JYNZO2hmwfer z3(y9aT9F_#nIu0Aqw*zG`_o0eG2Gw4{0ch^vgxXiR^&h1&)^KulHrR}XhQ?=W#E(rgkPJVfI3*?sYLN?+2Qp3o7EZ-7OU3al zJG=)=-Q@_qG<6Aroy-|@28b>>I1^hMQ0}U&P@%CdRh)efm`na4+5Sy75edx^njWr) z1>8|H9w47ARVD~NorVbBrAVU@`bmERb%W|T+PVhJAaa`>CWZIpW43%Cf@Sfyf9!0= z+GWYCMrc+61ldFDU~ItEIklbkc3S3#;kF#Gi&z{}6HJRcs4*?Y0}I&TxtC2MYtLLy ziq=TXpoO3+G8V6B3s`?^t$oB%|yk zVX1SCt4zbmK=i{A^g+MFkFn4U5%W}}icY2%LxPifH|tFyZ{tiE2Vjn-?JqCjKhy|lTmphlXP|28+t8Sh}+4x>2#!lV*?E|4uFN8XF<9^A8+ zq-qTrD8&!}lFkC9I<{<~mX{!9gSn2?#emo#sdI@Ps1`F+9HIB-P35GHmdX#1WT*)> zzWA3TRZN6Kxkq+c^}x)z*jhY7HoaO53A6LDs&0G>0qHZ(G7V$pxhfv*C6OzD4Y`q2ErvSQ zrXEyiRO)d@Z^*Ml!;+?bvAg-MDL2r#Xf?t8>Omg)p?^!4<8~b1k$p+1$NFLDO=Ei zJDwflVq2C0TSVpmS@JT@@&UKK$_~Kb5CzK70F{`1)$*_ETDDA&L!yqRFJ!G zy?a}&uF=RS8sFiV;^N>2q(lR_dAv@bt3(@hN*qHlgLav!=cxsc%RfPdPGVQJTV%4p zObAbbT<}Mt&HD^d#6hCgQ_W&5PT_V_8jUrxRP7W{M4qF+$8MI2Yg-(fn?Ng?Gujqs zN;qxa>Vv$eim=V8PnhU24Qh*yl1Ia4EHXH7KXqP<6jgv`y6$eRnV$u*cnUig!?eUH zLE;R31oo&<+?bvc)VH_VD5Z7WNh2^UFx+ZEv$@MELl~Rh2~=L;UjF%zfj;5gr!U{U z*w6f7JGk03po1Co zQS!sV_xKfL%b@|xx-PQAE;28z-z;&Wjht9 zA;5JOL%OiJdx?Cq9cM0!@)(!XJl+UbRIiyUCxLPw8}$~ty%uvY4E9+P)DM^!PwGu3 zZ*78OCpr+L6v1vg1}&_p+EaWjLshGjSD9}^QE_&f$Fg$5mj)C*K3?i;MU?C_n4OhJ zSSX{JZtfJ`g|iR7Q-o$3X&x=bC8bo7PZ%xlBaMCPYX(zm_n%_)ay{=h{0`@w4xJSU zu(NJQTN$!$2{c_o5P?FW&OVHBij7(3+u32SGEZ$sk1r_3-_v_GKxYN3mgkcys}Ig& zbLG_&B<>7tQvd=dpTuBIc_w~TOYNl`TT}HI22+N6JE_2?MInqK&_cgqCZG_Rj+U_b z2L{y}Hs_(~{8-vTacKaxH!jGGkw6aN7RlVvL3uFoikNjabfTI{LClx4#l=U6NvcPQ zQ5pz6dcl-gmTRSfc{i2L>69+%e13tUH*PX&iKrK20WIRR8;NIZT$dzfO?Sp#xlxzF zCxdmUXM^KHy&%_G|5QTK*8#kaaqHS^QXT(|?jeIbkm|!7^dMHacl5KY(SkId#zEN~ zu?(4SQWrCJgI+=bR|!W!8TAGFAmy0qSjgqE;LxY{RKwOOXpjNBGRCrOyc7K!vQuZA?-J z+T^LkwcfKP-48Wp7SW}_&k+}Stsblck) zAfMS}i!p}10XVmXc*StNs%`9E?q9u&N{dqh6pT*2Z#lpLB)ta^^8N-0*M?)zIRM#Z z{fGh-J83@cOroGipt_Rh>q2RLT9i9oGu$eWiQj{GGwZ{*#T5yAl8wnaK*0Exua8lR zwB<}jFttFXN|fl36jN*>3R(FgSUQ~D6qRb1n!{yWlt`B&?TShgz`J}3i$3db54Eb_ z-&`hUaBv3FYX}lMr&9-#$R%xyQy&$JsL&v^f+*`GxD-shwJSS!cOPw?aIeeKJe*Et z2zta0hN(HaSh^cpu#{9e&V_yh0b+?t$*Jc_#dxJiT_~I2Qd3d&0Ia4>Dj`Ft2jcg2 zl~VSmj3yw&YqTVs*wx4-oh+u*4@WH25LN98*fRHKiyADVZ15@sDDhyDrFDA)@}Zq4 z*~@L_lJi2-d#I#H=qMAa(@NOgTSNu=Ag*q8JA)olq-07TO%h_mAXU)UhP@qbD3`38 z)yE$7n?0cXdCo5-b2~!k4%(a&Y3R_gpp+eLZwF6rcuMdFS^Ht2jwVjBf`1(T`tZY` zeB$5lT4`T_E%UF+&wLVI|5?%EufGZJK7RS=)!~^R0J5oVG|n>rpYWQy@9>ZFwC~}I zM=5m!t526_0bt!?|G-klqyFrePsSomK%Mk$b6m<&*YNrLWkQypWeA1vH1@U(aLI*{Wi;@Mk-?Vzu!wn>DB;9?um zuox^{w_%aD9hp61Ua(4*rE>#9L#~07%lWFDr7KJDtExy#0eiUCgdzZxZXi=&{tp-A z*yx2yirB6J`kbZ_ug|>ZmY^xzz-Dqp=}axCv(!}F+7&QTZL802&$JlK;>YS1ubXv@0-GDPKa zz{Sq@P)uH0P?SS6%tCPkbb%>@I)q=bAH<-8m!o@%di}Ig7+XBcDR5Xcz>&k4+YdQ#;&;c)BFJFl?FaT^8i*Y z5%~51hCeQ}42&IaK+Z1Jo|7TF;gl6jt)0u(x33@l8)5ZdkQcw=G(t-Bm*3<<{Wlgh z=RVw1BWZuZ+d>J4X`sA&S@uv!h8ziK3k3oaRlb;^81@>5(z;f97v9mi3Osf|j0C^Yc>O#?<1j-->1s3`z> zG$Gx+?+VQ9Xv<@P+<&|}8W`9X>Uzni-a>D=-;gS|odJ2(EeOMVpqCsV(kjivXC8e9 zi|oYrFf)-?QAC*8dYIL46Ms@RxY^=#TA#7QEPn0yh>zf=$2`*%6vd__uzUlPd@hoZ z5Bz4hZU+brTgVump!Ql){6JxiE}*^WVRYTD0hRz9s9-B3+Z&!rJ*@0vX)GWvu8>lc z5U~(0yu!lUj^(j7)i0 zm(MjTY!ONCxTbd(&XJAejlD2P9Su^Gd7jWnsffgr;kh2?X$xc(j8iHGn2;T#t{3J> z1chYD4p#)jY#neA`z0mKbEAPuYdCs?uToQ{bSkdoFdk4%EwC&rrow^Cr&2C1_iV|u zi*Fj66B0>BS{Fh4pXCOa3HH-~D|nYL5>Fc;V<0t^24h8TAc{yx0>oCXiLb>-)!vR-e<*1dUAGeahn%%g8@b$4Tg>170d1*C)gHq)6_LK ztr7cg>@BTQm^q?t-a3^Q5@Zo8(rO->qSyP(9dBBj?5- zk^3!?l`+Gj9z=4JC*?~_*@DI*CN3U{+XECTEFLQI-P)l^CESbYIbxw>qY(+gu4W=u!fTUOS#DT+yql{^)$o`x;K4XEk(AQ=)6 z$o?{Vj4D$u*hftrSEpU$>B*amEpc}nRf}Ic@R1Om7iJlp7}ZF-OFw?4)ev`ePb3adnwh+zl4~u#;^o z5W<0#JAfrE+ncR+0;QN}Ts9AStT8u6nhgNGDH`IlnTofIip-!?;V^dwJvz`xTFy~C zNMMx=ANf*V#u$s4EE$}5Wm&0CUrSU*R`W;zuh&= zlz{%V#SzoO#0bi`;i6`%%xpxS6&|0IxfGI|=mJ%FniRYsmkL1?hO`#b{-45n` zPgS9}L1n_C!DCPZk5$DCGA6gU(yuB+powv7xRWEW^`t6nbqy-S=B7Pcg~{b{W2JD>&@|eWeQJ&)xYM%E^ z6OfkJh<_3-Ef$^;%d3&P)~l)vK1YZ55`fr__n0pLTaNQhE}Qa{mx;D#(*zgQbIHGf zQkl-9WN!=LGG|_N=u`}#jHxszK~6xM2i|kq1$*5WFyBIw-8Dp)5ozt-^fydH8oF$b9+o0VTJ- z$&dc}^^d_s^55*CuCxSX>Xl1_bo-DzS`zr5K6N`us8n>Kb0)RxB?y^(f` zu*VR0Y6X(7Sf2|p5>6<_6`e(nG%D~k9=7n!<#mpaU2H(%@hl5{A%U}2O}0Y^V`nKo zrINRwlDY-re+h_PRDZUlQF_{TFPk_CQBaS{tLD=73e?|Okf^~|Bh_0(1C#X|d;uY* z=$6%Bb6ReL8l*j(w+B4yYI?Yyog{YJFy9S5OK;R|B)FYoAmZ})HdID*f|i*S3S&Wz z96?kx1YGu}hDbMyJ&aMz@i7Mj*u_YxRXu`>&d+iJ`b(-!ey9PpG!Q8Vw7QogjVBmz z9bP6DR%2VIZ04(tKn2=MR+sMRKy7Gd`Cv7ihJy|leV+RCDHC)Jh_i|da8z~(+udQM zc-AyYf>Z5=4SK+Vz>aR*%`0dLljt(i0{stZVpTB(ex>v<| z_u0!Al9&KO^7>JJ1RSN$4Iq1X_xJcM`3L{&_aDJBGtF7LRz+aCQTd%paRnqcFH6mc z-M>}ts)rFcA>k?sl*_)ZbGnt0jjI1H%n4SA>$ct*jYq_c?NDf3IKMdtp*KT*$du)E@FwA zcAl@TScJqWxsRa38qq1iyx0GGh*l?XeUlmR*66n zroK|d+`W2obZvyxl!YB^ngnQOVvvQ6OcaMg*BmLNiwP&<1wgEGs~|Ff?SKWjyV&tr zd&-<%Mz|7UT{_f6+i=7?LD7gAy_W&t=2#E1478YHFAvvh}}H! z+t*L_X~oxJ-@E=Tbv@q$pzS)@e`479@Z}fb2NoJ6CYZ2irqm_KYHLRtNvFh$?5Axn zKXb$T*javg!w|ey0PN|o0XxA2WG-cZ?1NP*A~~y;jf9!0DBsCGRy9kXXucqcPo;f+ z^fKj^QE(g}_E5zIQsYSm&Un}EYc;+t@nIY_kxFX#v@lQ%DpRIp(^-9DEl5Bx3pz!M zpBH-hJSv}r!V|aF1?6Ej!f}*jkXind4yn@^Tox~`5>zDtCT=56K1UwXgvrlZq$Yqt zC?KI8CIy774rpeLlVe(eo6NkO(s@zVfh>(ap77I02@H*@a5GHQS5%}BAKXgMqZDcem?u(O&9A8EXN?pQRC-!Vm$~d$t>4P501W!HHaw5ZeG6BySZW$!) zj5bj`skah%fGCgHM~2Thl!2XLtrp$oLpmn)9U}DnD3R){mOyY>EIXLwX#5jU_J; z!NzzeD~z7ny8OaAx=9D7a3@NIVP&FCydH2vnhNw1?B!EZeUZbQy z79b(IY+azJnII0qwDz`G*#Lj0&XI2$j@NKoYsf z@=Rt?Gme3lr1zkTW~}dy;Z2cXfA~=bjPBfg9@)qq=XEY-5=z%=QaK&9#e@Xz+_L3_-jw~sG$Nsy(l`;Vb%C1i z!(ic{72FD`Ai!S}-6gll!JZGg6~{Y^{P+wX`)kYo5_+SK8j$?Rs+l=AhKTtJrcrCo zs0Fb;&0%4BH-;mne*j{c7`rx%`z@@2QhFGtGbTvRq%s&+&z)k#D1V|-5J=dD$}LW< zYCCc08!3o~r-!V*20x$d1++TS3FZ{4|D2P79&^Biespi`N^MgaX|IDNPjOcU569(G zAuJ)sRvV65$yTfsA>w`}*&fI%?T1G5qk#K(o8;@!SFNh}fcL{G+ky_6$A1hoP`2~C z0m?G@xYH8Tc@Plvrfj@(A3&iq9G6660A|BRh(e!jyh-MS9I27OHz>1Uhcs}P&abQ% zy)ob;7+SF^NwVawmh~LN>KyB4Bru_Yfv+TiH)_3Ma?o+MsyX16eG(p)R^9LJm zN}G`j^dyf!8Ac4eAQADi-=$$&p&~5z}!(C83Sje<et$ThYX3~;hfjUpUn&Mq*2<}B^quU|ifiEMcJ^yQPoQzBJyY|BT#g+7|arG5g1`F^JJH3m-BhX--n?(12BLiw;wWo7`_XC2hO zZ72K%M@8Zb=a`&_JV`1?t3!m@t@rNQOvF;0$d%4%)F^_G-CM%-E5+|S5f}UErTOmq&h*yxhAX%bqqEZ(mdd<%! zseOz!RMiM)IVu{|V#11=ou-4Tfu<5#i+^BEf>;Q;0C}B`J;2H1xYNc`H2HYMB`Em7 z8bhjlbjG0BCMq?|Xj!rOcungv{-V4AcKxe|g>zU(G-I}kxG%N|R=`IoHr3YsSQx5V z`eHZx$v7w-X12~H!T`-TFWL2jr%c!vWmQW2$F9j5@r1FWdRHo-h~N;S?lDmC|^*LomY=4QO2vErjq- z^$3%e;t2n-^K1j?5f{BBU9v%(O%(pqv0}-d776G_MQGA$20m6j_>chg?>(O*^tCKQ zUnJkV$V+W^Wa9;u!%aP!tB3~E(MaKtQ=uqMt0=kVaZoldn$`L7V8E6cTxv*8NX_Y; z_iaX!kG437l(A7I3fKYCZ5U=>#6Gq|Zd`c#3YCOP6XtWZpCUG?wp$PBvMRAV3_{i} z+I0^SsCrrN4~ZgccY?G#H`cygz|3GHqtD88RME-UgN89fN4;1o<48KToxYbvS7 z5NWU#>vP3I3eQ}aKA`M!{(i-}py!y{!o$K4SwgHM_lZlm8<_{HzEojqfhDPn9IO-$ zP)|iS?$BN}C$;jj(GGUW3|eTWo$(yx|FpmfQc$c89ywKR(FdB_CCr{u!F3(DQX5fp znGt^Aw7dadU^pPH zV5o0eibpr9W5yTMAaZ77j2;JQ9ZtFLHDlHQ5%L-ocBu!evC25)G)t;?=-zh43P54tX*k@f9wpUqI;gG6GXXgv#S~0GGAKw_kbwR zHMkwv93G02pd_fI#tp!pS9b9+EIVOanYsiF3==bUNTw`hs9^UwIyeIPW(H7LXH2P& zi`-Xrg2d{T+v-?q1s#TB7SORLAG=CfGU|!hd0>=V5Kf65?ik`Su{&8S3=Di?Adz{6 zc!1_-Yt1N(_G|!;P6ZUlK$o}l&pM+kjr&~@Yk$cfm;DZmOcc#F%NqY-v83IR!Z z5-0gug}XfhQ-`;1pStE95dcj>pp;gqbi?yFE{HPjmE`Hf9U```diCYPkvaWiom1C@Q_wfu;D zV221@7}5;KEcd8qfAb%L1i>5(Io!;%&VNTw9aH7_#p{RRH&%R&2q2wG(tmb3%imevwO%q5>52;mhpp{bXDPm=w?*@QaSbbV-O zX&lxXLVvwV_Y)!U2&xH~PrxmUn`%x{AsVdGMp9ilzyy2pD1;U$k?mJZ8OV+S7s_i< zL`+LX7TLzk>wXN+C%W@DcDJXoYa#oycm*(Z@Gl?8D2E5(gKR!G9vF{)gAH>B_SyPy z?!}N)+Xt7CAvy;5#{2Sf_6cG&(wH-?PkW&SCL+V;Ufk;cr4yqT~|Iu%&ic3Rgli z%X^CYj3I3^bQfiTcSXGnV-NQ5(K2SKs?yf0dK@Bp#x9GRB?6!7sHz9R)m@puRNLYl z!D_=C0R<{cUb%7u&~$d+D*kMhAQhh_jG;WUJpr_q|My^F=d15YuBs}lYTth*KZnrs zQwcpc+u7g!{mbX!M>(PlhLE^Ru9ySKsF7!H_;u4>S0#yz4@B@#*bb2VAh2OOu8Q_o zHHnn~(uXRR*vZyoxjNBK(yO6xInDp(k)AI<4BYbTv55>4UG&q>k6R>4|2 zh2FHoBy5pRTcJxqzI8Fo3_RxCsSwGg8f>vB4Y#~WXm>pWBl7vIK(+Mtfa&C&U4gMn zewV35Qm73EHazx;7=%B)fYo}91*YU;4jqHzY zi>0x=NijEBozyp_;x=$b=dC`gxnbN4SbPq>;VuA?ldE9q((bPuRX&wBXaWK#^U*!I z!WiZRUNTVSu|meQQhXj7H^jJal3BSdytwvSECCh$qEhaYP5@vI$ehz}&7xtA9n9VHeB32(%~s_~q-Duit(2`W0dx zObWj^Ku6I!<&OnsMq4+ntYWa6Q)7OXJs#pViK4vgvxqE=NP(b7rj$p^Uv7|6-R5Ig zAW+*3#vI4yP>nYb*8+IqOkvz@E zJqR}EkwP*OouapNAs$9d)jS>%FjcqKk|UkOSYk01c272LmRES@>9V@q{N#;Sgq3=< zyKTG%8WP&9XOJ)j%)ks!VPak3!(%UWP*e}4VkNI4-u0$cL9fa%7DIfFDV3e%RG5{| zCzf~5r=xN@ZGP1|=@uQ7$sg*~UC@xMQo}5MWX8?(Lp^6Xlza>=#S__qS^T9(`(sG{ z$hC+UK(`3PPDF@G_J-}W&6{Q2N42oJ$$m8wa&@aRmq)5<61|V9y^Id$L;e{c?a;Xw znu<=fH!21sokLU^Ds@Hqs=XN^+p;4ays)3j{h(i=4scjiJk1gm=!sa<`wD(VY2%E}bUDklvQ&Lh znSBcjfoKGsYU`z!qfnfXD^oC-Wr>_1ZplrV590@ouO=vs-SK@K7m2TX1BIF?S~R(dl)LRSG{>-06--| z)H~&X=Jh)&G@H1iiIPt-jO6}n+IpwtW^3thU=1Rw5s0R z5$GnV>@}5vQIl4Hvc|c%<*4~?+MU#D_MTwv)ilgdP*5S6-Uce1NDA1lTS?|6X5JK5 z#OQN|kc}rQfc1GOYFyb1WcXCm!ag>43J(KmS zJ*Dtq4x)LL=tz@5BFec&j$Qvc`&u9QjC09G#(W3{T^S~$-^>qoqe_nx z01lGn1M&iQ@9WgS@j6r$`c^0HI?pKOEOvQ+e1_^Eg-%+f{CT@M_u2Q3uZ=Bxd2{bo zq?6)4-tz7MWdj6>NU>U&8A@QMh_v+~s-v&YZPO)6TH@ie4V7QoTn8E>>)jZtL<0{+r>Y^xU z_;(fxF;Q*nk@ZUpEx!|&Y&)!Id;wreLO`aTM@5V4$)IpUM{I%$wE3*9R_|Oj>^Uj8 zjFvqQINlbLvSg+m@JqA%Y-DMo(8w)^0?SqRK>sZ0y_0gu*}@(r&Pjd+rIn2rHM=jW zY9eH&R!_8mnmTSE{^mzaNieL1bZFu9h}SAH$&{ZKh*wx3l3nx?&xH_}R25}5PidV3 zBTWU(#bEAe9+NT9DA!Rv7Tl0td(3uhJYraSEUpXH&hkTw-6bn%t3ZKb$aIo=jj0bk z)@rFZ;l%NjjjzI(lYtGM4+J<#b{J8RJ(!!RAW5L^w5+A#NQ*X$MXKX5W!d{md2fW_ zn61x;M!6}E{SJ;j-}8|FJkVu+XR7Fm)c^SMQF!_6@PwJR-9b-a0rF*hJT6Fp3CDlH zaGT~G+U%q*ln(w9%;pAy-WPQ9>eN}j4Fel>Zc=ds?Pa4$x@m`ATO>HkLuBap=<>)w#i^zN(YaG>3pK?ya$k+tM;VTWSba*uAwDK=sn;X? zvI&|5mVI@N-x_33^*PU4=Q|llg=8${uf%C{p$-5Noz6to_Y7h6k2 zwH4%YY{Q(T)$Vj4$&$VDu@}M)w#VF<+N&{0YC{S(EQ~Dy#6EjUw;f7BesKc=b}J9H zt^o?T$npU9Y{A<&c{3|1T>{o<`Z_UykaxSNoJ538nx$?Fuzsk;R13yZMF@1z?P;k( zB;9P@j->|C>eeQ9*b;z3@1qK=v(k-Hkx+2q4Ga@4S}Kk$A4}S(Di7U`V>_ur4z<}v zSmfDoSM5~>^uN!o;-D;cZl0SANx^H`q?VcO5Fv*gT>I%^I$jblL7lV+2?e6G%}n%q zwSZ!CypoCt!IE-39YC_A-vES;`j-VdH1BA#jY;n#xK;z^q8A{pz{MK|uX-gI*ebfn z%|y@?ILfEk9~3exx1e>%DVl$lag?ntTP>zBh=AAL^ULql|QL>u$CLlDmNxd&{V5X|g zLLX&`n^Y@)b)4zzAuo(UO0w(D?G<(2t^!dU!9YIdV$n&_=BzunkS5fdkoqeC$4Yjl zQV!lxsCvbCb=@osGp-65l}{2Xb{2R6m}jksrDe>)oHv=D(3h_{sZucbdU%AZ;iPWZ zoATl29n`y&o4JhGkid{bv`y$=c#)m~wMO&$uDK(Ge zQ);zr!!)ha!`?(!9-2b+U}2esV)J)^Y|4KM=u-(}CZ&1x>GjeoH8Dw+74HR5-Up88 zpk{pzi18&#$X)uNjkvY4GMf+Sli{GHCI*6VoJeq)p!7Hchm%iXvjTPsM1Lj2ip7E& z*M`dII`P_>q3BR-g>p;ku1u9c(lO7~_>>iYGX{vfb_o0?DfO-!reb74%MKrCcA?@N z78iPl<6R|0J(!eVVP(qH>1qk|6|cmaXNump%-9Cy$N9-H z-pE95;d19drDFJ<6Cj|sP7f2?L&t_S4HRbBQI)vj{v%S6Y0i)Bo**WzmhD7-va*PR z7WVjHn+mdH43KDAu}oE)psO81EQFpG&DcvqbitJI3{O{*TOb#PM&(1U+r3@glo)e7 zdr3y;`%V5DUjD3)ynOKb+rWbyi!fo>DZQvz!eiXP%#-K4LoTL&NW$YtxQ%i zm<84q8YKHb%cgW}RL|S34`wPD$U<44?!k19V27Dv3smDI2k4U?0!3huALy({Qcj>) zO`oMxTM>x?j|8Wh$mRfTD$^kVPP47I&d0UK_N_M|j$j~Y*O#;J`wHT+P~!5`8clY&1G!w>1s{qJ(HE%YD#}z~<{;HNa<2%7G7>Ci*vb zKqYy`8YEX6Jc@qQAZz@)&GFbV%r%Ou0f z0(fedaSPL|=?I()*y$ND*^cDF$sKiPn1ECP8k=#b*;iZMqRz^P8875RZ8>+#YpJZ@ zxWNpkM{K)TqbJ4e=V@IcAPfTTSxa!_qrNH)$$H%5J-5-Ro|`Cp_GZhlem={zxh=M1l|-#tY5kbi4I27w=da}=*g#CZ152RjP#bRZ$Pcj zyUm4sbq-{)3_?FQ*>8M5S+l(mAi~U8R6hkaV|GTQ!V0yt=*$zi5EP^7J!nOe=b_B` zwkivxmK2Gh5A+l%`AFr39sxW?c_t|=cN>TZn6A~LvM5DHs@Czcee%muc2b+(jc7f% zpcqDdo=`Pzp@ZXEcH_DT?$J4N!T{5XIF88F1mkfShYm4hYoV}Y%HXnn!!vR>my*wn zdKtq^#^10xiMR(J+mgfhuR&?XK++du+jZkO!H z$YyulNcgxWSqA1(HR2iap=@D?1ObIP9?*2jVG%9gOL+Iw@BTiYw+mcOp;=ZZM_ijH zV9Q2whjiDpd=n(!322J4FL--dgXxj;evEHg*A%G1=3p(Q(p-VALy8~J4i2(xh1D8r=7b!#sV{Lhc+6p9foYE3X0+a=( z^B5qcB2j8l)erkPanCrFMv9d+;gOYC+ zHG)aQ!`NkOJ8fN=2y4Yv&zl2DKy8Dj(&j#P$`Z+4!h9~@fHZ*Ab!B!2f_*F=Hwy;( zxp}-b);!*t2RxXbWD6s8w!>g8_@ym~0#ymkC(wWL^6jEvWb00YPvTIDH(}_|N2=Qi z7-5KVzDRBTM^v1F-@Va{jDuljs3`q{IF|F;r#yld0<%SRzGjy}WpkXc1Nk!-qL;ot!T)e%7?$&XM@lJ zQMuy5h|v=!>QqO%CToS}@KV|`viMh7fh$kKN$Is$kk(Xcf_^KAfRs+EgH_8ojF$*L zNa_xt0b8S2XZ2Y-DHgr*X#pK0lF2!Zz=hM?V8ewY7%8pl$~}`FuDvDA2*UXdA3^9F z`TY(MWpX~iRw33(^6s-lp)3t)p&_HP;oh=PE)#z)Uy>ep{MoVmy?o^0&3cAHA zhDdH)3zoQtMjJlh_LSs@dp=50*?g0f@{}>OxTCCd0`h&*(bN4TycG)@>5fQSlaz4^0)MZoC);0D#tZ zSd}9Kc;g_O`i_>Lm&5b60H-)FM+)8bYU1q!wM9us+*C2?FZJvO`3U>Qy!8rl(iV4R zBa#ZhEa%w*>8TDY^9sU1r`>AF!$tzkS;tPY5JncW`N7iI%Y&0cydoNz#C1d~-a@Lf zCRy-e-`F80BUByj2-}Mu{^SRq)%`I1Z~9fL4A`X3#47=Ff*GAnHYB$@=T`@JP)xoW z@^b-(NpCG&Vyt|W%nU;3Xo!*(Cc#i%{ClmQHTDW=F6Ta6SY7J?Bo)XNlcWOv38XkB z7+YkUa$!Qn1WerQf*y|gk1_32yI$yJhxA4N6u5IoTn=*KjG^e7P{IeFR8KY zc0in9elLOLd;o2{MeD|*UJKb@)V-7y?J^cR40Qe1D~ zrpzFep+_reZM(uRNE`lENJ7J*anPUIF;%UEghquAXV@M+n3*WrW$VecMTrO0Pz|1~ zi&RM{Y0fTNi3Ky>W!ToW+7J*VR@nr?GN&)-%D~j>i~V=4fA!r@ z!}lNH%>EB<>yUpBO{;$j*1`JhzxFwpdt|khgHvnT`ygXYdJYlV1^CC7JC2$+n zTZ`0OXj@ZGi>n;yctlI}O%DuS|{-G|JNR^Aycm%P~8XJSW-;08W4E-(t1^i>D zkRGM@12hEYks2p}_^Uba3;>1Ujb!UN;|j+5>I$LxL5Z}L)F$o5nIV8kW2e=n{0bz3 zJB$S06Fj<(5ZD5+Ttd=7`#BwX=2!<3;8GthZm*&X^JLsQsB6S?Mm4?;B&*#;Yh#ikvrJ&#oGL@1VEO*7MbfqOd$)@jybwEq)9ma{IU9_*bQy+)y zyDJ~sM^y-mH6PXdTQ}IgfCnlVAEMdx&odTW8aJ}7l42qrT(yGdu1kiA*Qi? z6WWI{00(41r6SgWv}D^S(6DY6LbM+UQ#(SYBq=16GAVP@FbAEssld?#=c_d48?Djv zq1>T6W&tFF-J^}Z8pB6R%xGF#R20o^6;EsOtenUm)m!7-4ZR;K&u(Bqhtrwtzy)Pk zK3dhW=>|yiIBZwBP*?ue2#i8%$qQT{Mr177#hi}p#Nl_ScxIRVSc*F~a2b#YKvirh z@)AzlOephvelbNKbp|TC(phxtQ!n}1aqxMVT+(`53h!-z=i!XOMfnw-KN0yTbw5XQ zZ#Lz_XY+5ODOsFPw??Qqt2CH2#|EVAiF_n?A= zVE&;_(lFz9v@nj{Tv;v2>xi^;1Fn(Z2$y_tl}yA!%oT0j%`&?yIJ2gm3vE^Mn@>N<)5>O9-Y&qO>nju^ug06CBwWu4W)WYDlgz>z3Pr+ zykE#oA@!Ks)IdB;ThW9uFDjL6K>@@aY87Qw2QqJ(c$2KC+ggJytEo?p0uLy}dqQ19 z*8>WJ79uuftlX1VOtoPJX2=#6zZ8^WbVPx=xsjG@EKf@C&S>|g)eQ#fGdPvA6lhZL zSwnkPx)d#P)qPwSD~>7SUMX*bXvSx7*{iCRc-rWVNJY)6wT#Lgs^oTgq};xvlABtv zFn4Njec32~MvSx$S({l(VuPf{sdRe=Ab$XE7)ix@-vs=3a3=Wh<@50RtHZnhE4+S| zgC2-Q)|k2{mGnQIv;9B|Od}CAH*}9DLM}lOUq@wmoX7F7$$yYUT7bT5dzYL>^Ea!Q zSy;q0&*I|dVz3z+*>5|AD-7dMGkd&Lj?9jmt4IS0hz}?u-CDu{u$vQ#w1TgzAOPU= zDO3Wb3iO}Z`bD!7{67QhWU{*IWRx(7pf^6Va2uH%h=j0evOs{sn?lmcKVEuDlVE6` z59QSd$N?5P3pM{$lPq?~fpZ>JebO50=%7Umd&uhq5(%BxW8lBep><%SW9wB?U zN(5QUFJB>9P}y`@_U|_V^_~hw+T?D|;U9aZZR+ia-Duv9J`a@-aO@m@)Phy@v3!~4 z1JtTbR1(-Cf_|ak9Et*^oJ1*n^0t8hD%tx9vQ3>WV(@VrFB>2<$+eD{I4AjJT|EF( zWfkjMQ)4~jMm_Pkw$Z{KF~gJ_S2f+tkJ7#g_Os>SO@d%4$Nw1kNK(|3G&{;8K-9ar zOfAuWc8MO${KlX)7J-^TZriM{lgq$fUlqGH$GG+z1N@1zu$cKw*g<| zG1>Fx#PJS#;8(NDgV5?yt6>!emSA9zDVn`RLA;O3o3)?`!HtwiNWt9NkW*Jmcpz(t z43R35Ey)$|2zNqlRtXVD+cR_0hz-z!*(3CQS%PGY^H}I>XpaDWZE0o%l$H0jMo-TW)q>C3S`vNHLv`lZ z3^*Pw1tx%wX<4jguH8|SvfeG<9_zZDl#83=AF6@qhi<|!gbQI!8}P5k7LrWup3&LM z=e98zg1oxOc2SLtmtcCJfwaK}6kT?P++IDNgHIIEx$F?z^|aeCb!|pZ58DP68CORK zP`0Fu%pE!803R5%d5fy+vr*3hlbt3KL-u42CgOh1! z9p$q3JZigyB$A*BP<@}a*P@Ld5693O!58@F;@IFBcaq}Vr|l38cIysAXW8^DA61qj z`~rPk7(vssp%1*P9B09Z2cU%%(Y2QU)RaT*vULissN%)5x*2jG9%SW4Uai2xUz6p~ zz-nDB3drfjc*}-(@~YsW01pzM+i`T0L*~m@VF$JP-OHy|&;Bud|AFtH|EqEHSN8SO z{N10w{&RTwIilb<17hcNbqx%J)tUvY%9kErL7MuyrPN{iBEx zWOzgtos+FW0+}i|LNAmN>(Sj*+ZwGUX7LI@4szJ7Y`qb*CXF zHYD$&YwR7;E_ z2aqr#mOX1`p?ohA?vo%J;8>-q_F^K0H;dPqnEA0SNRg6 zIjNo@jONr`*!5WPy0tp`X;E*oZ+PlPc^&AXTMJT|I}G7TrBwkF?hlv;lAi?|pY_np za2+Jn6OQ%}smEVU{0 ze;R=Ai`2l4wmlF=-iCBA+LC9d3dp6E@(j_1GsE6RK8N#r3L;VV3KYeJMz|8o-{jMO zk-P0vHv@C+-S~b6H`0$GnpeRE89fgPXAgy5<-m1@e!qmAqQwWF=hu3)Z zB5i$~vZb_}DI|ECxETRzQ*=y~H%!NZ4V4lxqpgaiIi{%GI zlT-up4*U%)1q&pp7y6!en+YxvFvduSyjaT?1zSctm86a{#m4#PFdw9>gORu8=lCM8G0EWq=E&R$^T2qYlc5T!&B&WvFmd zA}oPP1c9O1X9BZkk;UO^9Nv@fmFHTwUAw54VhkPM;+)bqI(2-QeGJ?cju<8xr^rDR zlFW5Pwfooc%Kx`XyAmCGcP*i>n zXV_)Yc(CAhy%sy~Q_V@^DX!YIPs%KsM@g=_7Va4K6v(wslyXi|By21h(luNq3rncf ziWpSVmJ@(?q!2>Wz=2ngP%5}9*-QQM*AEpGpB(`&b>j13U6J~{0n{S#5a?=0tV#-C zcM*V)s$so30=Q~1_>W7=IEdh~t)mvF^wNoH8k-L*YE8NwyK!cA@Pj@208oTKz5B1P zzm~6mI6UPKsZM@=vL{ADY??~ItYK*(h52FI98<0PDNsl$p*6^GcQSk zQ_KFoGUSgKkF(*Xa~nHOQ-C5u4Ae9Maqs`9>rIxV$F4N7y+6e*N@mrqA$wnxRrQOg z%`OH9;Ew6X;2wyTs@U4dw9}@_w5dumIVPD!CdcGt78&_oI^VhHI~RX;D`|`XJmQZC z2XN0l!#B)6cAc=v{1D+N$z_b#uH1S9lSfM89cku!86Kc#q>DO$O}lv_l~@GCo8D`k z4l*4`y|<#{U~(zpdc7ke)w=@FY$$*d$nzP1|I9B(V~l*fDy>i*PvOrJSBWvvE^s$q zch5dSX~ZM0O7(0AgV<wq#L^HOA)3UpsAF_0~_uhiDHa-q)B5%20k*kxPwq(E-}GP(*CBy{MaKHcQG zM$;*B>zWQN!+grF#gLU@#fmsc#k;tjD83^SY^+^7+tdcEz#hwxG}=rF8mOS~JAn_O zz~YWePzpw${h0dQZfUpj&z*>ddGBd|I|-6krlr zKtny1WVL0&3x>as?k3MavLQ>Y(@qQ?zIb>XTE3)$=hy; zPM5ONfJGKM=frl08K@>Y|6&BJMyq}rwMS8(e-hiCN#5FxNSldI{C2^NzqT`$qToD zyOq5IAV+WUQpmNma8$#CI57_+^nV>nSJXN%O~*9o1IkbycH1`;KZSv0WO$Ot{qmo} z*Z=hPSq@EqeE(tikLO7B1xv-Br&oSO-082r`N#ZyzXU?o*g`Am?1r(Xe4qV*?OM=Y7|@^@`p)DIncvF?&Bn({l(L=nA<~0X&iyJT;ZV3dw}#T zvWj0f6%|5g%ofz>yjmx0;?iBaK9Q=3#DKPF?d|sHkrT4IY#mANCRLO?UBkeL>58ez zj|k&2J8ace_`yQ)!`^ulAEd;!lOo@wmh44W8FGJQ2af>{mTlOP$J=q(4k;QH0U|X* z3ZQ7Whl%<=sUu^@S0Cw&(<5PmF5|UV>#g9P*xJ2{*)y+ueO1lQisumDR;0ase+}0A z^c?*Z?*;1XQXy_r!L~e-TO?0)pgJks%?cV&E@ zT;3&5k*BwD<|AX`z4$ zP;1oKMb#aNglGeBQgQ_wW0ex{Qlr!+j0JV^mH@4?@vGHH%@%8=tuokf_Xj|#Pk^zR zRiPg2F0#JJ`+2D8bBaOeg;L)Jt;!y>l%6ObG}0|2D{8k1l)wBg!Ot?SRm+1c{fl=3 z)LUr2j&%od$g>&30UHgz8Y(rilu^;$() z0#m2CQ}=O~S~>A6SK#jNge^=nMr__8AJ~5YhK34AAgzx?a&3Vn& zQgEU7x1kW*d*!m&x`Lq2;fjK4PHuaFDJRE_x_9LbjDux4r2Lah z$I*2MTMq+M0it^bi6SMAA0)Yf7AgGJR-+1PPui23TD7OQEsx(ISp&U-Lwh9_=+!_5 zKEx+cSum*Ws~tq_HYzflk)LCdBRZBdMMo)t8)I!3=zwbdnq8rcOXJN-L2hm&<*Wrq+bGRWh5Nz-wE zMj*6Xx;A{WbdkrMNfMrZ3ms>DJcNjyA_48Z=K^u8Z4YofRZ`E0kx!IYJHw6@p}=wGDD&vli5u8e=yXb! ze^G}{OkYN-H@K1zte_f`veNb3_4>I#+h0+_dOb!sbLdWV8yU>VfWJ?X8RYH_^-b1{vE%K)- zr&0xHa7S<Wimp*Htao#lfk4xFY|OIcZzN0+h~S2oc3JBRq)?0A{S;<#QF#@zN38XiH7@kVkOI z-h>Vy`lOIt47SD0ZIC}wYyk9IqwFjvb^!!rTDX+YaDU-bq{qCM#~5iUMAH6DEi;kXUjEnc59e_CS@_Qua?ndK z{i?8zr9~Ma@wkBU0+=IKzm~nOZxCSdYcN1zn|puRl&yA`h`F+ z!-!lLxif3Ls_S`btV?<=59{bMy~{2;JPb$+k2EwtURt#Pcg*{Q*mt9^2(SRPLPpH0 zuT_+Ltq>;KX--?VD`3a_Q8$uvOGz<0++@Hk);dfI$5A!RAl+blhy1Uwe zY@3?aF)x5mEp?Omh3NU~M}1cOQIQB}LM5OPv4>xR!8&idwi8*b)tEDs9~rh-TPq^- zBZ{Jgno^JKY=i%w1v7PJOvk_wIQbAIFjPT@i5Xde7OMrMO(F7J;MlCB1a?TW+S)(^ zxME2kRX_lgogp0dO_Ft>=b0576mQ3nS5Zzl`Iv#od{L>bAxEp6tNl5gGr5nx zqCe@c&Cg0jhgZ8}rT}+`3l-Zguv+L(S=4GvaK{weI(nPph#c>LhHkW3CJI2e9c{r= z?`pY?2zBsSTG4nt6Jyq0g>vhfOzC3*Z%4^xA3FxGT`sXPgFS$3mw@HP^V;eJ5lW^c z>B#oyJgOBc>7xo8vk?jUVLJ(g$URSV{0)keR#xsAL8T z>RfGRti7d@gVJf4Fn5+KZp|b$3aFS@mCseJ4H|^1k~%L zL9buMaMH^)9092}2*+Tl6F6vq3n~r!N=t^Ws5-$<>Mk|t7|=7Ith-XNk&IPx6$gc5 zc_j*qOkgv}$0?U?ojGp=J92RiGqo{|o+4|C=yYr~`EjM=vI9gm9pa5~N~CVen;Xjn z-HX!+(kxn;N^HpD5E9~j3{licWg(pe_uGn_vp14^WyRxrM3yE$?G+hC)iFtgMaKYb zar;iWeNzr@$}>Wv{uk#^2m|%sq4Et@8%t&`PnUChdJSZE4%C5oXO*G#Xm*0op*(?M zZEl9eCF5sNeKs~Te?S6gRnxvZ1{~W23ua5~rZKr=wRVv)SUC>3T%kqa=FIY^O2Vm{ zSvobipe+NjK)9GmiYK3t%A=E3Cap4yqeGa91e4V0#2;M2Dx%b=y6{9rN1NH9JLi=u$(Bph13@unE^E)D)*_0snJ55Go=4|;#RS6O>fy4m=?m~ zGMpO!P%-i4Aq81Ek=hLVrbveBC!d7>J%zbX-+%D-x#=)JRTM5aT``snH)xBv(5bQl z`>tj!i}{LWY`cSO!OoVqc&8~1jAelNkRbG;-U9=i=@BIST(O_HE?SPz~&G!y#^4unLc^u|-Q;9l9 zzSl@k}9g=~B~WhdRlt3cnN11IFLH8BJRb(yQuL0kZWUDEaq8g`Z+H@Pqfi zU^MW9xAddrL22S98JAx8zP2LoB`A6+1q%p`LhbD8ilgf@*q{uOIET9JOxKh0C(w^* zLiz$v`hYu)nJ`G)GFxN4c`Cbhk7V&m2)o=^cDAw5P5To}wd>Wv1fv%wh*%DGo|Aaw ztP@;Y{pb{1?-=iC>eFK}s@ykc{%mc@+nBB>mJc?mG!b&19m=YP&~Si~ik)+>eurlY zTHUiLU*V9DaEDkg*?JT)`%+^7FeGRn_ zFB1rms~6kDqBadXC&qt6+V4;8^zZ*ZFX%sqx1anss(bHWeC+M;<@=BLIq<;03TgF^ z=*Z_67!m&6RoVab?YC6kl6Vl)C=?or(^WGH8=1TW6V!Mn_mO_BvwGjWFPEniy)iOF z71&&)IxL5BqDTIdXr3J%uids1!SHYY+6}oWN z8%anKq)wLhJkTt4ZXu{77i>V9O8mkBAH-G;WNkFv1wg>*B8e^P)9NzaAzo>@_J|2Z zpBS7r+rZ34DZmn&TwMmwx+G#2-3B=4A+x2<`dK$U6=3dAszW^DI6KMNw!?y!DqrRP zPsbDp;^$DrW8!#2o3b8BJ-S6nHWxOUA+KvE*{wz^~U|+g;kDLenjI z@}(fR2aC$+1IfmN4PW67%|ba|bqhXx__sjxYVwn*mzcO<=2LIUJ8*LpII@_j?5Erl z>e$q~?kb?RCY`N3Xn^%Vfc^waQw^AjGoOMY+O*VRm%Pdz^Ln0K#kDRC8mwI;iAAiH z5k|G=dTO~M8yLrtlIZa%>2X!DzEVN-RhC}~N!Hjp_jrV&_kysP8$FYvOeZH3YZfEl z8a-gD6NJRNJ1`O+>m==Y)*bW}J5nj)0kt=G8Q#mgmIAxW&QQfV7S)M>^bhu5kpJro ze;59X+eHLBu(ai8Z`nHH{|fJaNf?ISGR!CDiLxFGu&Pr?0oKVvilq1!PdbP_4>tRx z{&1^`O@@KW;$f@YI{b#mN+h`y3txZln|~zA36(x03h{fYg-hj7NKH(mv4A<*!_C;} z%Lnv1#B$lhfDoJfO18J-s%*CxC}zn2}M6p+yg>*c0aY6nE9H)6HD4?IRTLv7`G3$dV$%&2$| zi_If8`uhxq%q)_l%@}9r)$tbVWz5US-wZR!IVIO5iE$$?hy=|1|rpA7QVsI zit@h?gL9}piqtYaFlgzO-u)-wo#O(g$^Xi*4>cr0p;yNgOE!Y)QtfzrH%M0X!A!DH z-&=&xRAtpjVe-Og_Fl?^oh)?oOiruZy}>M-Ks&DR1)KuKoy&;HPpgt{#inNT$v(k* zDbo>-gU32SfS)kDHTsj8U=v)5r6&#>!g?zWnB!}h*e6bdExS|L=?Ws=qU!%iCLI^W zAJ~f$GY`t`sfs7bdqWl(0*+vXovl?>Qm?fPNnu4w)-!kf`crf7`?v7^1+t)2mmkpw zxA45Tz0VAcr>lWi4NP8F7*prTaEedsgr-hS>Yl_J3s#R4%>$c0y)Kn+Zr5d7vxzWf zc#Q4MESlhv6oK`>3CK1QKgg*M33VMxAnI{0vqO1TI8^;zJ=K;upJq>l*!dz zZjz2z+(Ms79Z)$21lhXE^_|4lt9>WD0f0C#?yHO+ODHj1w2bIRCX#(ry;OqV0~nh(?G432_&$KDsk-gor6}Z>2T`H z7;d#^O3O0_6Umh4&(ox2lgvs`-u=KjkSrJAiD;n(ao9Ya!>mCa)>V9%_BARnj2#X~ zft_(xyIeiZf*|%pG`C!;SoyK{OK%hOCI;mh_wiv2n!)}6_`Ta6-O8%2D7n(Yku7M) z!_G0hVtD)mUWgfX#(Yc9~#t}5p>?4MhmfP=%GG9 z>Y04yP5}fx(kn*JVtP8YxXa$8K#g-jqa*RczVv}QaBJl;v!_=AADvc|U1Pma{VjN# zR&Zk|)~hkf3(wVH*1lWyYtD*)E}>dLs2i>sMW1s%fJq0SwH(@`S=Ji8PAm{*qdQ*5 zLK1OOWkH)UZJw`x@&2no358FkHvH7I+AU@ckfX4%!4rUrdWB(MvYdXBru}TYEKBzU z-PkBHp)V|0ssEvk$|fqPVH;HKe)|GQ)$XLu?FSbd^3%+)(6msE_v{^tl0a3boVub4 zFs}0qz!V?_2sL+BYZ$=Of=l(O`3S9Z<(S^}UY|^A*L#r7iGgGRz`a&cQHa+1Xcfo; z=73RZl$09aG3kjNgX_ac>5)Yd*0x7s*eu13&e1TUbw5cY8+!vsctf&xGoH|;h65LB z#(Ib6vW^NVbg%#+U(=Ae#KygK_EZm2O%%7wfIg%|s$G4WQdl`;Us)9ykSv9*(Cq83 zK+b1#Cqx~|C7G0AQ@7shUGXaxWS|z34r{5mmI~^19P-C?P#<_uV^csue?A?Js)LxR zAZYV5MN^dyvSOq#b)&A9QVDJ7*};k>q)L0^4mN0zb^xSToi?kaN`e7wntt&SxPng5 z?pw)bvNE?u)N4BXG;q|kd}I`S)i@5KvZL80_S&X*1(s-tsY=ToooWHJVkPqGhK)q@-&TzIvvDwH zVihSDP&;0cpkZphpOUj-qVAE>`f}P*R44!10@k{gGbzm`9WEhbr$R|tsR0mqkf@OC zKiLhA4Rrg{VFe>cbTl1D8W*YWR~C)mX3TuS827`sPibKaT>JNx1M{Bx-LJA;UzC~T z74uX39;^z%k5xqps)B6$OOR)X0MGy&xTNr}%1z!8oEmkP>Q5ah;e1Y)zD0)#TS~*8hcY{8sNokCjczBO&;4MS8)pVX6sN(BFyL-+~BcZP>YVmq&!8maYl zqjW4ugw_ZKTdSeno}X@1%|T|Rumr^{z%z^XVaPGe-pf1c!Nx)ph;f#zKtoh6QNv(! zF#Aj+FV6?A0Q$ty&0sM6U=SHxwBj0j+~sv~flc`tA1*c8lCZBVfv;nXupWt~E*>J3 zd9HJ;#C-uj8f+Ge81PI}WFy-*n)b3v0Yl(Yna>?#2?={gZlDkt42 zfv>Le3q;AmZ;=DCWcItYPz3i@cLza@=m>^{uLKRIaZWT@Y~g=Mr$2lDd3gWpN#r+t z^M9nZ{Oa8HS18h3P4ogG5&7lNtw|T@G3oTtMB&tBruJF~MHX7umo0UsZM|Z=9x`*b zf~=Kmx`3>!Fxs-GA|<-ID1v-V&!l;+wYO4L=46g@R^A0IJRM?1FHcK}WKjafAb&8k zhQJZqtPTV&(bh@X-cG%z1Zo0o$eirlqh@6M4ycE?`p5Lj8dEZaS4&Bgj9j4e#kk8> znT~X@d>Qt8-nW6bI+^7RbpuknizLPQL`+HSAX(Qh7;_};fSkbe`c;)VmK9uGZ9t7} zTOQtmLw*NE;z4?N>nF->r3hlXL)f1d_ju+iceZ<#`)ETE{~hN&VCiJIyE%q5Yh@y)dTOvH9P8xLxdWvN;9zKj($-)^xvq|4V-L7jIt~ zn*)v>kg~M*bEwBjIt=mkC+_vm?gkjM*Ng& z69AJ(mkz6>?E}xt^mQe_SEzUZ+&7JIc&uOcuy9bY!Ryk8ftwD`jV#g)GfYDp@6bR7 zp3F6QHtl|FO0q8Dz1b%GWgoK@UhVvvR2M;1tI3{sP%ulD=b1KxUKE~4#T?$_9hDE| zqM=oS45Kb1$C;~6@x09fw}q495%Lq}cxz3Op|ya2u`C

brXZX@VYhc!=SFxwhp z35L9L)9~j~4N&#DdIB@B$p?;5#`+0waAk#qv}U0S9KqM*qre1sP(IG#r1_ynOMv9G zQpHjXDzn4dA{|PMnMQz^P2vO(iyi?HZCbYzM&_2v+yT%sBw&gO7>0CXNkNktaHbU7 zP+Xvg7gqvrTJUe5wmuWsCQ<#2)H_y>)iGU|fMtAAyI1~XwUC53jlyIFzh1O8ZPglV zhgIE#J~QzFUB@|6l27GL434ICM z)?xP`e<3Gj$2wirrgnPPH32~M{g7I^KMD9tq}-55E!w`E+b$~%%nk!H5O$q|9|R{s z4^N^6=_QEYNYc15>_VoKP7#PdEye&$)O6Wb4sTc^a83?8vIe0I4RP_OKz8yJh^tJK zJ465iAs28PdD7gX8YShZT12==VhCn^b@Y?jLSIY3%c#w$V>O2<6~rWAOJgqzbnJ70 z|IE+@e+l1y;qvv5-v09T=VT8k$G>_1)z`3m=Zx>u_pjc*?RfgHZ@&s}zq!0Z!EWM| zRlDwZdYPj>)w3sqrJuf8z(uiB8nHVTY*o*J_}h3T;dPn?$$b; zMFJ(iCbjDo!^TqWLGu7Y^0!qY=cr9NqNQ{sWyP`LzA$V+f;a;PGSq=ar43? zJpoKm#Yzj+?Ib?G$~SE!EP?hZzhz(8jbHY=dQc5g=~FaV{=nJ3s<>c^c&gA{LlmuP zKUoSWWi1>jD}BrcNfBqzO1z$eAo(yYbL;%Q84aAX2Qq~EYO`IEz;RM=sh<)l8Gyor z;+#?q#fA(r*@)N6@b&lJeh?On`Fcr_ja_^MQe-j30%MkvcrXV|hb1aNHu7DK0dU`EX74AqQ2U zktOd-c_$RJgWX0Zx}7@rg^r9YUM*4olQSfx7qixW4wii@ zmRj;yNTy&?7!yxwW3++B+8ppR&UTf-9oGjtqQk1i-Jp}sMAcCw*i0U#6ngVzZdlyz36C`KLi zF_ru^ouvXYwcT(M7PiXzz!BS6!M@KimQ$`jk;%9hcM|RmcpBM2mzSg{=yG~i`FMSQrWG5s}Tcr|2<9heUP3*lz8PZhwZA=pc&XEX}^BFjWQuWiI+iVJM6&D?xl*&ok!S(+j|Sl|ol9t*Ce5D~_R_HBttoc`)^blm zQR!>RWIR`hEg)qCT$GS2?=wh1u6XIiA6mN^K`=vY@1nEMl4CzGQZJC$4GF_&@lejG zWQVQ)Qb^K?#FT?IBxX&}mSlQikqr;B<93FtV_yLrC}z73XsftzORpwt)PP3i_RT+i z{p0tap=SH+{YT8crqEiJa6pjOE;CRXA*n?r&)90rMvM{>RTspWQV@?adCg7Ja1cUO zWK(u3zmc1AS}kKjT0~IFrs-u)fi}$eovEhF`J9KZFsITj8*(gF-;VD0$#B$z)2>Knr^kfI`1(L^H>CbtBdVVG*il z4+$k*x9yg96fG_>BiAe}&I@%kfe|8KPM#hD+V@bK>fmiEkOF%o zyvf(7!S^&gCz@Obnss}DRa^9w&Zbi%88$a~m$r^Ou&BH7y1LuK|`Pe2OLAZ%0on! zrBpWox`dZn(WNQoVOO&>tPSPNz$k$=wrHX?Io?6*D^GwBiJ^heZ9aDZ)h#lBsR#i( z+X`PuiFWanO*s;YF4vUqnXp{m!OG=bgPXBb$gez^sm^&Qr>-ZyMuET9uaY!g!UsOl zE_F~JFU|=8w*sQnPI8k0n(9(wOZo=Y=JZkl;SXX**RmK@ZRZ-tD`D8?3iuNj73QM}nZ*58e6 zd}C+Km^vxYSUAd9N0s+Q%wtPzhZ9wfP>r)qt`NPZxDBQRuLRg5K*C6mE+#dNeWbQ@ z@j~OwIP7XydhzB=LVX?;m|{Ul)rRHT-lxUqq3RFm@Tz3C!R%`YTjXO?>@X{0Jep{S zTI8x;V}iAn(AN&{ze>lSzW+YF|M~=OfF~Y4CC`M{ZdP+(WfQl7H@DENBL2)V- z;zuVdSU57dO57zLo88K4{aB#9IX+lB2n3gSa3o#2gO19ARB{+ub+WDxhlj06h|7)x z^>7yjCR3VsL7j@(+qQ3R`GTE~P7cs?$A@N${DVJ)R?Vsu%aa!Ov}(bN10d)hY(Gtp z?vTxL&D#xxUV#tlRv-`4OKS-aMc9N**0NEN@TRqB;Qjw`>ejQV@p$tFdW}YEUC&0B z8H*n3RS>gNG`2dQ%7J{nC?M+L z3%!_%A{@Q-vRyR~`bf6+k=VPk93IKZ=6Yb+fr1iWvSGVKZ=$M{td56%aHoTb^y3P%S9oSjhz?KL%^6tEf~Uk4yF791az5P`Ha# zcan4g70pv1^A>*-(<{t^?u=h@eVj0Xq=Q8(rr1zz&{jIAT)RauxdWvVisk?Ohy5X2 zU+v{~KkZ%Gt0=$uP^%11vd1QNZ`E$LFl6sLs( z{EI~!i3M44y+H%>uyzz^9cFcec9hXFh|;QTF4V+aUSG2Y;59z)nfxc0$&_5La?{2n zmvpJ+-@(=15ep@Yn+o+FtD>sYnNyZ)Lzk(}A}P=?zf$ZMtdq`z7NGY9AdVKdYUps6 zNiz|x2%4Lf@hQ=$l1p4F^^AkrQk%6qnZNLy=!m2(jx)I1EX%@Fz#GlJ12!QR?%-&$ zGwZ329KliZ4kqae#CRR7`&g(F7clliw=Ax(loZvV2!R~eBH-%cj^>`7jz{ka$Np>{ zAF;5(5g&=SBm#SH}&8Z81^6ph$NmHv;xiQgn=6}UF#3WFV7v^|y zqM@or!t2`JE2HHVojT-4libZODwq|*oumq2Jm#2qMotCHkdd4c1J?7?O&wX6SXm%70QzN+P(tep~5 z7CwKi&L>Ne;Ur8l*maQLXJ*40_4-ZexaP>FEF{H`?|T670W0r22y`9F95=&#!oEe8n?B9n zeOPo?XMF={|IHOjFw5H3L=N-LE}~k`EM8gt-hKe13}Unxw31=8A`zuM58l&wdfg;7$kGhTQJU0VP9DrUavp*|8#CiP`WmA0@3w={2ThH~#IzwU zI(b}}HvqS=cI;_L=;w%k4qo9XR}uR4R=|XM;1l91->yG5Mr)kI36zZv-TYalph;q- z$RyEFq6hw@N)?sT%epk^`)%O^+md=HXq2ce5TKVejp@lu%O6x}TS0e3DS{}$J==l9 zv^x&fCj&mF;VGG{voBHY0LV3wYNb+-z6NM#dGR2`mH@C;6so(YCfdUKOfVHffR=HBuBLpnWs~3V=P!e}yX^KVP{Nu@L>HUjf-5ElX z5|{Ste|`HhnAhdk|MLEMkPn7iL~YjhhFCW;%0XLTw526|e8Lh@olc+|GFerzuYrpS zA~_XbG{!En?v7Fboy{Jw;tRT%FY?VLSzmA}DA{h<+9l*hZ?QKCVq`6bt#*TS*=!s9 zUrn*y!f9;ot+#IAz+n}ej>^2>RG!2NpbOJ&dCjd6k2S4FR>|cpK?+yvRmvh@TgN3) zs52h?&0iS?4k?3e>=2< zYboFg(4z=$0-_68xC{$|>iijVDc9%7WgM<7l&vk$A{X#6a#fdrm{b(V1zNV^@y#A0 z zoLQ?un&^7HtZH+|S)S^%u)U)Ut=f$xcPa-;w1Jm`(GTYN1oS`~Ij{wzB?XV=%Bm-1 zI+Y5N&m{hNhg>?bdKQmXmT3b*N*{rP&@zcaYkwIfC`1nIRmd4qWQ0foa0J-$WkeyI zeaUkVb%Y~<-1G#~t{;krl!$WC!ZN_J%fb&Hc&KStAvulM%LpOX{W&Dd@tHc*ZzY!* z=9UHp5bapx-njiuAMO^4ByHzfx{uRSTbE0Ql|f`5>~`y3ODF^LN(##`xdOqmz{*S# zUAmD+fG1w!D01XO|99faNpRtl}9f~DF~s&uWrqWc!Q-12 z1k)(RfDU0gE}3D8_WSogu4({@bPrpq2CPpI~FJ0q`jZvG(V2&}=n8qOFGiCd!%$iDvGH{Y|L5*0VITdB7} zYU3ad>8QpUvkeJd4OLFjK+lTY&xnuuL;PpR-!r2MV|!^TyLt-{&6H&s9NG!~=d_WR zBAE*7S=|5!d?wd&g$)W-mBQ6j9~Na=5~T@0*vO!@NFfy;oWa#3(@LoC6G#bfibHl~ zCMqazB4Zu%M=2C~x%eIipYYaNEfbcgh+UHYoeB_HJk}v#x%S7{hINpF^hTN9MjcmJ zkCHYwbd|X}&{ai+FtctE*o4s?2VU3;RYpqXeJe;SK<_|y%Bh6u0FY(2M1~k|p{pc9 z4lvLvuv6K?)u$?1Dpd)teMUVi<8G;+q-Nch*F)Z_Uk4afJz4Rpjk;7|fS5;>j-+Ty zRq4g8FE{)an}W!3c*)u=1)E1|GHRfuV^$$yMgire-f6KS_qDg21&l%4ni{QMqx*=$ z_b*fW8f_Y;L+_BlE!a)@RBUE6(5j*Y>PkKNY=&>)Hj|v8prsIR$m%I+i{%{BEY`r9 z!8?cxZ8HMb&~TTvt$Hhln^eK3-Sa4I(BSu9P3_4jc98N&=U_R&SBkV4MXGM(O{3** z2=%DCan^E0?(dy$%*9BdM!vr=h9)nSzK+fA_#|2QBSU32UvarBt&Hp<9FIlaM{Jup zV3BNiOw?l|Q_08FZw`r;B^f&C&8@zSx4ltaOkyq7Ecj%Bf_4r~q(IJNliZFtsOW`Yp63G~TM_LORA{ z6L)XChshp<@tCWi2&B?;j&aXL&nSyN(MTlp|jc&DO@+C#f=GF z+_c}e^<)q#3bP^w4+yQ3IL82;kvki1I;y(Bk7IPG-B7AcuG$v($Q&7=lwbO}a#ZaQ zrCtdn!-SP+%ZJD8UX6%r2iD7Zpda6&PFGg2K1kof=CwrakQ%MKGS z@>#CfJ59U}cBTwX7;;hXvrtjZWU4?#;NEpk$!cEw(UnRDJoc%b7~LS*v~_`jPYO(U z>hvBO;Pba3>N&Bpig$t`pq?;RtXe~BWaLG)0=@OOqdB(_<%yn|8baPFa#@0d?(%og zvCTEAYCfv{l=~%AXTkJ|_~Sx5pEf8Ah*~MK4NwG4hloOY^f%!@Quq9|nnt(X09+36ebVS+fo z`pTxV6rJ*}V4O*E4EPif9U#AjATOQvK_WAq?K;3ZDb3+wl23AvtzoBVrMRd4Z@Qwa zlVu~}NFuZZDBE~^Bp@|5XAmRysB|PNGKGh=k}9z@#(@q67==>2@t{;TQe;vrxv#Gq z#(Ik!$um>$S6k~d!saq@{Cbmzgx1fu2!uBi7##)pA4#l6H{QeSph(mq?WLZB}WH) zMpOdAX09kZx`(nAxvDsF$Zfi)G`hoo5faou-hx5i0*ht$c306g4KTz=5F>qP3K-^K zxpy1r!3gr|uOw-xa-P$=-yEj{wI@l8VI~^8JN@N80#rmWQkiAR4i0}wYEW&RruJ~2 zGOCu!Dr8TFLaFNO<-deaK1s~J&)&WaJm6>j=A^f2wdX&-{Rl$<`TV7P{;7QaBG`*& zhkE28Wq;(*J5T{q-2#t2;;=pj;9fT!02}UZrtH;0~WWC63>o4mEb9IvfQq`2$ z`>$X0h7>L$14zfH(XPd)+;LTydxG#M1>~kG@djF;Wt|K5)?wazuj3R&^5O-i{J9I0 zH*LIuxtM|+)InvPk5!(ND#kCJ)E^UQbs!0f9)v87$%0iik?=NxC6S!O>>T}JJA{$% zsgp2*$!g`}zUn00Lfk$&XmyZ8`pJ}b0OyC3QV4BZR#nnhLP|~8iS@4YsdlpRPid2&-@a&grvNgiSernjJ`6DdMICZI#^sp3j6 z&E2|XCGi^1+Zd_fXKH-utjDuvF%kMhbqRrXsc8py!|{f0C4Xeqd6uV6C7E;J|=1LJrYrm7vF05bn1RwubkU1X1UN+E+@ z+4|6>fYi{!^$~Xr!&OQooBJrXjDk_n_Jnu~YVau+muWgI5iq%sr`I400zGA0wtpM` zXZ!p=>gT^9h36yxoxgDA@x}SoAM<;E{O!;AyMFWjr}L=!%jEj}-|>U~GQ538PS77d za)$nY-+zHk#=iGo-oKyEjzm3`MR$3D)yHgG4mc|#y*i#T&l;fQ3`ExsF{nGF!AHAk z`-m{I!tSABgA_vXu(7o%b$IO9voHe2UR4_fgO&btl}G)Bwmxll($bcjGXV@SuqE1O zP9;)y4kyh#4D^2XLW{MlI<^xJ;HiyMGgP@Dk*zi&oL7h&~;*) zLAI-uK`qa4OCfauxL#EbBt5?e6?gG{$+BXAI3vaV;Bv%bV3ESvR?PQP!BRN}Y2r|tpIfOII;v{{v?`xiTu z-C0Eo4z0Fl-Q5ZW!owUNwv(mP+WZ{qZK8e95gK}aHbp4Z-!z{#R;t#MVtL4!Mjy8BFUQ$`fBQk;L4NfoZ-1rxQ26!>04shfaoZ+RpT7U${dYRD zdiyKRzK?&RpY-dmhoN3xlrkevvt)uL(7fiKhP;Jk{MS+EFjE$N=j51nb&P2%pp+83v<_MqsE- zxG44>q8EiIGC)W8;Yjl95*=Dxl*s5{TED7dhhdy27!}!f4HGm{XuZ^`j3ptJl4d<( zb6F%f-jE_WRbCC3gByBD8gI11*=kxpp%TdSOk)OLS@Sfz!0v>~1wYM}w*+W4Xrk=^ z^x7qT7GvqAG#z1J;r2@M9@nzNkew#e1JwEH1v5-k)f}W4eU)8BlJ1<14k~w- z`4;e*9ejQ#@ltg(A#jR0m48=sBd7Zgf~76 z0}S@MP1PrWE)y9h3mBn+oW3r5i5k2~!FHEB6ys1aC3o!5Y3jaouhSS#@3uw5fvw6G zI5mK@<&DwdDUwpsCLM8-Smo_b7d4SE`O3Wum6s4Y^xpAoVk*!V>GT})V5J9T_Q2>=mJ0QNE6j`4m%pr%G@55NHDkjr(w91Ak8cpk6mhm zlmoB=Y{8+T{cp8YO`0PeU!6m%%JwV*0-FImvefh=fizqlg?9A_f zZ+porto4X=g0W`p%j+rSO&VE{%W_73Jf<=hNlUHf29TB&ly^KFK2phKps#%maYk0( zpd5q3%0{`wJv}K443ziJecLH6-D|z=_(BQg;B% zs9FK2lIl%14dh@4Hwz`F8o)qJ(M8Lup zYBF%tFoZ-JZTG*L-$E@L-_&3FtTT4k-HKZXMy&NxOxpS&L71e|o2*#L$&F~&L0=lT zRqv|g)^^#!!rZA(48acPV7F?)yHF_r%Zm@&6#@Vgv*Z^(0oS-w7XY!3;1}f7ZWRDf z%5kZOGF)xPt~*K3`wRHiryK`){?nXoE7Z9Y@zoVTb(qw+(tvulP@ofIuPkFw;peo3v6m3tEWpN9?HgQ*WhvBcuOrb)?!j$6f{6L3mAvK|TGDw8kSVaJl5+I$_DiJS--qs=eEQ}e zH5q^V_w+HGPfl)FUlFzcsbuP43qtEfKNb{}2N$~OJU%?35G(h}5U6Ti;eq`T`yH?< z%-mcP9xj;3tyPqV;bR}KN;}Vq_T8!hDEw&+B}v>!C~K!iMl|n(IFyTnwraTI-IG3Z z5^cmp{Rde#_$krd=n?zmjk!`L+M4w%N1T$ZuZYq#EmFWmQ0grMHuQ}^;BM1(NH42X za_dc-DnQwjdR1$!eG{~QQuLGXDHr=}gN1=%oAI?h3ePqB&CM~1!>^|~D2CJ4bU%=3 zw6K&jh{QC(rE2aGNd+dh)MR72be z=2|Oxu>GzYeKlI{h^AqT+J4u9rWSC=6WHb9Gq&8fV{Kl!>+r zRbKCf96)SD$w^`A5zC!SHwaxZu^i>WR|P^Fgd%(BjgFn*Lq_+HZJ-kG*FO&LKSTul z6Li`26VS512yb7)4-l$Zxd{t3_27yrsE{r4aTFl8KY^vAYm&C=jb6lTs*L;K4kPNL zrCfZbw3ye)Lr55`+(8?4Z1S%pk|CGIC%K9YMq5V0egNE#T&1vCx+%$;W}8eN?+2K$ zXfWA7yXA?>3Xe&-s20#V>`xT=>yp$V^Mh4`SyramI=KO`#s-yXWYGw7+QqU63Er(s zHUk`ssh<4m=GxA~22<+iX;6X0Bp6EA~TW{HP(LGc?)AhPuTYhE^4%CMm@K_^b4&*h`HAe zHH&fyD^;vo2^1@Pm7e-h+J7vnb&-%1A66HmR1Tk*&pMP&37Bg z4jUD-g7Zdt37r7DT@7w5WtNePLgN(pxfCgP_-~IDG_Rl}p)SZ^0F^is9nTpggS zaW6*olHblf->uaanYWf91CsO92_yft1gV7mTx3t}ltq{u$KcC@7PAhpYG#gL$Kh9k zX+F!%+T!2|DdfE?ikQK?PMyZUr^YRS7Q3+ulVL@AU!Qzpv%OC^uR9qLeMOz;ugtaL z^f`amml(mNSHGWM{fVTW`Z>J)HNE;7jHK;5{^k7#U;p#l@A9zj6%}Npxaup$5|mA? zS9#a#QIkM*)lxxQ0!wuCE+#4zt{6$O1~Xm)?+NDS5m*DXM|H#VN}@-tzv&rPL!oaF zld^duDH9||^%d|uGYNsj>ngtc##hP#^6tRL^ z5o!XR*$th$8Oin?a&R7l3jq%6J~pzxq%NdrMvPZDet--}v3limTCtCveVHt;LH_%& zC<|_VoqHOp3RX@S*f8X-?LKSkQsn{HY#%RI?)iK&sKy0ED|$AMVCc(D!Pwb->4sI) z3s?nO;4L~u4ygM4!M^UYd3CRXwNXIk)O6AuzjZ(hEKA3E6slm$x;n6d&C#<1IurgH*vn}Rq`zWNcp60@*86TpCg@Q7t>M9l~gi3oDb~Qr8gvAR(V3j|J=i!L^(=pV*~#WI17^K{r)R z0D**6fGh#Npk)>vhgslW5|;*u0{W%Rta+`TX{S z@b>F7ssOeJJ)mfE*~%&pZ(Al2CxH%F+E;31!}3;x)+m37tBWZFZir1+x?G!N-In2O zwL&1dxxuJ@b&2g{%PNTyWC@`&?o!4Qpy<#A)6>+$YgpJSf>6Y9YZrK zbXma*YjEJSe`@=Xa!SGi%APXwgUWT;NnfaK0^RH%@e1?WQ$U36Q)1F2LgCC@VB4Y9deZ9Z898>iG)cs1?S0QDHw#^wCiY!+Tr(!dH=n4 z316ra4i+Bo0LmIeAgucZE(im(F)3!hwjT!I6Xbs0yi4*mMOz2a zOMH~H68$_Bb~fQrEU)~}Bm?E(%F&WsN~@sJ;fR*EUNwrrf{)?$3bY62JyNIo{gU+r z^+A@hHPq&7DXB3uf?wOnA{#g_i+tS!Jb_2{qvouv>TY+PQCWoC9Ci<^StvcR08{E= zT_{yo+&a>xdZcy$BHLG!x2r1Gr%7CC_ZB?=a4o4cYOiVbLR$`~9dS~m7Gm(BRekV! z?wGp6soMIQ;5wwEcE{s-b{oQ)zo77l)X0cVftQzzE)yZEWX;HuBCcQm6#im=PRH;X zd;ihpd8m4RhK%ZvUbX|)K~LOk8`MkImb(8ER_j{QBCn!173*<`Zh2Sug^$T!b*^r7 zOvw?{=8+R_wICQdp@Nd(-IWY`OlMZfx+fH-VEs#$M>ygFi}#gv$x^$kFc?oO<01qH zL)?3dNL>RHJIOH{=P*6adV&vtCfS)&&O6bd?v62(k$MI4`*+t3>uXHHKZ5s-b%P$q zNXuD?73*P1mb~e5)45e&m871bU$+j2e!g~|&<=G!(ZptOiA9xHM%|e$Yx^$OUpm`C zT=z(hoYx)X;zloT9v91r(>~UOUB0SeIJSzJ@#Cp@*%jZ3T5VQ zLS4^$s6atMV4EQi@NIibz~WDP$lBS7#02GTJfoZ1h?~J=i}oc6O{mzeL@5D6J3(bq z3fSF;3MgdV>=A%y#-1I;mR#|H=Z!jb)8}Vfk8rD{E?5YPCBURw>Zjb6Su&MK)aw?? z9ICbf9**As!=+oGoq@^{<0fim#Aj$u{og8{yd+B`m=>0#R_3T0t-aNu$|d+YGuwg) zW!aQt0=y4;0~old{|XL9)mmxmdmAYn9gzc;96^^c84uDB5+Es9on{R+dC;Tca#CoL zZCs@~)0t+7gNr++^J{eR#ZLJZ87wPFBhhx4ylgbzl+33>O19>DB`&+?B*4c9R}G8v z6tc7j#CMh~)YfkRH&`l)POK5~D`W`!3;&c@s9-X^4J7>Jbe3w{I4Jmzyp8v?X&Ryi*)uc?>|D#{dr<*{B!u` zd-}TEdSL1|b!x&5lpwDqbJHy}2kypkRVmaI-vLY|zABVgYBeF%v8QDZcM92V-2ku; z5_yX}s&)^meS%Rbp>@2-HVl_ui6oCzOTuX>p=*np-~i3+L7xWj_u;|R?l<3kple%Q zR!j$8PvUewJ8vmnyhbRP8JJ26WDF+Lwg5^`A6sH^=cx}PoU3%e4IV1T$mCI^8W7Fh zc4w5sT)W8+E-WA=IU+^E$X6={5-?uFOpK+_aB`;rHNsuTCs<#T5-|Zo!y5tiSV3&x zFkud~49;;y9@~r)=kUpLq%N}b+EC94j69H4svC-x?d4l%*I^Goe5%TD-D%o*WD&&l&Cuyr(v^TkW(X}wu*8x(qAJb z#$=^6#8B82z&2WsF4U{NV?dXbR*=H-b%)001@_d|V+g>@%v$9$=H}Nn3`Rs5&}X zl49^hEut2ZMQSv(sk{C`7Tz9VacKs0tVl-%#n1@-^gp=SW3IzQ@_~h^Yr`${Y;$!z(Gl%={SbhBJ{a1kp z=~YOWd>qVgz9fQkz5a5O)tl$d2f?t|Ch$9YAD>P`1AAoWap2FP@m56J(pQSuVF7 zS}yR(GYsPm_Cvw>LpPw`(h=4@k?|^<3FpFm1EEd2>}kX*m$4f_?rhjgM~b;of6V4D zc0=2kmszvR7m#Yg7dQ59pNksDLYb_5gZnHJC9}lEb*Ya4k0G*NU&3|i1fcKmduCi@yIGTxsS3V65n$+%@z5&jbgqU7*NCM8B1*S3EAn2T-bOo|iRYuhK^px=SwJNi)K@_VpaI$R%1230~^PA{D*PuPt#?^SAkI4LYlaksU(#QtJN;v<}PM zW*oIc<%l&EnbRLWA+FVyn?OysGwmKo8oFBDV9muEv<-9;As@$r9;Pj-lQLEemr91U z2wC10HbK|760V8)kB8Jy>yJeb*?o>1Q+4kO<0_^!p{3YQ7tq^60nnjQjpV<859zE1 z?2j`NMC;2Pw38cXGf1!{QocH27}QN;ALTIqT9wYroo#mukKKNIY|@7TdfPT{A2o2O4)&g zw{7u{ZiQ|EU33%lFzcp0P_*oJ@AeH%sU$vaFNE?!-a1ng^{z}|5@W?toQLsMrDsv``j7-$wdIYiN@du;ud(g<6sOtoJ5#e~OW~GHcZ_r3u0bc3 zxPq#bbuJKoH-=j@04oWw!=R*2@-va$UXRl`Na(VpU6*l|?F}i5okT~-&1wHhaZ<`g zG^6K8z80S6@-j}~Z5cC05~FmO8Ma$i{iZxG_{&A`&)ZHY0q zqrM+(AHWPvt`DWuQKg}Ul%8UuL#H@Y%y z0|v}g%AV$ez)f%xO}z%9L9V5gcX@sYn}w8kTqX3KhY7&6bSChCHgLy~XDo>dcdZWR z?x9qwFa{nt_No*jMD=&r`>w2jN)4MH4iyx%<={A}9kEYAre^FE!i+$==T=~=UV*#Y zvLu?boeaQl^$tW(?}b4r7UOhjHhg=IS@(KEbK3qB+Mdd8ThIOfYgBh58)FNR(b!! z`)|$!_}_-NFD%9qko8n8Tstg);<{S6RK=%-!LabY+=`O7V;Ho}b;C9yl|3TgP_Q!! zkPEEG?PMUqaMO*tp(GUUhIOpBaN951?ysqgv;sLU33m#6l54rkL=7i1LKIa#DIF@m zBiFViBys6yoxGYH&{F40aE-Fk$td4JiaV)7O_O#}79F3sp}}%erkK?$FMC$aSP?Gl zi>z>3r@2*wXA&F%=$wXR&8cC^UPe!m1E8bz zVn>Ltubk2>_t0Dvq7|fQ8Gvw6TLXtI1F5!7*IRsf&K}p+^ATA z=>trqGR!9EGKS8>;2<4AT-c;Po9Mfcq+nF|MFEl2LdG%;i{e5trqC|lK0*7nkgCUa ze(cMq#Q8e40K?M@{#x(KI3*YQD)s4|N!=FQFc@w6?6Xl1=y=`p{jYn-Z!8-DF%qtL z;lN;79dA{|aJxa0am%y|sB)iU0=+}na`!zTu-+CeS<^G&pJGDJ0ue~H*Sc1vW zhUMhK^6VTo@rbI7^I-bBKf((Uc;H%)Dh&V(#`YFY_Ai^xm~IJCwB zy}T@L$fFIx)QRU;R|8wM`)9}DhBU&hHN%U`(M3s%tQKt#Lgy4J>t)zdSD>?oW+@qZ zK3t&j6#&w=e-cJpck=;?MmkJo>xoY~FB7cijD%~!OKo#X9H>OR9Nd+AWmiudy8+fn z7NY8LLKA+PIklEYWtVkGue*5z`wWak3$K%kCL4lJ%7k%wB$7>D0Qc}TRTQbCCmofL8aW2y`{92EQk*T zdny!gBt$SlteMvj5jH3o7NhfFPHXq6dsrHEA1(MnbHqWqHz=1t2M-R0E681ZlDYxN z#EiL7NKLJdS>U(pYcTu-C4=8oE?pv)ZO|tX2q%tTuU5dIZU!QEcEBVFiB#~rF7w0=yx>Fb5faS$Lp3FrCy%mZEZW13JO`wMA?8K z!JG@h7eC2@s(c|emNw5I@7tb5jNv2?45=+!i7pi3D|Ab6g>ajI{MKsfq-aFc;(rbA zf4&@(4r0UIBL5+&oXt8wvAsNtGMH5ngv-dXk-WZ^`w;oaJz^H(+@8Vq8~K}OM;aE| zyR$&MfI0;UnZC~30(zd0&Oy)Jddi~!fYUxxCcteO5QG+b2aV?CuE!um>;q$XiA>6l zW&4|E_9_>6Dq_65ftGSoc9p;BBf$hY&jeSgr4@aHc>4%)Xs_6YhM&e~n? zC@&16gS~`lt*qOp#cfF;D%ttbPv{7oR%9V0CCd8gJZf{IBBwzLr37H5Ep0rLfBl40X!NUvfjqS_ z_Ev7d*Z=1?|EQDZ>KqjYRn{E+cM-43Pt{O*uC5oX!=~NKg#8TKBMjoch zF+Murb5F+4i1@R1pqVx$%-zRXxv@xcwp_dd|W}Qj|e0(cItrYf=nPXE(%Y$A%-r1fwqYw$)Yp zjMO3$d;}5+&BY_DBL>) zc=^+|dX=MYJll7`qH1&*ydLjeoyaV8hR-Mlj|wX@#9D;m9YWV3U`)0r|=(GA~xv7?z))XIsmsF?ch@&cw2{tDEy zHm}fAhU1mCZ3=~&j#D6KC{P=lBz1hr`V%Jm$45e$Dm;fLNkOUK7ah4wikegc|n)wg686OHMHJ=|z^fuDt_hnx&};@L%% z8w#PpJH#c@WYtoO8HNCLMJvUXkqIr?Y@R85^pb7(6t`#Z0&2+advsG^XB!_@ncmbv zow=Ep0o`c~-NEt}@=UT%wFfj!yYRHGNxP{pm?3DUL_$H9N||-nJp65t zU~`y)p`NmP(-}C0a={wKT#$z%(bL$;&~~+e*8%x-xuOW(dt)zS#;kNW!_lZ676T#l zV$+dIedKvVjSU`XBg2JPS~O^`Mtc)kxhYQi21T>83=%}~SY_9&sxBtTiVyOBD0`{c zLw$;>ENoU)aN0wUpNMlw3JN4UmXY~@pq!3C5+Jm>>|rtQY>Q{5)J_=;rTqGEc-K=Z zWplCEuee&&DVsJ-Xja+@g{I+B(%r!4-LNWGvSNV#(UcI0~ddx*e>*j+5f%O z*Q+cR+1nY*?uw9-oG%CTPJ8Dt6}WT~EkIzlPN60RaDG2PG+L=RP60aUai)f zMpN0s+#062ldtRx)n^!SUeI@@I8%ihISdoE)PY8`L9*`myHAP zVsOU~cyfB;q3C->;ci_jXZ&ASTrWq6%ba5ly4(HYx^ljk~Ui0~4O zvZJJB7F7?(jzil~3)`VKL$@s2m^cAy28dI;ZU&yR%`KY&Z6`LqPdcvAOP_Yj*tDqS zt_8}w3T(5~lX9qa?0OI2GgG;22|$Oo#0H6$?X*pt}du>@`CPIuRFVh5x{LRR0+;IM-p`co0lhl1nl8e zMf^tA@GUU|!Z6Xkt@k9qY~`wS5Mex#&SZ_32&`1!TagFbF*+)p4n8TJ0*%<@gy4P# zJ9k|eBE(CfLjfhWh6A2AT|KJRUd3DiJAPN#;}g{!g!9c+l}Xddd`?JV2gtD}77;u1 zF?1G3*|GUn=O*g~)fs*_Eat@sCZa1a}P)FBnH_-Z{2q4e<;=%3UMod zU6QEBD}}Jp>#SWfyKLoY?#kBFCA4q`d{&zpN~OYZt7h`GtZ+3hb$o5%`OzWW9OI!< z25Q_B5AcO4no{SE$SjFV=bf$ks<}}GO0irao74j9F?8cG(UJ+kH+Ax+xxoy!(;<7U z-6~x8lv7)#bPI0A^Msqyvea5O8r--db(!Ruv@ktAJqHHj zIZ>MFIaUTEUWAVwipS6aSqawI?|gPF85dUg=3L;eJH+4sxVV~vv4nryG?W*NL?xZ8 zuPZp*IZUI=^76v+Q4@Tt(4ag)&48znQ{@U6Yg`?7A?%}d-hesrLTWtR5X(_k_mvtQ zFGT9&^!%0I;D;#7ecb??`Y=eR8W#x#JVJ~So4sDy4fPAA} zV>Y6Z^c4nWa)p02vgMVrWcC1j>%BuCJ$i=`lBUok;ft<;t+*GL7lWU1e*2r+zB33G zkW)7{X-6Z#4a44S(0AB@-Qiu;JKlcThir4hQCjW}L160wA#N680HR%)$*8oF>p6kv zuJfKH`jS}U#1sxnK}XcUnzZ6sa)Dx`&njd(FDmZmmW5XXi%n2Nnwkxh;Mtv=QTAH0 zwtXLtI6|F&wM}=}_EFE3WpbGFIwD5?UT>2&S#{3$lu{Zw0vmH$!MH{W6qD6j)6PvV z@sbv(agV6R?ZJww_tB_mN#|_Sc#Ktm+df>k5MU;&upyR!un$lBaG<2KX4ZUgw{Gg; zLhb1%3_IA?hQ*YGQKfU`caHgp-Q@}G?+OenEIJdQM_Z{p+yYxQ6twdum0CS!Tfo)* zU=vjEtw#ada&+qb9*&?cob5-=Rz+@Htsa;|p?T=xr<5gPi~ww+;M?2Xs@gtIkzd@Q z1dETRBFnKVi#aZBr|z$I!_F)P3T*;*v_Xp-P+f*SSlx_M{yIv`jvKF}cN^l;Emm@G zUY%wbt0y(q(FZ>W|KWr7^f#mieEoLfo9n;}`k83a z0a9?69a4+MR#EYdEtp3Zfwh1krR*(9@dhU_DR4mARCxoJ9Uhd<=N#?2ssQ-NvayF-21J4}bY}}%VujBFZjh;84z){w z^?}t7u-afaseJ7qwv?9PN zU=9TKcmW^NZT^Pqs6zBEoz$YsOp`uYmyHR%G!yz0#|$8Ic}X9UtR5^D^uH;?X%b8F z4+NI#7R4(Z?b7O8tGG&)R3hc~n44u!RIxih26C;)M=>zp+#^XT4&k{;fXsJ*Q1-ho#IqrN24_^OW;VH3~ zEvY-;x`X4_!TIIXzR+3uwN1nv7R|Q8jMU@v0^z;W6eYRJ%`rcGRFQk$5`~sJ_&}@-J$$v@XZ~K8hFDpz29Rg z35aRhDV7(`3=fryywP9mF@^_CnIse5mE)>=um$WPdk$I52G*7_Rk6QRi`XbQgQ?+_ zJgXTPgFUO?lcFFO#zaI+uh+x3*Up)Gz)3<5)v7-4Pe88~x|u!e%1Mg66KVks_>;@L zymSkt;T#vm;j=w7Qh8@aNH+2AqJWN* z>C)mOt*KoDMaL!(@e$A^xenv%?i#^csS*UFQXRX!pIU_pR7`>fFr7fFa^8*PW9hjh zi)BdL4SD`=x{jzYcB>G?cALueNu^l_XEG>oV``P4uR5#tyzA9TFgIuWyWwrStx%xk zA%846w{8jK_qUv%>WEA(yE(gJwStkHqdLalY!pHQpES59jaTv~7||>2XmGVgS^z8f zW|Z_@>YkaUqMFaua9ctHL=w9Lo+rV$Xl1*fU2sa3k&Bpad49>D3YaP+sUvgzJY$wp3XDNo}ploDxfrrcqI?E@`tD=kCkyQVwNu4=mL%?4L z_?F^ECl{7W)s ze|9|kwdo|gSkvi=<5ge1eHDIqe)y~J0YD&M`t~WCjQ=dz^6RfHuA;Ebp9rG8Q7dPq zaE%QDa^9*hy zFgpu&K|^V@D$_xPg(hJfQdS(3D=|Vg!HzlUtmO*u7LrKH0&TrpwnHZnGM{$ypc&R| zLrok-OVb@ybK^LBgr-EMP}uGRjD@3NH5?eDAxw9RSinWN*l-KeGua?$=oz0{I37?E z3>a1{GIHy~TB7Ym{bbBAI_tZ(FLbj3ci@_&cr6NrX_0>0Z0_c!JuA8EX4_C3C?{wJ zDCLj68gRy2qUqaoT9UZO4<$q743!_&^peJHWlAKi=Sp?9l`!liwEJTFP()vJq>O&t&KeE51?7 zDRQ;iN`xSS(!sj#OU^%{}!()I~8{!D7(63)O-viz*RmIZ;C zg>NXZwOEftZyuorz;3b54?-zlF_p{>j0v(JR@JuvHTYuQf8O3iKP3%`=PJ{ zCInwS^9>VNKK$Ibxr*K&pK^tt(r*xOGI-X8<;$%wP?I+L$Y*v3xrR)1|iY}fV$%kNZ) z!NDv%5h>Cjcc790G6HBRFc{xbzNzy=`19s)sdP+?k{`icz0eVT87=a*!|kM~f*CuT zs?e7{%g(#IvmsMD3P>%GLg2K6BpTRjJmy_Ny`(0l`BKrW5l>_7TZ_zOMw z0f_=%<(T==+wWd~W0ET82m0L?>_Wt*p$Lb1Qz<@ZBd~+=NKtX2GaqIP zYS>!J-EmYf>L74z_bZsGCI*en@M#0^_QBdpmeAyo$z_zynck9;{VjJG3x(2G*^-hw zfO}2sfl?Bx3nuxGCekN}G&YokvK?0d!>lU2=DN+{ZsBa7k$RTRK*wT9$UC+}0lCjz zTXs6TV3QZ1oze;o5_u1@cJex&BsJa9RF35SvR<1&Bcl|^#IcX8Ifqyb7)kCb{^;>? zX~BJ}$Rq$UV%g@prL75`g2!EDj|hm)bXgC)06}1YTOvVJkdD>Vm<3rrihX2slB{k( zwMO0OI#HPmt1Z|UUdj%ju2f-ubzp?L7V0Z3xaFQhL}?CNF!W*Bc5OqdFW_>x-g~Q7 zyH$>qrQ&}nJ;3BavfB1TjeJ!Dp=zF*+wqo#IF!=0(Vgso>!VoILD8&%eB6M-k&9}d z7xu$xCQG4{r2C4wkwwYvo|J)-A6`Rc`cQy=tp}MRg>Ai5yTPfdQKbx69f9Av?idJ3 zDuQ9|Roft}q1B*G-nQ9X?z}ox^p6TfP$?&!QYG0UOL7oiE$GIVeM!%|62}>COVvbV za8w+~338|YQ5Y<3p@Nerq9cHSkGAtt4Bl*Pz!utGMjl!ccvF-}3Oo7fe&o%C)Kr3| zbt7Le9Nj=l%#XK&>8RB{fDSqi-n%ew1#4^xSa%Bj!K{d2&={gk@cxTocYhfEw;Uj~ z7=HcNa6;OA^u6(ta;i+P?*pM@Gn#+@2}F;rjQ+{n$8JLO(RY6vUVp|w{6%=PHtFBL z{`&pjhu42$@_KlG$OS`Db#ITX8^KE!{R*LWsl~%SUhe9VX>md#r28yxayz8jh40Z_ zvdaqQoE7E@J!Qz~xHnYjlt?iB?Q^DVA!EbHH85feD0cYZGp@ z8i(WudCsD2`dy48V;st(e!!rSg!|sZ;kO4#Fqm47D z3EqKFPsav1p4oEcqnE_Q4#=Vd zQ>a?x$!9Pcit;f~_IdAEJu+fDy5r z1l^$mv!;4JDKkkfhD~qR>DDqS)j&r|`MW5y9d0eP@=PLr>XGLU8_|k#(l(@yg{+U3 z)|24jQPMQV>wxj^s^A<*EaE_=7U#_aoP0=cIVMw=XkQ54>(r5Z;}qYdStv{~snA38 z(73dTyW9jT7eJfVcHKyYm?ZPHvb|H|YI0PY2W-*uapI^DK%i=T{y={!b`n5d$`{MD zba0O;1(rFBym6DIa6svy31q=@1YC)>YbVTBU*`T=?N*fs?NKs`TT3W6u)^EA@u9>? zd(l`m4sn;d2Pn>s*<(Fod{^6qS#mjJ?r&&a8JPX{y;B8GUwP^Vx_+&d-qQ`7xM-=l}<$_XxkPb!eJ1wL4_==J0f*@bSBDPobsS zCVZ=RV!Gues^xgic4jpuf(HFAbEzBp(zH{$L-jdDo#{DPMYD5<^GQ+(K=`Txi~;Fi z4tcmxRv=5jZci3rlI;OB>fK9dl|i^hg{pw}VqJ}?1_m+*o39MDg}6;UlvD;5y^z(d zv-4cr%V@L%?I^fi2Z~ReFij^7s+20lg`27sTAr-i6|A8D%MnrTfzd?3)C`Ix^_s`R zXk9K+Pc5Zty2)Kyw_cJ1>IkWWOMJ4lK`L=c(=PA7c>6Yh9sByFrF8Ja_> zA8M}mRzaDhhTIr zs^*l(FNAVSmiK{tsKOSZtl)LyvV~pqKx&h#F}ZSpFm7&P7q~BK28phTFJk!<_TE6r zz%*#tdzhr{d~!e!k>OVdn05%eUff>|TXG9@Z0ikfa`ei;F1%SsX&%SxLB*JxB)f*h z=Y?i)XjFL=F$k1T;SH@GUHcQ&h1pUEZGyJC zs6&^8Jya0}YZs z?&?jDC?^H*OzREC#;$b(p|n}P*}Cc!@BBt};Y@TCm)meavgM5K5PVg#Fexj2fMEvi zMJtivgd|Bat&fHZEAdK*Gwgm6I*mpqDreUzRyA!%gMm1Sovgf30ikp`+p;KK8W~8c zPPV-B#S?TjB`yKxSi6o2P&!iP6=Oy2 z|7IY_B3my*A*mbX_sV*g-OjD7u_e{Xd1bul1Sd=V#_pk6z0EQ9|hRIN55?StX!+iv>swnypq`!LWp! z9jRn;CbBugQN_rEv>ed66_u$06@b*EAp9nYQU}cSW~f@oZ`sDXXp8~w-vU;tf->Xa zHLa{gR|^F?qBQxvQRQZ>L{j_k)h4Fz;=YI0O4V7vF@xg@Dhe~vNtJ=}q0UsiRXU{# z(x;JSFH9~uLaAsN6CSubziFa&7Eo_^GgeEg-=}2X}`{+``h&K3De0#q$#lw?=!QW-9ky8TWfDg zfG7%|#lXj{X-mu2I}C!D0A@=9qkCx9ca!iAb}fk=fP6_#^3=ks&ybX|0ITiUH8$F1 zj)y{9Ho`;X;W?~GhiryfqLcnf+3`3!Bq|!$F7cOh>^%fQGxI- zFF=VI&|f+G{YqBL;=WeBfy!s@b%Lm_EeMqHqo$JABQ4x8?6J;d)~d|M<1?=K$?*)v zdN&;<-nCrUUHc_WU_qWe(C@8^ z!;L%j1Ue5!5t*+1J-K@M@BgL!7yj}u^)dWIK9p_w8qxRv<8tIeP`_g1G50Dz;a4^< zEl&T_+h_QH-~k-jbIFmua zCEGde&yhSnLhd%?rz9xY2UI&D-0lv+pVXb)CE;`mx&;3?vSs%~(b^NGyh*r5+HdTw z$G3o*#24KlgP@IvThcjxs#FHHYD;<~ElKMl=w7MVCz(C9g5a(fc>DJ1mOij41Qy^b zMGCmK8+EbdRrNKw58b7VQnv zFhHU)AGO1i+%LvhljPR5@Q1@oy~U`!rKc&tnltB?K;NG-n63q<_BrdDScJzl zQhgCc5b`;fM!8V|QyB zZwT#ordLuAN1YAZ!@xOPtz;}&P0xT~R>6I5>V(T~$C6}7Y9=;6iFD zQt@XynhSMYV~(!oBE);r^fbaaxZ27yLaNexm>4OHzIKoM5D>wfRTjM)rO3VaIAXTb z#lNM8=1<=~M;879X-3;O9y_*Ihq6k9RWmabg@}3jZ{-6vlJC#zP#Oz& zFOg5yBc-p5l!oFdb~#}U?kEIg>WlL-=NmZlF5MdET6=qJ=1PIv5_dH~aN;P)Fg7bB zYllR-B*W2>`qRY5E+ldI**eIZm1AFE4}dRjepZSkAQHbOlPh9sH1Lx`)2!U8a~JB? zb~h<0(0Zr2^8%2nK?Jj91!cwp#$47Tkr#u>94n_lozVuK)f4a6K;%bKZj)=} z7!Sx-z3Rl|%PD5!owZKn!cKf9>|FxH0F(40kqVB916w1V3*!QlrL8Fhe@UQy3WWh4 zcUh!1s$q60BM$iV<9Oug%|^8%WI~7NZ>7MVWd+LMmUcq=fRvu2VzYoly_8u-lVGf7 zbb|u;8H8OWve)fWUW?#VD80kABiVL7iz%eMpjUz1q8^_S$X&xF&)6XOVZj^y>DhyR z+yfCAMI83=aAaQ9jC+>goDEtB=a$1STdj5+c7fYhPAN0!kBE`CZ2Ob9pTkk~)3@K4 zNgrAvKKlRY?f0+WhBJ8Jqt`DEO#KU3ji#W8_T9c6{*U_xj!l!jk%tO=r<$WkWZHGu zXnJ27S?msY%s?w-{M5*}4tifZbzZRn(0W%-!$UL?gF#xZz^cs>$z^vmv?P3Lh{Eg| zH3BCentH=4R}y7yIV>v5?B9mJv#d)O6dD^$aV-y(><`%VE7ACHkS8nv1`^D2Z6M~t z)bb}gZk!XYTT9(qklnqVlHn-pJl?#&LiJ=d-)kvtgc@%6e@bXaPXFk)C#62)w%ny(lcJ){L&|KPubiYoVS)ixGUrCy z(3E;m;61}C;8jF5041zLjIKMB6OVa+5erD3(6C?+oLZqc>cT1fvgwS78y>r>*8<(_ z;MYQlkZU^mNEhQF=4h>se+eIQn?8E`xA6A$2SNAko3~HHpXER+G1uC=FR(sGfL%{s zI1j1v+BNa+c|e5`a)ys4v_*!z_VFP7KVZXCZ%kV5hosq-b-i0E?`-N=Pbjj)&Ox^> zX4=RGQBfRSj;Aq!git{cu04|H$pr)CWGVbAmkWzr>luw~urKi{g~u+it@obAZCCSj zN)$=qznUo)_(1LwuRPVyVw1xrh*KHhvUh~bfI(kYnM+=w2$ zv6%s9wI4+sbzvgxTHCW4o>FXE(x(C1Bp@ESV+IiU5Mt<)Vhx||NdWcgBWA)m>$bF% zLV*;awTuDkn|DM?`Td9t@My#?IEa+|4Kh}-aFou)zp@^>ZfoJUrSVgMa}$z-bk1gKW11ENP^?cQaV#T3^ZUV zCYO$n*Dm&eWO*KNO%*hIa=CQXE(0Z3FoB~Pfn+uNc&SD;5wuhpH_f4sdv8z7zAC{j z!h6%08K$FOrB;S%yk?H;eoS&u*@V-exRiIkTSRX*O!eJe9w_#)_MUd?Twy?Vt`;zE z`;}2K-2++u*+(`Xdxt)5$Vv?PAh#jA5sub0`j-y)XRsW-tT^V&<*^-<%RlDdy0*O!m6U{v}{?DCT!U70drlIdLJ*V@(yRu zV6ku;w9H8pz`mhRH{)cf$dT_dtq9~1@% zAlu=Y?F*Jlq+~Fn_=a$O((vAl^a?W6VfqY#^SV8?5S&p*vD~#oMC@a@FPpd4Y@XUvGzzL7az-(P_ zSLslzqOfGol~9wPhDNQSw9d{Cv1k+^Z$Q@X{?-ybfUzU^8T~%_A}&qNY}>o z@*K8==@r(CO+Iql)aF|8q=E2owJ)gg%k2hKy+t7?HObk`-BESTqmMJ5K+Vuc8dq(Y z>blJ{Zd|t$gdp}w{Rx!^VNsit9OVt6_a=EA;vz$u+%;@_&(NQ9fD~MefebZPElm87 z)E44s%a(GkZzT>QC!5`H9MdCLje9;0HI;H*pdK3)2Vh9ZR%!~zLp)10f)7`E z#nCgF1^Y-TH}+E5H7~c+1WGqSpCoYZzizVAeh9!(ApPMahT*7P4UD08=2x=7*|2Oj z7miWUjwL?KsUCC)atCY6x<+;q9Xo}h6YZhvQfr~h3`q;A#iy57SQERRuJrrJCxmAMs5y=2@13UKn+4&91IL2 z)f@z1E=8|`eQR>^xt}eyJE7cwWWDIcuyza#4W-|9|5cKV?|%GtGDZ4zpp@=U-hT4- z(~!Shl-=`lGe&y<53hd+^3NaT|A21#kNjOQA*0>3g!g!p8`-RiAMz11Bm$%ymX@Fs(7@le%dkqDTF`V;#RP)q5PY_)g;s$8;n(vb}-lQ^_Ga>yUUq+Z0%oH(7 z%E}#3D`X<2oOJI(p;S~`lb&)kpts3eMpsU%IIMyG?xG*~!;ACkFig1IjKR=>O3TNfesxMO62np=tHN$i#-)AcUMv=Fn12WuzlY+MClYjB_HDumXO6i z4kr(1H;ZB$ZVyf}f-W*_?s8Q384!di*njKohK0FA*#rcY>pUAKJ=#*LXLhrC%>pc~9zNYbyyddovP^q%`YjoEyd*%;iE zB<%M#=f{ka+P$bPOX_WU*P%CEcauu#CDWp4k-Qus3P9LMfTz6m86yQkkimJhR7Cs8 zt5%<_Lu_%4Y83T1sHNtZCD$EEM8WHSi|dXpRnE;*!t93Db?8albGs`CuIrV{p;0Yk zk2;?0*HFt1Pu5helXam``pOw_1~`1bB;2g&a+O>8a*cOc?20jVfuO5yKTChP$`+AB zPIrTr+MTp;471!Gxj`0PLEv~?ma|xC@?c%XPBYYAaxQBB93&4Ly4jT)- z&Frw#ejL4yq4f~=ov!9EjO!$5Z6D~KE$w;i1KvQC+OQg@6}oZ>1gwjqQSDDcJb(H2asK&V5an)~!v6xOBoYqPnCZY$zz1*j%YrJC zo-o;)8(-VJ^pI9}8ay^SM@EW^!_qsloF2Y*AO z!8W25EobuW79AiDu`yo;Egh}T1aO#bqR1T&LoMY9E8@v@sunbAdj{NFyoHU8h-Fk4 zN@EB~k}Q>cK1N2cxUMB6SBlofj$%>_v%4y6RaiH^0a=ljoCeEWa?Boq$5TF(jhIIV zPh<~SW)qTJ#%BlbOh`RJTi#lTcYtthyLguJNCy*W@ey(h|J>wC9ssl&4^rxalj1m( zCg3Q^o}Yx&lalN3kYsk?2BB*xAH_pJQ}WS-ki9{CV^s0l)i5Z1E)OuySU&I>h9SQ8w(EEjTQ9=_)aum)!-Dmey-n4Hv}FKOK&-!ojqF6C zdV`q*rx;;OqFYFJhNS@x`nivve-Y6S*syK?Kd2(86=f~;sL|-6$E`q5vEx2kjU{^UY>Y_ed83>Mx?>?8+>tyd z)PsDLD&>0~PTBP|A9lG4mY-)gQLd*XA>;99i}nzlE*h8+S;9~t;qh0&e9b}pIW0RN zWQC$UNtS|uyQAOC1v6(OL1zMDuVi>uPo@g-y0WipayTsiK?m=x%%3PE=n5v(tf@$`BMB!Jp*>My>TMlJ-E1YicCs;3u|~AKecX5u zw*%@AF9%+ngB3uAO!ae8iHv**2VDl}0M*&d@P$^u;g{N}FOIqMjy2_kMl_o&NN-AW znJ02U2i#6!G!##dZh(4elddl1$U#De%gqUm)2b_uQa)S5cJ#R4I7-n8+aoTJt#hW5 zY=5e7bIGF$@7{KRRVFpPupGGswoG&9T~34LsJC=i1U-u)n41AaaD%)%EgGLBh#FSp z$y7ZQG#}jfR<=Aqb=(aH>c?z$-rb$CL9Xc&Fx5IP+I)6_6+Y&|1OCJlANT|ei4BDJ zExS?7{G@bD3&ziuMqax>{06k+BgCdum8ogG8pROgbW_S~=CLp8T0hOFu54qa}q}J&DflczDmTF3v$`T4Msn4aX z23eJd3mRZrv@?ZGHWiEI+F#*!)gOo=iIr=lp2+ML^?+nWka^f(PU3g zs_<)36Cl@->?ia;4Cw=x(&Dl{a=~tc!NV~Ef?~05R=!9mv^qM|k-V`U*x>~3_3i#B>uosy~#(jLR{ zVW)*AcVL^M3tOM{L322j#0^7vwqrX=LmloxtHukLTbibDyBm#9-CJd|-wf{Z6dM?! zr^>jCs5#0io0j&_oFLZcenp&yEcVK!hwLF31=bmz#^A#>w?V-lAfo zy#&WS$mU@bPsz1g%!QvuZjtZ5c>63I;Kg5s!=LC=NjZOtyz}$R`~NGveVZYRlYN$b ztH(u=Lar9q*`|hRR3>XaSj#?ii?u`YZthWgf$E2`85I&OJKUl`Faj%x`_W?D#xcJf z6`rJSXPUi^y+JbfX%@UAm+NSbe%NXutUJUbAJyts6I0~xOV+6yYb2vkJoEY0^{RTy z62IxZv4Pk@zet!%@~9&fTg1>crbH-ZIVHNz-NN=@Xoexg66$(ct+T$ z5lPp32BR^4Ivt+kLx#1A8?V~!X;+857F{T8_ zB4P(cmpe80b}Zr@m4!2Lj7N5Zt&i<@w^>1(`8c-_6OlYOY~88mi1^kZx3lnxeePxF z+&zNic|qqw>KJcdwP-xG=rU&);~e}Te2i%kr9RPcYfqylD`7A)9a>j+Yg7R5(v)Et z)l0(#LFX3z4o3;KfICZFw^*yLk=Lt^wF!mQEFObnQ00w8x4Zxjv<6%B@gLm9ER7W>kABU8`y7B(uKOO2{&C!&8)bJB)`M^9{zN8#VNDH`*Tby0Uy4h7P3d5J#6*cLklS z(R#9pi0!QY@yTFk1PneqWr*T=^wJe0_!r9%+0a z^=wQ?e-?g_`l|KT}LwZsxJf?z=v_YP;B?n2QvFZXr@T2CDe!aF<~k0D&4f za(Th^Qo})TqEfMBS*h68jO>u>Q;#d-CKOci&;$y1(>h8(US)?-PCXJOYYV96KSy$l zd7M*0bjlqBf?>383ldyS5CH&<^5KlbqkkYDN_z<`7RWwqd~T11>O+2&DK2m87}~x^nS#G?wO~#9b!@0Rt>e5(EdV$Bm1Q^} zo{K8}=!3rs|LF+V-$;7=zn>p|{Qa-tKOEowGN6I`^S4i6B=W`E@7}&*V3+Uwk;fn7 zyYl5VD?9Ji>?5q_=kVMbzxg@1bvdSbvMg2b{;;#WqaS5?CN_bPtcbt2CAtOeay0KH z4fL7(mYFTq8pgbQv)>4x3<{w>nnDFv+BoM7*0dkrl$k z{>Qsbl7cy+C4sJmqTsR=6s1G~zFPO|>a~L1Bc33gKuHQ??F34cyPf_V04vz!+sVt8a|^=C*TMKIlOGcc8?K?YoEv>% zDe*zBupB$iih3r!qRO&$P}o0A4nY4wJX_2+3T^@FuTBL*y%Y0sI0fcnOE7gv^TF!b z^)0&fpf)V51q^5D2&`L2ysQG-;6CcMOksn<)XmPfL1bUQxV-;=!rNDumls)t2hi2c zzX^kJ-1ehU*1xq;L;uWhCFk>Ix8Bx6-^fB22)QbF0-lbS*s9w+4)S*FCO1E&);9d* z4hAIqE6cX;5Z#)i%Z5NdyTk#$Iu&LC$JFCdhnhYMm41NGk!MDTPub7NvKX(|Q0$eI zmBt~2v%3%1Gq_-f!bIt{r zbqKa;bHl=E)JeYLVxgbSlPuR@JT%BB{1KuJW;G|X@FS-~GE^Lt6LGERkTjO?4GF`e z5#{Ab%6X4_w3l!)N5v2ji@L&6?WR6;lBSJmec`RXS~mvhNA5GXg(6V5bk%-UzMr%1 z@?!V>5S~VG!$&mLYmV<>{+5qW_0?NPZ9nn7;nO%me*n6=wSYVD@%fs+TRid!0lCThdnqd6HKC!vnl0ETutCc4aQ}!XdmrKMxs`Sa ztMckmZvs(mA==9InBl>OPF^17xao>oT%vvC@dx9W>6jQ{7sz;%8QD5`Rk&Xe0#1Mx zSX#+DqfhLFO^GUTz@8XX9vU*mKB7oQoAD6bKof|rZ;-2>+%yp|g z;DsU^q8zOPZSSfTn&aG#(T~*LN5i96sjrnF{afZ7jgWDc4d?2DfZeD=n0(w$%O0$L zS5GoZ&u?H>+9CQ>H?=U&AyCz9IyN9wFJxe>tB7eq54AiXl&$WLbb-Tee;ut2+sGf4 z$oOp9%V4>hOpwD7fs2v=VqzFD|HNDfg&&ceO?=$27~Exe_WQmG_0^*0*+&qHS?lFG z$(1ADXyjSHqWMJ0#q_MGXC)U&>1^p$R;2*|O%1G?(bdk82!WG1ZtjVIF*C`scd&fL>nd1&K`R6?<{&1 z`&l3tLKusLtErvUKq2OS^>hKz9ss<^=|B!q-~BDWhVMUdyvh-&wCp%NaefsQi)b~Z zmTz=^(|_~xfA{(eV+x{LTpXIQANn{tLdEjOSVbS?V^v7gSEw6YkZjYGhX|5bmA_}z zV}mZ=#A8@#DJDshEYy-1rFtPbBO6o=Wc6P6i8$&$J4CnysAxRlua>ctO~d9wl7~yq z=XU2R;~=HLy6ecDkm-2}J!?m)+mRhe6h!}r{ls_M(UOvqa!8kV=x9t^hfNvvqQ%G# z93PX2z+Bhq0T3sr8Kz`GS03Ij!-)RfWq1lLv$2O{D0!JeC10wG9Dw$)?-rOg_56-i z3*okKD6}!n004h7n|Wq#HD`HBgQVAns{<(btO+i!T?0Y2g;NaK){SmZ3z?7xh%gkwx}dYkomi&AAp$gnR6Z>}*jK;?YVZt)dC5{XdNW*7@s-;xQ&Dlx@*L=Q%3c#1D{ zA&VN8WC58;q+}1sli532if}J17C>Cb>I+qyTqvJ5C-^bT=XLU83ePPi9|P;7cbjaf zt5<8dPH?JHZHim#$r`MC1~xM-@6(Myc}J^ciqkk@kU=J+>=QZT%*3E+rKm3gjZZKX z00IeKWBzQ*8NE1r#*J9wY`Pu}XDWit=>xF?R>Z^{~0YuroiG=5m`6 zSyNms`1f#rfVe}~Y8dLGrbxp@Y9bT6kxHDB6S7CgN$EYVIIb1EeN@@lZP2g{P|Q(0 zE1E`NRMTdF_M2D|F0?eRaTyMBkP!roq9xRG^>rZo?0%JqW zeXv0sc06+SfwQ9yV^L-st%I$q0=Wwn@*(ZukQ>cw)8OO_dD(WmsNzp`$T$p2VU7c6 zuwgfw9hj$0k=_Y#SSE0>Zcta)FT`}(8ZkfkLHP505Z?dT=CmfD`#F^%l**Wq-sj`+ z?|maHh<%j*4f%`yrWfq=MeGQ=Q3hC~{J3nMAc^8d{+j#IpV>5-bXTf%Bc=!qGD;e( zGX%!Egm7Eg$3$_bK+WsmNLyN^38)%KkNMUfahYxe|0=l2ug=@IPe$agmJ1#;gb$$UX5! ztRE^BQA4NDmJ*7!{$N_i7uniupH#!fO5zs&j|3{ zHq;zFcKadcw2n8RGh1UeWh&wXRZ9X=df9{?ZZWnrNI4KI_yEU&GeS^Wh&lm~XUQG0 zf<+$m1?~V}T2ol35J(}TORa#Ca`fh*_YDG)1+W8!oVg_p^}M8vJc7WSvIG`;_1Nga zpka~-6itXK70|U5t<7p-hVdJ3I`3G~N|V*#{j&XN)lX8-N_=X@lNi{r^*T(f!S%)< zFo%D2H(s=n|AP79Rq8{!kieB~k({i=Y)bo+7VU6L5N#%D#xA)hI?#(Mb_XynLUW$blN>3UU=qg;Lh!k)4lpdG6RY)NC+SP|GUW%6r<{vOo?@8NLtwqzXSswuglcTeDFDHji7@Pz2;%*D}kD2FXfCZ|i4 zaAXN!8p8|6GQb4oZ%gB(xVf?MjH$A*Ol6xxxj zXtb(U2p^#d*1_ia-2VcHTGFrAk56p8JrC}3gnEQ)`9WI(ypLrB>tn+0mi6~IUwcG2 z0u791%8Um-&SmuOsXnNdAU;nsm9r}aUy@0;QA`DLtpKvD&F1JtIa^mB$0!}70#a|5 ze0`$?m=;R`Hnqw+Sq#8u5m9LkHX+<0@kATQWk*}Bu-%=H@&j1#3}}EopzlL~vJ^M& zt)P-!!;AeYm|aUsJ&%M~KtK!E#epk}_Rr-8r}7~yB{T)+weh)STg$Du(a*M)x(5RW zon;@T^0I86tw9h&a#D9tlwT;Tf%61F5JpN~v~bQ_!qqfgQ@Af|JVWBAU0nzk)AzVQ zw;RiqX{>Bb{Uu`r%%TPze_5dueLn_pdzVPUxE005#$X7$Mx6|gzMAB3?DuEeu@nBRQLzg{Q_JlO zPy~DZnS8}iiAopc4!vs81u=B;0`eZjH(}M?0yvOVq|Ckz&7^^GvKTk-;}2;+#T0m{ zNWm=|0dkUJ2JDz+atXk%2{OhN_}+300Oczzs9g>@ZES!u>2y%JqMj5cmOjc%56Mvj zbTR6qR1U;~7CP=*vwjBP9)!k?t((_Kez@Lw)NE$=P4O3Fm~>v+%6({&6U3IoL8dS~ zZvF#N#V*10%&=^b#+Hb?_$Cvm2`1X_c|M2>!ta$d1 zQrQ0E+sFEv7g#RK72c6IB~>@GOhb*nES#ov!-YO)6%T-j7l@zbfC_lbuXKN~04r74 z%xUL6wkyS^V3sW*)R!V2kK3SbwmvVAeBzQ@de`;nN~i=31PWKxZnfuvo71Fc*u*t$ zC)I@QovUg#Q3|8*1RSvX-OE! zt3xhY!u`ZlQ%=gsgM0=mLpIsYTH|xNR}gTTnYO6-IV8DYA;*0Z1#!#3xrJ$?{DiFF zKE7DPRX$Ip*(M=96O6cr$grl+42KL9~?$snyaH|m@IA%9A$I~B_?7lqG?Z4 zaH+W4gY2NDgAqVw+>-e!f%d$Qqx0);O$2~&Fxe5{j+#KDPE07QvGxRMc4KLWcEt+56B!#R@d_az>V!I zSMB&&a~p{ES<7Ww1+rdZuFz1bw5>(v zsKb_vYLI*=@bjY|Ss1h_=g;}@lt8+b*1z{P{Lfy%uSbOa=IuA(hxs9#a6itzFF(uA z=-)P4i5ke^l8)QV$}yMcqh-#IY|vy8Aj7~!6q55*F-AnsvR}Ica?e;!KkOA8nn(rbVFhl z2HHmqWfPM6bqDsBRFmxGkdL#ESUy&&kA=*zEKbxzT4bJDAjq=v0Bn$!A+7~SAf426)&Sms&uE?g+RG+z3#3)6w*gr~-Bz~Q7~4W!6?{5El>SYp zrj?Z6Qm8Y@&Gofk!Y5RvpIzG7Wg*)^IrXw84(}9Qj=4pWp8$ctJ`mGF5AUy{#NijCdZ9$x)u#T*>$!veFlI=nY21->oi+V#H zWeqKpA#m@IZXOvr(q>+isQ`Wn+REcV#K;rtajoVdCcpv#LJlzaw7w(4I)(MYc5P|5 z(&qN^oqCR#y>I&^cMx)v8=(nrhj5dC0@}K1^c!h(f(+Y2ot#d!6kv*1A>)%rlIh1{ z*=FsgIu|0e)%WMQ8gGv0e*OB(@PFioE`kk#+n>MvmNbXYUw;YTsxRKYc>TTn`$zln zmo~U~;4?63l^wRdq01hU>RCDXQ0bLjbHn6v0JtH;p%Vu>q8G*UPF1L^mz{;l!l87D zobKK(o7@RhC6n*E?3k>p$#f1EG#{7NX1wYT2sP_;cWUo#H)cUGK08cK`-IH#(AOl+ zSQ0c`9jmaxUd&0z{3t_jK?NM}lU(h%B=xS$5H}X}3QT*Y0TqxXEhc~*1grQQ zDqn6IL%dFMhMAnra)p+o^y|S;ZnZRCd8hYdMC_x53e)2*rWx91=zyP4eJu#CM)73Opt%^QJ0ez!4P zVzSTqn8fY8pl(Q(IjO-Zf3aKo7H7<)!(uz_lX}uRzvT%EbdvZbpi#itwybXRK5LD2#mWNWEd zt&oPLao75+4D=NiWXk-NxWe9Ei7nO#v|#r-su1e6@3ur~m#h>C1q6Or?W!b+$aBe5 zaqPeqQklsPCV)T>W9(GzX3ct@H@kbJ6af2yb%AixvapX_z%8cHRwXjwr;&qbB+^+1 zY^m6mQTBLzZe5~bydI?Z_|Bl(5X&0_Sk5FlTMGHJN|;k+1xFw1m<0l;uDh_0a(&%BN&-)_Ep2q; zS`hv$m?Ec#Vu_B6fvPEqOwwmMH89VQ0m#)jixrSA*%QD5Yy*un*9b?$|F#w5%5Nv; z_{iTJPL){{5(N&a7~rH^ng;4T*|oyd0wPS-rG()O5?>60Z8kQ`l`g8WhnLEDKj^75 zWFk0~scXzg<##daW(fw=!sg>7r@GqQ`T&IN&648LD|@AlKj)ho%#X8n!pNjlk$5vv zxkF;|ImDM>(>6ujWD^6EzQtty(3n}9C}H#7f>2j2V47JZg|W@{@0~ zR7sFU8|a2Z%3?v|G~RutV>2p({3O{4&3q)7lI4zf_gfu6V#~8_iikn35pqTFnv$D$ zI8@2>Z?Ohn4oN;(xxC1~l_yCE0@+(#La%BLa`4@eBz{B9=b8?hG}v*XGnn#)r!c#+ z*if}7GJsN!r)NB!2Cx*mIBg&Rvl-z60SHg4`bZ8)kR>`nSHvDcTzcQ|8`ouP zpxm7-h`T32ekc`^rR4Q69v;#)w%wJp-a7Ulm{!-3F5!scyJb>W$&s)5$5SV1`KK7d zIgth9VdINJc(mW4{!2}PN}~1Spb?j|+MlZbMR7?=|SkFcZiSrw`{sN$S$c?e$ z---?PUleDQJOk{GmP7F6#0!bQ&&j2<1bCW2KgEZQlCr4`tMyHLS4sx_Xao*09xDH_ z0Cmr?uz#a1gul__{~Uh!!yg`7z&Ee|gI~ky6 zi@tdK-Rsxk{m|qt z)_GI;gt2P$I3FIOKVWY}=e0b|$Mk50e|zU7Vg&FU>-P%H{MgRO%JWl_yb`uKmTiKV zF#2Rn9v2mzPV*r(mJXRil7a#Mw#{V74Ukb4Bjs~8utb(LJ$M=cKV&l=EQ4xADk%T7 z$zYFm;uox4}+c8?az$K{wp6xtPP9Ar4+=0f#Mxq}2yu^ZQd0?}y z8K+tGtb*%;8z~AGt-LS7X}(U@OEir!Q*bAhUEI3)u zPS|NuRi`5|)^(u2#4tpPSz@3jSr`E263eiVa_p8Uvg@;Bm?p{G0bI=i7QI->b2F8% zMnr}JUM~raj`3-TTtS0|##>vV`;?^NkVasqAt!(hXB%aL70$JF2eC2@w{4dUf^L9| z67#`o={V`axbm*)l0PHqfMs;W1_x!SYybicY)%#_@ji!#HVJ@or*7_*4n1Ci@M91B z|1}FuggfrWz!DqO&n zwG}j9ny*M6&g0dz-EVn2c7wgI{~SAjb>tvD8T!tY&tWib}vRU+f`n`>P4i;K$u z)(Jxc7XyFc%P`5R$=r`%7f|1J2yD+{Mu!dXqD`7h9)8su`*(l-{-d{_Ny@Gax)WvA*?|!8wZk@q1J}b4mR=Kl=Rj_irD)|G8?~y#GQn$glGA>b7I{68|8%;Xg{I zDF?s3ya0A>#l)`ePBx4OWE{O!^-^s+PYVG^NW?(}ir#MXiPpaL6gPpCKf(PFIhv_K zyUyu$C?l^eM2OvVRz1h!B9RZa4P|?WVC*iX(gcE!VQLmkHb~b2sL%q|Rgy1GxRy_L6Us ziJW!SK~%moJ3^2@A!$3*HM0J@eW0IfR$!sey*&q0s7g!wF1W8aTB8xF;O5e40jYBt zDLp1&og&&#h+PtvZd%n_j0#JMh!ip?Q-V^LlsmG=oCs;UbqII0(@_sMkPaNDhTX?n z1!8+*VQTXOpB>0q0iD+IVc1<#yp~+$<{T8HbF$v9I<>abg)^f4Ye}V<7F{t%&cW&) zMv5yWOwIEVf}+*S`1WCNUr9MIc6TM19n$;I3xU7L;j*EAVA}J`$(=eu+KgSQwg}$Y zLQm+4mOd)pjKaL0w{SwW4_6SHy}?tCeOnelHTfqmn-NkEzLgU8BDYGzMw}`Ja8#=% zW7r0>J#Kz3PLRwXLO%AVOIBtk6{r8Iy9)dkJGW!#3*?cxjch&JQArARj7`Tf#BGJO zC7KXX#pEdpM#f@#4w8!WvUY0wRUGfXepqo^pZ44E{U?rB{qpVGvqIQsuU}E`fj&NO ze|q~Sy#6vDT(mU*7fi<7?hLw*KZ7LL@2r;JQO~qIjPjqwU}(+f9#{^)v z1;YnpKEgUB_&WSE%OR@8Y#Cmx^c*%7{E)A+Vzrvfusl?G-@$$ zlrvL1D4}kZPwXVWgS+EM?+FyFi}R-C2W^sb+YUC>ZQO_nx;24n-&KY>TcFJ2qU9D( zT*FOOB=T|Fqj&vsY0E4*X{by2FEshT`~>_KvE99>!z*Z9R4S^+F0*3mE?V=tjzu9` zY{iRs-A+uHYqueR0WH@e9vUfxWtK|fKUFkonW7^0NUwtz!tJ7%%C56KRpN={LU5^- zFo@|zIMf!TfQp^RK3ShY_?^sZ;H$x=LzR3WEIA)^3YXaI5(-sYEeS%`Z z$pO2AsCOBUH;0kaV;@j7w}CNGw-q^Ste4d$m5R>Lo0Z^0HB1D=O1&>Y6^Z~fk$)wz z4+D9&Vifd*eHFGfa4V$aasdar6L2>Bo*95?R)Pu$jIm$h65Cd&g5Zm;(RSS& ze1y?akD5H6wg)It9>J8gkRuq_C-#=_(Cv3aTXf6wA+$9sXQ<=!nrRt`o;iN08u*k( zTHPy;o+>$`lg%<535F>0EE!o@J3Lt$8e}2D9(LorO4sK#-cqNbuBzBZlzkafOq)(D zE^eQV#uAjeqL01MAo2Pak|Xot4;DuYbO1Qk97id2RRSm4X%(7?AT>I19Fk70>!GU= zGPhv~mG8DuGgNwsNp2+fr|hT;cU!QSD%bbgp)911kWlGor8%kf7b0e3#dNq?-%)nz z=VO!wYmSwHlxffqRlqRA7U5b`Dcnx-rm=L$a}VQNH&K8+7zTH}qQe#cuKI~mKa6w5 zxw~A2HWuneBcGc9XT($@YGFoO(-z?>m(Mstq3B@lWj*Z{oTrlNeTXd!mA$fPjr<*` z|K07$0z7emk<>9n&QhcXFT8yRuZ}a5n{lOa?vQMAyJI@LQITE}an-$NMrDk|CbNQ8 z8Vq06kL0TIjTj8kiyL#M*26H|vDK)N(;axWaHmMm=K18Vkbr%7lvb;5YPqYRx7s*B zvtl#nnX*-Ur^i?L$3Vt;fbqykNGQ@0x-+0Pd{}A9T179V-Whs3VA(nnv`S>cRZ>OS z*`xqqNqh2*FS=H(foWt1Bgs*{nd;h~34;v?AexLFzPY$F^-`z`rElmR~V<`@7fA1G)XXYN-*h4q(^-=@`rx4U$GGBpd-}vpfPZ@`!yBq0oDW3Tu*^Q`=u&A+LdIH;7*na3BWTQ52&O@kW3p)<2cGWf6hwsEDlm zlwTwAKIB@qG>~+T}fGQgh*NMrF?s{ITUOYDw5SERJ!{S zECHgjyizCnLNqh<;R&QbejcGJPftL3Z(%6`^g9};}hCH6gqbj<3XP?u*Bf`zT` zzI}Otea;8o3N20`Z{j}hqUn&rz;xRN8IpEZ(QKId`0O4t0V)wZjtrUdcdo4T2i22K z7|T~DF0uS#ejZh*)mfLq-wEG`S?*Yk8UAivMdja^*>?=@E-j#OsHErIS%i>CuI7jA zUWa@sM_&n{&o)NsC@yyNlCl`L(L!>_goQ6i`^%&mpkKy)0hc}BcF&@sIMhm9zcRJd}&vp!HtC9 zp!n)MI#Y=oiV7T=&&f5bQ0Jo9%~2!U_s*c|2Xi!n{@wDiNAFSjtMqcKCNt3{Xvk;ZCixgjLQ zpC~nh!88HJU`|dBVVA9crIL}_Z5^6Ai=0>qs~uXN$SUv3;A{_KD$=|#UN1`>xS>KD zv`1{tkHP_cUJm}lye(3PNN~POF`+$AD?Mh_Y01JFt50AkBRi+FqXy8^Ofls~?)MyA z$(@^;F%9i=(C!hDq`)p8QXi8xk?(9`O>(*O+tA4jsGZD9Mop{oZmizGdF3!N3W8AfK7J>HrS}*TBYj{6ui* z+Yb%zAJXRuO-Y7G)?%FJ9s_!Oo6Js zNR9a zLUxK2tCQ?(#%x$*gr2}5i{=<3bW}?ovX1~8rah}*T~y(+v%d@QsKRM&cR|}jvWQCo z5{FYXfIm`wu*4Nr6!KlptMz0|as%5v67!snTy^DnyNy?0fErQ-cyw{9UC_D&kSB|^ z7=7GG+LUt*f)dQh|Ln}g{4BhFeR=;G3Uh4;I#3=86cd4ka@Rq5lnlu(LGd8g`ToPa znuJM9K#iO3m`k}~rh~)|dUvqV@u~*bhZ|w0tcTK7V6|}UqsBzX085Jc#H>_32zsQa zx2SqSZ2>6&223;{N4jfC`a=DP1?omUQJ^V!>IxU|K`mgwxtOi^$$99SMn=BHakL8B z2tIJ1A-ePgs-%3%)i}0VSA#q!Y4eQD?Q{8JN^kE%+<*;b*A~c}_L^z6`3c#A+~{M< zB9>lRuPVaV$3wqQwV143*~%g#wniNS8v-_0$atOUl6?jg`GWq0CK?Tc6(Cj6 z=jefbV~{dLsVs9Dpuw)|ep=v00%k!UEs5{gyD8l`>(H*p z2!x<0bUhEJZP@^_2ta-)1t1Vp7PkQ6#hm9*YJl-_Q zGzkcfkcY$$W&VT3HL_8Yx~5x0b33}fRXeG#y(dkQKN$d~L_3T_G^B|Ywd-_*4MDp+ zhxq^%S7s}+GS1i?r!~WK2Dc!S5|nC@3cmygg*hXNt1}xNfO^;)7fN+9Fb;6<0F9|f z9}$>C2G4okI3Fm_SVNDk@G9wV{wDmNM|k`8?dO39$FtwCclnKJ*M4)>uKicaa{uD( z6MI(j#@|DiRu3@r{^<3i_kSPWJ~f;pV2+`s^J~Lk@*u_=eM}gfCU*VqkTR9pXbd=M5BVQcksOWwulJy(su{k8YWhJXN z?&d-y5+~u`=3O!a>!L!>*}=~@cL~>v2gGk zayUi`D(_)#CC(lLjzI#!`hj9hrehN~3H)@T!fw=JivXhFI^wefMI=@m(^HZ6*z)_V zLo#LU%T-H_lRkPM?gks$4pJvv32*`%x_xvbg^{~fc@hv+K&0y~o}-DT|deo}TTOYE_0D@7FU9wtZJrMS-L*a_XD z!(?Xx7R83#U>{9OFIez~!_bCddcNG& zKtmP~{DJhriNNYMwDp+ILj0=fCL56RA=O2mm_*r85P;iBh3)6oZLL=|0P+zvoFRIW z$5DOb>VkX2&k4X{jg+^~5TMR-ICaCGHu-uDtFt?5K$1ySyQ=AzdZn5QZx+>%6zlMk zfE+K-%@((w)z3X~Z^DMr(vBc&eVdLdnm!b`Li1nhjiks?qg`sSX1_aW1Id!?YTP8( zlNVp@zNuQ-=b$T4CG8Q~pk1|-j|3C78)=#;iwT?@ib}lgo?V`DJZw1B9)^s}q1HOB z<-@?;1ZAeh*~AM{N-f=QvlRRmcIDo#)tSrw3SjmHdcG1CAsQoJ(W>vW2#&=>M1mZ^ z7Sy@2(d?U%|CX@govE?)gX# z_!(f<5qoOck~XAs*x3sGtMsbL6KfqqV`*{JSf@=aU%#kN`@TOFgm#v z>$19P5r*JSjn}bjH(HM$-GzJyOj1WX3=?xNCBlFiYoBhCjV`aoQJVzvuQ?`Erv|_n z549o5WFk{$t!ggVDg32FDUtGn$;|)@18SHIM0RUbl`CChl07~Fdep??DeoXXdm-Hp z%j`j7Yma)!8Rrtcm`OuKf|2s3@`$0gW~CJ7P@pnM$PEi?Chw)yrpC>N;t3O;o~^AL z9HLE^NUp|V?D^D!tH{8V@!{}BW}CJ}9cR5o1r?;|DISt4+X#>&jHHw|sr4PA-jr=` zG*Q`uZt60A(cMTrRr4EEY0YRCPJ&w^j6;F>2DQZPU1Sq3J5>^-VWANA-e{0RrCgh& z5&;%XQ#NS9h$|RvqEc2sLFu=VxwRUhEsnu#H8V&vn_?9tRFu+561+NuDKDpYM=a#$ z?244#R(xQfj=8sLyDL4i#~c7t1+++v%A>+J8v&JbI7a93a7ZYnnuXjgHyht0Y^o)5)`mDsWJY$OYJAi(H_H*sL}7_^B$f1<-W> z`kB~8yn+j`>^AO^-`-ySCj13ON4_Py@mpr0e+X9Ee+zE>?_757BVe2UaK<)4e(oRN zJ_d;W%gc`Y_W^lN1F};gt#Fr=4&K3W9tY$ODjR)5)4Q(&gT9J-x@ z3ZXZNcqEKvB)(7b*H6YWD{zb;a@)jR;=K*GSG5v8fxFf*T(4|7L9K2%{B4pd{Y`*_ z@flVHhz4w{wqV1p4&+qp;qkIy%nb#i!$@$#fYB@Z3AQA$gAwKFHJJm$3ChxG-LW*> zL|i^>0SBW{*-!Z^)_KMIV}_nou!S26l|K^^aMawCa3?>*xr?;v=BCS%OPWc z&>dMsn6k*(Hwz}6KUv6Z;lByQD>EIa%3E__J3Q{{E$npHp`r;pwb~?Gxi5Gh>DnEF zfmdu))~{8gUJ{G2gR%9J8o*Zb;dO-`N{-E-5!u_w$flxQT+euX6eAqAWEXe)Ls{@9 z77J!O#244rnUZ6Vm8#mLe4Gk9A_HPC${WL%8uGs%(Jq>Ws-#*E*cE8tWUbY@IihQB> zMTs#NTn1}3pq?tguY=<~B5bt$?;&yNZUOq94*j}0voY`CQJq3HWb0iHw1-=v1zbpu zPb8TGSI#sC4Uc06k8TcbZkG#N(8GKIsg-I`Qp2;=aCI~FjTR0ewamR~grP?|843VfK%~EoLw++DvKL+cS;%>w&Bi1= zVufCYL&IMQ-KQ=pMqmR=${y|FDqXre#}OUoEDS$gI$nAMhL9v~FncH}A$c-VFpGe) z130+|nblJ)fqRhTMeb6Xg{?^HcByB^nqz*QZyt19v=Wv_X+aNWiR-1&Yglsjuimf+ zIlN^@0?H@=g-S+>PQ>+;tHK&~rFJjyp+!hk2DS5*`baod;Z^2p9s_OM(l=_67x#qVx`_A&V^#R9fO4 z_xq1y@{fU6L@|Wam(%z0)T}Sl4+$&JY^tuNQa+2s%t_4`g=w8;vcr&2P*jVB+yhwu8 zF|_sP{di~t7c`t1D;2;q{1EeJZYBtEw3+@nPPFq? zs6E{St&B!Nrz>o7 zTMfB~hIr%iQs7hk=n)9>Mx(3-PYn&Uv&Ue?FS|cvl+4qduF*a%+FIRWa$X;`+q_Gz z2i3Pz1nVfx7fZ^1@V|y19^qL2AGnd9{l)8_0Ze-TS$O-zsODec@sHu{8xv1{fZ=r7 zH|kWN6EnL^t(4pfcF(KP4a`~)A@d*OlLY*7Z1#Zay!dXl$#S8pq3Z3pZosbiXiB{@z^k5<(`YeGkC51S zF};t|yl|R{9?)EkXnHP*9*i?)8ZWj9LuvQ@(-cg8`y6|kpC}mKVUtoVU(!l>VMNZO zcaGv#u5~GfXuC8H?L&%j8&~hD;z>Fp(l-TtAcs3!qfl-J^PpE%WLICmwTDBy+@Xp% z0$M%NyPEE3#7rU|pj1FNqA65(W1~ww1ofqsvwchjZMZGz6Zw&d>$}FEV(gqX2`di# z8|{x>0~M4mVd1toXCKNL$YYnN6zL}jJc@yNua@9F2v_{8oAN8>{IXCFSb69+ibFXZyL1R{N zN(-gzffzVDH&j_XU25y*RNbjRU5)C&SThD8yMv#_*ux_o^Frc_pmT|#xLlOHc0lu9 z53PCC;B3?JtxIUL2GAH1ZknRAcsJM#F^`i!{)doIpaxE z(?y+>99g~+HX^ynx#Pq{tzLBNh04;J;~XAvcVPR-yMg0d7@6~A8jid2+`SoEgQ@H6J?h-f8c^3@aHjU`6p&?D^jt+DdtBfY}%?GuOB{aMOux`X? zA5y(JM$NT~I1i{x-ycDCxeMa;`BRE zy|?|;D+V6HY$+Y+P5rJuqH9sP_~i^D{!)3xI#{C*a%6@Uxeii=cj@qfyk=*gyxmIT zb2d3kMQqCTB9V8j)%Kuj6Zzjz(jg8;V`dVHastxv{tIAwNlJS z1x`uhL4THA;tF@LmDMUXM1m^J(NRN43Q)*GXH-VDHL_6na3diA+6-td&(853H@#)I&`D3{bI(=#RBzPmiH;ejpID{0|W-E8O4cza03TNxb$$d0Z z^-$5_yFAEm+Gt^u8bGDfo|Mxt#E2@cj^vv*v1Nv9vVM|OGS-ZHQXt9OUtFo^9SXr| z3)hV*Ww7g&fVFPHaKFXm=^J%`G)&SHmI&1i|>Wxr`_2U;X9 zMRJj)PrN}9F}Pb7Nn(t_Q5&V z&=~=<`$gidB@N|>QZ>+Xq6DsWn*PcwvDCU-haYYP32f7lYl&j>;b0*P(XK{Z z00Z(!xaX zvgO&2IE2pR!ykO_Z-V?^{+FX#cHznV#J6AZQGfQxtwgL};N!qQa@8|sA5^Eyw$$Ds zU~efWwcB+bO)4RldIN4y5O>ndF~=*k71s~a96%|Dt#+7E=yR33sNCm3E{*D{8$!I< zB&|i~AMkI8;d5I1qIOnnNlI`4k0o;m*I2idy_J=*#faE;gURkfsZY*OrL!>Sb>}Cs zvICb#rM1g-!$3gRO)8T~RU)56;{zLjTMgNMvTP7apv?W$5X2QM6{M{&I>iNl(ssem zwHe!Zh1~UN1OmL1#8J_tb(>Yw;7W9K-molPQ+8t~m7DC?vlg^63Cjo>B?Xwc88 z#toQ%1p4jsVUshsK=Ok_q#D{kw?iLWV%y{45+Rz^De2UiGP}j*x|J`q(d7}Ozd@NZ z@>Sju*}YVlz{+h~wXu>U{v2+W=}GxP`5((^R5v3$*$q}!<({e;sL)tMV!h|J4~H45 z9AH3j$I&Kgva)U~(byBgC|PmLQYwhiVkk8=J{#>e38_zlI>(&7XvYbjuPsylLYG1{ z(zeJ0A_YrTmAvNBgbj~PT>ys)J;Y53tBF#Dd*4ki8#l~`fTy9C9lQ+I$1G*3cl0A} zYY7xSr1ef~?9z2}7-@uWU>Q^q~KIH*N%l^?#t%mdK zHfJWF%#{Ud8{AcPR4;X!a`&n)c4M%T7;6?1O69Vk0+g!RC_r<9mfAR0$~wVnr{-Qs zj>f9gz+$ZRBfa9siZD9*a%lN<)p&z_eNFvIZL4pU%!RJWT!wXUZtCbxXPx3 z=qg#JEU6v((Dn-|Go);0yEawO4DS{%Dnl1F5W<##18@2DhUVVql3t}KecRq8x7WaN zz(yj`CBa}}-HCo`cfKcJ5FeN`%xoG1eyGLmNiCDW#@JZZf{g;(?MC9DWV9%W!6QyJ zOI`T+kexh~OxobKJ@9O}msUW$*(eE$F3;gBry01*M8}2&(?6Z`&flq$=_J`MR z-+%i0ad`bre&(aM-vwg}KB7w(s-A)5MJ89)$f>$V6+2pJnAl5&WF1Bf1qlxa!v&gV zyItzHh&j+{Tgp)9dkvemHBCN2+#p3l$=Ypbm2(cQT02g#9so_{&;&w{Y#v*uOs1NIUBfq8jWL04f9=iq^o85+W@qs`RQg(iV){ zGZLmC5@l9XCvpw}WVB7hZBnk)#)^|eDS)DeLaK?6QnYtu5K5fLUdghF^~u`}lk#fh z=~hL(6-^k+{g7WA3S7}0VfFpi_u80$g1adAuau>yrFG--Gyz3`o!fUCSvS{wcS296 zj}RBAClhB>>$IZxy*r1dF62t95gXe+ExidP)v7n1t#4C3>iT6R zxz1j4yp}h*SRZjh8Niz`Nfb6MpKW-C?N%yibJFh*88>?t@;JpvDM>)WMpdtqTeK?J%)uWWeF00cJff3z7%PEkNOrm>>iJvpS36@MG9Gu!9EjqxHJd_*ZDd51!@dE_O;!#Khe1VsC1#W(Z*Vn$RPvkH3g4^3+ z{Z_g(L^;mzb?ErQv3s{68L(&uM|%x$OGC&byFz!@GK@N|sT z6DmN;^aX>#r8pFO;D0-7ArA58d2^uLd77;z!r;C)0j#6Ul3Q2||R3reEl zo!MBZZnT|^|0Vp$Vw&oafkOzdt91J%3lQaWL!KM>(}xpp(`=7#0j z3}NPNIBnN35qSmDu-xZ|B_g+^GA zgdJPgoPEgV6~amkdrCA1-VlTgC&a1`ZRHdax%7^SCJ@joyDSSR3yj~3;jZ!y;5D(W zc8+W+jv_%J90xXtAvWX%f2}$VrpeQc6?6pW(cuYzLIbwo2L%GT>QS$I?>1RKkO%-o zJ#EluEylZLehU=(TAS3MOxze*gCl81d@zf#LsB@s{6;&qU|R;C<{-Wj8UV1B1^H3_ z3#M#@w4G$-VVC258yIZQ=hM)1?(wa2v4O)Ii<+PWj-1<|<2tgIS23ZPv_lmDT_Ho- z@u}J2{TO6h@1_U35N#@ZRjGyvj?A9b3hpUpCrd^FF}L}n_Caf%=ICtAisPYnnc)Y;x*+VK;KfFwq;TACK zt=rfrhEZd7j)zv>Oix7!ni~%hmuQ^fAXV#;!pP$Y-#W`{)UXm*tl1_8XAGKt zCl7K_T7ZU@6b+QC4ZggVdROz7WdiMeC4=9T#KZKfLIZ7JCR!yr&s1{D%ldACJ`~Fd zzOthe^Z+U(F9?1%j;I21wcwwg0P6FAL zP8emqqy#S__;^Mlsb)V`(9e1WXxBotqa=@V_thW(Hg+)s2e)R(o*U@`^~Xzp13>de z`SA(rChD2RCv2Lo0u?|bhO-4+Ajkppo?F!%m9jE163gr4!@Qg$I0AtZLGn~Nj?;k< zf;~A0-N4JBw~p)-H?i9ctYtW>u5V$>?V>3hb%8)Mv&anxa*x*#l03X*WSPA|Op$rv zl7_ZcR<`r>pe9&B_|~3)-=Cb%1rh;aa8Wf(>|Awo!EJ2-p{)R^%B6XrL0&%rz(F-5 zo(=x$Zi92(=nps6mh%isZ^(chPO@j*Oa%rul@h*sdJf82kta5`rFxZgmEggSAVhWI z^Yz=SE@kglxN?nNn2!STJXBACuS)8nqr%Sil-yI6VPsX2G+XuxS0L06)&y;z5PT9x zdR6-9;^V+-ba7M4tl28SboeZ(Ybf)(U!@wAid=pnIZ9gI4LwdSHab~zS52mp@`)tIuDz{Z*B9kqE&k%odKzC4;$fF|&g^=wudt!%Ptg@UXZt7#< zV{qhc3pLG0$p$qx2DK$G$!VUceL9Uw7hw*I?wM~dhS-}D204d*Ft{|BwmYE-9$=WS zakUy7d>d;CFj-dJGgk9BA81!5=+C(ItB+(cO@bCC@kOdYDR(4)+PS)`)=gB3955K&!DPysICvr zF9h0vt~+3&vb_LBnVAT1Ib%W1K)F8!CsK#ULoq)!yD}wo?Gqv@#CYSx)D*mKhnUNm zDXm*7SKJ-wHoGXHFMPIi92{-Ac+1j*W5+j+IzeQQa=9uf3a1=KbF{BYjc<)cy^`7Zwj`F{>;QIX_M+ROB1 z@X5f_uRjQFP^P4OHMlPoGtb=6L}oe3TEWyZg+o+asVu~&O7^m!G>tEb90TjHfLlZ| z?x5Tb_d}l)mmVhR%4z|l3cWPeam)FsDPW#py7MlqC4(1`2Hv91&I{c}F8b7Mxu&3h z5af=sAprz1bp+w2)e1^#2T3Qv3!)fWarm_k&=oih?E^(|5lP!}0Vwb3kk>`TA+J)E za-~#TjM-CG-WrFhG{KTH*s&~p=Y%4G%;~d)#lD5r7vjI=baKt*Wfa1=aI9b&*SSMt;8Fxt zw=i~6Y|}p>>4oe&>5498cvsjHQvdp?uhdq_(knHawoSOtAeogcYnhAzy#C-#L+2ORl`e=6#T+DZEp}1KOgNTtf?#&)q{&6KtYl0SE$(y|vmS zq@Q+#nV`lG7IZ+AFidv>`_2cFu`Cri99Rc^KYZ7%YK$lSZy#AG=MeNSj8W!b^U>SS z{_=O>Z~klE!|dhl_o$X-#bH5w2NA)>ETOjG)XplDS0Z1Ky`g%NyM~Mit1YQbEo;&H z#?RQQ$O<^VQ{yJ7wfGZ(I=#rjlRI`=vYO4|Lb#!fP%{M>f{_LdWnJ?KTxK}Jw)K|! zw69>o)YPKcoVTJPHM6UU$41J&Lxg6QeaT+Np|#2~tAzXFu1fbU6Sw^enZox!{>zV# zY0a&zb4KM9Xp_65rj2Ghc)T|3FRJL-6QWqPd8{xlqT0~r$TT}Td~n^B0X;1uh@dcN zE60$~tfjepzeC1qeO@wpbyld9aV&RSN5J>Bi7F-zF--M4L|&44ea_L_UH}2H`W14M z9u=p?t^o-#R#0E}4LRI6o}fzCkwJ{iPgW$^C{WA6{WVUok&z|vq?0Vue97TW`LwO6 zU<0qMEW9DDPy8{EM=-)pHgjrF;oIzYgd7i`>ZolOW?GPwd8qs&on^4xvPn=!Reef% zFe61u;>kZNk&WviWFOUp+)zZQR1B&;fQte_dP70Vecn-;SG61A)v`Ob2&TKS89BsJ zbpeZ%5W8RHN}L%S)eU0Y)-K*jJO*?G=gEFwLeer0$E3QHmFm3an^_WHn0C!ip0L5i z=uxdgjwpMy#sT9PEVPV;Xa*jgvGsF@+l z+O>tM7}x{NDFSUrsfb?^ll|m;{ngvg8PtBx$K$8J46k3D-v9jVSFgVg+0&4L?~mc_ zTh;sWO!(fY;wG=5nr5PN3VT6!g`Yio+bE7(2vK0u;H9(z(=(f9EducTg(pN=~2T> zjYL@1iy-)&M>*tVq`;ccClVm-yQ3BQx{EP<6dYq-Qy6D;v9@;9RsE1G$Sf=mt{8cl zCT*1Kya?)u;UlX|7*SKlvpkp;;D%w#~zd!lSNS!?>Ov&-o$pWhJ~=hii+C8Bd~mxjyuB&QB#Ln#6XO6(y>V4*@q;TH!O zwwN`nUV>L?TBR!GC>ARNKAOkfDku76XD{HfjA5cK%8+kjQ<1r$GUvtI2 zL*e>XAhi{)h^;!Rry>CAmhXQ^aBnuo1QBro7&PzUil5lY2k4;RhS{547(!?nI2%kN z0%MaW3V(S0^slA}uYabf%%4vWZNud-u!W*H-Q~k~C)J9C43F!%g4d6zXUP$0K(3FA z5x~Q?a4c9E+SFPx)PHId>U3Q@C0EjfmvYT8X*t>m|RBJ{g=pwYGVC%r%9P+PKBA}o^Y{rthZ5WVRa8@l2@XHIp?M7)rP;Rb41COz8Yy{GdH#)`0!Mt3#zo@oVWimyjq6${{$l;tH2l5ik2~3v5s7&?{cXx070E@^oZQn z)x$*Yt<{j#AZre`ffEI|)m0ouQZ8BGCij;6uR>Pl@bUuE&q2`F9V@*QllIwFO1cZ2d!T(hPLy_NL$aZURmYM|f zmQHnOSa5Kjkvy?UCGsrOJx_i^v&VR@nkNT_n+)73SF7B0Ye(j?9ij4zf1P0CR|Mn zHyU_BiCY~T=m!(7>?f|ea+*A=Iv?PHXesqxi}DbWP_v9Vsu)e6&$FzKo>2ohO7u73 z?os{L;m@NQj!NGv-9bhDu`E5;N%pdxV!5g1>l20No40TNnvC=IHHO8u!TSA=;llyR zZ(i*g*)Y+GqsF%t;xk!E-hPYGGAN{n4)l&zF#gMNe=~S247}v-w;(Ci`eDO*Z?x%8 zl{$5;g5$_WGlvDv?OK)6tqsx%xi`E?+)yR4ip=6wa#Wm{kQ|m1BOI0gpaJo!TBgC8HS^Pe~iT1;crD*frUo$Q~dDAm0H6-^Y2; zz-^2Um>&7*9m0xbt)79LAWQAgGLy%dX$cpX z*kd3?b+oQkpW1@+28_ia|_8U6n+=A0kLO*=Otf8)ui$}TyO{Gqjbql zL))&^OrZgxQBAR->4QEwRSpNWNk-=qq09pIJ$KiP>_XY6`tF!{j1Ellphk9j(72&* zW%|9f1aYLa_S>)?vYGHKr{Q6npi7LyNuot4e5!+7!CtG1mQijF`vmdbrj7o* zBSAVmB10(xhrLQ`#zRvsUL-f7q4a;X|AIa0lmF>IJ>zn|cs0S>FTi;G`0bPM`fZMH zBmCL6(~Aox?gKnICku0OJ{MUxUE;QB*X&|LM6Nu89FoC2>)IA5T@9IhYqh2+6-K|< zQzbeMxOwxwoX^W?yHgcPC$B^81HKJ8s1p`Bn7$o@d}OU!8y2Sm1Kq4PLy#Rtfs6Vr&4mJ_O*Q6GNd`npsd%3vE#zofDXI@qihn>sfnB(SH zQOX67^0|JdbKuX|nUr-F1)A#wfWH6CPzMqm2bY2reW1zXcnwWQ{`MgU0s%AhF$aZz zLUL`FZ8aKU@Pkfze5hQ{gu`GVQ{L9v)cruAm>yD-EMAcx0XWtJ>faL$2@So6hfG;3 zPKfiM!C#jrzStG4Njpwg<#)6y_AD8`6b4TYF=v&J%KOlEgqv{Qt9?M&Z2hG0x?_a1 zjt2gNaFzqN!yI>}Hdz#Zs29c6OpzUm&_49vrL)C3n+ZV41|_vC_Q0e=0wD-%I3L!( zskOtDl@@95C9lCBVASh+^v~>%pTk5s3v#t@NFm8Qpr&TD=K z2|HWj*+SR*x)m~L>q9)BjB<`>A;lwy?YAKlG!J4s7E_=)Uu>_R3XQyO^am&4G%DOi zZUj!m<@)PrP>AuR&vimg(34Jc)-g-a7M^-S6rL={*k7KhDe_KqFx04+PGH^Fb`Aa@ zy#Kq`EVA>x92UQK1j29Me#1x3etvWO^fx-)`G>cU-v9mUpUnE@V_3g@BO3-jgpmny z)1SENMZP!H-dWP;n+o4)64$aTBuN}ZP__9OmRO9g#vpoexAd?kyaojU zS(K}(mH>#iqQq@4J;{wD;Eb@yRz5FnSfJ`-!}M9Ts5>fCK(*?c+>B+yhm|YEL|*{x zS>gb^Vscj&*W^Z?Sek3KYEsBmIuTm{=|}b-kW(HUE7k5Eh*^wR@2$bS_1QK6h?%@m zMOXVqAY+FC0=DyLM%SRU9az*J7CaU{p+aW;p6t;Du0Lx38m@ZFsh1xcczdhva-0`9 z$LA-&(+)uQx86I3Q?kU+ZHH4&4x1{<@L;nzPy`I{LzNCm>j8h%!4xDBe7x4K3zz94 z+W4e}oTJ6w6n39hgMmQzt?eANA$IrC__D}?Yn$qvVy%O;8Jry0Id%+;Ui~C;Cgp`o zy45HQi4&J~S6K$jW(P`EP1Sj4qy=nCMOuRr0N4s<>X%+(ndagNGEu>m1I)78A&Cs6 zSX`Vp(?%7YL+;adZu{!?ni4PJhK}N+bHOsSrY#Oa&`$2|zHv2L$eZ?Vo*?A|?Oj#; z?o2Z>mB}zRM_e1Ax1LJTIB9&52l?54Qco_28p_?XwS#$v#1B=fW0^%6{g~U7>L(mm z{p8{)#s964EB` z=-G44$~dJitE8Dsk{z0m*j+nY!^I`8$E##$o1JKY11$_~>WGlG)w4zTrTCH~#o)w# zBvz{#OmRl7nezw`+`(D2olD?&wMPU%{9xwaw-pws{zEyM9_h+CIX5N_K0xS8Eth&# z(6_i27F&$EG}LS3H**&&P$!9dq(9vip40Xlm+h*iI42#DJ&7dX#2Ac8@`E*tEe+b7 zN4QZ_a}y)67$j@jl_*L{^~wg|X-xUfByXxBV}okidX@NM`QX(G5@Y4tr*Iir-ELv$ z4D0CSogoKOKkL(OGb5Gi0X=MNA6_ig>-(6m>Z88p!kJok72Kc*DpwFNUN?s|E|7^! zwWNV-7{Rbc_vs|7KFAJQ_nu^#k>wAFo`(gebk9XXrsc(Z+|@2Mx{w(F5exZeg(_F- z^hlP!?r?hl0At%kcW?>HSCH_3P6^Vuh4!>m$F(OB-I;r<3=(L)sjTEB9%sv%%0EXITL; zhpL5qdyGR_tKW$_k*K9C3EL@;zSj!+RxofJAT$#Ll$0(kN|5bA%p4a!NO%Y|Yuo`; zmy6Fm0;JZ4{i9awTVbVOp0_OYe6WW_vFIaGmR|JF#-aNQArz!7Ka?=*vD(*krYU9 zTOT_mV1%wN)&ubeEL|-zdaP>4Q_HPvWhK0zsGWEX#Q&!W_gH%gkIKfX$}V6bg;Y375S zUa6O&+ND&A2XNRa;myJN8JJI~wsH$Qs&eR$1!WDiV??@+cp>NQQhO7CStFwD9^H)V#awo%>( z@U56$vet2 z>%k8e4=3$9LAN?rSb+a#lnpuYD@GIZfZBEoM-{5_iQy8TLZ5_*LpKjH+}T!)1n?!Q z4rtyERh91=RHVIWNCF&@)+a~kF8D+m+&!r6upUJ%*E5(#1v%X+2vlX((n1@*f3QWCDf- ztO^zN#vu6Aa=3t%5h4cmBMnSL0-y-&g>9hQ{Z?yb@1IPL#tlBF$0#CL4N#^@bu_Gv z7jNOIQv$i#)B#!9E(`ILz>n8tO@>sP_ZyctWg405SEmIl`_Ww#I?!g3_{5=d@gQAxwZVlbD) zB_(9HU?*c8r)~tomlP0!i4;F0_tgsWodNilElljwk5hACF44k>Z7vEU>p!_Xsbo;0 ztwSNM$SLKVoIt5#&}8-1G+TFY8Yi6v<(*Orp&St)aHuAE1~oxKmA9tgQYho0mH|{W zDSgPEcqR7Z?de=lwg3XrHuTqIso&KWvyL!jvStBX;+^yg6jFIo>tSJ{I3oYSJ}O}RL9!%W2!QRci2S8eT#7R8kTn^nw`2a3)$cF#)C z>q-irBmjL_)-0_K2%+)Cmsc_F_Mbj___&~3EPL<1z0t3)+yf;!Iy1L)UzERm1 zv|Pe51STo_y0-&F0|xaVu?{|pUUO3EU?I2g_Q%aBH;^P>-h8j!3{GX_OR)dVzfFa1 zXvaCEC&?Z?vzw|!gJ5P9s0crT=!}<$o}|@u-wS^u|K)h_&#(Xb_GyrZZ{B`(djJ21 z*PrO~FWMIcP;ND9&0Sa2ZRgZbNn))msyFa{Wzn}>9*ei};J4MGU|8(7mXyCu>ehD_ zK}t31*-z^oC>ypN)_Y>Z7b%crN0QqVDf=i@RYMBvn&jZKJOjSxaNCBQ>G`ax(>I5^ zFR4^h1}8yEawJ(L^xw5vjmY!{rmeiZ~)KzSFV^dv| zk?Qo6P``uK&UTu%;i70Bi%*i-hTe(U)2OQ5P_jmiN2QIah$wfKi9Pcfl~^lB2%nl3 zO2{(d++d-sb3ljO*90c_649mPvw31q;%*Po`9ntv^NZLOHtNe3A%HKkyi<3c_DSj( zgjz}it|84V_$m-{ZM#hONMV6)11YHHc13OSO#AmH8ZbV?$Q~64aj^!|mU*MX61;DG z#Q@7a&XKT7z`Fo~%{slEX9~{%fNfpSR#FwXQc@(abU_v@Tlu)j)h8*X`V)|mb^*cA zV&a5;PYF3wbqSm-Jc4dS>C*^nP)U|BP_Y*J77Xr)q8bXI<6&kkdF9RGC8U=I22Y4M zIIIo==9ciDQ?EQ}#!$JjtW=zrgJe`GqQLngx4_2y0(Bzq)3<$YOd#T{lng+XCuwix zo|RR~{^LlcNa-lS+9=bVXJ-n z`o+H^T>T}dn_oUpH-Gv1dp-tkZ9WsjkM7fhE~-Kmhi1p&&xKH zjw93RusX!2Ah$&QfJJG*?pX|K5T=+QggOZ*BjD^8B=8)$U+%~r;XDE3C-J)9B%o>m zY5}}wheTG>ts>0YyP5OYU^p|h@_l5uf@#I(0`Ch%*zbikJZTeG*Bs24>XGD=qP zQgl(wku}xY#>+cl;c(#4TI*xD#w##uk`Q}bQ{^Q9j3#QL$je&x-y{2WSM|ps|D;5g z726iIA3CabOI*^7W@8WMQo@fflAa6^#iup6keyopX@izZ&yFPQOxwfM7oL}A+rlK8 z)9YpoFLaYb>4*usq=KQ~lPQ!PksZApP=+?dy=z;w_F>O(#xsNBEA);Sjd-n?lLaauXsjad*jKv=iXr)|*?1C$ z4KvjJ61Onn+z1C$7MAysN`hVFpP=)5{K3+VYI8L?at?xilZK<#o>eK=DrK?=ITMXO|+?#4+w zL58ocafaod_$fk$0bsP^y{-@857le3@NOttTrHPy_S?pY+6T7j!O8e(Jt4GnLB z-*6V}tlq-;Kq8Mmc~Z0&%}ujHb1QK^5$2|OE`mc{?jsCGU)*swywC)rZNF#(AtU z6TdRTOI8QZ>ec5RYW$?3oP7bEbd2YxBn7(G>tSyo!F)&GOp!KMxjGDK2juJM-d3%` zRV^Y{9z;idSuQt6$&DqdMwRWV$+Tdg2zGe=zo)HKqnBA7>4wszK9n z>RW{m?Mn=6ly`e1Og07?y8}~?-lZfK6UbWjgc9!@i=05jT}@RBsuyi(UZ8Rl=OBh_ zLe6T>o@T8Q?w;+chxkyrb3nM?Rbd7_84H&A4!4L1<4^d0s^w_~Gzx(0`G*k6SWfEF zXfdwBfC#+_#>jIxv)>upTJrPM0sY93gm6j!chm;E=C$pBbQp^rbt3ACgACvpLnrt4 zskk`P891sOntb?NNE+ct&O$!F-S83pC1t*yo%!ZtGpS98LXuVC;XP3G{e;?tlDcba zYRQ*7BWvhKk*lnh*`T({`}$ za$VNOv%tA9VHt>!S+i0Z5Q!rGeS)mNdlssx-pFpVN@S@R0WsZc43w^39o)Cv0aReB z30GU@lV}&u7Hb!X+qV=u9Y2t@T%@!&knqxn4rpR2CZ#9=bYF4lH_38c6Z!(Bh=*Ke zOTUS+m|~Ng)VO>S)38dIh#FZ?;v| zQZjT)^zjfR1SMEu%vx{28P|az#S56>wh774a|R&0#nI((EodS5ZT<7sFSng(B*x=` z0Phxv^u`_g8o5-HGCdF=C7#{9iBMh@@yfIkR=K3ao9HPi7fOQ(%#qIU^{w2z_Y5W` zwNB9uI%d0P9U@xx3#3Y0S@Myxr2B9}^AChJ%O9VKA+kt8u=hM~MnbAuSv)u!mP1ZG z3iaVZo^1smdL38A^GU`h%T|?{j7%nxEP6AkObYetsDxJRBYGTU0dMqxfbOY(vO<$n z`2tq!tNTfJs6|vvZ3|pTl#U2DwgVQ|jz9*!;UUfif+@@uVU`Sgbk`zO6I*)neSE}2 z72{Hv@l%WpZ~vP2K70G>Ret{I>wiC~_|8v)+a`be`fd1r4u<2Hg}9fJK)=B}D!iSm#VdR-pXcWUjwq1ksVfD3aBoDp~}jxDO_Aja!0Cm zvc5@yfbiF~n)XJy&XfY(L{t8_O0p2qQ?_`1O-a6ze6qHT3c2Qr!}^8t+RG9tU$h#a z0=YHpRh}5nu?%BbvR|z22Sxqb6EK!`tsPlES~#sPQ%emhJjJE1!N@2<=*V{4o@pmc z#J54#nBf778Ek-VX;6bv`^Fh0ZmkSVTP*-dK(@cF-X%Tixtd_rJLIS!x(4H{swKcM z9nBYbcbzKjM_CFjD<|X_^3FlPuF!`2))Mj1ucuN?T`L1amQwfC#9fr#G2B5I!ScYt z*Z`OpH5d1wW52`Ur5gFE3*=2yFWSHg@ka9_eSl&D?d7RqAlG5X_h5JtDla#lFZy{|9ySOO{!%$Kk$cN#` z;*qDTMlI^1D<^nYwDCd3xVBG7t1hKW_8a9ho;O@nCgmqo0)WdsBJc$TL73IiWmg=P zaq>3I-ISTdrfpd5CTTF>Bt(1wJi@j+#D1w6*`-yk3{@du#ABisI0NIT4{=a#3|w0+ z+@bpUz`*kyYRjHqSg>Sz(a7yHysaahlwRjJy_ zXJzl5A-+OoMEjVEtaS%ldJ`2_0`E>(5w-}H*%ggF3I~~#Y6&7Y{0;}@g>kV&prTr% zVlDB@*pj=FWL$8f-GR01b_iVBl@3h$Np0v_bRY}`CR?}iDX%UGQC~N}CW7lh{s&8z zzw@2%z_#TGiNvY{TW~!4+qd7ET+Z8{k7vIGWXoIz{#uUhc-^mFzam{Q|FK{3(O>iW z$=h%F7`Tyt`p>UFCsg#Yhg^{Eu>m04#59plk6V2%EDCpLb&4eM5V8$fmMhsf7?Ks) zNG|Wn@}2gRHWs8MCKNlh=u~hrk$Nczd)4~jgu#tYsmS^ikh@&B0W2zqd3z|X^xL*4So467`MWfDy>_^ zo=WK0r9h^lS>A$A z<@)l$MR^5NN{UVH6vcjmWYu1^~>h193QGTWQ(9Eh_Iwu!xKibyXwGMBe%oEl%HU2MFeul8bLIObl5`yz8rDX%V`rponBYLmOM}KXhOK3$WM7r-79A;tnpVzurTNO@%d15CoSS zVKIC!{3qC+0KpT=R;ryz&u(=#YF7;BAdCZquiUt&cPy``4a5=?J)AJZweIDl!es8? z1u>Q_A*`xMsG)f~br{>qE}b9_ZmJp(o`yj;iUFH}?O`CsR;o1#v;C=GSkU!t6E8>+ z9pdoP!j=qfT?nk4#i*Ll2%B#m6Q_j(ww_@BF2X~vCJpK4kj(1^%_Z;<&_jc-fa|CM z$kLXnM4mh&4#JEzs2N0oTovtvoZ0DRXE6}y7M*4{`vlmT0m)!HM>LwGkq1g2Xd4Ae z?ulbbb-a%i&AKo;VB*L*l17J6;_JRD5YEz%k-no=$6|p7; zrJ#gNFtvczzzzXqJ3R+hRZVt~2PLYp&!rt@^q7^~ZDFp1Z4hjdEJp@prj?)-*Q}GA z!<0m~OLFdpgGLUfuKy{Z zZJ+EnhZc<@#q#6C#jFm>et_JykU0QdLGnI(RxM!2#h2t+(erjxaCMj%ON64;hz|50 z!t1x$nfoI+bAJl|LU0&9!@uG6r>FNnCR=ldG_utUnY5`b6XvL@SfP_c)q98M8MseC zw5n(!kqnaGTTnzauUuWYy#dfNsOBG^8b1WY=WfNEfU9CS9K%!@Tb*w9!Sj3a zL1>4Gw|wZH2{V8rMtdCOd$zRk!a8g7X;r0MxM={INsu2491Nxi1h5u{Oaa&F~7A1>!=Ea0@l)I@%XfbQ#XGY{lS>P1VGe z5Gi@v;%YDGoHk>*(sD*slE}yEt_OwS-03L7GWavhr%yUTRBitpE^q4HXrsE#>kR-x za38sHq?Cd{fgR?b5?-%qmW*(kQU{aUPgLELO;#64Ys?fKkbqgsct$FEtc4Pbkbo11Rp^m%Oc!)Nq%3#@4I|cE9Xq#EEXHD# zm1HEqSF;dkbIk4wpl|H}fIaJb%>Zz5hG_J*K`Xa@cdk-cZ!vXDT+r$mj5omC7n(^m5G!jdhxn@6KsGL`ewi0FuPc_FLr24M*Aq!y1D4S+g6fGcd)zi;HGEzX7CIk*n@8lL! z-y1@GmUmLpb7;GC#A7cQwr^}5B(w$CJdksX5he!q$)AJIIy$(ZZ``C7H{NV?Tg(L# zF_d~+n?SYgcU${FVvY_x)+ju&@_0=fCiTqFr>sVfI7iU#s5XT&qVqVTo18GDnAu2_ zgzTOujyVL%JR&79BS&-bkTi<`jk~%yf@3l@QfVJ*NigXqrkCm?Ym$%KMMe*Q9>R@J zF5knGz<^}HH&947!V!S)b?08FHzVtyRmdD3%xwqxP<&d#u*Gxa#U~5^gOk!aP>hs; zcGyW>bv$Js2X;hO`y;cU6D=@XM#hcL`c>_44HTGei(m^|BkP(W&RVH}>rURlAh_UB zA`Qx5Gl#sZGHL6>ZXLDD!9TA$;I+6ud&j;Wd*!fD^LP;d(kCx^FTc05Rt zkFsf??xRZd;KEIczHly3D&*#{mT{i0o~k*kjpQdssN2#J&5S)6-8&FpHYU#{oC47= zR+C#proI2a-@fLmSdMonTG2rmO#sTihsP!{8m3aNNmI;QUr0_9=B=h%QJ3IwaDa)6 zlyktN*^YK~jyZAdT!uS7HFuGNdjhSRkXQCj)V!SxjPNAElt7b`b&$TbVD3|v8Ic?F zO;CO8uL37Ga8CW*@Hap3IQ;gz*H76c_}TI7*MIrjU@!Xo_1A$cvnLU`=j{*F<^GGl z^s!-y%pd46hR1k%0B&QLw>@-K&Z4~+ig0a3yPD~R`%#!=VNQ$8!$IYjj9!6BsZg$(J{FR|Y$P5xa;=-P9YiDgw9@8K z0xKY`E{O$QDEUhBNkV|35VnrcdbQnXhj1)pleX_}z%!t3x57--iK#9X`ua3EMgwXF z3IBpJd=69Mv|`wU3ei*DK!P&SbSg7ljuL9i13iMc+pzIatLOpI>ph@|EH3*|F|A7x z4YsS~;@ZQ5T4(HGL042#P6Eh*IA zr$s9dx#98~U1(p2BAH~IR>3C}J{ecY4=Rd*q&H{x1BE8H1mzIq+BqDj8dWw}ohl7M zO?TkV(pkZsoe)|9IAAcBm35|oU3$j;o=4=^J2*mXg49##33W)6MNk@nJ>5M^BtS55 z2A-L4AAID^$fK#nXpb+gLgi(0g_8fO0X*TeD9!gqkg>uV+1wZoHbb{*{a8?eMT(xQ z$|NLfHYvH*7?zlkf;Lge%lyEtyFn0BM+I(Hul1EQ=q4u#hX3bh?@v&Si(TZ~f z#=IwIXv~{b+B3Aq79y1ux#|QAoxEP1!UiO)0@RPqc3s zuSsS@@rLr1Z$y;(!sj0hzP@ zQ9Cor9x7efrYA6vi*rkrKBz%i+%2UdxKWr-N_VsIl%q(od2KzC5C;wUg4TFwaV>I# z6JMd~ig`N}W_t$+6}5M+Xf|>aeIjetOMV1-W(@z?=s+8uB1unm4NiDmio&#m0MxW8puw@{)s{nRX^+&60 z--U3ulh*qykQAV-Emwr!@azHvi-J&fKaZu5G{) znHx(IFz+Xr))RNub({gubieDOi*-b_)=|W8ei`G$rZsWRADRt6J@KJ%!{@JGgjYjS zd>URqI%zi~_nP0nKpwnD7!)CO8DwJ)?y0^X6VUs338i%>?~pWtTge?cibTF}$ed;+ zGn4{{o?t2zn3DX$xMRq5-a3EDP4Zw|s`1gf`RE{Fu>(($;6Jm%vqrSjDb$t}X4U{W zK@s1;69A^+5rl#+6?Ab1G5LN~0v((?n)a~q7>Jr!M^nz$PH9K=dt{44F`|1wS+(We zhVfF~#)sG_YY+J50ZwkzOVpi9!On6+bg&jrk1)!o1WA-S#x?63(G7Ox@35&FGLB!bkA&XilhNYv`v zE~olDwu+XqL>Vm;OH0oZ-c}eqaD-Qd-I^4Q>gIXNxd=B^k64+4Rbv@^wpFRYpQXKR zQYACpD4de4T?i=a8{Mu^z|O@&Gy<{rKfn=_?AvAx7zIjtJa)R8?oYv5ijj@Bbr`*o zA#8CFt{(Xbg{9FywuG8?dKMZRCvu2ajtvS4TxVj7)gjQH?@(O%@K(K?+oLrCpwj3) zY^;P5?*Rt0?(@SGhNG$@5H##fj6sTa1}IspuA|C6a~Hz9?L==`6%OD_t78b+={hxk zp!RCIuD^Zz#qq3U@ZYdc{WJEXf5ylBx?jBgD@1z!mdAgPoa zSFLr#RK72)sSJXMkMdS^NnW1JOk4(8;S}S%^%AC6EpjU^zmlln8m8pghU;$Wi2sJB z51Lgg!|>+9Kg+rmjqE<_yCPv>`KtzZHP*o3KaOf0Z|T2e#TT$#+FCx_i-mO+Ilr6s zD==^YWSm>40ud-a-hqZ#bZ*vF>C}4{N&Uh zPHz1z%o9WZqPVWSm*y-NxI7`B7u?4qd(pKzw4Q+arEqL;!4Kr*6QR)(cT2f{NiUQv z3--(I0xdB#n@!ms$aW75A6Nci)Z(7TmzdfQ@`wis`bKjMs7GueVFyRKhBilA%#vPDX0r$sHFt?X9S zHK^v-QcXf}jZEy3Y96&Rjfd#nmE_!kvn)0b*h0yN+MR`GmUwwP^tm#Fp~`wn=xPVv zNa@{%2{Qg)6MB{~drLD?`uvjLOBqf2LK??(5L ze8gT5)da>@w0I4MdX%lQF`!{=y&8%*d$ld)-(kPyiDmd?2KtRZD}nm=u0HYa*-!uC z?e}k=<@QW?|MR!6$y@x{>({Tp$p7N`e|h~pKd&OVe>yz^*UI}g114apH}q&FWn(;6 zQCw)E-J2bqznQEP_2WI=wCh8phaB8PCl876(#XR&NjS0yE-zR%sK9SeEEGk3WIl>H zq2wU`cu*KgvFz;=OGOegu!@P8lf*Bw*8_5FIxYK9HnU<;Jhm!b{K?S(L!yAwtb)V# zq(ri(&ZO*1v9d=8lVDM&_BZ&QmefzXb?SX{lmy~ai;Jhu|X0&Uozzv3fJ8Mr5<2YV zRL=53@Pw4mW_wL00a%$upU`f?&1FR8?kr?=>tcDxc}RL}%_FJCBn!7AiNjT5 z7KE;o^^COjkOPsGCm6`eZ97UTyZDfH0!_*6worLPs?KGmRTvt&3#>~}zPtOldV$-T zCaZ8;*DO2G_6d*>vx)__j}MnQ2Z%*hvL+n1ttcWTV6AYTalCS`ZYAnGQwGBBdwGA? z_}pGxBev`NaJE)&hn(8l(sGPQ$COH^vERG`G;E8_h?UJ@jhC?*B%V4-CQT|IY4wVn zuj{ED={JFdUhb7<(|K;=yux9TJlpd+B=PY~JasKe3Af$uxmI5(%78@HP&MS_*j@rf z@|IwiwM1M8>P?7w>QLHb8zj(@<@_1qvl3y>v+{R%otb^CSDyM_0bCw!sJ!Zn# zb@y5+V&{E2_&2H8ND|=!$up5H1v;tjiw^(yQP~N^YmeY&AI+({R+#pc z97)B#S#`0GKC+UvOYPOU3gW{UXe-VFe-yCp7g; zx%?J43}!a#@&Y}AsWP;B*ZaP6h&(xY^BW~umG!$yX9fh5$pFJn&o zZ@Ig0Na8^}$S+r^tMuwUw}&JiTQZX}ej}CVruM};(v!MqLwHT~M5?g6a~Q6pcpBwY z?;Jnpp1evTOI^VZJ$AxkBwD%buMlMJ;aHC9$fu$+yX;6GK@tb)qjtF`pb`^WP8L+v z8HFxjsXq$xzLYd-oUI`56_%mxLeM!aoTfvB5L0oW6dm^0MHb^%z}4)lT>%ev(d0I~ zmxwPce?{5qKNG%4+IfFPbm@yS;i@r zxuCIT3*1*^xdkPWC6#VNmNM_P^bIMLR72`1;$^BOb1ga1%0y3Ybh?w%0k1=Y0&aJ`CC=Z{aL(+cOC+f8eY5d##3fR#z z{~aU9&{U*LbsI*Bin~G7Cb09Nx8~CO)2uRq1|yqBv~MYb4E-)QYdzduk!4J6noH)K zSg^-UQc((sjvG6UquO6uD6JCse~XJzNx-+U?5MW0Ql+m4F<3t6gGg#nFY;!fuCeN1 zK&X!mkOkku+1@k9xsdLpTMqE_c?q91HcTpOEaG^{_r#eiBdsRXcALtMrd%7Z+#NU8aGViESP(HC$yh)YUZ!NnSH*}$_ zbsow=1vF?{S&qY5J4vM)??udQ^A8%y<6!I;=Y~(HWQ-bjLsPAbAOn1K0p|q0r3H z#-JeB{5j~uCu)`!-oF08Gvp5p;y;!De+eaz{F|?zTEvrt`))VJt`bxhzhOOeZ(;vf zJ6is3o<>CO-9u}axgxvanv2L{&$KFKWy%cOd{Z#m98X*61FSU*CCMWcINAdxi0s%i zTb+6i`)RG!>!dgi{cwc}zxsVz@>HL(yZ8XtM9BF#$Q}hsTupOlsGVq_- zkAyIXEc&vx+xtAVm?WbJZ1v9x4N=KAJpjwXWTMNXlBx~?&}LjFmC%`5TA)D-TD~`7 zgxXrlk#-%CoP0?Q=4TE%xGj?7;`%kr$%aX{*+(wHyxay1EDRH8F!8gk&a_rb5dQ5GCMfdyMed*n%gvugrC)}(f604)|N5u!{vX~xmj8bOmGBZT z#4yz4_{(yWKhB8X@D@<=4di~WYy5+30NLp;kDXwk=~iK$m|1JH;w8z~666t+lLHAx{F?BzZ6`G>>wUG?A)(HY$feQo zUY59AX_CBLgV{b}*hDx8MlA+Pr3rQGpJGW`sJrr=lrJmH`}*YLLa6i7kVQLL05CvE ziEMR%Uh`()$Y@^8W>EqYWohT}c#;h=Wc;0XLs}SIx$-}tCRfh(Fif#10Wnc2dgTwp zS3EJT2Dp1!Fh&79 zakT*z^p18hR#jSoAtHle}hLYmF4bX<>wJ<3JlJs?OcVSsw-c9aOY1(Wb!4zK87 zRU?#_R@Et(;pd%y6qSCPL#jrnCi?Ppjq7gL!)1(W0D$I}oRJrMQuoQGEZ=QO13XaJ zs1zUk0VoaRqFq99fyjuwK-GL>!;yRoafaKIQ3R6n#>o-QPHAe z@|wuSZ~I9q+nYq*Jn9STC6oi}tZ7IK6!}rJojF2EI()KJAi*-!{3t-lshPH>l1p&~ z88Qbj!p(+4)(e0q+v0eULjx3I)?2=8b3d}B2c0Q%}QjLZ16z>f!uhA+`Xn*Xg zt!=>?yw`$#6Zl&h(=K*r#b%}>H2(^YdbW|D{bztdevg>^O|ZCg-{jUi-N!7BG&7m) zz^Lm_cW@G{4=tIxdzR?*G6&T`)_J6na^U3Jq-7Pr%QmN7ANW%&7_tw=6MYUeR~4_- z0*gSvF*Jtig}2q!rlU%*Zs%^vd9GAy+P#KLQ~o)Ib@)Ww1rC{EmQ2DCX6UNi5;EOEKZwBzp-@RS5Z4+B{Zck{lIr?U1zE4h z)}>JIq(MbW-PLs7W>uD9$ei0OF3~}Z36Rv$6-6!^aTV$SoytS>4lPPaTuei08+-^p zqzz?7*FG%p4KVFtPhg1d@d=}obn4e3urZC6vTdrwm5=i(9g3R=G*VC>&jIpj2`NT! zBWwZDMqn@p;jvMCUc~$kI0bgF@N$|3;6t=$Ty4urTlOQs16LqA2v=U6rA)v#g7VONt3sw&JP@trv_&Lj3Z#cZ& zbw_4JZRhO?P`^o%TZ}*ev%7&TL9n*$T!|K_l7i@m)+P|;h(4oR!Ih&_y>5Ykj8@jj z9zEtq*zBe)wc_l21}nMMsA_GV$VwV-Q4?LXya{xf+Flqm;T~4t~*OBRDmwjDj;$;hsW&0Dml^JdzW?*N*xBM?BNqRO(Ytmah@ zZ^PmQHo>x-hE{IgyRGdW#VBk9YiqVnA$R#8@A?6Lmy?53nedQ+>sOReaUG(Sa-9nB z<;@5|2io`ol%+nTCE-(7iJOcohn?tUtBz*)WrPh&e)&Z%nt~$Ah(Z!_kV~hDRjMjY zlQjbWNcKQU0f7rsTpMq^*IQCekg?}J)S>gHIvv){s@j!uvDTq5_H7onaJ3?|4-P!U zxof8@gaswegmgZg%UUv~5A!C9b z)$J&^6zG4Yfr$|}E87MP(-tjI=F8^vqwj>_O>Tx^4kZkm1Bn|j;6T1MPJu>vea3Pd%}xhR-LVTt^}Jb5@d-uS zmsj;?bN@P7pzh%UDn}b!JQE%vsx1^tK*M5*H-pu=gpiaBS!=HaC&So%vU2`WB^&du zqB$Gk?T*J$M^s z%>3Z*hrjvm5ng|%7=Y}S_epq87=Q8h=K$;a(|%L0aw$dkgi#$(_SaqK`+!YA@%@%U z1~G6&K_$0!KHcw%Q89T)}jndMppQgNVaURT_MHI`WBW`3(91unL}}^ zBAnIvRxskVY8$Gt7AD6)C|64{xdkFR%qXFh<2}nB8jjSD@6=|QV;z-(45b?&flIw< z`nhh0W15bMUZ5Xjy9+$V-9&!QJ{i`egrW_uC_8Yf|2~h%JSAp$mmi9nmU{ZwY*Z-M zX&karNnT#ZK^tkZr0@tLqApiix6C-ti%?npi8Dk?v0XtAfEF$M)*o?FO|{F~;;gs5 zvEO3jn&5IuZ_vVw;Or4|in(rBt(X8W^lV$bgYB-vNbJ}3saJf3x##JkUZFWI;l7r` z+YYz*)RB^}C-Jrn>vp&-@45BD(Y#z5ImiM%knTI~xPjfQ<; zpbC9s{h~-w14U6P4HTsU4iDeU>sxz$E8?fR08>@}iOe(Q$%t6vH`H?f=7=Vdj2o80 z-8`@*Cizgo)RNMrX~i-)Za%|pBel)|D03t!R3;M?V@qRR zN=AiDfgMkn#e1OZA?mWA&*Zn)E5x5K1Fxa-94I;5b4+5v&%Lk^|7$6kbQuOl69Qw$ zL0tif6jp_W5)5y9IV%OE4F<6xFT$oMen~4B!Z30v?9#l_iIX}bl57-ZpH$G_j-iJg zO-C;R%1Gj6>;OIB^&4AxJDli-Rg@*zyg}^c&ym;3PoLYM!o8|YywY6MIi24P@40$> z?u+>2vmbG5^t=7p&%&EM`o-%X!`qk8#>^b#FTg?m1r#xt@SYyTI;zIDJ#PAQa6%El zY)`lxHUpb&Ns?_`h>cPWQEjo4qG_lRG(VcNGKRq=AYN30pe7N?04JqpQsn{Q`xUEk5S&6|Q*0EbF#Jg6X}rpx`5+1;o7dk6 zc9jw#*=TI|`o}Pf{fS|x#+^+vV48?Y9I3EQl2gO=dYX_zEOtxKl`P5mBA78GGDAtC>RFfebjXsh zeg-r|;+Dnv8a@hCEe3dfk=PDBO2fqh6l8yk6rF|J#$mt3=cR-2QD`|Rn@ZYKbpAR+ zF3WuyQHE>2?b|Q;F?{=pzXCbEuX8C+ zkx~3HX9Qmz7{%|%DE>rB**8`F`7yz;56L_ClfvrcE>@fF99KsS3TwAyMr(hDHl5rC z?+L(z=)br2dC0uvF_;yrm|(>Vtyt!*gKrwZI2JEgH3NVHW9ekw0X|!W6A@C_BzQu` zZvqik`U#skDkADVIdY%{e9;c#GIWz9P}sarQAki7{;(-9s!EA{KM+0kihx#tpZyrT zc$H}HS~~#Uahx%!jfx$@vvW@SQVE0m6+bGDxB)H1D}V`TyA^84*5SYCP>aetaI3dg z8Ta564l*Z$WJqkBe5VDng=8X=jvtn^i}q%P%bkx4BZj>Z>?6W=3#G@}93s$^%Ae#j z0O>Gy;uiKkb4g`NY;bX>z&I9aOpS)_8<#n9n&tK{H~xh!>;ns?bqP*LimZrt$os99 zn@*xD;=9f|JMScKpb)M+Bzr-D6J8s04c^S|UD+sEJRg=R?|Gz>@5tuG_UGW*37J<~ zaA3Lsej;^(C9EtpF{iPB<(8a%35OSpymAI@ZwkwxnI$4<3tgF28Fu-pGg$QLWjG^i zS?81FLXmsW9yD(833aDNRXBs{F}x?oP^AvG#LEov%=d6$fQfP+cY@+V2%?X24vphbfC1>Mr%0~#zYkykr`LbZ)$s=(gnxe+Dt!5BK6hWf z9=1=vdHvjd?)GQDc>RRc^Cuic{4N;b4BUi|l$-F)5A~TRN|cGF&)XWd^|Z|aqX}us zEN;F~aOTlK#f!oZk}~t#eaEyf$LI-zu%D7&&`I`{LdKAIay^!*T{1vsAe>Zpd@P{X zUe!tFF?|PTQkO^`2LCU|L^!wRm-1l%!)ooXF!-8=!2qBzkG+F^ zDn|{}wYXct^-j@%I0j#b1FdKE-_V1VD0$r)Y>Z0>dTP`lYH$}$h4xqu2YL3SJsmyU zwlH5^yuBML(1Bcg0vc%Y_iKsTx!O(t)LYyh)wr!K48jw-*X^!F$>u4M0_9_Gf5~kq zYx#8z2xDACsdNWm$b85<2IJ2Sg1}PFbf;^!tMLVHqxb#^y>=JYYhq80+H_JlV?LcV zBqLnKw3fGbskh`fnp#@dR-z_%RM^jba$f@%o1X$a+XpDG+3a6kbQPu^CkFR;S3frM9nf2K&l!R?q{%@)>fkL zvg9%}J%iovnJ9)LUhKBL~vc98g1ko6yc^+fNGT>`Uufom0-HX zm^l&=3dK`r1N5p6B!$`98ud%gqO?cx#`WoUz7zhp90)&o`z*i}>79hsFT)RV^c&V? zgVBF*QHZ2jSTeN*Wdx!}9*JZCBrbJ2bxRx|~*Rwr%<1Bm!AjHQoSz@dz^*nsI1?c4+9TwdpX?Fl#6rA+8}B zkZkg=UKS-wEDjfy7l9?l;&6a{fZ45cc@Py?cL8O?klr!PjVQPs^4WwUFTf56kjz}t zm6trtKS-BdH;yF`aoLZzYq;?Tw!@0K&6KKJPa!VMq4)=)kZKjMVu8OR?zjb#MP9?{ zwpKLqxYb(b>hTrUo9;gc(08Q&{AGtBA>s`SoK+SIl-BXtrlYA`D5DZ_=S01n3o1T~ zg{|B#JA*Dsy>Yg`Gf|kc!VJSgOof?@CD^K&)MCX#9K1A5NF5#K1AV1b;S7M~u#Uv) z%Q>xW2mqk>w$cDOLYc#&Q3Ivr1GfqOH9@z*7MPwO{HNY2%DTDVVH1U(!5nJjbs7X| z-eDXPs5*PLRo|N#oJ-esYyn7u6Kg}FLsUhAQ@ly~_Rx1bv|9191_SV-(M%`YLLdm( zFO*2V|1XESJW~Ay#UHJJ{Os+E@Ma^&442Sh;< zdU8FM4_5&5a`cmsN>nP2v%1o@1+ZSx;EjR{XwR?q03_B+*+9nbm$Q zDoW+u9KDsLn7Y)ebJfgyKtymfxD;x_A-DGDl}QUaEE1KSFxX+p#_+DeP(H&F4}9U@r>Fd2Rk_h*tV&84RKXTdW)5Ei#@m= z!y|VwSASERSwj6d(qvPvP;T{m0NMEmG#4+R>ePUU0-6U!&}+cd4z+NEa(D1@RIWrR zLDRsQ6ROZEa1wk8V~N(kLfP5nZIZ3Xu}ajGSFCFjpFpY%q7RusM@o|l`s_M+aM_eglOZ*c%C9Wo{O9V{E6dd7^*?Jv zknvKlASx(l>??bKZG&F*`H2F<@0GtrD!7X-M=2TroqtMwNNrC8&56TzI963Ovd5wd zy8{?`QoG+m$qr^w`HFnlCxXA0#&yFNY^Ws@_2hFeP$q9F z1dbK~%H)7W(9LH`X*pvmivrP}L&F>0ojHrwx)O?9@QSjsaF~MOk!Mgv+%bDDC-wF{ zs4SvvU0iZS;#Ubbcdp>|Oig5Ss<{SK1-RDg`+IYZn+g(HhLbzI1NUfIL+9dv5{~l` z2=cS3J764YWeJ!}a6iruu2OM5OuiQGUJIOq2hJ6H$;J;SakddvVrv78ECtxRifE=2 zl~X+L)PCF|Z0i@^Ax0X|QEx+0|1K?YtkIRygIFr}t$DCY>~#XT_9eeQ8`Da^0w?=y z5;HHWscf_$3BIUuEd~VkoMa|LOQDZieLHnt?N7R`E&$W7B^p)8#@g34z*E$XA;KW{ zBJtq_Wr7AeGEFzmj$55PC;;JGc{% z>-~HYrDK1a` zEhPr&`vWO0Y+(q#GrpEfDm52^$oqLmS1l6RYS+jrZz_r-AG;0WKd@9y~GX=GP$Yw_4%#&+w~w`$$XPZ+@6d+n;Hf z`ud|h7X6R;>;C~-x&IANe);R9sm;G}1BHiJ+-(=#ew-!5$e(cMXcWwTHEPM<_oz1S zpV3OK_B<@)moNbq>+F8@_G@ej1(G^dRv|oyTRAziUs?gFx9Wj5HOtgs06?f8hFaBX z>wC~j&uVb^K<&FoUf;4lC5in~}nYp?$&xeCE| zvwC=SDKFp`4jVUhhHIocZY~$;`Zbc0RUj#FfGP}li3jQ;@*&Aj%^i1bTw9KJSNR@e zN&zL{WG*laVtZ##*xiChTAWsvtH49g~|9FDo@@;IwW0VIVj>j zR+TBtT*EF4nsJT!PzkCDFa&^~sYoWZm2z#sS%@47t0&n>YCU6vuI+xMod@N4v1YW( zdFKVnE0>}cdVN40;BOhI+|_w;FV#B+ul*@qr2R3%K@}dGJOkLM)yQ{OUQv|Uk}lJ( zH&baNkPk1Y2$22kQwb*QmOrXgc}Rs|mvoFI(NxiEWr_2!;k0skom}}4lzTe@W|`RX!?qKSdiYN3zFyMKQ3EsCh_rKTgttD^!7V`4Bvj@ z^!3l*K6`ryD~i9oeVM=K-P>20z#t#^%%5QO`A&YpyZj(O4|3N36<)uBJ&|33+qR!m zo&LhY>&}PL9$!;3)`z(now7u(Maj+0T3%)tq@uF0J|R08G0Gd?M=E{Yc006o3y#D_ zO+P?YcIB&E28f5aF4sVdG_$fW$e0w2fpTuB@>j~0&T7?VAv*SOJSf)@$K0Zg@J)lQ z1H=4?R?rQc2PgM}k4p6wiQa($NFF5cRCeg~4AN2Stp6EJEg+Bi5qklKf4T6N6#@m3 ztB^@eh5GY>Za%>a)J2gX$kq=#^Xz>Ws7aynofNWg<5G>l0bw!pEpsO`DNgBklVAhZqy2Ir=NdYeKqF`zoU1aS6 zRD$-{06##$zkjppYu1<_OaD4<;U+gRnt?{nj-}dLvq8A(Nk8YBIG1Ll13Ma?N9+nt zRtChU_N2LUX2_Hy%vBmStaEwe+7)vol3m$V)QC(Cy9q_7QT_{(N6`A@}-vuJu1bG6gJgQa^Np6xW z_duG^ptpnB2PRCmU86_}DxmuSbUva;F!CC9bEOLjZ7>Jm9a*aOv(IJ*{R>FnfSL@* z?I8;+*^_}UKTCzlFD#iSkSMj8n4EX1!e);A06U=YVNtkPUm(4=g{NWw40A|CHA|8v zhz{Cj1kPdIT_;*;sMzT82%%2U=77Ym8Vr-1&mob# zjt0uO0VoC0B;yZ9B&ZTnHDQ=DkAuop7|Z2X^xg2k?5XNk6b$>-E7Q(C@c#evZ}^u! zp)+u31Ig*xYr>cCJgK`u>7|(@k@e_^tF6N-8OK`(&Yd7Ka93JCfOK-HudZOULaj8( zO_xK;y4z_$;WuqA>X{Aj0((3NE+8^y^r}4tRsh}Pvc4bER|N{7+2Td@ShWmpYtr67+J_W^d;QLO^aI zED#u{BClgZ_RBdSQZ5cx(Ty4;b|B53cTSc-mcrouN+5(xXTPU1wI3Nq=BAS5rSjYc zQfd}}yqAL?g~W4s-R{CGVD^O%^SmGV3u;4B$-_4q27m=_PJ5ey?Jg}>VTE1MT3c7_ z98y8o0>CsAv5XOwitT~t#dSELRbPj6^L;m*wI2g@d7u%waaPu<2FM9IY?1VBXqZ;X zwsRlIf8lSxx96nazWwRHqpkMax8H}u7kw7qK839OZ^P>s7;}9dUO&gW<98TI*vWY| zN}O11wf>9{(uI9Teh4cO00T*ldSoH5-Tq156^R1RSlqagZNi6SCaT%nC!i>TOmA6d zG2{=<8azqUvfJ;O*w3NI)m()71IFErbe;%%CZ&(SuNI-`il+uv)VQ+47(Rcs4=}?rQm{K4kVS z31;T*$}K@+bRaCIUQ^)y7?6KEA&RM?8@Ix*cvHiSV|VAApnBwe5v__)v${LsM8Ww< zan=eiBCA|3_ZycdZ5}rqCts@nOBs5k6v+`U=$8qsd8i)}fZU+ALM+GqDf$R%8`r+j zb@Y8g*PwhY+JW5e9&Sv?pY}L#xFdJVO&W(bUDRfE;`aBUo#GByxiuhg+x{XdLXjoX zRgrA@&{eRp1xDLE*I;Nj{lQA8LGe78ZZ7-qy5ZPS&g|on-xAa!%Y#>y^cd-YOGICm z4<%uoHvkXIn*-G^sOxJxPSC5vB)cM190XQCLR1#bcjagvl4_w%^ti)_3!I_U8#XS* zEHQtnU6NDhy+N6W!`!i113g+-&}FL@VAo-)I6|rimrE~I0Y+}P!M0{)LfLV4N+d)g zF~AMf`*p_ma65RJ!Sib-;sacr4fES_o4C4&lVYkI?i~SrAZIaO@%CuM!d%0ud!Sxv zPpLMlKrz@uK=1)FKVr-wT~B6YO$>89p9A3ag72%ayP{XXi9?s#Mv!Iss*b$Dgi2KlJ*sUoMG_6#GKPT1LF`O%` zn1|->!nuO{Gzg^)TOg$XrTE4XQ-{B9pm#0A-?8PD^USY6V+~kR+#GO+set^UDwgJ~ z3Z!B1uvx={=R%39dBF0CWj|_w8q#HFhuNrmweIZf)M_0+8?1gBRQld4?7`^_6W+*s zbCWQa&W`OtQ|}l<>_bu{$tGNq{mj^7_`EFC1ICbATBdO_!0b3oK)XT|2BaBSK3SbP z<_W3;$E9+irpBR4RqhQmElTcNq0o`x_ zf&tiK1xSan%f;6PFaoqgkmJj^SJ|Xf!0Zaz;t~jey6Ix=)W=}^w040)X|nB63&JM; z(f{SAP@LI20+}#sAHhy8^^-eYz+glo(*OyiqEV1}PkhcIeSloJcHQ1k{1KWSw%Hx( zFkJ^5_llNSO7@q)p^*ZTq^bj~d?tjeUiBUBL5*C@A{F%-1ubjk-w?|Pi@A%unNn3G z?u#o6xkDHhFwP;AI-F9ja4+dpsj?p3ljKeA5^e-9eWe+#DI8TLP`~OiKjdp=ceKEw}z7Z^q|jLz+RADvh`%8LI+3w1sJsEv3>SrL{`)4!DgS8&uSt8lv+f zj7XGcbshN5$f;^9(HIr|mt@uad4Ki*p!}7s7@Rig$KhZ41WNCpQQr8WXNmRhBjqgZ zGmb}mK5fkc25F!*<-NJUK3o1|YwQ80HjANqoL9LDxPHD%Vw7^rFiiK*8WJ57oznNo zDzcP?jl46%Z_YSH7#>}873fn!aL^a@)vtq;O$2>!^>bXy8Zb;^3 zy^m-{`Z+}~D)M1CGm`s6Szd?4fRRBRcTB}040NK@4AKI3$7m##tTY?e6R5Osfafcf z8Asq)M%CkVC2x4z$;Cuv5Y7x$1{74>X7p_5eM-apsN;BkA8yhMah!6Ka&{vQ{U#S@xkBST zKTK{Ra|5&sr8sm>_~q9%q=TjsiI>ZwmZ%YVj++{YZQkq%m3@~~bJIyjC5Q{UAxK;W z^bq1T5t1k;{cJ+om}%icA@y=-&%24xMOo@nmKCllbP45T+ILcDf_M>a&5Id~k0Rx2 zk)UE<2`WGdgE+Tv+RK$nUf85c!!;qgszUi3QdA3=4 zmo@4><&5M1e*2W7n{edF{v6Nb`0Z`pP4m!Qo6Cm!lS)q&a^Ya!N80vO@_?l1 zOi((y1dH2v3oA4Nwv4(jyY_^H#g`XMya367LMMoNsdpMAbS@x@mLDfqBAeAr8~vH8 z)n+s1{24IWNrZ%6m%4bYSl(HfJ>dS(+DXAB(e{B&|6%QFV+f_^EFrI~4iY2{b*2orLU8q~>4*?xEtrP+%tHZ+9iCTI);p{lkT=)dqj$X3Von=To7TOa@;(Pn1aP;H5?_Y z3(zYea5$xo(KdYjzkl=hrwD=kJC~nP1-ESB38)fAE>_q|T@VScR5BAM%aA$PI@ZOP zQ2RtAP{dT?l{zfqP4f3B7BkLrBmx-&H!Co|7rysF4zr(x*UwI0|JU$pv>xE)vAnl; z23)1&0XJU*z{{-qpFNxc<8Vl(&HmB^Y~#SA48t6)qv1pu`|yVf8|yu4q4^~kF9Vp$ zhtbmWOdkk#uz#YNmfTSi5HPPiKr2;;GiybJQDyK$&>cmc1<17>0ZsJDF@uP1D={6J z54#mSshvKD84|WbXDOeucB(F_ix0S)a{x6%p_-O?XonLdhxJg8!j<*4`rvUOJV8;f znrx~pk6Pn|!4dCj&JG@pc?V&!2q9pXr#BN4Jyta+6@$_q!wRwylW+6$kOWjZD}I4R zFe~Qn0GYYn311o`LgbGwoFIc4a%?Le~f<9A!HB`mJ<)c(x=vbK1#Xn27Bl*&F8DT?1ojP$BYjke?=O zvz0p??EB;ZOEB@}3O{3h;w~N7rb(upb}u0nhMEV9eBgOf)lUkzro?R9Op{VS!4DiV zb=+#U*mCv0)6CJ(3TarNnU++7v4$@tE>Jh_DXOi2nnDU}cknm^50sD8{WK>Hy>s*7 zD#>-D{)Cip8x^L)e3Q_TFxHS9Pw-_>R&=C0;uc#$-xDk_^2}pUcVtSgt`}_Yv{tMsFK{;2{U$V5`F_pU%)R%9+%FphA_t!5Z z;1VZ#S5KuRS5xjeu!*w@ex21n*P^ML8*2b{@R6EnK*O$ev$ho~N_LsdtG?%Z+yoR1 zn3J8pY?7c&!~(4&$#WV8XfVlnwFo!>aSnrv*vfT^YT6~ii z4v}}pKTIkm8m4`8H$`3J^-|o%sxj+g`wSj4mrrVW3DCF&$3AZbDps^EK7%0xt}OY8 zbbWEzJRkx67?{E?amGKYwKdu8VKGeV0QkX$hf(U|2A)*OMVbI^-}acUyDP%g6ZmGc zoL^d7_6b557cTG=faPPlK6K83zlDMG=$oqCTku>ftVJC)FHv#T36N_RAWov2_o#|e z`QBuf=pmLsWu#3f;F00H1d=E!X-qr%O!Ts7djnk3#};g`+or|9oYDJK#$eaJ0Duf{6!`La`$hfQqerTXdIO2!&K6 ze$Js^to8+pUyuG*jAq}xeyk7vP52*9Uw{1e$ME(Egzf)HF%l|p|4*l{|DW*sqtmmw z$f=dOc8Mq5NkKQa*}df-%2Tki`jLu&1s3PDt*ZI&TS|C-S(sQy-1W*A;8+4CAM=PM zTaKV>cv2Q*4ema%ObB8Yav@E;k6>r@|Bymqq-nWEVeSHPMlZnK>AEJz*d;?$EeZqp z;5Ov*m>_pU__oeZ?dz~~Pf#eWYK2N1exr2Vx7YyCu&?|;;>P>^R{IVv#^X!VFZV z-5=9hsfIf-;458u01b$fb3ZFc2cprF+rsIjqh!!Wyut5T%Igs~id?NaU(hjeJM~k%!7c5 zpvp2tq_@Ej=XkT7D;^d6A_<&hf)O3lKHNv7M0<%CM!3jyhEl9E-0D~WN)-cRURyAL zt8;IvHKW%pO=%MAc^FT%PDJd2tR*1!Rvy*qI-f2> z75pi<_Sq5IG3S1!K}k;%jqjjF8O9DGpVQ7WDu{GFw*%*JXSo#^?^6dQ#)BcG#>wWC zK;f7gED0e44aP5!+?BkOE2T`J698cl?hCE9&A}7RUF&FVcsX$XD?fpeRBdGD%QV!a z?8u+gEG~c7Qn07c3fF~~BscEJz9N(u;9e9SYr_CJ9UK!NRW+yoDg5gr2JQ7%{20Fd z1l>m7QF|`q(SSeG!R{aPv+v&i08WmUqJIb~P-m6v{}JB)e0od+;CYYP=2sex-xHjE zzz}x3Sud=FeYp*aV)uP~q~@s}8+J)aKyDCGgOxrQog8FA#uCQoJ@=uD$^|aFqpAeV z3dz>qMNDIx^QMk+PRW=NPpAS4(2RPXSkEu@l$q^-F0Iaw6vS`zCZsbHJPiiKTx{Bw zO((Nd7(t!x7secM31HN#mm7)nSW>$)ucA20<}eIs7!32Br8Or(!vlJKX+9(~0iq{& zwZ$S0lnjkh#8SJjeDT@?kBf1hkVbNddDj93tS` z?O+uX>_wOoam+a{s)PKRfAE828T$cy`p-PRzJ45D|8UBN+n3>ve%sLb4;M*Q>=`7K zXs_PFUivv=A9Ca!+oY&@5{82W+m=aor9X@uq9!WTkQR*m{9f zQ82S#e>T8-J~)eA=>Xkn-X@hmmt0@bV}4$x*50IcqW1`9zW8}N2wGfQ~$n_gkIHIlw{tLL39MLg#kvy(~^{ z35T8B2#Uzg>5y*(H#{`(XXeax@PWEQ*<#HHQm?{LPIdjIz-^(eZ-sn&DbxWV#WT#o zIIn>ua9SXovOwbB;5#>{chEr;iwkG21IT8^QSnA7h~^CScqLA4P+-c2vFtWX1gx#Z zA72J@6PT?kzYO8_U;#TQe8(2H=ln-a^GORpFF3FrSV4aWF32XUF27N!HQ8-w3wsD} zS$l02H2p22%T0tZ#=&Xgrl*wGTB&h0A4(ZdS3^81)1it7AAM320Gr~gY*gE>2=s3H zL=5__Um~|e=Ub?L`{%bm!5&HvPz3*3hY{~ElrWbQ z1p0UR-*9}OpM7!N!$&T2E<}@Y4i7uMI9>UmRo|m~V1Ki!(R+@!nT3(PjV#~?$C+j( z;NYqm5>H3?C~)B0CN&%9XX64*x6^X8p@%}lE~5$6scxm-b5Tbr6iCxRsiMXngbhQ? zjW{AuhdGOAuo*F+H(0-J4GG!>hQk~`qfM1=U8VRdmdjH5li3a-t%3Xi)okfiWgj7t zYS2J??Q$YTi`g#Tm4+V5d6y;64xLrh(vr;NoC@UV{*h&81S{rC?6pR9|#XeKg6;)LaQ^^Wex$BSC#Gcntf+gI^4H{UDmFk z(Ke{6EWV@f;^aW?Tz4?MVNJv-D$tB=l89~_m+OkY9L{Wqn0Nt@;q=UKA<y)fHsigvRr*x4!E!u{az;Mp>02%wJLGe-P3C1hefFbO<0|KHxoiDyp+tx1d`O0 zIZdNZpx{-NMpa%0l0gD-?W4I0=ku)o#N#1WL{J~0@$WHaF zhk!SXad%rQHLKE$tVUVflcBR|m>s2A0Y%Fp5sK=D*gxZglweL62i%hl zNU8j|i?7T;QY;65&<<7tN$+txaWRCqX(kE3=mC|}@V~1T0Hn-4TeiuIIP$LSN=piUBSYK;^ho?I}uBR20f|TC5A) zH*%HPL7esHGvm^Gu&7i%;7pPFwgKG3EgrgCZvX_ann=P)5Nvc>0dYC`l5*!6zB)YI) zfX`OgS_}WdrN2RUER~2s7pS_a0H~E#j0>`f1DU)vKGk8oOV!#R1V}Op7Y4UC!-oO( z&amv|;~DBnBfPr+m%U^ijwsRC?uK(1xpYbD(1HD#;mrV^vA3H`E-4OSk7bb=#t=J= zS)%h4-R2(E-rYrmN=UbN94wZq7oa!;I5Ai-oput&K+k4v1#Jgc!Kg#=PX@+H;!xDOz=&=2R317M zn55d|x4JhDfQ@hmulCWyZ*$1|L;~I0SNRwL@}K_t-|#Pe!nF4O;q}*F|F^f#3|nTY zciYY4F}9FGQ31)2L!;Ek18l*5A4fct1v#tH zY4R#s;(%$80=Hl*HEH(^^qWBfytdjasPMS*Uk1S zZQM2ZJ11&@1j?Eq)7l7*!vFZe2N^8;9ccah@a>C3zrPK% zM&Bar-wCgJp*_cA02?C!RAf&8k0-GW%4#a(BWXlGNEDZ=6C5u3f~-*Xv%rK|XX=&J zD{;m!p?DOX4LqRB$%i+Ngi!>_EnjaH0baN&nmma$=49`a}w6oW=HpEtI;8rGB&fV@YwqW6u%D-mK9-YX@Xqv(%Pb*&gV`B{cc0CTKsl~3K>smvO;W8_hq6u~Ua_a64#N#6SlUkui1m>A=7lTg5s>dnmv9r? zhYTJocRSWi>W#x~GVY^&Z0w{|uqnj=XG&))pS2F*974iqx01uB!gdm6qcwqj8dT}t z!IOPrN|mGAFrMTr(=9|<7NrBkJ7|Vh-0pW+rn}}{H!~Q|^81apoZz!aDOJ4r#`5Z- zE_#nLcyQ7_wJWH&I>6_?4+>|{rOgkKw-u`eMlvB_m>@+(rICQFh7KlAc9R=X{vY-M z7;P(zF^6N->{H__g-xr}X@*5fWniSX68NE{Z!XabH*l`=u~Hf$)f{1Zb*bTvZAw8> zR@ibAK2&SDhf-xR3@13YUWPMF1Dn|?%<|i)Ox>s^j|381I#cBR;d?*KgBhXDDcN8Y zB{g;)=V0TA1d??YxRa*BpjZ$Vx)gUy5D5;}>EMKs8fWlS4OoXO*&N6vw-HH|0}+Lk z(D?;BV{U}XLP1k>-gC!Zp==vmBJW|M!HNz}uD*= zO1KhP^$tj1v=X`4)&pL>Sl2*Xm;prl+fZExN?h~~kC&7)V>C@7o@DqZtSM2Hvzkz< zw1gtHHL%MDV3EE7*Tm)*P`Q&gpxfZF4c$pr>X#azJxnt&K|O(im(Qi~nSafX^xFP) z{><-RzobL#Pxi0>b$I*Jd$VeL4&tl7eEa9{_0L~FdHrer94L9e2R|>o{sfi(@7`2+ zRX#|j!>d6BUkn>ol2Rm~hCf3`0GBMN;x{uxNiDE^yY(3=x~2 zNPAeP);Q5w1P>Z`VdF?rj%f#DWy-3cbf5Uk<#mAHFK`NWdeAa7?<15K?M$=gCZ}tl zTmgfRI@F(_swk!^@Ws{H3vPg!Spbhy#RuR*LqQMMfF&rrZDDpz3`ieMD&T5-Fi1VP zND=DMVW5#XpuM#pR>~=qup|G^R0#)j=y5lOBbtHy8!QZ9eR+V6&1HQciOsMcd|2#P z9D}_;2~Y)5ACuGaq^aaM8(_VWaQUO5=<)a(78Q5) z6~eZrV3;7s_IPk^Jp@`hL-INxw|meJK!2*PshlXZ4>JmO{uW4$)8v~X1I4<9WuQD6 z_!Y*q!5ez;L@bixZL4@vjVe0VL~JedOXMp=Y_D9l9CBF()xqq==^j|EyKl`cRK}*Z z*=sou24#u3Ggc)MS`{UyA8e0riJ0sro{^OL3Vc(Dkq z;M08E@vVQPO2QrR<44Gk-0+JkyIPa5_Gd*-F3ufP=aZVp3NmGeTjbL8djpqoo`yde?-*gnVlIoGPjK!5 znW87BPa`UNVvYxNWA^omQ`qgj)Mv{=BUD?H+%S$tMq6MT|7`Rfu=0`P3c8R$(>SMX zR5x|{goS8PXLt!@62oakIy8H?hWWvE|66*C{m?qyw{PNw&I9NY=3(U?Q@;Idhj7-J zHpCM41aMP40_@e{kmbA7Ju`XmEyjJWI;VR{*ZsMvI-Zs9H3n#BE3&UiZpLZTMsjj) zN18BgM_t7<*PukLJLwRMNL|lMjS@GmRb#9ycMevsYzJ^FV}%#J7W4R*KTM9S z@wu$17MvaejOYO(dKpl$BR<<(4v|nG@_e#)QQu@1@bE2^^E)yM+d2h&`ofOXsI%qP zCIRD`Bl3zIdZAbm1mYA{Q75{E4dnv9KW9D7<~MAW)kfW@7Mk}12yxtZrgPv|;&N*# zWgS`6mUAF&MA}JePhlS9jD&J1OZDX9)JNX9hb|f086qPVB!M1WISGP*8EtN3Hx^h~ zzzf+!{8oWs__EKtpq$SqHRgi&=*Nt#y7m}2Hm`yL#Ir}AdGhrsHh6WOoqG2y=Vk$Oe_ z(iP^v_NOji|M2yzV9S(6YSzlvB?`pD8g6k_p-Fv%XZX{E83dCBcg?6?xNc3OgHb!Y z$T??Ov`C3*i2z{1vbk#wV=5S{Y9DgE4Q1gGs5%_t9%asu9`JH_H)qKLj$@p)+@zEl zoXfzewYpkOqvXR4o+H<$BccQrxW2-~SREz~J8_YtBWO9;Ay~+m3GKFyGo=10Q#4^- zF46kw6QgN>u^@QN7x>t~>5%xlagh4}v_9hdB&GUNHH!33 zX(BsCXG5;V)i&6ARVpy;rWiNHew&^sGHO1O3(Zc?b%I5WSxOFde^6?^#tlNYs9X#v z9y@72%$PE#oGF}7&A0XoSz8^>D-k&&P#9d zNsyrq78b#@i*u6;dpL}vg|LXL>7?YaXfZ+LGj4+!4n@3ofrF6}*&cxmWK!C$IlY7f zA0|npo5B?cM3TFK2I-m#E2G)7k@ODMEND@NJsZ_tD{wtxX?xssXAG?(u7*p!`uu;L zoPL0+E-U2OLxmMaHVi&U0SiEG==88hSSprNd;p}ApQ`hwo)17Cc$dF(vef&x-wWT<|Mu+j z8yY5j{`M0aAptdW7%Tna?T>H2k$-<0-ab1$LyFmPU8xuuzz*REpwz28t<`UPK*+|L zl=4U*Q8Az_GJCpXMPtHvKr1!-Av{C#BXCKe;yDn5)AEwPhua{R`pquV^(Cy+riqHv z@dX}0tmF`wJM*eo$_($YenXc7d7=Yl-jdH2VPNwU&C?y%y(>NKh?ylqDc>6DyxlD) zN(9U)xN9rcE`;YuGD=v~HoY%uA$D(v05elf+Pz+;QUd!f!aZU6MPXDZ>^s>~D#`)u z$qlb@I;pAk?rAcnd=?-B$9YX7HAiH^uuEvbbiL(7UJ5(}+=JM3s0axM^6m*Xx~bD; zCEWhh-2$~au((BfbFB9ix*gvr)#;)lr?Aaa7va#E{pE0>uw0&;b8e(c9TRohZw;nM z5G%!A)DVrU>jqy3&>hopH+)6=c6Lgn^s1$Vd6-6UU(%qRg~&*Lw3CGpFF|07<>q9e z{tP=eD&+MQe3_$);03E-9nsg|?^C}y+U9fvT8BWVTg;3e@FK=rbh@Y#{Icv^Wp#1i zxxw&%4wQz2AfSpD<={VQ8|WsR=iveEx$(l`Pzj%*#zImm2f%`%=XBxQB-h@EipSCB zQ2ZS!5S7k|*@oDF=rS4TnEp8YM$H+N(GttSHvl#1l5i(=ba`;%DN?TmUrxZ`PE=piOsCGn*J|x9&cFn^52!Is?+M6n6#WMg&j~ie% z?S}O-F; z#-n#{|NQz9RZQ_ke|Y_f&;HfF;jf>{zeUMO;e)@)k5unkE#TiWW9c~nl&gH$4gJ<> zOT(@w0f*{s%ctvw4EGl}vgHV`OP(F+t^%Mt?j6JdE0G>aSrP6~fMCTRd~cfrMCHEk z006v%?Km463E9?s0KwQuKLU+;2{oBg-^N|$P+T0F=E} zI)J_bC-l@S{Y2i~Isv|poHuc4i(>r&IM?D*dmu;JZ6MJc?h7t%-O2wcM0{>`Ve1ap z5-^YJsEW0id3EwOtgP~(%*0pQF5x^CmI3BvC&)@Z!2NG^xf+#lau1U%fL3}CLl=S= zv0}yujfR-$2`-#P-c%PZAIb%2m&$ceb(!lxOU-LA2c~9*Eds4G(XX|8NXJw&KPojt zoRsN8E)J~?^-Xq-xc%1Rb?1kIsrzo>ksz2j%tYWL7M zAGkj`D}zryOx$ptqekGqk|PP)7i@|pRw{Pe@j0o##DfP7c4DU#IJ-;XYAhqvS##u{ z4;U{P4A4Sj5~~0T3|)CN*fuNti{^nMMRicH z_5o7c?t)do1HlDA(BL~rSPe235K6HmlFGCsZ#x17kdLZW$MySpwN&vrKZb8Vk-y@1 zFwe|;;+r zDN===hBZ#l_;kSu2)iPx!Y#g+Lbq70mg{TyMh(Otv1jikVh_7+78Yk#PNE8K*Bnzi zY^w<^0*$pd0`goFxNn_$nZTo)F^e-N^2yYOb~KbT?l{+*mOn$V*N& zd25|-Hd?rYVj$<=MqJQ-03OSW_YS9mYX^Yr$!)@#SPS+#qD=9s2h>XWCbKwDf(w+e zp|L*PxLW{IY@#^dG(6xuV(-gE{ply&{KgsVrr2**SDcmhOtd{p|8peyAiY36WA>#y z9O9E3-NV*yUkG0&{dX7pN>Z}R6}noGPI8A65(Ir=P%n2G@k)jN^I?M39MM5##3n2r z1PFRLS9?uXWhE)p-V`&=r14)$EoF2yD`g3Mb5!QL<%qMF>lhrhd|WF9e11fB z7BygKa}99O)Z&_*NIfaxlPvwfMe@Lt8;^KIPuZVw5W^{er@kd1hDdxYQmf1=cM&Pn zE7jVP2z{KJa@UwQ;JC*&;z{_Jy5#7n=Wa6)X*M#_>wgaa?jX(KUd3gH` zyu>~URA_nk_LsNMj!lCkk^C9RxcoSm{(shhzY_nt1qO5Y?_vqjtH8>mZf1CucN^dJ zdvk#q)8Hyv)qpWg%V$=)VrBD5n%e-EjCGs@YpF(Rdeoze8k^B)EWN635B=m38^hL9 zHe(=K73u(({-*v$v?Y`_L$#X4CF&}0k?084A9xm0(t?l)D@DV>z(Lw!^uA}7A3!h3 z9#DpI52;eUxQ;6*{>lL2$R_1AbI~5Y9;Qc!W$|_ioiCW7%Y-C0&I1AJP$wuIPi0T3 zzgU=2uGlldOc>=FQw}usUy!71r-0nnB^#iO!1~YpfxtGXFVotRn5Py|U(Dokl5(?5@CQh>ns8bE7k&{e^%Y3{-+zIvWfq z_TJUByD5!w=0cQ@#fG)#;>IU17L%$=3j3Pur>2*FT`D#S`CFN~9U%opZi2+G14nz; zRD-TpOHu&dIL68M1QS$B%yv@FkEGGjI99caDq2=R#*K{qRq#>#xN#o^iJz!YlvA~x&n^Rt_5fj#!Vy&! z3W@!X3sTo&6CtJ8gwjbS@-;1Fze`m?bol|af@d-dCJbo{SD>Nxu38}@$(C|q$$3|m z83Ykds`aZ!f(6c_c=PF~MTismpMO@`CYROi{{w}3^+$G}zCEdGp2 z%zjQK9qX(Rp-F;!3BfyE9omKQZ^FN|vHZucpNF?Us++>w?-jZEDUQGSVaNsxIh_B( zb-eO-{o~umLH_w9$L!%Mf5FY-Hz=6At5tRjB4&0k=EqLzyMt8nh^G~FIrD~u@a^P^ zGi8dd>8wh5d*cY*j+R6Pa2>Q6Jz<5s7f&h-lggdVw8VP=g=r*+45OE7-|s+Mz~jse zoE}FuH`qhk3K@ceYQ&2q~)7IRsZECA@$R zjxo3nWNeS66dt~EMZR*6t0yriYhT- zU6S27hye|^!5^-J*M8XPU8wy9ykDOMESI{Tm=zaWn@?v0C+IPAS!Fn z85Y0gTxM<;v6r9St@w;_hWzL^)3}qoDwU z3jyn=z7xLxeZ#1}d;9A3&+pHTo`a&Y^RWU)jOvT&!#cxW7?Hu@c8`2j?Ews`9Z*u2 zi?(5>0Ii!I8fL&K-G^Z!(bvW)OV(eQlNy`LB2ijdrDE~w>d#q32&0m}h#SNb344HFED8fb}jitN~+B=)#2R}1yc z!HtsQ7mn5|7v%`+Dlp@VfK{T-dUQe@=2F-09PbRlyxpn!BCUv_2!`US5;_*nu@k`Z zgdzXoDq*G{h8>1VMb-%D&=qG()s0|lu=-kyh2fhdlG}h}*XxEr3t5ZUmHb(@2#6PTUdi`2K)wc3 zZQX8IZWgOTYsGAqr+RoSgIe$@cA}c%g~(GhQ_^U_0qRz-6WfG+h<+JHpgyqLsA;-+ z0Uw9>(n-zGxIR)jv4t3#^Kfu)Iyb8MWQBT%P-zhzyEco_FmKX%BKN_y^2kUfh-f*z zdaR^X1@)geA5cn@nmaVDRZXZ6rGz_UF`%2+Nuu(oJVO_rSshJ=Ly705VboNop;(`$ zGd9JuTo7FRl$aD;R@^+iWlFHicS)=g6GsiK2dDb;IZ>On#7UzKCt`4~2@N25wi04&f@LUkC7@?}z%mJ}BDMTG`{CJ%=S2}LG= zbFlr2=d)62Srg~6|Lb4)G4Npj?5D54`1bhUpE!N}^KbrM7tCOd9Z6&F-hRqez}Nrh z>+gg7^SPvgK*`r9Tp7|sGQuqHM}8k)I6%sa-h3XkHO&b3JEmx0U~#bv-GdcFqoHl^ zp;m=Uw&d&CT;CVzN1U*rXn>u+1)uVR3~-c4Y{^eTy~LE$5^nj#Ev^(RZHOw0wqldVAI^PNz5EF^&K!%$Rlp zmMb*?O|dse_!jr`!$zy2)}*2&(yUtRr5f$D{IZC=dzuam$PWWNh_e1!J>YU(c1?$y zRLYbLZg3VXsf;?(10^BuUdf|`DUccL0VZnmNjk5Z;*yKn6~o6hd%w-IQ4xTF%||V? zh~+g7SVLDPzEifiF>~T5%IXZZOLWmn&n45^qf>V!N=is{EAQzJw^ECIBTe9`L*OS; z6+%8c0RZZga<8o|_uF{kj#QP?3!WL?MEea=-Wlo$kOTG!*t zS!d5JSPO;guB5ba9+`)L&C~d^70*;sD%5!8Z zCXl7GZzXLtmcn8+ph*YW)SiH}k}J7YYf0ue7uNRi$3&t!Na>H^?H4@$!|Ts?^Jagb z?Z_n@6y$eM+=Ec;tS@x)8IS%gdu-$~m)AtC%o=0Cn>G(4{|X7{SZ&s;Pc26XF58P8 z4{l+@&X0fs1)nYa&rxa59HZd`Cno@dMrVh?j`ZNO5$93`uG0MApuCR=trpxtT{g&( zG^N-Uq!Hai*>YP9anki7G58*O4rL_!blwbLHe<2&MN-iXlr&T_yL3d;Nvcov<}5YM z^7xxeu9V|hP9Vh8B#b0iR%2^=O_kgsu?_`q1zi^m@&WqewlwI^K{^_YcoJqhTw!4- zRHYABs8HY%#(XEg;Cg5~xqb(V30-!lz8d#>B!>+E2WVr^7)a_>J4ZN5E>JJmNFFI% z;8$dT#xv}epD8=PEu4I5|IiN3H-Jsl=HV376!?Notme+x$-#QlLaTIl+wSst4sNv! z-Fl=$x}~K%b@{Q`?-%^o&J;!A7thFwPKPj|bRn#%>cTUN7_GY3K$G*5~XXcV(UQy1K~(e?rpexa5Z|U_*tMHK>VQg zM74!t%TA=_KrmYYha!e`Ike%Iv3l^^*@HUcc-ua%j*|k|CeAp zhbOFw4V&|fV?7w|d&2^a-b5G`cdW9MJx~Q?i+vUPkn72Cqz8u(i|6N38i-7u9jGI5 z>3t1@G(3RGRuBq}<1{hTEj2t^@?mU70B1m$zn`?sE3QO`|G+T3qyrN+(}?uFhWozc zSg1=c@P6!l3M5ra10m;YapWiBmlFb9vTBaAnvU9oj)$;DtR(ms z02Az@ZZ+h2=+~T=2eYqcMit;93vJNp%LspjUM=q&?SpiA8ZS04l^4}me?Sge#auNi zE{pkh?Uoj2Z$)V{Gt@u# zLmCToxc!G-n!8fbNSGZqV|JSN|hgYQZ-e`Is zn6>GyOF=ofsPxNy7wMF0jiSu(3h0^mTKrP{3oz|1Yoq3rF*r0r0ZY=Z+<;fK0$xtM z(aUd;)H3;0RPYiHYN^g=IeQlvWYRTyrumPO7occqu%m4aHzPsTT{zrj>QBT`Pz@(G z?vizS^uqK|e4iKKf>bx?;;XB2YC5Lu*c-2f?8mzh9P2lse9U>VBh8LWyfrWIQR9JoxL)P#(Cn!Sjw02a0qA0v za9dmZg5XNg@g8;~PNli4@r8kZR25ZK>_Lvsaroo6KZn;ZPFri3vKO$t_MjT(ei%5W zK}mJ&uUDymBKc9vzybj0RqbQ)BXqW{&)DUK+kjs8OZo5|mNofi3A2?2rLtl&)j+`Y zaHNKm(B#Uc4q?PR413MoylQKW8v(7Ab({`5z3HyfE3GHV!J1LC1mIpP5ojMI$ok(uPT zb&6cD`TP`~8yLQ*Wsbl{tTOD+9nq=kFF0dJ3^EqW@acA#dyhEpoUsll+}Dz3l7m_{ zjpK$nJj~>|Z$*x@z`MwGICOBVvmUJH+^d5_1xM$ux6(nyd<_h0%C+GHrBwCu>{&;d zHmMHLG+nqmkW6=WD`o7~EYd-0e;2B`<$1^^h3;DF6yf3=|3-RXG)s}IB>9_fapQ0S zgIYE{7pzl&ul9%qk`eYBmjlT*VWiC{h0DqX8CIYXM-Ix)%?p+%Kt`JXCT!rXhLr1J za-}oq=2(gZ5FUTasY0BR=kaU-brxoUOu-=9wk4>wa3bwl7M|mCDx|C_LTYxB8ssf!oKb*&U zdpU9s)KNJfjoHfA%FQ13%md)0_N`JNY-F)w&Q%gpo)LlyHDH{Mh0^=pN5X&g_U=fI z`jP}-}C+)s@n*gDXT{pZkUCKRS>>y`C6+>K0EZCJi-_IdiE9Zx6(J6$( zMRg_!m<9q;v8!xSxLQbcSW5Oi$}%#CXPjm)&4{!@xQ$i5#iH=4&Fv&d(n8KGi{@Hw zXHMFKDf7aj>mZf%Ji7U4#@^;*xwm#_5D7BfCKc<5MWESlV{FmD;|9b-@(w>-V>Ruo z8i~UekVF5%5Zc(4jaddXbbyzQ+&7OAUJ4D6O((?X#Gy38!{vmo?(m+dgJ`gjFi4J4 zRb|YS?HSd^ajMeL#xr0XlY9XY>`>sM>2iF!Eo3j}9ZD{6jk9WVgNo&JGEF87t@HEf zByC<%s!$8DZCBq^*uOQIDU-$Yf2z#E-Nt<;{zB7C?4d9DWEeQ)5e2-%!y;Dq zzy3N5U;pQC{@%*$C&}X599rl%hdUsV2G)F}aMK-RhrZK7ybeZ8Vj%7)_7UVf0#^DZ zYz)*;bhq=g>^hGsft`;AGodUOSDjRNWW(>m?0FwUE9f1>9((GHxr!YlJHmud1+`SN zz+Jv)sO_Jr@XWGaWnj==oZn9l(sps(SwgJZI%g@%N6xexCG;t@GFF}+4gl!+fYve_ zy?v?yC*@jcOb@5IN*QOOI#BEw?8QRfpxQN@u{+?5LpLP6@FivJIG}OJ)zv}?de!lr z4%&)i9cXL>xdUuu;9N#z11v*SRm>fuFr|+4&Uw&pL_Qzal}X^KeF`cw{%RJ zXDwY|%e1hd0{7i5KaU z$dI80m-e-&Qzl^< zn8i_8#o-CdJydhi(Uo>Vjb*{^=p+Roc+bmQ-o1?faG`5FLro}c0_B3%z^AXTOye%P zTMiHd!747^o4Ydl=ahw7E|`W{uv4$&ZXA4sJ4p-5;qDaXi!I+AMXqm&{2;A&2h-?9 z9kXPaFbq0vb^%7&Zb#=VVqMEw`0Bxcw7>@YouQR`K;ouxFtb6g6NDo4u&GHkuFpWi z-MID;1;D6hTp7v70e}Xs7S;7=;FzF<5?LHFk{eejW7KW|2M|U@*;|KE^y@Nd`Fk+X zSk-uqM9ej8#g1<61}rb2WahwZR2eQ`l5IMqOm}u%htkRlTTs1O+fJ?t?aD9i?uiz~ zkg=*Id2xRcWG{Kobcg9+iw||h=i9zmWg&QLU4bUJ5`Kfy_r_pt^|Am^H zT}U~V28B3uE!eSNSnSGII5#Jcs3Ro)DvpMr7`0*O=?{BPo#%tiV|s!5zWiIS@?kn) zInz0~hL*e?1X@p9E=eq!ZgS)BK{G3?Y43R@4*~G$I+F{A;1rJ0o};A18uo2&o(sr? z{H$hNe5%`aXJ2avsI3{qkb1NcJjJ zZ}ove?#}YYJcfZAqkodo;(T+>KzQ4;kVLN`G2o=$c&ChSMx=@z!~ieq7*Z;XZzAlX zU6dhjzXT20r8z~6`Sa)~KVPj*e*4aMTt$W-EdfZL_~i9R9E<#EfA*tq{@y)K^RvHr z`{~qV^yhoodD~o8Zh^4(N1E^)8ci5F6UsRKNwRI1$x!`wmlZNnrxu{Bv{9u;^ZnvHy z0_`YG^hS)`qO`U7q~wZHZh5v4wrh)kam$VOJl!M%u2M!?k9AXfYzoTVvRo?_V1T_k z-5|Zt07A!s*|iDJr(K>`e23F;dgv`mh~%;ZREc5n(7$TUbx`z`P@gYAaQvk?)!7F0 z)0E|p7`Pki0k=*K_-4W%b3Ns45a!sk)n{ky?3|XUkPYab6A!0Vvc1RWW_ilnhLyT~ zTDO8FU>CL)1APZXw^?=L61vu$+g%zyi*Xsq0;C#~1%MyUL1V6pK!04gNrqF8u7#wJ zps@#rbhB^nlwPTkez6?T4q9duE(wXHJr{X$iW%}p)L6rWavhYVUIoLX!Wn?TkZAHD zrzjJVadJ6_r!#y2Ot-jyrP!nNUh|H&AU5EMDY;zo8>=BApe5@%;fA}IKqkyo;q4fk}-C#ecE4PwL| zFuypiEwxhKEHF1<$!LY`(pn`VpgNP<69J1)egnL!q~*Oiikd1=U5macnNo6Gz}sRQ#HA^kI|4YmsB zNGW^xo9n=O-{Vd2&8Z#CU4c_F0h=wS7G(YgRm|cp6eFs0<{X zU4eeI$vA%2YWeRfEk^}Bh6LeE;)G$1yy}?%CBLw*?=R9H||J#8fIPAWmniUE|EP@K9!{bj6ki?Kv_FLOGBmj?KuFZ ztw~rf063oDxNG3O%Mf;5lnUL#G)O0a9!XJnn+r#RpXr*AuzXw!W`cg%sKr@gYer#S zbOse>b^Yw#ghMyN+7{|nmbD$c@BOgI^mIQuLo4y z0Bn!^s$wXL4R2Jw%CpvF>i6BMQP0T-QkfilFrfyiCzS(dpbyAU5VkiGuZ<0?L9b_3 zJ2Hk-oE=jL^uZ)~E~5a;j!)Vt!1*@xAFOZl_k2J6t3AVfNyUIKP2({S+2203_Ta1V z?I-eAL2}?XP$3A!0IG}Bk8*w)_A%xIU{XR(U~nzfgIYtmykiPJYEsEtC5AnQ2%Mk2dF z?zaqTWWf-RsFR37sd1&NcEgUYa~{9)pX~jI8j%ZJK(LqsY&Qs&8T=$pZBREcd)V|5 zf-o*^aYb<FR7bw5nlNN>Yhd%f4y_P0Ha6wO!W3{vi!!v8P=yuk* zEz?1VF7;prk=ueAU*hT5l(aIC@v6{H3D`=__1KX^GRvhNMDi2V?B5Q)#gNACNjqW9d`T$7HS_DK2b&(qh_dr0R|I} zbDP$?7(lI^xDB0a3-u+MgtmEF0MM}eM~STY=nvub*WY&c`dKO`WX0jf@b+wOTKPu%4EuV~7xuDa`HaYrAm zBe-OrT7>}VHp4SM0vVFnO~l<`dzqAzwMv=iKSk1rTsNmhZ3gVia07SRn6wF6c*FTA z^*eVJA#QuBK{vZnQlL|^!SH|peQc|*fB4N0u|w#Fdhq!Z2%JZW8*ifLfrPyIO2vR$ zZRPsBNR9NGo7Chvw!4IwMdQs&xe*>GTyd(ChkZ!`-e%!abMZy>7=urMg5MFkQ;-7M z1p+2#_A6)$0Ix)b&jKuo)I@>4!+k?F|6VS$;bi8*8sl^qx{Ew@@ZNqT3b;tXT9tI< z(2Y(l;n_#DYWIuGp~N(T!ck^d^d0L!eQJ0CcJTttFTKS;6~bh~2NSK@;PlCL)NsdR z6Jccmd?BbeADTOaB~jckk!(OyG|Vy!{IQ0%vy%a>HCreEQE5)WVxoin_k;v%2Y)}lt>`)Oj z9D`$SCvl3?xwDF5aj}XCP*ea-E2pLRNf6XF$V`#~b(Jb>j?DC>}yWt zr0Dzpa#D>Qh_K>PolRV$L>JUj#ZmR>QO=|KNOTyN%XgwzY_>Cjs7RB@%GVuj=q=U) z8fn@r(yCnX?*&d#ZT7KPP&sjz+rYk6UfW*LFAb)`bvzYCiQ7^6upSga!IB2gO+MzW z3vgR7#tm?EFieZPCrA$^LFHKKSzO*Yptl zITRc}J7Ja|UVodPd-wLU@b+7kcYl2s^us6FWa=N^K9-L^4PXDmH$Q~Ul=X^IuJ3Tt zM?>Vx1H}MHmZ_vE$8ZgI>2&Ye3V^C#2-D=kV}rb!%i1MKSqYQ~7dFyK4pp8Ld{K8h(ph!%PLupnVAl+5vK9c7 ztuGc^LH$wjtNX-oD|d)G@K6~Fc3{q&9pzUSUR)Q$1CpJL$dmM%a_$d|oM<6&9Du|K znI31)1a}k+q@Kx5ii)`8fJH4XjT||c_vD@PnlPGYp9)?S4g+_unSQ4mbl82uI5a+b z;zyt)UNc@wB^;^n-e=2K;PXa46=vH17*w{oI_*|NREkde33dQqwwZulHP z+d!hEPT&uo-Uu(45G4prL}cU;l~ZKpT#=YMIhefHX9q&k4OPMZ6@ZUec;H567k zS>26g#-eD&TU;3vcbmb-shQPtuLXK0JR4%nhd>j)&^-|>rT%W=!(kCKjN>I9799pu z{25I(a(q-No|9uygWFX_f1q*;>Jf&tB$lgLjkO(8fI;`hl?}91B47{`OLr)WYETUY z+#2)qB6f$n5ZFhh6rl@bD`_#awri(W?8vzj*P-RHbY9cj3Z5@%<1ik&j^(!a9uxB< zmCE5cZs&P-Pu5USzz`cbt4_f+%~B3@?ONIj(pMBU!!V;x6ikti5^IRsg;BtzLWi{~ zcwEY9un%3)e?esdEFhx!0j9B{R~5<2jBEd7=xp995jE>fotY3h7%8{is$H#9UFNns z{5I74h$@D_&9su1rM90?7OgL-&0PZ}&REZZQOj2gNfR5Gt4d-MtMPeK&r-aNwa;UB zJrvAGx%-qkn1gOBzb3ZIcFzyMU9}+APfd7}We_M-UR|j~v5YekE_Dw#V1|ln@e4J{i4op_7N;3LPX`f72WME{+hIEFdyJ z91||r4k6%3SC%iNgKNv9ZMn`PRG*joD$l8+Y)Y0zpIcW!lq+R?Y6W^#wUg>{g$P!D zR%u=KpcnD^8di_iIr#64jUW!It{(=Hr5m%3b6(7IpH$vmGzswZ z%}IbZRw={mt6I3MTcEELmm{s-Nh?FbK85uZ*oK!gH7>#qRC(lxr+CJY;ZFH93ld_E5p9u08Z1>nC5D5US+`dQi77&P%y9Eyu=6_sp+jqQ2>_NpB+}`y z!_LCXtX`$9m6!{X^epj$MjZnzbl6;@QG=jLA2yPhcDz|sK5+o*{~*=(Po&b88eB4t zp8UY{eWBR?>+nDSr+jt@u>biVE-wHb?T&n@jm=wdR3m(qTE|I0%kYGdNf$RaXdMxd*DH~UxgZo-yqx6)je~Pz=X_=5<5mH;Rh0aJ zGD0)C&!gazS3wJ_rJo)Ia&l}3vD2uPBk1(!xt(-w3%0bZktWCkbMP^#bsUlvK?qYi z<&3<x-~e%Eryt+2 zYQC^kF$46lY_H8la0`ewUe+!Jm=311f;5{@!!NJPRW|D%lb&(Ws zpx`svN$S|a{>L0$qP4oG`>Y*VrE^LWbUH_(xSQaf-M}?(b2O=S^c~B=Z>{APv7Cfq zrlb&f^fpI-b?p=xcqb6Etv84SkWg?1Y|VmN(q3hR!77v!EdDnJMF)=?!xDLa5aUhd zo;%XviZ!ytYEoMf^oRC5^_1=*)*Cd`aZ?ABxR|G7hyRx2ep)I(8z>Hw9|OwXULqI+ zq%G;_jf_;u=f<P=fM4`eC~}?MW^&RpO3U4cOr=D>+Gql&k>m#|dyOab&;X#v#2?;?#%&bL0{=DJ&}i zW~rn0dcUk?=3=yt7F@HltsT2a*)q4cRvD;KvbW)Lddj~n-NPkKba0ktrwrXg`9SYb z2l;(Eyz#Xtrjv;9!Kbn_E_4oV;I_&w-y9!umHQ5~#b%H!e9&PaDL@^R&aLg0U*5M0 zfkgRg@BX+42F+3WBjnIuScIP46a;bGv~WB9B$5ql)KeyZqmXE{sl6WV)N$_l=}G*S z7GXBci9s>ZIc)C`KdvtQCbepJ*r<+}NUnG91WzBL+VfpC8=@i;egm%Ya&rX?rpT)D)r>5xy&vRiLKlYlBp}2Z!E5E zBWz))+tQ+iRkVAy(2ExLB^dVVTMwDnWj!#KDrrtmQK)9>h}973ph6&$Z@~^Btg1I! zS30q_K#mlN@Z4j{Hy?_v=}l@zDe$F`;3E>zN1b_EpzhrqBvm!`(6+mQH8y^)Z@O{w z655P=>_EoPN&r-jLVhI03OjW=)|A`aWmd&NU*~c=S*Xg}(@$L{;oD=_*8^&%k^weC z0FJ$`iC)3wLN%j83TufG&(lx_`#qm9V$`jZ?f~LM5wl$I5oHVbD?`5-E(yjEefT0T zO3p5t_|W+bM>#{2wnfzv7Y17xd0S5f)O!s_w3mVMvJ9kRUE*Gp?7ca+xb9v%JBb05~Sh_6}X0@c%Ey#X@?IfL$p?q>^rda_G z?dT`*F0diH5gXI!t<3QfN-$LrkUPp=*esz#ZoGXM$)yKQ@Z=yc7d5tKRK|^05R-3| zv76)ZiG2b+FDRp9FC@1~w-d}Fo!i`w0qikHMP|HvAf9rhS1nfcfY3vTTG>{r`c3@+ zCDyh?ii}&)9Ri0aUf_&6Iy(kJv%KA*l@vG>1h%Ec*ro}IN+|rjKa!ARbHLV%&Jflk~G=1*I?(7YsF z$#e3mqP0@Zt`Uw^@)nFv(_oNmH#LAJfB-k?u+-I(9PrCaruHd9(PO#eaG-+S zt^9d6D9eUgf~qYmN`=L>6al9(eBp#@)q;B+q}{?7|9f3}3-;YkdGz@h;35m~@MAhc z`R_3uv6$|UzJK=dYc4kb`TbYn;|I_hUue@Sb+x6io$R<=MpI}5B{V)If~}tiHRmyc zKd}(|@Mxe!ZLw=x%W4s@@?3yH zUn#Ha3m_6e-0tIpC=$TM={B*GA}i5)T!Vx37Xb4lTn{7gvvkE;bgzU#iTzX?`cfnH zh$X4KV;kc$&;=5nC6%G|q~7d6!2newH>zs;dW{nOT8VI|zf+Pg*c+Nno;poh1Tlb> zg6d6bU_u)`9t+Tur^>W}PUT@5*hfIDEV5uM!(FL7UFhd!XKT~IGD`}Kre+H^K&&6y zvC@vDE9NM7EH1BHjY_Rj#avQ@na-9Ew3YJiG^Mdyv}zw`&gm=MfxHzIdE&Z)H)LkY z|H&s((%rEew{`)9HP)uK+C_jT!zb7QRix*1)G)n4nsT>ry}bn~F_Ov3`nzUQ+~>6b zc-Gp!F_(gSVc)WWwe2}kw8qXT`BFDHAs_Aw^sO5YDf$M|jy9MFj0)_vPqHX;r||S*{Dp z7nSNe>u%k}Mhaq~+$l~%RP)uv42ruAcHlBS*^r@V&E=2aq#@ds*0nMA^%clTFm9ofB>KvZKqYq8I&pP)1X?7XlK0 zz^~yi9{?uh%kciI%Qv6D|1rFOt#ncyO8?5ru$L4d0QMN=2|Z*q=~>myIwXAnx#Yk^ z8tcle*j1T}(kn2G!}bT)h(-u2wjtq~FFcG$bV70(|I3A8Ji`q^V{mn02xDO4^Gq&d zpnJ-!BJA1*XeC|M8f6kCT`;^N_8beJjTR@^kwJuBit`iA2*AYsTXaaJGMO^L9XsBc z%ha~-!+|!3z^tc=1mvv!lPV#;T$V$SIlllflafOO0l?zmb?UZWHCywUT(;6)JAP3A z?(D-5iOh(^0l(9JHVbR%d9g5BsZsBmKv=SNQtd7+cB)nJZIJOsPMTK0}P4Hq>DoH(KZ=fssU~qB5QTfbxrwOYKOeEzN>o)>7+B=A;2uP5H9f=NEv^1H!K0A1jR;G7sNS6y9`e| ze6q>e>}+LSD(+gfcfhGr2cZQn`GQ(;)R-PAF#wE;m)c#af-jAvEAt|R$Ed|!>8~DR zOP1*(t&zMtH#<+OqFt6d1z!O!wRntG>tX$*Q*T_RPlmgUb#b7aR@|-iLKyF8`Cw=5 zd}8z`iK}v>T~w?jKY~%<;8PW}Hp8Woy!6;@T^e)7$UguR1t^8@oSp0?nlGsdN~w_z zWhifUzCq)Uf@_cLSKq!R4Euh4(*PzWEWxDf0D;@bRS-+;MHK+AbvRR~53a zgJcH!DLxxDS(_#W(kP}b2U*mtRn1yz!@9yKJ~|}nxJB3C(fb;1eM+SY%Kst-in(B{ z3Nw960M~#XmAfL z+l&i&`IhaVgm1ZU6wg@Esa&O%7HfM{T_E_jWSIiUq3&cViT_xo$n{{Xu8hj*M|eoA ztn(`+eotJucGsYiNOmeUOLov@fB>N!Ey$u2J{n&4q4#C$9rx{nY?meUhpYRXsstdg zR{yKq0CxAz5z}9~Qp8r(E&#D-r9U73ty1dO1JIAC%Hy&XQVE)vjeK4}#w6<8N|>EM zH60)4A?Kjmq;^07uP9;M+{`CK>BuN4+|%K#*C*+2&B0o|@6w`QmmQ$RbXQXy`))^c zFm%GlJPUU}QD9&5F=^y|xZQZrLR*V*OS4hCs!O%KIcSEuKm&yiM15{r6Uoew!i5LR zc6h_zToVGQns(i6=i72Q22esNCB9tziUeh|(%vyMeC6Rwu9zFh5s|onqbVXeb{SjuMb7 zrsx8^%)&{|Tgd(?N8ae6fazR}0q&2tul(mn8>O1{|TpYF3RMj7$GggoZPC{qsmBzxen*zlOhjApgV< z!^f}l&;Q{4U&Fh}`F{E#spc~tfBx~~?0fxVl{ZsI>`x&=`RT`JA3st2O!)W|$eGRy zgjZk`*cW(v%57uHH4$jwnYZKH-nj?d6EMEUZL(D}ee4VN9~lAP0%4OMfiqKt5tI_1 z?2>p$8MCk*DWQYl^K?K#ZCLdPTkU-F2TkfX$qzQE(CwH_4Iq`nHV7KSK!kHBzmCqn zT~QP5*&P)i;UnQaVQvt8&7t}W30nnV@8FTP#_leEeX`uJbyIV2RTh9w3~rCPJ{1yB zj#7EO>3k+UZ$;tLYAG>kWew+!`9Q5s;CDG)X$=nMTuxF_(}*j(b@hV;0weU26B(*{ zqf+apnPc4_%7W7C9X88T!UwV;LTr&@-de~#9t#vX9#`^d;n1s332JFAIF?cu zP%U8vJ05VK%Y7?4au@DX?Fhcz6)~6TvXrLs_ z9R|`U_ZGMgkjYS{Y6ql@0Qh6-7rP{ih^{Jg1zJ}vUJ|qzAg>F37;YYVO#U1#60xSp zM|l{=8X;nutI$`cDp}RW@4QwA|I}%#Pdv<3!fkFqHnPuULBr&whJ;-XoLe8RmIdHg2gwC_U#Xi3Vr-}!v3W%{%J+m13QubXn51}C|48pLdd>Dv!*ZD z#z+J62iqrXC|QYnA8Ys&b6O->(k-qE9eB-DC_<98BlM?ROUX(Pg>!izcaTM` zNvLC>%`|GB1U`|Qen@<{L~rv5-1r0B9XZyTl-=uxI;P?rX$0ak z^S{)<8aFrS0hM)fX_+0J|*{?p)hnAj9nAv>n_>ZC6wvkyfv(`8-nM@6wta>6T&@2-Yg-&(2LRYWmCE}CmzwR5 zVZ}uGn@xfx!~P7{6NLgbL;-<2T2UIOQwud}W};A{JTf*rcD;l9mfy8SdjawsTkEuk0zz{vCb?;m|EK&19QU$dx;rO zhjdk4(iKc1-0K5E+RIJIv{5WDW=NFc{r7(x{`N>2zsK(QFGfedl0;&bPe1thnz`hg z&))xtC4_3<|CHE!$K3z+{U@eeY|tUNxxFk4zEU%|&^lJl)PjG*O8X5^(5IyyRRvps zk7T%#t0=gJnG;MOl7=LaSr~kz;m~<{;6^_pFwh5JXTi_MJ*cJWhZ-_GJoYfp-~(e; zNFMN*yTX%-zQo+exMSyhX92i^RWLZR2sf~edDM$kwI{*TaPcux9CI2dVoMQA`J3A^ zC+ZZV9GxOp1Xrw;S84*yFc7|88Oi1S*yfWnm@b)*1-q7XUoog-*od_LN$72?vvuEA zjhzq{NFJOZYXaWX;Mygq*$su?b;>l{B~YJLWyjD+jDoC;L@BDYtKmj0Y}o__GFLk9 zHw^NyAKN3f@S$*w=QWRHR}FG++8x=CIxn}Oj6_esqx!b0P;u9;aaoeN*q89EF2eQ6 z{XvDbK_1+5j}2OHX7z?;CQ++9@RE?Pl*9^ned3VjK0c9@Jr`hSXaRqA)k^6-fVD(j zau4-})dF0tT5vfQP<^F)DpcV<9hn8qC6S?FC4y&$naARc3`|RPa$#riYT39CfHAe? z_Df9}gc?E$Emy}06Gl^KL7A!4xE8@Uf%519+9>_$4el&Ux+EPrQLZUTox{St+e&OW zSF&}FwH_e)n3$7*+b$|V3-IfK#YcB}y-E+7yq=e^h#dmlwG0K6lEO5siGd_sSQO-` zjEj~*w|Xk}f^1pfoM)X#jmv~tmpu&70o5uauqKpJK%+}XwNgn71|W^9UZVa^IhrS3 zHY=hqc65Be;0>WB^^aRQ$K$ufB7R&Oc{;FHtwV|C*uo zNAmt&Ua)_4oq`wGjKyUi5obn=i~9&=5L$r0p%}C#AnSA-+ZjOE6vLY^f5I<#cK5I&p-0X3wM7c@3o!`7c1oL34utSAXM z3pbDsB!T%zaCu^_?oMT}Wa6$<-E@n{;LSQy7NGLWa$lsnxxlDiQIKiMx^a)27qXdt8)1q2Q8w zJf=f+tQ@p|#e^mwsc1Ln$4z-jsy(+^(N=A0d(Dv`5L}es#fXUygGXyYOzN0QUAB+dN#Cs$ZJf7Q#)krd&FH>Fh*hjVV$|G@uvJE7Yu99cuVhobqvz5hZE zz6f&gYZV&6?o#nQ29lp$?+Y56q@DuL7jC3qJyZJ%9A#%{&l9A%9Hte(YBq@vok!U; zJCx0)$azG31PD%RHfWPS66Q9NMi12*NmLJo&7-eGq0+G4TJl2F^#`V;8gwo+pk^T+ z8Bu8150-LC`%O}`bxl7u#1hrwy zC-a!;HQy4ifoC{bPE*ER+sHy;cfh(AG|N$iMzE3KuEU4an{}e+(YOPkFdC9ak&uj{ z3FbaP+*nE6L%v-Jh$qieDOoWkJX042bi7ia&ut8BMZjV0Q}5Ksp{<&cBQ4a`Plcfr zmwqh{@PEH5*kX5!C3zETm9#*6bsfzcw%6OmA)j}cwo0(CXZrjhtAa|_4vgrSz?3|Z z61w0Xwbhmw!&yi;N~H<}sOf=sNkx`m79w%Vh-~*~_(W$VYtw=-{UEan6SmH`iFdfm z&UVq?!_$;~-)t+R3NTg!j~QRvKoI?+TEC&&Y@1MTxOyzBNuwVIA1~BuFegvLg(ZN4 zaq}kRGY-D0R_TUd|EraYJ(|$>gF~TvuV>4?r_#Qi((FJhKbd+fHPM0cI=YM;#vzfb zYu)5pF|d~HS&QzDY=LIXaH`(Q*iVYf%xBUqsSmZvPaXG#V%(viQt15iK2xwUVaH;j z8z9D^C5>~vx zI^PJyT2{Wze(d6xt1{^8vyu^dMP;1;+% zLOAyf%{cv#VzST+jVX(U zAWP>%7#fvi)Kl^{rvlQH>_Oiz$phorg|U}T)i#SuP(pC0ZhH%i!N$Rm7Z^Is38o?3 zX+jqOuQ^KsNEAV!#7*Uzj#62{?axl3Qnnn+$=2r(kF@#H&&0+M6)q|sA!TNH_cups zH)?ry(oWoof=qCTBV7n{i~6Fncc}G}K_0g*z#PC9lgbRGW&oD+BVqDkHT?U-*4XVT zWp-hKcQh<_+h>FiR=gJs-}A5IZqQn-N%HK1rOIH4euLgra)ji_n5nb9s>P2oOSuAUvuwe-c zFd{SfgU4ThezZE3ONpI`YHy?%k^WkFNYHPoNj+0sdJiIlDwfu~aF@a;Gw{CSB`GoX z(E?)rNV;5b)c>s1;zJn>krOoY3#9EAm)LY;DjJNe(8sTwk#8gLP76MXWlbxKgOFLQJt>`^}@rLV>aM{!a|JSq{etT4#O?ewt^EQ8tzoSU;y52MR*@! zyTJkkUdk0TTig#%hhX_w>7vJ-++cFqoq*`Q5-^DZ*}6l^q8=5JQ>!ZLaD-;4gwVbq_U`f_0^wgZ{4;)@eYLY4vV8ZeoE^&i$4;oj0 zJLK1T?E%$mm++1iHsZs6iSn9_FZnm&Z~o?pum2X_zn{HSB6k@vp_1LEzEaTq|w z9lk{!MXd?HJc)VF2DS>85lRzKE@3Hll}oHTkH&%e=Nn9yS(js` ztmU~C<_m<3H_O~Q-*}9!EG9+K%TZ;BzfeAMa*cchG$MlMwGt2Xchl8CIxv^JybX#GnFJIv8*+G!Y5iihJ#5|)* z6-^xOAhbrHt&6tv-Qi6>Kl_asQ^#&|%95T}Bob}X)qzT6rz^C-5dsMNgTM7b$I6xR zwR1#A!REWsrn|pn^d})7QF^-*Q3&&FS`$6Po3DLp4Gf%uco7LF3YAhj1@mWnWug6$ z$b!8*P#p&Y>6$g%NE%%+C*ry#O$r@eS1+koN~3D2$!Ym~rkYhi&GuAG?`RfU)!M9B z{70-|yk1Erl^{XGd1Qkq-zinx(H`RZ0DA7pQ$Y`B07^i$zZ~kl$j9@%sECtXl)N2E z#kI>_DpyiZA)yk?N@V=@Xo6MdULo3jdWnyMK4&g&%>c`u&eTLVMB9^J%bC8N4vnVmwcc)A(;o$5ek1z%PBd_T?>Hn+EP=dl(Lo?9tJFdIu00QmQt!$ z1=JETK<`j+0X32eMPDK0Q3Vo!Mu&AMo^f{T*HyAU6lv0d^}r33D*?0*)Sg3sS~5Ew|$!l^u8o=g)QA6X2-DNn9qOWfld2H2c* zLIKi{DU_wjOl@lmU`b(z_i>dAy0Anu+t{4?6OvmnTZ36BQ%e_~vpdxGa=TFH$Q17Qy_19~3inYXbfOv-5AApJt=j}Qj(y7YJb&8Ae@hyL% z5o5SFXwA5ab0O~|0I&I^+mdR2QzE8Nr-9Mycwn+@M)F{AmM1xOSDTAW*vTNI+X^o~ zisoz{|H9$O;`{&yuDiVcSz`X04GW%wlMtbLMgOF+DRp6uCudWzxg8k`5zIg ze;+=+zHo>6GjMO9F|f_%Ixw4u!YAyFqlS~j~&p&&pBfC(Q|J}zPYd+bW({dLcCmGYHXxvg%@LW1w>zT&t%o7ag@mf2>`5P3yjSH;viTcn^Rk;emG?2 zzN?t-K-qmzcI-QIgu41{RF^xpXKv~-=$Yl*`ynKpX_;2l1JopUVJl^27FBAtd0}K# z2-XnG%wCjJ%u8kpvtg=^JEQTqsK)3P%Lf9GRB8YzI~RRJJts*5 zkpu5~1R!$&4jiH(SL|$PVs-7XSG?PCe5m8nP!r|-fX+e3A-w8PTvUbfcsP}J{LWQc zcm{az?o^$3)nWR|n%}LH6f6bspRRJTMs0f#dEn+c(=|n|=mHa4ih^z7ekm8Yf?2Q! zKmbq1WCb?&w07x&EX@vO_QSUv@M#!d5$aSztz7OA8WooT#1JQkXz6ZOh|-08!d%R% z^}Y}R4kY9?B}HulF`J|AMi*wKCv*>n=m0Req=j z7m8W=)5I7=`70X`wUv$8Z*Lo7gy?VE9) z)lb^aDmOiRs0}A|^Z+rfXg#MuG!6uC+hbq^F)+)KD(_f1?|uvuMnJQYj4cZQ(Ji5x zzD-!I$C)f5`G+E?mRl9PIzv;CC!9P@x-pET8ZS@`=nrTMIw$gimmWKuLo%j=LaU?* zU%+O=bBSo9fm{~l2h3QoqIKjv3fv9Wh>Nu5?C@1{*Ym{czEANAAluQ5%o(`MdC-Vo z;};whh;PvkYYg?V?>CC5TzO+hq#cJKsnnoef*p2-5zH97pZiI!@<&R;tsN+BB3H>LTcGe+ zuPzK!uI)1p(2fK9hrENuRH(`yuO*3L_Y9`mj7joDdbW$n4roeX$CQWs(9Kl|2YY{^ zQ?E#Lj_7Cq{r3zG)?;$i5k+!|=17|V0XQ*)@JF3#VXvEBmiZQkm_Nj+`H;NH;! zp^;po?IRqkbq*K_an1%m4V`|-yoYDgCtLIouWvjl&NUR_6Hr0!O6o4@HAW*Y-&&`! z1YCo;0;3$oN~Y}6B;nFvV|7$1|3J8j(L|jonyU1MJKfF`8t~5ikb!uS^z-7Jf0kT$ z2;f#}E_P+POJ;~tJ`+9JE4l4d7*$e4b3iYdU@*jI351ayf%oJyeI5C`sdA~-;QUrL z;~<*{#Qa3JLEyqACD?``4&&tO1~@U=Ohulv)MXuM`q;=aX-Izq;TJpc9YdiGYeh@R zN;N5qGj{>Hv0c2g&~;fFC%JkH%$A}f%8Qcr;)QlGNqw0{XjTH}j8;Sch&1h+wfGz^ z8q^MgQTIB1U>HZhN5x_YHmiNQM6XI>1$INQTV1O?7lk!q(I0{x{4PKGU&6;%!1IJx zV?)_J_6o?c5AjWFpvxPk4F=!Q&DXXbCzaPDNE<0x9!D;!d3d7ns*3yui5N*M-I1K! z&HWLcs~wPEv_9cFQC-$eN~s-NiNUW7X~Ol5;S4A%Ro>kS8w6K*>wpG2_GNNu%bgF= z=@aE~*{&>Pq5ML7;YB@q*r8}-KS64M(dU z?GC#&$q9q5H~H?|qDo5UV`Ok92}y?)s5k`6W}b#uf=ztJR_dj~&am?tM#|sd3R_wq z@>m`Kt3OEnmd`MaiVXRMJ9YpnL*VjnG7hrNhu++eXpjHF!)hVbNmgqf@Mo zwGUVjjK~#BQ1cJfsl>8_F?@tj2t7d3Q5_db*j(jn-2^w&!^EMIW)%@y>VCrJrMZb1 z=>tQN11cg`Viyu0PBV%?ss;DAMgWiUkI_Ym<8Ms(^JAFk8`dDVOGrq z46_q@L#=~Rjottg0mLi2&o^!4C}ax9xmH?iewr92p{O{{=Hy{|)m4sE`NfG91MLcV zDU8+NEDnA=%~okFdxff__ihe$9&>t0lx=`p;G=88#lU_dDad4*!`<{smZ=>~+2125 z5Y`q$Q<~KKSURZ7ax;BY)tpR9j$^OkdJ)-j?Zk3AEx2Ppsz#9Sq>BJ0O(4e%&xwSO z(Q5nRP^pI^zVuP_)Keu%%#+qr_?y6cL`y7GS6Vj>qkf=Mz5@m+ z2NqX(8;IrYcObuM%e`YXN&+k3RqfG*$P+jr>mlpyEgCu=!s|gK@2-|LW)Fc`ktU}H z6-n)wD>gOSy4*7>sNn|-kxH17U^~!t`_X?$D0|tf(7E^uDSPhIZ%I8VI&Nxi@FbPJ8pL!X8z-tTa5h} z2O@>s)4pKt1o#YItTd6%N~y5ds$k=L0XtBv2CyTs#|+>82}v`D7k7dAVG)QM8g2@fW#Yjt zEB}6Sg{t^qoP-ihFNs6BGzp_8WH5O<3eNrF5VI5ym1*3IucFf>%tV8Q7kL&HIj}aP z`ihHRocs~0URg5W567eb8a{rR&wc_Z=Pxhc{5W8x{OQMM@4v{xli%0H@y9QNFNlBp z@dtHm{V>JK|MKU5uonAO!Hw?D!4iy*tbTt}cx}!@Kr#R^H_o#a*hYqJVz)YU^bR?` zqG6_jHZ9dBPz4|JmHq43f(xTQbTS#M({nUaIZ?uan&p} zjHT=NhB#l6Wtw%z;1Ya4Qj=w%T|KI?b3T^C>jv30Pf{RDGaU_%3S9tkp@L1{M!?rC zv7oNUB*7=j*ayM~w)I6gR3$Bi%%i4APac3)ahHcsP&S)uNGc===%2w%$kUoL^-@69 zh8v4Y8x7v3l3pl`3=u|Y7NJDE*i1=TK1xA%VRYR_A};3(eNdP<_A46Y8KI$F>+u|N zg_XPhEjq)?Cne;uyjM`c*JV^LRd@k9HalptkEexckBck1d#t{_n=};c1R)WJeZ`Ya z#2Bo^@7g};AhYbKPX=&ZOiW^a>JsmUe;g;0Y zDoDZ9Y8+WwUqkd0z|qZCNQ{;jwZ7bUS*lQTZBK_ue384b%Deq zU_0TYGMR-7sP*WeM>UsPP7J6k`mn>@Sl83VXsdv0Z01(dd3ux-vkCSIrnh*~c}N@P z9rj7Xs)!3}SEx(v>@T+(;UdwR8)c>HEyqs2Y8PPt7avW5GE%lD_DdD<+4bYvK8^^X zd;tPkx7@5+O0l`Bejwsr{=E)8zJB z8nfEwJ4LHr%(mG89fGM@=`1dSs_o)gG4kOgU{8C9Fv~?tVtGETOl9YI%3R+*njd;SGy>%)Ih4LUoIOh?MeaMk2j`nNtQe zSzhR&?2Ubek*WyyP>_}jpI%t3QH1jerDH~7_mN>FpsnMxAg}>2S$*`|4@&cia!EzkAi6PN zhwWkwI;XmgsTd1B1YX}E#fDYtiVyVW>+$)xsid!IG8L_|<-yYSkTC_Rk%IZnrZP!( z0@+f-Ff~4OUF32aAqz$*>*iL_^QekbCW$asV>dNc?SKV-XIxMXvI=Tur1WA+Hs;=C zS&s3^G{TSzi;UI6j|!BTE?ibfC_93(r000Lu311L9u;Nodb+ z39i|Lh#$67hCu+?XcGCx(l>!abV8Jl1eM?Hgx)PQwpGWw8#*%RK|O;4_KGnby=6LsqJ)*jg?a9(!Yw)KZq)=TB6)l2c4qsrN`9E6 z%UB#vaEmG2*hMUEm(ljPcQ0)P?Vg3Eg$Hq0HG(n6OJvp3aTV8KzvCLJ z@{;z$<0V192D~w#2yeER;Q@bC2mz(u1fzqROE zW3}-@d;d`h4A4@Pprac;S4!yxaVP;bN zcg_ZqY&fmp088VVwITQ(_4`$dqJDEkb-#2mK>X-%I6=so0K~K~JU~rQUWUcpLJeV6 z?8^f2+PaSwHVCFaxq;6Y7d3FS%TjLt1Sb?J`fJsXzci_} z5|@fyBk^1s$8Gu09zr`9*#dFK01l&FcGN0p13wr!icm`-1QZqC;I~Wl7D`~1PKa3S zEY<_rU-f&S+&0*SS-4gz)3G8>=>cuDH!bb2EJezBpWHwK0Hr%XHFR` zG(lWQXB|OsHw_EBa})#+)UxiBlgQ+T!;S!Rs*}n-ve})I6lz~zd7IIUPe~lWVcPW> zrv_Zu$=01wssL{&bg86$!wK995fFKp{e4seY0DC)yC2xk3T=zUl>g2C3;Jiy8(9wM zcl;Xu@`2;0e)aJi^I)V%8zeD*9P$^(&3+|)1_Tz>x8x4Se9kDUygj2`uy*93!%RD@ z(#X*)1njL#fnn~pHb%9~52-!LeCX(HJw91UN+VQ$qyqptb8}>aC(c*Fe_#wrX@@E6k&Q|+J zz@P3?5cb?sU_wC*7wQSQ>MxL3ekd_OT9Vq=75Gt!i#k!a^%ta1$IFQ5ctO1=Z~o1w z1J`hZ`3`vN8cJWv764 zw=aQ?2dszrKp$@4BQzuDwtYLl;>0y*uLKJnA<@L-P=eT0`KxsaiLe~Z>+URhneS0v zfC|8;esQO+h^yVZsQT{X(}7MS@Gbnj?vfpxwW~6EKC8Jyj z$k|gw{yNBE3`m6!7q3$#|mo~J6#x^IU5mT;wRK_axVVC#tKZO7B zuk^9M3g7wbBRK!z<6pRZ_#=fiKjQ}cXYxq+_}9xfKT>$?=kGs-Xq$YI5dP=CfB)x< zp_M@X{^iFP-)66U{qbx2?qBnvKZN%$@b!1^e>6E{Xuo}txoqG2_!0tfNCx`zJ64zW z()UsB;&$Sq?D+^CAxpx%@U);E$$hc4x5V1pNDD=n zwNaf2&z^^vnY*PkJWyJxd)5BLcJQS}M2FHsFeJidl)LZJk^0LCcL0nmT0ToK*rrF9 zjl(2e>f^gaD&J)k9bvw6>WgsnGLkE$Nt;HlOC+@v(xns-#4A>GkS6tI#BBW~? zX-kM5P+D6eWa$Pu`XXk4R}3ZN;a}V^p-WMCY?=nF`=}!XR8Gq!SHHPZKtBTZ;{NGy z@gaP+Yt<;3Es}Jn4_%M01pGrEPO2>Xb}7Xx!L-sHO4FQ%@d`o*x7rmP_cnGmSQaa~ z?C5M1gJFlb-q&L%fs6#GH0X=@0bCHr@cRyFt<(7RK2U)2wn^3*B!$$_syY-1Z@N+g zY~@CD%q`R=u{?6NpLc&)^7wqag>Fqdc(#$~S!QJvdmwkUKG{cshGuP}c7GM_m$r<6 z0b^RXz%?W18#QuST!&Du=qggr**s^b6J3UZXm1-+iza6wzf6usP7YEM5;a)BhCy z&;OlgM6&ENT__usz%bI>op)IUuH^}FxCmH+<` z9eQnR0RU^4Nkmz3ML<=cD=?B+=u?)~Q z%McIR0A`0`$fmhRu~t@fdJ1EKD|La=YK#z&o>)MSrIPoAsvE_-^|O1)mglqT*< z6^D3CjwI2o$3;7D(CFAcvD{XYb~dL?r;<~v18Y8rNTYE5*)#2&DkDveJ-E{)nZB=tr#FjblwmAXEJJjSq^y|3yQ05RBW=9PCwy7LMH zO70JPm1`e#D7GdS9z83QLR+upH>Bvb;Q_EyU1+aR9L2OGdD{aNevw=f4@{7LUhnL?<1_n-FaKtr1%3Z!6NPd zA=UN72+Zs92h>DXwy0A5LxrSl>~2yS@gX^!sYfontox+WG!{T5I*<2ayx-~kK5i%A z1;$Dk^JhW5h#tePLEy*W2z0D8GHn~s+Li+U5);%iQ5wJ2p|w&@%b&$2ox{_Yq6<`k zF$A|;bZL9tFLiQZdc<4cFrN{&{(vfijPBWmgYHfQJo-fU)E*B2+7FpiJY`sg)9dAyBA>{jv5~#I#aA=lPx-Dd`QLi4O6?8Mc zR#!i<>QL{+-hOe#C}o7@oUn)T4*iW+G*ZBztyV_M+5?jG6@F!F$3yXLNYWn3&k|S# zWpiU|n1pM0D0A$(C2torJ*8QMNd^KE5{byheZ9Ph)e88&DyQWn0Nu;y(76y4EP;>I zbRxG(f*RBIIM%+se(c=u+|wezR1z4~3@qzgN~?wcdTjqZ_OmRgMyy7~bCrl+TF%RabU*`Uv#nv(ZC&i-vcW(UE5=ZJkGrAn8_i58KcSOjR3jKYh*-Zhe%H!l0pBE<} z+yTt7j({#wT((gugl>GgQc0?+-BeH3xI-2H2~`JMvBb9^@t&UstZ;Zos}znD7t>a_ z`;E$iD@69}7OC@_%aXkVsq#8@tqWvJlEmJSHpvUT*Avzca)B{rN>Kw(Udd=B)6c{7 zOlIu%B{sRSaMJ?lTVv)(G(dvt7L-o5lD$Y33Y%%o5>vw<7!7B&b%7#diVqKW9oHuRcb^o%mC&Y=3YSi5`Z_Yc1149^4c?6CM(Rm0y zv8=zz#zi;m_-7q~J6EOrT?H}Rx0Cl6$i}7QL%NoQ=bUtfBPBGsVVPW2+%aVVsziiN>u`X$IZ~9CK>Aatsv%L;>F}hyn$V#FF7x@z9lYV~oSNeiI z6_ie1j<#Mgc;T=Rf_ee?lfmW5v5b%9Wi6DM8Oc)IszurtSA-b+1LF>- zABdPw+l+x*0NFEVh0W5F^ds0HEiD%>z>&pryn`vXGO)vw6=2$WGb)~9K*IlwPxdg(x4JRRhw4E1Vs+0OXsXk-iKM`)r2vwuS@F3k5Brf+3BjM)q$UkY&=K zL;}a0wQqr~$^aa3T<&C?sNR*7tT(bpP|(cr8ol|Di`OIxF>u1NMN zamrv@W0Bl46G^q?*2C%wYC!%PVo6YM8;ESsy@eDVJC@WFn+OnwFvvOC1k@;)kNF4Q z<_L7K{WH!)x^AJW2_?%dLq3taKa>fBGR|DDu`3S;IOyCOL1e&)Lluk(nN7Wm7^OSb zE(##?t%#y}X(|lxjc@bku^Ci`+6#BE>p1Hgg8ie?4ybxkF*0tbgo(ro-UFa5QA*@S81o)}5Rb#fzB-DRq6kkF9f!ECEtoJZkf$wyTpK)I3~J#sXk{MW zKhNzVS}9#XbAA_O8qGSbLYd~`-wj>AL-6s8VjhjBy9pmJaq?F{t*GnCDCNj8HUqXJU!K^%}%^Ek; zQae87E!X1PM(hPGfN}LsFo`Dx4|APBA@F$xSl;bfr!F{Q`;oNzZdJb^(vxwD!NnSJ zocyqfWMHpP$PZsY2wp7cjaWLE%@O%q^TCTk^e1b zLJiLTNpue-g#y*SMm>M20$xkByiFDx_kh>(vNP!fdD3(wSp+oPrOuL1~IJ~C0%9G_yn?M{xVx4{9gd9Se)P>nZr{93~82q5n6rKD~< zoNxj%h)-r~?Av*(LcaCzIH+66ZzFct64^+gsU?lMa|GbR(wISh`v@e!L)t(IYzyXP zDfr|vc}VaqTk>0BC*&k0bS*V~hNOYq$0azp3ydzgS}?a~uLt8{{yTCP?-VqFqy08h z3te6e92v{|rGjAKsMZ%i_Nl~`4UFb2U<$_3hH-G7I9rsL2d7s41#JXI=L`-&*e{Sn zDaTIv4@?E+h^oBG7DQMv0VynXXtk00o^507r!_;LnvfE-;>;%WP6x}L&{2l``WJ*Ei_HuDtIg(#Jp&$$&f~!56Y9 zPGIknONT~@qc+}xeYQz5;zzkFk~{3aK}WKt9AYfXansp=p8ikrUy%QE+RMuy6-W0) z`|+KxK7Pip;V&QH*ZkA}^6~k{*FnDg-mEsh`TYH7fxe=?qz~_A$)O^=zKoZ!_HAP1 z?#6hK7U~nU(-WJwr}T~i}T8a2n!neVe2F50nt(y&o_u`hyjj|72gXFkUVTuCZavpuQ3=*kC- zBHg4`T*T;eD(xaV>3y6%zm&FhU4Xpc*lbk!D`@McV-vDS@U!lwfuj1u7xsxmjTwlZ z{h}bteK!c$rttY6afvdbPanC*lp>=%nLWp66E;@UmDWQ-lXt6O3 z-zC{xPTV5Nymn)T2l|&3e34Q$+w6;IUFi>!W;ZC+GFwPhje*1=PS!z%Us5c@Y3S+dbh6L0Byl?%pK8>*pT88__4 zeNnLGdPo2Rk4kyoRKbStG^GO01m!=f|61x?iXztvCN8-LLWWxw;*QV_9gZYd`6pgv zroT-}GewOg#jKnjXRNVO2SF`)`@Qc^pxWEwH&v2&RNjp_6uzIh?Jw01VY7_|GZxR- zn^a1aRRu;9eW{Y_zT1^+%Y11zwg_?0uI01U`5)*hE!i#7{uYS5j!G+)P_qxirI6Z_ zV6FDtjsQQThHjQYb{0-Wf>l~>Rl;+YknYIls9QaQ2E;bpT9Yn>^0##H7Z8$-PyR&R zo)5JYLg#Pdh*)V?Nm-6Dg%Lx({mrt&ZL3tBo;FuVp`$JRZ5a3wLjNw1;Br1DO7iH-}_N z5D0xJvW{x5laF;ew4c!ykj2uiS&t9%co6c-%#(|hD-g^*$yrI+`~+-MVSC2%ubQ4-0Rouo7t& z0ctoF#3XMLQi1!vmay~|Y&zFSDMbc*4etobbYOB0^B5M^VX@Xthl<1=H)$qOIdr>atq@si|cl>w8l66dd+n`B`NOqx2iK_PtT zDbd)Cf#L`iOy+e!H4+%o4My+o`D1C?V0!tu8A~NaS{d7@MjPhtC95Wg1w(LOLMk6n zk%_RAw}z{ND^~cQ5|)>_662r@2`Pl(&dTTnDUpE|C{X`1$yQ(}L%E}7ZJ9FVE)2~U zIfhB0uBA>@UT!(J?ok$D5B9u7n7d#G^V1KfA%Hs-UKaZ*SqPeOUMazn_W} z3PD<-jV{qP69LM|u4gSVRH=!HURC!u-^Oy|?Hrf5#o7w*A)X+q%QeTza(TbE)k&pc zL1|E-$VvyFNRs~69V8UpTJ{qDAUSN0KzP4rXbIe-0B@rmDv>q|h;wu47)c;rNPLqs zlpTkBzAk{YHum$ZsbFy@v}8)iV;H^A&3oEm=XUIBB_7=sZ@g~Crab^RECoB*&J&d| zDKhB-$v_BHjxWS|tpKM{-U`R%Nq2rM6#>jtVLuYd2i*up6%7K-6=IxnXP{Yb><1<^ z`=!@`s+9{FRJq>elYbI$j|KXC!p*5aq~kq-zex&{U;N7IPf}hJZ zzs0D!9-olb;kmke=+ZMs+Fr_i4j(a*HWYqBFI^i9=EOzwhVP1w)x;?vSme{`nG7wt zwMsZK$W2b}@-+n>Dl>@3+nY`wTuWjHSl_oXrMkEw)&gfuV+Co0oPw(!#_j6tpt3of zJ)qeF@nlS?;g&*~FI=o#ZUWS)10##I)LrL4Xub4F9?B3&!KYP zW(fRAvlF*fa{JrlepD*yN}*MiTDQ0>znT2A8yli5RV1Y#3c(e_aO}dQ5TurbVLyM& zmj9>6qhDcE@U6!Gi}3#2%Qv3}5XZhR-TxQ=|33+y!O8cXp7!yl_s>rAh8IxPBkk(n z+TbfqcqT5Fr(9aOCVL_P+$BXlp}EnKXsoPbKr!;EN}G{~`;a#=U&0%lY?Mc2q~rlH zk1ns-;YR5oLc<6_#BiZ)WPxNE*LUvgCDpf_$kMi&a-T!SCpswX{{`ycjh~BceZ^EFS9c z7%s~-!1r06FGcja2QZl2o)&O1pnqDff^8v6g9l4D-VV*^qH*`il`r?AA#$>!etzPg zAU?SFr(~AXEjOwCrF^Lq=KnQk28y`=M9jGyBZPKZ(l7^X$(U&L7|PnfOeLGn4P&bk zIvnDY`3kCL_(bKjp-^KKv5jVgnmuBPD%s{Qu-<46@o)Lu<$h{hKI5KDR{#hEpD=`k zaaRrSj)GyBOiDOM=VPb>ChiS7%x!EV3SDa(Ufhx9Z6x1Fp=R@!o7M`Ja4@C9z7z!k z1_6gAw>+tvqz2<@$t^TOsM)1nKoAbTaKT_o3ie~}+=Ncv|4$w)`0Gu5PV5A%{E7@^ zxL-)|%pGY9W&{D10RJiw2M%YgD_*D~vqgWUYME>{dI4DS{m5?IG)F+A@my^J{Xoy| z!0HNjwpp_sbHeI|d&fn$buf5%Hn?#RQiNgdN@({IPb1aS_~4KL{gFq1NxKy&D{_}f z&2K-iW|pPZa;wA&(I~$cAiMTQ9{K&p?=1xw_%gizTmG&Rk23?=NXNjFhS!S8KSqAAkK07%?KegG2Sw1x5apB*Fs;>1~mPo4vm2j+VV z^1LqaxI3DnRUMJ3oCL$;doRG+N2>IwF}71%q0 zyQ0gDF9l)gNTMYsuM$boOdsTa9mneRWn`+;5NaAIlra`e&;?F zZce2*@^s;mxRyIP0#+G)CmD4}lvc=&f+)hV268L}774YwwoZeB*#S3*v@E`ca=o0k zByu%MrkQUci|JTEMH%dL#!45VtMZ@t6KxFw0e10~jzo}liC2`Kq;kHyI{Bz;uf1q_ zAgWF&g6xU%T26s8SSi2)7saKDns$eBbsM}MK%9M12t%$wxfl*9Fr9lG%`r-I4rq1o zL4A>;*;JyB7MSp;*Qs)LYlWPl|08h=R~PWa3e&1A0Hlro49)zCVOmECR+MMOxg>2h zRjljO=^AokLk~Y3s)f=jj+zjE`PIl=fBwh6{F?vPPXeIo`S^?XufqEuR5KzV3jfpl zZ^DORVg4Ix|L=WJaa1Q0tO6YBt)^a89dVU0TqFlY;BJv@OGu}Pye zHRWovtxYW|)*W{u!|3FCoofM?VNh5u%Trq5jfA7x}fieT< z7oL|X|0E1CMV57FEHFK#m|4YWNy;Su96p%$-G6*Kzg8LhQRD>Q5>JBWBCDFby zuJ+DCh1Xdc>Vr^)ISqY?W8IvB*bI7&#M=iqVbc=eJc0(WgaU-S6-XgR{{eXuCaMrg z`h1y0^(`2}c51@Lt)0B4Wxqfs*@DCrhMW9RTF%z8J8#$X`IIzYEHvvKuhJ3N&pKv8 zQ5j`p<*VWg?HgtWtyPSRO26WugES_|Jf&7!AdB}EcHWeUC;&K2tCPyHI)X61lAtsr zt%{IbPM*l1qdzgt!2q={Bn?QE&jBCxi|tSD;LJ$$H$GE4+#y^?UM&n?c^Tg^URh3A zW5%S2()(aH_0szh#t5+*`wif?_LeFj`cQQA7H(DDY;l+`#_;pmFthvCln&SB*eG#n zHCT78o660KZuM*Umhd#B+obfn#}~p9Wr9$KHXKV`qpp*sDI4qIAkV2gvV>A_{4cK zT*`#*54gCiMC8SI7FDV@y;%5UzVCe=J%Z9$WU1G65B0P-T<+&=mS(_|9|;TB;p|#zJ1) zQ?|*7xJ#)oErm=YRXA7}@|)}#MDtc#E^1`iU-nH3y8Jixgxa0lowr`$M-Of@RXJD1 zNGv!{n6Jo7v%xx$(a9zZ&=MZWAOL8b<^bE_6$S$hvX?M}9p~ftq;k+MnTKo2&c@w2 z$vMwsjS<&TC#QMNZjC%w0gPPbqNa|`CSMOpUrh1ggG1Z-s8=C#fWigZ)`5_v^!FPK z0SEI_Lwu1MzVN~SaPZ`Ss9^U8s%!9nH-YQO(mMh5l@Fn_QM39+NjZ??1Yes5p$qYR zgU15o4~CQO%ABqnl>4QWZ>^?)hO~lFEJa{U;$+&P0(F&c^)o;;5AY9hjA|aHILd!n z7H?jpjK|wM5t1M|R0Y*nKt5E#^wa^sYh)qbQZ9H!CvXuEF%OsY@yyi<056+eq;7jZ zEgZ*4wPuTKIes490~i{RJC$c{6PE3;$B}zU-sNMB-NRLUR-vD1oTheIhd z_Eto6Sgxbo6N*2wDb3M&sa=8Uw%Mu8!F^IAmxSf&I|jz^gdoQ? z`2P8Zma>D~Ps3n=!$G|_ZS1X3N@_#FWk(_hsH_dx$Tk{oB_Q;(XzZK`1R1;QbM|(NK{RPuOM;$hy*xMDX9{R=3JoUPWd2aWXw13W-G zCJ9{iNK9ZIyugc(P^yKcO-$yKND8V`N)$>g0CpdCHv_thZ{BtKE?+L+{8womz6(04iRQRw4!`r4-@s3r z1=~Nqf67_jF2x7UYOq?+(!Yl;pyiWJ*~Ss#4p2&k66Ho0-AAN#lnLj^U(MIVM(;5~ zLZp5CR=tHJ(Zk4CkDyg$X#x6_Eb2FP`yIQIvr{SlD`=>AOm|U(CBuUdwIu^$ZUWfA zAQ$E~u-1pi@S>BHg8C1rz2sF(Lp)SE&TGvf8=J5>oL05cr`CguB!o|FW&$doTni2( z#(ijayu@jJccjsg`0T~Y)Vjwo6b)iG(pD04ZkTkq=o+H0DHuzYj?ur>@N#J;hTUo- zy!|QRP@XlVa^l*x1)%FI&vWGtY)+X@UH~w)H=gH^6%96yP_vIlo}kN>iOI-~U1G00 zTe-6`Y{b!HeW~UjR@#^0-oiSHQ}ovh^5%9jqc;a__^_wRY(>O&g}ca`o5Qrc78Q|Q zsV91M4gXI0YZlEVWV|RC3Lvf>R*PCnJ`Nn%J#_60LIst=xsMSMIQaGDh9bG(94X#O z3cg|bHdhe@Bnf&jX0)-;w-^MHq->E37`vjG9P*A5{^VZTWN`xv{VGsoGx#mQw&PM4 zVY*Eu6-~K3K`#KSVYxRzD)QK$Qnv(v*}Yhv0U3w;H&(FIrRuom0kdY0^T{oS^B#QO zXB9Na`q>%?%1RvDSET(^!5!^kDI@XSqquZ}Fq*UNta-db_)skcsLckYq=EDJc^s@! zI(E1-BE1yCORW9p9QRu)Pl`~!1dy&SXwfRl6>%vF@2!gnc~_2@G!&?As3ZnngGE-M z=D&xT6o=>#*Oqn%uEsM)>nFk{Hu|`bte_vH_=$Jci7-eU!D^M;+c^ekWo_>qyJGVJ zRz7jZrjypB(NK+d`b%tYp=$7XAaMI9?_Y!ugK5jr4>1q=DQEJQM!x(0M@bQ%%h%ro zIrtYCZnh_wAfDvpP}8?;4U&I9nvJL0WY`=3Ozk0GjxmwSUoa*=fOIn;rpiV4XO(;m zNy_^$KD*>=zg3!*$$$Z?v=H4W#V|K*E5ruq(Fn<6(q!^xb_$RA=uoP|fDs9XEf63^ zOL(F(2G`=gWXAbHr9|3xnS^^%eLM^gAyo#36@}K`LQ4pe+|D{bKDgLR4`#ckrf!5X zCmFEV)|@s?i$d@Y38DBLvhtM9EOlsgix4M`FkNI*xRem9)}KHj1Ry4nNsok25!^ne zI4EfHL&A*(+ey7hNc5ov?!N@ z6oY&$iC(_mM}XN96RfvHi&7sHb7IN152NiqfN)Pvv}@71cq z(k?Eum%Z_lgrCH^t6yA23}mm4nWIkL$mNAlMKpk&Qhc}CDQDA0G(5z(XVYtuyO)GVFiAGyrwhap0ov_w-PDo* zNf?}XV5+v+bFXTFT_8(9J*8&j&b?UxMruZRksQOh^LNwsz1&NeMxm2cG*t?4;~T$& z8el0Qb9~8n@ea>>W4B48gA~3lhvXn`;Ek%Mpq;LS|giB83n^a0p z6wXqpPZtB9Q#y@Tv5F6m6O!M%xGSt+@{wfN(elVO7+$MFIG&Hx2m1(6Xy)Xgl}ajp zxi@3CFKp*d+p`j%=57n0y@YpNbiGxi>#gI?9Tu<781-!>_>uB}t_v!S-l98}VV`BdHyy3Tbi zh`m+SX5CS_mv(OGG0Zd+zJ%c(a8`T6r8e-*+=`hCpsO=olvWjpuzU?J3c$(vY#T5E zgw&iAh9gkK3;pDDr6if)(4K`-c+?frlr@?w=G=Gy^%v;8rj6+sPV>$|kSzDQEUv?> z`yaP20v-WhTdqn~^%~luIc+JW6(Zkvrp0+t)e2LpKnZO}Di+Z8_V0kCw@Rly&UEZn z4?M{r7dR%uw=d@=bu6yo7N>LpcPNs3WtkkBJG*N&X2K(tBXT~{KG*)9ZdhDQr&s5j zoISv(VTIX2SaxmMzp0gy9S3f40l%^6qg@@E+WbRz9V4jDMBBGm)R<7Bv}{RL6e&N^ z0%7FTDiouz8ZSKw$h!vP4AnMDL|YAE-V@?_RpHO*Oo9dw*h5=eN*-&&8+mdBS1F+y z7+eeax}m((@}C4?>+vvRJU0KB=4Yq%{0LfGi}4+F8J!21799x|94|_`I^k_^#B_jo ziAvO>qg2y&uu(EtjsVV;Vh39qZmzZAlb8*pZhJNdhVvAi;!+q3>}o*o#D+#*9hWi@ za%77$j-+~#FboH5p6aItwiXO`Fn)EPQF&L*aAIn`)l+S*d~BeyVq1ZdFl<1c-5g-C z0{gE)rTOu*(4l0=lE!d$pGZ0BRL_@aqcmxRy){>xykqKSJtamG5vbsH;bLzb%!Zm9ex@h3AnCe*f_m z1z=5g=*REB`}qDhU%r0<9M+c~e|$F;yYIpv;=Au(fAihTH~%+<^IpU>>>Epj-Jk2; ztKW}GzbZedrdbPvFK)pbAL1I2K6G(;s|Izhk zyV6`&n%I3l#jdg&s&c#P0fcr{zlV)(?1_YB%m+`pZyY3>#b{V@#mdVs>op2Pi|*MX>RJR5=}|ukIq$E%yRE`h$QCAPs7;ofadB z%`R5dB~_ciDDGu{R?q{IYjtHv*F}Sk=vD_Nw*ydEYhyKcE3f#J$p$VS3Nmb@B3&7t zr&|pfRaT>!$+QVWm;f^HW4d-vdeWeHUWUz9?Y5iZh8DOG-; z<5D7WVmxj=dr$%?v~Aq`WYydsblzD)Mj3MliHnbOXR z6D~n=+a%CE@sETCDTLBV=W&ihr5si))jA?SpMQr9$orJ>bPWWP#6CXyvtZh8KY#n` z^#er2-@Sb#|9->j`J=aQ!t00fF}!|>^~(Eizf@bDxA*hsfAspR@K<{Hf|?os^>#rt;=3xEg(STv4oYn!$X>J8(-KXBRH~l9DLoNN*zFfx=FJ%0vQRM_{*TtKTN|r zoC(QC#0LN1!Q`@!Ln!z$hui>Vm; zWJYlg=XE2`xrP3y19E3TCtL(ELmfNF(Ze7zhiMe^j=a_J+~k9_4(>-&E#V#tk_U$# zAQmaf5SK-*PMj|Rfj+qipO_2~wy&D$JMHd5&*2ubUz4+~+8RzrCZm9DoqNWGu~T!= zwP9_Kc{yzX0S&IXg8?grq)QO)$^kYzRCiJ-IAZ*?sJD1}1!WOp(U>R>(0A>kv)Zny z9pwfo)}3#+48Dok$dZ6^*U(Ba574$%JW|=qRi+38mYJ8-qZpCO_!7ag$#=+kQin+Q z3|$mmq!t`Bl2*kSE^}1YG&tiWL1osiB9$qNh7(i=&YUuaOoFkK-AAJu6hV_W^S-5* z;=Qm#MX2OsY&$ECae!!;!Qs#6HuE@2*TX|JwV0zNQu5%KYy~@nA3WEWL#2BE&XPuZ z0*J1pv$Y8>Iz5m(r)`dY8g;e{(dlGj*-tL1lGcD;KW08@P=R8FU?lNdYXx3Xmc;aw zCAr@wLq#Yj`B?>0DH#^f=hE~gWeZpR(r;p;^N3E5hve=I0xuV&a%)bE8c{h}sP*xN zL+2DWb5#O9-uC~s(*>_xgbpgLBA|gEAV|Pg+MMQoaa1S$)!S$G(a3+lG7zv%fj)Tq z%3SHbriSTXC}3v+Y%5DQJlkA1zKqZp%gO8xXNqvnm&`*=1@>X1B7=APMhP*vPo<{G zE3^APV!lhvkvn6>QdT}pcK}sDo0FH%a-USlKwMazrm{%VUOJp0QBOi$3oW^+6b_~M zQ2Jn+iQco=H$iIsAz4ff9XzWhI9%GXyv@{1S>)$A40@Jo7#Kv3jsTl8p&J|ng9o}f z_;rd>R^8J>Yl7gIO0I+UPqfKlOtZHIbE0zzb~F&}PlO_brtv*Yy2Fkk(A01OwINRQ zX($SSIdal`Put4Dw%DWYa41WP4jkj8^RPRQ=>~;31>9h}N_JbD93D=jt~IcN+Wjqb z!jbsfLM7PYuR~bY9>C&GF6C2yZq<~6cF#Q~A3M4qzNWE5B2!Ht2@{t!Uc8v?0MfMl zl{ST-*v|nxvZ_aBq-i&;i>*Qi4qE&eHTm$f-5~feQ2%F4PiQ>EYM`-CAR$Cuvf0?k zv+jx8(&CM|Ytt8_KQ(tZ*l8f0&Yout&Dx%tIphsweo$Jd0{%Y`oJo~VO>)8;Rtl5c z(gTxZ?~)=)sR&$|q(OOMLBuq~+3atiiusi(xH&omGr~K>pc-Nt6zm(PdW(G{DX~D% zvwR3e0fUTQDNA_S;6QpY_{im$e9UVhd%RtC<-!YGZm|ro*Yk|AaBArv1g@q};Lbw} z9bBq>qq$J@M^1W}S1f9ykld76+UXV@j7NXqx}3Hx#p}iLdy@Ocv?Efys4y6XMF1?w zCXf zO`f3RBSnDa9m&VeRF(@J1yiTn3YuciSSwnt16i{?#j!?tJSTf)Aq)Iu9@E>AhzPtZ zN;C}Z9ZE*(nvg&Dzx`*L%>DfJH{tEi@MQS$+i$|RpM3XE(9X7tf0IHi-CY@WOR$5t zy#_b}geBRo*!h>@$&Fj3NwoQCRN>1Km>)#SIo4noYEgtC#~WhVu4jUdJAwf4+_ zq+}fs!eRoB#~1vRm4FN@NiFz0GRcq+EUHh5R8p#bWfqg?!a*gr?Kr?n#Uj2mid+Yv z(!JL<*&LO6I1*G$nc#6~0RBa_eDS^dnZ#XRt3SMP(S~Xd_by_z7{PzIYX2c0<`@sl z@W0T-z;tPM`#c}y+I2yVmgnM_v8e>ay?1>h_|w=?gg^gW1;u^J} zJ~VP)blV9^odK#O(gZ|0B!KShwCstB^dODYtcx3|(ZG_%fwH9^)a|P0HLyv;OsZeQ zu2k)_fci>&yf4;CPF=JDC zym=Ti;8ldVwET%@2E}r~Xdlo#G6N;0>2OP$4vl<(64A8)-H}|P3yu=|{@A$N)Bha) zj~op1RO?Uwrt8~J^Y|)%?hmg&^Up~^|MmrjTVK9?n*R;Qlhad;xXqqM0$h%d+H1*; zv?#*s;+i)=aV08l0HXiyniU(z;F(zc1NM2c7IMRUS}uVe(34KCQqPFK#CB`ty|wr# z$2u@O&dcUUema{JZ$3gDqky%>;_^>l&6hIv-wHava=R;c#;5v)9n1YZz46$tZ zd*qWkVhRrS5;qGHzleA$$sy_1X@cSkC^h!T;2NWye4V)kbZRTJxU_nw#?z7rUUs_( z43;oo<9H3Be+at+TF(T~Mu_%ACyqnvissJ4W#2Fd zmlo>Oz@=~Ff=th9H7}?qZYDS2I1pDXPvOoS)WSA{Xxj>|^H0N=Lp~LYEJ-|ep-P5qvo{VGE#MR>PmB*_zB_&? zA4z}`0*0uwu#r~dm39Ve|BzzM`H2mYNE0t_%*8-|a8as$Ru2oppAO^G60&0rG8fc= z*~z6yM1rc6L#jYq(sE)qnBOn&#?>E4KTI^tj zxHRtf9bxnWW1Z*-vv?llYDU&QMfA}5_xf(i zU;3zt^QpIQ-hT7;tB?;)-+mI_ehv$VkH7oTU;Z18C;9u|fBX9N!|-2t;%e9LT1@}{ zd;)ZrFM-j@_l2B&YW`RMCFoDic?osLT+Z*#wY{2&{@~yRPPLbIS?ozzlfaQlZ*+32u#4Ji3K{& zN4t5<%(uN z#YJpa99qeeNse<-l&nNGt8p0G1hu`+32dDdNgx;33X57g{Xme3IUCJa5BEZ)-& zsMH0ZFM!@#Az5kjFO?4Tn2{>ok@TjR4Z&n4KUFKWYzA(E>H^3y!hShqmmf~x%0VG` zuzF|*wQb)uPD-h*T;2m|3{#48nO-hFp31X~A62=F4PS2B3ANPZa| zmXWo!Fm-X10^Wa#O@;tjM`VqP!C`GS+XgLvnEVQPOrZ__!a|n+on^mGR-}C zrFDO{&QZn7tZ`eftl05_sc>W&}7qz#$eu z@45lir?I?t!D8SHOV#l_9j(}!DRn5zp=42${jVJ+B`BH*PY7VeR`TO(A} z0ME1G3KS&2svsYe3bqMg*#X%L^5&Hj)N|^ODIo084?xz0*x41aco;)-p%ie1x)Szi zweLzRl}@ok%novhfFKuL+H{6iuH2tvrFep#GQ&ift@#H|*uUiQ zr}X`NN?5B;&xjRDOcJprsTr`=fJ=|}2=&eiTOE2vH-Wp$6|V*JGJtIlho=1G*BJ_< z%`uLzJ=*MEQgmF$nCjy z(xj?qK&EB!u&A21+~zFWrr3lIv?SH)kvPt-0Emm)7i@F4%B{!RaE2~xZ(sv>)s<>{ zVG(;=pdm=F987z60SDAI=uoHCJZgP6CXLGZ>~^3Ur$;}g^A4)4*dFx?ffIk$58m=R zhTD}wm8Ce*NE-Y@s4zRb1yZ+wW9HX#c(h)OWF>Vha4eEuRK*(8Hu5&1vzYwYf?$R8 zFzqs1!+`_W4WI)mBfr`*3%~bR-j%HinBE=C8(+e0kXMt^it>IuRdQwTRJ&~V$ZA5~ zK-EGi73N#-`_3+^{gK4gj##gd8VRnT%a9(ZK6zw#D7b={V{Dwh3`A!&L;nP9>KbVt zT4P9?l;;6u5s4g49{Jjf*{D!1*@I}*Vyl}OW2fFA?^FgNqW~+;5BVcdOvNm^kPAeD z&<&m@uHjOgPq-%}X{X2ThdrOw4O=J1IjpPHuWn89c`X@0!yAFc8vuBA-1ihux`y*= zoTW=r@k`F!Flsf@9=dX?vCgX7*i*Cxmez7r`I1HuXl?iHz223e!3|@d;)AE{~m@dS3sLews_cUXJerrR02`XBOZuWGcrY;<#$`@VM6t;CPp%JiaCGD&OTH78XEO^GOr%*8;GE3TamgrTgV--`9f{_l^8VVV>W{Qa-B&`I8ZQ8P7 z=>w=Nv>|6=y;c0N7~0b?x{}l2hA4fi0f+A8098?0TKw#`>@_EUNB3gh6y17wuRAQi zA>$`GW+je6a?f}jvf*dV@f7mkN>MM6%JX3jPKNyzR0hsu^_w)6?m-=?olU+8fe~G5 z3lMZ12M(nfZXK}(T86!BQ`GZ8FGgN~!jcZWb)0(!*up5u5IAlKtzI^QcwvVs;eo!V z@&_9Z@G_|Fishpz3q@2u+d|$okk(XJs_t9bEqHD>;8Se$)LI*uAnKw6+*3kYwKinv zfPwC*UsMgsJ27!ZOD6NK=YpZC)E#mWK`m^z^aig$jm+~IC`S1RlB(9)faa34uCw!A z!;dGOwUVpQkjc;iC(H!|^=YVxS?{8e@)G|&Gz8&O7BA83%`WM>F!QD5w?`#pC zS35XIIE}1bpH%|9CIGhPy2^*j?M*Qsc6H+`nlEfnRfYE;RtnvC+LFfxGfmPHCnVL? zTP|t2&B{*I|NN?zR;0*R?LUUU{o$TfztX)>)|Ed#`pfSLA`|cM>Fcl6wgfrz!;tMs z^Jo6wV0rkd?_NHP3g!WbykRdkTB?J()?ohMbKwA!N1=W*?a(txJy5^RcGca7y#~M6 zm#~|8fYZ2jke*JQ7lN|jZ;wjgtfME+6>qw6bm}_*^H8!uO|_iNm~AH1teglHQaH7gY$~waaw64A{R`}%vN_D7vuA&UU%0xV|s>(osl%>F#(&%bO`1r3^^r^=Y7tT ziy>$jaM*Um=7gVsAbnXU@FQ z8$P^;sQ~rWvWa>EzcP#?@*&8#4G1(Ba4uZcacEOB*Q~Gmtjn5@Lrob-Qhaqfp&#Q zr%JdIupl9eB8jc`{J~-tR4rWruUYqQvcYTj?SFmy#8Mad4vB4Sqf0+&W_DB!q*{m- zz5y}=WlKq)L>X_+aYXZkSJ`F?t#vyiiSn`lF#ex zAUN|ZaEfwCppDy(M)ItJ*(LL>Y9u7lmpmS*d#v)T(u>Mw1Ck6s85<2NJ_yaVoyyBU zEF7InM1LB*FkPLbUajB`+3>W2puOw#!*-7+=QEm6GV{9uVWJL)TA`A(W2!D#T|&*J zf<0_uW+rPpzLR0|su8?-!WhEVs#2RL&{ky~C@)n4oKPVz!cu~Y&Lx!Z?W!(TADR?W zU$CLflzq%43wXU+NhGgmUxVdDwzIT?_68K~QST9%kbxJ;NN)Ct;8_46oTGnPeWDRz zc|aX>D2<1^b&GOA@5qNXYeE8aQB#r)^9SQDM>Suuas#5B7(pWO?b+*-!2a(iuV04m zeuQlGQFt?%mLI=^{WKtSxSb&G*u%u8iTUCsz!mSqmRn?a4*?z_J$YP8+$bB=RpTukMj z_do8QI1k4h0G-z9keH^30hW9_DqfuhVovd-*a}F{>$2?I8h7Iw&5wZSy9qJ`*eqkr z&c0VE|83+5cZ8P2aLOv*fDK>4@83;h|(rH&Py@|;6?YeUFpeiB;X!NP*b2C>)6T<@mq;!v`Pjq#tGAY+Eht#h%FW2v zO8dCzIj@0lA0Eg}-y+9?1YKmzF&+LTGY9h>Ao+>h@yusi}H~Sz_RXh2O9UQJ5yF zjACN1R=NiEp0xInimBptg9#&F!wRqzx_?*cEX6{H-YtRAU@!#WEURc9UCM=+py%AXEXDX7IDgYAploP;1Nc5s?O zxdrr39xx`D$gtD8>-^0U52gT;)+RfYm&}cpaFNU32)&MXqz(`nnT{}@pU4dLhESea zaD?1J)ensW_Fm!A?*!7FyoeLv8`90=2JYsLLI?o$-t0?5w7PlLO$YpxX4UC%oI=dF z-DE{Q{J&Hd*UfCQXY^_A!Zzzl?4iJE?!@}+zA&c}X3>WmWQG>XL9YxK25-a(t_M)Y zvGz(aaRf3**N!pzqzuw~jgK%q$Jh~4V#sy`DGb9Izg!NaNDW}mBRf7FUo4l`BDd{h zaKY=OBE_ScwO@BVkWuMiC$M1$#{GtN= z4>gUqpHPpX9Ia0R_437bQFWVzEbRnk63t}JE$&;H)w`k_@uKuf}4%09^V< zbT=2dQ(^nq722(EJJrG+`xu?__R8&Z3go(QU(NebF4O$5bl;?DmXV6Wam^Mv{Rsm6 zA=8C0#dr_?jn!0x&*t;;2!AZ8bp7J_yT1#6vq$ki%B#N1-Mk&Gd^vObH%4;5c>RVS z0}t|N55hVji|zcS*3PG|pNAdJ4IRpSjK+ximH+Max6mp38ZFXKS}DJ6ofYnqo*$2J zv(5)n2=a2ZOeZ$&dgz?o@`!F0b-sQ_422)Tpjt%U#BddZq!C*e7KjSVl9bVehT4*0 zv0{IL41uk(pef*YXzT=S2lcBUT!qM?Kq@Aj4G zg%G{%dXt~J&ZH_qn%IP>WWoVTEM((VMTv&ej`LVT6oDN^zDcpstz?W$0dT0hl*#h{1g)s$JLLrD#r(XItm zwn8NTH4gEV>cT~e2Qc`pL;{D2h%rySY)A%8q$*yE1Dkl0%rY*~tW z+NlQ6fFaPWg{Yy^_Mxi8l?kTsa3ga19yq2WwgoV7Kg*kb_Vg{$TFrJHKPO?(?3(9Y z`$aB=hKrOL^)NwgNv)AN1%q6OV{@itRqxrpGgg2U?cnWkg;)(>2i4kB0Bzmn%YgJU zsKf{~95wb~JBA9mXZ52__omQ1#$6UprEn^X>GCvl_!(5w~aOrkN4wU7w4^;+fsjarF5sFuUNXQj#Fb!# zZItYZv8q8DCP*pjo97%KpxjuI!Da<&J2pn!4C#XISOUn$VW1q%d1!YS(OGiFB`e;N zo^(cACe4GiG&ks0Qw=6{qv~IulA2z_=N|Z9_@>b|qk;#TUMZ()q!pb!Tfjgx1(d@q zcMydVq?L&Gla9gQMo<5q0GBf?SKLzvy5T-T0@@C&hMinn_9kz}TBdAkg?1iHhf4LM zn=tpf5;3Ht5Cv)5KuyXi`GenEVdrC+Gu&s0E8}XaEm9UbDNK+^8*n*c^jeo3A{ANq zpJ%9cDi^I;GWDcM(_oY@q(6n#lE?~!g)S|W_lF{+wO{~Rdk>5k&u#DVQ%M8DJRvV1 zhz11M)KzFwbKNn3B}_qQ<17A6_}}+D_{Z@23#Yd-#r=ZzJFh>rwD|U=Z+;X!Xq?q& znB{+8=;mny!NHqS^K*vGSOf{V14`?Qp6AbCca@KjY=FnRKm#j21}byhp%-jw`YrT_ zG0G?H6E$!?f^13Y84}pNb9VhqSm97@9Lt+t8X1VcxX;$2wyH073>La2JV-z?qvuG>@If&&JG0ZSoyui3RJEi=DMFsilG#Pea->}Rl|#nm za>{v8(thIJMXhcQ)0;85_&p9Q5>1tIQ#1Q52g*8jA13mun>FP#UadDAia?S$YjwC9qrF@iT0J@zHDAih?+#K_^m9j(u{)dQ>J)Ns*wZ6${IY;w0 z-20kAx7bOJyeOA%hp(%^bYT%TKO|57I1X1Qxx3jAOCu$hhFV6D`2&Sk&hK6Vc)2+t zu7oDFYoRD$`}5Tr`6xY#6=7A+-g>t{zRXfvo)p?Y5Q7fg*=QOa4M_HpO9$*d+Lifs zR){=zN9rT&VAtFFg1cn!xP42()vcfMrde)=%}^X1UJ*);1{Gftv2HU(6s(;}fEvP; zvp%WL2rO@mG#koVvSlB^s#QrTOQ%SWoDf}xMegQ^t!3(1KVS@q+uekQP&NW9%ml2k zs2vUw-aEL{%va?%*wucHQ|~vt$_;^xeq0-3Sa?y_MXa(crK5#Tk^t8hg0bA1RETT4 zUn}|>DvM6!2bRMQk&uD}QV%-ub2z@*J%l~`;U=$DJ80dgGm6%`F-u_p#s=uhu>C70 z_ooAP$G!)V6eB>1fDC|u^f_~;kY{ll?loFGy3nNQpu~oaAjg5oo7t)kfM@1A=Smg< zD@jsjGuw5%Zj#`n$+fv37^q$`#ZoeNfa$iMGHOOm(Z1-h6!-Q!cZrdn?t|BF!s|~k zi~AX~!WOZ6-q@r`?|pT>&N*QuN7R6X@|j6?f!hkS)g`8|3zNv81b;JgP^W2|8KHt` z01Tyy5J@G=bp?iN_U0`@XRS5%vGiw!^m!gymIxDrgOgh{KhaF;akA+_>U>5zG!Vj) z&Jiwzu_)Z^c|k?)+Cjiwo>enwauBJU@n->2#AH@gVK*ZHMwh8ZxAN6#0z8L;KXtg& z@(`qoySN;O81i<`p*}E30Yj=1GtK~0f!TrM5c7wpy0u(zLslPYj2*5_QotJ2bW|iE z^irP}rYiWbgO6+Z>JfZ!HYy~`Pzew*t=$oLz$SHeqI91Wh+&-?`z?8~rDf};8MCNI zKcBkGd=HEHh)KnUC0H+kehVDtbs5UZllNA*A}ka-=*fvxA?n(1l~%rr{LdLM_^Cq)l8p%|)JXpoD?fI?n(s2S-?fRWIYz$U5-B@1ysqNG!{ z?%=Lg(+L+f89`97+_1LUw$tU2yFSNc1CSHXbgI7$cU%-pk?u7C+=6<>%W!B}DvSyTHbNC|dGtO6rolPW`XA*v*A76NF4?D%=VNMB4@h3d z!Kub7<^VIxVdOXs+#wf{21m%95#;A1wGKv%k_f*W%d8GwmB!}*_8>P21#EA7;?`6e zL@K<=x_pTr2OiKmWM(vW0d6)n83y$`(&Gh@62Y#I&{mFO#6yEas<|(a_w6UaNDxF9tn!OXu zv4=TNwL~-M4(yf(=v)BURL#vc?ds4#Mf!ps9C=cLhJFLprE<+?H9kD)XgCMaM*?6- zJ|dCQMlMJ9F5Y(d8y_k?*t2U`r4~!jYhE_UFK?>gd><$vqR>a6jL| zd_yqbi3u5sR)hE* zx2%-UY%g$I6N}ZWZem?t7vi9|aDG@>F9FBZ>RhgdrvVmtx)Zr@BGz-G0WsX;BBGJ| z&0Lln7)NA!n*@F}D(AKx&fr!VZz_j}?QeUa)2JERut)?3G|v|zQOCa*)fZ<8te&R} zCt4R=wQ0wO!)Ez8fKzj?UBZ(Pe@OPl#j9&|aO^1QCl^|wU>HhxLiTtb&ewsd?_A$% z=+C)dkxII85;c%UpB)n{0=H6eYk+y^NGU&9N}iSyTVg}AGC22*N}-ix=REohQLMlb znA98$nu7WLt1dc6tkQjuOAq_a`g;K65&+}fOu9{n&{L^L2bcWlqogu z>?9t&8_$*ry73^b42vHEz^-ct;tCO8Nm)lLw=`0(K~O0`TVFxPyf_Om#aOW8PR+{I zjN>*`C{&p`A6~U_pA1i1s2c&Xx9Rd*#;NZ{3tpj>G%?=`<0toXpdO=7#+Hlm;0|I-n{;bANS9G{`L!g z4BvmighgLJqL9s>4rqe+sk&zV0^j{8$aj7QC+d&GxBuhqr>AGy;A#>JNh`hYs-D=0 zZF_o=vXE#!%(xsbZ8I`h!i_t^tWzg?x>9Euwp+lSZhwdaG#!iQSMsjNaqklEbeOqk zFwtpkN(Hgt;u(ozU!`s8!&zzz=M1f3*iOr$YJALS`o;r1ATc^yR0AcGRZt6EIjQ)h zG$-EB&JQUdsBDT~0jTtXr;gjv@n4HZBxyEa(>!xTI76pNr}&IV*}-zx<&b>Ug8o;# z91h|nlTy26B_J zXCT9_6J`P(nm!5}V8a}C-EBFK{etRqbRU8P!6${?_ns=&_Kjh8X>RMgGKEt`?Y0)Q z5$jceI`b{hnVXyezzj=z3N=rp^1v7SDj(&3QDm?_4D+FM&Q{7$O zQ3k2Y0VMh4{&bmMBZ1X=6iF~cMfEkgq+p>F9(LPYun)lcddmo=^WXv6q;AHrOXdVnCne(9)+k~ z-&o%4o5pkvgiL}S0ng6*l)~90iX=fifN6<4wz;q61DSW~+ol*bwk+@p06??^3*1m> z=xS4jhWn-_z|T+*dY92JQJWKUpjxwX4Qwz70KF7L2Y?M6oYw2gZMOZ$LivXR%0;Q2 zRe_JWMD5(%yb=XFZ`wjfqq}82b}_gMB%}dS;4~X8{MEvk$*S1NI!DnT)xg%+qjGC6 zlAQ*(z6@zS{oP-niNAjPAn<@6^Jm|G`$lp{#uNNceCX@fpM<~W$?sl&6Y_`r2y}Sf zva{v4|EK)i;k1GE8em^U{J}L->~oldKx>+gFlBAt%+|OD9Nm%v5L5l4-fdwmVRMYJ z^)cIcBCIy0Qt=EPUTubwsC4RX} zuE|zxq&-e`5$G~4{SSrP1_}G657wmGwVGD5 zQCmB15SFxfk4y!0)VDLb0MN8-!DnR>-Zv-zYm-s3UKqxZLzabr++ywHkX{N|U0L!A zfOsGUvmdbGsC}T89kF zKw!>lqC;v|USlj5&eA}(8P!C6}ZRH@7I801c|8pvl;^ifQMVKB9~ z6)psXwdwQJ9lFld#TH($cn84ERKl-WtA`qsE9$Og0)XZox+-}C!+2NL& z)u1r|g}#hsvo;UDN@;hC$J7HuJLxW*>wRv4U@1U<&F2Ujhk=J`!RiDY2snTXfS!@g zp3U7wMcjH$*U)zFq)v#yS`4mk;TE4y$woSjCln3{T1CXQc(d@mAtkCFjAkQTPNNhJ zJqJdJh-({Mu^NC@CazZb33nJyS@Q;dD#vjU>)&d6^0_X@WPsKMYyx=imJW?Ai|4f_=^e`04(2 zzkT~-u!G<4kACs?bx@q$pO0|ue|`I1c>M%ALm$3=f`8wBAN=Hl*AMbTmKG&{8d(%e zZlp<5e#cZowWE%+=7&_J7u!)jB6gdD;YrtCCGI9DQJAzrc+5y{atXHwY=MgZRFOKM z%D^JL4(Wnzk=>Kp8*%Cf!8^sRaHLnvb#;Ko$c?XRrG;CFqJF}C z4+TBVQZGYKDFnGro8DU%U>q5G~!(hXSsxq~3UchL`{XDX278m6cwG!ig7rS{uH zz@p8uFMzl@ZQGMnI_#6rDLgEm@>QB2oV#+Ao=jm`SH(Q ze}&=Y&tE@QlF?UhhQIst^>g?~d?t^7dQv^T_ror+N8H_N^JZwQ0&;OzQNlQ*ZNtlu z6A+|mylD$BmbLQc$xsEu%K(Ki7Sw2nrkd~Df`+9@7^B00VIG;{pq2plK4?y64}Dj-EgofkZMU~ zc?lflon0kR0v51W(f94DdN5Pp+PVBwtPL~q-l~DhMs+Lq3yKS>N9b7k&PoO1K(iVL zDd}8Z6vvxcVC00RfP4{a~-yRo?i`AW+w&nl^of$s9K#kfc~k zlR}~qLU=xD^8+%#mEItidQwn!nxN8SmhKmL1UR@LRu{zAJp;ItwWLCiVp8BQYA4z` z6FDgtmUDL1$;anT3Ur>_g|5X)%w~6GwzXFdP@1422cPIt0cw0g)qo+ZZH#V`fckz@ zvmYt2l3zQyPKSlZdQirxU6a+!fTZBT1ZJj)fwn6CGg6x_XuF}NBNv4Y0_CYmcl1Ev zL7ak`G8_he(+aD)8XF>eO{MP{InBGPr^|fBq)(?WiZ7EFK|e;Df)}gy>h3;L44al8 z_G1dw-;%dJKG3r*5x5NRb>L|}RFuGhZY$Jqr1(36^G1L2*OXU3D;Vp}w zZc@qYWAsf0#PjdiVl&(&X`4rN(1i+Sd`a)r9%>eLmB3;NQiyl5L#6VHdLgR_hHZho zZIJ><+CK?101O|rk+90~=njQ4mhCl3#Z4A0U`NQg7K6-ot z(a0r5l{uPEAht2XFAmiHP9ydLhYbu#;QxaS4hGeX@TK}i)OX&P?Zp(8l}O3@ykA4b zx22K06pBOyeSsOTg)J?cV~C>^@OXF9PR)j_w&amzwR^L^E4#@u4}fr2_$(Rx3sPE6 z`2Zls0(I6aw;9#|@ati0hKT<3A=WCnbC~1md?RUyHC^(F!dKSTh!^DKiGZieu;|>& z{`$*+V%|5L-o<<1Y{E+>+fTbtc$&MJh@K8sH6T7BHFmwHryOVJz#;ftYDCr_PArl?-=wCE4mFeO4J9j!_0ifL%Ml!mz9M&&5Qh; zr_I<^+h@(1+a-l-b=$YITMH@uAxD7mI2Q5T0-Xn9TQfvX3YBVgQYh?G33-<0uPXFo z1t)mxsxuV2*g66Y5gxXZjesN!uSm$PZB^*x7rPyZV`IQ1UUrP8ij7t6(T!xzJ|1^x?FjwT{}34 zyU*`6b?9Xms%B%YF|BqoO^^23PbbgulJD;Au z{U3nl{qx($Ihln=i9E){r6H1dIC)1cRV8#jDnlSod9c^#jy=O}{4` zR8c7aH2d%k$AD`|Eyh~2CB=C(4;bIBAV-X}(FQw+eRW+|-L$+j%yOEr zIvUbKTbdgC`({<|VY;b&jW?|YDW^1d<6@@9?M<(3@K`U@QvgCccOZnOtwpO~kkoCG zH)fQ8mP6(l^R0m}Y~1}cZ|i9=s;Ok&sE-POfL!w%mMRqc1gNcAnOUmPd76S^NjibI zN{qGqtcN242HLRQcx_8y0-qZSG9yeNAW6ft0`WYXl&wH1=0l9sW}2?mxJm1c3z)E$ zoa}+4868KYqcq*zG9}3E&`943kM5o529CF)GRWA}HN7cxDgWMp1L>MQ+ALE50%I)9 z;n@y%Ogk$}B2ORLHCfKO?wt&P?hOMIS_Y{hm22co1{P>=L4ni*X=H8ewEN#FR<|KM zx6>`06ZSB}9b>dGpRykj2l4W2vm64jmxhkPdny;=$T{5^&d|;Vkdo+fLAieb)&po> zpMe;EMoLku&{zI}^7Ta96|BxKkiwRKyLv&Yz~m<@_)y9XBAygJO!s;QJk(n{KoDRo z*hj?qcnIHXC<o5T}^F?q$VIF!Vggb>)c2#1yIF8F2JEQ29>7( zE}#nLM8FRUG#ywh%ZHJMovQL+-IZ!6ay%GSnNbzbIV$+8@PohCgSU@e69>`yHxvi> z4ebhkA?=5S=x=}i_R;I_!?!>G?ngwbef;*d>gQlpk`GYg!EMqrAP$U4 zic&3W(n*+PsN}Tr1=^#5&On&ynSi7{AhGdGkNVJ zGgtGqBR@2Htei(&O@s=-)U6=6cn12VA-day490=yfeQ(FR-?ta8L#dP2SxjVz{nF= z7h&Ept4+8yOR8)T>j|z)=>$gW@Dze`V6ol8 zn0*E;Eh$-*%Z)JP9Nloqkc<^6XIT_cz6G9CzY*UnsA{T)q#%VPe#!dMl zOSVt2<-X1gAtjn7^FnBADPnDSR%4p2S0h;T_7HaQ1PIp3Wgo2n$gHQTmVVlmMz6C0 zssR9259fC0J*f(_v_GwR5JeDAP8W$4_F7=Y7^~gsT#<5;e6HR?T(E~{WIaQy*bc!? zlIA1btcg=kY>ZqmDXbNEYz@u13gg8u#xrCZ22K)#SrMNRrKNf!#9LnDilin$D|`h9 z)`K&M!t$4$A=_7X@4NRkdgwuA|uR7(X{LMxzCaL)@~SVUjO zqP30VDHE>CcAYtNjVkgiHSfsmT2bB_=mzqJBV2gZBi1-d;9GHX1(a`3->?4|{%+5+ zUlBR}l@U~}hx!vBa^ILAYaSwo*WYBm(nsO&wXYv&-qqDpc>6tfP@lbi5#BzsQQ|&H z46l}z^@ksI?!JHu9;ALgXEUc=nPlYCxBpN0?w?=^E4MxE9cJlf^PTV_HS{p@l6xU6 z^^p_=M-^Rp*HxAfnD5ggJbFpCCFu_6+W;^#DpOFvmdz9Ak$cQl)9Z|H*~PO<7|-&w z#C$r%mc9+Z6R9G@=A=Y8_K7tEFI2vi>Oo?GY*3oGUhjFx0aI3X_<#-8&}21FS96 z=_QMaFZIIUJ`E)#e?qoJG9X?V#@!WSU(^97>HBps&;YhRh+W4O_bL&1OY(F)0y`Q3 zyE?(p86-=5q^Qw=OQVyNNL^5=foY!o-~vzS*4#4c^siIrSobYLS&r1`BBr>Uv}STq z2Nmv_b|>a8huwXmClUEQra$XwAtUWWxMrR9RUvFU*rC;$D4KAggF=$aV2f~AMSScA z$@}C8++v6Qam@J*5L=zPF~Qa8lJ!pS_Lo2+Pa0G!OzS4Z#|d-6#qwLZ8VvWkc9N*z zr`JNy(>Es9p#mwL75uf~u=JYn3c!5G+WgB}U!;m-TL#?#aPf5y>yLRZRQXmCn?iNV z^`SHnY9WJ@=Nj^t0aZ%=9_o({9%tmvFgemRE6ZQUI#PL%B4 zn^arE`oRvdu{U&EeXo@iFqM2@hA+Jex$ka#b(~e*&US1NRDh)}iWK{bGCT~;aJSh* z2{9z|51$k_Pq7`mL_BVltC^WjC|a_Ekh?TsIhU;GEyFnvqKb73+=EFTy4jKZ8S<0R zHa-U$eJhQ6!}xC6!eirYiHw%80F#T8?-ppZ;4&}vY67b`Txy!(K~8wi+c2!Y-3lgl zO5?I|-^?_)PtZ`uL8lO!dzR$XzaDeW2zQ2=2=Y>GFYw-5GWpQZabJJ`JbeFwJ;VJ* za+G~!@A(^MD|Io?yR^^qV?TcV5aIm^aT%8x-iGX|eZp2S(|(3^k+XMf2{!25S}#~D zgSYmY>4EA%elD!U)s<~xM~P{2g5}UMwCeA0r_tD2agd=#Sv>>TH4QkPkwT)fJT`3tu+C;paVrJU1NT#N?mr28}AyK zHn4!Oml>X}JzQtfOntY9lu6RqS$DK4d|V1!=b;Y1dFOcInz@)M~_ae-XZkAY#^y(TlWT;>!6M&)nD)`wt;<7 z&Jn;$r?cdWQT@YD_2J9ZI?j~RdUbvR){=j=6{83|?3z04MxPXFu6NsLoj6Ko;sA?r z+|>Dl&}oR+m69D;q+WrY-H5R3-$^Ur23+uNxcp;s=r3Bpma=j;K^nfmsTQEQ;u5k$UB=ssk zi_CJMj+AmQn|TA80M-B{S}}T^%G0v9pqSPaF4P)QB!$ygwIkwZ^iFEmGuP^{U6`fF zdBjOm-|k%&u`jG=bJJ-(^h=`*XE@wROe~$`$|5bQuspM=2?M?2q-w>a$drqsbe8oV zx)mvXXjndb{rvR{8Y#R3e%`Uq|3(Y)_3^>{RsZt(!RsG_e)xqx@&uWm_4spO;!-UJ zDcGfNb{k>9aDsIno*pFNb($WsGROwZ$jsX6am9P8z(=~%rK(cXcT5WnrTDV z1sDi^Ud9W$l0nzYtDpH!CN8?`L3bI3f6)84X`h0bC2 zS;2(JuPklret`aMrJE}y%wE)1(NZa-pq*@bg+sEmQSzVT%ylP6&9bY)w5=YxVlYHq za7??UL0~S7P>6sFIh@Di+=3Mk0ydX4n7T=dx2c}4aT$*e;piOcL7rZKj|W09%D?iH z7JxI`0E-aYF(i1kI07P@z$mN+YDi$mTW)+977(R8K?`UX-GE#&BxOmR9wBmtm#vA5gkjG8TBzOnTCk3IK{68DjkfZF+`6#n;%c!}5FpRH@B&KAdE9TbO6sj%Vo}(sl+6=rtbkW>FPwCg9iJ{l@P!NTz&&0Kwf80u=u(* z@{e!gtlBv_UawWH0>vgD3W0N}o($S1#b}*w^7*oHr33k7Xg8`2qVAa}6s?|5wmWKF z`A%Vz!{k;TKxk2ObU4cK3@!@|-5p8r4zN0-mhdrF-9xS`TGI|+gk8>AW%8C&f-p`( zxT_Vpmcy+SRPQitcu4}5y6*U~0^SFK_?z;Xi7@#D;*S(yhC!--)x`P_vlMJ&Q1U0& z)#j|c?qiu$PA#@z=M+1{B3ef7$S z``wR^kAB8DeAtcrHoSf5XRjZ>{W<)lj$8ixhp*p+w?F7a>Fv{Zb$NdB_H%W({%^1b z{co?o%Er|4E}ZMiBh%v=)bb>U-qo!W?;vy6C)9XOc7VL)WsMshe*#C2YlDRq*@7!- zl6BV)?WN>jox=mqH>lOSFpeTVr-pbnoju<{#Kb(cbo)1GZ(C?p5NO@|;$T77e?GXe zNsu^f`8n{yEJg}oyC`R@Qui%?doFRO%&TkWOUv+p1heae!os%Q*dEMOgNLjDLD@)M ztpeG=`N+W?7-VWIpa{z^#CuSRGyPA~_|GOD2@I6FL#=0UY}cVVhbP{#yTn;`sQvINB zmf{&G3*Wb^1MH3-({;No{Aw74t7M`@^9clb`%Nn8FU``#Nbf;8Yh3CM$uj5#Ja6nL zFp&<$ZkupM9Yq<_ceW4Oo|3MkJKzhk9jR4)v@?*!)^1CKQ3vb7`CuJ~IFGtx*Y}5-@bYKDkxVUN6O;I0f1{CzI_vPFlD@bB!XXr|HzZCUcY*GBxRU5fYd(1zv1<# zr*Ho+&o@7Q{lbQ#n>6gCK|H!XTuDxQq`KOhQdmV_Pme-+g!`Z_YKA>iqquyC7o7TQ z?e4ZCX~c)nYcD-yS$l!DY~Cs@_uv@+MS8EkLG4Tejt-vNk=X`vm#XbK+bycTNzSs* zo^kDdEZwimheEC!9gNM19#T6}t44=i*ktm&kgFG(Ha@VDICTV#&U$BB>Oi3v)VG|8 zs0#yYI+H#Mg^1+Pv)(|AU%oo6_T5?D>UG(&hQ=8*~K;%@LDXq z1Vis5O|ZdGM`=)`la)f-;AAbta*s6IQ2{HFYZ7SPE?l>#LA5q^jXJDR>Jk7o!lJQF z!A;#QS5R_D($eG)Z%I1?V{{?h%#hNnGK4sA>EUr&z>kbQiDVjJ%#?sy)1zj|J`1}B z=*8WoK+NJFqUmILhh>WfM1p-c_*sbH(p=;hoQ(ntWJU|{8MZ}|B<1}#V_B4$L1Vx4 zDB0gQKb|0+<@RvFw*E+4Xds}5lvC5KR(xd_uaT~xD$2CDRH#~X?i&@zi80vM>hdM8 z_3@pn>)=B}Ih<_2zDc8UNqsmk6NiJmAzi-{gF|bmD zvbH>>(G{!#k3X+>>qNPdI6r3B$@z%9CfzC zu-jQzt4;x0No6ZsjhuekhN;}SsUWT)r`fGn!cUri1Ui}7Ey+s=B#e-HY>$8wtjsfV z(ej?$F|$(xAq+Gd#kQ1R#~!Kf6|rMCd09w(2R_581c>Kz`(6hK6!H_TA3C%{Qixyc zW!A0-)50)!i>*@HA$1BqqD(ew?Nf0DP|>nu6==5w2^(GgsFsagPembrz0@Y_zF42V zXv8?{0c`@$t0Tia7^%Tm@xg&)V5oA!3)=babPwDOb#B_TWuMYs;1)V`zI z**lm3N`SB*9wh-62Wslq-g^BxeE$Jv~c>VneU2BTSsYf@*yNs(Dnt2 z`a`!N!s`x>yeRtA!cNN38Avq{*>awgJH%2cdX|FfgtJ^eHycpT#)F!(n6Bm5dr}R& z3hKD_&;;eVU57hj&<6(SjE*1K*_iIrJQmnp%^h*ElM1HE&3yK)5XPkN=MGxFQm7PN zl$rv;g>%yxxQ|8w?ST|6*-M%Th@e;hTuI9OLGrd63OoXOK#Ly}8b7JE-yI)f2jurm zRsG@YV#9SQ)yD60w;l* zet8)2cXp(7Zu75*z%sbVTj)*+c$a)CR~L+{q3zIho7~VVEK}>S5}430g(TJj5QU@Q zPEYz)1%%#ZsMrubOj=g%D!>D{e%Z>bq{i)xYSK{_5vMSgJ$Ubw_>;?(2H~MTxIjwP z5bkarbRA%-=*dCO^-s^9anYO4GG0uXf-NTSOQ|L4tyF!#m7tGeJwq+eUP7}3PflTi z3S2cIv#v{hUMeYaxyguUeOnq{6MN~cfvL4w@O4_9)h2QS)YQ%kh)O!2kyMN-xz=OkQ-!jnc_2bu{ z1Fz7+ceyKd+IsA> zS13BnF6jV;HU$z8M}TMtMN0N~>s;lXfDI>$8XX0rzT}NdyMb@Vs|`yu;1%{Sxk~jI z&YTNqa*{Rz&Z=k4Jc!7yw~%(@vl;rxMjn`@dv3M>mu~yYYjkXi{52pI`e>2UFl86n z(IY_K$%csFuTPRm&Pv~tR8n9KTW89(rJJDgnMaekB>flgo^r)W*9ZYp_I3({lX90x zHVER;4Se+%Te=8t(E&B66+SRxGJ+A8V-T``_p-N~FyEn|2xgG}QV!LcwUuokSwJ7L zWJ#}1>NY4u2I~=t)QR-s`+m9ewuT8o@%Il-54&K)d%zrd#p})p@^Wa^Kn0ff|IFP# zN-c}BVB?m^55PmeL;pk@ybLrt@+ED9(!Z~p;Z8b{)Z9{)N%X(7C2xW&CP)QpCqeTd-wc;-8Z##qCC{h;w!YUa;}<{_D_v z?P#A1=)#tCXfS)0KX+mcbsk=H5P6u3tMHPJ=a794WFeQ-I%DY0-TN7GEHyyVfY+k8 zYq{P^5JcUrS^&(@wLb?<@F%+LzIJj4$k#vXjoIuHOv+j^k_yQ|-heOxP;=}Z#O`W$ zo13!li+(gHo7NmWv>6;y$-}YFlQe!3zs_z}T~5SqhiNcBwnaGp!@M6bN!w)mc|z zg*x={a>k6(3Izof(r>%AS~6bUps3iu^`mLMB=l=N+jaU6|G*I=vcvDtCLNbjZ{LKs z4=`l>Z7?b-Da(BZk0b|42i!zBB*L8xuT|Vuk zp@u6%WpjRv1fdPEtH`OsOg6J?BF#yb4*U+J4Zb1>`}iVE5M5v`%kI=%JgLx<>L=vJ z27Sg58V3A?o$qDs^C6BxFK;=~X&}VXz8&)vY<}5ybSjRUBRg6Rc%i!bw3>y^UEMJB zR}kd1W5_An9VPc?wP7>H3;{~PR7+=nK%`Z0b?2+|-a3FvdlbwE0CaO;+8Of=SJ+uw zrN21=H9RS5-L3HYkwVQNHN#|KO3(TS7BfbF;5$kyS`idodqylVT zgAvNEB|XmSR*V7K?z1qW&|>Exx29SqIrLh>wwvX42_SEIWwbrnZAKwH1(>~!`@0hR zdjb|pm}*dlR+@Qmp`EC6kxH7Yeb6ddH{$lDx4cyAqqJpMV7YW*BQIx;NR2MvOcbF; z3)m~ntli{8;li3Xg$a`Nc#A-Jkd>nqwjW+7S#6Y()hCN(TiXE8=Z9FcXJlE=x>No< z__G;C0VoVDL@g0b%hO$Qfi~4my7NU>741g`P}ZP@bBrb)t^|i|vb@3RkPJdvq%Bc{ zY6_2b1gv7gL;X^TN~a3rjE*WA)dZ&@o5n)ysbeR?>mRkfqO2`~qq1u$P%bUJ1nb=v z3hoP_q?s{DO(qSNo`VkzuUcM68nE=Cs%m!F`fyY=sgr_Rd-oQ;~)8)35YZuCpDq7*YocB5u7>-WgR^(wd_9Zch96;olzwd%k-6ip#Fw5oF;so!{+Ww~JbTK-D@^ zxBdv?4<-}w;p+zhI(Mq-kcA+!6sj(EgKB$bV^w(*J4BpiV(^+=*cVB zyN22c)Ol(yw)#qinYTqU=vbVeMEAmo3@&wQ$BfA6;(T&BF3n^>A}3?a~cAbKS4vQPJPz}Eyo|U;p(q* zr%o?}^Fmdvz_uLuF>L&%?9$r%ehPLP%kbhT=~|5?T4pb~%c=SX2bkcde9%a+%c4V_ zU)zAIouqnOJPRFsf8e0TR%z7{5K>d>r9JA1%GCi#gciS=b1wrv?BkjSYGzEm(!R_t zE`$rL8anV5l&ybHlc)Gbw_KS-(8I|)oh7+#3BSm$v?fyND`PtpHpq_cHf%7&t>Fk^ zZ>eJSBKimWE{xoJ!ZhVf%DWR@%EGv=P-f$sB_E}jp-_VcRgmt9dBy6IG7i_>)%p}4qJBxc@$BlNayq!? ztgR)>PHoDW78i<|p-g*M0aki66&$9@wuXEF`jy?`!#Oaw_Y%K^EL;{|fM6_{NfIn< zM>Z4?Z}jP0PsPiuuwaK!&ZtqdSwjYL>r!jiWo1C2*r?hQEarihh9ChNxCX)c(~lst znvdsO1j*qkFSPoWSXRY;wSqpGZLF~R1)A5ss~9*I`(J*jBebs}CI_P-kVHS;)797e z-s+dfM?W~K(|!K>N3OAcy+8WvH#3y|;`L|yqo2I~I{c6c?+>pZLcZ>&ufI^$gtsph zarkPxFl4nSN z{or>`sq=QPPt2pR(2Omjm$iZGBmtV61y~;2q|iJfvK3OJNL%;(lQfOcUNf^UDa(ke z`Cxt!+aBMp&8RMMcdR}pg!ZCzmX|AOOc^94sD!=(rLrON~e`-$jzB`Cl~!j+;%#3lG<6WuWlqtrc-Qne#~Y>Ed;)5FVM zu!ispATU|`W1;jlm*Px#f-xQYgb_xlG;zV$k{S)8V%~dQX2_Lvft?b2E!K(>-e2gO zB`Ny`W2FI-c=-`ka46fgDEOR#LB{qAvELH$#+sp1JGHvS8VqDgZ@0R1i8}e`Dcb86 zRoG6tgdTcH_(@w+lBiR3lqX}!Y{x`Bt3ah?69CPCB7d<2-9M2Y6IHOAaTxcM+?_+! z{bkZ67Ny2yO(vc1AG(-;!Bm#iriaBY&@>Ko-1-45Og_}HW>jN3Cpw+$7U~v` zAFMk_{U3}jF6;0vuey`_>JUjpC_@WY%e z~KVA`>ybM++u`P!^a1kL> z)xk}RlCgETS-&_1YcV8SLoLHP&I@J%Ge`xvh^(s04Qu3}_V2&Bw_?h zJ41^|9lk*D90DRsg0<`(`R9iO!>d}5)=-8RX2bEXF!r@Qr?je)6+(Tm-5^9tN<+Yr z23F$I2XVzQt6cb(ClzWlX*Q;{S(@Rer9RZ_7@M*;nxINawGk;3O7`nhZg1XOeO5R= zyn)6}t)hnpbntxe3Ad@Ezq|5xiOAClfU;Oep1d>7410>ldB*= zdSKYS2PJboI3x|59Z9*~IA${JnDcHjO_pv@NSy0UxY#6mDm7+V;crC=zS@h6E5J>w_aTvSg{P#g;4VbY|u*WYsIpYNZ3Pc!R;B{$>tDLF;>fe$yu9=w6V?;F*gC z695_8t*K~rK1{9O@<1xq(j=RwC}Jjr-M)eh_HN?zdS8dmA2 zw9FeuXx-{^FiAs`wQdt&d6ur)E+}b1@=2@G{%MDYRr~x6UP)AmsFGR9Ke;lyfGlCa z4yd%BD)67nm1G^*K*+mJ%I#EfWe9@T9r%cyd8^vx?D-r$Np0d16X}+KNQa5;?O>(m zip)i>Z&FJ6r?TMbC3;_9s+g|r3Q8%jE&E_0*KtD$y$QMg*)T!_p4q21HhfVJps)vk z8<~yXm6?{F5x(G^Bqt>Jbvx-ba&^oH#w5&ML#H#_ewe&rFLZ{fCby2shTlp=#|XRC z#rGwu-%nzK>i-h}BDYp`QmPzhsB*VL^vHGXu^h4~U#z6znAo@|Ca1#0QR3uMB+1u} zwFkyq`z4dsSNYMOy?q|uK9i5(?YBrkpGoS;pZTxSJsP$Va$q(Ng?rm_ZE4&NXtJbt zn-kp!h?~}@JC^N>6V24}iLD!J4k<gbu1-2!->) z{5Z{98}d)JjoVt>pE<-QCl8Wi^Mv#-5JrNo(!nLGf z2Zc?Lan(khm%<9gZPN#cYGYz`%K6u&XP13vF5e+9VR0|)4AyjZ7{==<13yg;%CZ;b zYGCej&(7q`Ycr8?*bqEw`ennb#kBNRkbx|*DQQ<5@_{%rRj0^Gx9H9wVrt`AQ0gCc z1i9aV$PzpuTFy$YeDd(pJIA9-i_1zNQUoubJE?GY-}PH8F>jJ5W%!T*w{0$+4s$@L z&+Rf3kadYCMI~Y8Udh=3o)10t){m?pZyq4CB`W)cg2_;-tmn|mD{A6?SMZ4});CcX ze{wnTYHF~ro>cM=ihuIw`m+Kh-c>46Xe3WI3a(!Ky}n6c#bT;n=1x&ir48C^AaRS~ zVQWO^`l^JT{ACen;)_){*Y%Puq^`p}Vslr5Ua;6@Acyw4V_Yra?P-o5sU5?4ZBJL} z5o_gx)!Z@4u_fb(?iHz}p!J^w>9qEzONJ2S%nYc|lO^(5x84A)%uA+k<%iL=xl`f` zOfOS)O6Xt%d^l8a_5_`?Y?9!+OF%~ru~M$@t}($tXz5!8^Ea5e*r_x`<#knTb5$|c zm%t2Q?gZs^Bfo*pFg(b0gNnZ$N$SRg$uWo6vNVvWXr&7b9(y2qJ&XtE*aFOH7)W0T zM#;=xGiGGYY>x1P-LleTFt{5OXmp3x%_w!J!xV& zKuEo^F$r6c*Qya5}uYH&!9#gXm|e*{`Qd6I1>H!>(_?r z53k=4&Houu{F3B;`TB=Ic;mmke(L)1|NZp~RdP35k30c=0`GOH8<;#@?Iqft>{+0@ zghIkaA|KkjPf=F`RALGMO3RHwMT|6Ard$`(>sobW0uOCzk;P!BXbzGtG+$d8-C2gfn6{Cm5twNb<3G-W`fV|A?)~ z%c{)mysX@Lsp{+}O19tp0pc440we)~AV7c;1%gmSqw!y7j=AQTSsOflIS6uhX7#nI zGUs(%mTqgoGl#Xn6N`G}R4Qdeh;?!YhO-mq0>7|+w}f|BrCJl z9U40a9B~&#g0SA7q(FKJEj8BhT3*I|>mHkE@W=|9ek92q5~z1-RE*sVWX(On>6Q#h zVd}X*tZ1Jj$?V-8Gt&OWlG=(YHKXc@vuv6UH|Cwo&S8IsozA^rx*jB^PX^J>4!lHF z!f{)Yt>Y?3>HFhu>FpjQ?Amx?P-;-;WqGgdg=IN(F>I9-p6@%(9%_2bi!l6N9)y_8 z4X6h=@s6QoKrS+6+tdP{+28lHliDp6Wn^WX}bc00#5!1hj%Gz6pvSQ=Dq z*k;)=4#RxsxS)fk`e+#lawv=i?JUo8km~!9cZWZe%1x<8PJ>>ab)TKhD{tTWgLBPFuz@m1?SzJJ81&uRbGgk7a5{M&D z&_+aZ2OfDOcKh_3riuRb4cXHb(Gv&mv%OeIukev2vq`G zz_)|yudIk>m2sD=&*zqR7&2HAl`o<%Oo`X1^i7}?*t29ha6Xb<-MY-vU7i#H&&R+p zS&Y&QKCbWN_vNFX*na{4oZ08AH_JYMeAGVw9M*?65M;jjoity6pHoY);qU=Tq6jfZ zQ-g)Zle7)eYy~pl?ihQO-fU~jg^Bp1r0HGBoJ;Js%e`oWQ@(VVP(rvNKTv~ca#Mdp z=gq3El$j_>4|XenSh4L_r{x(^4%q)t)wS*mGz`ln;ekN2B1&1DUuSi;y>?(_&4X)o ztq8xm_}WYg4As_L%#N`S#hjoz-eWLkqeLuoBT`Y|@LvvVdRi6ITPtEo8?S+G?Fxz> znOw3RtDPZLyX)eq9qTK=d6N3fp`z%BUKBY`Dg9X$)+p1MS)%!{3bzX&SoY*5)!ns2 z7&H5xsfEL{g#Co8E!dD|gwUdU){c-yzjnSsgvuUC%N>eUh)EZ9Qj-dHBC5NIFda_J zFlHc*;EO>A4DGlX?>ds4mwbFf53O7O`u2nWCPFJJXOMjvc7zBB2t!^1xI;O=j=?G4K z7UzYS3P~Fy*GR$O?YLg&=G6Omh3_q_-sD7rCdt=zhaQ5MpSnEJ=egMOPGwzvVZ_+2>HL4bCkq&|VV$ zp+sxB>(N2!7}27?GkxG`A@>mRmeQCPTaoocR$3Iw!)0hH~gS5E{=-Z`97 zLw5j6P5wg_&WLY-gyqmllXMgsYuyHzn;F!Ix+QMCQ#zZb0lq`|x+*$FYXiSuA27t) zAK3g4)cJE&rJ5j*kA29M)Wf5nzx|2WkY8a0XcD)-c>5KgB>Ex$n-kWly8BYVv&jG< znC<7ph2bmj<^zx?IXTXhrSgEq!a2Np#VdBNIIZI0Wg%T(}D~N?0gGFnUhsp zcyok~^u>6N59Khlzuy}D2d?A+;4vKN#DGqhrhvznT7Ca=o@2)XES=bSM_3QVcxs~?x4BfEPoo?)%Q z)?>BcZ~=3lD-DQR(99j9$Y~3wXaa004XPy#6yyQ@{+{=6BnW;)*kw-fG9!f8)DAK!>F zfiKCi8+ZXGR_3#|<+L;$$YYhXBu}J$ik4W1h*NGWhS-D?_dUR}aMztxnECf>9;BRa ze`g2VV>4^f_UTEzW)1z+jbx=*vmo!DVv1+FLJyJsTkqs@U|P zf38;xhhTVOr;-oGW93Dia%}Om2j`c;H>86p` zHTSfWiOeNQ6Em7e^Lf`lZ=yjHs3P7;6vGabt5q$~l-X4H!m>j+L4`52oR6uPzFgQB z`I~G4wLf=RmyIEMk=*bIc7aUBuJbL(%vu=VImP@j;dvkBIQ#S0&%@iVvQ7Fwh1bs{ zthx+~#I2P)TFHFJMMvoA3WG`VWfy`@??6xKcHF`w9E^A?K!H^^na~5YF9>6P(RL{v zUhGJ_#hVKlY>B?VS>xMTvJ*qome-6{59I+9E3yP>i71 zyS(}Lc{R$nj-5YH02Fdi*@po#dKNH;;O>0|h)j_4eh}&Fk#}>{JCrwcfzDS(oMPbu zZZ6l4*u0Qhb(Pnu^_okf6NoO5hPu3y{>t1W7D$=t#?y_7)a9+FQc{?Qq>%GN4JC>( zvC%-iW0Q*?*2EE2cdm~8^rZzO`8l6wb*3dcQkFL@Q>5Wb5->4B+FCVZc7xge!7O9M*izm;Nm+AboF0O&M;0LV;5h@W zH;=P}Ljx++fYD`k{y?5!56Ll``0N}z^=e*|4;49Zc}gm(yF@kF${|>)NDGV|WE+h@ zgOy2rTK%Fe^{E{|0=KSK=^yf`Fd9;j+R8A7@r?~5+wO_CK?ZAkk5C!>vQZDN(I@3t zM{L~3T_X%vAyW+vGc9v-6n)-6lbP|1C{$j^e0Gv+TKlF*(UV=;i_eN?R43f9Ggyz0;+ISF*&Q_5_RzYptq z)mY_BW`a#EO6<3A-Z`YF zD8hID>-&GmLFhk+zxt~j)^ol63+~vzJs>o5TkI`!3=fiZcQsYDix24Q zn<@waw6!=mch{}h)Sr4m(7;*V^XJ_##+49?EHW1_NE_-wkLjpuz($pvcX(L5l?aKb$*Z)R@J_g#}#YWK;+F} z0Ifut+7C;eHASfIM0JmK4~eQBA7KQQ?QvG!UfQ9~y}9`BdAPu-LAv9mWe!+ksxxb-O+o;Wu+?HdW6u=E(2mmtV&bJ9e&>ctq8q^j( zhtEdo(j*kaL7^yH{@+`ZTi&Z^-mw%1%nhv;01H@m zWm;7M^}jAnAVa5ezMYTN=1y{;dRtKJ9Pm*KzUWyh|1O)gRRS7hS?bjl|$y>=YSh_e(?I{*;K()Zt9ll^!Le4$< zGC`gP-&~dVn-pse1bj|a67ZftR)X7?L9T%-Qw#bVcQs8+c9~zH9g-is!kkH3PXnl7 z#gzBDaSVsesG0-PHYgdW_y7V877SJX+PZ60=}>O^x(hFzqN54$RT9#9@4{fQicod{ z5SqDbfk;M${h!(oQ9WO(C^$)(I^O_9mdel3F$>~-Qg=b3%h1*UHh6ad$RG9Xq|yuQ zE#$_Kze0z}lB}&Mu5`0t?`bJvPOo>Kk(#ZsR%PUQ3Q2d%PgxHiuCmZC>*d0YoMk~T z)DoJMPuxYyeaw+@ag#O%kg*+%t<4xol1>Yi@t4c>g58xBC&v6(V-|`a;|U%mm@%33 zE$*7jkA9RnN)MExuiw7?!CvDLAuR_F2MsXz6w~ z2q^=>TyJ|Cuo(3j`*a;@$nPl)!ldiei4{Bd?!A4cbVYqzTt*ez(6q2_Wh}CuSGc;O zGX_!6Tsp~LW0H&G`Ai`4zj>AyyQA9gi0T$I>TcrnU@Wiz^68blyX5=mjjg+P++oZo zK=NHw*R#+CAOn@eDWE$P>1z*6!5s&C1a4E3I3?P8&?QQBsTdHo77{2W-@V&USqNoU z>V2mkt0s~jI>R<2bG&$}h>MmHB)O`XBv-=9h^^B_oBTumLR)EFf!lP4y#;HWG7Yt< z1P$oa+*2F{sx7R$1}p?z5679F@aCoMS%k!*-{vD~5iAc@^uLr69TjD(5SJBK*`uY-3p*U#Vn6$*2| zg^PuDJ?xQk=X8X9%h%~$8kfr*%!ub^x5-xrA%lIceZ;CF4Sp5fwd9?NOn$nh+C5D$ z9)*LI&dZvPD+aXb`K^Mi10W;oST)wHVvcBa`}Pb7WL#%@ngY8F#p{(5H0aj?8ke^Z z>&Xa3DBm6omz9;e1Tspc?npCLARv}NFT7iD$YBh91O<-pP)lwgrsCJrC>)UFg+rIM2puy@ zW9rXK1Yl~zE<)Q?e85EX)FYjqLhHxSqG`B+Rv=4a z8c=S$Z6Xe!HsWy^^1cMSdzGi-;C29E; zu&IM%H<(akiL`(z8ufn~q^?sQd<%(=+({MTLMC%sa){0cz5?GeM%_$UhP!4wmV79f zgSA1FgyS|hv1vkOVA6O+o8stQ`1zdrs`Y^ewv43C6tL_-DNMmr%=9pO&@J{&yN;eP zCP*QGWOXqbCJG^2Ypb?~vt<+nE+IU!MSwuYkr~M9@_fn6AtgTBq-=T=FOil7Lrdlv zaA-Jt(ve(u<*_^)oyHXv-bv2ntE>v-@?YD-mspKVCXb`zGVdqTHppLQ9! zQfU{Ga8&ullhhW-hAVM@5#<6}W}SFkt3JE^e5}{YM7thorslwu3k1*Tl6C{+;NIVB z|3#L0U}%2%_T{6Q>+9zxRtJ351UJ*6NfcYVV<0`9Ru}5|XVRlkVz&txK-$-?I&Voh zN?8ED<>_wD3K)_NLwBldk45hu07XE$zZZ+D>-k1{z;Kh46|7KTe&AnR979@0=mc%t zk8RS^*`nhGhU(rht}nbOv8QgGF}GqN;;^Mv-D491yH@QTX(FnY%`m67Nknhs`{nA? z0vnWUR^kZwb>{*E`WjNShg?LAtSc9`RZ+5?dOlOcaIbjjSiwO*QZ6f-JFRR)Ro1lN z=m|~yKCQ*JFDIczu^5!0Tdnxa=|Qq5BYkQCXJML^8ox4y((E~UaW{u4-cUL1gB##! zHJW31)NvB2To42p!S!gC%P>hoEIL}%LH_BYj1~3p9f|mW-j|UX!Kx`pY*ej0((x7V z%Hs(1C)gAhh;*Du-x`BAwq;%{0)*~p$a)Eb8&_PrTZwjEwRXbi*$f*v$20^MCPf9m)+dIlcLx6-RS zTs;C-NHt7M73Rwa*DS@lyZ#KqLU843$$QdG&@BQOw$o`7gCj0NAmYKu?juG3pc-D; zWveAmK9*N~*V_G%R{r6-W3iUv zzlI-YHPQbR{+oXMtMDHze*fnCpN7|uO@_@;NFTiYHslZak$=K0>1Q@a0x4#)jp}ol zHrw^K1_wm zUUw?XD9qhLHZDx9%5@s2^>L&|j5~zaAR)M_Gw)NelH3e6 zHQf>bDctTT-Xzf0fH5Ha>Q#z^Y`4I*wmf0#zs#_0yINRL?;fdIC@3%kh=iT>NrNvy zd^=Erw}7@9O)izl04(2$^D)Oj@RbvMPyKf+k-7T-hn zAYvJy7BB9)Z}#Usso?LFi*esaW3Y_-OL4BCD73{(=m;9xXXul(Q=6^~)Y%{b2L!CD zLQe~yXdL1QUt^^Q!VCnC@=3-B8&nmgX6L3AP?J#KoXFFr^NsNplZ%>!iE9!1ez%|= zVA|}432{>WWD^99;GXGWRPrAuXSFXnfHCU8zC#2%6(npfgm?M8F*X12X5=K~m@a<71jORZszuAbR2$!}BSDeYHpeQEuy%=X~ zucpK`L2$elg7_1_NC$pXlszv^?!pPjOu55g+H3$MSws14p%;k)0wefIXjcfWo6mWWo#6yfbxOckFfi4V$U zABFrZ0aPV^)xl?I4zNR$9C9V(6!tur0N4mgGDj^J#txYQOD=eQ3ey#bgcx}|)_&hZ zRa;uPslJxA37CfDU#lHMx%mbig?32|%Zz9}Nu(-LB(=$Mwh+ea!EOP7)F$-=;hK-Z zp$AVYfmYnHyRdHtn2EC`KykRc+X|_j;>DKz0ErF{O0+sklEku)JAn~v9%HiZ*A@i3 z^1?HTs{NgAS}Pw6k((1mdXez~)|MF*TP{?eA1W@dsMu(rHzcsK>~|7CyWB$IFa@dR zr4PmqL=Ds>8W~n~*+&O^z~W%zfNBCLGXnv10Az`?yIuoi3oMN`z`6P6egap~p|yx{ zD_Dz2EUCAs0^YK{U+<)L$1rfT;ebv7U@>Xsg?xTJaf{jpB^ON0(xxObN}*>^G~i`c zgBZ^3Aw6_)YMe^{M!{t1lPD$(t7d}Ha1A90DPSNWAzKX-<>Ms*RAx^#Wr-mZ83O4Z z4i%7SX9ERxm3+hGg}k&gq`3ePuoCb(CjIH7%|Y5jof?XOH(64N3p=MPbq>Au8@6)g@!vrV`tx|+;Yh!$b#<) zwQe`TeW<%(Ai{Z>g!nXE^s3qPlaZe&s!ID-3Z%Vf(xF_YhI*I9!d8-K*(49(7w$)C;`@%^j9AmRN@QLZg>g>Vw29Arng?dwdTUx1VNe{dPkAhfry zR0;I;S6K=4pOHfUXnVRNHRyY}X{ptzc+M;XdrbYc%`@W;QW(!&8%I_3O-U>)Nb?&u^9un@Y2=9c){=PqCXTm8%$y6K-Ca2X zSmGS$BhhfcvP7uodtTd2VGRzJ;OIWtWiBt&K#x0hpjeA@f(H`g;bpKqa0NnON$kFW zQIq@jGD9xN4UL9Ee^Aa`mF_vzM%LnYTF{{==AKNGqgV#eRg)A0`4M;#b<{?fc8EL6 z8+IdDKp|(gB{1Ellbnf}2^sohL6r5aGZA$XYos#T)b|T^Mr-!D;06?Kn96lbZkD5>1s;UQZYYO|#_2uM|B1vSF1No)91UWXbL*P{8 zNxptU5`U5xj2KU8BBal43&OR5tGqm^vXDALksAu`97cy!XX}+=UZhd)fb3B6?X4%msH&rOoE;`3Q5!0x!+^1-tN-T{B zYVspsu%9U<?RWZDYHnz4UdSMsEFrFZl8Nx{qIT`}#3Z z+b@o0w?0uKPVT{v=kL8^xW9yM%tgi8q zQ#`^cIl8@2LsHFVQ;xn3@6J&pp#)HS>ZqS0$){)E^R(x=v8p`BrQ+&XqH-%uOSjzMt;vxh?zEYQ$pQe}2;3Z{szyqi7^knGuUe9+ z)!J(z+8MJQ3E(3ZmL+6)F4fFpNMbhlvo6&M3j%AMI!GhZL!;_KB9{!U2xdU?3b_ch z>u$E0T(o&tRdk{E71WBw|CZANhSQZN1>Zzf@XJ+QGY{h?Yi8{ea*mfONDB))sR))e z8Jd#yF}|Vbv(D2?x;^-N1t*7+7z3%mCN99$4Ogxh@b3?&@u=`MrvhM)GzN^6hU5q? zG6pW}cEkM61;D|1H;R0DGbR$Fi1e)pTVKiFdH1ygIp*lZ;LjH?PC=D>7xq3b554MCKoZWPHHo}V?Aowq8xyAV95G;Mz?%jv z3w3mDK!<%~V=u~v-YGp(p@c4%i=t}j(YpHx0XlcpX z5NbKBlk4-~{0+lU;*CZGag83p#yuzt4%h)oM%y&R45?o+OJjDsF}EmZ-=>(VI(GW* zDKmr}j&YZJAaPaynNng47(gvWgJ8j@SPeLL*lVNsMT1uL5$iSpGSJ42T-KoVQC4qp z5&)le)I7>+dV;BE6%vPlU=Y$yvg?r=HaLY3j)Up0B(--n079HhfiOVW1*$sd@T~1a z-kj$n-27Ygy~@RBvyVz{u@egQHE=CODU#9Ki+!i5Nu!sv<)9QLmXJfef%XHg=~c}q zB@MdW_#BQ)e2~no535CB+5{i#M~90VK#{fBkq%2xeN^p&*1vM?Z%S?>`zK;V7*z|v z%>6Je8x@q#aifHLDha^q2?lF+8al{Z6D+KjE}lN?z}Vp5xKb@oHpL zfGj*{lY@O=xzyQf{=rGKlqlEPcp4T6QXAf)rYqO%lZ4gxOjrYC$Fan7mo;6&O>AUZ zwQ)nD!jz=IhG~hAga#9D4N80_XLUmJ7$ak%TJ#WLH-K-xr6yv~uL%xZci+drhbvI{ z_`J9OTgdWee-r-h%x}L7Z|IHQ{{8Lu;q4Ppcqn9j$Pd}4%QF^`#c;VFkhz?g&lFxd z>{guIJLtMGt*Ich_pB;vkY7Xf0I%aH2WjC96!9WT$~$@D`-&D=&F3wN;kwF)fL*wP zrrZj9uTwwl>?J2XEX<1fCP@r}mfJN;ODql0sy|Aj`T` zIfoYL$x$Y-8dpuFcsprTVM9T01SukW$u#fYIZ6T$yK$$EnRLyglS^Tnk#ol$Qm} zv{Y_p8@eDzm!Pd$8iKU6Q{m^%v1YS6c_1NJ{G0Jd1@4~HstCD!j5=IW6;>@d6CDr( znxw!nF=*qG(r9Mf2iU!nTR(0$6=AxJ%c>S80D2zWP+`u#N={19qL|E0p?i+#PZr4_ zg9}$+3bqafoLE*Du7PW6dl|DQ(@M~W{LCg@_eQj@2%-6y6(BdS;Ac9iS%_oP6kyL5)#>)I%@E z4OM1HIQU@Po-a&t}K}_B#0YD}73E@UJJabTm?G@TrfJKjZa(#fo#_gL!{IP&$GT}f6 zRB~BCyNI(a$pE*jbuXAY$a}e37J$Fo5q2W3k5Tb}J55p#%$CsvxwPH7mwA-xa>@`v zygOEW)mkDA1ZQ6#8A{-?1&UqD6Ig7%pb9rm|5Uxa({{DNEnvwYP3NR<0pc}G1YgU2 zQ+3Q;s*OGm>F`kwD7VV@e2Jh>O%6i97Iy83exAEr&F2&RC3yyD!F%GqDM<&=6f+tL z`Ac0}5vut4AZ9-tYbs(1D@)rtPe6!3^#7)0bxLS95QEGN{%%sJK)_hdLiNPv7KZ6} z)U`m-+Z_&)f3d2gHG_zai`Os!CssG{e==VH6c#YbHReC zDrZe{R+yxJ!Xmj^c4p62aCi#Ibh*#9qVd~7k6zDjogo4!*pMiBh1HS}QE%YH$`YV!kzWXe^{mWmf-@N_d z?HlHle?Mn$|B@g3-{Cdm4`G*PHOc`QQ@5zW-1iRat9vXT(uxke(y2XJ)1&bouEPbG zp5V-%=q8&tX|Z>gP1{X?ZhMBy1bK3s>TB?%&0Cs#8g9Nn8P!dN;4C?Z5Kj*2cWS?_ z`;s*;*>WiBQwoxLuUvEvMQt`{#Nq`jE_)p2*b#=@&&WEE(I8F$>SC6F`hDsj1q-?| z>%1r8=vt`pNR<&+ju=)Q=VPV@JzgsGqFGVIyq#$soKwq@d=LjM0acxaOeIi6mbjwo zis6Z38n&Mb5O@a9Fmtrt0p0@nNM~YUJs#n5^A12l0isfgw%exOb1Q{qL*oFbiyIfIyz^7sZ7r)a{0T5f>PZQAy{eb2406@Qc_CrWk40&VPkpvUL>?3#?B$v8# z@d#*k;S!sY<@BA-`f_YMmayx;ql;FK1#pfhhJArppS;%7(zyxgB3&HoPN@YCb{o6; zt?{f3zSvijigR4HK?N}`lA|I!OGK|#w>MjBZ*s2^Zgx1rn8=_wPb%z9LfDfuASHh* z#4=%=O8+(oc|pe@K=cEM_pJRO^`n)g(j|=src>+b2kSMtFu@F16bCO|S)PVjCTI&d zH64oAsz{Iu#x0j5_YNDTBTTz{w{?Sa?g0XgbYi$d1hFHWU0$FkiekzoSk$g^CV%+J z;Q?AI#2M;06+0RA6q-}#{$jo1 z98zQDR}IsuDuE-aYj77Y4pb<AEiNL4XD{lQXl3TvQRCuQf+YzWbow-wEH564#kTE13CbmIC zA%CgE1YB$s0}j-vr*%#?x^{PpcRK`h=3QQyo;gN(P-*G0t4 zP>E;PqM68-oxCr33Z0phbbyY^mv=fFfC(su5f{ueGpNh9+w#mM1ptfOPbPo>?_C>^ zHNZP-C6!OnH&=EaHtjwDQr!mSS*e9sDI~D6a`c-U~QV%PZuFgl-~Au#UhSu`E^VP`N-lccU&8DUWi{)tZ4n zr@l}HlOtvn?WrUgf$#eA;?!4_lbGERZ68-(SVJKvY-@XG^PAz_&~}>nfKnxiKVWXI zR9pX2!geO(Z6!hJT9-{$33N=Ok_9?*EW>Oa3Vh8jl270zg9PnLpWUefx@ZG66>crf z{GxJdQi2fgS&X1JbgU+U*j%Y9TEj%<^8bXt|NG02P5k*!1Y7_7^&`+*fByR6TNW&M z2}_P&hq{;NEOQ5#IF?=GORalHf^TNAmc)Nxb@CuKAqic|T1B=by8PaODfdN+e5WNL zu$e9p!RJJK13?N%>yvXdg%b%N7YXQNQdw;TPHtIn&OyrBwY9P027Q}(h(*;+;X5!x(BBT#A@zoa>9@^t}wnVSV`+2k;$U zB$t`tb0t5g2`*AOg3^#=Q@RJvf1zNeBt!%nx12XW5LBoG-;f3KBSvzO7F+Tg zJI3cqfsdVZV%S8`(WwGt)O32(B`QRhSl6KKg8E5q#~GYMS%GhJU%hmwRCCRv?%GlC za)$4aB0ag(m|UW4F%ij9Qnn&GN-%EkZa=BO@e(@kWV;3uhVpr#J{H`K6$+TQ4TVJh z)}rw;DZzijo*ep{lw>f@O&@5js*W1C$JkJ)g6HbGa)nA@<-=~tuEK|(V&bAA0QLq* z)dV#?7|~bUn>2Dy=Ft9V!t$34n}2!zNsn3|7m{o z7jKd}z5daeGAg8e$Y|a@4(pk7(vFIn^nVDI*>R?^}LBl9IRD5>1e3|Vk3pLB!~ zscW~(>$I*%j~PfAPK|Bw2hWXtyakfpr83cAyLFCEU(tB&nxqos8=zze7aCK>iRuMC zc=MrgPco7{P&T;usLUbH4tH7pUGI#nHQ$LXoKuJ2W~OE;CswFmfi&ULb8IQQIhmIW zczl%NG+!5xPxx}995i&!1dGZcOi3r&`Jqm?HuBZ>*G#9==Y%HB>0dyrCh%igmr@-o zdGVIHWkQm~{^XM_oe*R}wa%dg&}v`~N=Z{mDF%cg*gvC6S zG31JBw$Z!lZ=V2u=B_(>PinyT|+_yp|4E0CJH$qmxL zFKt!UnIbTf29ncJI&8gOd1r=0_|AEfIZ+<9z@E0HRcm4C*N8$CC*)`^8Z@-lPe;o9{9?-9PN$wtUsNhU! zj>-Lkq=#tiZbpGIMsC${CDr?Em(M^t0s`;|PspOh&Ri0sfkKcNUoO%-8&PqT7l`550_zgYtz{~nXn3fg zC+Tk_0JCf#cU6)mb`__sOBOFpr*c&50~-a!Q(#EOOW_l;@${6D8wR3??kyQZI@br+ z9hh(np^Lk>bV}Ik^;!0$qX5G{TeJTJbS%lePlZ%~b$C)4j@dZ9fsq}|<}ENzKvezuflj|zuZ?3VE_-`hA%H_3|Fx619!sE( zik0Xqc~Jox2S5@n7||2tBSbH^u&$>{c@JLj#}VqRR0*wz=}3*UY8_UG3>=QyeIYxyk%9#Yl6 z^z1n?aor`aP%89}YZCwDfY~j{<+X1eG@2wO-*g#B4avB<3fv77PK&ftbvjP&*nbq~ z%ng7c+vx1ICq}3^y6_lK2%O9u7MD8$ zZ60Os%th)9AT$Ou5BnFK)u+>8l@CL_?#tA<>$l|H9Ygp=t9c95cO|niYS&6I29d%| zCnY8izJVTxlF4v9mGq!456$2-swGzuw5WG$M1>&wk1G}}!cJ}=E{}(cWQd)Qa^zCf z(SV(e!PSWI4sjyb18(X@Tfr>`Ov zVA}+ukvp~#Yx5s8kb023hwAy9k9X?Spq7T*qd*9Fh9k+eDnp7_ zGoYm1mr`QQc@vaUB*g}$HtdYy$yFt^o^0w$sf}7z z(%VT4L}bj@K>-&)7x2LN9k(FxQFgna7{F*B7Gka_IV$yCp89imV0RWhu7V9IWi5OR zbGGB~vgGXGZ^BH`R>=Rp9E&7 z58gfvZ-2_kN&@sptdUuho$Q~_ufj%1q10c;1 zxfSjl#lx}M#%5Ro5tqdXh6dAAc-c|3c6LS_ zF#iF?L}aDB%eLctk`VVS{}Oiu6Z<)+N^8zxn{>I`s>=G%#~J!6cM$H`$R6meKw z+M{05^8tH4OM9WBDgBlHyKR;`u;Zu>57whBc;ctVP18!tb+rfxnqEBRlyS9q&*Gl& zU;x9etEdT610FFQ*h$AJUbzB8VE_OCAxs^#2w_-BEf-j}K)`D`m|Fp+d!jhlq*3-R&0upB@<$_RW@-_B@n?9LY-lx5AoOyh>gKfbSgjSLxIckenFWg?QfT zy$c6+!P&<0bmf}5Nj^H$qs&e_mIzhd3!zy8Pm_OUb_E86L$@-9&6O9dMv}Jxp~eQ% z2Nc`6u14m{igl}8Vr%1iB~_&!=mats5EY_P@YiqIbn8FKe*ypGEc5BxFVXUR`u5H1 zSNW0OeE*N(^+V*JFT?8x`LX|@ya%qBp-o_9^ndZOZlW4rC5Zd1ivmh|bX9Lus9D_)dW9;e-Bg zZwVEWrymP9(ZV(^kAcRTX3Lry1I17djV!hnS2`r2+@js z1qg=fTwHp{h_$ed!bYy59$G(E^8VMx?noFvNtS_$mPE-LIw{BjsNxFnspmfgh6EFap&Q1aR zxKJ@SLsrFbPobD~5sri*w|!Exgq&Wc%{WWDCnZ&?ST1@ws+zfpuRyC6#>YznTnyYk z+#Oxtli!zyQhJVUBx_I?iKnR?U{6zkYFE$PUt?W#T1VAIEpJjCk{KjaikG&MqDuEN z9pPHq*??zzzVZ|MFiRCv{)EeG>lbC$H68Xq`nU_o>h1 zrUV5$FYTnIQl}n|T&nBnx+oImF%FXe>{!qZTk=WeoH-1YUq4EhTE^i@xmPtrE+_>J zKSvC@hNQ-Mm+cYITZi77tb2Eb0=lXAIMm zvEi=3MPIvqAC;0%j)zoYtsioLi5p`jhPIG^vEExX#f6VE^dlpsA>>3Ii=jQv+1(gs zX=>6I9G{{RC!odN4}-u-|yMHWUHr_R(#ty)dGo46z>_dnU5 zMXSq#x9DMZboBPN}Tewf%L9MUgwqclE%2h50`Y|L^+lNB$$n3+aq?blLZ6!Va?!*kfIOor^S#6x0e^g9T zCr)&RsTEC8yXNsG&s43(EpbeEgXUszn}Hc)C;xh=R0l&v=CW1-^2qJ=4y6CYAq(jFZ3mBWa;tv;6=pD^(3S=N*hv znYdqy)^)9RQIoaWC%1oVclE^v%8jXGIy>l4_{8P;qgjg6F!j@tp{^-T;@VF61eX0`p%I zN@y>##WomVPPLK|$!KtMgoP_1cu%+RxLGpDh-nGBKzJQiP*Tcc#c+;D)KwXX1ZTBN zyswWw0BtvC^LSN}EC!;obcNJmALR)jg*5)OfoG4J7}EFsK=lh$Wz{pZWYxhk0{z^I zWeqbJM7SmFAl215OMyvh*sC2q8dpwGeuCcJWllYqSk&hl!mj_Ojg&-r`%cDvp*qQr z32vtQa-Qy?@8TE({uRtra_J15xJ#;o^1#yrb41rx#h3`MknCum1_HOk2$@!CQ@jJE z=k(M`GH^uiXEYC@44f$vs+|}CoG7u`zE;}gLY^$55ObS#a-i@o_1ffZAbZIGSw|Q ze`xN&65bMDxTQ-YJr#xHbFH*TZQMSK{LkD85bmvcw04r|R zQ`HW(El{P&UAyu}|92b9J>Y~hF@%e#Kb^ViOUqT#A%!14fOhGF*RMnVkiX~Wub-T~ z(WokujMpz61u~8!`0VmfZJh;EyjwJi?mbeB>9$Hy_H23MJ@C=~kfrwUU=1Qa?CL7K zkRj4g&AHx0aji{*r*Ej>vj%kH)f!7s!&Z!HyCEOzVYuHN)}XdG{aE>ML>`mYr+xp= zlm{~{t0}hC$B3DCh3)TUE1)|LFT!<)#^kf3gXPBFcD$wV_43#(kE7H+b+hH3$EEzh zgjo}jpCH@PEqd*t3b7zfEvLR0mT=8wd65hC<+5l{qL7O^H+1vt5HuLj$2!|>uE;IT zxd6zcNGMGf+`YVmKJ%PL8W(6!h1#1!$a1&qaK+}3e(&Or^EENFjn~Vx21|)k5AiObmQ&CxJ)|Hb`{)9YLL*!;~7-Bp8L@#(>VT+Dy zX-U%P8wwXXRMa-_oEzWnHNdI&j55v-rQ0d|3zdX*i^PPr`UVz?X{g;O^L}`9-9R+B zw()thAH-WUdBI^iQ}$4>Mz9H#fw;;mK^K?-e2MK&ExK#BNHA=ca~fBL3|!z$uCFgj zE+hg%$6%1!;&QKs!c9+mzKxfzXS8Je(xd*!B@st@?MddSXer+B>-4Wq@HQt3SfF~w=G z+pM^6=WthoeZqMPHZMOLxGVx{g$)yylE_EFH$o+7_w_|8@fKiWB5aGL&q%64I-m*l zm$%-y?!GnUmKA4yI;Tk7Tcx|U%z?#2B70l0XF_s)_ydAu}XSa zb$)>1D*g6qD<8e;3yb>qvJB(71gOMCK*yT@!<|;Wwg*u(L3eIHKk5V7&kJ07{7{v@On$l1M5ANrL01 z#DYS~5A(d&;M{^LCB-HahZ0NJ)5!f}2<9H!DP)EE^s<6JJHIk6O$U|tr6SW^s+60x z4QpsRz?Ns;Pp1E6IYGWoS`+mYI~`2H8pgFmeYFJ&t60%fRU0b-G=}ox*#Zj;db{A4 z0^|15j-~IFjtA3Bh!yL8gRq5#TIe%c2kY2p5Q}T2k~%#;qmOMo2jwpxd?d`?7w_d# za7@XxLtMw83&oZFkF+N(8zpRuZWpa5UtYL0f)_Oq&A@MSFNIP~(~q|k12f9dmGGdD z%u!q|2Q7^@bavL&4)X?m%vLstUqwMy36zlGVbxzD`<>Gcu0|5bF@~XfLkr}ikF)lG zJBv3Krd^UXHncA9$rd#VHC{8p!z!)De4#yIT!)=wt;{s{i!HCjZ7?;-<#vEe#TOmG zxO9oVRFN0CP;`Arin)}=E+e5{d^V8kR#jP1tkZC*8$8A1y|N4vCKLxiGP%VH#`JbB z@5s`5Dyl%pRkM<4%Re=uP%~e9wwN2G7ua%!L~(z)b?+wz3L3tuspiQDx-cghG4;-N zEagU(|7#StK^Hhq2PllK3N1-HQTg6iHG6G$k6DL_j!X_0LbO>r5783TPuR^*LPjjV z{mbR=Qcct@ zW`9$I?xg?Sj1i6oiuvszr)Q9^KEVfkhXCV)J3;GN;Ezd%_tQOt_Fc%hE+qEq5t$U0cl@@!R;o!oCAxv5R7jNy~| zq1uup;y~cASygVrW-CwUb{}jxDg&VO*`iuZky_bf%x0Sism+UCZmvOEA@^BqPJ0z> z^VO?#cPe;LK&{;l9dHz?n2(libnSFi+W{k=*mD%q@w9(JB0hs~%w!5`6-nQ7l}ptK z+*^mdZMt1HdXX318clPgM>XcqC~1I;8JszQ(WzYsq-&GhWU>a?&p^Q2jaH$jW4vlI zVdBz3XO;nZPwfQUZhT6D$Fzluy2g0eu5`@q$ z%+hmks4sW<>g)|*WFa)ezHz;W?o@n&caoRDzyTnv8^Z(&VOsO*sK$zDz+A0_ zHO8sFp+p!%*UF#&Ogf&jrS;#LBYP;!ZZ=cXxjdXRi`QKxnj09 zE6)dCU15l{adQp1GNz8M^Vt}LZB5Eni`nJUsVFo=|2PwB4|n!UAQccptTmAqdoa7t zmFj*X$)s$UwOEECQ?}EcyJwR8lWh0d>e?=j6lPR|SSpEw?{_&3<(!%R60}p=q zF@M#Eum2X_KKlOPJuVQqeo_1fR29?nFk@u z;a1dla2Zx*720ir9wNWbQo+j|iOF_Ewb)G5MBtd(<^ z(q)IBcYLOfQ`!fNmq+2h=u0ItuAda(aQ0)>d$N ziRH)6MZ&7LjC2a>8I`y%M#7#h@TM`7VM|b}Ng093URe2qKBlHXdw76nO4>5fC9GMe zqmfs?JEg5Cf%61Rcz4mot8tdPNf{m+n;F!F@>;r+d=tZYUK*E@>`;w{2~bv}VtwO{0aR zpDoBfDP^p8wi=I^AaN%F*oh#MSiU$RW+YgcN%`mFr zGy}n6!M6}~cfDd=VCS>G-|JQ~D@yLaR$IFdwlS2r-FDlm);xS599;dEsB}-bK#B0Q z?U-6al6N?C;Mbk^RH=hwkXEEtunxD>iJl);JwRQj%d`rcQ6PSEz7U4+O!wJRWL59l zS$f-J@CwhU#I{_}T?9oEv(y*S$HS~(e(U-&HwG0%J}<#_Tw8C4q@}FE`NgFkxxSkGR+ z#J}O~*9t|JpQa!3_rDaOX}Q-tMiU4;sxY0*jOU^R1V`#?+kIH1RH_V%=o_ZggIfQB zc(bBCuw;$kE^qmXK$g-c4d6DqdN2Y^*2Crla!a{ZFmi@NktgPHsU)?;wo@IHUKbM9 zm6R|%7}F!!qlJ%#R365x77Uv-`vOzr7KfA z1>1dX_t6mrs-+9@0IV<|2e_(va5qB7#R@M>-%_6Wo?mvEDm{Gh55 zfsiAgvsR0`*c#&DRJ}XumAS;3uU$tVGNkT zYKK>fI~__-wOxAZZ|7Ze?_TJ7cn8K2g7u-?2@YOB-9#X~bzBd<$R+Y(-*QuGvMxlZ zWrK#!AjEQqS5c`P(KVjE8<@I79OoC6S4rT%VA>33TvaH6@o-IPR?4>1_)>JzFZ zw-{;5a;8^pc4u5L!<0(42RLAYN&&u>P2ydOrB)rnIE`!r*Y*YFge9F?BwkT_NG4X{ z;baBMnt-axa>SAXPR%i>Wfj#zr{Zp$-4bT)nn~9YHoR1O88<;yTl=Gs{1rE;9$A)W z>9MH0Bb8>Rlb9Ow*dGHIJUh}@k#m&fMq3iOIT~(Pm{O@!F?60KcLB&}+ad{aOo|fG z8X|OO-Beb?eoiuz2{>t*0@Ny>?c4hhX+&;$pAxg!4$Iw3QqyQE31Y@YmtkzCFOV|E zh+#V9dl{6bl(Wa;Hm;K@XswjCpH3R*L6Io1NbB&ZdrXzT5rw+Fl%uYP3-`wX&t>*D z)U{Y}%;~_Db$noLq54O_@$+;-LDZOMgoK4B_5G))7EhaA`tg z?R|UDoeh%I14uG==g0&Lt$?TjV-9!5!{J{ldY%@esWoa7PZ-z=MM_Q`m)MYH1Rs@?!+e2$14gnoV}r;2O|#l!uLl;ux=xXIf)b@l#&pO~g=nBh<#JT0 zjiq*fuV2#@#uU$RSSC!L?6AZ_UNMxGxoGpuXgr;{+Le&bQ9zal+zM)`E{U_XTTG1NAnW91u`t9 zQJW0PvO~PsK@+H?HQm8&7@#T$<+AFOcLK(?c2Y{il6zlJ200l$>}5n#l~A|1<07|1Nidhw}~v~O=I1lyd; zIH^PxoqjQbeU@yaiyby&&w11v3liN%l`R`Ex-4#iuDSAZT$w%gV8ci##UZoltuC*t zbYUaVw+rW%!FOg0d44^{@B=*)`d+G5xqFM3TYRZ0U32rH+!N+&8X5AbwM>dlSgljXmuV_^LVL*pjnX%^ z=F|-vEU;93lioV8i~`?)Q77KK{l;R z%A_-pE8p=f#fiz@DOkL<7`V&p$;5ynjWt<`&0hl*8CTMOd65VYSNp6Hbb(ez;iJt$ z`I3X$_eh!UPU3*exDJgJd08bYzsmpdKZgIT2R3l~oxvugzk!9;4+t#bFS(TJ3;g{* z@MGY?`Pq+Ozo6*axB1ae-@bnRHH2=y{r(^GBOl7oW;*!r_3PKKgFR{ag&)2CLVoY} zKed6}QTX=q8369}Gyu%fG*=eZcX{cK+}2cC!aT?$OqW!-cf0|OM=><3<9G60vo86T}}ZJ%^RDMI5i}tq%|Us z5r&Z~cKHR$2iH>qG@fFGMc`BF9qQJE(+~{IUlJ+-cj^h>2z}0I@4~*6T#ZQ&M$`p{ z1x{$$e4T{lTJC>TGDpIC&%6YbLa#EPa)g5b4J!MbbQ$J34Dg#q{?TI0R5LkEnmVV* z8~~pkAnMYC>GvqbxKvlRFB{FAW|aCf2R_RHTN_U6MkzWZR=Qk0lxg63wr`Hb#wzSR z@zrEl7#iPw&k znv{;D(hRVRQ)Gvvuq2(ft-ImB@Ic*caMe9U#q)8|HQL+>w3_QcsnTXh=MB(k|23Vu zHV-tG>!3~m#dgu2gZN1FF%-bYafHY~tjYVA#!4RBA-blP^*MD-x^lEPCE`n*%^2%( zmqt=@?b#31s`X@=w6;8p3rtSnOlC8@iv2_l$(6)BNoq2=51mewU`jT`Ae}cu) zPbCGV5v-w}XIyJR@Lw|aKa+&BbSn~4V~b?0!0y0bOJM?+qpW6QeO#_fnpQ`4^J#r7 z_gzP>Cafb@q_NgkR@l8;idvyQ1I5pCU8g9Y88rgDH##p?3hLE$~W zbG^c{IGmdvlp*ddFpM^$lOj}-1$Fx2WtE8f!1lvJro={z)O#h-7@lAGEWnOU9$au? z&(>l|H_)_R1#K-(w=A6-?GJ*@Nbv19h%S~Dj+cW{hU-0s@k;Se^g8-Mo&V6GJg_)W z-Mr73+@eHEEN;2~pox(_#FCUtxIju;y$cQ|5$OdkrZeLm z#u8UmcEL6zKAOfNclaT&xN`AtoSGpo+Gq@xLUQ9*v3LOPtuxDrG{aNFd>Q47)Vp9O zOY%B0O~e3gh!eNBk2ZxJBkZf?!|qPg(hBSu2~iW$AzegY>=%^d<9jyk*g;39s1LAQ zo+P065wH~E>vYOFNi>H9L66ell-rk{#8RBbbo8ug*tm&VRw%cn1HHnLv?btocH`{w z@aQA$?~fVTE#I=K=)OZju%N zl4B=O!KmGD;iv*nAzRI@B_);QsW-$Ygeya_yfADyYxNPaAeyGk#*g_BN76LI(=C7g zNzHN%o6rSGi=?=q#W2=XU0kWvFSjdMED0N9wj1+7F9tbz7Mm1>+$ z9D{)cFcc+ujWF}*Jdk6N&V@}m>=0?fP$~46vV(4wJn3%I9glrY6HwMP#(OC%XkKkf zW@9LpHv8~}30wl10OjH6y7SO*-a3Fm(vn9+4Ffb%HwpDq(}#f!Ihf4O7dSg%9@$@t zHq6j_v3T~QABDd?gRnLRc5puW6-~9idVSdXe<>mR{awHI9)$Y+9%d>T3jUF!zcc7t z{{7Qm8hCvM4&?ify?*%m@el9@pGpVx)pws}H+!H83}^l`tb~5{_6bb7zL^{ndu-u) zy&S0rX2Yhy8Ykf9x+S(U5Rlo*l+y6{?>jIP=G(+(_x%-N`FPwWe$3NNo(5AyAaB)e)%YxT*~mA%duz zcZjy2T*!4~x1yU#V0IHku?S zX1b126t#K)@vW^Fpg*M!0C~UI@K)8iUO9I#Xd7+BRsmp}u&5su1c7!SOSwoh0CQeK zW2ZcBrsm@17GU?{=El5b_HD$q6nORiW~N2uNBv*@4vLXabB<6S;wdc?QkQ zinFawRKVYk;BR0zy4`0{wy_xQksX*uC?AWYpk!V7f;{j%^< zuov$v$hpVbHTTK5b#AyY61PJkdPCnm6kVMuA0vX(!?FqvwcD)?YLj%?@s!D_7t(WM zuZ}Ja1jWPJGa2Iwnjf(0E%!OtmjmZTHS_~ zT!kSq41ngDbSgr@>WXDaB@HMQwX!Dxn(yfCn?l97VNwYLB*cRSM%C%HZy69K_A{Px z^`P^tIvuo%EB66DPAYvS>CY`d%Hc+aU>VVr%il$PPI(sZ>@cIl2V^*SCCSTYD|blk zQ_`$k_8OX=OmV0mBD{B+T^)Ezl{lNAEenjc!NJuA(0!HdKS^)-$NU&OnSYcfO8-5R z*6&`wA|LnDw_gS>cs_=Gn{{+QfBob4|M(#K{QXZaFNK@Qz5pmu=!U=M7T{h;m>~M; zE>|*FIYTxx;$+|k->xMc>Wvd-*70i9bjYQwiZb+5OJkBWwzyt1-h(ThbWpUe=w4v= zBpG$yc8K%2OiWUJxq)>LlE))}NtcK6XXO(tkZ#ZjgWYd_Xbv51$5*JMN(Lif4N`}c zA6qSFtRv8o?#2X?R0Y8>!pS~sjD%XvU2dzA2$!Pn_&SN^e%e5b;ODa#%T*lB>W@n=6-aJJdX*K~F%IZDg&(BwmGDVa1 z9Nn62Njkvf-y5A`bF^)biJ=25t6sRbIRKQO4apXP_XHtV3W5Zt$l!F*%v>@+fbt>3 z=)Eg8N&}!<9pir`UHc&2*MW=Q27!(0VRP{#;S1W=C-_710XP0QwES_6sy=0?wX56@ z#GYSaR8tcb2OPXLTsOJ`Nz6lU8c)1coHf}|g(qq$#{R|RAl4{hxIV2G>V%EW?g(sX z=ip^q+;7g3PwXmLF)aIuN1Ac6z!ExD}LxvS6pO?Fl#&@8EiQwfTK4I(ARNnd)$ z0MQ$z66Fk->Utn?uh24kH9t5>cO(z(y@YGp6~HmI*&{YIKD#L@tbbMQ%aRgIC@(+x z$xp&h{==Dc9;Bb&7vKE)?du9<%2j`<-apETj=cAv${ed58=lqA9u3(KS zkx)+#RCoC=e|`?f@$B7}b2_tdT0*}hDSBrUbvqf9>gOhX{A?lemURW~cmgzQCB_pY z1yfa%YuW(Udw8Ze&!RsV&d%=ZW0186?A8YK>k}oPZ%PTJRa`&iVV0djE2dk4Ww^=P z00(olZ{AtmeR`i;F1a9Q<{HS;0O@2&Z!clEvw8kpb|x3iohOvvoDM?qut1uzr~FW| zBCc8aQ$Thg<`2G(Yq6^&XGgr?8sF^_qbRRdg;J8=jxptfJrMv86s1T2T=vCH`XzFR zRpSJ56}Td;I|2y6`zEOf)aS+eD`Y%L5tg>vLtf^&)ghuSJ%P`*1P(nkly&k^J1G-) zp5j?pPKw{AMf5$xD4^|YWf7Kf^cRBM8ihTxh~tRv*}(^JsoO5Yq0qE5%nb>?UhSjX z3&wvFV-bXLA&u6}fT8r3kq+13!8REeS2kZuYPu$GOVvvUvtBO{{ozUqMUGu6PZ>%# zNz##b38*DESp!NNgQ>1A&bc%=S+zX(CrdEsvMo96(64Mc>cgLNaypt?wF0fxkl&b~ ztocl3O}wx4gI4#L;Kkf^Va<4jYu{a2aW;z5tclLBkc7PvCQ`$r7BGrMUQUMly(~I) zOr(Tnwjhn5+yo9y>LMF4;9gly&MH7-J33wIg&;a?@HNcqAO!oc&9D7a6R+<40Pd8s z>s@rGisg=&V~tG!t2Po;EuR`46I()Q#gBaO*1@No(6nNgCJ5P}@!XLgL(rGQ{&6fJ zZA(&+3Ec<4yjo7>H7qj+4p{WmW-CyGu&$;ISN1mwea{<{{J>7A1nip(vaG0B$JSx_ z%PAoIAW@g;huTz!0i&b*Gs={u?%esjs3k;0J^-1Djv+Gj`&{PTsRk`7QFlUkHMD96J?QtVohpm@LE^>rrVt7HAI5;8c^kb+ zRjONGs;gC{?p9T+8_1LOzr4P+*S8p_Gy?1{^huH#nHj;$UbpWe@fDb5Y=C!QM*|%~ zw?2znsqqN|#kiOuh+Ej8U#0lx7JiCZuo;WBeVc%Q(^^q%aV_qF0Nhm`UG${LQG?h6&n5{M$h+)^Qy(RRZzB{y7&tnWg_MOqCb@WI^Au=4 z+NO$t8QEqFk4I0`ng*Q}vYLvYTwGLBZY2zt9@<36$AViXO~~Y}gEobJIZf(t%J!H< zoY|v8P)P|+l2C|p&NIa)jiD(b<1&a_1fLM0@UX_6~j;^C6W;EdCTL)Dxz?8D2=ymK| zQk2?u38O?CX2GIhxl=5%kr%CW3y`oaZ`6vGvvQ$ocxi{EGrhP__*Tl}gjPMJvtqw{ zu~YBX!Ki1Qy0lW~0C`l>fm|w`DvM_E%+@Mb*gcID>ZtmTGvI2RP$R}+B(@^V*%63V z5#3Rx@WL>MsP23pYS>i3pv)*)32s9>KRQiRifbtDg#u!2I)S=-h}n=N5zs9=60Lw; zE3Po_!cd-Mh!X0D)|KnPlZ`JYbul0gLZj8BF3A$23_D+jrBUaBkva*BWFDp{I-{^& zJ-3x#2IXKfRHamdOE2#=o2Vs8sZ>3PqkIXdAh70bfIk)>z1buGcN8Esw8Srf$k%~sg_5E2f;hg9T?$Hu16 z*1ZZT5Q3Qj5=Y}u7779))cgpJKlG%>SZ)aqI-i4k4Lj}lvWF-2&m}j#!8fq|Ng>qM zUyKn0nF5RIKr7WWgWaoMSv(Rf*Z~9>X_DH(wDL4VeG-)r?!~R&s5gxTf?(z|{AK+zrgr){SYZi-PRO!5pvfmIS6mxCfL73#gnj%{J648MJ# zq$^w>f+fIY^jVD5LG2c5j&!OB6Q?*^ErSkFb%K5uM}a*Cb#jAwU+%y(!}2pYU=LHy zZgzQstCE#Y*FHY!Cg8^{2yKhn70d%IYdSbPk8I?fuK@hMBRXP(CYA-JcEmh=I$D!D z2&w>x;SF_xT9X>W&9l#kmMQz&XsfZY4xc<9k8L1~TYd*iTfhLH)@7*xiLHeqgTqxi zF!zfIb01jUmxOeyue4dpb=2Sba- zmoq-F%MryFJeA!*?4nf1_Cm~G3Fp9w{@H&RG9)ws0M?^hCBkk4G-jW8pAvNI6XVu}=ooWz;Dj z6uRZDZunAIL^X^dsBjFC2!_syhenp9+E&UTF9Q=If7m|_|LcFq(dUcs_WkMoXHew+ zy}|mvMqK+f$g27UW2=7*KYU~n>V;y!FLIac#x_-#yL;O$AXWUxO&d{pVS}&g(2)gk zX~f;!P4OgmLu38AZTPX*O{mI+b1ESH7eYEf{GGcj$3r28;s(f#O}^x%S2WvJRku43 z5a91;#KR$-y@Z()DXF{+em4-|3_Iv)Vn~@u&n>tFKBk zU$xq{5fko7Ssh4n(10N;$D!L-^p*1PKhOY^3);-d4Sgj{+O#FZ-e6h_s|KJKwM27d z+XOUErLJrkfLpv#3K+W&X)TzCq%{~%9{PFP$aEa}azL+jbnoFjTIYR)_R3{DV+veN#>vQ zdhq?M3oFk`Wl;r8`scbsYNlj2qimkfY#3#zI)2>FL(}gJeof@*Z9wB9rQwW3Coie} z33e@MbvQy`f_4VP!;`9Wk?~n{GSETPRlVC_MPuP28?h!}*eSjTW2&*H!~)m*=c1wR zf(OA`C9iCAa1v;>sj@R9U;$8sfg5@i2X1e486$Wrma0&>(aoi*=nh(;c25WXRN_Jp zuhjV#T{;1}%%}2cAS6j`MFoW|TP~zSf?jPJR<|xI_b|#rP`E``AYZe}k9QS7p`X$93vlRBI|sQw6(keXEQ%;TboJmXvYZr% zB58Fz0DdKUfG(F>``&&Q-hcYTN3Wl~|MKm7b}#?_?eic0I^-{>U1}C~ zpn(_6X0Jzx0sbE)(Nk1>G9|usvz+NTB-7QrNmhXzgCn(@>TDX)Y$^}KZ4Y2z!axoM-USkT5Vlo= zZNTa5cnk79qYFk-vwUd7KuY3&4$cRcs9`Xw1+tX(l49oL45?#y8L{Mr&oSU~o(#$| zv@cSnoiS}RFhQfNAx3xPy~CyaO!gcKPRQ3S8P9s=J~Y6MKXsiomj{tVSF)t$IP zS^ajcerOx@f(GRagmEp~YLB6+w@aWS+?)q=rkWWFECC|y5C@l3pB1#^yNeXjm{?il z#j^V(8G+8STX1jlv&(?0n5BHB*~1*!+1IPa0Eh&`ZvXmd!Pgjy-pQ^V)S094hUAdZ zu|}1YMMDy|iERGrhAy1Klc*_+?mA;5;1E(!?WlpsgU2imP#wzIwwv4&esLuBR`Bsf z!A!LZZK}Y!03{elbaHEWSe+d?3i%5T8WKz7S2v2Ni3)hByB8ZPn>zv2aVI0ovxZIQnPYJ;r7c2$3b@A&S2XaLUe`1)-=`hNw3CO#sZh^@UCD)@O@3-R7{ z&qFUnC_KL24!(ygeU>m@83@<_y8l>pu%zXCWm6|`C_T(1*shAW^AVW}L*$(ZU&`dp zZW&)u+~`|}teJQC3iUFy#BEPyuxYfhs=9m4n9{@02%^Vnw0Htq_}$I2vmAzstaj(^ zs6OVjs6VdlsO20dWUVTw&asRYSc_ZZ+NT|?6N=ho%G#tU6I%Mf2{f=ly!YD*G@W>dj zY|#0tz0+X;B6=S++-M|3 z)e1+Kb##}F8ADWu(n;8q!o_-ydP_(tbJ1oYYD2T zxt3>!H@^~-*EuAyMVoDOse1s_7T!6nj-y!1xw;TEB287QE$$HnQf6gXj;Y$o12ybe zZVXQF{*>ozTva4Qpfx^Ly9Ap0$ci9>gw*cPDT4medQv#06p#Rc6rF^d zdmwqOlsEXKXa^d1xz!)wK*}A1vQXp+S?!HT9nzc%cvG(^;JQ@`t%W!&xyV_8i}u}^ zTrkEK;|{Y_nCwt~y#D|P(xcHP%PGUdZ&*G3hF_n8$Lr6-ALm`ps~|k|pYoxPrQrG0 zrdmI-C<0!TZYs+P*xl1zThr)TJLjrRC@V=Tzeg7o<6Me;6jJ0YN6Qd^ zt1E@=a2sqyVvL0(MK;F21bO%Yq3|-NC)P`D-rZq&EtIO~wt!rmhX;8lPqUO(p~&tW z1-l0+ijS8M6W@YP=X!<_oh8}$X#<{JGHl+ksC?X*uK{BUSgpGkJ2M;`2B6;~?chvy`aM)`yj%$AOZv2n46a=kJkb0;&N(T704`gOL{M@j)(E!5aP$l^8Mv@bpP;EBo!xTaff+k{}Z$N`wmrMtuiJ z^FdQDrFt5HBuoTnOcWHtT)dYcl(aC}oIs`AziM~$!Ud&Tjb+?|(h6fHN~!`+h}NKl z%dwz5D%TWssVbx-Dmak*$xp(MYMb0C{G%WJFW{dXjXsk|_WB9PzhAxmA-w=_E#35w%TED~rL>Wr4?L*MF!_oyS*R z9jxi9PQ$FPpofCF1zUZRZAImXlK>WbRX#ecxswM&DxEgBk>cSJrzFRfH*b+g9ycui zjxt!LBj7J%5e_020uIAc_YziuHM(Is?7orw_E{Qyrm28bYFM2uf})5yB2>0YvoKin zD=fJoE)E?C@{Hl6OBIZ;L@Nm9l))KjcPu(V)3Mxs0^E<))%0Y@IH8qgQLD#9Lp`0X z5tT(pfZyx)XLIkRKm!A3*v<*Ch&UJY(Kwn_3fBLErij~$*iwS2@`0LNnn(58SP8+? z`A(W`NS)*cfLV#;rX|&L6cw;i*+6m^DQ!XCq$)>+AvY~%5rG0pUSlS7~Wu6q^DrI}|c#!TTr9pA%-waW^TFK-(iaUOU^Een7Mi0BaoW@~1 zDvpd|%u!Tsh|yN{KB>5ug;(T0b5viCpmH3lJx?SG8tOJJ#vlV~4t;SBPWONkP2M;g zIUJ~wYFpW(xP)s@`B->?3{(H)5Z#S8;6G+yM377!|h&BDGpfnx4(SZTq3%7c<#w7g$d#6K92l%l*b48ZGq$k8|MBGB*}_Yxfpzw|p6<`VJ7d<38RChF+}5c+PLh zspsH40qU;m?lWb|3mAWz;*$#g(9==wnB+NGHhMxd1gkoGj^^4f%}VZ)d-CQ5TPPY9 zvkHEeKhoQs4obz^x$p(_ie`ckCHc`et?CXI5s~{9Xh0U{v#YWJIU@N~GpEf30Bdse_Nuu?nb86iHq3>`ySzSdXMPT|;rrP5R{ac$lFZ_7JKV z#T{QHR1_{4B<~zFZ>lnZlH>K;2q;yc2+N>$mL9VtktyWXx)dF^Wi#lVmtRm}#o%ON z&|js)qZ~B0kao&?^r?C>t?zXLn}bIOWh2yW!K6$sKx`Vz_%5X#M|7CaK?~d9jllL( z7*_339X}i+9Lla3r=gI2F*@wn2hD_I@ne6nhd<2@h=sZ8H=5lff#_?oEGG966WfdK{{_HzYA$0Xpo)qA&M3tzK@Z;XiK3dZw%S8NVjd1~A+_!3EY7!~c z&8}7@*?beTEd`Zk(=udQ=|a9rbUcU|U z<OAnSUVKfL3gzw>m%guEqA%6OeJGQsVnsO#O;T1E`3`vULRn7 z!+XHff@o`)Bg$=BS|q$e4fYmmTMHx#K*cyb-qDyH{Jkrz5pPl}Y80~GX3~;kg_NRBdo*xjSHfbfz*#xF<}HR5$4_2xhO6M&lbxhexA`*oQda8 zpz>H)yvVyd-II z;wm0fm(>jjnNA>pa-&s%a@9ap zIJMwNN-YQsc6#cq+GcaW5s?ha$42z>yRcC$J1UKhC@I@jU z(N?hHh(n2oU~Ofyg$26BFmAoQ%;e-W}+$saNJescu>@59^Il%4-A^&X$}jDPv|HIss`os#z% z!}@Q-YyMri0(CPVj6vn>QV8UJ=F^x9P0EMJI=&;PYvZn?RVySLy^2I<|pCy)sf?AO5TbowZV%!)@$KI#qNCxL6G&usyY3XB&(QdcX8L1rL*=84TwO#GhQX zk`h;?>iw-wtqa?1=eG}Ii+@;xj!;@3PS9#Aij~kwi7qDHpw;P~iE-12H1t`hVdAnmJc6rHf_5LDOO#RB~`rC?FuF@ z?FL#5oDHd7toJ)e0WNFT#_Fm}uzPp);U)4mz}>TZ@dpHQDUBCS9vZ-HM`bElhoZ@J zwHB6K+RujA=W=S)q9VTniFhIL^yX>_(B0w!tp%)0q7=2;XaM&i3;7AX82Lo@@>p*b zVa4pbmV^g^J><-V_;O76H5M)^g_Zg<>qZd7*?O&!Bg);rOAM$;QtQzihxn8Sp(i^{ zm@*n-NovInNVKbaYc0IrVW$Y>!A5WkhAwl05dLnLPs>ON(?#bkJ8)$nt7zN+=sU3a z38w_7sY%2$NTuFO?$I@dhy01wGu%Q#vpp?Epbvm9|Gx{bKV?;@?6lvhto@Jv^;i5` zFJK+{t3S)X+S;C=Wq+Yj~_Tte=b}zYUa_6VJEGiY^4qy_>uU<~K zzTond;gf0`D3_KBB{*e!cY?4uo$fa-@M{PB@3B2IWJ7}%^ECJ`B9|-(BVW~?uTpU- zrO9aQKsajI;Ft1iO2CYe=-fholvA{Io1g4PwGjz(B8w5)|&ck067w=YE2!GOewEE5%TXzP^xfBg6~3m_7kXgFLSQSqUM5qM!L%V7KO98dRcviqmq~04GOPD18F# zy-KAQzLx7mCUt~`tm}q;0PrEf4@#xzl(Mmci%rkG@v8hOb6Qn&?ri*bgEFo&5$v z@*x(|q_X3DALhUz=f<-NM{zxan0z3B@(hvUvLA{Chk}UU7ZPk$h zece;Ibapjrc`43WjV7HE&1WjUmmwM9Ps)J{EJoUR>*j_KjT^Bem84zglvYQtK?fup zf*NwSwT;pNvLJlz+;26D((LORch(VM+6-Y1F%c3L;m$j7ZY0Yy8+J8OHCS8+?X6*z z^^hqGtgb_w0@DE&l=`s8zXj(?GpwH^qi^Q~H$S;;2svMY3Ry`L8)=_7?4jPM>wqe9 z-5{kQ$tNYbRk0zsXul45ZAC*%cRWy%04P`q0Ys+c`hWgMmcjq&-#y|1uFQEp9^U+}cO+$YTOo%}5X)E@do}A&G~%Jtg9k+~^nVXHlFO4P*?3=Ifxwk{?67=~>D={h z3*RA0S5adRP%VSTD8WH$ZOHmlz6zC0a1NN<9a%z|(Mo4)oL}K8L!|UTH_9C-Nr4q3 z!=O~3$d(h3VTUm~_7<{&bM%r>+{av%EH9lk&2+v!Sj?(-*|}4~R~`3QptQN`f8EgA zn>NNU5bhUM=mpNQK3!qJEVlq8sNjcnEsAOK2HW*Wb}k$3buJQ%3Y=JoklWvr^byJY z+;RA?Wu2>ZWxzNee0)!e0QT#~_>xqniQlc^AFF*I5)C>?vKK1z!Je1|gL7bfP_RUf zlTfxrzutDY0SV%{tDe}`h*nk0GDo61ltQWl^}&iLlF5LPAMsJmrb?D{6IOcvM2$Bo za=g09kaosgbSKo>F)!8mFgWYm_1G?xTXy4|R0q=npNTGH(}YC?&`Vmh07{=@><+XQ zBXQbFa4U!gs+9+}KJAcghbf>`W1w$KJ+fGzC2O(-1!LHO8KpPsL2o>vCrE~29V-ke zMi&p3H5ouDSOgqBytLD*EDbtI>p%rqq{gaTl%?uPJFPnS@wi^5>iHHgj_Qm+>>R$u zl~S$s%b@D*RWWti_OYa<1nI}ye(CB-oa_w~dZ=Yr?KB&Z>+wuKKpg<92!2rnDOvj)(0iSVuclL{J78 zFwktmKKmb8jQs=ku0H&Z^}-w6FM#9`zwu9S7TFZXcM=q_)z*b&nM zg=(ezZG5eQ9;B>Y_=+X0yRuflA*En+M`>0g#u<$uoh4utXsLM^M{6D30)=AY`Z+%u zU1eFr*sWR<{E?(cn}RAnV^z=D=h~^|(IF;@9BtW7xj-Wv&qxLq-=)NmCqoBpJFzMj z>AUcvT9J@St??2l`{eH}Q7Le`B<;j+LQ4@UVN4Fj@niz5=o8x_tI%F|djU<^QUdrR zWQAaI6^bczEFAlcsOiR|c65id1yBW}aLZleNM%HCf4%nB3#ltPf4lAq+dPzbkt~er zgUEb*j%Rs}qtua`HenlV>4rpmZ)d31BSfPkd9&|a3w^>sWOC}@1d3rx4m`XNkNg6t zC(yZVu#kW_w1TvkEWti&YWv{gnec%zhMX)u@_)$!rq1O_B?Z8PUz8>FOE$J+v|Z(l z?qYnPIG!YpTe;#4D#l<9N=)E@isZ>u=NKOuNa_ps;G*knQ?^2@V*rcaB_WqrNTZP# zkGhjA$Ey;I4K`V*$0ope_!knpqlD=NT06V7%Pwk0X&|Z#d}`0iDdZ*S)@4x6+3e$S zIRu5`aRWt!VIF1kY}*K zHg|5_0~r*s+1<0O4nAMh*%IyvlO=HqTRqDnqljzUPYTetAJe>;kqu_|iRjcCgo9xt zeguLb7Q!GCOYLJ=m$*#H{QjfYpVFcM(5O*e(Jl6?QsdK95BzBdMXK+8fT}tgj_enP z8!=Sn0$Q~Nr7c`k0&-I+#WDdJG_zH>9!LaKu;_+DOM*u*-%zfbyo#d+jI9h>u9X+> zE0rzJjTb0Cs+*GoPoTSyH!(Pk=%W&|EhjvhhMp8W!wF^5%=WF^&yX|5C9$Q}Lds{1 zF+V?!{!@7UL*A2W6oo339X~yRG!S5B`FF4X!g15%L1()M-~p1ozT|nowV@eIT8UG{ zVyJ{iQw-ShIU00t(g6QS`cFx+FR#g_Ul5`uARY8g32_q53aVkj?}GCts3W-L@r+=9 zk$aCIj#hI9$sJffDuUyx;B)%CpyAr}ETGq7e7bX&he6MlT`uOljjRvvu|8k`a>WK` z<}cR-4kGo47sY+D;8e6Wi?T%}(+U?;kbN}LR5@#o6-!6?t?86ND$M)HJ*?>L)l5RZ7H5o!Wij>mp~8-U-aTxZ;K4Gz zsIJap5^bI6L6&QFY7xuxxEms5kQ{5QLHp#CJR(rn?Fq1kJq!>z zlx(1IG;uATWN;Vty7NXjA}P_9aV~e2X8?0g#c22qJY2H}$YmLF1&|NmmOX44wUH3! zjo);<;II{mWZtlypsw?2F5 zTnbY~F1yBak`fIKv?pCg6#k#eGPFI&(j_YHVU)K-s)xb;a+ospeD_dX#~KX4rR`=o z103Z!L~$Y3VIAIiS93JvJn0Ofh{Uj60Zd&-UfB>d;hF#qH5?`#hD4IDkcV#xkEzk29?(mHuUbshozx9lQ+`({JHZwxE? ztJm*yZOU%+6AI-kVo$!Jv*<^!-`MJT2i93t*ITK65&W_VMgAtjjJ1&N-r3J3C0YP9 zW>ZJTa7!#+ZpG5|@rDP>UQ&!|sTIcN@U|)5nQiN)o$YN@`MW?MyX*(xNM)5i%29=p zt`OAh)d)_-nDVz~pJ&62#fiC4{-Gj^!x^*s3hQX7ei7@6lq4>cWr61Bf)pbYk4gfQ zmsMd0i)y?gOPIixie_}c-j3{59HoO!aU}_2gaQ1#I?frI(PL&RV(fUZ~Bz-phJSe#%#bv`OsgM zMf?IFrwcMde$57ibMlK`q{#ys=v z3kkfFOVMc%20jKeM`ynpNnWKbWe0YFg?75~ch#P)*iXG`20HE?RX@>}QZXct)V(Qo zTw!KO;(W@2n0EbX< zbXM4ts^`$n2%ki5(w$NO6FYBJFd5=!>44)eumnhl6zkBd$vuGSb-o{k}QCKaU~ihN&rFAwF&jW6#xr+`n- z?5=i+XQC(}Q7Mo9gp?>B`}ZODiFN0Xw152e)sMrzROw&-NCxfOAO7n2{x{&3eAsyo zZ@ROoG?Wc}AELUylM`);?9T$BxvP+DhIbryZ4kMO`&T zh{qQT*`*S6w-F_ndb|#YP1mAxCKtZNZru^-v0#mn&v%Q;&&bCxkhPzM6$`^E=o|3l z!QIfIAB@Ek&Ox$`Y_vGdJBsIRRFj1UoQoG=n$UHnGX9(;oo5AB*derh--Ua20Dc!1 z3%%-Lghh4Yz7(Fc`o6ms@038xfFo|+1+wVSS(7W14%#koNci)UBsY?3*=jg}&+NE2 zSbpl;lLKeBJCY~gd|4}a1v0<`ru2;IAJYx~Wu)E%z=*ac8T+%O%@>z@lo<4A9n2&v zw28Gr^_Rd?sV2h))%S-xvg*vFqeJ1D% zTFwhA0ApJm*ffYJ<2s$160AwUoeq{3^gCtMj;Hgc%%@{|0gr_Z7_`Y0Y&{z$`k#VJ(|k~^eq+N-DLjww zeg(N`+c>@d+3VMDzj^=jw_o7sFXTsmpI`ZDc>Q|>reBl7_>cf%4;ReBFI13yk)ULQ z+JI+}r3<>os3N{QT6y;{wMOf=>`>KR<%!km z8#OmexE?Oix7er2?|7X}O6jCwMSgZ{Si7PF(-Bn*_^Qg(a?q&73+V7kyQ2r^Z%Ry- zvzpEV;zC~DHw{843mexqga6N5z_#|f5YoD=kR8yc(q7d`SvjGTuD{;mi3CuK8_}nx zleQaX)s;DTgaCZY&u(j!+EJE<+N~WFy##um$_?g26JWxISdw6mT5ddz8yzKB{*RYn z5vOx|`!T+(auS;(kCw;h$#bau5GXmKzZ>OCAdq0#(JIfI31mtZok5m5YaQk{Y9wwqZogHS2!rgu zdQqC^cC2b8@`2c9kp{&rM6VL}98lIvBv|!6;=EPvY*e;4^%+bKlaeB#;tA^^a+y^v zdJrH;mb-4F3Ncylx>t(FN!eaKrIN3$+^`Uim%E95SqNp5&M|<8P^HpEceB@#&C9x2 zA{8C&d4Ss^3)tll?UXbsG^vI-&9lz0EZ%$<4aQ#FDjXvWc?n*!L$Ag{XO1F>ruH|X zSaXz;HyRRc+HMu45|ucHRTI3X^FC@2un|EXvYQ0SjD3|#X((l?QnlsPob@E zff2)rg_

B0o?DtF!VT!YjrDC^S2?RV?P>**rUM?tSk)et zMFAb(!zQv+s5=>il;$rbcShA_T?iz1b7B)$XCoFoujmv@X$Ba%-@E$Px9V>d;4in*8ShS{{H>n=>D-AUVp_` zeMY6X@Zn4NijQ7DXTy63W5Dju9UWD3D}vq|@>^x%=LSfh#@Zpln)@Ej4O4(iD{)wN z*eTaP@;SP7;lbNqw#(Bk%z1B3Eh#j;W@X*7 zx(*M5e?j@vVF6f6MmBEOH;!Y|(EYC)!Kx#WH$%!xVs5zvP z1|iYeC6R^Vcvl;@im16!(b^a$Tet%lzKBkGpSgr(>X~gy48^PzAqqO>z?4mkK`{}w zx;%1r;7@T3t580(6jW6jZ-r;n?$U81Qv3zXlt*j5ELE%HoChqEGe)BeoQqOmyy@Wd zJH#8TgzZQ$K@%z8db!*D>RJ0H=MIkGN-8gDO zN(y*~DHIy?$W98*MU|e}Ff6z5r<8TNs2R^%m+z9TN=KiZh-BvcfnjLytHZ4r&plBP z!0Owx(nNQ)Y;?2=2~sWH(m4zVnhiSG8zgNoGlsWFv^C%i>4pUjQQ+`>6*z}!%@0g` z#49{C2KlXq8+ws@-Ws8!t3ZL1AFCGRdD7;0f@?QG#u{RcHuTL-s=k?(_<*+!hiN?2 zNMSNzI|o*$8Y!Ka74QeBjl!PLIV>tYnz!Y4T2AG5JtQp4wkT9-06q!eICT|V70@+4 ze9cFkLiQ4i3)+y4Y@i=Gklg~!W2XkrNTgI@lzxyHfzfybV{kAVUbex_$*pdMu?^*7J z`?pS}v<;GqWzDNx&yAqfps5Z!ge`0}X$_=)(f!$BMw)k7Ucc%Xu2I+@M}s@Y=nW;a zBqzIdH*`!k3nmbNTH!3=jzUGXKL^_d71bzT=0a8A^1=QVC}9Mh(HWX2_6x3^(i$Z* zr!ld0T7Q@{&1{9md5PHv1_7R!4}@t0hkpfPvhWLm+wS(mJxbJ3+I59&D$_3 z^0n(%CmieCzm-Ii5N~A*GZB@Grp~HInb{N%MIFf>feM3zjqXAH5p6Hr@7zM=nY0N+ zP68wxp1NOC58@atW;-d9!bYvysSC_erxqrRu+BDo@}&K_i~G>_KEFv1cF}YQX{aU` zBqYlbnK(22ACVR5%fYbSdiWrJ7rylsIGmi%$Btski<*) zBqm2$^<|o=Fay8%RY#C^b3$pRAw&*9*J3%fDmk}UGS+tT7f;Zmgql~gK~T^`lj^Oq3PAOuVkdNikrmgrN+*vtmg~cqdKVsr7Npd3;bL~_ zkkOEg)`~C;d)93Lzm!+H%zWs)EzeoW!n}-m-T<^M;9qHT&7@*2L9~&Snnf!n%hODh z35q~J(~3Yi6%agFPK6ISkDjFt){bMpdi&H#9RS3B8(x2hp5#~I?PsXleiPpR?b~Ok zhx{+#AN|P}bY>*|os3g^-y{W%WMgXIM!Ozrg@;0RCSqpAm@=5CS+GSWtA~!;I(L3! zz}rEp;$Az;IRr@>arTi6){L_3v?~ddlG6(Q7Af*D0gxDFP9+?AG4WA~m9FSk`%Drd zeE7AZZAZW=>I4Ik^dAc8E!W8PQem!gRr!Y$d}0mDN-;GL1|!T?*vc%CcS$HgX9La2 zzH89DlZP3)oqfl)w*+`R6$3>T*uE}geJ~Q3t%gf0piw5E!pwg7n(JtgNC zUNaQ6_hnty+Kbe&XRt~x$+DhHE$NbZiKD3mMK4=_)hJQEOdUj>LvvEU*f5`LL?chz zd6gx&cAV!zBA%SM$?;YoJKO=rbA=OFCOi92QGJwkUe|C)f0h1OFn%)l%{e)5|6Dwx zw>8fadbX}tzL6bJuEZP<9YU>8Y*nqJp81BtC6Y-QG-6kc6;vWp@1b=;xWyP%1Vv|Z z$3u(AZLo#udP&f#avXMqkY~_%(m`tGAB>)w^KB@FpeDKS=5Hn)`Rz3Wy?HJ2*C& z=b>>wvn>XzBwLMN&yc?T8;z!>m9<@(Cvc7PU{stztnlcl)BOt$R4H1aSZpwJz!+ zZcVN1aSorO6@CpaJq+?5i1H|LSc`%AFTqWbk>uHLmreh!XQvdQodtNN-13Oh9rrg30guaTauB&pFxUruv!lji1GsJ zz>U$hp^Vrb+>QY%YR(rljD@Zb=XQPQFh#==Fz9-;(JEls!ENtUrgJo5?X%ojttx0YM#D(GYFihy*HaqBlW)6JRZ5Kjmazqb+2INQA1@ddOM8kEPY>vL9jbcx7Aln1E%sp{Y~jpfai zbYP+?7n@;ZGLSlJ(|Ej=d>mAGP!&HI&OtE~IYPyJTqQI)?@E}7+>3)=F)ELp zg!%_4K~|R`5q2Y3IQ1Q%ow9^m2L0-b4PsZ-0el2K{sVSAqzOGoDU?>#rV~6)!2Ibd zOwy$6J4rDq1*a6G3x-gq{~Z3ypXP}A<=c0#WBBy-cdx&VMw#_E|O23I((kB-|+ zf-vh+Q4-thE$u|KksEn`R>g!Nu#%5ynyw@?hMjP?j$CF3%-e`*7W2JEbpy}f1$0@! zx9T_t8x)9nI&VFjB4@cVtPqw>M<+_`Qh&(2GlX}>4nSggSi)B8lI^bSyul9ko+~r- z-||MG$k$}}D%6$(3d=yO1=gAB8Aw%UGze=;;O~d%7EculySrP9%Niv&3<1Ovd`#3x zN45l4ARD&eF_cigusD+%N63_D-Pg5>XTog7j&=ZeD4yE(Ay7v7W`*J)$xVzt=vb>> zD}&CO1^D`>bwzIXkreq2-3qJxAi=nz`*U>rJ&_*P3jB&>JEP(Kh7+t`y&60b;Eul!|DHQP4R0Bp4~#}0f!%j7W~73H zB_8{KN*t?Bx3Jl{Q$aK6uQJ#`31_Pt3bBlC@rI=eqPVo(%mHK@j)~S5mc#DH7JA?& zj^>n9aV*u)JfygCdKRX9OuMGx3UjAbz64sMwM zkD44IwLfzwOfF3wh6qHM7+;9>9NI*N`~YqCl*b}gUL$ZyF*IlY^ACES5*&t1t^(5D z*~Wtoloaa`6@N?fDu{#2nV$$(gl|N_D7mf~br0}o--p}4n5okbJCi-S14E}^nwIzu zlu+!A_Ugh+$eV;w=RN2)^Wmp=m5*a}SE2CjSxIyOL^|iuVS%+JF}q{BjuChU zeNOUVbx;FHi1_Xp;#O@b*n(?uIZnCNfKnOc7q?Db)<;{ngdTtWViV6AQ?dY}EQRRUS)Ziw`{b8~v zZz<9@53}P251NaANIfPiyd?%z53ID>iXm6Bh=-HyUIudi8a^MxNDqq9r}!08TdS@% zmFOV68gnbIyr`z+|1>^;i=ej%q?%IM!2?BHf*?mKfIJ@d`y|D_*;bt!D23wrTtPt2 zLUm- zWc3+nX$+1fk~622WOhQ-23P z=^V^h%E=(Wj+uONL|J5Zhpv{Xo*s^E%T``s+RYHRV!<&f3JHnfdZ0q)4?vy^fGPNl z$47)1LL5lRlD(#tfG82?sZ5hXG7%#vl_zol+iq#Ywq(-eY1aIrv4?1GZozWjIS!$H zXPY&8dN?DIf@`QWp(N+x@aj%YVw$?zs-QpcdX6nATE_^yo8a~|ffK}$-y#vnPRgXi zZf}XA2J}6-dCdC95Fi#2J6%AU0`3gzpcrkH(6$W1hS|NQ8n#v+$mb34{oecNie{^n zqsW?BRzic~3^tA`Y|8^BU(u+&Q)(MV8}7rXEc6DHG@LXksVJ=7L0lR9s~+%Fq#(T% zSs|$r>?Z&AlF8(khLU12Om!4wzb#A0F=2m{RsdJs8P619&TaYqKqt;tSEeW_QE@*& zDN<=-tesn>jh(U!NM6yI=rgSs6lu_~z6A6&QLGdQZW?a4GbIyX;s+*#>$^)#JkWo* z_xesXyji9-60Paat^z_Pu>-4EIt%s3yh3-naZ@SLLh+-s1WaXJpYa5`cDKVa7PL@R zf1zUVqo}6ZqWdTjNSP;p$=DA{ge6D3!LPNS>zU;NlhdE-tHA-$Y9&>)j;IafZ&$0! zbb@?SZQx}m5Txrv3^WH!OlO{|;;PraWF2f=&S^Q+T!NE3E2tR`7#?=&L7}Zr3yc&< zFK5I^7-eu!m`Z@UYd=pV%&$R>wdi+k*UrUW%L3yPB5zA@r8%R3a%ZO|?Os*^Cg~o2 z14Isr+Uh>=U^eP?*WvEi!>>(kD~$_uoD}dBH-78j4cie!)eJGA! zYQ}821huT_9sy=E>(q&Lhj{C=!Fpcj!?F+Hvv@@)50FM6@655^yTB=)Jo*J{EOkoM z$(6EVlQ#*s8QQQfs~UJO+zH(zUqUG%NUn*mh0Ea}ut?e9NNeoCXc~|a=Hm+-L9%wZ zcU@3?7*ccIref=t00Balm!Lw;(BSE?nYZNb*a%LX{4GjRsf!AWwu$W?#GbRta|7XD zVM%oByC;T}2AA;!uW-3q9i{Lma5%bFdE9^ zL53U>Sd*#kH$ubvEFf&>0ZplqZW1{6EGn*txH^C>YjL{VgKD~PF}b8*l9(4rg4PH| z>8i7|<)oakPHQ?V@7lDgL>psI&S2$1E?DUG7?Ct{!B($Y+9EO2Ugq88Z(2xzLCUY$ zRG3T_fcXSB82RaTv(ScmW+vARPJ?iiZ90^5`b44P5XC-oZk3;rgVy*%Q2ggWC?*+`RrmQkp=$O<`#YD3oHggWM;v zBT(a1&KQ_gH;nZg`j$vkkd>x#=Caftm?U4-t6_fD<-u$w98B~D1!U5C1eit-c2HZE zzfKLy4&G5)&qAYfwMigcHfx2=YM0q7jah1>v*D9uPvTm7GAEuuNGse+0V>nZQN9Pd zg9DF!m+b9%n1wrz>Q^W@p!e&ZrD~serxmR1Bj#8HP>8&@2~-!0?UxifwgGV35><>x zS-i3GP&;FZ*$`~EeaWTw+{5c;rQ0@C-H0pnWik38Tm_OEw)`&~rVnsy{9pn-Xp^uc z%L^0z1a)d##VcGlkDS0vswyYCMEx-=gNW(;=yJIuDX-x(ptl8t+aW97N4TQR?g<3h zG9=R$jISLQj2NCE>fLzVQM9fknCV{tvoM1mNgul^_apPTyo$rXEgqU%#a(KaQ0y#C z&Wh9C7L0(891H~;2HG7On6Q7O&G|g14}41$1WBuemgx94l%=J8D!5S{-8_velxPA} z3;Kf8wnBg4fNM9}_*yu*0^+J6BHahcfS}i@M_DsCx&Ex0m&G}*J8B%2)q$~7IQY+~ zZU!Z50l>||B~VQX{J3dCl#r;iW)TiM%TT*T>4F5s z3eYJ;^)=8lw;yPOt5Cw4ezGhCdb#x+&0;hzif#0|Be-1vhN2R^XYQAKuZ-5h*GjO3 zEvnqzph#WEECkIEo~utvrLoy&@s8NsF_RY+*;i z7*|%>Fq8SjntSGLQGVMiO++^XABD}pbC#1^(m7d3X?Qhiz< zAc9zcT8z}TBA4!z3pw%tRInu|B{~MK3A!(M7rqjyvB23j;g74T4Pm)QgfLmApk`co zNJGof!q<2-V|5tC^%8)`ybvs449z+60M4AX73l}MRG}uMV&ApbDq9lmwi$)WHJzk# z&esB{FUU^0HJm!j&fVk5Svx8`cjhakuz?2~N-K>Y(Q zJ(8!!1IkVV*-IhG=#?!f7(d>*UR?rOFL}X+l;=K}VH7$C*%yGPQq7}nX-CDYsU|g< zw8vJ|)x71Kw*~ZHa<9d$qe&7J^H$kNZIqENh-V2ttmE0@QZS1&QR!LGF)`yiU0V7z@ zk^&1asuYrxRA{0l;0`ymCu}8}u=S|~iC$5>`KZF_7&}Ty0AIYNSE~FW+dy*iQ0YJD zU0{X*E@O+Pmpn6Qca>5Bt&&W}VPX%i*ucht)$x_y)LWI2WUKn)<<+o&Bo8Hvk>|8- zl?NUWoO+7BmehThb^p))H2j5r^FM{3{KXMmo@@i2>AObm{gS%D-?MajLhU_+_QLy5 z-~Po=@>(7JMvEjK`Rnld>FFVlX=Mztho{{8hVc%?yzWTM@(G1BTb)1sO%7O^v#-etz(-z2~UkbHNZ>4TYzG4EFB1?F7)p&AqoR(cJ-qYYA z4N8AtIQDdMdQ5H#91;2%2ANBMhBFHenLSs!zJJx9I0!7zn$vaI5C5j^KM3T>N_&V-Cg zJjE5`$1<&j_0*)&csMf(e65~D7Fe1u1Yye(4=+t<3Z3&ZX}Ur9j4%bjXwdx3x<&&p zpn1`cgmPb_BVTKIACUY$cv8^BKY>qnNv79_WQkX?Rt_~6X8@zms#2&3@>!YLM4tf0 zLP;SIxFsU9KOp&uoITDt+6Ws&g9s=Ty0<7Iw~tx4>1M^u77=B2xuOn!X(Y7DgCh4k z+NF6PH%-UUzpP993E=6yKqXPqva7_5Bw1Y8~*uu#s7?!(Lcp1|J(5Tv8xx!+WjP4 zvp)h23RSS-aqQ7*_AV=tEO4f`e20e5z=9l@;1}BplRCeq6Ao7 zw6B8)mhqaP9$Oc~(5cn8PKB5c?Z5J0`YiGmqLE{5Mq~_t|;W`GSxP~$%!YE#UhJL zp?~m0(vDM1W*C zTUcod#FXurhNvE2Tc~sdizUfK=BLUA$(D^WCaCr1MG}UjRv#w}f7cVpFc&E!WZkz_ zf0s*mLx5f*q+G8qtEPOO-rcHGe!8RYk!dqz+BiVlQ0#)s&6ri(0ZU_tBzK+ab~Akg zhiWVE43pl4PM-klS zb=M>rC;B^i&&@clP>eBdkgCDf9dCyVFi|HAvaIU_jOT8JfTR$`I4077aQCCcNeuzs z9g&<}V5NMNW}&+$&P<~|c@1azO}8~igqwRP zFi4`>v=9!*5ITP+u5#}kGMSiwKrqRopMol5ap*3@ti@&Fuo$nMI&!9mrPK(Kj@wqb zcMF$=wwB`Vt|@WNeJ9&-%15@L!+gY$HnB0ejA%nI8=3^@XIfMYL)U1?lSQzDpawrr zHf_oGf(6Y29rJ)o;a9@QQfJ_dkk;5ioig$Xk|o6y9UL5oj-of#dMh=!7hI`bqVd+r z{XiikPFjKgM%@4{5=Vrq;A5e>e)g)+tm@_2KpeTuJy>26bn+UvcR??)If|tiUDXJm z6dF!!x?Q2~l!FpVHX^+P^>m=yd8Q)LyA45XWBi*WSzoP&!N?X|qazG9aBws=4-7R| zVx@}`C+|r+sZj;PNj{;tA$Oei|<|EOZ|Pn1(VCV!)WHn zY;GH!g&-JFqGF&j@-1)$zA1ZAH#f|T4pew-jGPqSZHd%iXElP>`=GXZ#SUFQsn8no7)n4yb4bIJt=} zPz7x!JYiKHa}l!W9N^Gbf#w7f-@_UO<_pJO7cO1#I4!VBYDOv`#bTUP7yXJ^)aV_) z=+OWo!GJjM-74!L0xk|T@QsyWfs9@Cb7!xy=Gk&`IH?pRWp~%j48Ea;y2vSCT30-} zM$*mZWBs1C1Ina?VP>)j_i!BM$ZF<@4o=`VY9GlOPo)gNB5G1NRD!p13&Lg z;8eV(%IfTR?#E6pF4pFPO&K&%wF6G^+&jT3xhQ<5PJ*(Ce|iE8ZmRS<#>n=UB!X+` z*`>*%M{@V{_k!(3q%wIEnrBJ5y&$2YmLKH3$O4;r;N)m!wgX2|D}3gCdoAwV8AFVQ zc$4DN0{V4_akYizZC-D3L)zpBnnabldSBhz^Qtx(Q6l(M8MXit_D@Qh;O7kmI9Wk5 zGl&90wVUML8@rS+TgV~!B{)9|L&VN#)#~T{LLqo$niY4NFzibDt-?kt?-5NtV$d-{ zru&NAAp==i#uG(&zeUKFtFsdIIv@hlfF4K}?)VG_&so61XlSyU8Rt^j-s1_Q-5}=n zoND6zDrn=rBayOwcAm@44At3(-vO)|HuyKZPzr!NHKeesH=B?|8 zfnwnmD`1Q=4k6s&k=0 z1dKaX4#VtAOEDt!jp##A{sox6qDd#P6_Tsd%e{6?&^T=^R1WA=NF{E8)XLYd-+sog zIV4+&`=Qd{kL5rzvR$J2Cjn9Y{|UzVdL+3pl=R-AaA9$52RHN1?fHn+vH=&V`<312 z9Lrl6ZEMMk5yCtw(wX<99+r%YcjdhewR@`s61r~*0o-89w=RKBMPfGG0~N@{y?(2% z96YajtImtts{(|2#|(Spfn#`#GCEh$K#-3PcLxnkQ-FtoiLnjMdVDQ7F@ggNXKQN} z?rNJRDWj5@S-UKgruCl2FM}-SHc*qa^{`yUM7hz}Jxw}}i`_M}TW+gPhh;0wa8>JY zd{R+bly(6)0(lWLxU5viU)2F*g`5cRShby3D5rK<61+fxcdFVkk`7%BlRWJfumS2k zV2ba^s-MsVTU^hhnbp$rS@&4S>+&Gl>my`Tq=sW5FX!|$Rl$k3le)?j+ni27AaE9f z-_cR6H=V760!0m!2{$&q$A{wa^Y$HzYuoj{S=g4`XW~5uuVfDR_H4&P-JoGZ;m{f= za1KNVLMuHHSy*b`2JsC^d3t(b51l@^2m%BV!U9*3E9?Y2?{=tEliXcXXC>VizKhoL zK!m)yv_{ha_EwZyw7~cqaidqNZ$7P=E@p@dQ2ZXmd|wjFKSbtkkx;xWkS^Syn%MF$ zVm4^3FIj*dC*{gX(1q@kaiwW=+Q}83pmZg_!`3gr0XtdT_h%-UE%C}t-fVLSZoANI zprYr^DO9$VLbLJ0K!en+-&A75SRDWjTDS2GI&|+&X39h%lmte@5^bzUDG&IABg7hN zhW5*9kblWThWKtTWd%@z^jlE{w!8@>)|GQTw15VBnH5bD*u1RJ1&KsQpq+{#f~lri z*eeEvt8@l(5Wb=&U$LQU2hLOEe#k$e)v3Gl8M(CK{r#o%BN1E&CmDhL-urs!i@xG_rA3cv1c$ z{0IH|lYga1_%(%gzcx3p_g{v$Z>4aAsl;i|NE{~RU>;A*V($G@Dt7Objz|m#sEwO# zpUd)}VHdqbmDEYvVxT?R}h?3?nS0Y2Iq=1i?p?0PP(RJsHEmMEiK%VE)C-euIJpp*JOS8YYf zQckYbL@eP3V#Zn=EGcC+ng&$bB|w3wWDx;!7y$@6+wYMQ%}+aex(=PGhO%ssD!gne zhDXU;IX(G3&f${R@poJ2O{!e)$wwnQO~T$N_f=9(JcMq$aNazq0NW1pm>dRnpLglF z4<2bY>cbE%o)XY1HuA$*M%IM=N~L#rl%S|X563V5aHFZxpx$m4DpsCH^lT&4SXk7R zoxBIwraSsip7`_xE(3j|7hpj0I02$TyaLQ*&VvVY!0S;cnq|zpV zF{ko2CX7HF+l}8#HEcgC!4ySUG0_0DFC-m5#GR0Nrj6W(E3yYG6s~Q;%6CmSI%`4$ zK8`FH;Y+d+ha&Gq$?7WMn-5jtv74Lb0)j*eIgpURh*yQ3+iL znFf7b>IS8f0~S$qIFVrP)G``w(w*bgL8z7Widwsh!LBziZLlI*yjswswe6Cew?w5^ zsik=cY6`L_T62EfF%L+t;xt}#@?@b)K8to=JoiCwvhyuT0^sFUplSe@D%}GiRuak1 z&VeesIvhS-#SB45x=TwPGRjKxZab!n&7Go_{XVNHS%0R8PQN|Cld)i{IAHrEz5Ee4 zbaAirfY7UI<_R(eU~X7Y0tEs?52(8}>C|JQUNjtIUC}}7Bmf~}P~RR;hA+VV%FXT1 zJ9IDbIWT@<$*n<%67}$bTArAq@=oto{Di$A{&8%8r}j~K3*R%AJ0*HIhI6mI-w4(V zFw;jRnp4x+0=^^lC{_-mY4yyweNpNie>TEY9l$Qk9iV zoqHD{pDuO@E_c>`K&~(#%zMI&_Nh~V-eXdfBY=hsKnIGR;)DsdHMJB{>%2j6^3H%0 zO<%lfGjbdJNge?GvQVW#EH(2&^Y04nx$&9*E47reFaa22*)^1q+c5fWuOK`}BqRPq zW~(^5imE!)#w%q9AT?N}8{$(5yuSQ0&gORDuknZvLEX!+;eetjH$QXl?xKJv@gp9XID>t6rCekV5a z(Vs(_!z8M{c>8Ji;je(T{35*m_O!b+_FX-3Mz#HdQbE)56hd?3Dz~hMyLeRv%al*R zHkUvuS_5V4(M-%7!yJheO>dbV#(m&_J;l7T^KDtjkbfZn!rdJ1x4rMQUZC55=yWwj~x%-jRzAs;MERjc;c+7s?L?kms0#LL_Pok9#yKC}QSe9W%!) zf=q&PjYU(6)eNuEgYTSiCTo3eByvA^Lw)LE6_1h^e#;w#w1_B&^(&x5a5E($ENO?7 z^t4fy2DblFFrkt$DX?@z?!I|VI~LxS8l-Sd@iYLSgm%q6^&G|z13Ok|@L3Hf6(1^f z$y(WU1Z~Vo=R*O3?4j7y^tc#l1SU^+p&lV=t%#Dzrk6m%b_8QXiZNO%PnPeZ2V03!{J$rt4k(26z#}_aHdd{vd$jgmqTvX6M zICV?5%{>Avym`28W7N}j;mQ$Y9+e%%Vwa5qMZ>fH$U>CAARXZ5~IB|9X28oWtfuTzVbmk~40g%a0 ze1W9cNY$1IS!Ii^^8=P*g9XHcnwfEUQ20G=QD^}qra z$e0c|*?6e;Vp@F4bWz4p)i0cPRknbcOhnil(TE->m5r8=@dWS-$m#?)VSqOn3^`IJ zL4rFp%nHPBO5K3Z5FYYsvkEKg0`D|!#JBixQ^UvSQmN%a47!GIA3qbJzj*zZ!139q zuV20W;r-|G6W?U$%U6o&|Cjt-v?_o3uVfN`AAlD9NMaE4W0lAsii<=a5}v251m@T> zwWh4;C3w$TAj5{q!AWhF!yVv*{M{Cz1b)>7kLH&4F<8DM49{c_DAvH@8}$2NqdXT^ zwCHkJo5H%;wcarB#W>CzoGqx-E2Kf!cAH&IQuTn4JANqc%LhYw(&l$*kpgXM`cBG9 ztlkTUJ(%R@1B(FXwyThBnj zhC4HNkh`(TIjbTq*bFXKI^kyLsv^(-6xU~GBz2MY@-tw*WML7Lvz-Ew%E>l(Hpn#h z&XKg(C5ZtuHlL45Ihxmm)VmQd3Q&j098ct!g7XcaWG{a^!!`!AyNEx5$jys(KA#Gw zK~;SykumRwv?OTMM_*F@7WlnYXj^4Sz(jNaRt4<1g>@oyRiZaQaRU+08k<8XtuHEB zc%%$)Q0FzlOM+6(k{1SBq!6IwQfx0qm9D7KV$re;+x2vnkYsQdectT@UqB12yNV>b z@rH3p?Tb4As>jp^01eX%>uNOo>_vzpQg06Oj^cAAx$l$)-b&?`Q1vN=M`wL$*@iPT zA*LAtVK5WeuSTO?uuqx#KHYWEQqM_tFH@${f*xX(>073L}yB7jHO=eMk(0 zR|(ON?%8evylM(RArXnxs(`(MwF`BACXuHCR`Gz5OMq+Q(R~8bBjonx=ncq9^}7yR z<+hOQ$&$KCbv4t(sD~4xz87FH%n+@URfda9rNn#^>Lu8{fS6~IF{v$lT%Q*V$RWtv znVD_FSf)E?C1GkNLJVc2pG*A6YgO^>%5Y5HfVRQNBQT*A6F=b1Zm`+tCyRZUE3*JCDo7RSlsF zB3W7I!iHLFE&9h#82J;!fe#Ez8z#%B&{BWOC=99XY*YsdmjO8>_;fW@bvKykr2#NX zr5H^%F`P!=rgY{2Q$Vc0?RZLAp3)?bsNpyyxp;VUQvweV8?uB=FyJgMb3QWS(I7}KA| zf#-BAh;kqHGoIyxm?8NNrKEJK*Cc~wF04&tH&nd~MPY@8N#&Ylfi0@(JWp;~rwI&I z1Add2dw73EB{58%XS*Muo4-NX)Ot%GHCj;*I-{&qChh^!T5q+ncCdZZT$+!c17~YV z5~A)fJA;%)M74G~UEnHz2}2LKN1^=-u)^)?m=z^8KtgWifARQ1?VYS`74G!^{z zE0p%Ue3RJ9?u5!v5Xi3R7Zt8rJP^@DK|Pw+lWEk4ipY)hVo9BW=X0P!GIs7|otcP` zI2R>OL4vJW)x)dI&9>qM6=$dr7~mu6d@b{R&aH|d05URV-$u9 z1b^tF1Bq`eZgy-@4R~ff*zcx3TUAlR9#iHq)=-qSa0jQ3g=i7f!S+e(0?^d9xFu>! z4G}72oB*i(>aq}8g20zI)mH(a9}@f&p>SyCDG7r35vd1@x`5LxWPEZ-Ujl){$c6-f z_!`)iMx>+%%D0q{_hP{cjpbotjEitg(LRDsgDrwB-j3Ad9oSAFC?UY+-j?IqK{Bia z%47t$YFE%n>fJCpp#f&KWDgw%$j)%}hYTBgmpw|DSdubQT;#Xd--iatnDC$%hgr&B z{$==+BSij+V>b_xx)a{M`>~4FS8oPck&S%x%h&G$yrr#R)YtzR<18ZT`;UM4YYGgf zO)imjbpaB!`(b}ZS;~z=0)IwWs=GY*oyl}pU!yxa1^06>{y=VoqGw=j(D?ND-J=VW z-BCrmI=~$S{;O=13*MZ zy2B67zOBpAIKPE?J#FO?U@@NlfRAC<^A%;R_!Z<`Om|R#b=tS+sj)vPh4@Aj89db_ zFJfbHTuhxI+uU*&B$E^8hgs2HcBso-Um2ez$A(#&PM*LuUsuJ=;jrqCID@?iW<-Tc zL{5<7NTVOSPZ>I1G#p#BkM$&y6^R0q8;z=Iu%Qbk5EiF8^a6wBpr9U1tdKF%lWlTeOr)bAlU)7O4I%Y?$8IYD9SqSA%L-T zmBT7}q_^J628M+r%U&|ijYZyOTf9zY<-_gW9S6xm6-MdU}Q~`u>=vNzL$Cpo`nPu zVV)Og@G?97pvV&vi)R=P0zFOMz+B{{5D?4NSce!2E6{Sa>`oFQsp>&2*urh0+!h$Q zW*I8C@!|{unoUDZW9isn%!;{o+=3l!VNF|fdi*^qn*8MmR9{lq@yoYA99Mt$_7Q*9 z=mP2k{fPyn{+JJeqeUf-eBtO(?dSetaLo#Im01Rh`4Smm!fdE*4YNI4*1ywtaro#^hFwU!v zFYGf%op&Z0RGz~P(0>=A2QjH(8Cj|mowqH=#e02AZpP{HoD|~foO@7hC<3g%0b{mq z?iA6wxK(EjP=2#@Jw>_jl_f%=I%e6WtO*mBuWJC?Wt8&KJ zT>*T*1Mrm}@U}azp`d1|>?9X3rRX!X*dil6vU{7-sO!^P|6v+zDte{rc)Ll|;-BZF{N~m>C zrwYR84v4Ih`+`X%P|Z|~rR4ZLZ-nQ8GzQ{><0-0IWhU(S46S`P`KuHSXn(On@(CG7 zt)J#@;z+kbQAEBaTnz>%l7k<{w~RN1mxbNuC0u z!yIdh*Z>I$INcL0($IkVGB}ihnb;YVNGfJMSx(P&qra0i(i9fMlHl>RxC1CNdI_<| z$O$5*08J`W&i(~JOeB|#K$_$$4sI}*$k*XNJ)ORO7IohL)zYAqxijw=*W0d$GD`1`s85oB# zE{Kzw4H8YcVNz|!HKH(i7eL|dFm%ah63}LT2Lf&MzV5=1Di3S2htTMHsoOvneHqv) zTi|QXHTjg;=92OvVY!wMV$_1gOB( zf}OG{O!04R<4ZLKw=;9Rtkt1D*@lH`?`Xt~azELFBcAc5o3s3*@UQ=X zq2Y$C9Z}8$=2r}ro5Tb3jRW-EfTHY9{rzYifXUX7F4O}fXT2uG^JscA*L2m}$VoBy z;~oaD5;HlBQBi=rQZLyG%l-zmh$TtBz~>M**rdC=c~%ZBAdQC89G6Wh@~V6O+j23U zJ0Bdwp&c%Y#wtc;H!kR3uE#L5ReU|4IOx|W?aQzk1_?%@O=LO5N)2X5>KfP2F`2Zv zOc#H)MMg=8;emzW1VpQ)GmX?9+4CY==xNkyivhc;=~cEpTp$nu>j{gkO>MRw&Uh3{ zPV+L|I6m7rI95Vjnp$%^O}5Ek2(-u8GWQ;Q$~uP0$e)D*8cca46UJaY>!j{P>t7eg^OSmN;bA)>mfybjty~{+C97ws{(jDhSPBZ zbE3BAK8L5)FR}K+JE$>yPty ze)RT<{QuJ+fBej4UmmWA{Bl50QV%4utodV$x({K!YaJ*xUn>V!lnz5C>iI`?SBWx< zw=g;DG2pA@$*b*m-|EJcKM^7N(|QYw#=^eFfI$yiK;2h(ruM{BXrqlJJ#{#t#ECpG z=bCEC>yDXapJ>+!ZHQ;rG2n*P4IrN{N9=Uc9b0vlr=mI_?OS>zQ! zvB>h6H^T2173Pzyvh5v&iGCFPHg9TlZjr2>Fjz*Elk5HF_~<#px=HqTL=Z9=B=#_- z_4S|@n)gT}zbTX>Wchc{X-2#fl%X7sEoisEx6RJcSR$M;ZS;D;#N zfNW!g?gg5M$!iJ3BiZ}cvUI@>l;aZZFfOZau*qE1ZTCz?w2SPb>P=kq)aHbhCfbN7 z)NT@^yfe{FbGJj_VNq|>L*hggN8vPL!KHKHKGY8p2N;Mn+AOkxJ|bDq05WnCB*BKO zrkN7}5Ze^Abl|lOMQM4QIc!GG!2g9m@Dd$y1I3foH@`;BaXfUbDVN-K0o`zlf7VDz z>?alBsOWKDR~cy|fw-Me5OxNA|E=iT4@5k}_ab*w0_TMmzGC zQn>wD{`|(&I!$>jlg1y(ySb24epvMBJ1g3D_3^SX6`m%*KQKt#@~Z1oI$_EQ7a6ur z*QA15t2e{p4XraxICQRkpucnr9>0ne6E>oHB2eM%YjlV1UTf7)QVMIBXk-V@Ti{_Gjmx)Hcp`d7zg=osl~Og!D`EAx1P9DtI9>0utbr?y zDPDsuX7%Qi1RjbD>C{0HrS4B%Aw>@KfGjr8RHkZGrR-k2t@Yr`uZ84{NlN5s`tai` zx{@AfW!3Mp22Q!!l05W~7d~7~mt}<>BO%#v{gsb*bkEI{t3(6E=j40vz*bY z@2LZZ$=WVo8_c8H+R>P@QP6m`kX(aOT@YtlPikG_K$Llfb*j9EbPnT^v$3e+v#`Pe z8n%r`?blFwbBKq6ajZawnd7Zv1f7W&2X^Yo|K`irUx(*D=JB21zJ0;3fd~1!KYjZ* z(Bj^I`u0ny;ZE;=DD~lNGluv747JXW-hTe}(dhwp;F32|*m&YUo6yO&x+-I2?4(lD z20cq}6H;L^aLcwf{eFVpYf>$z*+MV`!xWdfQ@=|Uj272blOoRCr#CoO%W`I0bAi+y zAcL|;T3|+YO>HlLe!YvObc9sWKYeYogr-F{Aipz7K(-UdWD=0FD7l3EfOy@bO4M15 zoPfBo$F+chvVsst-PhsH z!-8DhY*3JGz;^Atno!}^2i_k}X(Sq!eYo$HRAd+*lOSHBTj*#Hc=T`x2N(OJb5YDF z4$2-BiZNw)G`@ zhLG|R)f=~DXn-knQy&UjNwar99f65oWw&6}HD2(@-0~h1`x`tJ2!0&YGK*p+A%X>P zl{-7-q~*T^HVXChKZn10jxfJxE%tk>0pBpX$ajME0JFxVwCtM`de4&o^P*(l(+MkeRL*}%KZl^Mp$dN- zNW(R6p29nfAd*uQ1=1wF`nyqvcDaUag8eiM!cj&r&V{p2aNeK4ekR@DX0F2#;z+9BY~^-K#)?bCE|NHMbMEGhm%T2Cy^cNBCv$K~M@cC5(I|9fE7g7e&~xz3J4iaKuvo*s zV5{&(JM0gBMgtZ$r+62209mC_n}=)(=@UM5IoQ~g8}ed(&sIuE1#G&?K!cC%kgRKt zft+jzmCEgI2j2nS^)s!lU$B?k@#2z~3YvF$#Lm|dq-8x=d-EZm7SkcsaF(b4q}niyv0&)f81EpkmP#A9 zxk`blR#a{2|e(OH?85AQAuoS8h?T%ns)XUd@M&_xWAYG0{+mm zzxkW+y(7B1h}V~I|MqnC^*8()ct9(nzvQps^|$`>uOGvT?%$!Ye+Pl@Ymd%vf5e~R z&CTh48xEtoPu_lx*!{7|i#?#yYP5k}ZD@=eFgvUtJqBCcgto9c>C7CMqc5ez{H63wMjD%|)!mxp;UCBLwuQ)(#%SdV6xMa_sQSw0L+ zVJ@gDpvnel*Uw4EmpLTKGhKCu0@jo!c?bzb>6Na1P-a!{(uv(ShtGh!-9J&^$Fr0l zxt*BL>$`5%P%cA_M@Xdv-@bB`$HM&+{2NL_=;K|RMYU|dI`>0A#*GHbYbVtohkw}X zENWbl7`X1pbzo+5RWrPN*dEI4*SePX7gX|-gSUZ0u&W0V#Y{pg=K@m&SbPup)#WVm z9J%pdS-!WxN>R8@Qk-i<2?h-C;+yy4tGdDaOLrnJFtDLb=ytfmL4n?`%JO-)atpWV z!8tjKMM5SJ9C_zOo^edCRz#D;PF=2pxThoe%f|zpEja!Hv+j^Cma2gk9QD=6YQO{9 z57%5}wW=YyV|8#G#+-Wv7H=vfPpWEsP}F26)%)!-$8|X0885P@ohrINnbs9R4O`^6 zNdbSZ=lQU#t7V6d7TI*Ol%`DP=3Guy zueAX)9;7yja^0fX@e=0NwMv;_uTds;92-eOyNM7vP=yG&FR~#>#WS=|w%tz-tbYl~ zj1xYOkgh&y8*vmCiOCj&W-ab42w`Bs(Y>Vp3Sf|rY2(BQDVKzs7mGXU__K1g#pc8xm;w9z>I68yC=90sZ9#Sujugy(*ays;JYTdUlokMHYBOW3Ugiy6#94LYu1v z2BpL@ZtKw=OmYM45C|q~mM*oLL8vYJQd%Pb4m!1~nZ%nmrFN;b23`ryLIX1(M-BPM zuF115xbmv77jciEctR_xTTZh>H1RO!kN4dM%RSPWF*HMa(&Ej0Wq(`6ca4+{2s=eX zVDxGq$#@UTT`Hf5LJ@89&Ut4u`&l60*hI^f42CXKV}^}J3(Aa^mvW&>g37ptSna@j zOnh%Bs;_lc1nG|)Yyd-|W8D+#1;eN2D0$==q`+iqL4KQE@#^Ny_Pz$A1PzrFyt1 zwq}z&vC1Byz55IIC-)XRA+<3QoW2wY|^1E8Q^rG7)EuV z%MoN-_G1@=Qm2~V(OM*5zYY zREx5q+kTGD$1Go-^djBT<_kg_fByPqc>5iXzmQmWdY~l99sz9a zz?;?Zhw_oVvm*%KaX1A$!PO2INF3_~3(!MLL2lrhjL@v;OkHxDoo~O%T{*+$*UArN zno&Cj2!7eqt!c4#$IDVPu$R?gV(18B&$2ldHdm{KkdF9qrouWx1yxSRq6VciUcF=T z`%WF5hs40Uq{C+5LX+C1Q;;|V+k`RaQon>Lc`q&_D^yN|Ds6ICACJVtt>sbEbc{eN zl*Mw)fxcq}uQ-!LR^_%FYHo?WlQCVpZ^4(wVhKuX?U^DxA=i(heGKocUeTDbx{3#& z8?wph3WQgGus%Q%*5|~H4l>BoLj{j=B>Vxc^>WPvGefIm*uTSHm2EXdagQ&i@9&3L5F9%VavL8NA< z098sBo&D0*Y&Ew~K@hgy-qJN|%` zP)fD-uTbT4$O23`|jMsHS$_mg7ixk{mI8V7DSMN)nq3 z`^yD1kEkxWNWj?UG{<&>x&ZlRswZlP0d%xEY*(KF#Bn2dM>g>R$!f=88R8zCRWU(r zYiLGpjfa~L!_L!%Z+|_4)bHMYr5KH8`QzWXSg{HGTi5LuuRle|k{^eKz;hq(zrX%U z>1;m&ZvRJy_U&ovO%?)B?+5@L8Jf{kd+j zaE667DU8giZ9621>+xnrQtP;C2hV~UB);nC8;`nSyM|WLZ`ea@>(IH^4CWe^eu2@J z>w%yzWKHDd9yXBA#?=|0NSn}tO%(b^SuJZpvK*T+p|G1FH^-_kE#L%GcWjZpy`qr= z)KiCeMNx;xo#1{fM!7!=WhvqRnOvp|1pGO6CH!qD@-x>JoWD5p0zass2L8JZS{YL4 z$#zLpqHOv%2T?#TB^wXRYfOTw5yb1}jO+JxayC-jCfiwG;u__+gJ3 z4_LY>8d#@rq#hNSRchS^6Y}m6ww1kCH5(lw)UCjgaOT4Rb8%A-8=^CF2kIpb*fVlu zMCuFG;U`QhsxWWa!1IcG9rSnW^>n>s)aJ;1Ele$@UXdd?K#*GdD$ju~2Add=``5vd zMNsUQ78O_ZsJ5^uwXGIUh&aF?oq*o$oZHr_5=tTkEDQtfW!z{c&N>;p=NS~6j4s;W z0&GgOV1x^Nh67p*18tJ?7s(pcmceKJaF|hol10B6!#hSo3`Z?2Vxb%2Kimne1Y!F! zemGm2tej*p1h9T@{Wa$ya?jW&Wryi{T$<-u^o z8uhrhvb(H`|B?w11p-2}JfdD?fv0TpS+bolBP>C%kPHD~*DJU%luvW2Ze5>G^y|br zE$fS+{3>k&E6{!#q2GvR`e-Qs*`+cH;G%%)M}A@Ij`B|c$y2{%IzqlEfg2(-E~+&* zNE-iyQCO>EFGk5q6~EvkAfY-(H%!Ksc6KFZ@C2|qYr4hA>1N?0xCJ%TxYTHl0W-`> z^j4mCn2v1;mFz&%(_TJr`wK8bgOfp(We|zHkX;Baq3D_B4dL(p;UB_3{QVIZzj^z0 zFjH~LhA`Tx=w4?%&U-w%1&{-=t@PG?C~Jd~mRiS1l5e$Zhe9GED^$@ke1qbLGn-d9 z*O7EBcjbs&pcF?1ZAe^Ff2uoWmKXU{ej?9U+zb$l`QeswnDvE%qeH(5%k#Uj3Rkcm{AW0$=e7KwGTn&OMK4VHM_ zR1(t88kQefzW-2Xl*KH+agb0wOw0;qfNw`ev)f4DmDp#XbqyGiWp$1J#b5+PBp6k)r!z2XiS{qD+zl&yV7vS`1hYizG6*S=> zZtTt-NU0WRSAfiVZGT=jn$F=Vn~5EPjj=@EDy^RKf(>Fv-MB~~Zc-%?VQ0j3PBs?e zWTACzmZJu{J{x9&mdz+zJ5uHn5tI6!Md?<#y0PIbLcDb!5V9pb4Mg5Iu=Qhs0ui-S zr)9H6;kB0VK1{?=Y?xU^22H57`7xEE0Pao{%tE)&1g^j}^eRrt(#^JelnmPlS*&i7 z$Eza_0gfl##AA63An#=!qjj%X3xiDViY!s+q?Cfz{fuhtE}vShlpIQ~)zq1(10UFG zhcU=JQBD;o{e>G*m70U*EQQyoRyJg^L6%NRAP6Q)`O{$5H+mBf;*ns6$gXu?6uy6t z502L6;ItbFtJov*aW`W)wGA6BI??)^CH9_WFP-C=y-&z8P=qpOhHfFLI$8ogQ!O(0 zVWD|LINV6%4*yR z(RU)D&Yf9Hf~Z}^MJ1)J7?jOofS5T8e5enw5Al8bFMQvE*E4wjZ^QRbR4bwXTX+Uz zc$9nn>FbaAHSi#R_tV!ugx8;-8vJ8;{mb*;`{CG2x@On>MJDVBsGZyU$}u6V$mLB7o>uBk=RDd?ee z#n+)$JR0qELent#NpyGXvjMz|TkQkGRx%Cp2%0fvt-xNlIA^R~0fC&1&8DC^z#tE; z$s6+GSU_eHLXlJQs?~A8*BJsaTC;XbHb%Vxy<*7`l-^$~j9%~}7*w&nsmLgYdxJbW zE&?Yt`Dj?5cAuczkxuOv?==*4Tr{(ljXhg|SlI0SwL?4)Ye?33_!#P( zK#g*o&>0Opoi|1=)3f6i_%}qpV27y-Uw{^Ce~M?|SLM1*5vvWO0}hK6$$*{eThqbcy?yS16^&O5y%aM! zF65v3=vTnuBzI=q}v*D0FgkYd(3KaUIT#wv~V$UiYs0r2bzF{#YD zC9=ng$*xoX`W`g5w#bT^bET5bngKIbj^HxbF?zeZyx7|jN3YvZ7`kQ$>=LT`XY1nk z=@y>mK)rm>J`|N@0T64wo-o&$quTT+?qRp)Z-Qr2>2~L?w*@`_TZhoPwz8`-Gr1xT z(9_^*!as^4wb*k7XlCG@yW+;JJVxu0-|)%dRr2PVM?KAfFPj7Nq!_Gy;GC;lh^Qqx z=yYTIv_h48U@-kZPs{@8{2GZIX;-hMuVZ6xy&W^Bv9U;gF_qDkUG-D z^EQ^>F$G8ew{oU9=quow^ar0@>GmIr;GVmJ_LfRB#*WrUhJ|Q{B z9`EeG3PDP@Ups}up#yUI9#diUdn7&K$;JTqNcXWVHU+~u+z0Am28S<@`AHz1tISEO zRWq!p)tY>z#4ai^)t9#NH5(%XiM^10-gaZ9N)jcJcCa?DoJ?IvPFYVhOHlgYlfAa& z3zm4p!5lam$r}JYMIXX`1op3(=1Pbi6ogad`|=+{mQwkTdiK5Vg}?v75l8>W+rLw~ zzJ2!kX|RKD@>liB3vh4!m$zSsPX5daE|0vc?eU$IUHP-!75%fEUP`rYl+14@K=z)V zbk^@uJv`_Ir0@eN^zW_p?C)W-K0dg^JBm*YppuCXZgvG0!D*HM0{+Mm47&VByp&Ku z%nclTPpjgckHGhCL-%yUU{$8)19DfTZbFw*ciQVre= z)T5iu5D}Kp#d-1$9Q7AFu1DU2fqo!8WP?Uz3>e8)safbWHl$r`Ai-Lw1GP_PbaKL2 zl*c(dk({)k3@_`qb_!nY(@DEVt`wwd;Ozb97n&`eA(~|gms)yBJjHm^)sg!eQ$7U_ zava%*xs=jym&cKNcoZv2}|8d;-wmk4{jYP8Mn?Z zC8o6fQ{%M+oKk|v;}B0OlWzL6-O>VD*|PkLdBdE$n5j#QIfQ*Qg^r|AImu&t#mo)U zy>4Xp5$F;d=qb2A>GW-u_ue>(OtzU0nGlnhI7^&&)ev+h2(W}oc0L@p2?^n(wl|1& z+{b;|@$LHON#gMfUj5?j7rE8=3H(bx5PkeKy#AO_luurNA6`F!V)9SJ+fUVW##PDX zb4sQKa!+cxM*0^dcMcCy%w1RSBR;|bSHD3zgL?$v*S69CYIoNfsWKPFYWY~Kc2(oV zrP*AJcdI1u<-K{Xi|q2mQ-w%BkqlSW)pqEvEJIkIF779D4wcEYtwc+&TH~_eh<`m& zOk{xs;!Q(pgaSWzXbi1}?6KoF15|5Rz9AH>@KJ<7GMazEVvsV;RzNEyksd60S)g*@ zJHKoN!@w3M!0j$f(y4AM>zZtVjn=*^E=fq6RIA^oeQ?Jk^*gGWqU8m1jou;J-yGzf zH_-2iU2a zRHzR1PN)t33Hzmm8L1Rl^&}O-(WzdM6y-9q;62}9@L@aD8PJrJ-{Lu`b>Uf=c4wQ? zSwAx$k4H`^)l70?IQmKwC3`7eR+qy9`P<7IpaZE}fPUIU4$p)BAv=OC_JP1_Sa)o2n>ZXjA)Wn%?WSS^YBT@ZHH4wAUvB>QN zB1J$|H{8E&!VGq3?X{rXSeTp8?ZEqVl^=PaZAPy>Mdfynw26x93T4}xgq4}@i)dV; zu7O)2e-UOr>?ylZe{P1=ujke-+Z^Fyz4iRdGv~ayk zB+DY!s!YvI5-G3ASwJ+>_3I#w3bUCuQ&HVT1~Xy|W=Ijhilj^kl-24d%}IHYFmWoS z2w9HTC{O3zv5^Qd78&jtWU`^PbHEoQj6s)mR_RDIi<8rxw{?WJXh;Inm& zgK7|kd={r>JWm_w(l}gifusF(@v{-H{OEx%)pLxNP;=AV(OzqmG%N92P-TN60rMs) zS9ZpwNNK<+!SN&aGN(>0R9vk|cC8%U>}-_C*eS^=hZJP{_KwhFyQsaf$v~4JYU-!KADU}t;^TqdG)Rctvkfunc%rf>^2ift9H9m=u%y(5Yt*Q0SrW!o1^$qP>#N=Z;bm_s4P4{SQ|3m(riOV7&lAFk|nW*1FUADp-vDj(W%D=D%e$&HHMm~X(T>{nnTO$-ab)9`rs<_4UjS`S)FtPBOkIGT{$ z)KjAVq48YI8iq^iDZ-7UaP9n+JB);hl~&oj0&EFHIApbg-lV=DD;NaNaCk|3OlCtBM2EQy51i)5m1gbjKPx?~5_dZvmOgg>H7 zX;p#tdT}VQOC9u$*g>B!ouEL6p;QC1H=|GmEYsm{6E2eCvmH$A2eq?)eq8mQz-xj%dT8HGRoVz807Z~k4;53Tj&XaARc`pdVk!mD|Z{sN@9uipOx z5%CYI1peznLr!s{LSpf8h0uRezv)~!V(d0 z?-mJ3^p-6&?2+X3xjUbI*&<=v3WiE$Dbd3XH(_>htm<$!K>|He zKSXNI5|wJ$CU=pV(!EmUuxGvHr2Xi)SvwFh(vTtNehW3B01!*AbP_qm>kV8fYLOU~ zGLf*C&ju`slhh+}$6J?~8281uZ?F*LX@}sOox8sDs7a^<(}o10VS~pd>3kAUt#HQP z_)d`^T~)Ch4nu_GAGBu0bDvPNV6mdz+?4;CnW11OA zQ|3o)lB_{ODDwo6@4y_}A#zfOjoQQV^kU=1V9G=$H(4ScKRf8D0ioL#7h?o$I`+(u zkisG#G<%ux`B|j};C7^TRs90+xam%feLP$->tR;(MYuvMnw)~3udmwWX&kNjSD~;_ z|HDQ7;3V5y5m6~XY$78o8MakD^#@O=l4ni=u=Qr_5{AP$;wcAOa*3IRBh1-u`X~M8 zVNzMEYXte(lCVd~K$d+#gM$n@_(O+c?9r+BLj~9DINW{mBOkcxjzHl%U&1DFj}_4uF6<(UGZkJf1;(<;eV5D_)IwE@C26Q*K-Z) zmvC3og)0NA{)-~-WsO3xwMcun(0Nm}YNhT6)!FV21e}1*EIWrAC}j(+&KAf5(Htfpz7oXb35%+sx^Vt;ti1GWHa z=3r-#nCuLvF|=Wl7$9Z7?2c3nmN5Il*auqgtMjqsreyzG0_iI-NjF+$4z6S@VF27` z>s$AVWXXpLW+1FZjj{%3c=S+ubR{Jn(BR(j*2#P2V=Q|TD3?yVy>1v?T%ieRw6_EW zx|+w5X{d^p1VAh4fa{7K!P{4ag=&AssDgg(yO7j*?I4NUxpyx4CAGxCO6Ftuy-xd3 zoMQtSbB$Eak8nq;I)eO_G7$m)Z}4X9DoWLr1IKQFI3_x7j;h8TdRp+xu=C;)T3}Mx zNi70-u|sH4KC@1JXs#r^Ayds!E0e5putMfy6`ec|Qss?-*wu5C{mO#a1XOa6!U_#f z4y2TiKnjEWUaLfv#%&bs?iP00W>z}?u)bY1Y^8Or!mjzt4 z7yU7hKYsn0N-n;*;2?>Ivl9{T1ofW6_%PNHEfel_b@G|8^}4MVuW zR8@IBSZ~MHu;uA3YZpnF2K+(%(~3+x9)~c;hF+}v9SO?(POU>JI}R5*lLmlea&*Kv zwv?Le>I7-bYDZYH*clqlZoep@U42_=~@TK^LE zDTNnhVQ_lehBz`Zk6z#oZ>k@_4mNu&UnLW;w!w@kXgOfSPVieC+#wxRKg;29u&K&J~s7y%b%8q>3a#6500TctS0xVcm72+wf#Hu12!z3N!2v;y`sACaiO54)+uwt{!ajBH4F ztcGS-c`9q~@nC^Am=_JIG?WBc(F@c<9LeK7K)y~g2ipS&B`FcF4}GjtzpL{3z)-6# zOgljrHb*uX6pY@*y`pHgnA&B%3W{b zELK`jX%rAr$4$bU`YqLt{D&nW{JCa}m#8N_ z5Ve~sSM{+SyCa}s^B5S&RH({lU7HI!m5>a9;^PKi^8z=s@vi4lVia-@;Z$US4NU7B z@d!mrbtEa^N8FAN?oc6*llCB;N9_Y0Nos+5wfs;C*GU3Ve?0h6MZN5}amO`9xsMl6 zq~#%DQ}Gji4d1@N*5N1o`rJbN;_Vmz-q-N|_XBJ~eoeUF*MN)sOhQ^#`Ty~g%KxDz z{Bbay5_EA(laJjo@W?yT)A2YWFs^HMr z-5s+IQ7oUG0RsZaM|M+_PtwFLAr5%}0Bdb)$A&2}D*4eV+0fOzcfA8O&gR#F4$Qc! zvD%XWJf=FZ@S%gxG^c7Sfi#sHlqMgjf)S=8{hnj2sjK0jv$!_aR3kY=mxWYp9UZUQ z@EfpMI&LGN#VZF;;4~hXa)rW~Z&JbwSc>+l#%q#5`XJbDRLi9KgbXdd(;-=@Wi4UJ z2o&q4q%R$RcXBA(JFPNQheXm}%9;)Gl+G~uEU!@tpzKhPg92W~kB_K8@}_L~Agauq z4_WWNTL1wY(+YUZ;36XOxI^!u};#{=@4H8Yq;z=9Z@Jm&0|p4@?ndoEADV9pCv$e)FnOu&cHeBu{C=b%zPm$UrKqBL%>7s&J{R{Yor=ue1v*(w@pCh zw>}De38|c6xgpF;RG;cUP@)Qf!43nT}4g8O9ABQJcHqvXEsFkVYB_-_5?aDcHHRPoL zLqNR0(7wPn043p8m4v-uSfrdsd$Q9m+yU!r9B2UbF8Yg=N`@qQ0x;ZN>z51Ddknd< zi}FdO(|ZGio(ka%axQm8)Afyre_#mEh}?|s?`Uys?W8Oa2gy2hpx-7kzZCt z1uJ___kAV1x zl|0M#Y%C4fL=RMAA<1PVDP^r;WOyg)XstP>UZFWhD5H*P2u)aX1@6qwHKHpM&6qR7 zQ&|Nq;AQRoz7o~e;!u8-n9WpR)>v{h!_A6AyIGCf-FI-Aphb}?52#R{7~DT;!H$zV zWDJ~fo}O%j0X%6tE1}@_4kL5M&Kp~Ny+Yzn^Hw0)le&pg`iYJsbAqMpx}4??4(!Pr zdq60%0xN?t2(prWSYJGD0%cEu^9kza5=XBb`b9V^$X4viRWbE>DmooGY&xFZm-QMc zH=SbYWeG|Iv_hbZ1K<&5n`|3{RI0+7Y+&OYr&XIUD*>PGNz-MUh-9OY2D*t|{`-w;rc=#Je#rlgL&@~4OsF$tSwSHK z^Obk+tfU1vAKK6iia-SgTF-!_ZYT6hIaI6X`S`txmo0f*6mtYv5-Yi*w&59N_|N6b zdZ%@nWa9K2#Y1BHqzJusG_IC^)@L;lt|_VfBxq7~lX6Jbr>quq4}fmZe5@)7b#gy| zDI0hNc?hdf)Eri8j^22Lq9-slX>&kGRIj<6!50a3?N$Q7(qC(WvA_=QBb$m@e`g_* zw1CRXe5i64#gis-qmCQ2les|8HXjG$ki@M(i|hkc%y@0(pUb1PSly_kQM7J_`U64^ zfBo&RM~wU`JhR8XeES2ZSk4do0|1SmzWv$eS}@|;iKE;Dtwc)z^gbhlhKM(6Dj~fO$A1HyE zk7ppFQSmDywKC*`bw8UIJqyXN=}f2Vnu4Q1RDr2DP5T|qyzlB55NgPAKSq@ zlN-&6tWLnL5%iJuk-S`#kJ~4Ps3c*^;_8mG>$&PX%YR9w@)}50Ee%@i)a8JKt1>i* zH+cz)JmBeCwr7=AzHz_o6)W%50xe&9s1@6{1OL*~-$5fkN*UTF0NY4Z>mkZW=!yIy zLLgrtt&}(bzNBzTO9$~t?37;eBMU}r%<*|MHe?rDz?eG8v#>`JfFfKZ}ld_dtq(^?o-P2&fXSG_|R{JBekOe(z45F4@rs zO%L=oo4}}^zx+N9uH*F%)rW;8EyzcKC=g(VAp8%~+bQaNq)MZp^R+;Nuey22AzYssA4Pm^K!q(DU8k=t5HIIpce;Yw36gHG!p_Lv1$^ZP>ZS9uthq# zsTQEXT{=4!9s=r4kIruN7LPO=(m14z0|v6#bV~KiXFzPqmTd!{x!o$Ly^IVa5Ve{O z^Um?r{jiirM0kQMK)c8GKZvT0C+zK# zcf)4T2kf~ODPq7z$}Zcj+UR1FP*ChZbwQP+iMA#>5P5YwS1Z`&GP?2_Tt0@r0D<>l#NF|L*|>3*jPcOhJkhL zt(&+}lI|=If!v@|M)#o6wvsajx}KYkoYTt=!NGij!KIX0vh=CUD4SrjfoOmg#;ySH zx~LU)2?f)3s$Zgai4}ktaQpr4*BHJM9$P~j(tfl|vdXx*RS6F*n~fWMz}1zlz9x?3 zP>pXRA&L=#3O;;m)glvsFzS|K8rqE?APeQ`k}|b-%LA`CB`t$p;$|nH0Je5)mqM)+sb>5fJuD0tJX!b_%zN|&~do#gr}T|H5`bWZ$~hkvA1C_FmR!lE`rsJ&3BUWbl%)U1>HWX{ z^@rj8zrOzF^azDEQdO^4O9TtLea73#QE>j`z3rwcsmqBi^t%q{?XKMGt{qj8s^;Vp zJ&XdLknpR~Yq!m!X&z7>qj_ZeQh(e|+w&)*Jh#OeS~?+Nk5vf{M7h*T%6Hr(CnvJY zr0p8K%wK_>Thla$$qK{`I)EsTfmfdqQWxR?l;<5;lP_6^Pz~V1B+2$Ngxx}|+&IZz z>FlmfP?9ViHk(V0$r$v9c>!!w^#9r3Rhf;hl&B2?m1+9J>1Np=*uZ2Rrrl%Gp5GB8 zG*nBP;lssS)QJgC!!0goh(f0dQWeYsr+8RrKuIL_nm6BZ0wY<}r54)dmQt*^thXs) zix_GJbx0lQbrw3Uk^`)IAbB->SiI{RTVzzDLlj0-5rm^aNeO}>l2)K{QYsqD$pO;j z6#)To6Q|9c>i2scSGkwN5G!QI*o0M*n39U1rZ(PEyDC=HYAd)|HK*&yZirI47c)D) zD%PQ+GNS4=)92!f8Pt#-G@;Y^drl=>_i?`Y07Y#R@q;l@&^3V|eaM_kuQUvLl&I`F_!TfkOW z=k9H27ZyneV;Y2mqGRt%Dktr+co$19)a4dvxjiV93#59~pU+2jw&k`%|eZO zbyY9kTyUN9Ektvch@YF5ceJS3AgIP*IB(}Ou`QC9?E%R)=ao@K2`P^P5jH&4y_?3# zvzsyUv};XrY&5~?}9#86SvkcXWB2Yyal88>?C;P#8dB476^F( zr8E-9bGXH_qZ(EzR4sXdJeNf98tiUh1O}45fnM4Uo&c&+NZE!*Vdrc92v)N4#@baG z#t0=0^yYGSR6?=bvk_GAHBsyl{1q$9C3J04W8)KXEtR@+i7l`X+71rm5jFS*=BY>L zTE#=-QIlW0YAJl0FRQjP%C{8h!P_R#KL!+|SCLo>eAV!7XEbQJouO?(&vGc}xaWY}pe**}&4(HeR7m^1LGTyGMf)Li#IG4@Is`J`Nq$SoPnmUZ%2 zpO4{?bVKyUzMM|7^N=~AX(8vCsxY<9)&eUa1T(5>jCE*l#tbRu-Cu5zdZ4+i&x;mL z>uP=l)O1`txm&6yGGifSeHq?uZ1{rY<(5BjMzod>j%ZtSyY3Eej`Jw*ev#dz=nwHs zS;YOW;94mHVDeC#hE42uFe0m33gPRAetfZ&(!wxE<=Pp}E6S3$ZTkIB-aZL$-{9-V z5-jCRf~ow8!6;5LhzL-A>uc<8hkS?dEjx1e=H=@^~=R#MmjnPKge z%&nMrJ%D_~iXdaZ5t#3KdbmM3aQrm(DccWd_IKHY0Y~F-QEKrUMh>i8vz8#OJ5>Y* zvdMM4;zh@+_ne`@!!S*P*CIhoTPf{<7`iGleEDF|2PnwZ2ca0XojFombfjRMQQb@{hxUDf57vWK5^i}S!G42VrFQctzD)S1L&DO0T}kVUbBV_E zq81AUZ{Y|9PQyTgKq^61-sEKSu|a)4F>f4Q?t197&yP@hV{C;5Ogf-iLtMHegdxJl z5e4xrc791#1_W0&b>3NOM9~l*KB62ZS8s#648;boX?z4i8u1xG)4O?BBR#f}gd)*F`>nz5*ZKg{hI88tFq9V1~|667x)05!gzS zKuH+fEjmE-kmeo`%|sq*Cs5rhT>1=HKK86-TaGt*Sn2rLU>!GG@3Q`=g{bVH&>h$* zD^3>WKMwkBIsp%(y0x4_0=47~2MGcBmFRWl%A?}0w2R$A-UUJKe#mZ0 zv{PcwsE+9#qe@w^vNzLEsMyNZy%P$o6iJx}E8Eozdv!pWGKz8+Ssv{=eQ35-xDvU9 zjjl$<$$wJ{=L-*%IOG^22t`=FU&!5wPqSvY`JldCwO6><1F0iH^5*9mCLdS{7~0yk zDllpR*e<^UPf$(94jOYaC@%?=<)Ln=)CuBapKBlILN0+K#&|>}r$--80(M7I4dioe z)GO;akuZ6NW)~`R`6C=T^WTT>$$vR~=W_e=@2IfpFNX)B0JTbnf4NAOI5XJkW@$Y z+L`xgoe+U5&qQ-n#S*d3es+Df?Ov|(N{(_85^1wh3zjZhLbaWrV>`FwQENDt*pZaE zp>Qkskwxa|yNC0Nm@hA;cpa5DmVkdV<9o zM$aawmgQdE170?N3k2Z!J&)tZjJr3TG&7bB4w^(M{LVdfd^CZH|W?7t3rG1wT~k0040uYt>X}sjXe( zO%O78fuh*);B;uO;!(7O3fP=xeDcoew0|z)TC$^4r`8WSYd~qszB@KS`BK(_Sbsb_ zY|AS-lhbzyq}#*PVgW0(xI8rpGKliNM}n7NB2{ysE_tglaDZ~N1=}=~kdqA^^fu_+ zk3RQ?#B5z>P%*v(A)eGXDxP~lUC#FEfG933z^FvGthtjCZLGr9Q4a39W)|`zAmV6y z&1gB2SgEy;B^n^#tgQw;EyWvT6Huzp;dn=np_~BqQlYZUR?wMU2#hAAYJN} zb;_Enl*nT(c0l5woei_@i4Rc$>3G1M7_w1MEO({oTo2qvp;2}5Bn9PinlzP}*TXRv z5T!Hb#y9&%i@33AQK*zuPa<6bwSZBLf51@PB$Cef{F@_A%f4mf<^gpOWZ}>iC}tg^ zSYXBDGNZrda4Q%e(?AFxDZHnnZmqNW@<9Np&M^^&p^`&(CFPf(Twn!PmYVxcMY$th z|319_#LvFV68G&7uU~+cs=@=m4X>Y`w5|QG;q`YpfD@U7p5Z$l!i4}t#l?d76=KRa zpb+x=dXc@woki8{ZzKjwo(uzONt$Tx6}6-&PyEuN#;TCw(|bhgT)%j>i%L5|0=!Ny zsvI}a7g0f|mNF>a!J&>T0C7@-OXi*fOF)-?QKT)MOy&*OawkRW15ft z5PIe$C@hfA)>+eVkj55yLLph)xoJEqc37|a{2jw>xYKXFTeQuZy`8iSs8_)c{Pi4 zi3J5CHjJBMUnC0U$y!?|pipH&t z8;ThP;ohg0eB+MlUkZku?3chIxL8pA z92`{DbtLdXBFBBS>d-Fa?vCsu7!X^i!*Gz*ZoFOrTC)wLxY&wExhrd|rc4~{3_Q*O z-2;sksaK_x`8I4L&PXcjO72Q_zDtW_gtq$RQQbjMkgWOYx^VCawP2S`KFF@j~oL}+~b?)IVW(l?ZI%T&|1-=5xo65hW0K+^5&{1ZP4Z(pDQ{UpdAKRG=h z4IK-FD1GG?uPWES2FsLi?v{4+}PHVY+iZe z9O{CqCwuzY8%+@L?$F>|)17tWJ`^CHS&-O9kYD5rXFzI$I27rms0qoV5WH%|vC0wD z?ZHT}us3XU^jcI2jDV(2YA%aXNi+JY4P= zguyN5fPYHyXk~4}&9|}BD|#&WKyfJN)stTw_%qNJMD26G-kCo2DtiN|L#q}gz99de zIj_DZ6*@8Ys12y$44v46p2HZM*7b)bNbXXpH7cP!2f;MxCRabXB3^3DvZE4U5G|o2 zX9XdY0-u~fTG{4X7*MvV&JV!@#>E}^ge9IWVC1{cQL{f&6@4wXYH4&>HHBycTnrmr zIakhrw2)7ucf$_=x2Y7TF|;D$BkMpY_RHdEuLdLb-A+D7{+d>8Qwh)3fJY{Qd0W$bp#YMTkMtKv=eXwVk#i`sTtfR-n>qwNRS zK21980P+PlF19YU5(~%8*!AVPG<;o2qMK;UHoK}hPL&1@5?<0buZrn|%Q0;%bh-f(jCLqa$Bx=WxAK_Xyy14aLsmijQ z*esUS3A^>Nt6F<-r0n864=kg*XFjobCvTNJz8^UK^$UyBZ-06F?He%5I5@rkg(=y6 zN}r592AkKuP*W6!1`5i&%f5WJuqx>mJ9Rghj_K?+c{f0UWv%)unAKjTo>Tpy!>sU- z(MP<}-@djphYf6aRJDL?q8?)eRjju-Y%V+5Q|Y85mb`=d0JiR7;vUYMD=H1zm{Ruw zi0AF}6A6zAAU%1RB*is{2dOU{9l6$Mf-&gQrn6qNmd(Rr1HaVuI^AzY)Q7!CCUO1u3BLzI}mT zkDvbP^~-04*Duw0{qwg^-u|MDn?Hs3pTB-kLcPlCHliz(o0B>L*P~jBI&-$kZnODp-Kc0U z5mM@ryP1<>_+ki37$V6^gg9VT+w5TgT(7u56 zJp7TbBd7+vU1&BhG-|if5dJ5NN|Vnl_%_$YzF<|_{kQ-PvGTYII{{0D?C3dAcQb&O zp3!w9&|H-l zoERDrd9Big96dR*^5LW6=^R>BC9npdhXzOzOx0IXcdGgpT-g_3+;X#phWX$MNV>%; zba5n~aj#RzRaXb3w~ekYMCujlr_Dh}D5)C#(>X*KJ>!%ORG$_UJ%n|4#muTrj!GpU zkz1dDaSEVihxLPgZN&UK0Aj=Q@FHQbIzyu-@8=lsa7;LE1tis_0%#q=gDl>5kqG%r z0(DWTvG}S674^0hA2b?C=Z%Sav=#sE2U3^){eL*(*B@R#rsUAGlI`m!-!ixV#p`dw z+s|QM|MpWdN&i#+7WBtIRa(qXpCrj&e|&muPA1z^6Yl|CwjDyE%-&!`pa(CZa1?JX zN&dXi1@m67PgoO)d=m&-oc`M1UsD2J)>_&XgBs-RVEiBKNtbzYmoG2leMd9qB}!{lX#+X{Qw&d z0*$#%O>TJr|G+vV`@2pwI92I!x_J>&fkUw;)=w=6saJO>5zSw*%DlJdKWRhXD(_dcG? z+)}X0|9PD((<$lt7w&^3IHCA$b~;k`~0 zpIfMJNLk-N8P2OENba%kiinm5ic-|U0W*D7CWzx>9FZ@zYVDi@&?dLiVi8(~4GAit zk$O*?kVi}Atjb(LN^U2PL3w%`IQo+}crnz=yG^~eR<7E*R7F);Xa|N!Dig!>;zO!7 z70w_Fyi(QUeAw#TOcpu;x9S&A9~SI-B_xz}m)czwwJ&ckuAF5hFSV0NKj7giRc&-k zjpUUO7g;!%M0MoG9^e`U|51nxt#YrpuV$(#3rYOvTCb`h4* zD#{8J%ClhO6B6yvG;|cN{Mt$Oq?H|SbWOW6BPdjUWi!7?NZ+i=fxchat~%T7#&;X2 zF#5`v#1;w7)oVvoQ1T8i#Dx}GBdcGwl&Y!>fgtVxwjx3!a2vg5Ef6%+D=ASYHtJZ{ zJEwDfNA)xFwn|vhM$rb0BFA;A}_^`*`{nB%jqA(KmMbBpAa2J-mfWtn_WMC zM-O5fcYgl%OPCpd{`RNWFW_tSZ#wi;nfU*2mH6=fr?0<*zy!P}Kl-2l%%+q%+&^UZ zEzvTsPy2RLN=qEC&|fs$@Ewc8LbxnmL*Qz``sA*rMe8Duyo*HO7a5baO_-1FCZ(2j zWo4DyU&ZROtq{Z|t5}1H32vc%XYqE_Q6mt&OPjq*)+{(?0k~%JzN$XtT`4;6HXY#S z>!52?$$J0mh^n+xrd9;;srRO^!c-5h%&NoaRGFA8U$2l!wNT!|c06k6;gey9W2y#}@SyMi;3JF0U+*Y~twmI^F zjAnNoM6@G~BnTy9P~7*bprr%{HS-D;vd#YeOS1Iz(haQL zF9k+s#4}ywWjsEhaa|%@AwXS)VuoXc>V_2tptQl&=po9BF@YNH0wOs)^@VAwHLs7O z-~#+{1s1xj%^B7-1QUTIZKivkTJS%Z9LPug;>kg?qso0K*@^Q})fWrAJB`$IGewuQ z0$#nAY9jFZ>@9=vx+eYmRxhizq~#HSl|_jJJM)ji|CZ9AutRACTQrg$i8MlBwzsP%8i6?~Yjf4dt4?d42Mj{6m1XOV*qC zg@^99zr6iXJHH6+KY8|W{>c**_a`4}E&Wld?!Wbu@b)oqwi360^!9m<$`At~XC}^- zN*&4rpCu20wLWRLPQf%*AEQ%@cA*4VSevYDzX4<$Z9g-3QAtG21{lNMq12`H3W8=9 zllS)0nq(Pb|4+BBe&*22H$a8~1h?)LUbL&~V6yOahew|Kt=t1aYnh*VVHXLDpJ5zq zvu7`ujAF4U*=ecFUM=L@S=BE?(w->#ypy8ffspNho^ucqC3;(!-wcd~_XFlNuh1Cu z_!bwHfVju2`|-_HE%^|P)EU~~CZKpo>O{aF%bEalq`J_%tj+-KgKc&gGN7EYQJvm} zDL*0;YNZl>)eEilAl(nxcUH`{OOjS>R>|jhstieoCN-UAuJoRs4sPeC==l{+)S5b*cJ#5fZ%{m^+ct}+1Q{%Pw|GK+x25KW=tOH z4y7V{>~Eo^xGEku4OxU=HTa*PO9T3WcgtEbdI+J%4Z-_P_WYCj@2(#DS2Fzjg39FlR_=-UIzK>ZwP2Xdp-V_;l{5mA&vlL}1#a)M zQ#$_Ht&%CYD6~n9j*P>V952xRzl6P6uPoP5Im$pagxlDZAJVZilRRemX54iX2EVu=(bY68wZ{9j(*+Ur{p zmsLU&;LV80GvtY3ujw1&j!&!M@?{Bh-Hl3`s#~0Zky5vi_EdC^MZ+^l-r7m2ZtUGq zcYQxY=cG7mQ=f{E;b-QB?x2f{oa52TFg?Qgl$4qVx~R(lBuR=A2Cz#!CAr2eEug9q z^|Na~DRW3x;DYVyG)ax>G*}%RTUAs};G$NH!7#;i+RFl77ijtl*!Bbj5G40p>k%GfCGJ%-xTU)l%&-p`6{?gBeA^?vSR6y8 zVBjL{!&)pj^2DApwa}s;_&c^$cvImDZ}8(d6|&4MQt>HIt%9aoDk$M@ulBn@+XF7B zJXGod>wRqHaQC~D84yXqr>ebFF(XwYYAu_s!N2CVvT`J#oMZl60`Mu4A4S~wG+BGc``Y925y7|BkV^D>7B585eU71Lp z8k)Ea7_N?>gQwDge^t9E1{KXL0z<0ZB)duqs^oS+q+|dDiNoMUay5y;C~-ZC(Ite@ zo^ohzITkKSRCd|0#omz=Rt+Vf63O5QWGw)PBPtbZk(8=d$u6t+jkxU zDOTl?#EYC=mw*`6aT~(Jt3>8@S4omb{&6bcvS+PlBrsQiXx)BXDNyJec%UnZdRI6T zWgDQO;J#28g*|!gjq$YA?CRxpVV@HMhr4*Ngi6}E9X$cnwpbIx8 z;B`M)G?YrBJ8i1l=e)ReRtE)?iR6XGaAi)q!jbdbQMs_a;S$?}1gJNlI%F%t5z8NG zg#&KTg8nw!Sw-GpX!>zaf7EqFATRp90ysIb@&kJoJ_v-M8Nu9Us* zQZ0WI2&22pK`?oCpo^XPcinpau7cQg(3F z7^VdS>gsUH<+{LwD-rrrP3rDxlOtt#g6EXd!=N zP219K7PK~X*{U*TKge#4BzCxEaY(3;eX>`;~K1K`D_L|CUdowH4J3dTK>|) zirFH(w~us76c@|$)e?YRB}zWQ0j=D~2VglnO~CB4r;NDH0v3&_k(T1fV?9y^=M$fg{RTZ}^m!y8 z1LaD6|64m}O-u&yI1!4s%>a&IhOQ!PHaG z8g87>15eeRw63c98K;0lNSn?>q~Q=~*=2Qi`O1TJT1{DBj@z<+z( zATM#YaEz)-tybla)*f(#E8Kw!t8R8V*Xy@%ZAK_5g28EY>>h?Rz`OPydX)*>c$GfdhwdW1!0bAP`VGU{w!%fZ+B^#od$VwdyU1g#NLE$N5eL{K!)QSb^E;Z<) zunrDO_f7?KeOHJZciOU9zwN3nV)9b3S85@gLuY&Is6jCo%AFun zXu=4tg_gx2xyta|Mwd@Szv844Kyow4`Hz_BNTQhE?i_j{^*Sqh_1&_74jbzqh5z~V zZ^DoDztg`CZ+~)-TYCMLb_QR(e6=6_>hJyDuNSd>*)A zqD|0j3g7(|!~2)v<=eas8K+lc-71Y_pQqkY3PToz4Qxmo;byoiHqN5_pyJgMCoCx3 zv@JNFHp$rXmD*}*B5!56i_y|L1d&+Q%rl@{O}M!1BHD8nks*~>lK%sgmxW&SHlYxO z3IaG4Kco3ZZbzwX`Is%EN@PHwVnZ3Rbm|grxBa3bNcI~VTYq=#mEyKB7rsh1L*@@; zk|HtHpesnKYc+n^^y(37g}Dk930lP7hs-zVM|5mV*Si7=`W;e{ zuxA}7S-4ZToZbULnM~dSdcF-rDA=q3;i=%5Sk5n9IV4VFDA)QN7%-|n`wvhHMb;3^ zWn3FMjHj`b<)b2Gb$Ad7I3NN`8p0;KBxtZdS!Y()N$SM7F2vb_v2kSK&eUY;TVnM~hIYj&IKwF+&+Y73#{EUu{m9+vETe*zG^iD( zSTRB=VHzi>QvhGmp@3Xz@CxlQySng^lUPTuS0wEgwjc7#9i0ukWw{Z6v|v(kMHEX! zaSiJRKt(Zj>aJvGfUTSJ#=&L+T27cfdaH5d#?I53tl zsKIi_$^CgY+gMbBvX0c4ewDV4*AYvUd>sh9vzmBudb}z1K$5ug9EQy0)z-&Bp5xpO zgTuj)r?zw<1W>JzGRAe4vkt&+9gvi$R9;VNCfq}7Sw6^eeJqC=OSM7#kStx$fUFs$ zl2Of8pQ;PQ5G$O^y2b;|S$x&(!v0mGj~}Ef@H2=IFVl3e2aMGhVFv~UAdnd~ zKPJB|U_hWv9$ERQav^8S=JXi#gvqegI$Wl5suI~T^P%nf>SQ?j{zX|sxPxto@G}*V z>-QutWr&ikgd1tXxl>PuT>-UHOr?&`L!pEQ{6q zUkc5}YNU4`=G7ZFDKZgn2PF4~>=D5d zz5F_0sBA}dq^6@1@B4|<({z*VYF)O>VDco6?F zv!Tbl+##D^8&&#PrcURu_61PFTELQHeTtNm0xW99Zso;Vgm)bdR`u_>M*DjfZEU*I zAaa5=c)DOYE{h7mCtRo{BAy3hJ2AXf#PB_ow!mI-Z-`2g4S>r9oe_*w2 zb6efn`Z_?8GwyB;5D8~0ab<|Pv{Vea$P>G*Bmsjf9A|1fw747k(Z#CdL9Z!>Mb{#t zy!X(N-3g~i~k?Ws&p<6IsJ@FbbDECuufMjEJE$ytEA+zuiiUBuiSw6A1DJ&8F| zj+lAi7@oX@s1DlFmFX&zd?o2Xe1=zXj_ zyDMb~v@eoGv*cQ25~#ocu*egX+KP>y19p|paAC!*;Peig+6zYHVjNo46gO39a8Fsh zqgY*1M+%2KI7)Nq@d65z{a7^`IS3Shc!aK`A-3Ej$Gzo8Ne?%)kbojr&0!p{tO}`zLWVMDtki@I z(msckf~yX)@Swc&f>M^iE*aP~j}e3Ndf5^NG0!$<$ic4BLrSZ%5%Qtybn)xa^(|RYXd!OVV{lQ9vxRxy=(C*B_kJ&3SIw5#FOcD*ftP& zp?TD8a+e`UNA5p0uJ}XJ!9NU5ZE$=oM8;jqOTz3lJx*B{(ypr{viD&_#8k+*gEo)5rQA+ za!XE9IRUvvZ(_4}sggw~J*9eX4M_sZG017LOnF;3ta&x?lruzANJ?L*uql!DDP>V*E*$6wO?&l*BjBJ7U0Ur3@a9(9wcyX7uPiCb1J-Z^?#cI95!`A2EN@C4gJ{ij zb(IqG!AL8KDoKX}-TMHLdYD$j<5!nZ(l!Hq6pn6F&+CksvQm|&N^++tiG8<_t#Ixo<6TO6 z$}4A=bJiJl#W1KvVHc_7u_*@L{oHl#i|H4av2swyyLx35oVRWV=PKrURkq1vKL7^; z_J&dAI&2GhA?=6Nfsd$b%#3PQn5dG=jkKaCZM$ERKe)ws(4;CbonUV?>vJeTUzQG5 ztULAzd?v{NX_2dekg8k7gCw*?}$~tzMsL|pC6793U(wWzkKlW{$F|x-#?JQ>!a^}8eZPd-n$>D6R-L0 z%J%!{9m|VZ*+1mJ@X-G(Bug%9D8G9vH_zR0;}CF%3!l0~X0C7!!K1p?ZIimPGGkdc zMOS!7cHV%?M$Ekh3A-d7OATQ8)Y|qvA4sJ*wRKJGqvE(F9a|qtLJmZFK?Gs};_I@j zMs|6weC|AELYb1@J`p8T&wN;Q-=xY1(cCzc7^x8$1Fgx%en=;)8`cSXM;S=2$t6oq zd~6g9NlyyYpjzaDK|uG&VOmwV>_(ACYa&Z&!2N0ASW@#1;3!tNrCQu_QVf}p{MRT_ z6b)?!WwSvmv3?At#yL9x`THj-J!_Mobh~afI$)ALNl`cw;e{xJx_%1%YDV^JnkM@> z>cwVN*YHeXmO;@+z1G^y|NC)4>#0&-iF0Jufm*oY&{!6!N?wE_@w^!O`L&oQx`H7je@ZS>(pO?9mdY zuFhy}#%9Og!KPec^l+x2mHpkYI7JOipgr5oAJWhFObHC8e2> zV7#lF6?!FYr}Jj(_Ezc^nC^*iG(1||qNrTe?7s{++0aNL;Xv;=Ys=uEkycemfi3wd zAJCe{f~osZBHJbvU@qgr3cXjQL!Lq(yD zzo89=<{qnu1deuPc2VlW#qZu)^VInAIW}(`Bza&}DAi*gp0!JcT|m({-T45yKf; zw*shvUH%y|9;|>@Z4f&?E6wLE^j`axrFqwHGe*o`Qr2EJqr=7@2=oLuv(Q$v8!2GOd6Nt0vah}B zbI7|6!J6UP1_2s^tO0ep+nU~oy9p<$U+vIV6;(0;C)%dUdEBU=F-qsvK%z1=Byx7) zskF#D!7ns#%bmNe&wyyb-?k^s;TmTt{i6iiodkZBJJgUH@i~BUI|5p`Q8 zK0u))Zer!r1=XH|8r00lSeY2*>m+elmRZcaEwH9x7m`m;;{;qoLZdloPs-kiGxX2^ z&~k_p;y#OF2*BO? z(DH6M%U#)kd~oy-2B&O{bSVx}grz%0P-NYLc7vS|Uet;eA|Tt*DG4mPwE#Paw(TPQD(E0IhsPYh;QuK#e~OTN2WT~zW)C!m{V ziXIuj3VMLv%t^9*>&QS1uS$ZVvgHI;+SO4>YmYTw!YU)VWP(x}YRnE!`og1ilT4^Y zlRFFt8)cNw6|qZrbG2oA$p&r~PTTIfvq)tx?Anvf`ivn8V zV?}~7cu^6O#aDSYtp#0qvaRLsd7MwPLKM%jI$P$dpykw@1~j<=onfmPnu`Ot zsQq?SDwJ4^IjMW~9nhLmrnmJyo%+V_JawT17iriTGav!?8-UNV2^urfI+NO3)Nbr? zZ6aYz=p-{=zQ}E1)nnWDk3844+9z|6W=?tcad50bt%z(`(8cQ5)RE8EsKW)(E!ua6cKI$+*R*hO*v#3C znju?`A-T}ZhcGN4Sy&#WWjs`#J+nz=FqNls)hj-fW<~d4v~j6GmHKI9vW)G!Q>9H32Rus0*h+;5R+jU!6PD;3D zHjWy1XssUuL21ale>pOM-kf@!0a8#JV3(*+_dV!^Ku=9l#Rm&Yz%f^Jstc9uV#zrp z1*U9ByRRD&>P)hTjX)nPhCT!j3U|0?_&`R{vS@Asw^Y2oZQNAT1a z;pI1Z@3ZfIg8A*IufKf#Bp-S6`sVdF|McIGU-H-dEWCaN?$9s7>o=!oaO~tmpDh{! zq7P|b}(<=Dv*$hL%Y^A>Xmm%t$M_WfW`$A){mw2qo?c z!-od4_x1=uY*iu}BW!AbK#0%A3qr^TMk@|i?J4s!sLN~W2oLtba$Ew99?qeZNUWJj z?mlnMO;Tw$>VU*&NI7x<4c4XUSArmpVGFwf6MCBRuum{ZZBoUq*wpr|;yvWjw~8dv&mV)=-n>Mpz8gMUIVx_k@Ez3G$f>~vYN4b9eRsZeWrLR zv$%??^8wNFqpgt?#%e%n7uSR)(Jp23({&lltxmfuZ!4gM_<1DHs8`O9IU~7_v#fgf zMII3W@JnSwtskpnQrTDowDd(WHYl}g+0T(S=Gkt21 zdNtw7lKFxad4ItV_*2} zSwRK{#*)h5eo9%E45+T;nK_>M*3eo8DAOJD2h1^cKA`zPG(z``m}3Z3T2QJ~(a-`V zz#BwONdkNKQn$RKtxO10iKGcU1l#LI%wi;8cW3%l71?Y@5)`HX#1e2Rz@!;(Q{a5N z7#rMa@`zdN`9vvCktb;#9djYb!8&u_W-;s)Z?da zB0*RddI2pPF& z#UCDE&^p$ZiuN217SsRkUxpw4@Q1qj`pG*eXW8Y(_h0v~`aHaRe5Cq(`tob#>wNg~ zZFv1K3rc^Q3*?V2D9>_zWl^zy!2>fsIWLv5*Peo1_&X}H$Z0OTOlBwebnWiI3J^LV z%{80T36A0QiJIj{l9J8>C7#~MbJ?bVA+T4bc<2|8-S;6lx_!;9P1~NRu_3=&S5*tw zx@w$s>Jg+`Jb+A4*{wQ#;!3@OY)9DYitapp37^{F!5Uoi_SQ{@2>s6epTjc0d<0xi zKG6{d-N^@^$SH#%lPvXwI?FkhGiOzA6Yqn9Pvov*Xio6VH9<`TP+Qj&sYTG%aP(0J zaI1iDRK;c#V6V`>_bVpFU(s4EIyXtD10|#R3S=A7qd1vxNP2H`_S-BA69nzx9Nd~f zvE=&TO zoH2YbwZA@Wczso6aMjO}7?8)mxw~|cYqi7RFHi+jI(*A04e!rBX>7(dFW4Q)C~VSy zb)4)qyG=`U5vUo=TNe4UFwBVFh+3wT)1dJp$rgh(=9le8qL4(J&Ai1djxSr^w;sNc z4&)JsDtzQ25oQvrpSc=Ne^w!HomLzS%@EKvmRQb=cf;S^E#TZ?_^+@Oj%jBMA4f#- zRA~ZkKd;1UHYn9OAILUznFzXuZ3qDA&@^{p<*dGiK6vDm?$9u!OTfaiHf z>Y+wX#5`Au_b&U`uq8bxc&I*?f2eBHAHDn`uuy*g^-Zuy4JV~_w2A72x(2G22}%ev z!n=eomB!3_$S3Bb0o$#;=x8Z*#U=j;I2gJCvee;4=#2ok4XUKmLJK2O_-gAAV(*l; zUsuIU5M~tz2~|KLm$Y!uKtY2f*oYQHLc=nvultpubgRfUWEJUV z&Spt21cRtC#K|tBN^35ZZjdlUrz3d2T7;Apc!S-qs(-jkB9PSbgkAS$bo72aCN*m~ z^w8wMv}fh&@<3#k{1kIkib&8lB?^&ctZH1=H8Z9Mo@y8#p4pGSjdB9XGpg&|?ID$F zk7&=uT!tG*!#6CmL`h3X&-Jhbpou092oh5Vf<`_7YMyHPSV-LootbhwF67$|t~>{f zv=zHq?Au~&I?Nh?l0NwSqJJ?AV9a7610wojnb=SQIc8xI-;NB--Dvtzf($?a74-mn zlynYmm27i%o-Jfhq;@*>Wi6Qy)409}M9}v8_!Od+)_~|^3p;ZAg%I=nwfZjYke_aY zJc$LF4iJ701v{A1FIkNGFdF-oNn8YFkEE>^*gBjgAD^@-|VbqZPX)FSq* zR$Jr6cIA=iwdh_Vy&mxq*;0o@imQP=1B7JkD>W^)wEEmqHyRMHMcsS7Jp`ZE{OHXy zoe1irLtlCXo~7Erl>qD>a+}FmG8tk8Nj0|Vl6JnRYYu2k8h3F3sjy+VWs_8}T5V`o z0f10NsX2+^?&Z44LYJ2B?av%rgY~8fg+hSsAba`cjA56f12CFS^DRqF9LSLw(gNv*eNe#s-$4S+V1Ebc~9ML^nMrN)2 zG9TQ>l?g^%;H5fIb|Ee<5uBNBW5+TJcp8G8;rD%ab?cT~CMbPNt}$~p_(Av~nML2& zRQJ1|<`Dby@BTWxddSX!jbP_unIb!O|3 z6!{6r?u2`DsEAvZNU<@C2f|ctBIby43F?H_bU#+DyJf(V!9i3|gpjO6E;}p>3)2Gt z3m5)N0|PE301-N2d#YKYi#Z?l@N3RnlL?kM>uWFC{nydEMH zMAY<|yO%X1(FIMb4{J4n@MTzGPVG$b$aM*ol7&=EO_BBa9W>8dNHiCk*k8f+ir|y& z5onpbtqb46J-Xm#vDM>(o*W-zx!f=ql#IZ~vQQ_t4fup6 z?{eM>Cckwt;nKCBVUUgMEQp}YYX_|v`xRPJcdIESPuHIExHu3A%Q$7i&yfZwK*!9Z z)Oa_*(qZSNg&g!$&pzWV$&0X$YVZ9zjLJR$5g%TEqO z*8^nbed##dBFR+;Mx>M>A9+ovYf7^flLHN%YG1wnem{BuF8vcE(_cn5 z!SeS&p#AdoSI5@y$3PT+p;KPWZr}dw<*Q)tJ)z{tLF6getX<2~g=VaGU|}rW!OG^L zRN5PvcPK>Vgf-kjrbT4&)b9~+Vxw{0R0?iYQN?5fIP8IdcTz>i1GWfWH8&M{M697J z0&onh-7tEF_=Y5O?HTR6xF65P35qv@;)=z%Rlo+u=q@35Ul^INR3K{Mf>U zlFRLF^XophlY-rk87d@_I#Ru7IZ2i~0~6f)VAQ3A;q+&*;Jt94EEvKm({28eYHZ6N zej`!GS-sigubypUJB`X?;&K5L&j|YqhSOz*pAohoe>CZO#bg*>L*q!k4qP3r6Dz+M z@J`8a?1_d+-_nny)ePf4?rhiQfoMrt;{mx*)y8KFs&`CbCx$o>Y@>06`|)}A>6Oo| z9aS(~b~z464`I6BvXX?3lbrjFBUIG0L_hWDUMQ*3zFE#VtrDQ)Qbudnf}tDR6Ogx= z?~nn;Zlxo4c`Ok|wX4ATE`cCoUcB0wMK4(6B%t}8yk=*jdM7>NZ;F`N$|v7-6l=`l zIC{c@U&-g&3$O&vssTVS#xPBBM*>$MJor)uXz=Rgmz;mto=})cMKY?m&}=qqG8c6H ztkqVDuDK9qU?qloCGAuflvNTb`z({8Ly-JNL(Pn{tgrW6sGil5!&;nZgizx`wYyIU zY8|JY>8aFi&Pr$8=xvm0gZ|J8iRGGF6s;xzZn+Er7Z+B9Q9)T!IvE;?P?kJtn?SyU z-O&wqY@}MmMmZ{}${^?M;Su1wM3=pT)Kod{w>uopB=@^<8u}nN5W(e0k{z>p1T>|T zmODx!%=Dmu1`~f1j144U`qA4@PjCP3_2+N@zt_*h z+rOs<^4|vgegB7q#ovY3-<_T};7{^;^$hXA{Fgt2$NfrVqDX|W@t2(~--p~>65~JtLyXF=s61Cms8BOm(RI`3B zo45c46MYW05wT2weiBp_wGlL)At|N4OY->K#xh#x8x9lC__yILj=84@x?G7ruZjK*B1R1#71R(UTx0rvDvaSNcP*wr1~Qw8R9%VGdxfQ~KXpdE{TM(3`9 zKrIeBKy5F!W>3%>9~ZE{o+!wPwW^Y0m%}qj-_Hkun6avWgBwC~f zYX;rlJ6MRNYdrg1(Z>Zu9H$Qn3bHw3$)kT4peE`NEL3Pf{z7a~3+Kd&07! z)nJ@$XmsS?DJg|BpHw=-i(*-kDViz^UMpog0?|%NMJ2a@9h6Y~I_U_Q&GJ6u$69>e z<^qazkkn8eWVBR`Hzb)ErajIGk}sIYgC6pB4ZLpZA_^>}{nRs)`4VCSbKF@##qQfw z>bh>?j*Z_JDt@3NwCQH0gOd3m?7nsHsQKI*C0JP7{tkYuZMlyAJ+9aGorPG19_1ga zcO@Uzd(&=$o3caIwbu3nHQuE7*|jh>cw#K6V4Aqe<3|^?_3m1*D$Y30dFE<89o4*; z{Q*_bvRp5nullE4Q`tzRRzK*hPzM_|K^$@*ZW--p8@8_Fk(0W-w*igEJ&2P)Qoy3F zjI9D{0$qlzhd?ze)z-1?3I$-x=nlXdd)Lh)3{rA;Z4H@lJGW!o9ZWSO2ZLc! z4zFsl3~pKXn7Q~9@Q5{0`kA1up58?}e^38S_;=9LJ>s{U>V)z$+d z8FKyDx5fx;IdyvTkcb(7l%{3G61-O@JTqsY$0)Ei10K8D7^l=Z04~ z2b+b`+0QE+k>nB^TJZ`B;v^AuF^}@o1<9K)lR!>bDTs*L6V7zTy6X5u$v7o5+FiUA zIEXa+oTQcK?WSsv|z{f2Yu zQNjbGU`04?04n6C3G!WFx7+?zvRz1KF*c9*Tb?XVFUaO7b}X0V0m}nG%$f&{j*>di zTPvwbkQxSb&=l$90L1pG7CFPgv$nzpyCte~&A}y2 zh>-xUqWF!lnZRp_B!6>jZ>b?iXW}nVW771@I@XfwKPc!wq=>a}86;v`79jU+a-iaJ z1#ivBJ4jdXcOGcBk$}!c733L_$2(9};l5+5;2K-I$-oetp$pN=wUM&Pp~D-xa8?8- zsl!3|(FIkRx|dNNtHR!ew2!Js()=iP6I60a$*c{uOo2@cv?+Am-VhJ)9p{jEg{15n zTmgAPlvFJz&j~UzYGI8&#f9m_6mHc$(5&of zLKqorD0>C(DdsDBl{;#(;stPI{ylQhJ5~5uEJcv=d<3S(mBl5E_yxesupdQN4CdZa-|CKFz=vDFUD1>{)H+UorXoXeQdl$ZB#LtbyvM9_n0Qt zxi`Ld=`e4;(Fa(a2P7UVL)HetUHc@#z@jQjfUua<6Wri(=KvyM5@85HdiMSqa?|A8 zpaF%*qjv~#XjdouNCmNrG!M9gBp7g90qd>mplT{Hxk9OVHe{H}ZK#f+{17VON{o(Y zuzS%K+egpPqq1%J{VYE#;DRKrhL*EdON>NPQ57CeNukuaa#r^Xz!{_KErEDq^StjR zC({^I=0eyIi1Dg&4HnrK z(8}Z0m%FGMOcw2Rl9g|OABX>4U;o$eum86_lz;vD2fhYw?C<_sV!yqH?;rRlij=NE zi5~sWz(rO{G82MtUw@JR4ac4QFTdu^%SR!<{OCvfu{Ur3pYZyAP9`LuLR$z6Xg;@~ z@aA*$6sGQUmpcgtoi3rJB`k`OydOFfAGo0o#B5uqNKvZy^>*5p5q((F!J+mcHz_TR zufRKAmwRLcT{n;{;i&2HYn3u!4X$R7NiQkI@|9My0FDQO#*V5k9AXXFbeT*$dD$+z zzyd1xSqclnq%XMpNIPy1{A3*gYV*quWCbIR*%ff?b9VT*=WXCxq4$^fdPy?!7KkAY zPl9A3D|De$DlQ+v%s-ygaMmE+X+-?76D_Gj5!$Oa^uwdo4ggBWX3Wid&*B#hQ!98# z_AM207HCVuM1zR6-9b#Eh`L)GxJo*|F_xpz= z9uU@29pFxKj?KK|`!O3Y*a^iFOM~*hozaXn@*gxr(2aJ#Oq|5k^=Of@l;g5NyK9yk zFtO*Jq|V&kV|z(F+0IWmz5|HhaEhE2*jMQ=-H*ij(6gmY|bXv1y;%dKnSqTa;~ z_z8(So0~4m&5q(W@2C;Q4An}_o2)MY;Ho45#$xUQ+XZ2Ar3n<3q^w`!^K+<>0GfQJ z-26nnX&c`JtmRX1z@EVObtNwO6E)eI$Um0cZX^N?fR=}(3+oEL(TYxbG2R`9Stpe8 zHW;ZD6|i%f_y|FI63Uay&O?HzXiR6gL#V|Z?jYW&Cs z!@z38z-a3*E2q6>vB|Z$wtKNXP(DOXVuNw0%SZ3b?yMd?-Ur6j+OV|^hx=8MTXw85E$trYJM{%UA>x#Mnk-^pA3(6nZA@fzuOj%iy(_=u zxw^N|Iat7EGtPNg#YI*{#XZ`7EA{sGUc>*gzx^wkHvH=KQ+wS_hhIMU?yn3c_VOnU zw=b?e`42C@Qe&k5B0tZN(`dGF>hwULO6qPTo(Iw(=78hDFj!K=d#Z88d)2v;bF(Xa zl+UCVhd!qv5(N)9K=nw4VB1xTaCXnPnuM|~6jqljn%cBlbz;5E@J$L1R#_JyT#EjP z1C&MI8g?2@$v0UQsRN9WEnw)Oy9Vrn@_2R^kB7mBg+z3I~=KUpPAceGd>ypSdmGL(P8HRNeFgp zXDCp>VgUXvmPHNCP6LDL+HKrUa0k#hYQYjNJPgQvSwpg|6`&gD>p0Z|I;XdTo4CRClV8<8~t*mxeM-gok(OfV}P$#vTv9 zM4pT5RTcDZQj$Ud6Ws%@~SG#~E)S@M-8Kexm7SFqlEsof&%Al<65Ekulf<)A!?QXPq1Y8@Z|s={}yBMcSh##S~$J_oJZcUJf(MCQDq=}-keujPZVu%SsEOK6y~&ld zT022Mi)4#!V3Tkiak5*JFD>E3>h&A0SMDWjYk}lWu$A@ z#toCk4Rl-3o1NXfwCm;s3<thjM)H9%7g0+ zRNldBy@xVL>A@j6Pq_EA0*qJ~Pe|!#jeqdvS_bduky~xeEeL+fGUlI4b-AtR&_=uS za4>2Hx<6seO_6i3DxS4!ws;JEkE7oC1n@NG`E06phw5d@Hr)iRL0S*DfT?{+axo$2 zrg5@Fb9ovbhaNH%H6?{OL)A-Gs``X3ppJIg-yLU^a|uGndA|xnVJW~Zo`&_Nn%Dz} z=yE&78n01@*gPDP;dX~I%4%V11w-V}M@nwRU*#Pvr?PO{jngZV3q$g8Q557T#k1Vd z9SBOZ7r@%_+e#O>2BBrAJu8WgmQOH-YS-s0N9z!WEbIfqeOTqpFw~Od;29mRm4YMk z+0T38002zuXf_z?S>_-=z#91)N5bL>;kAX;NF+-+$^AcDd45$>F9=^-(gyT~r0H;k z#-?sb$ve|=4iYLMOK!fJ>&B^`*?Ay%u3O)BU<}tE#+{mB-zr9EXs$<)mZka%mPUkVK4Q7NZzz? zL_RDEhj!f%FoHN0S4d#&_iSO-NfbbDm5P8k2(E)2qdPpJld5jYiE4bM%Iy2!R)!~L z5vzf>U@YaHE|NANNMqTZsV)YSXX_XgFiye05gtRsN>q({Mp0T@kuFvZVoby_`wh+Z zppAA}jBk_#M^*o4HMFx3Beeerem`V~ugg|r(6UuD}&R2MST6?0Fd$DynYM$l8;`#lz;#5 z@>TxMH?Mzw{fG>*H?M!>j=b~oS$O@^ajgG0FMoRbH{s<=%;ss330TYH^zh!^LkD)J zr(%2x?hA#49)LP{Cf>n6Rc|PHrkE5YmGH@tf8FcpZ9oCFk7(Ad=R*VWX=;|h2gjP` zn6}`dPV;?aEs2ADyPWA9f;^y>tO0;+1GJ-f{&e30Lb1$XLxq&C@{xlMUXHL1oVSp z9o({U9g(TN{poixO&vL7E2ed#6=jt)76GE#_hZ4~srOKYzvQGzZf z{2EoCiVM2rwcNBsvbWU`r@(nD=xO1Z-;XCW z*qhC~ffZXS_4TC%p{yK9u|BFKRPd|8^}|0RFX!+;LtJj%#T)1vYWpb<%iEgNxl*;Ll?A;AfA|&`@T4g=-b2NPLaaR% z>w>W-8lsXAocEp%BB;qZ6rIw1-3kQKy?6@l4q-!Km9K;H9Qk3uwuS{Y#6IM=AsE7Y zfVH#Q#*D2idR;fRx+grP?zuRk+>m(p9H6=6U~?2L*HgBMhkLG^5g(Dp?m0sl(N0?u zou<@|Q5OG!gUhJ%_q-|hNAn&x&y=9Sf`X4;0`wal;rnCxFUbF=A5cy^^R<8A_46KR zfA2i(KZfrgV3kdZ+w0eS&EGGPH@tj>*Wc;u8;Qi9?BUmUG9d1o42b(YfA9YtUbD^P z^Dz^AMx4qw=>uLFG;WZ3%EsF&H*_Ef0OS5Zqkb>9?@Cm#r5P_z+9?`e4F+#iDt{i!W#WD+S2xW=)SlR&G0$+5|u68q{xr4$}t-P#@;K_8D^JtV8b)4Q))E^_Y2wb^uL$e>c=MOHoOtG)8c$bePIm3+_Mp>oWcVzp@8Wa+k)mW?5@uvLxc{R*P zoh@b=&bl@C)wu7bhOo2?HQQ@y#DK{u_sn7?YmX4C-Jx!g8|wsE6am}N`5~K=c9Ycz zjeUoV4X*7{;VN@Got3gfR5X?zgT9q_CzEAr!RoPWo5L>dp^p#4S)+C)8|YN4ws44* zLe;1~^(0?wQY9r|)(0?3^1xw_r?{cKh@8iQHL-gH4r>F=+H#{?Jg6+FUObb11yDcB%I zim=I+Zz%|32a(3*y^WoywS}+DURpJ?oIp3TQE$MofY+p|ih!D!r<=tKh(kustyaLF zgX5-wSL)lxBT_qZ*t@cTdqwL74{;bcoCSaXq=G&NS2e(!nD{I@AmBD+17Y+>w3Do@ z#PBbW2XuJ((%xEmObJCo#lmheM736K%MH;_BrqpUaR`r+1RuuTY%6CSi{;(6@(@uh z-raL;DId7P7WDw6AQXG69-(eGADV_@5qi~HUNp=hZk_rg*#+?Jaa z$H2`-RLHC_kSy(F2UKx|m1bWU$O^U~>@9EIZiA>Tqnf7Ct6z+YTYA3& zKi7}df$ePZY|OsujC}G(5kj7~(*y#QExkZ@m%x+f9_#7Hxm zQ-6`-CDBJlqG?u9Jy26+HIRZaR_|!(x>Uu2QvaT1)$fLK&BHm-b?MrOj3Z%;W6bHS;6f@rG0<#KrK!|gHI>SulT*6##aq3cbiB=DU zq{g-bjC$Rm4{EHGKbGnm42ow~SCAB>`4gteojV(MxnV3b`1 z0*fulSq0u{@rRuIrVa+3o5ex$quU53c9@B*ksvVjWidY}T7?!p7J6(PoFL>`s$s2q!M?XmBG$E%~#15?1ffJ(0LTAg{!{ zg0saZK&S2TMS|oG;j&m47F2E!_agCUniPIyrx#&vXxLrAUTw{2@Nu6Eh%_F`@>M6e z6LTF*00T{k;K8QRSgz;OMD@okqqxe4@J=M|fnM8_c&0-Ib6iV;6?*j8fk(*d-L#(G z(~CR_vQ)Q2ZcPG-X1F4KDoGXEtEH?`;w9bE_Ea)7mB@~gbs#jOjAY1~VMxM&1(2M} z8l&~lCgs!EKCDZRWZrqK$2*HOrG6qWNDNj!6PqECBT)|FM=lR@hv~)u0RwwQZ!6}X z$7;3WBE$jOT9eavrDCI8@|@8Tm5w(}&9Zf(FYYD>9m~l)x8C)Zy>gp&qW{#XUAsC2 zuB`5qn{$a!+3HjV*If$=pkB`E{ABvd@=+mVB?)CWT5U7Pm6%O1LDIR0Q)`EG1N_-K z%LDLsWouJ}p`iZ}PC%3lHcu_xJ-HtTmDdVv4E2)oP_%hj7C5wd9E0~n$os|+C?@-{17^bU=^1_fOnen!ZB}0$f z8k$i4qOYzLhyjw04|Nx{F{5OtQI$Xy$l@39gmWXVE>t!i{ApszKqd`b>fCj_j$Sn*2UQ)`O?b7IAguFPX zm&#~I^Ml}F;J>Nd<(Ui;?`Zvn^DO!Aksh3$gZ!HHOpipleZVV`o3{hS(psYn=%J@H zDbFoIFj2>Zev#|{35O0yMC1Qh}_ zERINm8!uXyz(8Bj1-44N;8uHrv@7@U8HFV96C89(T0LO=3RO>a3rtFXofo&|h4#oh zzJN$PVN2*<@@15|<$+Re@HQ+U?JS(pO08=jMn=V97Ip1lBN)%Ww@KmE0>s^O{5aPK zd{cy1GF(69fqh7sIq#uABBh?3=>}}M1uRhtu0%y#Dg#%eNoA`~ifXU%Y($VgtUPzkC{Ae~GT-pI(2vcO`u%f7MT3J~q>$ zhf*$a7h8P^=-E|YjBEPzga&O#Z(CKY2=`RUjkODKgh^tu+*QN@-+Ej!mAJs)TWrqzJ z?d@Y#wMlz3CPONj1171Y`7YiOQ%TB_qmE9wEG$SQBOV?m?3{1eYh~f%lGfeI_Y!z2 zTio9_gYM$nh@my8)=U#zL_!>p3sP*$4)<%(tAlYL?m|_#*#&NzQR2RP?&5Y=vG0^M z?RR8vygguIQ#UZuo#YnEP`KE+A8#C#gUZo;1JMGLyujZgPdfOwxlNYNq)qmZMg!CCInhY6PESu0j!N35qOiT>?!G!jcH5Z?LJ5b?|t zSe1Pa7e-E5q~`G*e=W@A=jsy1j;VnZw7rDg!WlJKq|AG6a-v+aH?=UfWYQ=o)^ z0L$O-L}KoFJ(ZiRzIdE-5R(eW&F&;9>uR*Oc1Q3nZbT>@xMy$4A{>p~7NERE7wXfl)_a%l4(JdN8oV4#lL|?w1K1tb-(UoBbuC7A<&`1qoW(*ixOP<4VJoAN!g2&rz~8E;`@xRCj*3o&B&%F- z2IH(~$Wck0`$F<{Hyc2&nB)sIx*zBc-^lAlW7BIcNNZZnB|&`7L(7cVdHdPxpI^R$ zWAC3|{*ZU%jn7_wo4@84uOEfik56wuk^=izL0-PW=pqF(XMZmyGj`>g-%bhH{ z&TU?fAhThe#ce6WHtnNvxHL1BlC)jK!S-MYJoz*e51DlvF)VhQUA?Nd4YwhS z?db_hVB@3#zl)&5dim<|pgm|KJ6H$Tj#wP1OBO}TJ@j(-`qlC^d5~e4Ou&v5t&`;B z7L|3J#Y?7scx>Vh?7_$;s#~lpc^?QK%j>QZBuc4I*f~%Oz;Z;S^#iekXR9PGZ~yCe zf1MvL2u@$aMxS0Z`&~Bb8fSEq4c;?0RCbes7aTat3KqG&(gL|^6jJ$MEJG_fLT^>> zf~3#%tLIcpzoN*5d29QuYeXH_3AAtvd%bao18dxA$|ThOe%r z87dSR?S!A9?Xiq!a#6DwmB-dT4u|%-RIYNzUfZdJHBk=y#Swt#X*tej@NJM3Us`du(7UE|_NURT&OrLT= zT>&`49YBT59W(G1?3nWzBETFFf)Mi*4moOp&w)%O8rr!Sw=NKuQD7)x>8-@RL2=N< zSmUp-tT_{7yI81tG}eTIuwTeZug;Oxu$Y%hHYkdMh^hj7nhLX0M}oU5#$>ht`U$^0KKy)f8s~=3zcX6%=ik*7~IJ97cP;44O~m9mx?a zZb$j^+uBE$vTLJF`L&f5!r%S$FTDnCuw?$0uMV^QXW+K~Y}5M-`UZYM!y@c_92l@a zhkNfYU|;m>@b>Rs--nM;e&=srK9T>w#?epY|Icvb=d?M(hWQE>l4CTm>{~gEe3tV= zhoj90+t`e|kj-P1rOxEEl1hWHZT3+3NyF{v>>fo89c*vm2)tVW%Pm}ucLv&fbA;gB z;e!mpCs)h67qV=sk_HAe4C_16SBJq1TpOwU4)B899axFEUsB&p)i0B3-sm(El zFW3!92YwTEs<$xdj2O3_+>f%Ew*n(so)(u8uJYbERLr(#XB1jiQoXa|y@8}|C9guP zK->kiHNo^(o=j7ln$Swf6WX}SQfxC?xMSPcS>pV-Sa}YUgQZmdO^~17jOCTw7*(`* zZ)3v?awt*7Efdft6||w3u?I;PYqXJapzJ_KsQ!N7c-o#oV>v&NC^V6bn47>*ziiEx zu8%-;K_41K>J^$=vYMyIa>9tMp$K57o_H4SOFlGEmeo%+wL5WFt_)?PAM&}?KQLV6 zZ?(ui0>S4yl%K_nIj{wBMTJ0+$u(SLF^BiB-sEYC&f0CF1o3{i#?8;Lq-$>RtKCZa z_Cj0*{!O^YPi^7U;|43tB-LW;_5Fh^+-B^F{%F8Nmhw-{{|JG?G9Y;+d*4wOi4oKr zlBm(NS71!ull56DGaC7#rB$}FAt$7QCPd^+=ZvcF0m2QKAf>5F0~ZwPaj`D(Id!Pm z-mUCsB?WWHZPmSG7*f>(h_K7TWGl~Srv%9wCZ#rF$|=QM?s#cFM+Zk%j|IjM<2*OC z4TNTx`#wQ_R_f>z%KZ)K;-IMDBWJLJi_$p3K3>j@%3TjTe7u}tY?}@W%Pz05Du<`avJ$&eI$SUZz8Im?U z1F|EfkL1TzOe2lOG8rX(2xH+Bym;1jC%fur*j+;}?i8yHO@(~8Qr)#kp6w5Q$Pu16c59FCR#O{~@%r zK6&}(<+pD?{qC>G#{KLCpy9mz{_C5UU$I4h*vZZNPmaxdhZG}^_`BDS@f(QDzW{e1!&*(H>*MvY}n&X}cY^q~%?4UMg*j`BpSJ%q3!ddV<~3 z2qWS|2=Q|w`N#slJiI1lg<1M$As;Nr8<1aj3dt?agl+^I@37`@ssvnGUCL`Y%Y$Kq zaPuVO09=-^^Z5k)rhS@HyX~&3DUTQDeZWYzj#-_96o#KdYhxsQY8v51m9$)60aBrU z1`N?rT{q*zHq?aC9pgFl?bv|I22e+r4<+2@a=@n1j~(bRY}(*-SmB_PX35AnxR#}C zGuce3o?FOR+1O-=r3>j|{7^mA8)9_n>IEW8AYK;8>`Zt%hgR@{aM>P)7rKn`D%JHc zS~aAAtR}4olzsaQ`i&84+XvO5TUE0v)1y>hCbC=M+6sq6r_PKpe~l7A(MV{O%j{)0 z;x^sJYAA;0t$Ez0u!~7coSnw|tdf?MrvzC#ZEw{`iLM=~W?Xl%j4*!hKT2i*?$@T< zPNJ=Y0-f_-?W*cEhF{8zclW3a09-hu1_j-f3(sBlG?UyQ@8@PZ0AjObfv0SHLODyh zi{~^MT@KBZaamv#HBynR8Z!*O($pp&l3ynYZ52`Rqr1WAtv0=Duu-G3Sx^&Lw;k&O zo9E%-m@gGZGZk_)2wVj#n6kkxdFcQ$Xa+9cEry|D+;a_WmjLS3-n^rr{Qq5Y;|BO( zBdd|b?Hdpd5BCiy(Q7W-aU;W4^{F4+Q%fFivJZG90f2J$&ov#XgM~J745+T)8vq6D zK~S``#Ae6Z6ma()8R*p#zK{(}n{H7J6}Ju;v=J(B;0>`k4*Xf(>^fpoqwpil1^Z{O ze|-JNAR+l%9(n)u{qXun#LDMqM$Idr)ly)e?oaXoO=<6b$5K>NJ|o;ohXpF#r{C(E ziuxHM_9r|BOqFk75OAz~iz-@Yac8T{cTsK56K#PX(3t@!Thd93nzzUhJFd!(I+wQJ z%(8TtfL$)4kpO#A3J*m&)pDcR*CR@D8)h(M*8(YcTJ9)wypydlRZ2BB#y44)4$fcz zTx2}w0pYx+78G}vj$7a%yqgziqV2nO6AEy1GLh`J9d6j%`hx4(hJPy$))4Yq7^+eI zUq<#}vjMWCEqReukaU_yvUkg4R}RKfR+U3}*B%9S-Btfu)`!iGYMUacYomp9jQNcw zg0r;3gaS2%4SuKXi~@is3sM{~$nHE`K>VO!6Y z&g`irGlb0I-TDpTU-huioY>6zlcLvAYG{9tLrXnNNf|JtzwZ89eTzdi zmbJW}8u*L#s?*1&JjA)+yCJJa)f!m{E>I&B!RT$6MFs+wJ2hlpA_Y3mY0=Shnq@~G zfU}t*Nc9@-j=AmP4eI>xW}Yic6)nk-2!9i^xUd6Be&r4~rNWq#NyNje^Eb6mzH z;litf^S~qplbO>cozGf5RqO%KeR4TS*Q>&N*a&`ugL1U;wox;cnV2?6phAzum9~R`uvL5E5~~hJ|qk@%q3`Jo_7J0bVhnD%d`Q>LB7LTz*Yh7f{NmiB0Tn)^*}IN zzDo9{dS=1hLY`n(x=a6{I7p?nF*8G%IhmjXp-+OgC9~<(;9TpqE4f zS*n`BrwSGNCOwt62N1V+YZ1k-r|?9bjt(=>MAlZ9C6w|`lewX}*xoq2hrl3RFya8{ z0y7KMDzN-S9{6q_awNr0Yahdzj%6GrNhZ`?P6S3CBdkk1W>3)h(#JfcCyv+(Xon$G zS@%J!7H>^Jn49y7G9#Ps*%3V-l%jzOX3*qT%744aHdakpYz!n6pE)4_8aZzveQ9Z- zdDS_r1l;m}1c>{GWRfb@3>h1#5_6<4lV0ZG?xqREEjIpS-_pQCkf}t6N z#8-o!=+Hf#a);B)46q8%q4cC84)7_cu+>WtnDPjICD&k8)ej^M=g8FHT~7%NcL8_l zp$$i-lZ1I4r6bg$?^wOe^jzoj*MbgUDr#Gom;5`y$vXT%jCWnbNfI#JTHy1sa$f4pfCF}T$hdL zR28(P`+T}=1qfkLuK9!J7ZYjoM*MP!9YiIfZ?ckt84=ffNrGWO z>6kp-WA{D*fZ^6v+PGB}rLuj;Gp}xOZYh_kJeQ%C2VS<%;L^Hq4(to~i{D+a?`ltbnFh$ZrGimPDk>%`1t3J#N(l7HK2hGBz~mm`f-T zT50H&WHojS$VNUoRf70N0ejb;h@%Q5b>t%mwRrUR0EhHOrMhkRn2VQP#DaB(i#P|< zrMfjN7zFJmkqx^2eTlDk9vO)FBX=PEZO!C$q)?&bH8M`)4BLo7lBj1>=;S^g1d4Qy&af&plTL1zp(av0%eIJt z5jv_IV7gfOzbS2Mw1$K1Y8R|`nd}8K;gbT7u0RqDYb)haDJPKT#z;65oBV@fYpGfv zdoYVycx7aN&3FM9h9tRjm<{!*9_d}QoH<5w>dt#1*)q4Y-QK+Z`Q?NB@BYqjUOxOw zui?M<1$^Cq+Q%>75Ik^j+kkym#s>Z=y#4g$ccxSF_OsXD1kMTmTX@Oryyv6OyVTm_ z?n5i-g*_rDDs26F3eDP^ofcX=5S*mXg`zbZ@RUxLZ%KWYW7J&-u}M`#T%Zby-z&R} zko^P>6TS=amX3I1U;`}&}U-E+DleNn4sOCkVvr_|2^Gj}iU)G~8m8X}14qia zlnx{bLg;KW#@z%?9rZ*Z4W$T#2QwxW8e5J{4p~D8LPS2sdeRtqQF|Y3X(S}+qi>fI z_bze1xoo&BO}hG9vH>W8H5TO8D2Z>9k5t{rVVV>bfv`rNIPxHNG-NT7AGu1Md`n)- zXfr5Tv;Ywg$V%#ymEj4geco%@PO4fYc@oh!*C}h*#?5m6_Qi3~vR!wEWw(ix->vfz z3*19vDwF7lpdsQo4*3Z1^+<199d=^pIZkyA`+#nYj_kk>?NJthEqp3 z;0`K$6e-rY1g_AED~ zmpRQiNmUcF*=9ZxyYs=bwcc8Y+o30IgPFO*_yvM3##2z8wamgrW8{3$F(1({!qEa$ zqWog-IK|JOnOcQmAG{?%)mh;PI*<2k{3(kS0bS>b%zOoaI$1#$x)E|{6aH!K#9@}Q znQmzjY>7epLkb;0quAWI!l;#UX*xS(36~E6`bGQ$1lX!%UZE)qjFPz!iU#P0B|>^i zesx{2MKR4(|a( zn1}kmmjAyA?+o-Y@(*wS-iT_?cMUCFvS!0F@l@W+Fx@RucW_e7*`LnxfdXr#IE#Z#U#h#u-~Bi(gaX%nb^foa%zYih#2sn(^Kmm|7)<^a0=B1 ze16#ZgjfjSbLjmR!0#nocV4gu2@(AxoGZFTkMQc5N7k%4n4R71N>x%cJ9T2R>}T#v z-_Xz+JT9+lM0(~?ve&NKgNZ##n9Ki9*PAU%Z(V1C z_xTjtj_$55m#qhIMVBANu>tG^kco*HG7mC36lKeG(U*1Sin=LNA}LZ7C6TlSN-`r3 zkKU`-xAyuL@=)bp;(vfV`R9OPujw09+3a*t$H&woa^2IMqtq@DYHCmI5+kJX9&@yF z0&+vc*rPMU9yeh@q@M)oYto{hHkV^?n?aZu6;{J&|H2u&O;WvlBTFLtC2$Wm%r}NQ zNnvLC1lP<1B%lG`Ip`(K1wTi*dULeF8Q|oV7MhTx1i{qYHrw+GB0yspBXm{<_-_Qa z#M%IowQUtBKjl7Ucb1S>$=*SzJB6U`7ISRYQJMLfg&}H0f&XWC^D)?dt;D5ACeZTr=BhnK56clU&C2sX#SoD_e07L>b1q zJ{kyM3_F)049?>l0-eFe!7GlUhp{r?k9ij~hfGafpN@W!l%(Nw2B-O{;4SAS+~lt$3TB`t{}-f zHN-J3W2)eSHGju`!}lz<-QMGCBM0P^;q}Y#{~o(vy?sHz!_SXLzXV;-Hu9sNzy1U{ z#?R$>*+JwX^{7uH9+HodBe0jxV+u$kUi0#Chq7oom}+;akVw3OU*jL-bmTF$%i<{(gk4=nyGRJONVjRpOOkzkfMX79y5*=f<1bCERJhuGSr>TxR$MW zZYS!@3K=!%f~eQe1bxY>d>`eyNGB*gQXgFINPu1sM=q4_oNlNwCQ%81;`nx!=$*Im zde8v3z6e}{=27KK28sbl;&;>UOyFVLDGJ!04*N3HzZgVMTR%ahtVD@VSFc%{${R5Y za;{YZBkzt#DSSr?oPp)_d}yRAW{S$BP~4hN^5Nkt$R5hD1-D)s)a~51^%An@z?;IH zC?q^%-f~=#7&=JuO`O6FC?s1ehS*?*&fB4{q%L1b=p#l!&lq&)Fr6e>5ZXf4>7d zJ{%5eTBJHJXD?AwoPAsxPiR&mw0rHz)XY!R>0MR}>iS4UtS+%s|T>Bbe3H=q#8k+s@96oup{H{~DbBN#6algk5a zi(ZURivTERI|f$*;36qh4UG5;_y61#jV|Fcy((4!A5yilY0XNKy}01J(3CtLi$K8 zJ(l*cwM{cx8hzRw+aKx!MhLyMb#)#gaD-s|(+6|&7A0_`J--OFQrEB?dr)>*f$_(M zyAXy_j!2s@Hq5&i8CVCVOlRQg#v8}?Xl%8;gUVdRJhf^rafd3PCSF2JHS^}zsWC2&5} zCsR`EJ<^LXZt4#MNo2k$hV>H(jM~V8{U#C?67`3yR!?l9+%n5DbEg|izy^B*Dn-R< z*x;a&g9SUBJ=#KoHD0co|MFjGk(sSGtd%btr|&*_`*C>vS^h0xfv=y!Bts(We}DV% zyZ5(cc4!-P;IqBplrV#q|TH2uwroyWkq}K!Nb0G!U+eJ49!(s zAs$X7UpoOO$l)iDQucf)gdvq?J6>6UFLbc=8k=XbOqbh+L3M2xOA=(KY!+2^+1S=z z6u^9v3w$HGZ6Ip*HaP^(i_@Jg^{eWOcv>7D@0vgRiM}t;qL6OU*4-F$V0=hLV5u+=Y zwSzNN?>He7?vd4DmUaA!u*?V!h~Z4jcQ64Hz&_7lmpU_UN83?O!I}V9W8elMs|HLy zJVuS+6-I_~iP*Y%MzLh|emg@2&>4b~{`9Q9&QSUzuMZ;)5yzo$&fpWC}Ck&L#}O-+~cXdN5w9&edDAN zz`ib$eISPuWP^LqYt2Cfas$=wNeyjUeq^u;D));nM@-$|y)ET?K-tv;4C>gwHl4BT zgp!(iu#pXggmBPm%fKkA-b6^fp2qnb8Rx3Men0ec&`q*!eYv$~IxvHonViH`Ns4nP8zBl|n_B0*N92mmyLR&JIXba)_Pm><#Hpad#F!V-~xAROo) z+g0f_w*9+G^6QtR8vwQ=%yk=7^>FMELp!i08*rXtP?|72AlybC*(0rFbmtV?m<+ZRK5J$sIb=zSXiO zKf28-h`qD3u2N0#*nUdYvhlX8UnZ}-p>lbD&B4aCXX3S8b&icW*7|@n&Xp?cci7nF zO=$RpqhGu#Qw}Tf;*%r{p|-Ue;nL)mB289|*Nr7Y9bQMXB(|^V5!i`THv@nPF_&er z9(6dq#&ZmJK7`h5K~@5SP2tG?t-$(*V!7o5*^n?AX&OV4PQf?EY?l1+F^Bxecy{XC+@JV=62 zOI&zRwNfI7&(7u2y`mzokUf@9o}D_&3(obK+CaU6DKCtNOSiiD>W?&BS*`0uVCx*P zPo@)^_u~s_2?K+?ynR$e0|LJH__b^|$-cI9P542DoR{Td1-+bl8w&UPd3?#r`BVe% zpF30iC?R9h62Ky~>er13$scU|7x3Xm?T-3@o&l(`pIx%iLXZ2Y50`i?EPd`KpiAD3 zwMP}dIwrrMZbHZtF0#y2x~TJ9IBt%|j6iL%i2zKy&aDhBbH&-dGQP`#8w{PoAb-`x zvXQctGJBmjL$Po}zZl-x;Zhx7K318HTquO>D?Fd3TyhCX;ULR8O|O>*X<0;<9TM|s zT1h&cpN-D1ZFL0hhh>+)sEvM>OhZa&Qftppg|vh}y+n1ee7cPikTj7fgWLveFod@I zHic(7wT1MS%`!3GZ}|hx`|S zYh79$OAnoG6yQY*|7`gi!JOT4iIT>}2PX)Eb*0?%r(zk*);fnU0B>D1O5vQDcSkgq z{9`&-4=P_tG@DCH0L^e^j6$yJb$a%Swr92L(Uh)?Gi1RD@wFgx;|JldpNQ>Wy_uop zSC}Y6t^Lcl&qCffefR0xhpHNjK=qXh$w{2rfvbx>2x}TYWdllsk_y}@_IXcaIo)Hh zV(hkc@cpx(GRL5>a|=}y(wgd+9gk;Kc3~tN@`{^yUbDl&2^QgK$4Z{rxp&AtNwT$^ z)?4PMo-(MMH_STr4ol7UOLN8e0t7pdz?+AdY);bQY0Kt=XVmhSxJ&L=bG+QC&Nem@ zq={G1z+_=q5V4`!>}A7!FPkRNlbQrlw1RTkdlXJ*^Gz@V;Jp(X{sy(XBW%vNumUV08 zfLojToMo#c1`B5ZEde+y!kkSTs7{%?6HG&{Ttxp9(jH*|(8rx# zT-jV&PWxHjIp@qhM3+dX2h6L|Nw+&u)>2z62PYkN)0Dmo2K3EGsoOeuy2yJU6HQfdfMy)Fn3GbugSUC*Qj#ASIXJclLfgx z1+QvB4y(60--T!cbNqw>scj7vRueXRDpKolOR97E z=AnJ~5F5?r<(L~7OFq3w_&(KruwiJO(6(o2sZ}%8l}f>Q&rdrenFLoMx{0);G`KTW zwW0NTHZ&MK%eBPb6_`-9`h{vYo)s;w7}JJrA&W5(8dhN(f0a{5FX*gW-1=f8m**H* zOhFoH-3}%0QtJAXGGQJb3e|xu`8`?UQq5k`faWZdeRm0D3wt3z{5X}Q#PC!uS~-=D z+5(za^10UG=u)Psmaes}!?X`xXCAUK7`U#a1c5HwA@ra9V4*_|cSi@Zs}Z!?m$8zR zHG83?T^(G!uJYg?Av$DZSs%e+OhF?`)gG4nf-6Ft6$OOvb3jCt1{`jOXnTA-m}tlB zy+B-K4(7y%wR5parpo#G_Ne-|yndYb^hG#R_Q$??{f445`4#^y|K^|ZTwv1v z*?emsDLHxkC6wn5&~k}Oqbx1=_S&MM(K~RwEuM13n^OKyunU3f$2hn(8JgT{Lxl*$ z_a)Ul^)X zp@Kfo(1KG_s?h~ua%o$&uz7ZuXL%8{G0G>)%5iA{;X{5=HfSuv!Gr^Cbv8p);P$=hgvn9jHPE+@2Z!lkl{2h%fkSBkoFzbR)#0GrjbNm4 zd#D}vjSNd73>POT%2`6usavRR>QvV&^iCZgSKm9YSynX*PuqiGN~^@SE6AHjqOMRw z&sP}CHGMh1Hc`EsZ3n|)!&!qf-KvT#gSN`z#d;(V8{FO;iBYrBN%MT@KehuX*Soqs zS6*kfy&@wzl%y?su0f(8ddsTIK-^WM74yJ;@~q;@tYy(*I~0?#8}?1d!zKdOgyoJA zvDKounkquX=C~CwX86Ov(*VW0c-F>qWyPZ;MT#WNI~~5OsoU0C%7DRTW9CS4>ssz~ z3+r;5hw<3V*jCxBWySYg^$a@dv*P@qDiCFK_@|23%>X&14QKhdCFBxK<>&eske1+q@2t*2UoSD7_MSMtnr-5Cg?pcl0-n!Cs1u3lYcW% zOQ0!ANvcoq`WkhftIwlA7zZjJR4}%5vUWCsk-P%DpKE%u2$k$=n`=6{s`FdlKZ*R} z5!|lTQ@=n0gZhAYM*{6`S&k&TN83I>6s8SI@;eZ3ZjB9#8XayoiFzu99L*=4z@i1} zp-44U9xrTJgL8R?TOkyioOF&dAN3syYPnoYm>0_Jv>`RQZ6e8LAd*q1x662nHQtKf z33}jT&%TH~Haiwc%2TO7|5X&ESn_) zJ(c@WA@!yLlOKYV{vwBldW#r1nT{8b=LC-#Gre@6xe_jH3mgX{smBY@aFZk#>dj}Z z;~{MlgC#q+Gyw!4P)>lePlG#vB5dAO0)wtH zI!l^arjUOX;HS&-z+RIJeZJgrx+m~<#5Ebko8bBJaLlGOyF z^zsQ8?h_y zSW*$^E%k>t0x(@0`x82&_lBzV!*~nP)TOE!MpexT4xM39QP`_TrmBH|nT?*6jvkaN zVGjVgW}$X{vRJGz#p>8slD)E_SQx%#+^w*ept&2%LUkh~!n(_;+Lz+OqMU4_l`+{% z#ilM%6$)+Dte2dF&MWX(Sxo;HHP#NO=;~0g8PGebyU6Oe$`2^|1d19;SOo`fW8EKT z0P$2q@W6?6262O|Tx%WjLjpc`SX|>;1uahM1JUv}kSw?HSw2b$*6{0sOU+(r!rT&? znwh42=+w!_*%ht*IQ_t6;>=P-hrIZcLnnUq`!}nRWrIJD-+se7`5oo^o7d07(@T8u z`YqMyzRi#R^zFy5Uju6P_A&l`{WxzUe*c6e{D*(~(c70+ivO)W^!EGLkL)38)X2ws z{p|E;@ogvK4B?R#B^p!yeWAxl*68V3hC@`^HcKo@c^hQUL?rE@7aDP!`jl&N4C8edO< zj3U!x@L8H|T^)9<#@~lkREB@si=+W2pwU6COKM>})+eWosUvmZ&^g6Cva@s;J@>LD zY#h>yCybmAr*qI32uv$^A?0)L@l5R&|nun(Cz>fALmtqP|@i3?D(1!AEC%SDwT+>hU5hQX~$Q&+ONtLXv zFm?y2tGNa$-UF%mPMbhOO7gw};EEO<8s#6&bXC2feyiJlKwH7O_wAvBQ-c%5#04Gr zCpGdq^oE(mY=kd)-V|JYhRE5-c0Mxi!G-6Cqcf9U%ERIqQ@z=EOqnf^HxF(=P7^wM zwN$kg3=-CIQA^<20&?2~h1+6Br2^;~EQpOk79p`~v3`b(SLMbl<(zK7n?AMq<;d8D zR${=zVUH{ufc#Oinq7WyA*n{&!z+&(>NF8lR82c7A}9 zR|7Ci>%6B`q(3J8)T0>o&LJo__`l?%K3OmU6iIL#)ZPO$mUjMLDlnTb0D&!u*}xr1;EBeb z!^S7crH9+P-k_Jo(R{22RVJDm#@RliI9`E~wOIWi{2tn7r~$`2s%o{Kujv4{0<=fu zSYmS1=@ouvK<6w2<-4UB*HIZ8?9PM!EQL12ymI_i->r*ngAy+(rEJlc_@de$R*^r# zXpIOc(rO>-2&t;g#@0G!;3_ubt#$`_E5C}_bd6WnmKfKr+mSnpBq1cMZlMQ10324443B7ON;8M>Tm^m0Xa5F3$1Ec( zVFpN@HdPFh%(83|>$Z2w?GSF4>VL4~S1Rouo)o1N>PJgK3Du1Hg_@w1G;5pDVxtBs zkcKwpPAY!oS1#6A)TsSfX{p*!TV2v!b5q0Yj>(73YJd66ar*T2rwm+XRPxE&mw~h7 zPozeDvw-&T+aDdx{G-=jKk5`}OkZaEK9APbiFatXPo{ReE3Ek?81*8Pb;4m0s$H?D zt{n4|OuDQcCxA{4LCTvP>qMn{zVQ8>{(#^n;}!vXzqs=5ko{pmM}Y>9G-`5`_Y@4_r1FEE9?>1#5u;bY&tWd`~4_ z=+vnr>X;9_Xm^MZjh-I*#*6M=YDUkF|$*y_=B6E~nIE0To#k ziWoGlWDRd?cC$E`!{K|;agrrS4H$P=lJ;OsO7W;i#i!Hr)OdQ2vjek|nRhrKs)1rA zpv+q5HrA>@n?nP@Pl*y*aN>mE5w#w#N_(}+PqJFM;_kKsYd(t==*oMR15xQP*!?4+ z1%9u9*8_l6qo=!!BY#=zs&n}4T>xW~zoou!XO)Y;!df?Rl+%J%CW)52je)A+C@#f9 z&*LOn*qRQLab>?t;DR=cB)e>TLX-Rf?$Qjk5FcbWY7r-Y_ZHDs%}3<+=~xhAe4JvV z{3c$*P27{ok2Vm-l`Az(S3(6Kdpg$ITs;QX5Dk@r&(z+|Blx&U$GXe2D46Q@yEZvm zm`Wwis$V&r-Ow*1wI)g0Z9XP)F}r(Dn%YAJPNjbA6zLcPGfIkj!I;P*S`UsETD7Hlr#bkmGih|S-#oH1F6VF3SN(wh;V4z5s+ii8K*QUbiIYjOd*@=gfcy=l2(P~sMB(=I^rKE^Z zo~X)id@Q;t*&KzP-RE$QhyMr8w0BSSevp&_cI>e0>(j`mXo7iq>CDap#j^o8xj1)UYDcgP|r3xqR>!_J_HE;DbPIcZVsBVJIm z%VzAs`@N>sak26Zk!IR^qOE#hlhIo>2Tnps}QoO-4%CYI$jxNy`!-moS!6%973_ zmFbgnR-Ugqj0^GrX3=>IhYVz{4Hr10m+9$|+P$4}Mdm1B10+;PLBHJUotfyX_vx&#-z<190kAS8j-$fBUT&91Rs$pxr3 z;E^NKpbB7 zhV&r^0T9TNINwK!6uf9}T5(+1@s$*brXb+Jhcp3VHIsx2kIY02^$mRi`3b9gIomK9 zvtYb=V@T?tp)xPASeDG&5w52OnyGyb-Fa%u&aH0K_fy#l1XnLBtPgGav23b(16BPa z8Z4`7_Ahi9#D3^|M^#OLnBqJ)^awjs(lWb*aM^;|1+oEX);qo`2D`zbq~v4P=BU-B zPEJJEqE6m=0<+gAv+vlgAxoOb_65T~ownNQDdofn;Bk(^v-rKjqnZnCgskxv?>IUwYqZihyv| zEPb}*vcTS`q?1*z3U2PmQ!$Iq@hrEpSG#cem4(>aL1$>x7&Z#HnH3p*-tF`PKc$wv z@>FWO4?@0fss)#ygTW_xd3X4fR4zE7GfPbS>CT}E@pxdIDcvrqQ#`khWTuYxQ(vb7 z8=PIg3N7t_JOcl^nL1{lItsCraxW5k%*a-bJv!$ccb47ZZmqf-Knq)k7+`!CwFbx7 zwmU@}Jb|Cp5d@0Ys9>n&rRgAd(2fFeD(ZXCEx>+RcaTn^l5qj|oK+F77Es}o)FvlV zwF{g(6J7~>ka8O;)zhw2YIRv$QyUFVQkuh!!*4}@;cYA_0CT-L0dM&{l^wD_2v}If zXbgUb0ixUk@8Na_$5Xj(PEi}6 zKC}EA`xEfj5#J@)e~;bdQUA&C<7aO_fBi}L?sIwMYp8d89Nx^P!)&(IUK@H~->M!M zI^>`DRBa!(TdK!Z;dc2E+~*!=_oUic=XBa*Ru76^*uDgt0l#GOn_GjaC>|H+d)pI| zjB{&ogu-QH$@@&Hc-6o9+P1N(*Imc-CveYgE z(v#yNm=l#eY*fSs5r9oQY9L8Lkqti)j*n?BUjwcQ7*igPAkTMdChfRp=KFKhDVt4@ z}g@0K05i?~Rk12wBoJ zHi1kcDZOBJN=Z!YQhj1*C8$b${vz#+LJ zz(sb#b#uD)1?eHY#z7mNPc2%_2NY|zk%iua#b8nlm^SJ3XklkTHfy=AE@3SrWEBTg1^D3M(~R*7s)K^YApFX zSoo;4YQqNf@FoHbR>zkx%og-Y`WG2BS}WWcO*j4E!3j%5fc& zhOO$OMy={(ZBwe2!jx2CMJLo*B=qo%R%ee>E>oB~WdHEjpS=CJknb>F$khBVX2GsCJIiJiE(B`L0#M1U#_ij9~$OmXLPaC?Y5_ctvp5S37A#Qb4 znUSriFA0|B=xSlI2n0sam zRgN8|;0sN_r?JHRQldOzVWm?bGR>`A{Q1wa&lYR+6&>{caA(m3?JAi zLM}}Tb&u~l^ZkxBSiTy7PLa(Fqz|M>_9KKpBx_jRjUF>cx%f8Hz!hXCTy&f z*m=ctt+PY|6!PIIgTOL6TSa{ZOyvpGU6?}1Wy4I24L=?D%Wc@yM!dO23I!FA-ofEUs@)!vk$Vbcb|a4gGZc9oWYCQ>%10 zmAl_f*g?p9CyoY;83OfqI#Z?(B(9Fm>}gL8?gpl$KuOP(3)Du14XCmk03_{D_6})v z;pVFSGx#!k2jKX|bZuR(bHr3(Lc!GfSt?cR#@qeywTBc}EOa|>y5@-14lCdmtFz^Mjdu0kA*z*7-0#t>L9Ycxx{u_H^ojrOvUaUYK zTgXMn^bwWz6$q))lK<|RXwhaBQg0U_jrs6hEbhZLfN{K0Nosh8(UdKs0sj9O2kNiFGhgeM zufGo8H}w4C^-BhB3(lXtejVQaEo-5Dt+cDxe*u~5*Ka@m^S{Ht_Y3q3J_@ftL9gI< z5Jy3;;1@Zt=Ng3Kd*p;Sk%U) zm=F6ceBcaflm5UKB!7ksYI2is3C^LhzCcCV^afIfkLy9VRlIj;arwn=#bxh~=zP}! zs0CZdxKwUR3+Ol0cL?o+$$+d3i-vHv_+9B%TS>BTK5S2}9+i(%b~SqWWrC)-Tw~V9 z*ZhvF3r1;aYSI7K8J3f=X80!^v0t(q{kt}>bkGBlEBhP*rDki`hML3LHtQg(_-3IaE+~thFm2m!78yft_CjilzW~QFc@Q z>2jSZe%pn5(=d6q5Q(mB!wEdTyu;<>Y8xUh7)P&PWA)uXz5Xg(0c|zu?G1(sM~!Zo zIS?M+jnDLDn8C-B3RAcxQnQuUgM8AA$_ATlN*{Z0K;StTi8;GSoXk-*gm8w zq)JwoOBe2hjN{T`Kpzh2f}~=DmJ6gwVoyE?sDKaoYyfcbW;)}vqYEdc?bPuKuOvI2 zocN?hrq?|)nb^0-3_KnY5>?5QAhtK`p%DDSiEl1h`&_aTuC{#bG@-72~}HBOibt+EH$j_8}g(K1|=xGJ=+(8)I~E zxyE8+5ms)`I7(o>1?9b2m{o%-R~C)hbk~z_n3O_|q;l|EAEB2r&O&N=6w< zInz_6SRml~kXEXYVddKm8-8@fxnff8fr)y?tR5_}_>3yL`qsuiucd zmBTIWZK*^p&)Zc^+@^Fdq07L)`^ZL@I#NMo!y@Bt?6koxZN@>WuK$Ej*TtH{2U6d?Kz#h`pay>Ocz5m?$FB?qv zEoymFPt-t)3~e4k{%B15Suw{| zDqK!#LUNqneJVrGx%o_sxhYQShge>-0JhZp0|drSgWN^a3{8+hR}ST#C1Sua`@Wv~ zH5^6Xj3BtF2Nal|(avI@pg=KU&S3kM<{#RK4r*?RqJNvc$V9O{Q_~PrFU0A%u{|AH zl8(a)?P@s$R_9=_TPj^i!PafLvaINUFRsvy;eMbLJZj#jkR8qho5R8&`gXOMh{jby zv%6HxuFrf8{Ui|*hac-$4w&*W?xRJeOH^g?7yIz4kDF%eKua}==5af~a}Rf1+xu9& zB7m+{W9_bEoRg4yg+(}b5oeZ@di!}xdT?98CY((_OnsY!mAJJEkl1Dw4iATn_+~aH zpKEyP18Q@Ju61XC#uo3r5d-5yJUG{|ZPSY@1Ps2pKM zK*22#IW*Lbzar#i2z1#+#Dt&yiflx==1$wMrg~HG!Z&j!s4AM}l zc~eQ?I3&vk)|MBgk(b<+-*EVB?B8dtEs)iogP6owh$A~D4FQ~}vRaKR;3gFg--yF+ zA}ZNen>y|b1@M@yfJJn3nD~&CpIqJ>#(EYMp%=xX6U&z=|s<>P$e$5E>?d#X__vf#_gRkNr-^`@(AQcCYV!4S z*gX;Ka|fkMR#sV9cb7@Qu|TH@UCy5E^t)E}c{9A2cvhMfToE8(!;AP9)|`(?c6vqE z$qvUh`^}xLAfUbmYei2Y*A1PoC#9(j+g4RLDryZxi$OqZb@>dX1EXgFn})-6K~n$T z*+~)u{l39*wmS zmIf_}yZwwe)}X*ikSmIb96cbQY9|>SwY*dm&tefYx_LQH^9Z~MlO@@8bCO9V-ty)+ zuZW&H$(1w5;jI*!n}?~;u{}GPbRzeWf=}TtrC{hA%w*-(IgJmS?u~cI)JVZOS|pO- zaSgW2Lgl{oW-Y)t{b?-K{B+oX0;NpGJ24EDi!u`n=QywxgLO9Gc)A_|%SV;qt6rY+c6G)P=8aZShjhiPGCm_(L(uJZK?GGyOEbo$?6tI zC5m1FB^%3Ab`;pIcT>&Q)+ywnDT-YNlImJC5qO4A-ij(5jfSgjxZ}~tfY zU9)^_D21h}gM)9&_oUb)gg79|+cTo(29>*9)V5A2u#ARG7l@lv=JG6;TfWzI+Nx>7 zlf;W+LF4XnFtGrn1YYpzegtC)u>bn(miz@QEIuf~{k*dq5#R9Htq~>MyStuG9KLFNSI|97PkPHHM4v zhVLi>Pm5e;wP!-vrbZ(I_me8IGd$C@Zh`$+o3!pcpO!N;U)QoZdtE4%m^>X#)6HDj zVT&=YpbF|P)E=M`Jtxg_v&|ILGEiZ;b_Tr~r#-yb&6a1O8U8E*4_74>6DBoFQRQif zNCGqsbd{Y~B}FBpeo91@I&R$7VN-(;`6LP;Vva61xpAl9*|(jvCg?S;O_s6tJ50#> z4Y0bD+#?uonJTJHK`|>lOkWzzbEzzQAlxisrAtfSmp=PzStJ`E_M;+8tt(Zun2*KY z3r5Maf$ni33x!T4x+6ts(XKvl+)8S-WERv@1KawwY3J|5VVc%OSU^}L1O__UIQuGB zW4`zPBH+Nlc%m!+K=!)oPSb2Du1GH=yfCRQ%T(`=AKW-E1u zYsttJQ)MJ)k7dC;E}EVKx*8A)234y=Pu2PJRpWy5kc?_1rfO7gCTi2nL#QC%*QNK z8`rmpY|yLBlfiX1DGWL~?G;cJst5?$V1|pzPaPpSA}G`Yvz9Ut96F93AuoweOXXEy z)?^07c_-tEGR;?hNLhNqQ8squ;m4QYL&gL|8$}>ppj`1aSNyO!i{#VevcaqY&Hma_ zNI>B7#qb}(|8+#7Z{B|L@BIwlf4~Y!7&TZ$nP2Dgw?8<^_tV!OhqphTzWeFxhvD^S zC?MtMzvQSC&r{qa zE7@RIIII}bX3?l~yf2Uz?P=?Dkt!rH$d87~Vk5xn31ZA!f+Ph6e^og#8!e3h*^n*V zdYyr{p3*Svz6a;O1dCZtM4*3B`Mm&dD9LH%XDF$!EGcgxA%K;nV*SYM9VP#jnxca9 zDT0DM+_kW53;Rg}&;dxsXiLJw0!oA3a_V{1tJY*hM-}8@SPx1Z+n}0J(Bc=~WpwQu z^{V6!MurQtG!!)J)%KiVnL^FQ>HrTxUM8eP(yzR&o2YU~Edpm_olPK8MWza3Lh-dQ zn^G2${97~d-Dcc=n8bL00C^>r|`he&G9pr+Ld zx*42!)4NezueQSO$k%M#lEc|ce6ql$ryANidAH^G0>FO)EW4CNMc-e>XmOT_ajZuD z?*-iCB29%&^saNdYqZ#(CXnzovUq=m>ZqJup4_Vn`@s88yNx@>jIsh_jV3ndV8dV4 zjC`OGk~V^Y(0MXIxWuxQvT>US!b&gULQpSG(^{yIetty#7A!uZA(t!!4rA^K+HQSR z*G3|iLqq^cHu%kKHhVx;x{0be8NhQ^$d5guGNlZOun&`40PaVeu1XE2`51Aku!5Fs zXnSIs!|1od^mU}beR|0p0mdlBj7>AgacQ97FI%eFzWoHH0*k2C?pl?VvR-GbiBjuM zDw^t=V&?pNym$rfQ+uFqfg?~YW(bGbz%qhq>GUKdoGW#iWw{u%Q7e~h1@KpiqKu@V zHJrJW#!r3$W{P+7PU(oih1L=&yRj)qr*QuD`OoG|Ni;mulUNJzJ6mr?X@I2zx_J@9WuiR^|Zuf z_F=#~QP=E_roST`bIefYj!br8Xa=h)z-MYDMn+;Ztkn-XqFj?LG)KYkcZM85yDfjO z<8iwWZ`xcz{O*z)O>QVXM-S$Fw3eJp?$~SR&4LXh4Jh*-(r7rt&cgs`o}atxS#7`4KM)ifrSJEUnT6`cjO*1OV|y~DU{L+j|ytlf+OEg8T}`4_oo z*cM){6trDZxoL|%XzFRPJ=E>ZVLTX8_8y3pn87fh@!HWtGc>JX%Zs*qO|=0iB)9AL zDMZCC@%k~&m^6mMEXh>Rsv>d^ZCgrApkAeXR(rT4$aY1M0nm!&jcv9G7C+l!sN0{^ zH6-j$2^yH4Z60WeDfJMY>)OZG$NZUcdF&1C2$Z(0h2zUv12CjPt<5|gE{ebgorWF6 znW6Ufv0PY}F~91dBXV|-(_Ky1Wdpg3GTJKdoPZD}0ZGjmI#Q1tB&?Pq$mKk=PC{mX zsc-j#wbKsj9G7=W9HvB}E!Ad{oF;?RsauJZpLxeMc=e5_LFUgO%khv0PbIUBGh{Fp z_fu#rtxz`wN&0#ZI9JuJx=Y1#g>}M}a@Oi)`#cImHt}$fQX+LqZjc6w4wtq!t0y@` zSVgBv`9kZdT{`Mwn>q;4a|TyZffGra>q|3dRj*g`|N=O95!>qqP9P>mLd35YZjO3op^3zT*2Zfca|9pKGn z!_gnt6YUzN@W2SJV02C(96(*Nrv2~>c)otp(@U6)^@B`9qTG}4deWlA#Yd*LioqQX zWw*qdl)O8xP$v5rsR@#yv9gDjm1m-Gn9r9Pq$;K2uD2%*J;^t8KrlFixg0n8zTnb>#%i^`9ljz2~!KH^DDHMsNKR6k8OA^){*%SjvE&&oDM=gMUm_(Jdl1K%b+&D;t(jzfH8 zQzl3WDEGm73`ME6og`VK7yC)SFVYpcO67;FtZYi}f%e{#vUF?^#BEW}dqSc@?SQ6P z)>*U!*5R;Y8sHHFA07u|$PL(+lCJ?^nU4$=1Ivp|$2xr>mGD$_?2(SrB<>*7{Z0bmM06GfW)fGq< z$YJXCxKTP+8N*lss68?yV7Zpf#$}^cPh%tZblz8qvSX@^72q_$NR=H=g=WbUB#{V3 z3j|haJmBmg+Ktpw=*JC362dGgKT=6gV|VH=@=qTs&M9Rgdh&hG28CL#b4PBr-Mjm7 zm1_rLu(o?edFIUrtnEeH9pJex4+2N$`Jgnl(9)^WB%g=TJTi#`6^gXN8V$I`u1pNh zcC%lSE=;p4M?W6V{*tmTm284Sz6%EBehNMwkTA}P?mZFeQL9xLlrhyV z0n-pG=~R6e#i~^@wW?UoR`t|RNGxn8J{$-LJGkXQEUi0h7_%sQ&XQqyyS=3d zwCbIZtge?MKPwzKKa$jVg~T>^SLr>b#N>?&=%dbM3}XDKb|MT{i$fRaaw7PNxptknm= zxp$FY^a8m`sCZaG$<7AmYDw1PvIv*lK&=pYFNOiIj=IVo!rzIgt& zz%wwS-$Ug>ByrAChO>4fDhr%Q93TPV`tcFuXkxh5)-mJo!O9E{LP7s!G72f5h=t=k#Tw5geI=M3u-hPp{eiz=pwypsPN49Z1^UK$d0yk*9 zjLE=|16G_1@{0Aq0EdOatVE_Q8F*gDyL@#Je^-3ZWeh->?RxK~xN!t0{@AfJ7g`+fIM z06Q&2YU7WBXDp$EB32VX4#Sh$lpJsbq0{(sfXBwny@f+#wB*nS4-gN0(H(cFfS&48 zjnVIiXFz|K&tGsDkKQcW2pZPdF@Sr9iGh?g4LWOo+;E2D5&4jZfbvL%&7AOH4^BLR~VB7X| zQP(8HUZ)0nP1cdn#x?$aCZ#|(&~DatyyGIhUlWy*)a|)IOt)Nt&Q%Z$+tkGIY51NL zo?smVi9@TR#4uI3w0-NR2>QpNah#Z39=8NKlS4u45li{0ZilFfR|7F&mBBFT@T5q0 z2Ir(*p5W_e%(UBdN;la4L>Iq@o*F?^X^3FH`FKNe{;4@sF99lH_e;ukY7l|NRCH3d z4={RE9+N~r)abX7geK5j38W1xBDLPv*07h-fo*v+(Ugr6#@q3Zw*5IQ?im6_RK|FW zHwL0P$_Vv4|6Zkjm38Ev;>K{3NvMSv8_RI4uM#Gofm$xy#c@l~st7&2jB!^d53mYy zfXDD-lU$Ob*Yf?P_y(0Xw!l%#f@lanAgEA^bC^D)Y#L*`U}8D+6F5#&a*N$av2E}j ztirCaM%Y_Q(tM@7%MZZ!`SA6_BaVJ^h;)8-Jo@$PXC~75Y{vM@w|`|j|MRy`0{KWE zzx@#$-;dvZOSHBW-r<$pqd)!Q+lPPtclh&%?D-PPzX& zzYMS6zEcqUgeqdcl>dGw|H&uHJAc%F^N5n6Ys@Ep@-BsejR!#DKEx5A00Neqtzd}P zNZ%|$P+txA3WOaafb}?2HdR2^4fcb{0{XDSN5S)noAwUr1i2j!RIBQZJN5!{lUZAx z{eY>G+Et~&%F<&uvi@Q_ihh-^^Bw}KeYqG+mIfBeE_QDspfKr3hm40haX<&x2%Qcq#dJictxJbomQ8`WF zg;fs@%?7z)*6^hx&S4rD8LF?~pm?2T(af-K$T(i9)n+Z);=xg4FZpjI~ z3rsB*m}^J|YB+V+Q^-Sd^`)+fHkC}TYyw~j}$Z6w;2zeQA`r3 zhK*&0E$5*CcPn_oJ`{+2*0lp9N>=0h)ia7i;~6kMEY1Dat*sW14&j54R4YF_2#`|Y zTm{Ib0Ez<>8Q|3)hdf4~bUeqM3W0{x1;|m`=DHT)$tD_Ok@(`xqCSSpW{{B{>^I2( zGhVgZd$slk_v`E?6Ib+PrTDv!3R5(f$QBowbFLJe-jZ&tdof)`Uj13jyvx}1-X7{u z#`OdzBI}T(0xOZEx-D=hbf=W`byL(qkvJ?s25C+I?V{BD7Q=uYbMP>EKmhcvT2v&= z06Awgnj|7?D_~JsQkJo2_(8083!YV-V^>M9846Q}BvE=%aKzF1S2aSnb)ICUlhx@Y z1(Vq#`W)Ob57Id7!cg35WV4Sq($j#W?cf)yZ*?ocU}y_zwz zgHdV=Z}mD~2{8!8gBvZ5BWs6pluSb|)>;x2J_4%lQabowJN)>t7-CV2sB9H#OxaP@ z`qZCY32&;QYAcuM-lSA9*gq^A1LSB<#hN?s?`~EQxJ;R$==#7cJwE_~a^0TSgAI*7 zLw5e)KCVlb_!`fN00Yo&ux?NY1TFsr;2uV@R(k^^hF!}j`mj-^K0@gopqS&yl4Puu z2I+9!*`ge;jhqX666|v#eKBNBsi1=*m#_W01Yy(bIiyPvWy?3o-@zC9FLR3WgCB(N z;}Q7tNJah-Ob^R&1izyb*VoJtzIN%be}a|dj(Pn+yGZybz)WDZFg!DF+%PP5YOe$V zqp8S}CQJHbRQ{GTTGzIFvRDJFRxxF#?DtC6ABcg6k^8bCAQBp8Kbs!Qq!#H>Y1S355hVFJFeXn%4;fz_JH|LfN3K><|#U1>9T$UZlYqe;5DA*=`Z%A;fxG!AUt3w z!=3V41!hxZ51{pOxA3vmMCZ!=H%@5S94+zhe)Re;+`|-`w@N?iv^Rp9WYsm~j2Se? z5GU5rYJ|)k<#lBusGD^#Vdzt-O?V2a_9gJe$#S(mqV|&G^kB(7z`jO)qUH;J3nGISP)lf}JbELBz*|$|D zYo)>asaJKK8kgdT;a9ap!CjP>GDY+ydD2+{e*%YIeV}7DbWzz!GN+S@GF(7h zoGiu8rjSq+pCcT9BTTfL)K+%_gS4B3D-_;jL&X|E>iQH8S2)>4)#n&|32Vuli7+xP z=T<_y3ZuoVvCKlzN(IvF)2O|To+!gzS&ZX2K^4VQclC#`c0Wu}+5MADtHxl02l6IkVB@k7D@~5e*KtjhEKxlFR~cP zC*iO2Lm$eUfA~Fe`2TwS2|5(`k&FKa##dH-KLR=|yQ(GGEiTo8oj<4@Y4m~!X5|m5 zfcDEvc(GzX8$i`jO1TxRvq=ZE$9pD*~M7oUEF{k`d;Bi z?Geo4QRi{Cu52zhf$k#5dJusm<{8^rCEDrW%Jv!amV^duoU@VxQVza&6Q?7sX=2m5 zA18oKGy3=N_mtO|*c)i2^a`7|IlZC35SzWIz`bok7Nr|E>W51~Z2TxG=ZD|~0BF1_ zprf$l9WZ&>cj-gSiiVYTIQ0cG%|UH#sXlOj1! z@s!;pB}7ORS<$8klRXjz&{1j#aPx$jz8v-*Jn~%AvFSR*85N-9^61M$vnEIIU5=YB@ZfOERcm?!ih=$qbRrUcUCDOwHnF$?YuxupoTnW zi|@6al>Udl0h{r&6R=YMM2*9Qu#{D=W9fmmyw#;}1{rAJ3E!A|3kl|8wtR;_Ij+lIp9nXqNZ`Ox;N*A^7;hZ@gt={;Lt3#kiPHo+$Cz?ZC za}dyBtzEqm2Ci_*KsWPUQIFvqFhKy%%H4fofi3IpnJsxVI;u3ei{q0h7Rukh{Ojj% z{0n0BKRO=$^7TVbzpZWl(d#$iz`cD0lP$pCKI9`me*3*X^7eDa+MkBEZ*)G6*ODJ^ zpQ54u(}0e;GP)~Ud-p`lm25R5$Z!HB1umSOwRpyXhR&@ojz56~wmxjiH62+k5I6FGG*C{qo z?Tr@RYZ{1KlO^nIaTpd@;NDa)(?ZY8JBLzALz83nqM(mEIID%nwz-wtT{5>2flFhF zJ*b-|ubV!)QY<(qGfL{Mf-1H}yez9b-=jm*pq@yHD>DqqM31fZ7MAnD5{+-Xz8)T9=F zmu%a@WKS7$23yAfaKW&`QXDu~7}QABV#e)M4f9OkSOtpqGa#x0!b(=dp#GJ7(vVa; zM81`+Y#5=(3mX}l^Ifl~l;v6?C8$cxhRf6OrR5yYiuT@yvhD2bVh`+`422I5XRE8C zF)h^5W%7T}_rPr)zFX?9>n`sSw_gaL3o|J1D*lO!-s1ESsEpQ=beIR}IyZgtvd&Fo zlP7~7U!GEKUJ^$a$i|5R|77-=J5C|(QVJb`L-5?7sLCL6+^<|I?Al5oui3%IN-=V> zFNqC!2g3;h>w#GA*amNCOXfSBV)1}>i)94`v^{Qi_+ydvg=NW%dB~{`|KEQT{vM8* zfA{QR{mt7){~I$c*Wr|nj?H&A~^o5P_@ zhUA(QkQF1gTfv7(7 z0eOFkZwS9mlgb9!Y(T2zY#3Kqpjk!yP_t83F-yPVkqvM#i$Q*7+>Cg?O<8juP_Llrls3+Wh9FL2J?2I}Mj?6RC= zCNa|cJ9f%h^gXn$skw?t{3uVQl2c9*T&ibo(IPm_XGrYGiJ)9}1v3X|mFD9yM`)7D zEiB)ok;BG%WrBqa^AV&xim5CeBR?a#8P$V(W@BT*tn1KU97poRB%o!GRJ-_iQ78RX zJ5v8oSN3=UMyh1s9$FPBt-LAI@4N(bZVhnSi(7G;LrDw7+(5r=%{TgZu{~dWRowgj!YB^3BdBk1C$2a2XWj533&pL}6@^FAx~pzCd)VWgjkw`* zWsmgQ*&)vjzDV*qYe%#@C|BG8cf`tX=xwDPF`nTaohG!a&ojgN+UOLyrqEfaZ4Ik# zODHa;B(njtvtS-P5N}^8!RJ(sRj79f+=u5x)t1nw?*mT*uBT|cwaByqKz5fMl~qGB zsx!Pc?|O1x5Smwf;1Z*NBPI`6#aLJOz`Nyb2zsvyRF#F)df~WB0k6z5r^J$}!iN%-!c|Ma8NL(Zk6YaS}HTc0F>vJuE5G*T<=5ZR0&&=iD z{T?VZ)8V3@i8b#C2!OW?1{88&@1TGK4P%h;3k>k`rYsRQIJg~%zb)J*51dO-7$dZ& zH94FQ;cB&#y0%9tEDNIqQ~CUI|7%n&x{;dO>SD*r7hW)qF>BITfy#V<&^pXOEWC&B z{^{+<^5dmFWkpJh!)VlmrqHwrw>mtj`%#^#R+iCP(#nghv@}BPAg4oqJ}IdJSf&CRU8^pZRR4t^&E00I zA8eY6IudMikl3dFbMkWPKslp5ZFTbqpjFu)I)co+AnS2qrRgt z@C6xRZ<`?b=S}!3%E6Y9EFa4}q|}P4y+LtxaeqzBhk*c~O0Kd7rfv6WlaU9=}b6_@C)Rhfmw(b~XOv%}>& zQ@eeprtM~rlWfyNib8HG6&T}dLbu;gL>07)G5>})xv{k_)_9lWk!KU$S;l?hWosox zsYF3Z+F=7J?dwupM=++GP-^NggJg>8z}@$^K6ReAeXZBl2w<@Vk1;t7I%Eq$SEsA-bpXY z?Z3-~099OM=uEn9?Jz1n(#9QfTPmo*llYqwW{r=a!U-L;UNFHti2t`NA(l_4T$<>+ z*=+X^2H7S}ho#Czp; zD9AUodN2dHi}d8&+V`AU8@xI_9g@;SMm(Q8mHy4pb~^Gd)1Hhwo#1a)S?ye>im} z#Di$Kv_`H`AYOhcSsNcGS(+Feqne25Q1RAsulgPe!6 z1pE93YogidfiW6 z%w4GfbDNCHbvsbnL^70ixsEs1dDpOI+rmQ(;xek{M2TRfOGOSi$b813eV3`rdu-Zx zL9U~)2_BF(Yk)$@)x;0liU>t$bVCW=LKINyb7nRbTWgkL4OTjPYgrMyQo4E6OP&4@}85KRjO0{7efKLSy0D^W=9lqW^1NB;^H>?SQ* zLh3G=E$~c;j@y$9N2Ln*kS#SbPo)r5s6DD=HlK#(7KgMWuy4$|K~aY|a^8tMa2z$b z-ghcOK=$M)E5}~tpkjp>X$x7YR70YmQ-8>=mz~K@4iX-Kh3*0|Qjj`q$OAxs0szMa z4d8CXPJN^XuFYj(dj{~qEiztFHRR1jOLdiH* z;KpAWh`0V^AR4y;j%uoIn;1jQTUDu!8(zwkRl<`TkUsJk-}@8v@8>Z53wDi7t4%|$ zgx`-|VXOG3|4N0oA4A#OY&brIeU$q;{fxFA4{)`$h@CSmYEd0~7@bB{^<>R|PhmGd z% zbw$LK@5TmlNE>QdMe;V3GC?tKu$LJuRBpYv(_*DbCQ9kFQi81tWvV>#hgOcEWS-Dl zJ0rVfKWL5$?^zpoEL*$ogKhM41)!NNMbIh%%mIb)0?qMpRW(_KXvwMqI<(trPC&9a z7E9I%n4{)2hZ#d-1$G&Fn>?#}kzF`IFk3H6g`3LF3MEVrdy~u<(*2AunjHvX#Bpbk zm-~Afsp-@M=%-~d{B=o1T2VCt4M>&Ly`Q8uGom%BYxSx2A$9kT2GdEBj}QrPk>xZO zr1Tqv77j4hC8Aa4JAf2ek9Aq%A*-zw1W@8ONG<7z+5m!K5n8TQxmwQbFTWp`%8k<~ z+}vq_xwQ_Vd3P$7lpEOZCkk;r&vVA4Q_--Vj=4J8{_@HNgEr`e3f-vVlQxXCyhoT9P5SL&6I4xQJ$-|3}hrG%uk7{U$UzDw5`VxE_PZgx@C~u_@WqCz=hE%W%#7f&Ig`XM!zxA1*)Bln zip}oER;mMd!PqKyMyX-7)GV`3hhjJ&rT9{WLZ#W0-m;K~+jZ41%=xM;2Rou~1te4# zPe{Wmz$|p1F?MElSu8^beFv;n_Sv95R(TPNXG)NKxB=rF8`R8XN&@0+ePM_S5^4n< z2FRUQ1Xf2*MBm5A$WcHEfId_buP67(xDo~~S4$HaK0gSPh1UTtXJG++c~(ip`50iJ zKaMV$(?sJLKJ}})UC`{}xk~-;dsXV&S8t#Gdq2bXA2|NiuVB;o^hy9R%x zb~TP#;lctOadyV&oNkyBYwZ**igZa70Rb@CwMpb7!!&hubNl7GTishz33vgsqRXYO zN~ClX)jCwYIM9?>-3+W=TWUG}56)5NTWFm%H7v6DkfN|uu5Ggb^;EKH0Ld{zI3Xr7 z(~cR2Ja*IEm>@p z6JW9-^X||d$coVQWP+8R+?mk1wXk{#x3dLNXf|2oZN?;b!$CIR0QP3sYN+8(einm(08=m;2^$EKD$Cwx$}2HX-fbrs~ivAC)d>J2AP9 z@x{O@l&yw^$3P-*d$aBkkVM;jYSFr!pKhV7Km=nP$>4X@P!t9CYV z3$2{3k5b$(k-US};r-2cSKSxhWeq$@CL~*KxzxyF0I4xAe&yJ&5Bn5gKeVO#VU2d1 zHLBwkwI@)SRmeEPMnEdm8sa25832YFddg|#{C9-g)~c9NBo3kQdj&I!p_Vk^8je_` zI$Y(bxdHq_5&a}5=Wow}eC4D9l&q&07vP6=h?J!iBWoq?F5HW~gbFgOt-Rr0j(U>3 zRjuRd=&CQ6m`@tBKnJnMnvE3C636urn}EIuTz^)v%#JwuGb+&>WrEUh&4oib;Nyn~2Nj~!Q!f)B~hz?qC zkP4!+E);gHqAxk>iA4j5c3MwS+oKs!^n?G6ZRPL6+gHclZ^GM`R2_T$?0wb!f99us z5?()qht?-%Kk_ta&X&th$-@6f-txW_JE_P@@gL78t!CFa5nYXQ!a7`Tv#`3b2!Qni z$D215s!d96UYgTQF0mZP<&Zp-#%#Ffu||W{@XPJ0ooR?Y+XJvPu$eT1d2K)0~ zk-Hf{XQ?!{+3RP-5j!o|Nej*Imc5h9hRWp_U#b_#3icx%urx|)hrr29tC#Qtck^CY z?tIP+N*{Lyy|;IV)<_clP>~7CBrtBl%(-l!O<}yE76XKg;IRi(2MzKdmUjaYw1y|? zZS@*DB*7$YY7b7GPK?KG;xM_AuK?o*>w(KHprs8IL|X--k$nUq%o5l3=0oBYXkPE7 zOOYq{qb^glF_ZK(J5$>+n!oveT)r&y#Z{V7}lu0}e-3@(tBmILmu& zgl)?ah}TSeR&Jd=EH9vP-d#8sCmlNk$#<`^+UCXf+V-%sJlqPP8d6fS{t8K1qX=L2 z`HHA40fM(UatGYigHDlCp~KIji*}!6@^IblW$Igshzt&KXtu&z>d?j;)Y0os1+p-8 zQp!v2;@3(&s&xW8>5>geM6+4*IaG$sN@ICQ)SWj>*JI(DFXwIp>Tqz9>scLdyu6p% z)Q!DvOjNbv&s$Y+Hh3!g@a(NsjSJ{s_U+_&$O6|t#cRi4YlhJ{H3-NR5CXyB$N>|2 zV8B!%8kGsWCh(o+WqOP3mU%4c03H^n&2$DCm%N{4t zlNh6sjXI#*-715;^~}+Au|3?9d4_IShZ1}Rh(C+8@+cPQ)!P$6-a5!i5Cn(ZvI~4K zx@s)khtOPAwWJZ_kBc(Gg$_OLp8l0`c#CdFsa_tVP-sxgnqwNDOV}2gy{LW>fzlWg z@^K*hBB4AQ+B<5K^y<82uPmi(XiHx_;l0QawiIG_u%q7n3HCFGZ3>3~NdM$WyKy#)@tqW2qEtO&rGz|cw8-Hx4uF(O5LY1s1SmE|Y$zoHvrt>HVPLQV)TVL*qa)3cOwKI?&E-0M zoUToD2`!-dKoo_Z*ue}7?gDEhu2J=;ZJGca!qVJXuA)#^?;hxu?(*hi>DJaWrd>AC zM;*aJzYKGpY0T*L6dq%-fnXIw3&OI^!#;OZ+NmL>EEW*06253jc%Un2;)XjeYj zP^z~H+ZoB_1G@PqDSZ-g)e1?~IoZ+As?e;6!wTAwJpf9Rx{H<8HYkD90`Q!X9CQKL zgLT2@;pcNoxzuJA?&|KU7jCSm#CErix}Vy!vV<;@2EABx#vMhE7SjwJiPXybgf2nx zn|if*+rl{J&bCy?dzkQ-CA#vP|DUvX>zU@d&cyEfS8T->iIExmK0yHgkMY>3!|tl; zI_RlTR~ zI_!0N4u$o*A=Cxr^b(32<1yTAWT}Ek3&ud~8zItCKeR&?ZE+f;tx@VYe{% z>Yaa}e5Kc~m9O+_Q*YR;+MV~5Jh$$E$_AyqvbOFn317O4_OS)hwZH6xf^ilL#85%( zR~2qZ9%6#W;(1CE!VNhL(AamObH3XjE*BqG*^|*Ibqw%cwDw z)`oR6=g~)uD&l$6+Y^nF6f1`E-V!1eHp$krWtgPK+({H+i_wU3^bkXyYc`h{ar;P0 zg}>K_RptAz6itP12c<1yF8;Z(Q>RYtXdu1-1jbMUhTI2$e& z_I0>q%k#U`8bsNyM^Ql6+(o6Ps0)Gyk`?BoEa~X6R)>Y6iipaye2VCMzoMSMha~S^ z7XDzS>>lkzuijB1Ihv5mHXIkLh@rB`&qqLEh3K{CIU0& zri|r~5Ot4>3F7aJ*G&ms)iX$Ig!cAH#RHHY$Q)Skoxy(N{V{5PFA4nYYR@fque=so z=OQ|R@t(fb>DiP0ox!WT#gLku2OSqzA}+?h^D}8Er#YbgDLd zL(**ALN*kROIDYCRCyW-rybBE2zG7r(HTf$wI@oS<^mKxM!W$52?8Y5pjMuavz8DJ z2^Qd+Z69-^&iPqa&8KeTn>eXae>k4q7*B)piRdS|ABcXOs@%*teg-bOK#t_WFdD8{*q0v@`BDe)g!f2tPcoX zP|(#S{6%SAFp92#>#HOzPsHlU^JPJ&lG|*2=jN{Dsa+FpKkY~G8KjJ;lnz93^duOU zyP8UT34UW=m0Mbn)^ODkB|6#}{nMpjfX#3-uR>k)ai z8`Fp*N)*$HH7<;M0P6;)Mkg*7mU9cIP*$wDgL$)|R>Sp0UM-S{A0#MLYF7XA% zmz(~8G@!~VNDz;qLM*7KLUu}yN7Ui%TUmnV+jU0+0*nf!f5pLcO7VQz@6=I?{FNH6 zCX%~%;l4;7G@MKnbBt$Pk44iUds6dwmSV_N>RQ&M-mr)ui2?jmkCP(c6Y{;zu9r+7 z#*$)YW!Ry$0+=Jx|4Fa0_Ybb{$3sS*4ZAFa0FW#kFcesDY;z1G?`5#4BYitRYrg$e z_#gF^JTU_APQ>hQ-adJkoA&X)kqv$JuYToINx6O=!%yD2a|C0`eY6qyILf z7yZgJP^aqw-37XesUVA?2sC9OC`$GMgB`T|#*>|~1TZN-?uuU21KWTf1#oCXnB%d6 zUtjmBh6}6PU$2h>7gVxI%TSd5Gj{gX5w$5$1riYQhyrSc{W$u>c+$t!xJkQL*)BCO!yXBD#) zsH6hl3r7AUb()qe)23EK;6lg$hrQQXIw;>Pb51k=&*DN8{uDTAZng>OfDiiBrZ-KTz4_`0(Qwx7uQ||3F$Hg zI--NAR!6p(VFb+-Wb!6C*wt5Ly(4ct^azG*vZO-6>IbfCkox>GEJdJCNpU>?LuaG8 zp=n!qA=+{yy8(lauCei##J|c;xU2(_V&t=`?x!bskjk9X0qw?n3m*uA7Qj~9yGa11 z*vm@Uz<$JdfrX($yR0jLylHb$8H{x(h=v*BEUywg02xHx&m2Q;DoF@RH$zcntKJLT zc&pXBl%Xt)aA_9|M|82F)4Htu$a4n6fq_lSMW+rAGd_jo9u*9e*Sb2(R3q8}1|hGY z`&&l`i&qfw(tlyvj*Q|Ou9C*WguRB&8k(l0)4iNZcEuT}p>|JlokKp5LIh6Iu5cRh zON7bC^Y~ITC$;t3o42y&(p@$Vh(~TF52ea$myu;&I*z5p0Jk9@U^5;uawkb!Uq+XL z0qiPmW<3kJ67jlb6AQQ*3lnON+BpKjQ6dE@P=XJHYk~hkcgHLlWu|Q) z|K-;@4G!-=Cp6$0GV7A5I)4MSpv0h!@!vlEzYE|0nC2y_fC~9=_dq{MqkjJSZTO3G zOgAk4XK!Cnr{xcnCI5~`-1wXdE}z=#N9i{KF!*6IQ29ktMAe8dFX`X(UGKkr{rYK0 zFAVwR_`vFKyIsdYmim`S!A|DT15SLK&0-$1c0Db$2Otehx->Mk#P6-2PS7#fI;fh> z36!;tpbA^{s*Q%pLpu7U7F-{hTW~HqRdeJ#)zfg(nsjp_nG^ z5yTnVq#-+0NC8?;+i)e71-@n^Z{|Zx6bn4TC3p&s(g)!`DBI3@0zld%@Sa*= zje@*JLj#bpTusSuns;r*AQEA35=rT1y@F!o!seJK!;9ZUf40!xW4F7(Q3k zduqJz)T_w5MdYWfi!~!Pl#PdV9tk>_T^prGDyRX2AsI6m^;&i`LMwsX(G6-DWDyzp z#5GX=rrQ>Eg&^PnIL?Lg5M9XY^x34azaqdw7Gku|+bX93fOrQ0wg9LT0}6tGeWz5+ zhop3?E>F678wcPB3_2i@xpL}!vq~Xq&NhwQcNSPT#66bmI(D`A3g{Co+F8wm0+0Y6 zr}&!qRmz9E z9c)Acy)9Jlbic&1M32IvsPd^8AEgkK$93yY4&hsW#Rm_EuA{0Lg~c*iMfp$OmQcoB z2?ZC4Ea?bV1rqB^7zueqg$9Sb8NQcdzp8Z1l`(do+%pskOD`67%N=8g+opz+_Vqps zcmlJ+QN~5*L?3y;Kn$Liw~5*wo58U ztT=p2rD(2?#z3_|2yI|rV9ZMO9#y{k7PaQz2rZPmWUAwd`L5CjP~)`QEeGOdRA027 zMxiUj0U^qjcCmmiKkyC3qytOSB|}U6u+x_0a0AvX9xhf&>ogrZ9jlRB(CvpTrrf>j zSiwDgc9gtQiIixr>Hz6jTOR^(H@QHv{LsS$Gc|q$o%5#69Efz=sze z^bWpL!rs44OYn}vw{M?P;Kn865{Vuf?BS0;#(?Bk;q9jv$z#3<|6afJj9GY*`n4w4 z0IlQqHc1yR(7fCX@$uM$H@_Yc2*Mo6bVmr?BN9f4y127z146-^QNk6vx?{6|PoNFh z6N!F%geoN{>n4RDHBzyLQonWFAzX0F21zXzG^gwf(7?2DhPs^1E~<)MH55;~*-N1I zrUZYvVmISXE&HsggYA@#-dCuEFHx!EU~Bp^qt(s!Ub67ih3t}Do?@I8** z$X0+vH7@z^bfu81xI^Ir#cBD~ltLe|FwB?v9;had*@Yq;m&rcR+)K29KTTvzmP$_jQoLFkGnOT!sxeYjKP>IHkX-0}JX$KSme9D0y zrE*g2EkOT3S^83^>Z=)(U_DBHO1Z5FAxNpYpM~T$ zXZxUabMV&38f}EMjiGbriG!-#C2U{=Ktkot=JFRRki*<+t&8Z;TG`s6>w74|WqN4_ z-z((_p{#0`A@)i2Z5C#VVyxMrZJQFK2?G9FoeJ9YLaM@iyxBG$u2crJK?OV|Fy)?S zfb0khqT|-Th2?Q+6gtGA5QZcV8ltEOeA@>a-`3b~(kGezOxWj(p(NHf0@KuKJZa=K5yj zK!PJM$zmed>%b4X7`i&FvxO)aLfk4)3v_}z@t3Pv34~c_zPJfzn^M4DHniI>{6x? z7fCY;43Ee$gkqnpRn3^p(MLtEY>WG<0?INg&~e-x!uSlN6`&bQH&wJ&>|5lQmWTCu z?X3!2P^~W|O-oiNt)~${Pxd}~h^VdZ))>gP8gN?8<6lwbdRif#pOO$+Pb9)IPP^TpbXe&@l6YKfZVt8kW*D9G{~7Z zrCZ*kBNf>A1U*k}%Sx3uM;mwDC*uF$E#;deBd+lIsn8r>7f1esx%_A@X^4qBo+TEd zl(~~UBn5C#-WF;rMG(kPSYGF`$K$$4wWDZ&l5>5ukti0eqf&_JkYhI{k0^&E05)TP zLu%wYN?sOcKKfV&+?fO|d?KQis<&U3pkp!;<2MW#(q>$AU@dk1?JS%FN7dGT;RGD+ z>@&(q#k{yiz$~=9C=oqQjHEDrh&KzJQtqK`XWyQ!u!vZj0x?xi?%q#$q&b+Ld|;)Q!+k=n*~S=q7Q`|xI|3yDivP8=`gj+&;hP3KN*w(&7nI4H|x#i z-o~LtG~|QUXHPX#Ho2P&meDSt-egKN;j^yV>5aa$l>Y|VP}bj;KLd?h*JGDooK?W< zh1sX}=t27gU#<~r^HBxm<&80J0`I!G)k_CZL)CO>r0*C*_TE@8>cf^Bv^WpS$m6qP z(;_t(Urs3NGAYn1srHGQZ&jDbf+<9ztT1eqoWgDRYHHl2_h*}FTgbMV8sA3kOqjY{ z(}!kW>?+>0rFH>wvA@*&1C8Y}yPzBou);V-`PN>lV~eY^(==Qo=3MQV!mpc>32F3I zL1!i>DjPa7F11mqC#eO-R3u_xKJfrxN1Qo8W|gD>6h#rja*I4l9l{>voh4}t9LJX% zA7prdvDZXUe}_=%{p~s~9EER_B&0eLuNw0b&s<+#etkH(~%B>W=^K>T>Tat z`8le#;(_spAuAbqD(=-azBBKma_!6nDOcb@?It8}t8w>EP`8Z)jX66DXE^r|8@NcS zVc#LO)HQG}2Eh_M8zqZjIa_y@)73C4poh(1knP{|ttr``BTLs8$}aytW-zFmWlh>aGQZ1grA+Jw+4;c7Y!9`^x z3g67}eGgaTzE54St$vln@oq6$sdK3AQvB^v)!dt<(8b%H5hN8%(V?X@v6(^_ZfH0w ze16_x4TKr@6;5B_#&8H;pUrEQ?Rp)%7Fu8BNhMXo9>?OLw{i?nDTTe*SD>L%$#wPc z=#CVNJV6kc<6hqbh96h;iSl->mi&>&~lJ+b44ML{Z3 zmnJoFQOk>D_03aR)x*x?__lsYyxnRXo*A{|K>H1F=z<#$DqIaq3J@ zW*lUf0a{0XGg@YevtLov9g_Jf3hig7)8c_4ZK$@RwXLJK(fh-oyHUXf5OuaLl>U~j z+yVJ*W9zk*GiM-m6*aMo0Q-cYX*XAAmHeq>Zg)c;+SKY4M(6YE8NTZhM2UE^O|vr3wosmg?j5%Xn!HXJ;TI+4F)N70E8(k>xCO6~h}q9x_1 z{J{*aKBclrT}lTbE)uI&DeRyE1FgqIdZ3)cRhFaV?rD|fO9U&Oku4L7z=zo@mtgUJptQWC z0rJrn^*CVI?*dCrAfzR+DpE&Gmi6Ldo@#&qMw0y|l^)_49PrCQUo)oJFguwhjpDBV zl&h33E7U;+=50q-wHw1b{nwInF#aeDm<+dvWKu6FQ?X-mZ3Y12lmmI?qoo2l5ROP& zvH@ojPQW*#lx4ZfE}!UqS>ZM+fBBc;FE2kLt?nPs@%xJ(7ix%ZRxBvfJZIlh3~lfhJTJ@9@yxt8}k zYz15W3$R?SXQRqf#92cnc#yQ9LsA>CepyD*bS*F*Y>C6QK-Hqx$X_a-<7t0V?sNH& zXPr*8ClCE}xzpC8x?b1IoO0sf0s#p48X|9vyq(n$=1T3lB_?xL+pP{Y4RB3?tV8Aj zwufw9BlI!t&mxv&gkn#R!5N1W5-;$Bn+n2oD!n8!dS~wl~ zPPEw$VEt;;K2lgG7V79}zeG;%h|sYgEp!B8Ijf`-z_V>m1N>{}-zE#0{c?KkbYGxL~(Ptga=G29jfv|-C;D_2Rw!Dq}klQ;D0y%pJK(9cux?ZW5w8H{_mNwMIrc*o+n1vg~lti6R6 z&sBZV^jp#L-G~W0sqI zNahs}{I$YChz(}pz5F^i4;^U1*<7iJ+?3fn?lJXNqK~!Y*$z=Y2%(YwvG0(5X)D zZ3}KDO-9t43T)6EwvW+L-dhQ zQH0XWz*Q)pqyaRw4_EN4Q&RSzTav=raI`pS1m*}eGCE7`u! zcFMo^_=OyY1HF=*#4o7}$Bsc4U(}`0l7$xPwN=)_{fxkCU{7WnUe-utce)Bv1<_8@Db3wK2;Ge?}4;kg#ZC0hWHsB$R}*pe@iv zfbFcpgVIt9!7M}B&8jl8YsvjSD7#v}YpFLF^a65A3ZSeIut5ckUp4w| zgtH|6uWiffpz`NotjTSLbvW=R{Vb7)48o?=DQV4i`jVA33}X@|!roKh6cW^uUDB3# z$Ha|k%9XxUY9fxN<5p0qcEgmWwI%|F*oeF%GY3pkiOZkSKsHG|NhCr`mvFhL1Pl&n zyEX1Bo&-UdIh4TdE8RdoxJo%0gnxj*{z8QxoHJ{BNI_Ae%fWlz;tgIS}Rr%F}`nv=*mE)j5a!3hBc$F6vwk~^+`W)&=Y-AjbS z5|y5|ceN>H92*C`oj07e6zFa$e zfT6rV>!3`cE64o4%XCBnWeY+Lk(+r1CT9-K61fXt_EuZ}uaG1|+k(aTBJU8=MzZ)2 zt%%kNc!!V#KU>F1E<2W%g%^zuQRJz}A+maM@4$GYi6CP%1Lp&n{4cA^5cU(qKqw6b z{7u&L8?juCBQ(TXrU^6 zi;w6k>$0Cc;zG#_Ng2I>%kJ)ivvx?;oj#e(s?sRqJRh9MHr~PJAB-2<2d>m*#n;&EAaJaY{r-a z{QGaer$_8pZ+`5%*WX*W<$p+r{_geb@Bc2m{*&%KgCRK7b!klcgA1!dq$W|xY+{6^yfI**hzH}R!LFre9YDj8d+&` zZgOaur5)VlRC8a)GoEyXzP)?0H;eo~wGcS@U7_FM$TqZ6C^ETh>htDGen2Q>1owgJ zD6wX;I~L??WJB8pK_R#VCAv-~TLgFO>7`3n3C6=wA032mA$U4P9BX#U*emvuH0K{jsg4W<@h9WFP3PMW4tMQpe z^OMxr)~K4KifL`8Kf=R~Lr|~^a%JsNrd#-I-K#=FT65V+UNl8u0(C0l)&WU z*pd3zR+8&RUk;#z&;(~M2-v$)79$Dw!$C(+-aKLNjC-KoD%qaA?3T=Z@nYX+=#s43 zWk6rhgY@|D(FG#prM!llh3lC;c|`6_@pc}op`h1W2%HsN>fx3-d{Xx(l7BAXcPY`R zIz?CHOJHb_q=o|rJHMz8Q85k9(6`#72IUB;y=}T+xg4xq%2Ce~JDj6`Wdwe83X$h6 z!^{C`A+Zk_dPj5;kRDQYf4~JvoBaeFmF1&YW!N2%Jhr)HHT7~*W&ip!Ej@*xk3;7pQ#+a#K7;*b0v}^?Klu_Z;ehzA&1t7&WHzAZ5N8w`Nco zlgJiEyJ_xF4N9>MUAh!;z}f{Z4dOQ7;xr(`$79|Ij5(|7Myj8yMllPDb?kTeQt%t< zh*DT?dhf3*#K7?h*n@1t__(YJl1xXTy0fx!pH+m}{y-*0rYS(c64{h{wj35_)XG)+ zL-cG}*vnmA6o@@i9m@Fvm_V7H7E)AkPcjFIQWJV<2llRKmm9;1kS}BQL>N>BFgp$h z5-yi&^J!rUZt<=SKkL(}FS!H?TdAZZsC^!=u)YKmob|RU^3JP2SsEyA*c3_WDV&ywf!i88U*Y6k=iy@!qd3}{106)rPSX|HFzAI z)&v6$h*qt{5UOdRPK?rlQ@USgm2$Ku8uHYD2UlZ`D%cj%YQP-j9%Vyc!-I`5xcN!M zvTwt9QT{Ch=I-o9R4BQAGhePdG7(n(a|0Pdfb?_P1YoU|ux41|{cWSvbb+a^T2(_y7-%JDsLF@LeCAGNec%=x zbCYBejx1RAA?c72o(M`D=tDX`v|~yc@~jhez&$$E9w7L!)1urp2-M06Eiu;Np`~{Z z2B&FDrFl9x>&qpVdl18wNA#_z+M{J|+J>NS(D5Jl194W8Wner>{DlG)Px#^-Ub9fD zN9K?xtwf0l*@nh8#0W8xK*W}J z<(B6`f9(%`Yqk0GEGwP&rSlBJnxJjnQ;|jW=A>kOw{|~XIo2>?LKP5z?az;2Pi8@% z{qb+ZY1HxA>vw!*9dF{ppGs~2Rl-C<7wAK3CjRv8{nvj!Cq~3nJQZJ-He;tkeb&Kz zW^Ksa_~|L(a4QkXi*yUfBVMcB?!s&R7~zdVx1Wau64NQhig$R?@>q7|?4ky8FK(*jTGC_);s_@Y`68FeZdDEQ35iF@26SpepSwX(;Wocfv0AdE z&KsXrNN*rYN$zyWGiFx>E?BL&XlsNiR&XVQSOP46SdOcIggi1QD+9tZv>ir?MCj7+ z@fRG*0T+<={fNUieYq&N1ol-B}nYhfdf#sl$g{O#LfE-^1#7r#p6n^E~aXCzmLg#2);vd(k1QabLw=$ zwkbGrR6-G8%$HXCK5K33cMDNP>M*yU6!~VP(*W+@v zlX%I2m2A^1V3A%vNasr0RVsFp(#kcAmL**=)}1^f7SKlpz8x$($*rYuCBpy%%++oJ z2nA~ewwz`ma!`GCEbX|e3>^~y_dB>MCqg1gT!Jm?QV^vQJ|g{Q9F=FNqv&pVSENwo zJ%B-F8UbuXqS*!r@2R;3>G8--?fWCvI|30-Y=p$%WSr$`gBK z{~mX#9j7#TU`}xI%Feo8mPAQAzf^>TNwDL@^%JxLPpCjB2Qp(QSdwIlzx?mRpB~}< z^&^!u{^i?m-ah;OlOPfPJ9Ik!IlTVr^8NoN8AN(pkY_{9WE~9k7cValTy&T2LBi#2 z+(#@UruBPTq8?ezYzXq}=vhcYj6w3{9#v4I%q&}z{U8?wPWJHB>=-Dejtz%nuJVjq z?u;;$gl3+_%z4g^RT)?z^TSR?xKIot6%lvh#3y!*S+Pw=%>zL{1N5#%$nAH?W$UyN zYOKP&9HN{N2_M;khg0`*)Fb)Mz?)hw7FPjND;u}~Ia+I(q`ugDsm7Ijh?Joqh z=!C>PsTv0mhpgc-hFb<&#v*Bb%g7Bs0usGuE&4CB>6z2BS4FR(`2z?6=432BL74z? z+AawMJWFnos4#3ZdZ6`kx5$cT;-kw@%bRSfhElmbM(zV%Sk>>yY%cvH*ct2LqT@(C zkUu50**qA-DZLKzk%Bc%Rh;~>e%4?!9~`GjlUj!er`&n%q5mv z@vcG_WDZIxZ?nFn=I>4Y=%Z6O(P06Vo442yksB%g_vU^GbhmOJHw?S5N>AIx94a#w zzm4s|!i4#stb4bJQ3^qc7%(li*-i3CB!b$w-<^z_C2S>3{*t(zRQ8JXN?$92YW;_U zD33hwu$_U>5BV-9Wq(XQjS}t zikuwSE4&K^FP=hUg>90 z9Cle~w~7`6lHF>Me8+hHL~BD*XwcoXe+6=;My>^%hp{nGoFHN=@8l9%7~OHMmnG8C5OZGDz0{wnBW?1~%lf7_9?}UUJKleE~=s*nMeFy9#x4_54N>TuY1q z*rjxl%1brwc^DdN<1U*lg8BG>zP3gAH9~VIZ3F1H7+DLL$gy>@MhCbvbr>NZQ~@dg zPlR+N^2U@@Z3B1RJmAx@Y*+Icus7#Eb2AFHyCoJu(tD6PA1)WC`94ts=)*%h(ajAb zFt9FMT*j#zcM2TLKnPAhAb3g`zZ0w29ZCt3^}sA&@;ID=&1vWfphn7HrTEVr zF69md5Vo|2mLFTuDw!;KDGr+3FapsJJe;eDspY_B$S8W*&#QdHegYzlSd?2UMb(Gk zqUMNHMCq}lEfnuvl}2|EBNW0{)D!@cPe!ukmV70Lr^^Md)p$n(z!H>BCoeXENHvse z5=5-gZk-?@R?bs(vaOOMfbB<3PuRokvIlf%4xb?@11OCUo`yo0UE#ik@cUy!|7UO& z!e(weSa}!lC7OfF7t9#?ZY8CJV6tsAiw({YHlP40eWRw;Edzn2W0`n^y%c1HAvjJ{ zgEH>!u0DgQZ0b1z>iz=bVOWl9uA)p&SxS6Y4*AZqu#GsqqKfDQzJ+MpzQ51&JLau8vXweqgc)jQUi5m;F|r3f!a zEGN=XoedQeted(OmMa;NV1`}^NtXHtZQ|hEc#HgQ6`4avr&CcvOs*X!n#(Q35mTOr zLOTue<;@nuY&$H6RbFkhGDz<6>d;5P9Zr5E7{=OG7$7QK$42Evnb&K_01bn1r)pq# zSTkhF{l2;64R!e|Y;cynO}W#Xr6MKDiJ4?(+T5U;i<@C1Bw9AH06{`dRq?=Widr{o-AU z=C{;CHem*6HhgNi0h)iSFRVMPYH_QW%!CvkZHxty30gD-se5f1dB7#Ftea$h+_;hO zL!S0`(gsx+d3r{0H-NvyeR*i^`t;ci4?<*-Rg&6!g}LPtEpX#l_?89QwqSVg&Zihl zMHRG)62Be^yC5CUjTv&efZVee~MiMW+$~?LfXKx zeOBa6K2K>=egiQh75V2OGJ4B9Z~UCggxHQrppccbW20E z^ChaOwl!h^s6BwhvWpQD;Tnfsk^-k+JjMCww_H z&vJ4kVyQ+%Q%5%gt+j?`^+pKbF&H^Sh%6pz#z0;Aw(}%{+zF}>F~P+F&^aRKI&f~5 zU;`w8}7@IdhODGa0CaN6#Z+9Gwm%nM0%E z9zN1QeKRSHVy(_bNj3Ph6qc*kkOwL97xiZxJtk!1h{MsGyD#>YV^0SX_~ zE_Ey+$w0o@`YuVne72Tn4D5Q8E7dT{dFzjWSb~0FDZqGWmX-+tR2};zA;yqde!HgO0 z7*ez$5VaEFFMo6&e0z|@)jR>9IB1jrdB=F?hn9B^Y>b7^rBIECcIpS9$N?*Yw8_Y_Db z!mxrAlT4k@DaftCkLb1Z!OA$cyL zbu9OAYq=X%Q!wv~t7==Tw$dVTa%1o;Y9P-cJ`jB7UW%5@l1@0D>v`XAXI%y?(=F>FUyk6}QZy%sy8$X*-bb}TFVLL6ZzoiJR z4g|?J1Rj{sM2RPuKD4SxH9N9iDtlmAT7PzKvE4(bbrmcI41|dDLquXTBaR(1eGQCg zB0C}~{gk!}PEWx{$R3K>8~d8vta@~f!MafeWa=Tr?MV0~``u>fGokKJ!_RO{>-D>~ z#M7MRwF47-8rD?vo@3(NW+!E)!7)Y{aL6sFyfecbj_RQ_9NhzjDcZKmDiG`daVA&I zyxv3My%&7Yo()dzDYWu^&{sHG*_d5eVjsa3aLHgDW;@ghVg%hKX%mh2W~OanhwdU| z04|`D7*#=WCmoCr3b!Sk;eUn^gk%hGrFHF6Ss)I%CrB+|MfawHEDk-~28lB&%WI-p z!LcA6NeO7FC`5B5N)3qR07Jlv;2tm90Xb6HGWl=lcCm*Ny$A&Fxf=<=K$zn}c$sLm{rDf2| zyDgaPT;700M%U)d^uQagi%=@xPt2WcgIfjb94J&2&Qns zx$IqUmJCu3oWtRR&>b4!6CFzrA+^2sEn*A-Yr2-rtewaHaQ$``>{ly zsLd>){HyRk>FePNothC}du!qU>udP``wM=cGxd&e#Fykue#wc(r>|dx*Uv8BeEPlM@M5x7L%i0vYKc zWQDTx3b`uo;(os@kQYvA%eE|ygw{Kl@a5LdZkjqTM$w)#i_g``eNttG23y=1+X;H2r}frm*Q1-BGjEZUa#21+JGwDB#MCen?k6c6Qwp-d3ba`ak0_VdWD(?TwD=eB#Y$FY z*v?|~g$|Z0Nv`o^OVugguZT%JvbT^YpSsd%1lSZ!d6czn-Dpj2X$xl0NRF+~)v6Wn z?gEq$a?d(YX`l{3re&AyEGTYU4hvL!YqwDX7zC)9%dE~BX)9|+~(Shsbl2{n&Kx!tzjqinm3X?c&m^G;TS}ysOJ3Ga3-%D(+!Hfp{BmpYjRqk{1zXls4JHIAbeVoff!Y zd2nt(5gw8sg_E)eP#F)&g&??>kGrdqNVY9$%?kDEY1!dHm1^qrMLa)KQ@Cn|4rcJN zZ8uK_usL!1Y6AU^g#&a+YvMnlJ3AAugn1XTS4)Mq!}b)TvOdS%mv(1lP+I6qa!>fi z4027NXi+v{MwC>uZdsV(jd`0|SxR!XL1{G|>XUO0_tGE;gI>~P1C`LSge=KcA$_MUO)6X&DQ{q{uJJipS=C-?Hk)mI{`bA&%m+rXE1;I z1hkV+^f&E0EqeAW)cfV-B+K%scUe?t7DNw}Mp$wQtSI+P-GIq=ott<_0D~7;SsH(r zdUyuJj^K+%6~=I5xxywyTSu3kl@eo;n_#jFv31IkyKK2szb4)QiQPCDLmsV6wLl~Z zZ=J(riBcUYHKp6vS>kxD$W(w0=3O^2!lg?^>?bJ@6psom?m;(oD^wkuzAFSe$IEhe z*agVFDnQ)Kr_sl{m5GPc%r4UjvCHUC4#;%T0eV>u!pPKcRMS*Twkgck;HmN~D<+az z{-R(O2ZBhQzF(|;6_Q?U`jWawJiKirk4kV84%EU)YlaObbl`0h17Z?uC2>T5iPN01 z4})QPXLY&Qmy1^Z#ECTF$haU4K1a-LGQ4a9ysaLO%n;y`clBGR)^`ph$-|L_Wvlh)vW3E6{GEZTFC#1rQpMF>F-+t}-Z?25Ns_mG##~YF23zfZeEA11ddX8=N9hW6aqH4v z(ISNck)$K*n(pNIq8KH4~5=xr`MfZ@8MW?x-8zP{= zkl|if?~+OT+_?mnLH?2@A~1}y*$%$d8c%?Vf`{V0`x4N2&ri@wF*GRdKP)E_)zbmF zaw(7_{qq!LRlbqRY?GaWtX%$x%3Z6*HWurRK+sOde4HGiaopMOMN&5Nq!o!7U`-T> zj~UjDU!8|RCz>%lp<4HyL@NwZ@XkR2J<7on`Sb%5NK~Ej8Dyd4Y-qs)K959mU|7@+ zqhmiZmoLllL9g;jnWpAw=l41@vZUZawOv#wv;OPBTgqEXVk{Exrj^+RJnq$F95XVc z5NVA;cc#)A=Bp5eK&oC3TVZ^(>;3$8<&#(hvT$)2RnB3LC4 z?L`GN!;gNXM_gg^+qVz(fbD!1k~q|H>|c;q4_nHVeSBnSkk2mPzyHS{zrFwe{@?I# zeIfn+pZxL120MHn$=JRffMQt1rxW-RR?=GL9*Lz~M!lSS%m@|jIv4qP$O$PZ%(*BY zot*;+b=DcvuzM!y4LCY0)r2-6wk2(|1s*h3hTpBF-O5%sIwI`BRMhsJ1Bju^nP8NV6w7HAD{LWas^LgGbuYD{0Z&j`^V|Gh|(*WfzF zY8h!^1$tL#K=itFD%pazMaz~Wxl#aEK&ZdbfOKG0T`xBoSv44PC#YGKjf@ve@fSm3 zFOzzFq;0GqlA@sIcZ6#L%0$|%(GG&Y1=E|(@!E?9Wr-^dcOePj`r@HWx5JE9i!3fs z|JF9XvQ}|EBny#s1#w3TxFz`;>yH3?%V9TIIg)9rhvhEstCe4XZSW`*M?z@~_5T}I zG<;4Ho3hkBpUE}5r(5JWY(e6{1v2Y4G6ST~IzWX=Y0)i_kv8FnVQ^OH`<+(be!NN9f2Sf=fgZrjoI>iPtFmuV_h2;3<`004 z+`a*Pb%AMNBw416r;HQ~nUlP&%4MJ^x+oEX;8#_ruml49ALy=FLn!S)*j?wlMz@l^m_d0Z@+u1{yr6QWTsZht$_cfov4%NLQ)Wkn3Lj0=B8ES>Xd50eu|tG+&CGO<`Xu=aVu9z z8!T^_8!jv;k->(!M8MCjx3ST5SIMabH7`L&B{Q|T15k%&Qn__>t)8%Uq48rG1RlOP zyZ2hs(3YDu*;F?Q0$me~Qt||-|8AI)Fd^vpU~4miZW>8m*S3RuZfJMLl7J1D#I_}6 z!_1BP+RFLbio^8^s(GFF0OS(L8#H=T4xQNXk{=8$tiU}zvYNS6bfp_tH_79M?$>#P z0my=mACJU9k=|ShHu1W3m%KPv4S<|569)@*$n5FJ?t#E{tiMM~{KyK1Dys!qBEMVCWN?Uq6{=A{7}l|lU*H{+k#C(jJWXT#`)}WxF~^VI72ZlykvG%H{tcxg zQh(tC0yovi^6=w${aN^T-1+A1w`VlzuQ@pR2Y7${!`qiBas!cJeS}-69iXD7Q8|O| z12zf}CbEDAV;nh=M5UkvaKDHLhU6}^F6+X0O&Fg?W3`DvO?C;q*}D)*S%}soOmE{7 zSalTimX=k0FNjsZqvC2@;R;UB3^MbN#{fLK|b55Gm5DA0tu=15YB@fPz;B}7C*9DtJEeM zF=(D;aSyE*8*(T=E0~1q8M< zh}Es}auS=_?uXgkxS<^|8X~S)KZmkM-AE@Yrk=`5&*&2(jb3-NB4R;lB-e!tH zrTRl&m)77{NTj^q10CmjyVQ&7{aE0WTmXfaTptS^XyqQGi0cc|h_ns)$VYY_Qh+YA z?pmg2*G(m%u19~VhTE5cF90=h9Y(N4(Wd1L=NCm>qT@4#(3bM zuS8Co4QCvqVm2?umWB=~(n@&`)eI(Ds#LiLHw3`GBQ-F-?=sUa;heWY6F%jV8fpWFzmIR8D6T8J+b2 z1B-&yV{keBA){P8Dx;7`M!u@wI%oJB8>i2W6S z78;*__?0i-KC#!I+VB8g7OFGx_Uph6|Nhqx-hN@P2__*MX+!|HsuDn6zW^-ar*9wN z=K+WKQg=Q>)FKU*0kkPjVYVO4;h&wY{ zE>?wRe}krsgzadZ0Xzp9{kub-34k6_5LRV`=!$4D8<%Y3cmSeT6q}atG@{r8B%&O9 z5<}R!AGX<*B(_k`zM1FDmy^T<<`40*VALg7TVbT5F0e3oVK-@MUCz0lVInC%#ARZs zAvR&}thsg;}S zJB@zdYE*~CCbipPYEALX;L1_cJl@iHdvF&Eaw*0MV-x%$wmYY82cAlM_O{ASD&j!3 zCpJp8VovBx%O9j#=;@}4Ndq_B*wQ=w&Dt}aXzv$o{#sE2izFR`*lvRs$xgDSgcD#> z3)_(ewd7_M@o&7#3$Sw5NP&Rd_D*`Kx|M)sZt})CQ-Hn`eYIz6zV|byMg6z}hkhkN zw;xlV!gdBs=qWS}^N+Mur25|xuF#a~i_;yXCV*(4IGv-04(5a7h79oI>~>L~0whF; z?fRuIySs7{bWOhhUyUEGU3^;m!kM}u&AZLe7B)m_(4MxzCnS}SWt7MYIotH~tbtc2 zjq?^)K%CdjP9xx>Bd`{^WM%_l6u5TYd}@Y-ZF0r5CfTc`9Fso+Cgi#r9vlfzgFwJB zlBR09Rc~__@{QNq?V;3kqM}9q)GDqyfqFfPKKT{J$9?wIVBkTmrPY~e@OX! zk+;@duWSLl1WHyYE}+{LO@UE8-|RK(3iS}Sf+D_5V4Fw~F7Ssf<#@S{&{`uTAfn+Q z58TioFOiik_AX6Z?wzuum=GYRms3a;8CY|Awj`esc@92v<2eTA1S4--JY@DJ3OSW` zg;lO$2iyP(`Wb-*;1u)`_71f{GxHgmYtT#f_^K{M+I=LPa)i*SMgL09Ag}_fc9POT zG`q85oQclK^N>@|dP8xIVdG1c0Fm3MJ2c1yo6$ahgM~eP&ylo50GqKuK`zU z*p*?aCT!a}<^&nb!5bK1`N+NiU<7K%cu8(I;5#uBkZ{6kWdUAdf@Tz}eAsR?sMk#f z_n~*&0CgPtEr#0Q09Sb@T}$TM5_{Z=g@nl5k^!{lfy-0`n0s&nt1cys_wz8o->D&0 z1h<`sl9XBS$%?ZbCg!t7k(}G38C^nVhc;L6o`tLfFb{ylF-ZX0+iINmHU*-k?ND%} z53M5~@Q<_nU2nR>`PTi3CgnO%QX6Jha#4J@Lj~ZVMpcj)ZrXpq1OxL%{eo0dm?ac7 zRI6gQUB+Bn==L{;31liW)5Of+21KO&5fzby*;TYoIdTH)R6s$@94SChE-yWr&om_i zioq>BIUo-b&WrpT5%@d$4>P-F$>P4`%NJ6$Tmju0{)~YY769x)rHx? znsUPqmkydMsD=C-gnHVai*$nx(hI z;Ovr^2a<|+(GzY1Y-;=W(iA71D0%)unxPaB4z>W#+pb~gY21|H`jIEU=5MiJ@J;$_XV@sF05Z6`xCN z+}{wsO7Sd>2@tB=eUFe!f#;Xa7cgZbO|?PUwz!@_nI@W3W=UnKV8F9ZMGP(r2jIe? zTvCiGwd+!s08b7y`6>VjP)Q-kT*Vh%-HuitlB#%7J>HZ39P*LPo*xtpz+GN#4~*3l z$pp^df!GFE%3V8#2Xp)GwasDuUWnXdJf_?qpE?}weX0ULW^0nUmH;sUjj$-wcyLjX z3^-f5Ok@jisP>GZWmY72GAtoHrU2B7a!9@N1)gk2vA@==Iw`C#?@8^LqU$x)@)-{SIA>uV25Uki}1t zFc~uQKgq}VyVu`C{0a(KU&w#IlmEW5?PNQ;k6Sy8k2F2FN62F7ag)5NRX-c44H~=i zhG83<<*JS?Ilgz#w>DJp5MOwUt~+##sJp%$gbFZb^#-f#w=^%XmN? zCyY@we{2(AZ`Za~XOfg(Y*oGow@ZC=E1L^`JDYKrEi&F_I8HAq}EzRo6?n#hQE>m3u4!SXLQ(`#Jyw z3P7Gpt34$1oQ%znBs8K60#(j2(JNI|5R_u#%Es3Hl*XG%_c4nd0cKj^!lk-+!voBX zLD{#NtoG4*_`?+~o=nXMJWm3%zcT%xA2A*rDuqzanZ zIvFSkws+H7h-2kRgaTt$=f)OjU#stCCm9iH1C_tl7@*G4o}-jwG4@cgvgZd3zj2mw zl3+lbt3zB>Ex0;&?=x6-lP4MRc+mo4#jWS%v!iDBkam!K= zfI9vW^whi4f~)ZW(m~?N8|`w5Lf0|Zi0+?RDfHJibDK0>w{UA*67)J_Mse6|VIjc; z)(%{QD@j}<5DuK3tgFh)T0BoYxIoHjyvGhJ7}TI_GNztfCGLF7NH)^&n_;j?le$z| zrV+I`A;Ts@ab0pKiRw0`izP-<+7YuFRPw*6;pVNWQMQk9@-a^x@2#2FiFtCgyrDmOe#fq@b)V6G5H*D5IFM&A#I z5aesFs|AFR+=S>2K_TcMYeGjPGAEJChq}Ukot!)Cwcx>lkOoRDVk%>JW?dpvEDC05 z3iL^&49V_3s>~j6sj|Q>fAp>zpjk=9eHr#pU~7y!}C~yDb8LjClMRzy`YY3ATQAdF~xm@At)sXgdtC zW+-R`vrhrf!9LKVM(<7vDHpPs4lAYy27hcsjMnXdn&h_B?I9>>(04fNK^w7SuR^Yt z1VS4JRD|FM~KPf*$Lb?W7r_cKE`CKa>iBz$jt0P zjA|WkV**eW*Sp1NP)`gwH(p&`Vvv+TIf9*!DZm+1WoT8b7!LPwDeAO!N332Z=UNdG z+=qy@taJbrNG{>hlIRGhZ4CG@KD5UI`D=nuaICFbv~bh9sDda0ZOXzmL6zGy=}^qE zXx%P5&cKy~6OvX@u<(WfJWm!1$oEE`iAh&oIgp)8kUdlU}$e7EJt;s1-eIQNYhXo3Le?^Jy7vjK?rlz3W?&f7IC(4pb~L!gHX2etHU_`{;HQ4V~T%L+krk8yJDRt;JW z#`_MU%9WU_Ia`ABD~kIt6wAjvN6&U7;y(buZ9j|RT5ewnb81mF5?PRhhhPki@q^s( zm>)RSLN%i@)Yypk?EXKMp`=|*SAQDHLr@`^A6>G(R7g)c*yr}JLVN-3m_r&1g^X(; z%WZornLAShx;cq{})8;e~#Gs zPLzH9JpAy$h4I%^9ieydJN@@_9rM5aR(C#1Ur68c{@eSnABI0quYaz`p3h(~2q|{u z3@j4On7-`2q(*kG9{b?z^Hc>(X7x~VH2o^%MD&Qihc70q;a&Xsj$Q*d0j`}ccLl;o zvX?wv?vi2~BoKN4DG&lffJkFIa_Jdwp!4dp1QmUC-9|W_OEJA>1LCCwJ*XL{uQhVf zXRokTqp=4O^upc!)~ofCS&%6iTp3$0ZmjkLYnIOD>9HlGV&I4EY`n z$OdhQX|Pa|A|T&>O_kdO1yQ-=k$?tJwB|-~6kxQVu1C{O+~Vl-TUvsI1ZsKaiAf$P z+%{6dzsV}dbr)I*$MYd{9rZfCSW2jN5>G~o9g8`xvrlK=xp zjm1Yg-8Lxi?TWS44gu;cr?{vkm1u#SK2`Lcv+#zYefj|p6?Sb}hN){09bP2~A)|TiH)s_v_)IkTdVmWyrVKzQZG`grm#dKr5 z%ZdP)oy60OC3iL-LSq$BFOo}09;-S~>NOYnRcKI_@|;4%LESBKdnbu3P?Ba1TMG2r zt(_nNQ%et6QO->dpBBRr4vl^wbg}M>x8ko?rUZ8^K`dyO@dTVwL4$RCvD+DQr|Gb! zl)H5z48zeAm>@W9$J zAaUehZ7kS$e_Ir*aEieB=F^cpffqb$P)PHlJw?kHmNm)hcmlEVVaa9Tkbi1dNqS1U zTV*q4p|=jAtMvs+hryY{8T9Se!%-sZY0;ZV)oHU)1#54rNiLAfV@>Sezx5jaYu|uC z{cSLW|K9`+*YDfTf8((lJo*)ta%au8m(W{o`qP(OCt{FmUJWX$z`zZ! z^MlYgvppbnMb@BAAb}4r`M4rbLmz<82TFe?$|@?*6m1fBlAnl?UgS`PzWY|Bl%;Ai z5uev#R*`!PAXMFWK}L?{IvtejIb`j!GjOY4P9wJ|ksEa*x72We-s)=^)EKs;*)Yn-1>MbtFuq17(J*yn zFrUujcey3qPPOW=QuQtxeGTg!!*;Zjr3~ngu|HBCEZ}~#;{a|Wp2q|glC$rVq zgY^T3QWY@Qi)wOOy%S+dmr0&2&k{*Jc&w-lfXdV6<;|i%J7WITB!`v}$$<^JAtwg` zsZHeFxd{Zl`(SjK8K16{0A$ELR818(Av>nv|E|%RmNz>j^Z{LNdYV5>lFQH{q6jvu zgYMCuNTQ7C-2`_XqVzzubqe0ROF|~8k2y?Zs4bUHLb&9&9Ywry=#PNx#l05ZmT~nj z19h^HCD2rdqf0K8%!CFw;0?RH0D>Ek5R``dO19Hd*;tC0t%shRTBYtgS^Tng?s#da z3vkuuI+*$0Avu&y@U>QM-ZyXWpC;1({=f3S@WTU~dH;?Syx;5Z`To@J?Os|Z45*rTXj5&2Y62e(DhSy2?t8dF=oZ!v)?h)|kCLqck&J9# z@+{S~UVPkP=9#9Ae;j`7ek z!KjDSd~_zg89pn)$*BWoo(98)@iIeuLSnL-D5h`Gfw5J-8&+N@@KHliV*h@m##3iQ z8>vz>k+Yx-jAIuG3Y4$B7_{%+?0}$~h~tQ1Bh#|cwNnP@@*ER)E%iw(``N&Me$#of9fF=P-v+0n;K`Cjy zo@&$)^5x84RFI2^wBUmM%?So0h{eWR*SJs*x zA8!|Cl`F^N3cDb>1G4Po}TT;hGk zG}n9e8)T2IA*$$DBw$e?I;`A-;}epd(*mW#CG%1rx`)gX(i|IrRClTdzT5`c5Z=*T zk7|gj%Vs0=(C+3lYO+J&G&q4QjZ+Vo{y+fBsu`*pJpyfLrDM=HaM7WbGD8vycW!rB z`Yl~3C9blrhj}a~R`6ci28^)|QM96i$gAZoNvjZ2h2c;$$CH7#?QH}pj3NR`p*G`8 zAO^#*z)*@@@f=EX;QXXX!MR%?nJT#i_-lN>c|vg$s0WynBn%j6QeX%v?orGnNkVcB zARwfUgt9&1e7o>~n$Dz6C?2M?0MhZNF8mS8P#sw@D=C*O(l6#((fN2c zSwLQ?-~9lZl}s^NQPke(irHv7Pm(vhTV8KPzH+HtA7CveLp*R16g-EXqPB~5z4lk6^T zfQ^7HZ#saIzNZytY2_Z3h_BXKy5W<*rBF(d+|0VETRDAn-8}B{jAPN4^XQU*u%fPXxZ|yZW2)tnc$qY@0PYb9ixuBW z9Xu}00G+1A3-_i)OI_-(JNu=BRBp4ymL3MRoUm_Cxhk!a0XkR$q~`iUFAzfK)ay0+ zF$mo>SDrno@~vHqjy!<^4MNSOFH|LXS9~4ndsS3ErujEcg}^g8D1x|=w}pKGXjIwX zmIufHcX-M`0k=*(MqTM%=pyXq!!jV?knMnxesgKxgCh^8*D65>a{xZp;1ODqpk8D0 zB-;3(l{eY}S6A5yy-Dg*nk3+mqHob04Mp?<%J|-fCX=NZat~8@K;GTFzt~Q;p8CK^ z0Nj~+=vPz@29O`KRpYd1R7#h;9&q|64X-mOWp0c+5FW6Bqb|Hh`m3D|_8V-_6|RR} z?X}xLps-W|;48^JuF%EO$=W-4#!TMg749i1xZeX44#?+OY7itXgw^0LoZMJGL*HLY zz>p;omI4=bMzKkFe`#>bcu65iK!FUsVRwNxpk;(0JK(a1+JIW0UnS}n;UG{z4}gA6 z1)%+9y=Rk>DNS*>#vB$z!FXr@<4ztV8tF_;DzJ%(fZDEUgSt36Q&2yKboEJfIqRom zh+pUgId^mUe1<^Qpu-n8ftJ$h8BdN5K;?{t<0DUylK_H^9RQr=K;5PNek3~)vR3Z8 zlQ#wQWPH)gn><3FP;wHE8Rkm9`@8UzYdp>_ML37#Qz?n##tDS-a?`eg^CBP$fbMTd zdv>@+9I6CsKQ2?9M5s_q6FLUj1u_Qat;3u`Zl;V1Nw|6dChQLfcx1psyLj<5B`*CT zQ#d%{8KyJM0_f7fdL`?U=aa+HrS!L+3Nk^Kj~O0F2X}q{!P`HBx%lDRZz&t_!Q0Q@ zKL7rsx8MBne+lW!=db?c^*3q#B)(g3d7@#y|4DfL!{s^3na2#lgvhWsvpu@Ys<_EA zWZY5Q3Em1;KmwR42e%s9L~(IB3V1ghG6mq0u1yjf9H~%p*M~A~0pjF{juCK&C3 zqTL)tBn4H$B;$(asUj#ksTF6S01}==D|u1@t-^ zqHda|zJ^osBw2570EId!eoG++#U>vJKz4d2TTd3BHS1^=30{BS49E)>Qx!*)#IKQX zzeC@HHr$BQuxW||CNWlngI^fWhQD#p+RPjEk}a56707dvMoR#F?34{Efi!{5gzHp* zpPU>c&TP02rAJ1=OB{o7lKfTf17R*}xi#2#X!mvs#M{m@_z_Cw$qorOJn3(vBdb(X zwqq2=G=GT>W6QTHJS~)s;J({~lEXSpp0q~REh-q~om^NvCc z*ypx~A%JT?*M+nTJ(Fz1tHl98vp zqbdLunREGak-rS>DT|XyHSg`S*At!W8yEroYlX0X^)HUyuiif3Yxv;-zNYW~@a?C8 ztg@fIej7mC2m9<#Ea>*ZjI3%~-sJbsJvJJj5(Tw!NS>cDZ#3}HUSa$4$PTdAg6Rvz>Q?2lQdf2jw=v@7unbb>FST=K$hgeJ zxeq%yzZV6y%<|go5MQ&;ys01b}}piO^aw17^&=M;ngsQlb{k z)3_P3jLwV_;#MQl%SRa@At8Cv;GQ|w4@xfaETV9CD4;vdcK$(?R3)O9XHGyeL?}n zo;B<#-6a)^5MUS1CCLEY?~575Xnr?s^!A)Wj9DLLY=nUrkTVs zxiD4Zr##KZ<(aL4LBx7{#p2HC3jNwc;=S8O)ii~2CO zt&zge^rvppjc&no9uV0N?z_%9K)D8_&yS*z_2Chk^uRAVf~A6OsJb)*?>c3r<){d~ zcdg4SOqN`ivKqS*byAh(X;A@c|AofO>JojqHXy|s(BT?Oqesv`;Ur6lCx9tSs(Ukam_S1#7cEqI;u>EFv_S4gudP*8x6bx*xViLM ziMAC6I8f}OoNS2}t?Th=-^bpXqWC2P;uIcBtTxmE*F-hT6NSlhb0A<;jDME0azHrG zAugGYBb@f9fqb93+H{X7P|8V7-V)p^(6yz5tQ{c1O6V?l~#JzkQ;_yArj=#6GN33k0JKTQuqlO-t2H}CPOlT-pgnY^d6mM zwrA#f_t@Vtdee0M5YA~Zv(auhg{&Tuu3(|S#9V4g027hX7=V4D{iHn1PX`{rQDr{# za5cGG7}XVu==1N1OFGn_Ce=EXR98n4U7~`euPVaAT9&}MtJA5}Jf>iQ?s%)94()L7 zoyPeQ`1Tr@+|hnb*12=*s*p1*aL}}u@?9lhA;8xiZ(d5yvP6t8=FtXm%0UkcLGSYj zg;jnyH$Abb%=Ll|4 z3FJtU!ZDc~$locKWdhuY0bUmUa=fBi#pt9kqFQ1vGGsr;OJ9W^aa+wofK-DZ2W<1w z_Y_hngw927_M!4m4@;skWbsjVlj1lE3sG)^ZKG@vB~U3wc? z7TE+Eibg6t-Au#=H!=-KDlq3)!rP#aPs8LP zWd~YN54I*&IGuS`v{GX~&InXlOAAH5%R1M%Uor}B_wdn)w+ryT6zD6WBc37qwCkxv z(cuF9i%QmHm&lhDv#@}^$+hXALo;wTt3J`L6<%g4%}B4m)dCuOLj2kUsFZXmWDI@Xd1nKB)C;74b?%V7J=pdf*~Q%Z=JK2ib?sG7U+ zpo?dnI;!$1%D3w^8d4{hVv#~KXizyG4r96zO*pNeoUowpbfo7> z!mH&4ljQvD0!Zqcev=wX(HU@19G3S1!0uWyIUxfDZpsa8^3nzZmOFgSB;sqnp1=Cl zS)1>70eX8$wC~en1pfZ(m*G#3o%h4vq@ABg>S3$NbM!^vi9}HTMPX=7sVBzyhLHn1 zGGx?-F{WVCcz$0k=po^CVc#Z_fb$_3Os_}E|6PV5Chz2T^6lmRfDCY5VaoT@HJpkjUC8Ggc%d!&;$Jr}b0+a3>NF|9zfi1bq>T3yLQK6i< zjL*q;=qP(I*YDU3Nf3TuzpwuFSRE!vbA)zj?~f}c`B^z0*uNH3%(Y}(mF#bqs5LLO zmpX~<&zaRUs^N@v+3S56f#;z9&Rn2{Af?slEqPm*ry#cgR6u46U}HPlaCT5>%S*pi z)ggS}gI6}gQb00r4&65x4)>$W<0h276xzdIA20QO#Zh6c8Z_3_mS$gC;7rVz( zBo$%D(TN}*K*v7vgE&Hw0I~|G!qgb5HujY)`P?}izO!WCNIh|CvN?#Px?3b8c5l9y z*SB(g3;3H-*lq^@4OH!+3YEw;eS-`4DR;B%81=e{^j!XZst*s9j_(8bW&9lPhp2_* zD0|`$-z!Tj)n&(_1vfQ(!0hm7^xaNPKTHOvv1aQ6J)3+eX|cKqkZvzI1YC2dUDv{h zfivRY(QxaU=%I zyDMAwtDDh`P{0PqhP8{~BXaG0rh-~$tNnp= zGH~v6h}Dd{MM1PZsSGD+h2g6tgof6znD;hF?O*{kO`)<@>b+DUIeFVdUcYx8_|EKS zNbxU0v9>h-b_>~LA^(9}8ydRif^{Lkd2ttA41S#6b%Ts!^5_glZgmjSrryb*K<@Du zdBkKAfrflhgkn5`Bj~st(PFlvDD9f=?ZpAv6V|Q!NQY#``8np zcU56DYT*KI+(AzPk;F-SlIuN>6Veh5i#OU|y0mkW&*g+F1o3syR+@$*gF{?e04pxY ztMWO#4P^z(K0J1tudWNK<_d2l=N>O=I+a|rJM+47duxjhT8&nH!gQo9P0a0Eko#Pubt z5B2~`4FPMUSP$fs4u&;;)vX|u2g1T`d>|>w8clf@L#K|9hDQD^rQ$;fHAlz@^FZt3 z0-WffIbJ#qtGkmyW4fw^qMg)1iboE=(6hF8EWx0W|9EV}t^Xl>|G(;i;S0VAC$#-< zT(LH1D}VS-w(_w&^6rC;-(axuqv93w1xrs~v1pPD=GiANA5Mw|+P9Xp?}UIp(O?3q zigL`)!KRkaMmuDwc&74{J3rBRmxz?t+cv4C#xb4Mc7kzp8Zd>X<6*5~9jbpX+t<)} zs=9$vYPrU4i(6`=-Zo>X>KJhE0M5xZuQrwH@6D6~;m2OuDs`-RkYj8im1czyV5!0e zy)$E&E?cQUw*$BDbh{NjU}h7kBeP6RXM?=W=h`&UopI6cI}igC1o*&I<}c_Ww}$q{ zvQafx(yk3$zA&ziJ&cIacBr$z zy}6P)V`0DWqb=-%O%wKmDm`slWfChmZK{K*_5E-^yU|RO&b9M#hhU`7619*rSDAeo zP=>q}A<5`>6u1ZZVafHm1L4QA3eZVN5K=ex^Px;y;J1Cz_g?3>I$2@rAhA*v!+QvT z9x217e`o?ut^$0IkT?AZqeJE7W{N77pCrmHuFt1pZ%@|b_w5b~6f!ICxS#R|e5cFL zUH6lG2>UaG7epU5-o|?hA9$AEpfM`(r*@|5E!2`uwuiN1n^mXUK_VCoaJbUc0awCx zaC@AxSIZoFFg06uk188!m;vBawa=DM0eL*I1GsS+df>kj0so_=PBpSLY@#|b+VNax z5vO<|YybfoeEc4R#bYy7=H7D1<=2a zKQXWa@F_PWxcPV9Ly+b(a6#%NS*D#IuqV)m0!=?k2_Gd0+oDLd%8A%FMm6?@Os9r% zN!ft|+-CLsn>a)yPoEzr#3MsA&y6~vB6oFsNho#LX^~#??%jV(E~;7(Y>V##b!5^E z{NKXH#Js66Fo8!E%Ifpbtb!FrydH4DS#CaqKtL0}+fIhb)d=eInHf+Wx=a=1C0?Mv zdHixfj}CrYB{^#QAh7=uE{T&Dc_VV$TAu+N&kSx29N(7mDhx+3Z$vAi4v~*U_J4E% zq^PXuXi#?X<;4H*B_xRR)v0!v+IKndXPk4i&NS4o@+ zbsPfqD>GxzKHp3ilx$d)SnQ$D-iv4GZ6+>>q76sJ?IgP?N&R-njpje|P%)}}7#x`; z`73(sKKs}foh!(Ve@W?ZGz=H(Sim}{1f_ItvsIr6-$?Y+anmLQpH~Imj5@KNJ z5vwwhbzI;pzC% z;yn)%#*4(ALVZWAeIZ-Oh+W*E{824ea7){{)KPU?^qaQ9Ex(Z8wCzMX4yrJ;0-yk* zXAkk-?le~ITkpd300h|)M05auw5+BCTE54OGy-^)W2c;BFQmWESgFO?+WKr@1t)Vj z4A%kZptR3P|KKha6(r@QMrW~jZvl|-o(JA?cWT7l#&W?82+Kb?T$t93KGSk3@SN53Ev$6Y}3q%%Ksex>VwGt zXBoih+4rA+_tE!1zJDF)iSx<(C-0v_0r->R!&!zV0;EO!)7w`_4&ajW&*(FJjXuM# z=$G?(u!A2$6)4S;AGn<$bbv0*WcM*NCce23f#!h=fJYK+A_e;83dM^BUghJ-hxMXB z$rdd+#(lXrWQTTY=TqH&Nb05Pua!~#UfyfCQO zIx#T+efG z;8T6-W+_ji*RBMh!HJndpb>!r*0a7M+Z?g!4rB&Yn5j54f;7*!1(R4;9P(b*+4de9 z@)FCepP_{8khD^dux;6q_NxZR%t$c_ zKLWYz+?mwo(q=N?doL~p0-aJRSE^(dK5Cbbh6(-NVrd|l`oyn zI$8`#?A2o5j*jWZE1Xj`7MXc!Nl|A7OT1E5t(KpPIwvF^f#vSUI*8C2pt@9{e%pU3|y38DQV)&6Hue=7=9A)A3zF5 zwg*rw$#z*t!4OdjgbHO6wsZ~GbTB=Dh6T>GoH4&}6d!Qti>GHOLDht8^- zQIB%7CcJ%JeEU;Lnf~;5`O(iMsrp&?_D65Oc>7&`iT4hoCxjx*_H*-OFIlo|{Goyh-e&TJw}p&HjTko%kH4?|hLhL(Z@Bcx(o z?ofWM6x^>i7g?b=R4QhJ@m`M=ewi|qjqT1=rIOoW+9Nz@@?&TsY!x*LTmwzvl6tgk zRj8<^yoHzH)WU$23-OQWBu|^%^Y*l6>(+f=y3kJs?Pw4IAeAHwTRzya=Ao2u_mN7< z*T-@3Oa@1@d`>_huzd5PqJ0_IPJM?jv)j)$(2Q#`MYDg^+CP3$&kBz=qCgORG| zsFJ(h<-jt`F&M@MuDgP{E^0o>ELMzUI#9gnvb-hSlcn4(tMg56Fre^6W|-j6Cq<2m zD082hTI3eAu~S-!llx(20QoCsLv@V_n`B5e=O>cfaK(;;+EUxe9k?!&Wg;16SnX3p zPkojYs8SKol?|AMvfsmNP(vS^{frM*nDQ4;QWn}GLzI9Wi}g7emVd4z>SM94D9 zrTb`Wvp18Z_(hKqdWZFCNmV<@i^_wH&G;*6jW1MWl4G=T46V~2S~Y!qt?~IEeoXR1 znA)O1^DYPyXcQCdHw7kn_u2}bb zLO)A#6BVehpf^v*h`azwO)#qgih#LG5At$zmYlpQVp;o%`5ZdQ4q(2v zDC{KHK%A2Z-(F9WjYooh0W)#}M?_D7dokXp{PJ7-q{1S^L1ja*c&|;nZMN1@?#F2H z#)P0n+7BFzOBhTcLy<{~c3+y1) z6RH6XH_rJad9C)0)7Vrol!Fy1cE$tmCgt%eFSIBe&qVC9jI!_rgoA^R#o>WPGr z-7CgYwMMN|(qTwtJC8)^wN+(h@LvW7^7>FT+-8Vm$W39Vb$ignQ5l!81Co@bF5Ib>`owufpT8rxdn+)Yi1OoL4StiwCf-IMEq~ha$(b)c9 z^!R(>zds_n+7X{&oc~Uv8E+$Vd zkbzI^jC9)y0@qxCGeZgnFxZwxAkVolkwZl^YCf?BpTf>fXb2^h+m<2|*tXd&K~QqX z^N%Dre^gA6%!LnwrRzYu8M1MbACNrH`uGz}aw;Hq9V#<*Ckcv+RW+^Bf8F7@-Q)+F@KQw;OgSWuq&cPq)Dwk_1t&)@^~KFz>0P^vx4NGDS^RlpJeP7gUe7dj_9blz(h^ zG+x<3s@n&o^_o$EEmAU92d!4!=MQkoO!G~1qbOSKr}v@iv(#xbjm z!pt&1(u|c_SG9#L>C-jkBTM2rLfT0}GOJF@`;$!Pfal~x z*;#?@!NJjvk?4)kxRP#%q#vN#(YlFf=z?w4^ao8goqAqa&m$A29!7G8S?wn6#}VGz z^#F&tI2Tf@ZE48Qk=LvG9N09vLu=)G@?ZGg_fBlte|!7UfAlr{zkLI{7TI+VMYD%`|mJdlP_;S zFTVY6;q5n)q=mL-*0L*O*Dxjkxr=w+ z{bX#>q(nm}6i5(K!>ZhwF7zb*tTlCIKs%ci>GPl=q6kpO@MijhSV2EQ;K;+gY?pG5>7Q zjM+L`zoz*Rx0anc^-QyJTxR7u?a=-JpTfE-Tc;_|D>1aeosFOc0x>o+GA9WJH`&2a zDNC3KTj!Fh72VE?>Rqyk7IGlmeuotUT%;)LO!e{`>5o?Ax=7;s^dYW-Rg{_8<5mYIuo>Kz$zlA zmV%r>@kTAL@?oi6{f$y}_c2g}0s&}I9;p>+_a+8QEHGC(yi#DWUeT1{uA{sI#|0zH zo|s=m9&+_=BedM(;g4|xkWg;18z48s75PpKH%Yh-?};|sH;yy&o0WnTtvYIw7A83k zG%Nl6!-q=J5deIXduTzH#z1-)Jzx)7PO37yDzbwd>fhb5GXZk0@VaP+ zJHRrEyPIdCZ57^1d{Z9mbltdX65_KROv0ukR~TXCNid9}ue~XS8!2nl5&m-H6H#75 zPZ{ip7Ncbsv(|R4$#_-@xRxCx17hu`LvNs(aL9+1S#SP|Y0Pj~nPD~q9Jw>0ODTB| zscT4<9oTxPa+-c;Ho>agy%Jf96FAD;o5Z}Nvj9IVlhb{XQ5;e>09iK)asY}}l}(Zi z;F38X=-wm(pLKyK*!7{q_2~g)ynxeU2l?kdfB!vLFrUAFMa|4VYqWe#0PDvRyFUs4 zT|W8yx8DZB7$kI0Mg`yTcC0t@Je#i=gI4$0L(Z!Yi7gjO0ji!htJo**ny8+x)NXmS z!`|tX(<6O%NS8cXjK*#Mcqoi1726s?=|j->@E;`uwtaC!zfJBmDhqCy1+nD~CWEzw zSM-I}R$}#5qJEIjY;iwt-jwxJH83pgbu2mgc>*W5Qm%` z`&kGA*4~KZ`6{`geUcZI3{#Cnf>rxIv=xhF)h&@L1j~SI(FSh~_tTuSbV|+ga_R>>6zfblaDp?n#F%__XYmHqd2Ho*XFvH79w1xRtw_ z?~u`^qS&|`9^q7JiqWy(wI zvZ&a77^h3;ZIcQqsO)*ka(PKQup!Dm4(3pY)o3hGdph_i2hX|esG_9QU&BEb5>(~k zLsx7bfXRh^c<-QGNHbE3dl{*!ct<0kVqyVn<(x$*)*#Gd>wn|6A>VF{9E#qHtj?XB zVqH>){lQHG<6wnp3(A)i&uw&t=oU!u!+%Wb$LC(4fOtSf^l<20ZXwlv=B$w>fr`q# zN>`gJh|WOtB${|gK+=XK#I`NX=pB};l5&@>ox+7#!ljkZ@B>?oAyixjxnUKYl9skf z|F+p`NfKy-B2^l-N2PY)3$5G7)_Fed}h8 z%o8&BHK6n(nj=@m+YhAu$h~OIh-z2VL*;D~Wy?}56mZl2#ZEfOQW2I%&uE~G$1MmB zT%p@0&uM^lx@6(dc8xxGid)?v3+%}yLffPTXS9+^u~U2=JvsDTUxhyqC90m2q%g88+zs&it*p?;qd(<=daV|LpA-;oC3XK7ap7e)g01Pr~~j zKg@9q{QJ+6&k$d7nkfAn&VCo(t()=pZ@&)k{l12>&CTRJtohw$ZPI7U`|K&%DW$_q zqEx#SvTfTpz{Nck4_RLMdTxu3a#xoQYY$W+Myc>Vg4@d>M@sDhOmDp4c(KEXL^>)u)UTE&0fR z#kaOLl8{?`LjAl7O`^{zERrN&nvqS|Z-KW}4FF64AFB9BmagPSJrl%f21nJ&K2Vl+ zjPIcRh2*xF@;kxrZOJs?+6oPML+lYqnnVhi4zrdPg3OopL{UB*#EWsseYv(iK)+Tu zLs>Ri93So~R8h0ff<48WBMN9iMpkHzM*l7eBgAL+V|`@5y=uu1z^$}>phmh%vCcdR zhng8Y93C)5g`VoVD~N}EpsL1B=YZQ*Cyz(Non77*;k z)al7pe}yh>J39aEs++hS2Kt=J0+O_?<_xN%#PkJCzWlx=;SGR-=My#2!;R<&`%9?o z)z+_4gckKKZ(4Ecv_Tmlq;_%jRagy;^DrL$E6JNKaAWpy(%_UC1@(l1tfsLZ=YxI; zrnFCcYTV_f^iW5-*g&+^T_UTk1a@FsiPgmvXWWLB@IFU(9Vj{ zcjRrWCZm1^7-miIEp!%%uUV1Kx_GPF*#ch!o%M9UY@soC(oGplsCd=Aw`SUz(rl@F zjKMXgOJ$tUa1__hT18;}D|LB>6)qK0f=i-;X$Vm56V01G-XL?*YO5GcDElUibfU%I zSks$Oj;ww81NraFLHg$XWA<-sECXGVw|_oykfG2t7W?M7NU0PzbX+RSLm;rZCW#K# zX=%gl#0*|2uBej8u+f#$7jjmuTZ48;`Qs}C!ZVcl=K*g?JPc9}+Oa~UPaU#{TBhnD z~oYdLX?JB<05g2=vBMiU@hAie6?*@)7MXrdhCW8^z+Gw>8aXqNW@%1TDuKlw~Zu7UQ^4R_4F;Gg=1XrR%!z1+MhfbTHHldi!sYiVW+kRFur`XP>nXC9gmV5TG-ZH z?aI*6w1k18_BH`A$dgmy1o|lEeggBFcr^o4sBGtlWsA3a6NeF`W;;!?7VMj%(#F@# z0z1~?9inC6o}dOIg}I}M&LwsjDlAjB|JBD5Jmw5}^0H#aInJ`c7&JkmmcK)hcCcC` zohuNxjk#8*2U>A<+^ga@%~jOGaztMaP?3_Cz6P>^)0)uUKvm{o9P%rJ36*SzlU=z*UC~Xi54R-!C)YIfs-cOw8TJG$bT$*`p4qIs;u_T)SMxQ^AW*h#! zUcEQ6Nxejf>w3Z;#|3^=>@r66qZ{~UF}ad#;gy!Eh!t{E?vmNsPYw;yKBlKfg;!K%xj72vcNJA!Zkl8@-uYFE;|9Won!KFwA5$yE6{t0A*{ zftG6Jnr$&GXQ{%akd5EQByeD>)4)wx;k2?Dw`Z8TY~-UMC}7Z%{aIAOWMi8{yZ$R$ z8V4_@LGg~hTU#>$!q3@=L<$NNdng3FJ(1$#aBQR*)+2aIaRWv%jCmeoSGf=f#tqgh zF!_+fheeSK2CC?_+#=&dL3*@gA zVVfO`+;l}gMeq$SK6TmMrfN9rGWj|@wk0O++A!jFdS#cAPSTN=;27v1+$B-QnTnBR>9xB zM*Vt?+9}^UOYkI*t4(OV10%YpiQ4GiCiEWbk_k#_V(ItjAQ)2g{?IHG}cblbJng~fEfUR8BMu4}tT1t?T^ z&6702libE07-y-Y`o8#ulH1z)57|vxlD_K(m%&-X{wssaRojcm&MXO#ViXt*_#&l9 zp)|09yf&6B7H&c9g=Y{0Q8g2KkjGZrqvYsA$w7k{`7h~yG*ZBq13_bf{Xk~a z!tEU%;?PKkK4*@-fL6(8xVmQQc(sNc^o#JIY@3e)e80w8U=eWA;;+6R{?dS)U%Y?y z_Qkhf{ONDse}o_0aD{oP#ph)iU^1)x{j%13nFS5H{Ia5c*IoBkU(t z`G(Io+C}EQ*6rvGNR3Exss#KJ=%xuT6pkDwHC<7u#jf12NsQjGvsKI z9i7dLOj*%yI2=O8tS z4r|?i1-E6oqC=qwF3sI72U)Q?4`82mBOIeXqb=TboMw!*?KtXiz5vVUkP(R`u?!7> zqbr!|NR@NjVRLQ8In^pP_f$YBP?Y0B6w-tjHZJm`)=kJrkyC01t<*2 zDMK-YW1J~XlT$OMa36{+5N6m7xJ?Y`9l%E3G(iTnSPWD95lO>CJt`^9rWav)+QAS@ z^?6;xZIgY}QVqFn<1-w_uJFP=VFuLT)$Lb?TFs>w%8dCV$^*8C>P+mB7~&)-@?+Zh z;p`Y7Lk|zR04S-u!^sU!uQ`Y;M9wR^Ks{F#zFO7p+;O8dF{)@g$W^yrcbB@0?sWIe zxa^`g$L=wtHQTAQ!!7%~&JK!{|s|BYe!{9IE^99L$2P^QAy69@vf0v)l#cjBGtaLBfoXJ!t88N;ASh) z8k(B~D2(n8gRl+L5*5V&v&$lO7Q(O_!qAvi=pWh$P{mlnFy$iyM>Y_=2>Er5yLPr# z>V%gaQy8(;vmPlIjmXieugKz%TKsZR8`Stf`EQS+*9WXzGysNz9##(M6o5Qii=xEv z)BSoNPdX|v6XF#VNpHq^N$WAkloGG<994DRKHAu8Ri{gp63M49Ow*RCJE%b!c6IJS zL{kn|!H^TpX*wqvgoFTCKl&XAch(L&)k$PBR_cqZCN23TV{GuDL93dmy%}Fa4vKF- zd;3&D44=Gz_NTwi^ow6JllcAHuMe*kKfyC!zkhN(<0t3i{5t@Y_)*AT)PMc$@n4p0ppL=g5_K6SOS_hNj1r2%uHQZvmoIKfbkRX;Y%lB|f zFsT5hyeN=n`_@&=Q-<>J?1EPQ*zHogS|$JqkJn;>?-znyesDthv$;~ofcYZRfeFco zj}3ZNwdS|>KxFn7?E8}>^KuZ-FtEr5?ZJUROVXC8y=d%KP@RByDGDHo%c^4K6@$cX zN$}cbl%qQ^|5xgzON~2kxQMuF&U2qPZS8o6a)O?iwdd!!LkDu%3E$N|`w96BL$kw@ zrOnU-1ERpGeIesk@hE_k&P*<$pNs`?=lfJ~*LIb!HJStVAbQ>-mm{d_;c53QVEhP| z`J`^$X9U_Aagi?)2w&}yS#9?$6v$~-I)zTA3vLYR-dHo88%7Cr;MJ-KT%=g%AQ=Tl z>^8;%%XSHm%1$J{Zd9;T@nuT2LsYWgSB%dU0g?5T$;9b_h=H@;>dr8aQ{~!^<4F?2 z;1A2u@#%ppM(ZeEkC_a_RBh4pQ1^Bx>At!`m5p$`Ve}N1f7~j!|O==@-BOd4qR4!X1h`CbgDT%&s^KX1}b}J~81yodi2q z8p}&yjXENA5QFwG`UuRzIM{l>wGha+<4YI%)ipm_@Bub9K%Pn=w9&?}WC1S%PF6ZjZ4%2%FSh>Q^o{qAcS`Qci6iUCwKY{)Y zAthHxP$@#+WrqNHs7V|F8fRl3gFZ_f9vxMYFK7kwN%j9xoA>;Ht9D)5mjK`pgk3S! zFyj|^lGhD#Az3Sz;)04j8;U2{@$fb{E>Yzih{$W**o-(DTHEmfF=hK9B|~V`vU1@F zV@5DBBh>R#icgf}`f)LY;krEb*=CMu56UW?2AFPU9I|>KKsog^^>GJhwbq+Cyee&sA5$iIf6R?+z8NZPJa(K#=y9OqeA(3P#1 z+|2bwjX{g$gm5v8u1a=vUm~cxaKc4=GA8XajH5}x;*u#JzgcpaVfbrzsUbF{3ZU=e*N|%c+NtvB!f~hVe}$Pl=-J(b@*fPCYiRDh3H_+%2in&J!tnuAC?a{lv>{nh8B z+W`4_Rdif>Z2{QBvaTNO;Y`y3Yw9G*bytrE^RJsX?ZLb()LNE+B|&d-ArWo+py1^s zMv9x!u!-tnyKIE1wrJJd-55x@aN8wotVtp7j(MuA$FxrAo5)t|>7>~x{E6&5>hp@j zb##XUQY(o+g*rw~$OPB+a-d2wV|k_PP2_&KOr7c!7V1v{!EW|(AQOjw%T!>P4vz#l zby>v*pzs~cnnvypNYhg`MMu8&XS4#52y6ML?3R!-x=`GF$&S7RfdqGCkc4fANlR^` zG-%8^#}^fEnO-A-MR|^dHeoRXcu(ohIhZCP`v2#_`>X5nxQ~5@);qHhSpy(R_969D8HwQ1bYEG z3+dR4C1T1{wvA+H775$)=HQR8t+mal2k2kRO5x3|t=xdKY^T6}xPdYl+va*iJi+mM`B& zpky(HI?qGyG1HCj*x%^k*UKk_3t^y9EGCMWEbtW~qPZO<&#I^=k%@+zJM}G-0!^$h zRJDg>OpA8wvOpVlR!4JlglKdrF3~9&_K=ko|p+pMG z%14ZQ*&Dn7$#+%`HsJW_kv8bAYWu|pFqNQy+g`!8T@KKEf>EDZ*}MH7v{8=k>IF{m zC-*$~qbp`t&(n)+5%Yx1s(R*^k@^y~&*@|n@pcb(H64FsF& z%sWKkcm7?>g9s9VK0Q(edj?%0nCn4E1k;+UcXy8J0@GHud}CJ6j%9JQN4~)j=XZe= zlh59Ng>2z7iRhoACGzv|{)gfTHFLKh8(wXg1Cu3-j`FeRu*zTv35%d8Fn2x4K4uKNauZ%9 zfFJ;_q-G4`vzMKzbyfltUlah*WE1-%GBUcVjan#g))N6A%;1?7Dx!ylJ_s||;o^h$ z#XbL)<1UbTVbyqOqe$wdt3#GIhvZR=H*$QEcW>wrxKdj*%c>Neju4P-NDM8;2}%tX zicG>|y@ac&M2zd&gBh_OsjfgQ-wS$`F_|%>zSQ|>qwpiaxVrh^b3II;b|bxzemGf)-}%{C~}0Z zk}tQ{jy3?r$EZRQP^55$&a=rs*ydHeegMXBc?nqnsyjZ?BL!-8Cl)~p=|O1-7%@p+ z(5{bwTv#!0mIp~-uBZW_X`;0n+kV=#sLE$eApIcrs;vYq5{lC_sPJEGJvMOflOkR1 zLyp*RKe$xalb(OZCu(Meiv7{je5I~~`>;$KVMJF{)I=$E@cpUO4}4^O9$kRrqTC)k zbcbLdTOrrLS=1%w+0?qoU1Y%m`x11?vCl&b9(#4`p|qAzU&0*u*zXA;K}#I*w zL8xk2HexO-jR#ccluNuQ*QUC&yoLIOm7^*aff-3fl!1Z_Tp2=z#qN=8fi9IO5PSN& z1GcTW0HFL75a72-7S&duP{Rj8okt0vhhW6=h*n{!cS$=-;cr$OaaJq^Kg1_DjRM{zdq~NgdlwO#hW|fuBh<`qSSbD*fT@ zQv($+HvK-l|K30Z)Yr6X_n+Q=6W+hX*H0lIfiL-)w;zXZ|4)fvx@F}E_6(*7y+eIf zYEZX>@K(MBvZO*c*-d0PqK;v#A27dC;?i~Y6FEM_ZXbxgAb67!iIdqYuk9Z6^2@fc zwU|EBHUy(#M-{k{&pON1eg;bBWg#bPR4OzRCZ9S50R5pHUm5@K00utmJz0YtegyWn zkXPOzt9cFA>k;Bq#ZEi?Xq2Fnuh|-=u?YlZhLllqMMntC9AeAzmpBeOnzI+t^<)fH zqKun}NF1~^xu93rBClZtl&qr3ZU4LB!j?u=i8*dandeA#&LkVX>-;Xsok-9$Y8QM3 zm(k@KweXQQb`T37KtI=ovXSubm44YXHVU~vXgo3m&i~T_eaH4>Ups5U5Y|JOQym4b z8wUsDR0o*tS0Q}O78FQ5>8)g@;Oi(aO2pr-}m;%l$ z10fnk(mYrLUP#Uor_h*CkpSz{jKKT%M|`$+_E1U8dm#DQOKNTCV<)=K5Faqy=14#m z_6uaX@gZ2OmJfsV<1n~;7YNz$cEn(SGkB&WeE{}kt-%0(b^Y&jPP>wTfJ`&1{^& z#wK~753FSiO-dJ4m;tUc;Y=Oy7)r3;!XeSbNGX|nOZ(qxJGQ`^|yEz2Y$hxQWC!!v+;G!)xv z2(Jc@;98P8mOqxfn5bLx+EV;oDxRkxX^W5u_%H8q9iv6&Qe!J_qYaB??MnA zWe0dxV=fVEudJXXjbQ1KUrSA8WmvqOXLXrOP8oq%Ctw#AFt-wx)3WGz9#l-o0y2mc z)poM_UK4B-w;ZACI4{IaVI4`_K%icmJag_IjL9gjJthHgS+bF$p2;2H|4l-esB@g< zRDD3B8WzDs;HA`qLU3&Vuo&Ne$>D-il%fw@H0RU4Mn zStad3R#nk3eZMvyKar`$wd_AMxR4renh^*fnm5VIroTlZPeHPqUSp>ug}0L#Sdve% zOa0T%hE?wk3u9AwaA%dBBw5wH3p@>HB5e#AF>n$}Bj2g9#YpVtTqh#*onZ z-eKwm!=;k~<^WI{E9PKw_r0njWdI#?a0<0NA=phy`6Xh1zl~%NBy_(x3hmQ@O@cK1 zE5kC9WOK|zZ;iIq2PGOK0;Gb)U6N@77|uLEc{5@DjK3 zBOCN#uxhy&Z!?-`-MvlZ+N0w@Gf}wSTAl@iiZ~Z7_HYK#p5k?_(sZG&miH3bqv4th z2z}4;^-jKI6IP4xTCxL^?|fdVUmu`#=FRX5w_NU*Fwq#UXsG7X2CcySwyuDQE#wQq zp=!>5Kq8d!@hW{e1(A>Ikh1B;y=))1dncsY=Bmsna6>jg2Q zjupR$AzKwu6Du^Hqf{fuy2k|MZ%MX?07>uiZctpd6rn^56liG|U`FLW-f1cY9G(19 zC&`vXmtJVtm1|LzLfyS;K4#9<5Aw zyg`dfTg2K0X+Kk|Ef9Ci55<*V}TJ_ot~ zmkQB)`#1a>-hYL7{-a>Tp+k zd`}foxZ3i2#`dy>X95Dzf1gx!R)pt)h2;TIU)0`hwHmnQflofUjQ09aL5vTbgwTqn zin`QavMk#>b7DycrURwCs<8^;@T-c;_yl*=Y)MOURSz5|21BjV10}=Z8wwzT#OsqV z5qyZPZ~deKbL1>ryVxJ(7fHP(Ob`i0ug&*X^mfDNz? zeD`jN_OfnedA?1-7l@ww^HK&Wzq)+v-Ijj6oxLawDi3`#9As4F<7y^gJPB8zok9F$QKrJ5w#I-u%Z-T5zT!GTR zr;{_e)wMqN_NTXSBei`F!` zwCyO#=A$sUOPMV79+9gVt5J%7n+;cC;*>bIP6NaUA{U(+pm)0}I^Ov)XbMBWbXn4t zd0-5w;Or^aHWfA$1n2j1C)$C4+p%T zb18sITlZ$_F@x+Oe<`;=2EP~LghN?plrM4%*OL2?PIm!Jtz*|}> z7;7nX>8_XB45?CwdfGB2sM=8qPLiJv{odusf3V1KAJz(L+f4KYfIH-wEme!c%kG@T zx_vOO)9#^}T_gzl7;G=8b307eU@bb|LxvQ|u`C1RQsXmB?!&2=2iF`JQDPe(0S$iO zBcf?X=0{s3?SuP+4uPZPRy&lELD~bAtW)>1SRg#($c=JTQRyq~-OB!{Wx>R(YLpZo zYT+(-55A$?=tOLnS<(9;8--_0JGxU+FmyiVL>uF-L-B=OH_RvGdU#b>s<=ZZUt9E+ z7YRYH{Dsg(B^nNDA8ar~*HKwCN%F8QxP3hKpGOPwgWNzB8_7^3dFa2gCt*G=mm6QE zlT}7o=@=^S`Xo`Ko_9Q!s3D=hgEy!WQLR;?k{eSa3%%k4HnWe4R?LSbSZQq6m?y=r z*aP{u@>K zNUh2EEanvct7He`i~=B2*Smq?{fGw2HsjvG2)D9L2nOxO$A*;{lOUvLPG&$ZJ<<0G z`bPtX&QwWokqGtl;vt6Jlkyx`;Z4xrFQ&1E=#I__dKNE}PEHbxKfCaZbn^n$;8t6z zFku1ZLvT{8J5tK;G!O!S!Vfdy0-&}SQWf-teE2#%s~Do@Cr4gUE5d>%TXH$q_>mld zzUsE-UPAY62S&h?Cx`A(+Rs+jk{x8%8xHg}CAZ@n8dp2S5U_2G0G1(PQH=vf=67)h z@Xo_JdQNv`L|AJ?-cSl3b>owGeU&VbJH`4USz^}u9uQsHvtOtDf~_xZ?JKM38>+~T z0Oxj<&7|c*1yxXLS|~?BtHGs{v(T7f_hswPjX+S4M~w3~EIkecW}u)flr^J7phd$8 zbA)+4=#PriY<*IE-GWqe_9w3}rpia^|47N}tEzPyhWD!IL`kF!Fmsi74ei3JxXQBF zhP&i%Pfks*#4{Bj+f*uA2u07a+YVe92DiP*Zd`O;<9dbK;o^zn;|u+D5M;r9Z8M4& zHT{~$Ly`j|-CAx(E!wOFmsHQV0JM?&O{RM>4^hQSxz+Bi$2)cUu)iXk4KfnDf03#& z!5Gv?Tq>!~A?Wbix&z&(##;|J6~(vROz2Rqa8JjlI(jPww~Hm()s9#txvlXYG4`jn zvt%LjxH{y2#k9)&4**QL?eb$an`mf9k7=kI?EFthsf?T_L8i{jh=>+Q$i{=?fZ!?*uv-}&}UP-Ua9ir1F1 zV9yz&26ydxCiqcehM7;xN}|J(d^Vev4*;hu9;16nKH9PKULvSgCs^?VeJqD-J`&n8 zb*pWXjPbVM-`$Z(OAuBi5>qf#7uGbuEnamq)v#xw$Y(>uUvhy#00r9uj-3OXr>y;<^zpfv zo89V+Iqr~NnH+Jj0hWqyr&8wL^N^V=f1>T1kQ-%8+8AWf%FP5#i1sfvDW^~E=Yx#7LAX4e@ z64>~5*p3S;mD(yFihn0G2c}tSO=~Nlvzy?1^^hc|l&DyCtz+5ed4%m2WLiz8QLesC zbD+po+HgoqDL@%vIbK{_$fdAVb1j4Ky#O^%3Dm=3Kj`}x74u$O$S#JvCM8Zn1IK#h zGznf;m-up4D2B;0)00c+O*a-}9^Ts$!S9XZn^Jltof9X}?~7VzEoOp+z0h8Cz2P#P z+&<(15Eq#z*Q#R(yT6pC!*r#ds!%Wa0wGZX!;cPIxr26r2^aDo<}Lv8&RcaS}8 z?l!f z)syKP(bSiH>Il1*kc{;6>9M+@Kkm(WCF0d=wQjOA#eq#K6bELpr40^@ z4o{~N67!K9U>am;5HM$wx^*4pm>?Y}$v<--kUby)IimfZUl`^%Nh+oG1m%=fv3d_> zRTOOGq-Pwk>s2Q)z)6zx0v)H*IB5dX3gcbFi43N|Ca>kuB3jCAN>paNtFP&4%U1|V z(rzggeunlAIVyC1RvbaeCbLOn`!tcuJk3flZ5 zdk=i&@1b_(95_vbx%sp*13fDR)Vw@9QOtdi%K#S zsQH27Ky!^d_6Z{ABri{p_?_+T$mPA}4F-W+V45SFRH&on4*Z3_YR#wjK)bqvYbr z8i8PjL>=$VY#q$LIFGO)+6N*U%vwmdKs{|Okq6MYax+|tv^q3U5A|PbX24_(BCUN~ ziquP)k5p{t?gGv~YaA%lc@M-^e!CpWNSe0biUyrreBbmS6D_~_$z%h_4;Bp7xb)+c zUD=$eg>oO`JkDXV0Wy}oQaV=V4LW!G05({qNiH+k4)U$_khKaeQP{NeU`c}9Mwgl7 zb)*SsB1%qTU5HX;;;N4A8Nj08nx65q`5|}=;(Z;k9eFw^g(=dt6B&ndIME;BSVvY; ze-@)JRfavsaF}D!{adzfNoMioKorMCZuLvJqybjG`Jp*0D=>kRf)1&|6fjsBh6MFZ z=o-_`R+gfI0XVLTxA4>~LqaGhB&B}5He@uQ%G*C5XD6V_mlQSlJY-b^P(pqd{`9}7 zGgh|e{sfSekKcd)uHW-VQbzzm`4kY8_upr2r%&=@pJZ6dSNdJM4g&z@`aqjvr=^Fa z8}c!v9X%BYsnD`>fpQTBXFi~Nw1?pKsb)1$_MIi*+{wh-yGsr(-*N*k?{- z#mr*CAot#I+efyS-E8SZrIt2_h&OIn3Rr?FOMFQy6^ul~J{=;~SY16N>Mvxbm6yfT^)ev|DyY<3JY!6%^ z?3!&J1Nndn*HAX+dcz*~*SIqIYcP7`f$@580H1fqt6 ztQ}XcfVdjCrd1vp``l<*aFU}6$0a?V21q!x;Z`V}a4P`3wUs4dueS_jR>JJjAio_=!b|k&o;NI2jIH<)cM$mRw&UP@h7ruvF`s zbBzt$=6r;D@2r5o-9yHV6_P?sX*es6q3lSsppe7}2v&D))t9wII+>vJAZyt?H$h=c zg=tO>7v!^kC$F&#-AQBm5gyB-&Hw@*dmaFb+Hhw*0X3#9_QfB90FP5rdXSSh_BiBS z+c%-_O<@XUb5GPqT%=^YSz3cljT2M(7&`e8+i8{g;z(4<-4RLc1cJ5l1+>;aHTH_p za}T3CT%h}wIs#ImM|)7!nA&@;WM*u9dqm#w<0@tPdGhI$VEl!~@ z^y9XdZJSz;R|SdWgE(ZXWb3Ot{Zn$3)REfHYrL5*0fNEfcu`+J6FgFqpAT8iIdEZYH0_418mxjn`U!%DE zOkGy>!tf~z%v7yGdPRH9 zI~QRsCErj|F`=bs(b;$fZ8aDgEU_$YJL8II6+c9;i_X)BI^CcUFJB>btF9U# zDCnCh9q^(3AWT>;Fq-X(Y6@5OHD>fVc~VuFCzAjx;kDfC`oJgx=qN{wE~gZ>#B>A_ z&Lyz7OhEu0FG0*PAV(7(M0GApmQ5sG{sBc zGz&Bt+_r#EuLVR-CuS|VSMdJFv%mIlpk4IsXYc>=_N(yikKTX!_9f%=?-7+xd>I7g zU)Upm#fLtA`}o`c?fr-0Z=h`W8wF(mogx1>Ud#XS_OJ5)-v{|8Gi%^1b)%!DSpnN7 z__AY5Xh!yg(HjSSb#^xIGu$f+#?XS69rhV_U@Ud6)H1v(NrY6BKt}!AQpXsow5ije zx<(ePI=UOdc(JlxZbGPwBO;THy2-EG7*v6a1oUQcd1h5|2)-jJl7cZ907{}KkhTB} zfl_EWoFK80OG0n83nZN*bxaqCyEOI$@)e1kMgfs+pjTstXt0PmU6E;{8b^EVFkqwN zf*edEt&$;3joTVU`o-?SX~G0iWln~-C={~Ba5 z9 zq+C5mV$xL=kOHyVm|H5H(}%TvYVX(}B$7bXkR>qGTLu>F9k>XT(c8x?a#pB~8+t{# z6Cc%|FMpH4-Q*KA^4fjGObueK1}A8xVyDeT2+qEe4V7=(lMRqw6ZJ12u(g@l0|FPD{`zri++c! zj{PJv2Crpnv140>_d*|Dr3ikSbTM39M$f+0H9j`v|0u6Xu5Lox9jaO^aX4e&pO9L%GEVOnV)1^f-SOniJR7ir^2{(a5UG3qD|w4UK9KTVE=Lz@sW;yX|-gZl{1UV9l;ksz+BzF{6DX?+{if zw+A2&fCm0(BOw+tGDq+QbeAKA8RpQy$u)LU;GuBnP)LP+#uw=j1nyQV=MJIrd2@*# zGXAm2!aRDnKsKpnqiY3xC$H)xIRk$1j0W4s1i?(j<5PEre7uEM*P@tkw^*eKTuty} zcO1!H0M3!^lOo zw{Q=^H!HL7)6vxoS77y+_)2;p|62e8m@F$mq2=PjZScaqQ%(0}%>u-mq~b&>*{-y$}C-eo0e{btz&KE&;6p?g-kpX3}sq*{v|Cvs_C zk%{1n=HlFL?~f!~$O*wbLJ+NWfrMu~B6aY;Jlx$tB7=tkXmD*#HKgq_Ui;4$!IX zx-4Enn=WI0+A%CUWubGD0E0hRz8-=W!$HRwA^#nYkkX?kQUf+;iib)bOk`8^BOFRm z^c(!WZ$j0P+EM$o9=r~@J0ZmXi9Jvm0H$+*Q3q8COT@YnBD8K%3F!z*KS>6ckD|86 zsCWT^AV9m!NjeLe6GMrsBsHXDnz_w!zlXcj_~04f61!?+ z0Jz?cpv#znM+@P>*(*P!F$jZ)3R+HOAZmkrXDwP)-qfcgXFObCR6)uyzY?tnoeD{g z1JwyP<7;vaLIjfvU|c)OmS53VTD|<98ZEd@6-zUd!_fSKsUYdNxU&}|h2&FTltq`n zTxMFu!GbdHGN!3=(OcKD$ZSiS4~Nz*#ero8RJ&7`1k;qJ$F!24@-6dv035QFB)0z= z*(h&JME3CsuY>1N*H;~|Ar<@*W+MVsH@OTYW<>e4(LRWpQ`NHr5EGCg^kAU!7yFWK@ID8&8HnKu%Td)SDL|yplG2-Y>5GCuR^Im z;3e5lB()IR$k&wLR>~LXWAJL13Wl+0zrZ0440^YsKv!*?K)8_mJIW`~7qQH9b2O#Y$BdK1|~^4ouU`$c&B4ZeN}rHNPQ z;pQm*8peCJm;}(#ByRTJ$hyy4C@+lBfce`k`OL!3?%xE6Iojs9)a`X(yq0BmVZOg9 z%1qJI14H6Nb^J+AlCaUX*7KgA3N;=|{#OFzvf9H5MX_ox`8w~QJl0FGRvDED%Co6U z#FmzbS7Dj?4b2Jvy1Y0x-a8e`^t5$+PpTu_kC;)zPHDQndUtV5#QsJh4ME6cu zMyJR^&L1iSk~ejvFT7yMs{zl^KS=O-fWTIw)h4WEIDrF#YLu)fpCF-j>()i3aotEV zN)(>xEgkxUnW46f#oU(2NFEq*QR)HwBI-cM_e|Z$9zyFLao%^g!1Pgw*J2uRZN^ip zU3R|a8QJNcx`U`O)d#?Hg34=f1djS@mLu*j6JVHKTy~tGlIe>0Cd$yT4dea!8q{q@ z)HxV{7?R2WyuyYF)Z9VslArR@(RP>Be=1xt&NnFs#L0gKLBguc9*Y-ipLWzxOsp`h zU&3RQv}vQ&5)gqFa?^_Wqw6kUsG_bd7JucM0~s`5x5EKI_IcOz*Etn;#vYhZH+zzN zV&QjHd5%cv-v&2_LMNpi+^5^5KpIzbM2xkZ0BA-7_RS!Bx$M_n34)Y#M9XN)TK-gI zj-jo|RFEr>I2F1<^(r61B|xe@Ik;TFII%`W4Lv2*Z3tJJEuc4nc0q8Bup3)zQr-=xyltM>$A=15KXnjZ5PL{IvAuK%@?dJF_0T5= zC|IJui(i32a@W?wBtII$Kzmedm#&v5>0NL(Jh6*Cl&c4clEq>9m)m z;uSUeTDrU%RMkl)06ZA-0jTm3J?k;+GC&8f(HoSBz^s-R2)1nHKm!31txBPE%cJ4Y z?ND{BBxM(58X3Ryj2p{79gm^XOWF(Im<-2v(r)AxLa0EqHdAO(z@ZdSKEI#gxkWVM zhyWd^-d~QZTa=XJp!}!Osdy$XojUiJgp;}REU%l~DHh{Oc!M!3v%a48xp{(EJ<9~!~mk$#D;q5D&{YwGkFdMsLevrbRiXE#?!jRp>FY0%thfi6g z+H9cHQQP%-7Ej_7#G;GGL-uu(!Bh>khbJ9*)F7#LgTR>|3RP8Lu%z0lK=@RZloul< zVb*QALsxGdgR?pt%zqXMo5)k*swjGL8`2>;yvC10yF2+(y#p3-qwIlnh`oV39biHz z*#-phVM-nF6XY!@jCZ!e8X{8bS|B4oj1=UCm%x9ae1f6bnNVyH-apucHg33bbl(C< zl)7Tx>an|EB9R7;1{6zx4Z5-%;Q>ND$&ZR3T-*eF8mHXmef4s^Jq>iGi_k9LIkDa zqB=D2e(`!mZ~CBJV*dn%&l|`+z}f?58+`zZufQN@o2+-l_bN-kpklIXR|*xguH=2h zw7a3IbD#_qfPMGk)JVZ4!9}C!zCa&`BuU3LPo}Pz#$L25nH<n26>{+1kmHAyrpaS)$Uay z`MW6*Z*q=1t*MoGT2NZY(}#s75ez=}%T2kz0P}l|F|ME42DZb?=d3 zT|2HFpavJ-*rhVtEY=Ucb(C${wc1FW8iE89D$+&0B^+v6!r%4D{y_PNP-~nd^T))X z1kuUr3q?`Fk7AkBt&WV=h#h>M#GF7=fMnMq)|<{?4)^Is zOEdd5Rn@gU21#^XEWv{6itqm*eE%>0og6{Zf;>YwMgRAYNpJj^@%=a9{kO$_7{t81 zoD5B&ti;4i*3+g76l;k-QZR&Wm*No#n^a*XSy3kBDPk^3mHH-HVVhtyNh$aC=7Bxdj z;Q*^n%Z`=jnvYOn8W)A~9SH-ZFLx*@WOK%7uYtxwjj+ zmF(}g3bL@4eo~rAm7rt|-%;lsAo9_Ky5v4M!H^c0SI=M(P5n#xM7Ay0xoYj4kESpe znLT=m#@1G9%IJwnSYDHhat*gYp#*Ra7b-&rYm4>S80si_p~a3h zkQfFKx2L5jQlXhS)RwLox+-2m@>TAPx0o5foDHa^N>FtcavRe@bCeI5l)?>nNt&J4 zI73zj?aiaQ)b+Y`2M};RfPiw5S^)Lx@Z6ba48i(6ux6HA-A*vu)`$S)m#a`+;BV6w zkfWn+1f-o_c;^Dz02HF75m@WEyUc|mQxc$i%bEc71*5R69;74zLO6Pp)X=la_L_84 zPJN)rQYhy(T{u99pwnspKxzsr>9ui3B?1^sklX>7631*h?wPOvI08T>#~lTje`Hv8 zGAPFkPE#?}uAoq<%Vej>I~W?v2Md3?sKWbLWB{&0m)7T~u>>wJo<$ zFO~ZQlpX-t43~h0U1f`kDnr?Fd>@`Ok0eIHIRUnN4(nH6WLieuTGau~C#}-mo)WVc z#i`jZtizbRdWWAnW3#!neGr)cEI=R6{ye<@2;xeL>HGZsEBZ=&_WntD`z-?XH^BSr zm;7&j{vY3e1dv})BjbN~`&F^4Bu%a$WusY^Fm85+0XT4qbcEa`vy^<=6o+2Aa|nKc z3$GLst2M1K1IrN~d~1AG&ynT5ly7&RXgyR4YbaF00=8cH$1wTd!S!CKsx%^TzzA?M zO!qn?;6px)Lp)Ve+9V0UL=I+?oa&=?KV%D_x|TBqmy1-7b(bZG62N;Z$1J;-Ja8*k zdT%N;*JsOVS<#ns5WpHA8Uv{}fP{3FCA-i_0;U;q6LQ|XbfAhu8PZaQdl>K!auxNI z>R@OoG0%D+@{r1}%{lb|U|D&Ck{#k}nJ5vv=rng$bfHdBn3JeMIws(Bn2Kd=R93_7 z9q~SAyVA?y5IXPpxVn?pHDskJPXPiUg{mO+9dqYkA_iL3@;><0GxFq~V^_II*bqC< zJ|tA_OiZA0qhI2|W`>Vrcx{ZF018AFhm4LZXn+`G9s-)W?J+R8#ENvNE}Sudw(LiU zVOc1gWK+7xzx^c)rR5Ma;9-+VpQwzagjG&G)IpNm$1Y0vUbAiTLOTsez06D>n5vH9 zvK515Lz3PtV5sHPVU$XZFv|AZzkmB-7-?H50eU@#&I3en$X zA66Lf(#4uc{BcZ{HR=Q11z!$venBS%kGYp?M)p{&Tri!q_*#Mc6JCo@l;7*iR zNbqa8#Ee_X=>i5c%u-;+M0;U4;t|XV_TlXK1Q-WP=7YSW8;L|j*Si5~5MU_8zaAM<~R?B(QXs)496iy*Z4&0Q-HfmH;uUm2*E7N zXfGcg&Z(Wnlyb08OAx z;Uk-@wsaqkLgxw4J+J9AJe%U7a{Ku&z?8=*ge!o;#kMqEsNHXLTkL*^a@L^ck?}C! zO4v6s+j92yI=1MFrz2T`Octb|mr9b97bn}Tx(=9eJPG9mWkD@Hh(|=Dv!{^K1x!Wi z2f*OMxDe|#jq?@z?#OaZ{W0U9v*tuk3?*C5hb0C~@OUzT3NkW-nSw3jMV+Ml^>pCr zH(6mJw@FS`(eu$y2Af}XCY1`p^h@#=HB1~@0wW&C80}at2pyjwj=+6<0p*ZM#KYj7 z5@n^@#%!`W)G1YTACqJ`Qk3O^ppdtR1vv~TH^=DMz% z_pdlK0$4H(d9DDFe@GIeUR_mPk5jBi_pKfTaFk&N$;?0|kx7cCNRd?ZpiNOSaC!B= zve!O)?W*rHgbboM->s^9c^}^8sr?1@J#a&+`*>iuy3z5t9qXV2PBnxxQtohESIe`ee^Eu>$DUGB$hg61Tp?_N`h)z3 zeIydR%2wWlI@0z4mKf&n2!XUsV#?Y}ky7RCi&D}62@?^?4~hyjP_Sb^C6jV_%J{1lkdM3f zl5#4_V_is5o|#)46hKZ?Q@}pJ?&v&?;pyLaN?^|8%P|#!z^{%@pFk>;Ko96DRA7PH zA-dp#O^yVbjxJ<=nqng8bA>0;CObzQ&)uDdK{Kq>Il^v^Es2P5v?29 zyfh~iLKq`=<_pNPWRHBnaYMWI)=Zx#ho(;i%!JpEFW9hcy7>ZS zfzN>-3nou9cc@1U`%`1X+_Lb|vbFKZdhAAZOW;xj$`2o5Sd9o#g5OHw6yyjaEuOTF z)nn)iD8}4sHCl*uwH|^B0F%LjQ`ZQ19j^=k1EcaVTWVp{eDZv3Di2v*W$l6e)>uZlvt zDxmQkaZ7-D0SDx^P=6*=|D4W7w<(L7LTsR72%IlRc$ux3XS$Rb-b?b!hFn%|0Ri-C zlp9y+5_PohqWUnAl7V36YC2?~){D?$xNzPs6rK}?=$N}Lg91{e3qn znUyhr+sL2j!p-;*;7nrCw#@RI4n2`3W2Y+S45sEx*U+XnpMq?-X+U)=+ut=B(2%FX zu)zkLK3V6riT6PNg6m62H|ue)g1iI@OXow3)zjMmdKa`s9wjodL1*@skYLF`SEM$j z9}y(rrjdUD7cg^adjSXGmQ4Z-rt(TGpqAU0>rJIK8n&5cgw|3R+8Is8Fy@TSmKVCj z#+3W0w8UUxLq^BZxG&X2WS~AWp3I*kTzzuS_Z*MNIwd|FLg-?f2k5)x#-Mm{#!P|b zL~<%UNNG3^C>zvp@m*synBWG@5jcdBrGHKq9{j8Bg6R^H2NAt&t2W%XX71#$(*~iZ zTA1UgB1lYuv%;w{1=<0pIIZOOn|9t!r{>mo&SwB3O|Q9E*xLp7a!9gOJ}ib_RI0?o z=Lq}B=mB z2lv()obAtSgI9%x0|H$G1?JdfC52ddxE0=1W@F@mF!-;--`U5% zOw@=UgdhEF+Ot1H5U3?xz-;li$#e0yyz-B4zYBkvPX2o!P2#7opI}v@r^9o@%fTWG z4hr&nrd#W&PL-7(3oc6CpnVDlc^-p*6LfGUs-n%Qt!dlwP#6LR#;E(5`DaOGNJxr3 z59|y8h29-tA7M)08L6a)YUQqQI3nyq_6)m!73oUJ35z>{E`8NbQa&2MfZ~9?2lZ%3k>c`8u!$ki^rB&) z=^Us*a4<1G!an=phK`N8sgKS)UosuMXN*Wi4Z{BGVuT_Fnr1gG^6gt?QaZItMe6x^ zjcgR~@o2zVXNv<>Wbg+hq|Hn`Te7GqSlvf0=SairmJ%-v* zor&>P&vYYy2-blaMLxnx-bY+fWWytH=aoDWDLt+WTuZI6*-lYHpr&n12&F6cWJ zz9|iUc~E6Bp%=ip@{~4FI}UV!o#bVfeV?>cc+9i|$2wCpXAMca%A5nFpEfq0$|d2v7g0w$o`4!IRujkE{;+bgTi|n;DPXtFb{i zz3P(~5jg_>*4ca+PezHu-f3L+80N!K5-f`aD>Y))D{Z2?cu4+W78mMaUA8mntYGFP z;d44K1V%a(14BzgKb~}ws-bdyZl|>mfC2!`E1G_jpU`bp(e!T5(RmaI?*&!v3AAJq zh(?tj3Zh>95={G=p*T#3YG}fgm<~+T)|49E6f9Sw)0=9<$I3Ls9h|?7&e5TUzs0eA zH*~yxY9(?wSe{n_>_5h{ZT754WVUpweV&6^pOuT9nc4O#KF!$*5CjsK$QY3 z8$B(MOI=dRQfY%lHk*7yn`C919-T;5as}pk4-yK<$=)GiCOl1TkKEhAD_;7~a1?k;iW- z^7!rX-+e_v$XBKi`HI4jU%q|x`o;I3zkU4nEslfvMt%SJ>n8#7kDtAM8(x3*P8%e3 zOZKhz*1-c-LUCu;qraZ|9cUmJxIr>-dVG~;g87Qdj`Xvs-?0eL5zu41Hk!8)Rkg9G zA$5`!5SG&F{cbQMMU%%XoFrKpri2S)jyO$yRSr;V$)szzRp?S!UW^>|7|CdIP(EuW zX8Ht_Z14Ft%2A(Il4Dwep)8vl9Xj#I5pU6s8E)<*v%qJAed0xS9Zpm#41=1B#(cp7 zm%!k`H2`E9S$$^3_cWhEF~y_^O{o~`X5R=1vT}!Z{ak^~X}QD>j_Afy%G#vxP@oJklM?hlNZ}mYHMm3VR9U;1jLptfVVHi{JOfYnOeBnnkSz&g6AH6y5HKrvVzp+G zXKrF_3lf)IMSw*5V`Y(EElX4G1XOD7K?ZZsw$?hv`tQi6>O#D;R|B54VC!s1V-02o za%03FUOKe`F?@T}gHB`U(`K~~QxmaX4>YHOjZ8X3p0gdbVDe_GdhthCEQXPW4*3iz z_Y&MZ7eoiTUIAuTDZX>%Mp zsB%Up9vfNNFXutOW=@TDXMx}?qK$w(j3}}#7zkbSQ+HB_EVPua;dgHYl4?}9r}ZG5 zHq}jDJ{#7^8$7L)nih1dY9JY@RdCHZyT-hYM2%YISbape7QW;Z1q!MU9|5`XYKw<3 zn#cw#V|f86C>^bJe1&E-?Zi-<#EqnnaV=4^+Zl+){Y9q;%XF#Ac1&7|^-|9AUX<*$ zWTqZ4#zsU?q&+M!aeeVgiVtFx!>GZ4ejWsbv~mD?wTe#{4la6lZpwS5iQb{3KNE6S zNHHulEwnm~S~49v%kSY?3pu>Y-1TXjkwAE8KVQ_2e?0L-1!6II6K#B(TX-V4JQYv1 zi$*WX%RsngVYhCS=V3@Jdxj=cV+e*{gUJlyhDAy17Qa+8L#f8KiDOE#ED2@dc2VG| zCu1i&h{~D3^qEXkx&PABcRYMZkx^auOgGrf^KUa~E?^F=H9vT52{5ZZpWk_afSS&LVv*wL{HAZ50q#xp6;z)r$ywXV~x}0F167?j#GwN zdIh#g-Vjf%*--dLDT>%W-egV3Kk1i~TNeTH^tf2SaiRm|eE15jur`o#6g)%fQRb-0 zWGN*JJ(G0UWT_i+WtRg4?ZIV`tEnTdNNXZ_HG^+lB$*WRP;1LcsUD6<&y-!q4QW9) zd1}4xlG_(JnM@Ew+p=RJFQ$@2GPq7uIFx3m#uX2#`y2t_LYZiq@)yiV#v58zO4oM28+jBgkD z1+)cx-DoY5{uk_Hy4bi;LCj%}@6s!zd2?Nfc+!m(v4ty%cS$Jjhh z7|Wsr$^lrIW#&p5K^Dr~ony}V#+=9#;6wmDphQ6G6jh+1-rD3FAq!=XWCVG;4o0@r z|I<}onwqH~vd!mVdGKZHG$!RyfpxiOvi3dP?_tfL$gwTuw%xG?na1T7cTAX|yN}*V zgW%%P?W=9&&|BCemxdR%^8j)8)^CP<8QZqtXuIEA-P%5~FCA|%V47|3m+#L$f3pb| znl<#dCM5(M?#hGz8mqa{!N8Ppg-c=2cLcGn>T=g}H7 zuH*9r>1f@@O*UsKc9C)k>iLJ(r>w*MVSDkYVLFh8Li(02BJ*V^hHaj$jx-1Lm3iGS z!C7GFwPT;ic&5gBR=`!Ky-iC*fxWd;H_-;oI2n-YK%Ves%jEx@#mS^>&9ANwMw41p zJ9i87zij8Hav0HEut3msVh{3mK$r>veMNKtp-b=Knh}w`YW}==P*tlHSvsy{A6!$w z6_g#OQrZ98-m1C2^F$vT(6{3RLO@jTatj1bO;bC=5$ zSwBfy0&jP)%6?WxP&$UPW^~C>)=!XQSN)nzq%z38;2zPkS#}Gz{Bp}*ltg>4XbjQI z%b_sOzNXN=ui8+nNVEnaG`UEB@WBV+ua2$!TdCOL;_&w6**p3@YNmbsBRQMjy)PX7 z4FSQoZzs_3tGD0i)z?qnKJ}}wACuqd`j-Fw`ppkx>(bWy94Vj9~gw*}Kt08S`SR)FIWXKyKNh&<-R zMZhk`@)<>|f7J;pRg0-S=YhYhaiwold5utjqcRIYI+KYLXV%9(sn zStIc#YRuo79JYpR#z-HBu#i}vglNnu*B^&T61==L3NVxxTJm8usY8TSVsp-i@z?olHYf<2fW!nvqF%vHd{20&J+ zO6zpW4zex;(eS12uqN~Q@8JHWN4M=Je>Z)y;!;fw$_B!t4Y=Qq*HbGfkwE;<^_cJD zLfr%?QteD0p&=Z2XcT}nkw2R(HL$y0+tnxc0))b0(><%5XM0FxM&|D}nka#oU$B># zocvKVC}u-7(7Y%weuc&bBYiM?PC?*;lj!UXg^4QU-ak*Ll^{8zj^;-Yxh5h&9~-8t zjw+sr6_;D~NfIf{uW7x3$Eu81%rQ2Y8@DrAV{k+%;O9zraCFHx>SlV%Y%5u)YNWW% zf}LQuHYA}InOfDj4GKx@%MlqEqIT-jg+>ZiXx{`G^$+9+)!C8!VQJ$kD0X!LD9nAv zwuvB1D9}e{VW48;_`S?p6$4pMWC5w)eMh9$1rU=zO7K4+QJ+|*xZ-j=fT}$CNo)8w zxEk3)eazNl9?r(fyhboXWUGs`BGw8Z+|_K?zpO&ux!ZGtHQHWs->+c9saDw54$F}y z?lQyt;6vx&>>m5F#(d>&*C8)!WL~%?CEC-iUf%n=Sx|D#A{%p^U_&`KGBhm zIg4pP2r!qO=~!-_Sf1_(^wlFBR|^=X%NJC=yS0c^rHPtqma;HiYLRWld64D+E6i}9 zt|_MM0)hbH*h*uONVs`~JZDJyr~yf!y~uA^Ru-F1mCv|A;4|b9^e|C)QxR?M@h|H= z(At^K&H@kx;zf8XGR{Qq1H*icvJv_O<8(%UsD7l7Y9~!Z@=F;LN)cFJ8F7Z1Wt^Z# zDgVboCo)T!Q?6NeI&}h!IE2aqRSWVIc}pmq2?tIZ^(FT)eJt)_n@aC+#QeG~#gQ+7q@wZ? zF)=aVDNn6UWI)MNE9-QY8z>o3_vyIEPQ%U6mRuBg9x}PD+~TW8i4DpZr%IJqIfK9< z$B07#A7YM=YRg%tZidr$IWiV8Mw(-+8Jq$exp^`|YgL~!9DDqDOoFJX@8J9NNPjJU zUk_PSl?=^9!H=l~^^_U8+=$!)zk*YJoMS9_<-O95MUUpc^L?b0Va&KMzD*p^ARp`m z8eePZVCHEs#-axZaCUHv4}C$B{$f{!TV*!y2-?!DV77Te)TD4yG6dGta-TPB0c%DH z5Q_jCW&qYbhU+Kupt=vmC5h(xuoc87F|H@k$+buRuH&O?0l_A3wre&X)^I9wK}e3@ zd)13PjdOkigHZYS)LAN;KJ0@Ahl9JlR4;No!zW-RK$Ly5EYYE^2?Gz$ z>AK72QTtcP^Jyky)zhi9)e=1|T>CbHHb4{gX(L)Rw&fKFux0ll`G?xlt$iBWwIw@n zI*Nef37=u4UrEW*uxlfm;{hO`A9RmH%Mm{$M<5c;EjrLZQiMUd5{c*snYUf?YO?>N zt&_$Q^mWbenX?v$=V1%6Gnhm}NQaoIt49ooa%T)BRkm0(( zC1lhPaw)Ft`^x_C*5ICSVjrt*H;>A=UDRY= zQI3HC^fe7JXUF99sT<4OMVRRU*JaqhOffg zmvA=!G`xLw*>|f|cd4H*kJ(#x1`CwaLHPx#O!0f4u^Dr(;IoifdAKc5 zOql9)gKkXzYx|G38Qk2#hVa{@oIO4WKvXt2s;;Sz1Ik@Zw(2H(COnZlrkc;P0YiSY z(+^gzM6Dosn%xmLUXvY;4iX-GR_++@9M;d6EO|Ev_Kj$FuP43H8e14+by7_a2)JxG zky5*~1-L=>4&nx|0aQjjDsc&c3YibF1l{)E|F_p)!T)4E(hinKdtLQj^nsAd+Lo!p zvri5SjEF|LLTwIQhCtq4ox#0~^1@&{xqvbMAb?nDA(8CAJd}N@w6zWIApsktPmVyJic@h`6X9YVdggXzX(<=Yl>k&@#cvYdrhi8ID@02Z>MXQOYAbD53d zJb9ep6)QKKGFz_lFrC{KI$a61hoh=S=#i4rWnI6hZCV*+0bH3?qPI30I>UC+cDiu@ zM%hT}mXYp8CKXt58DU7R`Gqz?8mmWoNRCL9VGg&rH28SE3<>im8jhii71<*YG#YN0 z5uIf$eqQQQAkez%i5-(OIe=#Zb%Z;Jgwe?|DyMyD2Aj`Ype$Pi8~Kj}{~TsB&0&=) zB}-31`w$*i2z40q*~{x;OQrrb%V9Yv&pA7f3O}TXn6lpdW>5`}N~xB2aQB-Fv{_qm zo#c7-=FX0CfG44%)<+(1 za7(VXRJ98_`+{21Sv(z&aHwMQXBBV^BgMlmr0vXNUFz6WDyijpF8}O^Y?IqWKuqCO zQ^hj)Tf84MLyzJCrX!@0Qw19gYh4LgdYGyRf$11wp~3~JW!>D)AD)@X4mh3ajK_mi zFsxl8gvRR11=NITyy3*FtS&&Ag0J9d5{kBf3K(~SwOw9dwLIYEuE6$|Z(`G}G8kv0 zd{_}F@1uVAlhto2_&aln0=oHib8t)1-ox4jKB}ws%j^-xr+cia7b+gipo)D%NC{FV z+=8+c-u!e`KbpHmEE;Xdz{82L4?sY&=d{dF0T}T$MD8Fb2p^#-Ve_6LC^49N10szA zZ*8Q;=4!qm3D0xTb&Yc|FJ#2>ZI$7FcSdUihbBz4*Z`R^DWoe}4I>7_4j*cB(#^{u z{3l)+oCYqh1L>^pYVmjWzrX{%`hgCbU;~n9s=rh<4NORXf5eLa+fRM`{$T2#-@c(K z$sf*O$i+%MGNHjX@q4x66L-m=aNq$5c-|nv`-+8%S#e;!QY1@7Yk+EQ~WtdQVeN<_RQEW zSzuxihFJkbSloUCS{6N$TF}zmFW`O8Sx1nAtV`89dmXinML4Y0?NXLl@7C?ekMXyf znIXUO#7bM+X~IgY0t^EjNeqIl2Y0$t@@%usvT}k=8Ag*Xm<}i_y2FieRZrqY9_ES{ zq-Zo^J~9v2BeY>zkyfR~YzU9BYv&laWrEGS!4r@xpRWJWWx>g`bVtURDVJ|33p=^G z)j5Gmb6lkW<@5^KriW1)S{~qGXqF2+*ucVt<3)l#=prH>aZcP4>u{)=iP?cLrlBiQ zx`3(46Jvc1-?3|Bgi4^Z`gX4JRE6dT%$VaC5wdqospPAzK`Y=B>yvw+C`eh76FIK{ zeE@laWV1|A2DdEhvGY9u-8$kV1(>^p@uxky1Dap{0H{6iL z7$1o*1p#M$aIT;QRvXHuo$R6QnjsKasvdfXtPO%GA?fZ(&aE5IZ-wN>dOC0rv#%)B)RTnV6h#zILK`2T z9Qi7|@J{+lqPx6)Olr&*Z{NVo?3Zs}P(t(bw_m>g47RS{ynb{^R%icku_UZ8*+(9QM!$U|;4Da`2!a)-l1I)Wp(frvW-@_Nq21vtarBVS$ncX2?U6T6>qRY^WU*6(;T4;0Lga0k4pDrCsZw(S~YRM&(VLXIpTr0HGxa zk#vDoD{dvzBCT}Q;qZYU#+DB5nvptJ>L7An1eZI~muMh@IlVw8IA?Ci00rfT0dZk; zyt|A6caPY zm*AnWmAud$r!m-2z^o&OMt+qxIg|AA98V9(SqV8>UG+8cHHH!}BOaousYg>c+S8t# z(7;%ew|S;J8u}K~qC)=4+T;nF#CKkB)eD)Os=R4nPA`riVy9rUd!z+mjQfbBhz~cq zrH{%>kTv^I)xu4T@BpgZ@x)ykt7tqG4|4@b!LmS0C)7>`Uvg-_;Um~E@-PM3r$c$; z?1vyeLjKM3%czF#2|~D))u7D&ewLqOhrQ2E1}FWbkR&U+|3%i8JT-D}44%`Y<)T^NHjxta+=7Wv zn5SN)GVO)~C^+@+%&moo2>(`1K%f%1U5e_k?=7oDiKm+$+^W+gFCn?q#9Jcw zGHYja+eTwM7J}&;DWBG0(s#QWa$3d4SzfwHJL%?{f<6_)XrYX19sP{xxZA^!#|O0M z*}k}0%BEA>$3>mg~moPij&)nN;93z~^=9W_6QlonBp~q5hJLa~6r64Fl%~|iQ zbMm)dwL6+J&}?w*?o-FXq44xq60E{utau5O@gCUT1*b`S*8y*;7VesPNBij66 zJ3@11a`!&P5Qv-r==*a`k-uj!mQNRTw16s*osLNmR-SkzkXwBJ(?9*xfPes$7R=g5 zNW-UewJm}Lh(f*Qgb+1$UL15UuF_rdZKah8^j2Umlf1lSSqEw60(?xI>w`M0j|Y>`eQ=M`^ob^h2ORmKmeE2>H>a~L-wFGAYZ0c@!lLP`*q3WU)j*+olhZt;nI8CZ-D)hXI# zU615Qo!*=?U=U4k^>~=tvts%U&FUxVvFLGsXb4R1j zp7?{6M?yhyyC^^yNw95{SZu=;L7cWn$42V9Jzli6FK7{CKwHHdeGILSP?gb*0~=_p zU2faSHY{)Y)Sj%|N2xnuNQU3eG&$;qq55?+$DA1|KlZvGEddDH=!S+Ima4-pT5Bgp zw#%88;s|VqW?rWju+rC#)&-I!+bretyRox0B?B?RC(n>-!1TTJ25gCT4wG2)@vgKP zFwqefBL{g?|pJsPSnw0FnY6*!CW)l|#ym0yL-+~QIQ zsE|@#Zq#R_-$ew8-1aqD!*`U|Fy6>^6&9s^=T499EIBdAq7IrQBfc?0Xlu_upX4Ph zl1w%uDPilg5=urr(lIr$eB^B=u^^!7!N4)olt_h+Tqin=}CJ3^=ce>rJKRIwLU2d!XRk z7M@zZ>VkaMv7mWqt$Qf>4p6dcHlpp6qp|0(Ro-F}%Bq7(I`jxu0XeEBUsGxURvW40 z0SkYO*ZeTgoO)3qDoe^}qs^vq!^w)YVr=uW2P$lqt;By}*SCC7H)L=gu5jqUEV6FV zIgqV|d#Qe74*sywPFqEhY2L{Mupg~q>f0bW|ejfGK4!Rnpv#6Tebc}ao-KbMh znmIX{wZI?yM0h;xz;Y7cOWH@G3Uve}4G2jtte9T}@2S^~aTs3I;X*F3hN$i;@hJo| zAap>!F~umMda<$^t9~_*p@~|d=9ED#TY0kRD@ydR2O4yiO8N!0Nq$KSf(0rksCb-~ za5Uxx2CZ&js;)Gplu|_#)y%`bt^v=YooQJfMlcn;5(fInvqlvqLDs1`>uFYsm?Geg zA(So#*-DMb?VlVZXc`Pw0xz`Vj-VZRB=2$z=xzULGJFe*y@h#IqRV^=63#QZDG>U6{w&MZ6+_oyicq8*OhetbJUakStDc55_(EsYMhEJ}kPc-L z7bsuKqQ_9z5p-L-QQ>TwX7=e6cBZll%*ycSP4dZch@?bp=mxpbxH3WnrnXMGe+Zh@bEU+8l2Ud0{YsYex z2L;`RyvpZDr@|FhoY8zxH4Bz-0PXooqne1InmCUqC&I)Tw#KW5(!s;q^t_li5?)wG zZq1NQ*K+`|s??&gh!!Nu-!_=D0xUXpa+hx<-%~9m-B4k9$kM(iA#Yy6fiMjF!i;KJ z*MQ6Th%B>vcP&%1hZ@>mwDy|}+3oB#xb^lTIJAR%s@c&XZKXJ9UyCee8|eLZb`KdH zR8iGlp*|@B%z~L#k12Gk?F95U27yiX+$l=}#q!)Bb21v~T&EN3v5?K#4)=nSQef6p zrDN&>8&l8^(n(mZX{DKvB-!ewYtRF(qa4Mfi2$KN>y%Dx8P+l=yrqTA6>VRoTrisk z$dc@VH)E!5jj|oeqHMrvbTg&_ZBgxTmQF?JWZ}$-0@g-qab#9yEXCz-&24Hf1#DCy zk9F&PC+Otf$*lv2KM*ugBP_~`e4VRZ4pQP_#(h~{(?TtzJscx#7^<@+x;)6Tcob-A`8NaJCxaO-Ub#8Bh zm0gH29nnW?#JtLAB{=b@xD}j2Yh1{FLG2ul1@TEGnO4y4>Qdo9ld##F@WIrUSv@~&8#x&Qn{T_T8v`kvG>lqSPX&q}{FW*OYA4J?1@?Oc8 z!deg7(ICH9*0gzel9M2(z&Wu%RW+_uc!au;e<+0nL!Hf#xd=BKBP81cveVVEWpuZX zc2RWzra;bD(HX;$E-k0tlAJSGj@f%JFAoAHX3{EQS3YHnpCWogAdvtD(5utcehVh3 zL}0x}whkTvkNb*&Z!h@yQZ$(~Rc_h#+ESP*s3Vi|NH_V(@WX1Fno)blrc!OYE?E>G zY;t**US0%l+(DbPhDeq!c~ao82}JJFh{DV}hb=UAE5YFiBU?o*pj=ja8ku`|^Du^T zv=&IBAe@m4Ad{o8p}=iZu$=*R;L`7hCk%4o&N31Y&qWxD8u?!O?S+nsJ-U-Sf0De| zlN*R*9-(wW`=k3vrJU6M@*S>-X+Adf9_F3h?pBmtT%QBw5&^D)p*!rx0j~4+B&K-x!m`(R(I$RM_R^9gD;O zy9Ij%)E=@uP;l#hS`f&S5RNFJlW9tmI#{S}$yRRUJ`;cwp9Eb!iZ=TpiMnaM6y)@z zqqxR4v3dFKkj)8K4`l-g$U?vCcbKd|n*owBgt5yuIebG$L^i|VcZ@o{rlTRtTPgR! z`^iQan_kf!NiDqe6-9I~P;PeT*%|(3flug;AA{5~Zn?&*X^06gGAk~n1gC4r)o^b! zxbU`WV@iRR5|vQjj%^u%vb&IjS9JAHA;uu9#XKCofbv#W0WW9aE8$aWZd3^ zkv|Tpx8P=y-?{1AVy%-as2^p|>P5|l1eo%Rv7=OHgtg7;rdr6qD$ugr+ZD}qhv5K$ z8E;ycJXQotM-dOT>?r?(lg7|$Pn_Ld*q|E7QRT5L$NwSx2ufGI_!pcRy-$aDN96j= zpZgg8Ute(1(A#e?H~Pcd|4HBT^Ve@e(vf`k`ir0+K2M+d-*W!;M})!2-DD5c6Luh; z&nd7}UMneR^z5-8VMmX+KLaDdY={(L;7uR=q!L^JdevUT%r(^USm1}?wN?s=5zUnj zY)?e&l&!KJ7?Qm{9oz^onJR=eE4x$ncZ9+rm&jtR(^m;%fJab@hH+o!wegH%?RUTc zLy+mP!{xyKOV}`7TZGA19xR0Kzjc5t3}0V1xDMn#c3(DSYZJu)k8nnl`3P&7jyq?O z{Xq@lO0qrU2KyD>v`YlBVuN7hTG1>C{ur`|p^b<}XFSqvTPy%_{|_A5Y`K~&wXkKE zI@oQ`s?wi&spcpzTuyCRZ4f~ zZV;U~5CZ?t+KL~-W{I?k-G?aC7V6qXB=Tp=zp`+;_gMxnc)W*4+Q`(zWzw<1LUyOM zfHY-A_AbB|Fo`!xSVp-w%tr&3;nan|Mm-(Y;c*OTjt~=c$l(|Rt|TG?mgp*wd4g@Z z=``e(82zZLoCyiJJ!>zikt*)xcQUC*c^9%8ZiFS(L%rNFd>~%eF2tXUK7E8wcZ*$jD6 zhnX3s2e3o5QWpbspf_<8U3RXg6ztWm) zIp*718PfV4k94*o)E1TsD6_K8$2dhB9_gJb8jZNrwbqx~qDe8P;9K4+RcT)hd|)cX ztT$*_hqiRLj#3T6(+M06$|#HDPBClAUoFSt9~oE|K-P7E>*}T+s12EcD-Y8_HP3^K zvGP#%0x`h8D`3Fq%`w$n-E2Jp)2K=-hsN_Q_>dn=mZpVWSII>dv&fLWGaSw|SIrKa zR$deQ3Sk@3Dzx`1%Qpl~uy2#gZU{Ks*KeQO z>5qS)2k&cHet%s38pM}$@Hqg@r^v9Ck3ZLdmrve)8*J+I1RL+78CDwpFi$gUxgA`f z^!UEWU8)T!M5XB!HTY@^o&L}a{!mlhBW67&%ehClVY;^v-9ysj&zr`C^ftt~Yi#So zXFb?5(~+9*TH|C^&c)y-!&Di#A(KVEr2!)K*~s9&+77529&9rh>vMqu1@el)#fGF#-J$0#LxXfSUtCiL%q! z=a;Qv(pD-IGwF(!MFv^W5H8&F5gr;IuBS9lusos6vP(gJw}EoiBo=22XvVmOb4yHV zPzkOx`E1CdJT^G!#nV$Y>q@p!%?iWB`pB!pqA0Jo)PvKqL+h5VXJ|gm3@x7MB@g9m zh!^u3MR~~)PQ+V~j%Xmmoy4d6c(?uyYW=V(buY-@{4G;r)R@Ox9wU_3t?Xwlm{(8`R&-Du!eD-Xtv3DAj-N(Pb2c?>jey=`Zm#l9!6=_< z*hARToSnZ_F;Mjvcq#Oxz$7cOTO)Y4bf(JSk3eH48&$2m;d; zWYif$1@2~WoViq>WYhU0L6-*h^J{!C`~rW3j|NKQ7J$P@_!4d#Em(EKK^F)cF(#9+{3#NC(bY)*)L?BQ&sZU1ZXrS2b!_-Sdf-+Msu` z(Q-?IVhp&H$S$yqQ!Wn-^Az7{Ze3SvH5OE{SXZF7fyr17)kE*WysPJfXv<}YM)Gtk zDCiw3lsN`BP@^Ht!;Q?ssTJdLl)1>tHUq!aThy|pv1^b`$%=F=PBsHsBDWQ2*+63* zPj4T0|y6o7q1kx*GcL1Gcwwiww{{0X2;4i}W|J9f%AAI2Ggdg>~yVbwvZ1&yz zACIp-zJ(*6Ur_b(9aS&K*S~)Hr@s&X*2W}#{+DmReEm8kx$pO%zx^x!yU*S}4{txe zBoF;F*XB3$4*40P^X$9)52$Var?GIs*w z#1EQgIxm5P>~s+&y=vs;K6`o(DbV5zbR2@Li1`6pMwNzU7}CJJPPQv}s}?Fe-z*U} z8K=I#nmI`H9)Q|W&&RPTmtJAL!!`cNKMu5$}9czj&fu9a1;y9wyr0x{y zYPR>R+tv(L*|flyLd5%KNu0C9E8WlX#G!88=wnSAV>&@sOg9NnI9;Y-b4R%3n~@=` z?m3%SdN>rBY5LN&h=Op!aB4CYhtj8!oqTGm;!qOH@`ik$(d+u<$|n3$$#QQ{4uF)C zH{|NbE1LCwp>n!7LWkW3OQpkuyQWPSH9NYhV{5;V!Y1#<^=fT5xml3T0~l8$!eUAC z9<0aQ&Sld|V^>!)rYnKN$~lKB2w}(&rRpp(U6)11kR8}V0A*}Nfmk!QxxH)$;^V2( z$o;cuTU%c%ZoT`xW1MNP^CXp}MHRQ5TXH3-GSp-SB#}L8GrFlTJ?fN*?yz^GA>R~8 z-4;OuGbtfTlC{E}+SYu1J{Srw-@@HM!)#*CO9+E#yN1*8fz@mK)+~`c5`eRS` zSt-i_>l&(xcKjii0g<~XaV~@Gb@L__89YP@PLpApyBf`@|YdsOE7trlSZ|qFgniO+RK{8-ox4FOVb+$Vs zzJdl^?UyTJEd?D87+7deaKaj}v9(q8pa7Trg|FarqZyUXP$evM+DCPljxaLnL4Jns z3Vr}-(yhid7{dd#u-t>kA}MceCjfy==&cBx?g22$V`pcO!?&Fr)H+Gu&P$4b$O(!* zr#Qo>$7Y8W1|4JTAx6+(0a<1qT09Mq8R#dlS0&V9c}|iT9sEpxy7=+K)XTyHRkpGMGdyX$o^xF+wY|{ z>?p-c&^6<Ilj#}*J9cO%Xh?M#GvVlQEo^6a?hSzaZUIJ?;>(s3^2QJ$SgNH>{}E$ z9YCm)O|mT8%QU?+rI_ML8ZE!vn%NsLl@p9gDvFO)j3)1!0h7mJ28;zJ5%=tLTIDt( ziD=d&-x>))AY_}Lifnj>c{L}f+9i0b%=9Tq%8;=_2Mh*4Qg+G>NPjlj;s!yp zIf*Vkh&?A`S$U>BT%bp4t4pKDK*cn$!`vc!DEfd7U8#+dCV9Hj%VRbs7(drrrD@6X znqJyH8&M!+p=JN_i68GkBWW|(! zuEnK(*wd$``P4+A<(k7WaA{D6nH5`u;jo$NH?VLyuvIM^aA~u-x^kFRXNwY~VT0dT z0EC8FfTj2A}$0d#Tvck&c87FeG$ucQE>4N6bhi=*`|H1p5?`8gK|23t|Qk z8|Dbi&}#S3+DwocwWIRNO01fsMQ?=`c|6Mn#dgFAtC~4pH=+ZL8auw&vkeU#RC(Sa zzj+^HPlgd5&GukmKLtWaF?d(cKybt?MQ9US; ztxONk0vixS8S>(hzAbw(#0>;C#ks|_ha+((8DqrW_Ad=hHlbPG7JCqoQYc=?dg}X> z=@SQQ4dhuRpq4|p(g#`?$z1JCMe_-s9ZCq=j%b8zcK3ZHG1D=BRYyW{d_f?@sE3m= z&|HmgkeI;Mhm!J^35$8OxjG^dfASN<0q3^NpF2JSh2Ov5RXTanenuCT&t8oT^u^mh zg}2{*uTwPnR^NXf-ae+l{Il@(HKu7_1qjU1RQlcj|G(kSeL{bx0Jc0m-n()VY;oHw zIzVB?O@_32+^NgTKrF&CdZi=_#;fQd&@66bKGZ$rBa(EUG?_*5Y5sg0q!@<>3)C3x zDHjQ08Yct5byJU)RZx}jpJ%P1PloKt@FZl9Bj8yPOMy-m){oxJYiEr>nJ)qwWT{Qp zj_mW)R04a=pMh1%Dv(aj1Q1nfowhih;WqMv}`9*1Gi{T$c5f9??B^HHhv{z(}TVD%q4)no;HK6^>A)q~X hSpdDrox+^4cgglrz7rRzDPZO0{{oPT@#kp3FaTBF64n3! literal 0 HcmV?d00001 diff --git a/models/attriclip_utils/clip/clip.py b/models/attriclip_utils/clip/clip.py new file mode 100644 index 00000000..7c6bab89 --- /dev/null +++ b/models/attriclip_utils/clip/clip.py @@ -0,0 +1,225 @@ +import os +import hashlib +import urllib +import warnings +from typing import Any, Union, List + +from PIL import Image +import torch +from tqdm import tqdm +from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize + +from .model import build_model +from .simple_tokenizer import SimpleTokenizer as _Tokenizer + +try: + from torchvision.transforms import InterpolationMode + BICUBIC = InterpolationMode.BICUBIC +except ImportError: + BICUBIC = Image.BICUBIC + +if torch.__version__.split(".") < ["1","7","1"]: + warnings.warn("PyTorch version 1.7.1 or higher is recommended") + +__all__ = ["available_models", "load", "tokenize"] +_tokenizer = _Tokenizer() + +_MODELS = { + "RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt", + "RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt", + "RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt", + "RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt", + "RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt", + "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", + "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", + "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt", + "ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt", + } + +def _download(url:str,root:str): + os.makedirs(root,exist_ok=True) + filename = os.path.basename(url) + + expected_sha256 = url.split("/")[-2] + download_target = os.path.join(root,filename) + + if os.path.exists(download_target) and not os.path.isfile(download_target): + raise RuntimeError(f"{download_target} exists and is not a regular file") + + if os.path.isfile(download_target): + if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256: + return download_target + else: + warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") + + with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: + with tqdm(total=int(source.info().get("content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop: + while True: + buffer = source.read(8192) + if not buffer: + break + + output.write(buffer) + loop.update(len(buffer)) + + if hashlib.sha256(open(download_target,"rb").read()).hexdigest()!= expected_sha256: + raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match") + + return download_target + + +def _transform(n_px): + return Compose([ + Resize(n_px,interpolation=BICUBIC), + CenterCrop(n_px), + lambda image: image.convert("RGB"), + ToTensor(), + Normalize((0.48145466, 0.4578275, 0.40821073),(0.26862954, 0.26130258, 0.27577711)), + ]) + + +def available_models() -> List[str]: + """Returns the names of available CLIP models""" + return list(_MODELS.keys()) + + +def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None): + """Load a CLIP model + + Parameters + ---------- + name:str + A model name listed by `clip.available_models()", or the path to a model checkpoint containing the state_dict + + device : Union[str, torch.device] + The device to put the loaded model + + jit: bool + Whether to load the optimized JIT model or more hackable non-JIT model (default). + + download_root: str + path to download the model files; by default, it uses "~/.cache/clip" + + Returns + ------- + model: torch.nn.Module + The CLIP model + + preprocess : Callable[[PIL.Image], torch.Tensor] + A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input + """ + if name in _MODELS: + model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip")) + elif os.path.isfile(name): + model_path = name + else: + raise RuntimeError(f"Model {name} not found; available models = {available_models()}") + + try: + # loading JIT archive + model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval() + state_dict = None + except RuntimeError: + # loading saved state dict + if jit: + warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") + jit = False + state_dict = torch.load(model_path, map_location="cpu") + + if not jit: + model = build_model(state_dict or model.state_dict()).to(device) + if str(device) == "cpu": + model.float() + return model, _transform(model.visual.input_resolution) + + # patch the device names + device_holder = torch.jit.trace(lambda:torch.ones([]).to(torch.device(device)), example_inputs=[]) + device_node = [n for n in device_holder.graph.findAllNodes("prim: :Constant") if "Device" in repr(n)][-1] + + def patch_device(module): + try: + graphs = [module.graph] if hasattr(module, "graph") else [] + except RuntimeError: + graphs =[] + + if hasattr(module, "forward1"): + graphs.append(module.forward1.graph) + + for graph in graphs: + for node in graph.findAllNodes("prim::Constant"): + if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"): + node.copyAttributes(device_node) + + model.apply(patch_device) + patch_device(model.encode_image) + patch_device(model.encode_text) + + # patch dtype to float32 on CPU + if str(device)=="cpu": + float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) + float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] + float_node = float_input.node() + + + def patch_float(module): + try: + graphs = [module.graph] if hasattr(module, "graph") else [] + except RuntimeError: + graphs = [] + + if hasattr(module, "forward1"): + graphs.append(module.forward1.graph) + + for graph in graphs: + for node in graph.findAllNodes("aten::to"): + inputs = list(node.inputs()) + for i in [1, 2]: # dtype can be the second or third argument to aten::to() + if inputs[i].node()["value"] == 5: + inputs[i].node().copyAttributes(float_node) + + model.apply(patch_float) + patch_float(model.encode_image) + patch_float(model.encode_text) + + model.float() + + return model, _transform(model.input_resolution.item()) + +def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> torch.LongTensor: + """ + Returns the tokenized representation of given input string(s) + + Parameters + --------- + texts : Union[str, List[str]] + An input string or a list of input strings to tokenize + + context_length : int + The context length to use; all CLIP models use 77 as the context length + + truncate:bool + whether to truncate the text in case its encoding is longer than the context length + + Returns + ------- + A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length] + """ + + if isinstance(texts, str): + texts = [texts] + + sot_token = _tokenizer.encoder["<|startoftext|>"] + eot_token = _tokenizer.encoder["<|endoftext|>"] + all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] + result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) + + for i, tokens in enumerate(all_tokens): + if len(tokens) > context_length: + if truncate: + tokens = tokens[:context_length] + tokens[-1] = eot_token + else: + raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") + result[i, :len(tokens)] = torch.tensor(tokens) + + return result \ No newline at end of file diff --git a/models/attriclip_utils/clip/clip_2.py b/models/attriclip_utils/clip/clip_2.py new file mode 100644 index 00000000..afcdcb38 --- /dev/null +++ b/models/attriclip_utils/clip/clip_2.py @@ -0,0 +1,224 @@ +import os +import hashlib +import urllib +import warnings +from typing import Any, Union, List + +from PIL import Image +import torch +from tqdm import tqdm +from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize + +from .model_2 import build_model +from .simple_tokenizer import SimpleTokenizer as _Tokenizer +import pdb +try: + from torchvision.transforms import InterpolationMode + BICUBIC = InterpolationMode.BICUBIC +except ImportError: + BICUBIC = Image.BICUBIC + +if torch.__version__.split(".") < ["1","7","1"]: + warnings.warn("PyTorch version 1.7.1 or higher is recommended") + +__all__ = ["available_models", "load", "tokenize"] +_tokenizer = _Tokenizer() + +_MODELS = { + "RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt", + "RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt", + "RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt", + "RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt", + "RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt", + "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", + "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", + "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt", + "ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt", + } + +def _download(url:str,root:str): + os.makedirs(root,exist_ok=True) + filename = os.path.basename(url) + + expected_sha256 = url.split("/")[-2] + download_target = os.path.join(root,filename) + + if os.path.exists(download_target) and not os.path.isfile(download_target): + raise RuntimeError(f"{download_target} exists and is not a regular file") + + if os.path.isfile(download_target): + if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256: + return download_target + else: + warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") + + with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: + with tqdm(total=int(source.info().get("content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop: + while True: + buffer = source.read(8192) + if not buffer: + break + + output.write(buffer) + loop.update(len(buffer)) + + if hashlib.sha256(open(download_target,"rb").read()).hexdigest()!= expected_sha256: + raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match") + + return download_target + + +def _transform(n_px): + return Compose([ + Resize(n_px,interpolation=BICUBIC), + CenterCrop(n_px), + lambda image: image.convert("RGB"), + ToTensor(), + Normalize((0.48145466, 0.4578275, 0.40821073),(0.26862954, 0.26130258, 0.27577711)), + ]) + + +def available_models() -> List[str]: + """Returns the names of available CLIP models""" + return list(_MODELS.keys()) + +def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None): + """Load a CLIP model + + Parameters + ---------- + name:str + A model name listed by `clip.available_models()", or the path to a model checkpoint containing the state_dict + + device : Union[str, torch.device] + The device to put the loaded model + + jit: bool + Whether to load the optimized JIT model or more hackable non-JIT model (default). + + download_root: str + path to download the model files; by default, it uses "~/.cache/clip" + + Returns + ------- + model: torch.nn.Module + The CLIP model + + preprocess : Callable[[PIL.Image], torch.Tensor] + A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input + """ + # pdb.set_trace() + if name in _MODELS: + model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip")) + elif os.path.isfile(name): + model_path = name + else: + raise RuntimeError(f"Model {name} not found; available models = {available_models()}") + try: + # loading JIT archive + model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval() + state_dict = None + except RuntimeError: + # loading saved state dict + if jit: + warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") + jit = False + state_dict = torch.load(model_path, map_location="cpu") + + if not jit: + model = build_model(state_dict or model.state_dict()).to(device) + if str(device) == "cpu": + model.float() + return model, _transform(model.visual.input_resolution) + + # patch the device names + device_holder = torch.jit.trace(lambda:torch.ones([]).to(torch.device(device)), example_inputs=[]) + device_node = [n for n in device_holder.graph.findAllNodes("prim: :Constant") if "Device" in repr(n)][-1] + + def patch_device(module): + try: + graphs = [module.graph] if hasattr(module, "graph") else [] + except RuntimeError: + graphs =[] + + if hasattr(module, "forward1"): + graphs.append(module.forward1.graph) + + for graph in graphs: + for node in graph.findAllNodes("prim::Constant"): + if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"): + node.copyAttributes(device_node) + + model.apply(patch_device) + patch_device(model.encode_image) + patch_device(model.encode_text) + + # patch dtype to float32 on CPU + if str(device)=="cpu": + float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) + float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] + float_node = float_input.node() + + + def patch_float(module): + try: + graphs = [module.graph] if hasattr(module, "graph") else [] + except RuntimeError: + graphs = [] + + if hasattr(module, "forward1"): + graphs.append(module.forward1.graph) + + for graph in graphs: + for node in graph.findAllNodes("aten::to"): + inputs = list(node.inputs()) + for i in [1, 2]: # dtype can be the second or third argument to aten::to() + if inputs[i].node()["value"] == 5: + inputs[i].node().copyAttributes(float_node) + + model.apply(patch_float) + patch_float(model.encode_image) + patch_float(model.encode_text) + + model.float() + + return model, _transform(model.input_resolution.item()) + +def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> torch.LongTensor: + """ + Returns the tokenized representation of given input string(s) + + Parameters + --------- + texts : Union[str, List[str]] + An input string or a list of input strings to tokenize + + context_length : int + The context length to use; all CLIP models use 77 as the context length + + truncate:bool + whether to truncate the text in case its encoding is longer than the context length + + Returns + ------- + A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length] + """ + + if isinstance(texts, str): + texts = [texts] + + sot_token = _tokenizer.encoder["<|startoftext|>"] + eot_token = _tokenizer.encoder["<|endoftext|>"] + all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] + result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) + + for i, tokens in enumerate(all_tokens): + if len(tokens) > context_length: + if truncate: + tokens = tokens[:context_length] + tokens[-1] = eot_token + else: + raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") + result[i, :len(tokens)] = torch.tensor(tokens) + + return result \ No newline at end of file diff --git a/models/attriclip_utils/clip/model.py b/models/attriclip_utils/clip/model.py new file mode 100644 index 00000000..83d8a8fc --- /dev/null +++ b/models/attriclip_utils/clip/model.py @@ -0,0 +1,444 @@ +from collections import OrderedDict +from typing import Tuple, Union +import pdb +import numpy as np +import torch +import torch.nn.functional as F +from torch import nn + + +class Bottleneck(nn.Module): + expansion = 4 + + def __init__(self, inplanes, planes, stride=1): + super().__init__() + # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 + self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) + self.bn1 = nn.BatchNorm2d(planes) + + self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) + self.bn2 = nn.BatchNorm2d(planes) + + self.avgpool = nn.AvgPool2d(stride) if stride >1 else nn.Identity() + + self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) + + self.bn3 = nn.BatchNorm2d(planes * self.expansion) + + self.relu = nn.ReLU(inplace=True) + self.downsample = None + self.stride = stride + + if stride > 1 or inplanes != planes * Bottleneck.expansion: + # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 + self.downsample = nn.Sequential(OrderedDict([ + ("-1",nn.AvgPool2d(stride)), + ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), + ("1", nn.BatchNorm2d(planes * self.expansion)) + ])) + + def forward(self,x: torch.Tensor): + identity = x + + out = self.relu(self.bn1(self.conv1(x))) + out = self.relu(self.bn2(self.conv2(out))) + out = self.avgpool(out) + out = self.bn3(self.conv3(out)) + + if self.downsample is not None: + identity = self.downsample(x) + + out += identity + out = self.relu(out) + return out + + +class AttentionPool2d(nn.Module): + def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): + super().__init__() + self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) + self.k_proj = nn.Linear(embed_dim, embed_dim) + self.q_proj = nn.Linear(embed_dim, embed_dim) + self.v_proj = nn.Linear(embed_dim,embed_dim) + self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) + self.num_heads = num_heads + + def forward(self,x): + x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW ->(HW)NC + x= torch.cat([x.mean(dim=0, keepdim=True),x], dim=0) #(HW+1)NC + x= x+ self.positional_embedding[:, None,:].to(x.dtype) #(HW+1)NC + x,_= F.multi_head_attention_forward( + query=x, key=x, value=x, + embed_dim_to_check=x.shape[-1], + num_heads=self.num_heads, + q_proj_weight=self.q_proj.weight, + k_proj_weight=self.k_proj.weight, + v_proj_weight=self.v_proj.weight, + in_proj_weight=None, + in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), + bias_k=None, + bias_v=None, + add_zero_attn=False, + dropout_p=0, + out_proj_weight=self.c_proj.weight, + out_proj_bias=self.c_proj.bias, + use_separate_proj_weight=True, + training=self.training, + need_weights=False + ) + + return x[0] + + +class ModifiedResNet(nn.Module): + """ + A ResNet class that is similar to torchvision's but contains the following changes: + - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. + - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 + - The final pooling layer is a QKV attention instead of an average pool + """ + + def __init__(self, layers, output_dim, heads, input_resolution=224, width=64): + super().__init__() + self.output_dim= output_dim + self.input_resolution = input_resolution + + # the 3-layer stem + self.conv1 = nn.Conv2d(3,width // 2, kernel_size=3, stride=2, padding=1, bias=False) + self.bn1 = nn.BatchNorm2d(width // 2) + self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) + self.bn2 = nn.BatchNorm2d(width // 2) + self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) + self.bn3 = nn.BatchNorm2d(width) + self.avgpool =nn.AvgPool2d(2) + self.relu = nn.ReLU(inplace=True) + + # residual layers + self._inplanes = width # this is a *mutable* variable used during construction + self.layer1 = self._make_layer(width, layers[0]) + self.layer2 = self._make_layer(width * 2, layers[1], stride=2) + self.layer3 = self._make_layer(width * 4, layers[2], stride=2) + self.layer4 = self._make_layer(width * 8, layers[3], stride=2) + + embed_dim = width * 32 # the ResNet feature dimension + self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim) + + def _make_layer(self, planes, blocks, stride=1): + layers = [Bottleneck(self._inplanes, planes, stride)] + + self._inplanes = planes * Bottleneck.expansion + for _ in range(1, blocks): + layers.append(Bottleneck(self._inplanes, planes)) + + return nn.Sequential(*layers) + + def forward(self,x): + def stem(x): + for conv, bn in [(self.conv1, self.bn1),(self.conv2, self.bn2),(self.conv3, self.bn3)]: + x = self.relu(bn(conv(x))) + x = self.avgpool(x) + return x + + x = x.type(self.conv1.weight.dtype) + x = stem(x) + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + x = self.attnpool(x) + + return x + + +class LayerNorm(nn.LayerNorm): + """Subclass torch's LayerNorm to handle fp16.""" + + def forward(self,x: torch.Tensor): + orig_type = x.dtype + ret = super().forward(x.type(torch.float32)) + return ret.type(orig_type) + + +class QuickGELU(nn.Module): + def forward(self, x: torch.Tensor): + return x * torch.sigmoid(1.702 * x) + + +class ResidualAttentionBlock(nn.Module): + def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): + super().__init__() + + self.attn = nn.MultiheadAttention(d_model, n_head) + self.ln_1 = LayerNorm(d_model) + self.mlp = nn.Sequential(OrderedDict([ + ("c_fc",nn.Linear(d_model, d_model * 4)), + ("gelu",QuickGELU()), + ("c_proj", nn.Linear(d_model * 4, d_model)) + ])) + self.ln_2 = LayerNorm(d_model) + self.attn_mask = attn_mask + + def attention(self, x: torch.Tensor): + self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None + return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] + + def forward(self, x: torch.Tensor): + x = x + self.attention(self.ln_1(x)) + x = x + self.mlp(self.ln_2(x)) + return x + + +class Transformer(nn.Module): + def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None): + super().__init__() + self.width = width + self.layers = layers + self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]) + self.use_gradient_checkpoint = False + + def forward(self,x: torch.Tensor): + + if self.use_gradient_checkpoint: + for layer_module in self.resblocks: + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + x = torch.utils.checkpoint.checkpoint(create_custom_forward(layer_module),x) + return x + else: + return self.resblocks(x) + + +class VisionTransformer(nn.Module): + def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int): + super().__init__() + self.input_resolution = input_resolution + self.output_dim = output_dim + self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) + + scale = width ** -0.5 + self.class_embedding = nn.Parameter(scale * torch.randn(width)) + self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size)** 2+ 1, width)) + self.ln_pre = LayerNorm(width) + + self.transformer = Transformer(width,layers, heads) + + self.ln_post = LayerNorm(width) + self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) + + def forward(self,x: torch.Tensor): + x = self.conv1(x) # shape =[*, width, grid, grid] + x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] + x = x.permute(0,2,1)# shape =:[*,grid **2, width] + x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) #shape=[*,grid**2+1,width] + x = x + self.positional_embedding.to(x.dtype) + x = self.ln_pre(x) + + x = x.permute(1,0,2)# NLD -> LND + x = self.transformer(x) + x = x.permute(1,0,2)# LND -> NLD + + x = self.ln_post(x[:,0,:]) + + if self.proj is not None: + x = x @ self.proj + + return x + + +class CLIP(nn.Module): + def __init__(self, + embed_dim:int, + #vision + image_resolution:int, + vision_layers: Union[Tuple[int, int, int, int], int], + vision_width:int, + vision_patch_size:int, + # text + context_length:int, + vocab_size:int, + transformer_width:int, + transformer_heads:int, + transformer_layers: int + ): + super().__init__() + + self.context_length = context_length + + if isinstance(vision_layers,(tuple, list)): + vision_heads = vision_width * 32 // 64 + self.visual = ModifiedResNet( + layers=vision_layers, + output_dim=embed_dim, + heads=vision_heads, + input_resolution=image_resolution, + width=vision_width + ) + else: + vision_heads = vision_width // 64 + self.visual = VisionTransformer( + input_resolution=image_resolution, + patch_size=vision_patch_size, + width=vision_width, + layers=vision_layers, + heads=vision_heads, + output_dim=embed_dim + ) + + self.transformer= Transformer( + width=transformer_width, + layers=transformer_layers, + heads=transformer_heads, + attn_mask=self.build_attention_mask() + ) + + self.vocab_size = vocab_size + self.token_embedding = nn.Embedding(vocab_size, transformer_width) + self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) + self.ln_final = LayerNorm(transformer_width) + + self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) + self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) + + self.initialize_parameters() + + def initialize_parameters(self): + nn.init.normal_(self.token_embedding.weight, std=0.02) + nn.init.normal_(self.positional_embedding, std=0.01) + + if isinstance(self.visual, ModifiedResNet): + if self.visual.attnpool is not None: + std = self.visual.attnpool.c_proj.in_features ** -0.5 + nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std) + nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std) + nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std) + nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std) + + for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]: + for name, param in resnet_block.named_parameters(): + if name.endswith("bn3.weight"): + nn.init.zeros_(param) + + proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) + attn_std = self.transformer.width ** -0.5 + fc_std = (2 * self.transformer.width) ** -0.5 + for block in self.transformer.resblocks: + nn.init.normal_(block.attn.in_proj_weight, std=attn_std) + nn.init.normal_(block.attn.out_proj.weight, std=proj_std) + nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) + nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) + + if self.text_projection is not None: + nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) + + def build_attention_mask(self): + # lazily create causal attention mask, with full attention between the vision tokens + # pytorch uses additive attention mask; fill with -inf + mask = torch.empty(self.context_length, self.context_length) + mask.fill_(float("-inf")) + mask.triu_(1) # zero out the lower diagonal + return mask + + @property + def dtype(self): + return self.visual.conv1.weight.dtype + + def encode_image(self, image): + return self.visual(image.type(self.dtype)) + + def encode_text(self, text): + x= self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model] + + x= x+ self.positional_embedding.type(self.dtype) + x= x.permute(1,0,2)# NLD -> LND + x= self.transformer(x) + x= x.permute(1, 0, 2) # LND -> NLD + x= self.ln_final(x).type(self.dtype) + + # x.shape = [batch_size, n_ctx, transformer.width] + # take features from the eot embedding (eot_token is the highest number in each sequence) + x = x[torch.arange(x.shape[0]),text.argmax(dim=-1)] @ self.text_projection + + return x + + def forward(self, image, text): + image_features = self.encode_image(image) + text_features = self.encode_text(text) + + # normalized features + image_features = image_features / image_features.norm(dim=-1, keepdim=True) + text_features = text_features / text_features.norm(dim=-1, keepdim=True) + + # cosine similarity as logits + logit_scale = self.logit_scale.exp() + logits_per_image = logit_scale * image_features @ text_features.t() + logits_per_text = logits_per_image.t() + + # shape = [global_batch_size, global_batch_size] + return logits_per_image, logits_per_text + + +def convert_weights(model:nn.Module): + """Convert applicable model parameters to fp16""" + + def _convert_weights_to_fp16(l): + if isinstance(l,(nn.Conv1d,nn.Conv2d, nn.Linear)): + l.weight.data = l.weight.data.half() + if l.bias is not None: + l.bias.data = l.bias.data.half() + + if isinstance(l, nn.MultiheadAttention): + for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k","bias_v"]: + tensor = getattr(l, attr) + if tensor is not None: + tensor.data = tensor.data.half() + + for name in ["text_projection", "proj"]: + if hasattr(l,name): + attr = getattr(l,name) + if attr is not None: + attr.data = attr.data.half() + + model.apply(_convert_weights_to_fp16) + + +def build_model(state_dict: dict): + vit = "visual.proj" in state_dict + + if vit: + vision_width = state_dict["visual.conv1.weight"].shape[0] + vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) + vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] + grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) + image_resolution = vision_patch_size * grid_size + else: + counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] + vision_layers = tuple(counts) + # pdb.set_trace() + vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] + output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) + vision_patch_size= None + assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] + image_resolution = output_width * 32 + + embed_dim = state_dict["text_projection"].shape[1] + context_length = state_dict["positional_embedding"].shape[0] + vocab_size = state_dict["token_embedding.weight"].shape[0] + transformer_width = state_dict["ln_final.weight"].shape[0] + transformer_heads = transformer_width // 64 + transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) + + model = CLIP( + embed_dim, + image_resolution, vision_layers, vision_width, vision_patch_size, + context_length, vocab_size, transformer_width, transformer_heads, transformer_layers + ) + + for key in ["input_resolution", "context_length","vocab_size"]: + if key in state_dict: + del state_dict[key] + + convert_weights(model) + model.load_state_dict(state_dict) + return model.eval() diff --git a/models/attriclip_utils/clip/model_2.py b/models/attriclip_utils/clip/model_2.py new file mode 100644 index 00000000..d6ff9351 --- /dev/null +++ b/models/attriclip_utils/clip/model_2.py @@ -0,0 +1,450 @@ +from collections import OrderedDict +from typing import Tuple, Union +import pdb +import numpy as np +import torch +import torch.nn.functional as F +from torch import nn +import pdb + +class Bottleneck(nn.Module): + expansion = 4 + + def __init__(self, inplanes, planes, stride=1): + super().__init__() + # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 + self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) + self.bn1 = nn.BatchNorm2d(planes) + + self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) + self.bn2 = nn.BatchNorm2d(planes) + + self.avgpool = nn.AvgPool2d(stride) if stride >1 else nn.Identity() + + self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) + + self.bn3 = nn.BatchNorm2d(planes * self.expansion) + + self.relu = nn.ReLU(inplace=True) + self.downsample = None + self.stride = stride + + if stride > 1 or inplanes != planes * Bottleneck.expansion: + # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 + self.downsample = nn.Sequential(OrderedDict([ + ("-1",nn.AvgPool2d(stride)), + ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), + ("1", nn.BatchNorm2d(planes * self.expansion)) + ])) + + def forward(self,x: torch.Tensor): + identity = x + + out = self.relu(self.bn1(self.conv1(x))) + out = self.relu(self.bn2(self.conv2(out))) + out = self.avgpool(out) + out = self.bn3(self.conv3(out)) + + if self.downsample is not None: + identity = self.downsample(x) + + out += identity + out = self.relu(out) + return out + + +class AttentionPool2d(nn.Module): + def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): + super().__init__() + self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) + self.k_proj = nn.Linear(embed_dim, embed_dim) + self.q_proj = nn.Linear(embed_dim, embed_dim) + self.v_proj = nn.Linear(embed_dim,embed_dim) + self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) + self.num_heads = num_heads + + def forward(self,x): + x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW ->(HW)NC + x= torch.cat([x.mean(dim=0, keepdim=True),x], dim=0) #(HW+1)NC + x= x+ self.positional_embedding[:, None,:].to(x.dtype) #(HW+1)NC + x,_= F.multi_head_attention_forward( + query=x, key=x, value=x, + embed_dim_to_check=x.shape[-1], + num_heads=self.num_heads, + q_proj_weight=self.q_proj.weight, + k_proj_weight=self.k_proj.weight, + v_proj_weight=self.v_proj.weight, + in_proj_weight=None, + in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), + bias_k=None, + bias_v=None, + add_zero_attn=False, + dropout_p=0, + out_proj_weight=self.c_proj.weight, + out_proj_bias=self.c_proj.bias, + use_separate_proj_weight=True, + training=self.training, + need_weights=False + ) + + return x[0] + + +class ModifiedResNet(nn.Module): + """ + A ResNet class that is similar to torchvision's but contains the following changes: + - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. + - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 + - The final pooling layer is a QKV attention instead of an average pool + """ + + def __init__(self, layers, output_dim, heads, input_resolution=224, width=64): + super().__init__() + self.output_dim= output_dim + self.input_resolution = input_resolution + + # the 3-layer stem + self.conv1 = nn.Conv2d(3,width // 2, kernel_size=3, stride=2, padding=1, bias=False) + self.bn1 = nn.BatchNorm2d(width // 2) + self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) + self.bn2 = nn.BatchNorm2d(width // 2) + self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) + self.bn3 = nn.BatchNorm2d(width) + self.avgpool =nn.AvgPool2d(2) + self.relu = nn.ReLU(inplace=True) + + # residual layers + self._inplanes = width # this is a *mutable* variable used during construction + self.layer1 = self._make_layer(width, layers[0]) + self.layer2 = self._make_layer(width * 2, layers[1], stride=2) + self.layer3 = self._make_layer(width * 4, layers[2], stride=2) + self.layer4 = self._make_layer(width * 8, layers[3], stride=2) + + embed_dim = width * 32 # the ResNet feature dimension + self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim) + + def _make_layer(self, planes, blocks, stride=1): + layers = [Bottleneck(self._inplanes, planes, stride)] + + self._inplanes = planes * Bottleneck.expansion + for _ in range(1, blocks): + layers.append(Bottleneck(self._inplanes, planes)) + + return nn.Sequential(*layers) + + def forward(self,x): + def stem(x): + for conv, bn in [(self.conv1, self.bn1),(self.conv2, self.bn2),(self.conv3, self.bn3)]: + x = self.relu(bn(conv(x))) + x = self.avgpool(x) + return x + + x = x.type(self.conv1.weight.dtype) + x = stem(x) + x = self.layer1(x) + # pdb.set_trace() + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + x = self.attnpool(x) + + return x + + +class LayerNorm(nn.LayerNorm): + """Subclass torch's LayerNorm to handle fp16.""" + + def forward(self,x: torch.Tensor): + orig_type = x.dtype + ret = super().forward(x.type(torch.float32)) + return ret.type(orig_type) + + +class QuickGELU(nn.Module): + def forward(self, x: torch.Tensor): + return x * torch.sigmoid(1.702 * x) + + +class ResidualAttentionBlock(nn.Module): + def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): + super().__init__() + + self.attn = nn.MultiheadAttention(d_model, n_head) + self.ln_1 = LayerNorm(d_model) + self.mlp = nn.Sequential(OrderedDict([ + ("c_fc",nn.Linear(d_model, d_model * 4)), + ("gelu",QuickGELU()), + ("c_proj", nn.Linear(d_model * 4, d_model)) + ])) + self.ln_2 = LayerNorm(d_model) + self.attn_mask = attn_mask + + def attention(self, x: torch.Tensor): + self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None + return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] + + def forward(self, x: torch.Tensor): + # pdb.set_trace() + x = x + self.attention(self.ln_1(x)) + x = x + self.mlp(self.ln_2(x)) + return x + + +class Transformer(nn.Module): + def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None): + super().__init__() + self.width = width + self.layers = layers + self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]) + self.use_gradient_checkpoint = False + + def forward(self,x: torch.Tensor): + # pdb.set_trace() + if self.use_gradient_checkpoint: + for layer_module in self.resblocks: + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + x = torch.utils.checkpoint.checkpoint(create_custom_forward(layer_module),x) + return x + else: + return self.resblocks(x) + + +class VisionTransformer(nn.Module): + def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int): + super().__init__() + self.input_resolution = input_resolution + self.output_dim = output_dim + self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) + + scale = width ** -0.5 + self.class_embedding = nn.Parameter(scale * torch.randn(width)) + self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size)** 2+ 1, width))#[rid**2+1, width] + self.ln_pre = LayerNorm(width) + + self.transformer = Transformer(width,layers, heads) + + self.ln_post = LayerNorm(width) + self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) + + def forward(self,x: torch.Tensor): + # pdb.set_trace() + x = self.conv1(x) # shape =[*, width, grid, grid] + x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] + x = x.permute(0,2,1)# shape =:[*,grid **2, width] + x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) #shape=[*,grid**2+1,width] + x = x + self.positional_embedding.to(x.dtype) + x = self.ln_pre(x) + + x = x.permute(1,0,2)# NLD -> LND + x = self.transformer(x) + x = x.permute(1,0,2)# LND -> NLD + + x = self.ln_post(x[:,0,:]) + + if self.proj is not None: + x = x @ self.proj + + return x + + +class CLIP(nn.Module): + def __init__(self, + embed_dim:int, + #vision + image_resolution:int, + vision_layers: Union[Tuple[int, int, int, int], int], + vision_width:int, + vision_patch_size:int, + # text + context_length:int, + vocab_size:int, + transformer_width:int, + transformer_heads:int, + transformer_layers: int + ): + super().__init__() + + self.context_length = context_length + # pdb.set_trace() + if isinstance(vision_layers,(tuple, list)): + vision_heads = vision_width * 32 // 64 + self.visual = ModifiedResNet( + layers=vision_layers, + output_dim=embed_dim, + heads=vision_heads, + input_resolution=image_resolution, + width=vision_width + ) + else: + vision_heads = vision_width // 64 + self.visual = VisionTransformer( + input_resolution=image_resolution, + patch_size=vision_patch_size, + width=vision_width, + layers=vision_layers, + heads=vision_heads, + output_dim=embed_dim + ) + + self.transformer= Transformer( + width=transformer_width, + layers=transformer_layers, + heads=transformer_heads, + attn_mask=self.build_attention_mask() + ) + + self.vocab_size = vocab_size + self.token_embedding = nn.Embedding(vocab_size, transformer_width) + self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) + self.ln_final = LayerNorm(transformer_width) + + self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) + self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) + + self.initialize_parameters() + + def initialize_parameters(self): + nn.init.normal_(self.token_embedding.weight, std=0.02) + nn.init.normal_(self.positional_embedding, std=0.01) + + if isinstance(self.visual, ModifiedResNet): + if self.visual.attnpool is not None: + std = self.visual.attnpool.c_proj.in_features ** -0.5 + nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std) + nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std) + nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std) + nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std) + + for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]: + for name, param in resnet_block.named_parameters(): + if name.endswith("bn3.weight"): + nn.init.zeros_(param) + + proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) + attn_std = self.transformer.width ** -0.5 + fc_std = (2 * self.transformer.width) ** -0.5 + for block in self.transformer.resblocks: + nn.init.normal_(block.attn.in_proj_weight, std=attn_std) + nn.init.normal_(block.attn.out_proj.weight, std=proj_std) + nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) + nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) + + if self.text_projection is not None: + nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) + + def build_attention_mask(self): + # lazily create causal attention mask, with full attention between the vision tokens + # pytorch uses additive attention mask; fill with -inf + mask = torch.empty(self.context_length, self.context_length) + mask.fill_(float("-inf")) + mask.triu_(1) # zero out the lower diagonal + return mask + + @property + def dtype(self): + return self.visual.conv1.weight.dtype + + def encode_image(self, image): + return self.visual(image.type(self.dtype)) + + def encode_text(self, text): + x= self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model] + + x= x+ self.positional_embedding.type(self.dtype) + x= x.permute(1,0,2)# NLD -> LND + x= self.transformer(x) + x= x.permute(1, 0, 2) # LND -> NLD + x= self.ln_final(x).type(self.dtype) + + # x.shape = [batch_size, n_ctx, transformer.width] + # take features from the eot embedding (eot_token is the highest number in each sequence) + x = x[torch.arange(x.shape[0]),text.argmax(dim=-1)] @ self.text_projection + + return x + + def forward(self, image, text): + image_features = self.encode_image(image) + text_features = self.encode_text(text) + + # normalized features + image_features = image_features / image_features.norm(dim=-1, keepdim=True) + text_features = text_features / text_features.norm(dim=-1, keepdim=True) + + # cosine similarity as logits + logit_scale = self.logit_scale.exp() + logits_per_image = logit_scale * image_features @ text_features.t() + logits_per_text = logits_per_image.t() + + # shape = [global_batch_size, global_batch_size] + return logits_per_image, logits_per_text + + +def convert_weights(model:nn.Module): + """Convert applicable model parameters to fp16""" + + def _convert_weights_to_fp16(l): + if isinstance(l,(nn.Conv1d,nn.Conv2d, nn.Linear)): + l.weight.data = l.weight.data.half() + if l.bias is not None: + l.bias.data = l.bias.data.half() + + if isinstance(l, nn.MultiheadAttention): + for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k","bias_v"]: + tensor = getattr(l, attr) + if tensor is not None: + tensor.data = tensor.data.half() + + for name in ["text_projection", "proj"]: + if hasattr(l,name): + attr = getattr(l,name) + if attr is not None: + attr.data = attr.data.half() + + model.apply(_convert_weights_to_fp16) + + +def build_model(state_dict:dict): + vit = "visual.proj" in state_dict + + if vit: + vision_width = state_dict["visual.conv1.weight"].shape[0] + vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) + vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] + grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) + image_resolution = vision_patch_size * grid_size + + + else: + # pdb.set_trace() + counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] + vision_layers = tuple(counts) + # pdb.set_trace() + vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] + output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) + vision_patch_size= None + assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] + image_resolution = output_width * 32 + + embed_dim = state_dict["text_projection"].shape[1] + context_length = state_dict["positional_embedding"].shape[0] + vocab_size = state_dict["token_embedding.weight"].shape[0] + transformer_width = state_dict["ln_final.weight"].shape[0] + transformer_heads = transformer_width // 64 + transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) + # pdb.set_trace() + model = CLIP( + embed_dim, + image_resolution, vision_layers, vision_width, vision_patch_size, + context_length, vocab_size, transformer_width, transformer_heads, transformer_layers + ) #768, 224, 24, 1024, 14, 77, vocab_size 49408, transformer_width 768, 12, 12 + + for key in ["input_resolution", "context_length","vocab_size"]: + if key in state_dict: + del state_dict[key] + + convert_weights(model) + model.load_state_dict(state_dict) + return model.eval() diff --git a/models/attriclip_utils/clip/simple_tokenizer.py b/models/attriclip_utils/clip/simple_tokenizer.py new file mode 100644 index 00000000..4471d646 --- /dev/null +++ b/models/attriclip_utils/clip/simple_tokenizer.py @@ -0,0 +1,133 @@ +import gzip +import html +import os +from functools import lru_cache + +import ftfy +import regex as re + + +@lru_cache() +def default_bpe(): + return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") + + +@lru_cache() +def bytes_to_unicode(): + """ + Returns list of utf-s byte and a corresponding list of unicode strings. + The reversible bpe codes work on unicode strings. + This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. + When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. + This is a signficant percentage of your normal, say, 32K bpe vocab. + To avoid that, we want lookup tables between utf-8 bytes and unicode strings. + And avoids mapping to whitespace/control characters the bpe code barfs on.... + """ + bs = list(range(ord("!"), ord("~")+1))+list(range(ord(";"), ord("-")+1))+list(range(ord("@"), ord("y")+1)) + cs= bs[:] + n=0 + for b in range(2**8): + if b not in bs: + bs.append(b) + cs.append(2**8+n) + n+=1 + cs = [chr(n) for n in cs] + return dict(zip(bs, cs)) + + +def get_pairs(word): + """Return set of symbol pairs in a word. + Word is represented as tuple of symbols (symbols being variable-length strings). + """ + pairs = set() + prev_char = word[0] + for char in word[1:]: + pairs.add((prev_char,char)) + prev_char = char + return pairs + + +def basic_clean(text): + text = ftfy.fix_text(text) + text = html.unescape(html.unescape(text)) + return text.strip() + + +def whitespace_clean(text): + text = re.sub(r'\s+', ' ',text) + text = text.strip() + return text + + + +class SimpleTokenizer(object): + def __init__(self,bpe_path: str = default_bpe()): + self.byte_encoder = bytes_to_unicode() + self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} + merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') + merges = merges[1:49152-256-2+1] + merges = [tuple(merge.split()) for merge in merges] + vocab = list(bytes_to_unicode().values()) + vocab = vocab + [v+'' for v in vocab] + for merge in merges: + vocab.append(''.join(merge)) + vocab.extend(['<|startoftext|>','<|endoftext|>']) + self.encoder = dict(zip(vocab,range(len(vocab)))) + self.decoder = {v: k for k, v in self.encoder.items()} + self.bpe_ranks = dict(zip(merges,range(len(merges)))) + self.cache = {'<|startoftext|>':'<|startoftext|>','<|endoftext|>':'<|endoftext|>'} + self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",re.IGNORECASE) + + def bpe(self,token): + if token in self.cache: + return self.cache[token] + word = tuple(token[:-1]) +( token[-1] + '',) + pairs = get_pairs(word) + + if not pairs: + return token+'' + + while True: + bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) + if bigram not in self.bpe_ranks: + break + first, second = bigram + new_word =[] + i=0 + while i < len(word): + try: + j = word.index(first, i) + new_word.extend(word[i:j]) + i = j + except: + new_word.extend(word[i:]) + break + + if word[i] == first and i < len(word)-1 and word[i+1] == second: + new_word.append(first+second) + i += 2 + else: + new_word.append(word[i]) + i+=1 + new_word = tuple(new_word) + word = new_word + if len(word) == 1: + break + else: + pairs = get_pairs(word) + word =' '.join(word) + self.cache[token] = word + return word + + def encode(self, text): + bpe_tokens = [] + text = whitespace_clean(basic_clean(text)).lower() + for token in re.findall(self.pat, text): + token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) + bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) + return bpe_tokens + + def decode(self, tokens): + text = ''.join([self.decoder[token] for token in tokens]) + text = bytearray([self.byte_decoder[c] for c in text]).decode( 'utf-8', errors="replace").replace('',' ') + return text diff --git a/models/attriclip_utils/model.py b/models/attriclip_utils/model.py new file mode 100644 index 00000000..0c376593 --- /dev/null +++ b/models/attriclip_utils/model.py @@ -0,0 +1,284 @@ +import torch +import torch.nn as nn +from torch.nn import functional as F + +from tqdm import tqdm +from copy import deepcopy +import numpy as np + +from models.attriclip_utils.clip.clip_2 import load, tokenize +from models.attriclip_utils.clip.simple_tokenizer import SimpleTokenizer as _Tokenizer +_tokenizer = _Tokenizer() +import time +from models.attriclip_utils.utils import build_cosine_scheduler + + +class PromptLearner(nn.Module): + def __init__(self, device, args, class_names, clip_model, text_prompt, n_ctx=12, prompt_pos=2): + super().__init__() + self.device = device + ctx_dim = clip_model.ln_final.weight.shape[0] + dtype = clip_model.dtype + self.clip_model = clip_model + self.args = args + n_cls = len(class_names) + self.dtype = dtype + + prompt_prefix =' '.join(['x'] * n_ctx * self.args.text_prompt) + prompts = [prompt_prefix + ' ' + name + '.' for name in class_names]# xxxxxx classe + classnames = [name.replace('_', ' ') for name in class_names] + self.name_lens = [len(_tokenizer.encode(name)) for name in class_names] + self.prompt_pos = prompt_pos + + self.text_prompt = text_prompt + tokenized_prompts = torch.cat([tokenize(p) for p in prompts])# conversione frase testuale in numeri + self.tokenized_prompts = tokenized_prompts # token + with torch.no_grad(): + embedding = clip_model.token_embedding(tokenized_prompts.to(self.device)).type(self.dtype)# + self.register_buffer( 'token_prefix', embedding[:, :1, :])# prende token del SOS (start of sequence) + self.register_buffer( 'token_suffix', embedding[:, 1+(n_ctx*self.args.text_prompt):,:]) # prende token CLS, EOS + + nc_prompts = [prompt_prefix+'.' ]#xxxxxxxxxxxxxxxxxxxxx. + nc_tokenized_prompts = torch.cat([tokenize(p) for p in nc_prompts])# conversione della frase senza la classe + self.nc_tokenized_prompts = nc_tokenized_prompts + with torch.no_grad(): + embedding = clip_model.token_embedding(nc_tokenized_prompts.to(self.device)).type(self.dtype) + self.register_buffer('nc_token_prefix', embedding[:, :1,:]) + self.register_buffer('nc_token_suffix', embedding[:, 1+n_ctx:,:]) + + self.n_cls = n_cls + self.n_ctx = n_ctx + self.ctx_dim = ctx_dim + + def forward(self, indices, test_class=None, infer=False): + if test_class is not None: + prompt_prefix =' '.join(['x'] * self.n_ctx*self.args.text_prompt) + prompts = [prompt_prefix + ' ' + name + '.' for name in test_class] + self.name_lens = [len(_tokenizer.encode(name)) for name in test_class] + + self.prompt_pos = self.prompt_pos + + tokenized_prompts = torch.cat([tokenize(p) for p in prompts]) + self.tokenized_prompts = tokenized_prompts + with torch.no_grad(): + embedding = self.clip_model.token_embedding(tokenized_prompts.to(self.device)).type(self.dtype) + self.register_buffer( 'token_prefix', embedding[:, :1, :]) # SOS, [n_cls, 1, ctx_dim] + self.register_buffer( 'token_suffix', embedding[:, 1+(self.n_ctx*self.args.text_prompt):,:]) # CLS, EOS, [n_cls, -1, ctx_dim] + self.n_cls = len(test_class) + batch = indices.shape[0] + ctx=self.text_prompt[indices].view(batch, self.n_ctx*self.args.text_prompt, self.ctx_dim) + tokenized_prompts = self.tokenized_prompts.view(self.n_cls,-1) + n_cls = self.n_cls + + if self.prompt_pos == 2: + prefix = self.token_prefix.unsqueeze(0).repeat(batch,1,1,1) + suffix = self.token_suffix.unsqueeze(0).repeat(batch,1,1,1) + ctx = ctx.unsqueeze(1).repeat(1, n_cls, 1, 1) + prompts = torch.cat([prefix, ctx, suffix],dim=2) + elif self.prompt_pos == 1: + prompts =[] + half_n_ctx = self.n_ctx // 2 + for i in range(n_cls): + name_len = self.name_lens[i] + prefix_i = self.token_prefix[i:i+1, :,:].unsqueeze(1) + class_i = self.token_suffix[i:i+1,:name_len, :].unsqueeze(1) + suffix_i = self.token_suffix[i:i+1, name_len:,:].unsqueeze(1) + ctx_i_half1 = ctx[:,:half_n_ctx, :].unsqueeze(0) + ctx_i_half2 = ctx[:, half_n_ctx:,:].unsqueeze(0) + prompt = torch.cat([prefix_i, ctx_i_half1, class_i, ctx_i_half2, suffix_i],dim=2) + prompts.append(prompt) + prompts = torch.cat(prompts, dim=0) + elif self.prompt_pos == 0: + prompts =[] + for i in range(self.n_cls): + name_len = self.name_lens[i] + prefix_i = self.token_prefix[i:i+1,:,:].unsqueeze(1) + class_i = self.token_suffix[i:i+1, :name_len,:].unsqueeze(1) + suffix_i = self.token_suffix[i:i+1, name_len:,:].unsqueeze(1) + ctx_i = ctx.unsqueeze(0) + prompt = torch.cat([prefix_i, class_i, ctx_i, suffix_i], dim=2) + prompts.append(prompt) + prompts = torch.cat(prompts, dim=0) + + prompts = prompts.squeeze(2).view(batch*self.n_cls, -1, self.ctx_dim) + tokenized_prompts = tokenized_prompts.unsqueeze(0).repeat(batch,1,1).view(batch*self.n_cls, -1) + self.prompts = prompts + self.prompts_token = tokenized_prompts + if infer: + return prompts, tokenized_prompts + else: + nc_prompts, nc_tokenized_prompts = self.only_prefix() + return prompts, tokenized_prompts, nc_prompts, nc_tokenized_prompts + + def only_prefix(self): + ctx = self.text_prompt + prompt_size = ctx.shape[0] + nc_tokenized_prompts = self.nc_tokenized_prompts.repeat(prompt_size, 1) + prefix = self.nc_token_prefix.repeat(prompt_size, 1, 1) + suffix = self.nc_token_suffix.repeat(prompt_size, 1, 1) + nc_prompts = torch.cat([prefix, ctx, suffix],dim=1) + return nc_prompts, nc_tokenized_prompts + + +class TextEncoder(nn.Module): + def __init__(self, clip_model): + super().__init__() + self.transformer = clip_model.transformer + self.positional_embedding = clip_model.positional_embedding + self.ln_final = clip_model.ln_final + self.text_projection = clip_model.text_projection + self.dtype = clip_model.dtype + + def forward(self, x, tokenized_prompts): + x = x + self.positional_embedding.type(self.dtype) + x = x.permute(1, 0, 2) + x = self.transformer(x) + x = x.permute(1, 0, 2) + x = self.ln_final(x).type(self.dtype) + x = x[torch.arange(x.shape[0]), tokenized_prompts.argmax(dim=-1)] @ self.text_projection + return x + + +class CLIP(nn.Module): + def __init__(self, device, args, class_names, clip_model, text_key, text_prompt, n_ctx=12): + super().__init__() + self.n_class = len(class_names) + self.device = device + self.args = args + + # text enoder + self.text_encoder = TextEncoder(clip_model) + # if torch.cuda.device_count() > 1: + # self.text_encoder = nn.DataParallel(self.text_encoder) + + self.prompt_learner = PromptLearner(self.device, self.args, class_names, clip_model, text_prompt, n_ctx=n_ctx) + self.text_key = text_key + # image encoder + self.image_encoder = clip_model.visual + self.logit_scale = clip_model.logit_scale + + def forward(self, image, test_class=None, test=False): + + with torch.no_grad(): + image_features = self.image_encoder(image.type(self.dtype)) + image_features = image_features / image_features.norm(dim=-1, keepdim=True) + image_features = image_features.detach() + + if test: + n_test = len(test_class) + probability = image_features @ self.text_key.t() + _, indices = probability.topk(k=min(self.args.text_prompt,probability.shape[1]), dim=1, largest=True) + text_prompt, tokenized_prompts = self.prompt_learner(indices,test_class,test) + text_features = self.text_encoder(text_prompt,tokenized_prompts) + text_features = text_features / text_features.norm(dim=-1, keepdim=True) + logit_scale = self.logit_scale.exp() + text_features = text_features.view(image_features.shape[0], n_test, -1) + image_features = image_features.unsqueeze(1) + logit_scale = self.logit_scale.exp() + logits = logit_scale * (image_features * text_features).sum(-1) + return logits + + else: + n_class = self.n_class + probability = image_features @ self.text_key.t() + _, indices = probability.topk(k=min(self.args.text_prompt, probability.shape[1]), dim=1, largest=True) + key_choose = self.text_key[indices] + text_prompt, tokenized_prompts, nc_prompts, nc_tokenized_prompts = self.prompt_learner(indices) + text_features = self.text_encoder(text_prompt,tokenized_prompts) + text_features = text_features / text_features.norm(dim=-1, keepdim=True) + text_features = text_features.view(image_features.shape[0], n_class, -1) + image_features = image_features.unsqueeze(1) + logit_scale = self.logit_scale.exp() + logits = logit_scale * (image_features * text_features).sum(-1) + + nc_text_features = self.text_encoder(nc_prompts, nc_tokenized_prompts) + nc_text_features = nc_text_features / nc_text_features.norm(dim=-1, keepdim=True) + dis = nc_text_features @ nc_text_features.permute(1, 0) + loss_m = dis[~torch.eye(self.args.num_prompt, dtype=torch.bool, device=self.device)].abs().mean() + + return logits, image_features, key_choose, loss_m + + + @property + def dtype(self): + return self.image_encoder.conv1.weight.dtype + + +class CoOp: + def __init__(self, device, prev_key, prev_prompt, args, n_ctx=12, use_float32=False, use_grad_checkpoint=False, keep=False): + super().__init__() + self.device = device + self.args = args + clip_model, _ = load('ViT-L/14') + clip_model.eval() + if use_float32: + clip_model.float() + + if self.args.freeze_clip: + for param in clip_model.parameters(): + param.requires_grad = False + + self.clip_model = clip_model + self.use_grad_checkpoint = use_grad_checkpoint + self.num_prompt = args.num_prompt + self.n_ctx = n_ctx + self.lr = args.lr*args.batch_size/20 + self.wd = args.optim_wd + self.epochs = args.n_epochs + self.train_batch = args.batch_size + self.args = args + dtype = clip_model.dtype + self.dtype = dtype + # prompt learner + ctx_dim = clip_model.ln_final.weight.shape[0] + text_key = torch.empty(self.num_prompt, ctx_dim, dtype=self.dtype).to(self.device) + nn.init.normal_(text_key, std=0.02) + text_prompt = torch.empty(self.num_prompt, n_ctx, ctx_dim, dtype=self.dtype).to(self.device) + nn.init.normal_(text_prompt, std=0.02) + if keep == True : + self.text_key = nn.Parameter(prev_key) + self.text_prompt = nn.Parameter(prev_prompt) + else: + self.text_key = nn.Parameter(text_key) + self.text_prompt = nn.Parameter(text_prompt) + + def init_model(self, class_names, text_key, text_prompt): + + self.n_class = len(class_names) + clip_model = deepcopy(self.clip_model) + + self.model = CLIP(self.device, self.args, class_names, clip_model, text_key, text_prompt, self.n_ctx) + if self.use_grad_checkpoint: + try: + self.model.text_encoder.transformer.use_gradient_checkpoint = True + except: + self.model.text_encoder.module.transformer.use_gradient_checkpoint = True + + def get_optimizer(self, per_epoch_steps): + Other_params = [param for name, param in self.model.named_parameters() if 'text_key' in name] + param_dict = [{'params': [p for p in self.model.prompt_learner.parameters() if p.requires_grad]}, + {'params': Other_params}] + + optimizer = torch.optim.SGD(param_dict, lr=self.lr, weight_decay=self.wd) + scheduler = build_cosine_scheduler( + optimizer, + lr=self.lr, + total_step=self.epochs*per_epoch_steps) + + return optimizer, scheduler + + @property + def training(self): + return self.model.training + + def train(self, mode=True): + self.model.train(mode) + + def eval(self): + self.model.eval() + + def to(self, device): + self.model.to(device) + + def parameters(self): + return self.model.parameters() diff --git a/models/attriclip_utils/utils.py b/models/attriclip_utils/utils.py new file mode 100644 index 00000000..e5135b35 --- /dev/null +++ b/models/attriclip_utils/utils.py @@ -0,0 +1,60 @@ +import numpy as np + +def cosine_schedule_warmup(total_step, value, final_value=0, warmup_step=0, warmup_value=0): + if warmup_step > 0: + warmup_schedule = np.linspace(warmup_value, value, warmup_step+2)[1:-1] + else: + warmup_schedule = np.array([]) + steps = np.arange(total_step - warmup_step) + schedule = final_value + 0.5 * (value-final_value) * (1+np.cos(np.pi * steps / len(steps))) + schedule = np.concatenate((warmup_schedule, schedule)) + assert len(schedule) == total_step + return schedule + +class build_cosine_scheduler: + def __init__(self, optimizer, lr, total_step, lr_warmup_step=0): + init_lr = 0 + final_lr = lr * 1e-3 + self.lrs = cosine_schedule_warmup(total_step, lr, final_lr, lr_warmup_step, init_lr) + self.optimizer = optimizer + + def step(self,idx): + lr = self.lrs[idx] + for i, param_group in enumerate(self.optimizer.param_groups): + param_group["lr"]= lr + self.lr=lr + +class build_bicosine_scheduler: + def __init__(self, optimizer, lr, total_step, lr_warmup_step=0): + lr_promt = lr[0] + lr_conv = lr[1] + init_lr=0 + final_lr_promt = lr_promt * 1e-3 + final_lr_conv = lr_conv * 1e-3 + self.lrs_prompt = cosine_schedule_warmup(total_step, lr_promt, final_lr_promt, lr_warmup_step, init_lr) + self.lrs_conv = cosine_schedule_warmup(total_step, lr_conv, final_lr_conv, lr_warmup_step, init_lr) + self.optimizer = optimizer + + def step(self,idx): + lr_promt = self.lrs_prompt[idx] + lr_conv = self.lrs_conv[idx] + for i, param_group in enumerate(self.optimizer.param_groups): + # pdb.set_trace() + if i==0: + param_group["lr"] = lr_conv + else: + param_group["lr"] = lr_promt + self.lr_conv = lr_conv + self.lr_prompt = lr_promt + +def cosine_loss(q,k): + # pdb.set_trace() + q = q.repeat(1,k.shape[1],1) + # k = k.squeeze(1) + # q = q/q.norm(dim=-1) + k_norm = k.norm(dim=-1,keepdim=True) + # pdb.set_trace() + # k_norm = k.norm(dim=-1).unsqueeze(1).repeat(1,k.shape[1]) + k = k/k_norm + cos = ((q*k)/(k.shape[0]*k.shape[1])).sum() + return 1-cos \ No newline at end of file diff --git a/requirements.txt b/requirements.txt index 51f9625c..51910471 100644 --- a/requirements.txt +++ b/requirements.txt @@ -5,4 +5,6 @@ kornia>=0.7.0 Pillow timm==0.9.8 tqdm -onedrivedownloader \ No newline at end of file +onedrivedownloader +ftfy +regex \ No newline at end of file From b6cf71cda5a204398d24e4c49ab9e2939dc5922f Mon Sep 17 00:00:00 2001 From: lorib Date: Tue, 9 Jul 2024 15:48:22 +0200 Subject: [PATCH 38/66] updated starprompt keys load --- models/second_stage_starprompt.py | 5 +++++ models/star_prompt_utils/second_stage_model.py | 15 +++++++++++---- 2 files changed, 16 insertions(+), 4 deletions(-) diff --git a/models/second_stage_starprompt.py b/models/second_stage_starprompt.py index 0f56ba67..9fabb3df 100644 --- a/models/second_stage_starprompt.py +++ b/models/second_stage_starprompt.py @@ -225,6 +225,11 @@ def get_scheduler(self): return CosineSchedule(self.opt, K=self.args.n_epochs) def begin_task(self, dataset): + if self.args.permute_classes: + if hasattr(self.net.prompter, 'old_args'): + assert self.args.seed == self.net.prompter.old_args.seed + assert (self.args.class_order == self.net.prompter.old_args.class_order).all() + self.recall() if hasattr(self, 'opt'): diff --git a/models/star_prompt_utils/second_stage_model.py b/models/star_prompt_utils/second_stage_model.py index 70c75ee3..18a724a3 100644 --- a/models/star_prompt_utils/second_stage_model.py +++ b/models/star_prompt_utils/second_stage_model.py @@ -35,15 +35,18 @@ def __init__(self, args, dataset: ContinualDataset, if args.keys_ckpt_path is not None: if args.keys_ckpt_path.endswith('.json'): try: - key_jobnum = json.load(open(os.path.join(os.path.dirname(__file__), 'first_stage_keys.json'), 'r'))[args.dataset][str(args.seed)] + key_jobnum = json.load(open(args.keys_ckpt_path, 'r'))[args.dataset][str(args.seed)] except BaseException: print("key missing", args.dataset, args.seed, file=sys.stderr) raise ValueError t = dataset.N_TASKS - 1 self.keys_ckpt_path = f"coop_keys/coop_keys_{t}_{key_jobnum}.pt" - else: + elif args.keys_ckpt_path.endswith('.pt'): self.keys_ckpt_path = args.keys_ckpt_path + else: + t = dataset.N_TASKS - 1 + self.keys_ckpt_path = f"coop_keys/coop_keys_{t}_{self.keys_ckpt_path}.pt" if not os.path.exists(self.keys_ckpt_path): raise ValueError(f'Keys checkpoint `{self.keys_ckpt_path}` does not exist') @@ -104,10 +107,14 @@ def load_keys(self): print(f'Loading keys from {self.keys_ckpt_path}', file=sys.stderr) st = torch.load(self.keys_ckpt_path) keys = st['keys'].to(self.device) - old_args = st['args'] + self.old_args = st['args'] assert self.num_classes == keys.shape[0] + assert self.args.dataset == self.old_args.dataset + assert self.args.permute_classes == self.old_args.permute_classes + if self.args.permute_classes: + assert self.args.seed == self.old_args.seed print('Keys loaded successfully', file=sys.stderr) - return keys.float(), old_args + return keys.float(), self.old_args @torch.no_grad() def get_query(self, x, disable_renorm=False): From 8e2513cdae641857eebcd7e9fa8bc7907c4796f4 Mon Sep 17 00:00:00 2001 From: lorib Date: Tue, 9 Jul 2024 17:19:48 +0200 Subject: [PATCH 39/66] fix denorm for tensors --- datasets/transforms/denormalization.py | 34 +++++++++++++++---- models/second_stage_starprompt.py | 32 +++++++++-------- .../star_prompt_utils/second_stage_model.py | 3 ++ 3 files changed, 49 insertions(+), 20 deletions(-) diff --git a/datasets/transforms/denormalization.py b/datasets/transforms/denormalization.py index c5cea852..bc8bfaac 100644 --- a/datasets/transforms/denormalization.py +++ b/datasets/transforms/denormalization.py @@ -4,6 +4,11 @@ # LICENSE file in the root directory of this source tree. +import PIL +import numpy as np +import torch + + class DeNormalize(object): def __init__(self, mean, std): """ @@ -13,19 +18,36 @@ def __init__(self, mean, std): mean (list): List of mean values for each channel. std (list): List of standard deviation values for each channel. """ + if isinstance(mean, list): + mean = torch.tensor(mean) + elif isinstance(mean, np.ndarray): + mean = torch.from_numpy(mean) + if isinstance(std, list): + std = torch.tensor(std) + elif isinstance(std, np.ndarray): + std = torch.from_numpy(std) + self.mean = mean self.std = std - def __call__(self, tensor): + def __call__(self, tensor: torch.Tensor|PIL.Image.Image): """ Applies denormalization to the input tensor. Args: - tensor (Tensor): Tensor image of size (C, H, W) to be denormalized. + tensor (Tensor): Tensor of images of size ([B,] C, H, W) to be denormalized. Returns: - Tensor: Denormalized image. + Tensor: Denormalized tensor. """ - for t, m, s in zip(tensor, self.mean, self.std): - t.mul_(s).add_(m) - return tensor + if isinstance(tensor, PIL.Image.Image): + tensor = torch.tensor(np.array(tensor).transpose(2, 0, 1)).float() + + if tensor.ndimension() == 3: + tensor = tensor.unsqueeze(0) + + if tensor.device != self.mean.device: + self.mean = self.mean.to(tensor.device) + self.std = self.std.to(tensor.device) + + return (tensor * self.std[:, None, None]) + self.mean[:, None, None] \ No newline at end of file diff --git a/models/second_stage_starprompt.py b/models/second_stage_starprompt.py index 9fabb3df..766a2211 100644 --- a/models/second_stage_starprompt.py +++ b/models/second_stage_starprompt.py @@ -61,6 +61,9 @@ def get_parser() -> ArgumentParser: "- `concat`: Prefix-Tuning style prompting.") parser.add_argument('--prefix_tuning_prompt_len', type=int, default=5, help="Prompt length for prefix tuning. Used only if `--prompt_mode==concat`.") + + parser.add_argument("--enable_confidence_modulation", type=int, default=-1, choices=[0, 1], + help="Enable confidence modulation with CLIP similarities (Eq. 5 of the main paper)?") return parser @@ -97,20 +100,6 @@ def _get_dist(self, embed_dim): def norm(self, t): return torch.norm(t, p=2, dim=-1, keepdim=True) + 1e-7 - def per_task_norms(self, logits): - - per_task_norm = [] - - for _ti in range(self.current_task + 1): - prev_t_size, cur_t_size = self.compute_offsets(_ti) - temp_norm = self.norm(logits[:, prev_t_size:cur_t_size]) - per_task_norm.append(temp_norm) - - per_task_norm = torch.cat(per_task_norm, dim=-1) - norms = per_task_norm.mean(dim=-1, keepdim=True) - - return norms - @torch.no_grad() def create_features_dataset(self): @@ -230,6 +219,21 @@ def begin_task(self, dataset): assert self.args.seed == self.net.prompter.old_args.seed assert (self.args.class_order == self.net.prompter.old_args.class_order).all() + tot, corr = 0, 0 + for ts in dataset.test_loaders: + for data in ts: + inputs, labels = data + inputs, labels = inputs.to(self.device), labels.to(self.device) + queries = self.net.prompter.get_query(inputs) + + queries = torch.nn.functional.normalize(queries, dim=-1) + + logits = torch.einsum('bd,cd->bc', queries, self.net.prompter.keys) * 5 + + corr += (logits.argmax(dim=-1) == labels).sum().item() + tot += labels.shape[0] + print(f"CLIP on test set: {corr / tot}") + self.recall() if hasattr(self, 'opt'): diff --git a/models/star_prompt_utils/second_stage_model.py b/models/star_prompt_utils/second_stage_model.py index 18a724a3..d457589f 100644 --- a/models/star_prompt_utils/second_stage_model.py +++ b/models/star_prompt_utils/second_stage_model.py @@ -147,6 +147,9 @@ def compute_super_prompts(self, p, sim_act_map, start_idx, end_idx): sim_act_map = sim_act_map[:, start_idx:end_idx] p = p[start_idx:end_idx] + if self.args.enable_confidence_modulation == 0: + sim_act_map = (sim_act_map != 0).float() # make it binary if not using confidence modulation + if self.args.prompt_mode == 'residual': sp = torch.einsum('bc,cd->bd', sim_act_map, p) else: From 826f9a5f27f82ff5a26558bc7c4a673e2f4cfe49 Mon Sep 17 00:00:00 2001 From: lorib Date: Tue, 9 Jul 2024 17:30:14 +0200 Subject: [PATCH 40/66] updated default for permute_classes --- utils/args.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/utils/args.py b/utils/args.py index 778ed194..90050086 100644 --- a/utils/args.py +++ b/utils/args.py @@ -95,7 +95,7 @@ def add_management_args(parser: ArgumentParser) -> None: mng_group.add_argument('--seed', type=int, default=None, help='The random seed. If not provided, a random seed will be used.') - mng_group.add_argument('--permute_classes', type=int, choices=[0, 1], default=0, + mng_group.add_argument('--permute_classes', type=int, choices=[0, 1], default=1, help='Permute classes before splitting into tasks? This applies the seed before permuting if the `seed` argument is present.') mng_group.add_argument('--base_path', type=str, default="./data/", help='The base path where to save datasets, logs, results.') From 7d3cdede40e94420430f7e128b6833dafa124fe4 Mon Sep 17 00:00:00 2001 From: lorib Date: Tue, 9 Jul 2024 20:45:25 +0200 Subject: [PATCH 41/66] minor fix denorm --- datasets/transforms/denormalization.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/datasets/transforms/denormalization.py b/datasets/transforms/denormalization.py index bc8bfaac..2aca916e 100644 --- a/datasets/transforms/denormalization.py +++ b/datasets/transforms/denormalization.py @@ -18,19 +18,19 @@ def __init__(self, mean, std): mean (list): List of mean values for each channel. std (list): List of standard deviation values for each channel. """ - if isinstance(mean, list): + if isinstance(mean, (list, tuple)): mean = torch.tensor(mean) elif isinstance(mean, np.ndarray): mean = torch.from_numpy(mean) if isinstance(std, list): std = torch.tensor(std) elif isinstance(std, np.ndarray): - std = torch.from_numpy(std) + std = torch.from_numpy(std) self.mean = mean self.std = std - def __call__(self, tensor: torch.Tensor|PIL.Image.Image): + def __call__(self, tensor: torch.Tensor | PIL.Image.Image): """ Applies denormalization to the input tensor. @@ -50,4 +50,4 @@ def __call__(self, tensor: torch.Tensor|PIL.Image.Image): self.mean = self.mean.to(tensor.device) self.std = self.std.to(tensor.device) - return (tensor * self.std[:, None, None]) + self.mean[:, None, None] \ No newline at end of file + return (tensor * self.std[:, None, None]) + self.mean[:, None, None] From 2b16d079351e4e9a2b2cb54c2415ada812109302 Mon Sep 17 00:00:00 2001 From: lorib Date: Tue, 9 Jul 2024 21:15:40 +0200 Subject: [PATCH 42/66] fix cropdisease epochs --- datasets/seq_cropdisease.py | 13 ++++++------- datasets/transforms/denormalization.py | 2 +- datasets/utils/__init__.py | 4 +++- 3 files changed, 10 insertions(+), 9 deletions(-) diff --git a/datasets/seq_cropdisease.py b/datasets/seq_cropdisease.py index b8767e5b..c089fb54 100644 --- a/datasets/seq_cropdisease.py +++ b/datasets/seq_cropdisease.py @@ -16,6 +16,7 @@ from utils.prompt_templates import templates from backbone.vit import vit_base_patch16_224_prompt_prototype + class CropDisease(Dataset): LABELS = [ @@ -111,7 +112,7 @@ def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: if not self.train: return img, target - + if hasattr(self, 'logits'): return img, target, not_aug_img, self.logits[index] @@ -127,7 +128,6 @@ class SequentialCropDisease(ContinualDataset): N_CLASSES_PER_TASK = N_CLASSES // N_TASKS SIZE = (224, 224) MEAN, STD = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] - TRANSFORM = transforms.Compose([ transforms.RandomResizedCrop(SIZE, interpolation=InterpolationMode.BICUBIC), @@ -145,9 +145,9 @@ class SequentialCropDisease(ContinualDataset): def get_data_loaders(self): train_dataset = CropDisease(base_path() + 'cropdisease', train=True, - download=True, transform=self.TRANSFORM) + download=True, transform=self.TRANSFORM) test_dataset = CropDisease(base_path() + 'cropdisease', train=False, - download=True, transform=self.TEST_TRANSFORM) + download=True, transform=self.TEST_TRANSFORM) train, test = store_masked_loaders(train_dataset, test_dataset, self) @@ -156,7 +156,7 @@ def get_data_loaders(self): def get_class_names(self): if self.class_names is not None: return self.class_names - classes = [x.replace('_', ' ') for x in CropDisease.LABELS] # .split('___')[-1] + classes = [x.replace('_', ' ') for x in CropDisease.LABELS] # .split('___')[-1] classes = fix_class_names_order(classes, self.args) self.class_names = classes return self.class_names @@ -193,7 +193,6 @@ def get_denormalization_transform(): def get_epochs(self): return 5 - @set_default_from_args('n_epochs') + @set_default_from_args('batch_size') def get_batch_size(self): return 128 - diff --git a/datasets/transforms/denormalization.py b/datasets/transforms/denormalization.py index 2aca916e..edd4e951 100644 --- a/datasets/transforms/denormalization.py +++ b/datasets/transforms/denormalization.py @@ -22,7 +22,7 @@ def __init__(self, mean, std): mean = torch.tensor(mean) elif isinstance(mean, np.ndarray): mean = torch.from_numpy(mean) - if isinstance(std, list): + if isinstance(std, (list, tuple)): std = torch.tensor(std) elif isinstance(std, np.ndarray): std = torch.from_numpy(std) diff --git a/datasets/utils/__init__.py b/datasets/utils/__init__.py index 5b84ff37..10f2e367 100644 --- a/datasets/utils/__init__.py +++ b/datasets/utils/__init__.py @@ -38,7 +38,9 @@ def set_default_from_args(arg_name: str): def decorator_set_default_from_args(func): n_args = len(inspect.signature(func).parameters) - if n_args == 1: # has self + if arg_name in DEFAULT_ARGS[caller_name]: + raise ValueError(f"Argument `{arg_name}` already has a default value in `{caller_name}`") + if n_args == 1: # has self DEFAULT_ARGS[caller_name][arg_name] = func(None) else: DEFAULT_ARGS[caller_name][arg_name] = func() From 107d1f565decd7e3d96b3a03ab371de0126f0ff5 Mon Sep 17 00:00:00 2001 From: lorib Date: Wed, 10 Jul 2024 01:18:07 +0200 Subject: [PATCH 43/66] fix clip performance when loading second stage --- models/second_stage_starprompt.py | 43 ++++++++++++------- .../star_prompt_utils/second_stage_model.py | 14 +++--- utils/augmentations.py | 20 +++++++++ 3 files changed, 56 insertions(+), 21 deletions(-) diff --git a/models/second_stage_starprompt.py b/models/second_stage_starprompt.py index 766a2211..f8e8e8c0 100644 --- a/models/second_stage_starprompt.py +++ b/models/second_stage_starprompt.py @@ -4,6 +4,7 @@ from tqdm import tqdm from argparse import ArgumentParser +from utils.augmentations import RepeatedTransform from utils.conf import create_seeded_dataloader from utils.schedulers import CosineSchedule from models.utils.continual_model import ContinualModel @@ -61,7 +62,7 @@ def get_parser() -> ArgumentParser: "- `concat`: Prefix-Tuning style prompting.") parser.add_argument('--prefix_tuning_prompt_len', type=int, default=5, help="Prompt length for prefix tuning. Used only if `--prompt_mode==concat`.") - + parser.add_argument("--enable_confidence_modulation", type=int, default=-1, choices=[0, 1], help="Enable confidence modulation with CLIP similarities (Eq. 5 of the main paper)?") @@ -167,7 +168,8 @@ def update_statistics(self, dataset): for i, data in enumerate(dataset.train_loader): x, labels = data[0], data[1] x, labels = x.to(self.device), labels.to(self.device, dtype=torch.long) - features = self.net(x, return_features=True, cur_classes=self.n_seen_classes, frozen_past_classes=self.n_past_classes) + x, query_x = x[:, 0], x[:, 1] + features = self.net(x, query_x=query_x, return_features=True, cur_classes=self.n_seen_classes, frozen_past_classes=self.n_past_classes) features = features[:, 0] for class_idx in labels.unique(): @@ -219,20 +221,29 @@ def begin_task(self, dataset): assert self.args.seed == self.net.prompter.old_args.seed assert (self.args.class_order == self.net.prompter.old_args.class_order).all() - tot, corr = 0, 0 - for ts in dataset.test_loaders: - for data in ts: - inputs, labels = data - inputs, labels = inputs.to(self.device), labels.to(self.device) - queries = self.net.prompter.get_query(inputs) + dataset.train_loader.dataset.transform = RepeatedTransform([dataset.train_loader.dataset.transform, self.net.prompter.clip_preprocess]) + dataset.test_loaders[-1].dataset.transform = RepeatedTransform([dataset.test_loaders[-1].dataset.transform, self.net.prompter.clip_preprocess]) + + # Remove comment if you want to check if the keys are loaded correctly and results are the same as the first stage + # tot_data, tot_corr = 0, 0 + # for i, ts in enumerate(dataset.test_loaders): + # task_tot, task_corr = 0, 0 + # for data in ts: + # inputs, labels = data + # inputs, labels = inputs.to(self.device), labels.to(self.device) + # _, inputs = inputs[:, 0], inputs[:, 1] + # queries = self.net.prompter.get_query(inputs) - queries = torch.nn.functional.normalize(queries, dim=-1) + # queries = torch.nn.functional.normalize(queries, dim=-1) - logits = torch.einsum('bd,cd->bc', queries, self.net.prompter.keys) * 5 + # logits = torch.einsum('bd,cd->bc', queries, self.net.prompter.keys.type(self.net.prompter.clip_model.dtype)) - corr += (logits.argmax(dim=-1) == labels).sum().item() - tot += labels.shape[0] - print(f"CLIP on test set: {corr / tot}") + # task_corr += (logits.argmax(dim=-1) == labels).sum().item() + # task_tot += labels.shape[0] + # print(f"CLIP on TASK {i+1}: {task_corr / task_tot}") + # tot_corr += task_corr + # tot_data += task_tot + # print(f"AVG CLIP ON TASKS: {tot_corr / tot_data}") # the avg of the avg != the avg of the total self.recall() @@ -243,13 +254,15 @@ def begin_task(self, dataset): self.scheduler = self.get_scheduler() def forward(self, x): - logits = self.net(x, cur_classes=self.n_seen_classes) + x, query_x = x[:, 0], x[:, 1] # from repeated transform + logits = self.net(x, query_x=query_x, cur_classes=self.n_seen_classes) logits = logits[:, :self.n_seen_classes] return logits def observe(self, inputs, labels, not_aug_inputs, epoch=None): stream_inputs, stream_labels = inputs, labels - stream_logits = self.net(stream_inputs, cur_classes=self.n_seen_classes, frozen_past_classes=self.n_past_classes) + stream_inputs, query_stream_inputs = stream_inputs[:, 0], stream_inputs[:, 1] + stream_logits = self.net(stream_inputs, query_x=query_stream_inputs, cur_classes=self.n_seen_classes, frozen_past_classes=self.n_past_classes) with torch.no_grad(): stream_preds = stream_logits[:, :self.n_seen_classes].argmax(dim=1) diff --git a/models/star_prompt_utils/second_stage_model.py b/models/star_prompt_utils/second_stage_model.py index d457589f..93ce43f2 100644 --- a/models/star_prompt_utils/second_stage_model.py +++ b/models/star_prompt_utils/second_stage_model.py @@ -46,7 +46,7 @@ def __init__(self, args, dataset: ContinualDataset, self.keys_ckpt_path = args.keys_ckpt_path else: t = dataset.N_TASKS - 1 - self.keys_ckpt_path = f"coop_keys/coop_keys_{t}_{self.keys_ckpt_path}.pt" + self.keys_ckpt_path = f"coop_keys/coop_keys_{t}_{args.keys_ckpt_path}.pt" if not os.path.exists(self.keys_ckpt_path): raise ValueError(f'Keys checkpoint `{self.keys_ckpt_path}` does not exist') @@ -117,7 +117,7 @@ def load_keys(self): return keys.float(), self.old_args @torch.no_grad() - def get_query(self, x, disable_renorm=False): + def get_query(self, x, disable_renorm=True): if not disable_renorm: x = self.denorm_transform(x) x = self.clip_normalization(x) @@ -148,7 +148,7 @@ def compute_super_prompts(self, p, sim_act_map, start_idx, end_idx): p = p[start_idx:end_idx] if self.args.enable_confidence_modulation == 0: - sim_act_map = (sim_act_map != 0).float() # make it binary if not using confidence modulation + sim_act_map = (sim_act_map != 0).float() # make it binary if not using confidence modulation if self.args.prompt_mode == 'residual': sp = torch.einsum('bc,cd->bd', sim_act_map, p) @@ -164,7 +164,8 @@ def get_prompts(self, layer_idx, clip_out, cur_classes: int, frozen_past_classes if self.prompt_mode == 'residual': pv: torch.Tensor = getattr(self, f'p_{layer_idx}') else: - clip_out = clip_out[:, :1] # only use class token for prefix tuning + # clip_out = clip_out[:, :1] + # only use class token for prefix tuning p_concat: torch.Tensor = getattr(self, f'p_concat_{layer_idx}') p_concat_k, p_concat_v = torch.split(p_concat, self.args.prefix_tuning_prompt_len, dim=1) @@ -304,8 +305,9 @@ def train(self, mode=True): return self - def forward(self, x, cur_classes: int, frozen_past_classes=0, return_features=False): - clip_out = self.prompter.get_query(x, disable_renorm=False) + def forward(self, x, query_x, cur_classes: int, frozen_past_classes=0, return_features=False): + assert query_x is not None, "Query is required for STAR-Prompt" + clip_out = self.prompter.get_query(query_x) features = self.vit.forward_features(x, first_stage_query=clip_out, prompter=self.prompter, cur_classes=cur_classes, frozen_past_classes=frozen_past_classes) if return_features: return features diff --git a/utils/augmentations.py b/utils/augmentations.py index efa0c763..0cd7231c 100644 --- a/utils/augmentations.py +++ b/utils/augmentations.py @@ -35,6 +35,8 @@ def apply_transform(x: torch.Tensor, transform) -> torch.Tensor: x = torch.as_tensor(np.array(x, copy=True)).permute((2, 0, 1)) return transform(x) else: + if isinstance(x, PIL.Image.Image): + return transform(x) return torch.stack([transform(xi) for xi in x.cpu()], dim=0).to(x.device) @@ -236,6 +238,24 @@ def __call__(self, x): )), self.mean, self.std) +class RepeatedTransform(object): + """ + This class applies a series of transforms to the same input. + + Args: + transform_list: The list of transformations to be applied. + """ + + def __init__(self, transform_list: list): + self.transform_list = transform_list + + assert len(self.transform_list) > 0, 'The list of transformations must not be empty.' + + @torch.no_grad() + def __call__(self, input): + return torch.stack([apply_transform(input, t) for t in self.transform_list]) + + class DoubleTransform(object): """ This class applies a given transformation to the first image and leaves the second input unchanged. From 0e353589f7fa0436e06689b3e3642f5af4eaa434 Mon Sep 17 00:00:00 2001 From: lorib Date: Wed, 10 Jul 2024 10:41:23 +0200 Subject: [PATCH 44/66] add data aug query in train --- models/second_stage_starprompt.py | 10 +++++----- models/star_prompt_utils/second_stage_model.py | 4 ++-- 2 files changed, 7 insertions(+), 7 deletions(-) diff --git a/models/second_stage_starprompt.py b/models/second_stage_starprompt.py index f8e8e8c0..119a5b65 100644 --- a/models/second_stage_starprompt.py +++ b/models/second_stage_starprompt.py @@ -168,8 +168,8 @@ def update_statistics(self, dataset): for i, data in enumerate(dataset.train_loader): x, labels = data[0], data[1] x, labels = x.to(self.device), labels.to(self.device, dtype=torch.long) - x, query_x = x[:, 0], x[:, 1] - features = self.net(x, query_x=query_x, return_features=True, cur_classes=self.n_seen_classes, frozen_past_classes=self.n_past_classes) + #x, query_x = x[:, 0], x[:, 1] + features = self.net(x, return_features=True, cur_classes=self.n_seen_classes, frozen_past_classes=self.n_past_classes) features = features[:, 0] for class_idx in labels.unique(): @@ -221,7 +221,7 @@ def begin_task(self, dataset): assert self.args.seed == self.net.prompter.old_args.seed assert (self.args.class_order == self.net.prompter.old_args.class_order).all() - dataset.train_loader.dataset.transform = RepeatedTransform([dataset.train_loader.dataset.transform, self.net.prompter.clip_preprocess]) + #dataset.train_loader.dataset.transform = RepeatedTransform([dataset.train_loader.dataset.transform, self.net.prompter.clip_preprocess]) dataset.test_loaders[-1].dataset.transform = RepeatedTransform([dataset.test_loaders[-1].dataset.transform, self.net.prompter.clip_preprocess]) # Remove comment if you want to check if the keys are loaded correctly and results are the same as the first stage @@ -261,8 +261,8 @@ def forward(self, x): def observe(self, inputs, labels, not_aug_inputs, epoch=None): stream_inputs, stream_labels = inputs, labels - stream_inputs, query_stream_inputs = stream_inputs[:, 0], stream_inputs[:, 1] - stream_logits = self.net(stream_inputs, query_x=query_stream_inputs, cur_classes=self.n_seen_classes, frozen_past_classes=self.n_past_classes) + # stream_inputs, query_stream_inputs = stream_inputs[:, 0], stream_inputs[:, 1] + stream_logits = self.net(stream_inputs, cur_classes=self.n_seen_classes, frozen_past_classes=self.n_past_classes) with torch.no_grad(): stream_preds = stream_logits[:, :self.n_seen_classes].argmax(dim=1) diff --git a/models/star_prompt_utils/second_stage_model.py b/models/star_prompt_utils/second_stage_model.py index 93ce43f2..d7c31c55 100644 --- a/models/star_prompt_utils/second_stage_model.py +++ b/models/star_prompt_utils/second_stage_model.py @@ -305,8 +305,8 @@ def train(self, mode=True): return self - def forward(self, x, query_x, cur_classes: int, frozen_past_classes=0, return_features=False): - assert query_x is not None, "Query is required for STAR-Prompt" + def forward(self, x, cur_classes: int, frozen_past_classes=0, query_x=None, return_features=False): + query_x = x if query_x is None else query_x clip_out = self.prompter.get_query(query_x) features = self.vit.forward_features(x, first_stage_query=clip_out, prompter=self.prompter, cur_classes=cur_classes, frozen_past_classes=frozen_past_classes) if return_features: From a8161bbe76923f21db6d94017a832942ad118d45 Mon Sep 17 00:00:00 2001 From: lorib Date: Wed, 10 Jul 2024 13:42:43 +0200 Subject: [PATCH 45/66] add enable_data_aug_query. fix default --- models/second_stage_starprompt.py | 21 ++++++++++----- .../star_prompt_utils/second_stage_model.py | 27 ++++++++++++------- 2 files changed, 31 insertions(+), 17 deletions(-) diff --git a/models/second_stage_starprompt.py b/models/second_stage_starprompt.py index 119a5b65..bd3e92bc 100644 --- a/models/second_stage_starprompt.py +++ b/models/second_stage_starprompt.py @@ -63,9 +63,12 @@ def get_parser() -> ArgumentParser: parser.add_argument('--prefix_tuning_prompt_len', type=int, default=5, help="Prompt length for prefix tuning. Used only if `--prompt_mode==concat`.") - parser.add_argument("--enable_confidence_modulation", type=int, default=-1, choices=[0, 1], + parser.add_argument("--enable_confidence_modulation", type=int, default=1, choices=[0, 1], help="Enable confidence modulation with CLIP similarities (Eq. 5 of the main paper)?") + parser.add_argument("--enable_data_aug_query", type=int, default=1, choices=[0, 1], + help="Use default transform with data aug to generate the CLIP's response?") + return parser net: Model @@ -168,8 +171,10 @@ def update_statistics(self, dataset): for i, data in enumerate(dataset.train_loader): x, labels = data[0], data[1] x, labels = x.to(self.device), labels.to(self.device, dtype=torch.long) - #x, query_x = x[:, 0], x[:, 1] - features = self.net(x, return_features=True, cur_classes=self.n_seen_classes, frozen_past_classes=self.n_past_classes) + x, query_x = x[:, 0], x[:, 1] + if self.args.enable_data_aug_query: + query_x = None + features = self.net(x, query_x=query_x, return_features=True, cur_classes=self.n_seen_classes, frozen_past_classes=self.n_past_classes) features = features[:, 0] for class_idx in labels.unique(): @@ -217,11 +222,11 @@ def get_scheduler(self): def begin_task(self, dataset): if self.args.permute_classes: - if hasattr(self.net.prompter, 'old_args'): + if hasattr(self.net.prompter, 'old_args') and self.net.prompter.old_args is not None: assert self.args.seed == self.net.prompter.old_args.seed assert (self.args.class_order == self.net.prompter.old_args.class_order).all() - #dataset.train_loader.dataset.transform = RepeatedTransform([dataset.train_loader.dataset.transform, self.net.prompter.clip_preprocess]) + dataset.train_loader.dataset.transform = RepeatedTransform([dataset.train_loader.dataset.transform, self.net.prompter.clip_preprocess]) dataset.test_loaders[-1].dataset.transform = RepeatedTransform([dataset.test_loaders[-1].dataset.transform, self.net.prompter.clip_preprocess]) # Remove comment if you want to check if the keys are loaded correctly and results are the same as the first stage @@ -261,8 +266,10 @@ def forward(self, x): def observe(self, inputs, labels, not_aug_inputs, epoch=None): stream_inputs, stream_labels = inputs, labels - # stream_inputs, query_stream_inputs = stream_inputs[:, 0], stream_inputs[:, 1] - stream_logits = self.net(stream_inputs, cur_classes=self.n_seen_classes, frozen_past_classes=self.n_past_classes) + stream_inputs, query_stream_inputs = stream_inputs[:, 0], stream_inputs[:, 1] + if self.args.enable_data_aug_query: + query_stream_inputs = None + stream_logits = self.net(stream_inputs, query_x=query_stream_inputs, cur_classes=self.n_seen_classes, frozen_past_classes=self.n_past_classes) with torch.no_grad(): stream_preds = stream_logits[:, :self.n_seen_classes].argmax(dim=1) diff --git a/models/star_prompt_utils/second_stage_model.py b/models/star_prompt_utils/second_stage_model.py index d7c31c55..1c7f5d11 100644 --- a/models/star_prompt_utils/second_stage_model.py +++ b/models/star_prompt_utils/second_stage_model.py @@ -52,8 +52,9 @@ def __init__(self, args, dataset: ContinualDataset, raise ValueError(f'Keys checkpoint `{self.keys_ckpt_path}` does not exist') self.keys, first_stage_args = self.load_keys() - print("Keys loaded. Loading CLIP version:", first_stage_args.clip_backbone) - clip_backbone = first_stage_args.clip_backbone + if first_stage_args is not None: + print("Keys loaded. Loading CLIP version:", first_stage_args.clip_backbone) + clip_backbone = first_stage_args.clip_backbone self.clip_model, self.clip_preprocess = clip.load(clip_backbone, self.device) self.clip_model = self.clip_model.float() # force fp32 when used for eval else: # use prompt templates @@ -106,13 +107,18 @@ def load_default_prompt_templates(self, templates: List[str], dataset_classes: L def load_keys(self): print(f'Loading keys from {self.keys_ckpt_path}', file=sys.stderr) st = torch.load(self.keys_ckpt_path) - keys = st['keys'].to(self.device) - self.old_args = st['args'] - assert self.num_classes == keys.shape[0] - assert self.args.dataset == self.old_args.dataset - assert self.args.permute_classes == self.old_args.permute_classes - if self.args.permute_classes: - assert self.args.seed == self.old_args.seed + if isinstance(st, dict): + keys = st['keys'].to(self.device) + self.old_args = st['args'] + assert self.num_classes == keys.shape[0] + assert self.args.dataset == self.old_args.dataset + assert self.args.permute_classes == self.old_args.permute_classes + if self.args.permute_classes: + assert self.args.seed == self.old_args.seed + else: + keys = st.to(self.device) + self.old_args = None + assert self.num_classes == keys.shape[0] print('Keys loaded successfully', file=sys.stderr) return keys.float(), self.old_args @@ -306,8 +312,9 @@ def train(self, mode=True): return self def forward(self, x, cur_classes: int, frozen_past_classes=0, query_x=None, return_features=False): + enable_renorm = query_x is None query_x = x if query_x is None else query_x - clip_out = self.prompter.get_query(query_x) + clip_out = self.prompter.get_query(query_x, disable_renorm=not enable_renorm) features = self.vit.forward_features(x, first_stage_query=clip_out, prompter=self.prompter, cur_classes=cur_classes, frozen_past_classes=frozen_past_classes) if return_features: return features From bd2b9247098018f1e13810479b3bc18d3e73ae23 Mon Sep 17 00:00:00 2001 From: loribonna Date: Wed, 10 Jul 2024 15:52:09 +0200 Subject: [PATCH 46/66] minor fix get device --- utils/conf.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/utils/conf.py b/utils/conf.py index 6a60cb7c..6c369ca1 100644 --- a/utils/conf.py +++ b/utils/conf.py @@ -36,12 +36,12 @@ def _get_gpu_memory_pynvml_all_processes(device_id: int = 0) -> int: Use pynvml to get the memory allocated on the GPU. Returns the memory allocated on the GPU in Bytes. """ - if not hasattr(_get_gpu_memory_pynvml_all_processes, 'handle'): + if not hasattr(_get_gpu_memory_pynvml_all_processes, f'handle_{device_id}'): torch.cuda.pynvml.nvmlInit() # only once handle = torch.cuda.pynvml.nvmlDeviceGetHandleByIndex(device_id) - setattr(_get_gpu_memory_pynvml_all_processes, 'handle', handle) + setattr(_get_gpu_memory_pynvml_all_processes, f'handle_{device_id}', handle) - handle = getattr(_get_gpu_memory_pynvml_all_processes, 'handle') + handle = getattr(_get_gpu_memory_pynvml_all_processes, f'handle_{device_id}') procs = torch.cuda.pynvml.nvmlDeviceGetComputeRunningProcesses(handle) return sum([proc.usedGpuMemory for proc in procs]) From 52d8d6cfda630fd238b15f76ac43a794d1056d5a Mon Sep 17 00:00:00 2001 From: loribonna Date: Wed, 10 Jul 2024 19:38:26 +0200 Subject: [PATCH 47/66] fix `compute_offsets` --- models/second_stage_starprompt.py | 31 +++++++++++++++++++++---------- 1 file changed, 21 insertions(+), 10 deletions(-) diff --git a/models/second_stage_starprompt.py b/models/second_stage_starprompt.py index bd3e92bc..8fc9d626 100644 --- a/models/second_stage_starprompt.py +++ b/models/second_stage_starprompt.py @@ -4,6 +4,11 @@ from tqdm import tqdm from argparse import ArgumentParser +try: + import wandb +except ImportError: + wandb = None + from utils.augmentations import RepeatedTransform from utils.conf import create_seeded_dataloader from utils.schedulers import CosineSchedule @@ -127,20 +132,26 @@ def train_alignment_epoch(self, classifier: torch.nn.Module, optim: torch.optim. dl = self.create_features_dataset() - for i, (x, labels) in tqdm(enumerate(dl), total=len(dl), desc='GR epoch'): - optim.zero_grad() - x, labels = x.to(self.device, dtype=torch.float32), labels.to(self.device) + with tqdm(enumerate(dl), total=len(dl), desc='GR epoch') as pbar: + for i, (x, labels) in pbar: + optim.zero_grad() + x, labels = x.to(self.device, dtype=torch.float32), labels.to(self.device) + + logits = classifier(x) - logits = classifier(x) + logits = logits[:, :self.n_seen_classes] - logits = logits[:, :self.n_seen_classes] + norm = self.norm(logits) + logits = logits / (0.1 * norm) - norm = self.norm(logits) - logits = logits / (0.1 * norm) + loss = self.loss(logits, labels) + loss.backward() + optim.step() - loss = self.loss(logits, labels) - loss.backward() - optim.step() + if not self.args.nowand: + assert wandb is not None, "wandb is not installed." + wandb.log({'ca_loss': loss.item(), 'ca_lr': optim.param_groups[0]['lr']}) + pbar.set_postfix({'loss': loss.item()}) def align(self): From 22b72eb28a8387f679fb9ff8309a53a295ea02ef Mon Sep 17 00:00:00 2001 From: loribonna Date: Wed, 10 Jul 2024 21:50:53 +0200 Subject: [PATCH 48/66] didn't i just fix it? --- models/utils/continual_model.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/models/utils/continual_model.py b/models/utils/continual_model.py index f82e261c..6744e5aa 100644 --- a/models/utils/continual_model.py +++ b/models/utils/continual_model.py @@ -240,8 +240,8 @@ def compute_offsets(self, task: int) -> Tuple[int, int]: offset1 = task * cpt offset2 = (task + 1) * cpt else: - offset1 = sum(self._cpt[:self._current_task]) - offset2 = sum(self._cpt[:self._current_task + 1]) + offset1 = sum(self._cpt[:task]) + offset2 = sum(self._cpt[:task + 1]) return offset1, offset2 From c5331d26886038eabc35347b38e3ff86a390abd4 Mon Sep 17 00:00:00 2001 From: loribonna Date: Wed, 10 Jul 2024 23:04:48 +0200 Subject: [PATCH 49/66] upd c100 224 --- datasets/seq_cifar100_224.py | 13 ++++++++----- 1 file changed, 8 insertions(+), 5 deletions(-) diff --git a/datasets/seq_cifar100_224.py b/datasets/seq_cifar100_224.py index 1fa26b81..45f083ac 100644 --- a/datasets/seq_cifar100_224.py +++ b/datasets/seq_cifar100_224.py @@ -5,6 +5,7 @@ import torch import torch.nn.functional as F import torchvision.transforms as transforms +from torchvision.transforms.functional import InterpolationMode from torchvision.datasets import CIFAR100 from backbone.vit import vit_base_patch16_224_prompt_prototype @@ -42,14 +43,16 @@ class SequentialCIFAR100224(ContinualDataset): SIZE = (224, 224) MEAN, STD = (0, 0, 0), (1, 1, 1) # Normalized in [0,1] as in L2P paper TRANSFORM = transforms.Compose( - [transforms.Resize(224), - transforms.RandomCrop(224, padding=28), - transforms.RandomHorizontalFlip(), + [transforms.RandomResizedCrop(224, interpolation=InterpolationMode.BICUBIC), + transforms.RandomHorizontalFlip(p=0.5), transforms.ToTensor(), transforms.Normalize(MEAN, STD)] ) - TEST_TRANSFORM = transforms.Compose( - [transforms.Resize(224), transforms.ToTensor(), transforms.Normalize(MEAN, STD)]) + TEST_TRANSFORM = transforms.Compose([ + transforms.Resize(224, interpolation=InterpolationMode.BICUBIC), + transforms.ToTensor(), + transforms.Normalize(MEAN, STD) + ]) def get_data_loaders(self) -> Tuple[torch.utils.data.DataLoader, torch.utils.data.DataLoader]: transform = self.TRANSFORM From a0f02d47cc297d786b9eb8dd59d83e1f8042431b Mon Sep 17 00:00:00 2001 From: Martin Menabue Date: Thu, 11 Jul 2024 20:08:30 +0200 Subject: [PATCH 50/66] Fixed keys loading on joint --- datasets/utils/continual_dataset.py | 1 + models/star_prompt_utils/second_stage_model.py | 2 +- 2 files changed, 2 insertions(+), 1 deletion(-) diff --git a/datasets/utils/continual_dataset.py b/datasets/utils/continual_dataset.py index cf329d43..916ec5d0 100644 --- a/datasets/utils/continual_dataset.py +++ b/datasets/utils/continual_dataset.py @@ -76,6 +76,7 @@ def __init__(self, args: Namespace) -> None: if args.joint: self.N_CLASSES_PER_TASK = self.N_CLASSES + self.ORIGINAL_N_TASKS = self.N_TASKS self.N_TASKS = 1 if not all((self.NAME, self.SETTING, self.N_CLASSES_PER_TASK, self.N_TASKS, self.SIZE, self.N_CLASSES)): diff --git a/models/star_prompt_utils/second_stage_model.py b/models/star_prompt_utils/second_stage_model.py index 1c7f5d11..13b46157 100644 --- a/models/star_prompt_utils/second_stage_model.py +++ b/models/star_prompt_utils/second_stage_model.py @@ -40,7 +40,7 @@ def __init__(self, args, dataset: ContinualDataset, print("key missing", args.dataset, args.seed, file=sys.stderr) raise ValueError - t = dataset.N_TASKS - 1 + t = dataset.N_TASKS - 1 if self.args.joint == 0 else dataset.ORIGINAL_N_TASKS - 1 self.keys_ckpt_path = f"coop_keys/coop_keys_{t}_{key_jobnum}.pt" elif args.keys_ckpt_path.endswith('.pt'): self.keys_ckpt_path = args.keys_ckpt_path From f131994e9ac1034ffbebfe4c38599856af38f516 Mon Sep 17 00:00:00 2001 From: loribonna Date: Fri, 12 Jul 2024 01:27:40 +0200 Subject: [PATCH 51/66] using test aug in eval --- models/second_stage_starprompt.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/models/second_stage_starprompt.py b/models/second_stage_starprompt.py index 8fc9d626..e04eb7d8 100644 --- a/models/second_stage_starprompt.py +++ b/models/second_stage_starprompt.py @@ -271,6 +271,8 @@ def begin_task(self, dataset): def forward(self, x): x, query_x = x[:, 0], x[:, 1] # from repeated transform + if self.args.enable_data_aug_query: + query_x = None logits = self.net(x, query_x=query_x, cur_classes=self.n_seen_classes) logits = logits[:, :self.n_seen_classes] return logits From f0c70333c5306fb3ab32188edf45f6a20b495d13 Mon Sep 17 00:00:00 2001 From: loribonna Date: Fri, 12 Jul 2024 02:04:32 +0200 Subject: [PATCH 52/66] add check for scaled dot prod --- backbone/utils/lora_utils.py | 12 +++++++----- backbone/vit.py | 15 ++++++++++----- models/coda_prompt_utils/vit.py | 12 +++++++----- models/second_stage_starprompt.py | 4 ++-- models/star_prompt_utils/vision_transformer.py | 12 +++++++----- 5 files changed, 33 insertions(+), 22 deletions(-) diff --git a/backbone/utils/lora_utils.py b/backbone/utils/lora_utils.py index 7d0761ec..c1d082a4 100644 --- a/backbone/utils/lora_utils.py +++ b/backbone/utils/lora_utils.py @@ -117,11 +117,13 @@ def forward(self, x, AB: dict = None, **kwargs): q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) # NOTE: flash attention is less debuggable than the original. Use the commented code below if in trouble. - x = F.scaled_dot_product_attention(q, k, v, scale=self.scale, dropout_p=self.attn_drop.p) - # attn = (q @ k.transpose(-2, -1)) * self.scale - # attn = attn.softmax(dim=-1) - # attn = self.attn_drop(attn) - # x = (attn @ v) + if torch.__version__ >= '2.1.0': + x = F.scaled_dot_product_attention(q, k, v, scale=self.scale, dropout_p=self.attn_drop.p) + else: + attn = (q @ k.transpose(-2, -1)) * self.scale + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = (attn @ v) x = x.transpose(1, 2).reshape(B, N, C) diff --git a/backbone/vit.py b/backbone/vit.py index 47b65fe1..e84f4ab3 100644 --- a/backbone/vit.py +++ b/backbone/vit.py @@ -64,6 +64,7 @@ from backbone.utils.layers import IncrementalClassifier from backbone import MammothBackbone from backbone.utils.lora_utils import LoRAAttention, LoRAMlp +from utils.conf import warn_once __all__ = ['VisionTransformer'] # model_registry will add each entrypoint fn to this @@ -109,11 +110,15 @@ def forward(self, x, **kwargs): q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) # NOTE: flash attention is less debuggable than the original. Use the commented code below if in trouble. - x = F.scaled_dot_product_attention(q, k, v, scale=self.scale, dropout_p=self.attn_drop.p) - # attn = (q @ k.transpose(-2, -1)) * self.scale - # attn = attn.softmax(dim=-1) - # attn = self.attn_drop(attn) - # x = (attn @ v) + # check torch version + if torch.__version__ >= '2.1.0': + x = F.scaled_dot_product_attention(q, k, v, scale=self.scale, dropout_p=self.attn_drop.p) + else: + warn_once("Torch verison < 2.1.0 detected. Using the original attention code.") + attn = (q @ k.transpose(-2, -1)) * self.scale + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = (attn @ v) x = x.transpose(1, 2).reshape(B, N, C) diff --git a/models/coda_prompt_utils/vit.py b/models/coda_prompt_utils/vit.py index 73454519..f038ed4f 100644 --- a/models/coda_prompt_utils/vit.py +++ b/models/coda_prompt_utils/vit.py @@ -50,11 +50,13 @@ def forward(self, x, prompt=None): k = torch.cat((pk, k), dim=2) v = torch.cat((pv, v), dim=2) - x = F.scaled_dot_product_attention(q, k, v, scale=self.scale, dropout_p=self.attn_drop.p) - # attn = (q @ k.transpose(-2, -1)) * self.scale - # attn = attn.softmax(dim=-1) - # attn = self.attn_drop(attn) - # x = (attn @ v) + if torch.__version__ >= '2.1.0': + x = F.scaled_dot_product_attention(q, k, v, scale=self.scale, dropout_p=self.attn_drop.p) + else: + attn = (q @ k.transpose(-2, -1)) * self.scale + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = (attn @ v) x = x.transpose(1, 2).reshape(B, N, C) x = self.proj(x) diff --git a/models/second_stage_starprompt.py b/models/second_stage_starprompt.py index e04eb7d8..e95294f6 100644 --- a/models/second_stage_starprompt.py +++ b/models/second_stage_starprompt.py @@ -271,8 +271,8 @@ def begin_task(self, dataset): def forward(self, x): x, query_x = x[:, 0], x[:, 1] # from repeated transform - if self.args.enable_data_aug_query: - query_x = None + # if self.args.enable_data_aug_query: + # query_x = None logits = self.net(x, query_x=query_x, cur_classes=self.n_seen_classes) logits = logits[:, :self.n_seen_classes] return logits diff --git a/models/star_prompt_utils/vision_transformer.py b/models/star_prompt_utils/vision_transformer.py index 5335ee77..bca6b694 100644 --- a/models/star_prompt_utils/vision_transformer.py +++ b/models/star_prompt_utils/vision_transformer.py @@ -28,11 +28,13 @@ def forward(self, x, prompts=None): prompts = prompts.reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) v = v + prompts - x = F.scaled_dot_product_attention(q, k, v, scale=self.scale, dropout_p=self.attn_drop.p) - # attn = (q @ k.transpose(-2, -1)) * self.scale - # attn = attn.softmax(dim=-1) - # attn = self.attn_drop(attn) - # x = (attn @ v).transpose(1, 2).reshape(B, N, C) + if torch.__version__ >= '2.1.0': + x = F.scaled_dot_product_attention(q, k, v, scale=self.scale, dropout_p=self.attn_drop.p) + else: + attn = (q @ k.transpose(-2, -1)) * self.scale + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = x.transpose(1, 2).reshape(B, N, C) From 87246d3f54de1039529ced7b282a93ac551a685c Mon Sep 17 00:00:00 2001 From: Martin Menabue Date: Fri, 12 Jul 2024 13:53:14 +0200 Subject: [PATCH 53/66] Undo fix keys loading on joint --- datasets/utils/continual_dataset.py | 1 - models/star_prompt_utils/second_stage_model.py | 2 +- 2 files changed, 1 insertion(+), 2 deletions(-) diff --git a/datasets/utils/continual_dataset.py b/datasets/utils/continual_dataset.py index 916ec5d0..cf329d43 100644 --- a/datasets/utils/continual_dataset.py +++ b/datasets/utils/continual_dataset.py @@ -76,7 +76,6 @@ def __init__(self, args: Namespace) -> None: if args.joint: self.N_CLASSES_PER_TASK = self.N_CLASSES - self.ORIGINAL_N_TASKS = self.N_TASKS self.N_TASKS = 1 if not all((self.NAME, self.SETTING, self.N_CLASSES_PER_TASK, self.N_TASKS, self.SIZE, self.N_CLASSES)): diff --git a/models/star_prompt_utils/second_stage_model.py b/models/star_prompt_utils/second_stage_model.py index 13b46157..1c7f5d11 100644 --- a/models/star_prompt_utils/second_stage_model.py +++ b/models/star_prompt_utils/second_stage_model.py @@ -40,7 +40,7 @@ def __init__(self, args, dataset: ContinualDataset, print("key missing", args.dataset, args.seed, file=sys.stderr) raise ValueError - t = dataset.N_TASKS - 1 if self.args.joint == 0 else dataset.ORIGINAL_N_TASKS - 1 + t = dataset.N_TASKS - 1 self.keys_ckpt_path = f"coop_keys/coop_keys_{t}_{key_jobnum}.pt" elif args.keys_ckpt_path.endswith('.pt'): self.keys_ckpt_path = args.keys_ckpt_path From 3311f9813b0eb6a4e6795f1a5997e465d9feac6f Mon Sep 17 00:00:00 2001 From: loribonna Date: Fri, 19 Jul 2024 12:02:08 +0200 Subject: [PATCH 54/66] Fix second-stage orthogonalization init. Code reproduces. Add minor comments --- models/first_stage_starprompt.py | 42 ++--- models/second_stage_starprompt.py | 133 ++++++++-------- models/star_prompt_utils/first_stage_model.py | 22 ++- .../star_prompt_utils/second_stage_model.py | 144 ++++++++++++++---- .../star_prompt_utils/vision_transformer.py | 7 +- 5 files changed, 230 insertions(+), 118 deletions(-) diff --git a/models/first_stage_starprompt.py b/models/first_stage_starprompt.py index 70758fa7..376d715f 100644 --- a/models/first_stage_starprompt.py +++ b/models/first_stage_starprompt.py @@ -21,29 +21,29 @@ class FirstStageStarprompt(ContinualModel): def get_parser() -> ArgumentParser: parser = ArgumentParser() - # Frozen hyperparameters - parser.add_argument("--virtual_bs_n", type=int, default=1, help="Virtual batch size iterations") + frozen_group = parser.add_argument_group('Frozen hyperparameters') + frozen_group.add_argument("--virtual_bs_n", type=int, default=1, help="Virtual batch size iterations") + frozen_group.add_argument("--num_monte_carlo_gr", type=int, default=5, + help="How many times to sample from the dataset for Generative Replay") + frozen_group.add_argument('--gr_mog_n_iters', type=int, default=200, + help="Number of EM iterations during fit for GR with MOG.") + frozen_group.add_argument('--gr_mog_n_components', type=int, default=5, + help="Number of components for Generative Replay with MOG.") + frozen_group.add_argument("--enable_gr", type=int, default=1, choices=[0, 1], + help="Enable Generative Replay.") + frozen_group.add_argument('--batch_size_gr', type=int, default=128, + help="Batch size for Generative Replay.") + frozen_group.add_argument('--num_samples_gr', type=int, default=256, + help="Number of samples for Generative Replay.") # Tunable hyperparameters - parser.add_argument("--learning_rate_gr", type=float, default=0.05, - help="Learning rate for Generative Replay.") - parser.add_argument("--lambda_ortho_coop", type=float, default=30, - help="Orthogonality loss coefficient for coop") - parser.add_argument("--num_monte_carlo_gr", type=int, default=5, - help="How many times to sample from the dataset for Generative Replay") - parser.add_argument("--num_epochs_gr", type=int, default=10, - help="Num. of epochs for Generative Replay.") - parser.add_argument('--gr_mog_n_components', type=int, default=5, - help="Number of components for Generative Replay with MOG.") - parser.add_argument('--gr_mog_n_iters', type=int, default=200, - help="Number of EM iterations during fit for GR with MOG.") - parser.add_argument("--enable_gr", type=int, default=1, choices=[0, 1], - help="Enable Generative Replay.") - - parser.add_argument('--batch_size_gr', type=int, default=128, - help="Batch size for Generative Replay.") - parser.add_argument('--num_samples_gr', type=int, default=256, - help="Number of samples for Generative Replay.") + tunable_group = parser.add_argument_group('Tunable hyperparameters') + tunable_group.add_argument("--learning_rate_gr", type=float, default=0.05, + help="Learning rate for Generative Replay.") + tunable_group.add_argument("--lambda_ortho_coop", type=float, default=30, + help="Orthogonality loss coefficient for coop") + tunable_group.add_argument("--num_epochs_gr", type=int, default=10, + help="Num. of epochs for Generative Replay.") # Useful flags parser.add_argument("--save_first_stage_keys", type=int, default=1, diff --git a/models/second_stage_starprompt.py b/models/second_stage_starprompt.py index e95294f6..30b7a5fb 100644 --- a/models/second_stage_starprompt.py +++ b/models/second_stage_starprompt.py @@ -25,54 +25,62 @@ class SecondStageStarprompt(ContinualModel): def get_parser() -> ArgumentParser: parser = ArgumentParser(description='Second-stage of StarPrompt. Requires the keys saved from the first stage.') - # Frozen hyperparameters - parser.add_argument("--virtual_bs_n", type=int, default=1, - help="virtual batch size iterations") - parser.add_argument('--gr_mog_n_components', type=int, default=5, - help="Number of components for GR with MOG.") + frozen_group = parser.add_argument_group('Frozen hyperparameters') + frozen_group.add_argument("--virtual_bs_n", type=int, default=1, + help="virtual batch size iterations") + frozen_group.add_argument("--enable_data_aug_query", type=int, default=1, choices=[0, 1], + help="Use default transform with data aug to generate the CLIP's response?") + frozen_group.add_argument("--use_clip_preprocess_eval", type=int, default=0, choices=[0, 1], + help="Use CLIP's transform during eval instead of the default test transform?") + frozen_group.add_argument("--ortho_split_val", type=int, default=0) + frozen_group.add_argument('--gr_mog_n_iters', type=int, default=500, + help="Number of EM iterations during fit for GR with MOG.") + frozen_group.add_argument('--gr_mog_n_components', type=int, default=5, + help="Number of components for GR with MOG.") + frozen_group.add_argument('--batch_size_gr', type=int, default=128, + help="Batch size for Generative Replay.") + frozen_group.add_argument('--num_samples_gr', type=int, default=256, + help="Number of samples for Generative Replay.") + frozen_group.add_argument('--prefix_tuning_prompt_len', type=int, default=5, + help="Prompt length for prefix tuning. Used only if `--prompt_mode==concat`.") + + ablation_group = parser.add_argument_group('Frozen hyperparameters') + ablation_group.add_argument('--gr_model', type=str, default='mog', choices=['mog', 'gaussian'], + help="Type of distribution model for Generative Replay. " + "- `mog`: Mixture of Gaussian. " + "- `gaussian`: Single Gaussian distribution.") + ablation_group.add_argument("--enable_gr", type=int, default=1, choices=[0, 1], + help="Enable Generative Replay.") + ablation_group.add_argument('--statc_keys_use_templates', type=int, default=1, choices=[0, 1], + help="Use templates for the second stage if no keys are loaded.") + ablation_group.add_argument('--prompt_mode', type=str, default='residual', choices=['residual', 'concat'], + help="Prompt type for the second stage. " + "- `residual`: STAR-Prompt style prompting. " + "- `concat`: Prefix-Tuning style prompting.") + ablation_group.add_argument("--enable_confidence_modulation", type=int, default=1, choices=[0, 1], + help="Enable confidence modulation with CLIP similarities (Eq. 5 of the main paper)?") # Tunable hyperparameters - parser.add_argument("--ortho_split_val", type=int, default=0) - parser.add_argument("--lambda_ortho", type=float, default=10, - help="orthogonality loss coefficient") - parser.add_argument("--num_monte_carlo_gr", type=int, default=1, - help="how many times to sample from the dataset for alignment") - parser.add_argument("--num_epochs_gr", type=int, default=10, - help="Num. of epochs for GR.") - parser.add_argument("--learning_rate_gr", type=float, default=0.001, - help="Learning rate for GR.") - parser.add_argument('--gr_mog_n_iters', type=int, default=500, - help="Number of EM iterations during fit for GR with MOG.") - parser.add_argument("--enable_gr", type=int, default=1, choices=[0, 1], - help="Enable Generative Replay.") - parser.add_argument('--gr_model', type=str, default='mog', choices=['mog', 'gaussian'], - help="Type of distribution model for Generative Replay. " - "- `mog`: Mixture of Gaussian. " - "- `gaussian`: Single Gaussian distribution.") - + tunable_group = parser.add_argument_group('Tunable hyperparameters') + tunable_group.add_argument("--lambda_ortho", type=float, default=10, + help="orthogonality loss coefficient") + tunable_group.add_argument("--num_monte_carlo_gr", type=int, default=1, + help="how many times to sample from the dataset for alignment") + tunable_group.add_argument("--num_epochs_gr", type=int, default=10, + help="Num. of epochs for GR.") + tunable_group.add_argument("--learning_rate_gr", type=float, default=0.001, + help="Learning rate for GR.") + + # Very important parameter parser.add_argument('--keys_ckpt_path', type=str, - help="Path for first-stage keys. The keys can be saved by runninng `first_stage_starprompt` with `--save_first_stage_keys=1`.") - parser.add_argument('--statc_keys_use_templates', type=int, default=1, choices=[0, 1], - help="Use templates for the second stage if no keys are loaded.") - - parser.add_argument('--batch_size_gr', type=int, default=128, - help="Batch size for Generative Replay.") - parser.add_argument('--num_samples_gr', type=int, default=256, - help="Number of samples for Generative Replay.") - - # prompt type - parser.add_argument('--prompt_mode', type=str, default='residual', choices=['residual', 'concat'], - help="Prompt type for the second stage. " - "- `residual`: STAR-Prompt style prompting. " - "- `concat`: Prefix-Tuning style prompting.") - parser.add_argument('--prefix_tuning_prompt_len', type=int, default=5, - help="Prompt length for prefix tuning. Used only if `--prompt_mode==concat`.") - - parser.add_argument("--enable_confidence_modulation", type=int, default=1, choices=[0, 1], - help="Enable confidence modulation with CLIP similarities (Eq. 5 of the main paper)?") - - parser.add_argument("--enable_data_aug_query", type=int, default=1, choices=[0, 1], - help="Use default transform with data aug to generate the CLIP's response?") + help="Path for first-stage keys. " + "The keys can be saved by runninng `first_stage_starprompt` with `--save_first_stage_keys=1`." + "This can be:" + "- A path to a checkpoint file (.pt) containing ONLY THE FIRST STAGE KEYS." + "- A path to the checkpoint made by `first_stage_starprompt`" + "- The job-id (`conf_jobnum`) of the `first_stage_starprompt` run that made the keys." + "- A JSON file containing the job-id (`conf_jobnum`) of the `first_stage_starprompt` run that made the keys." + "The JSON is expected to contain an entry for each dataset and seed: `{dataset: {seed: job-id}}`.") return parser @@ -126,7 +134,9 @@ def create_features_dataset(self): features = torch.cat(features, dim=0) labels = torch.cat(labels, dim=0).long() - return create_seeded_dataloader(self.args, TensorDataset(features, labels), batch_size=self.args.batch_size_gr, shuffle=True, num_workers=0) + return create_seeded_dataloader(self.args, TensorDataset(features, labels), + verbose=False, batch_size=self.args.batch_size_gr, + shuffle=True, num_workers=0) def train_alignment_epoch(self, classifier: torch.nn.Module, optim: torch.optim.Optimizer): @@ -179,7 +189,7 @@ def update_statistics(self, dataset): with tqdm(total=self.args.num_monte_carlo_gr * len(dataset.train_loader), desc='GR update statistics') as pbar: for _ in range(self.args.num_monte_carlo_gr): - for i, data in enumerate(dataset.train_loader): + for data in dataset.train_loader: x, labels = data[0], data[1] x, labels = x.to(self.device), labels.to(self.device, dtype=torch.long) x, query_x = x[:, 0], x[:, 1] @@ -240,27 +250,25 @@ def begin_task(self, dataset): dataset.train_loader.dataset.transform = RepeatedTransform([dataset.train_loader.dataset.transform, self.net.prompter.clip_preprocess]) dataset.test_loaders[-1].dataset.transform = RepeatedTransform([dataset.test_loaders[-1].dataset.transform, self.net.prompter.clip_preprocess]) - # Remove comment if you want to check if the keys are loaded correctly and results are the same as the first stage + # NOTE: Remove these comments if you want to check if the keys are loaded correctly and results are the same as the first stage + # from utils.augmentations import RepeatedTransform # tot_data, tot_corr = 0, 0 # for i, ts in enumerate(dataset.test_loaders): # task_tot, task_corr = 0, 0 # for data in ts: - # inputs, labels = data - # inputs, labels = inputs.to(self.device), labels.to(self.device) - # _, inputs = inputs[:, 0], inputs[:, 1] + # inputs, labels = data[0], data[1] + # inputs, labels = inputs[:, 1].to(self.device), labels.to(self.device) # only clip-preprocessed input # queries = self.net.prompter.get_query(inputs) - # queries = torch.nn.functional.normalize(queries, dim=-1) - # logits = torch.einsum('bd,cd->bc', queries, self.net.prompter.keys.type(self.net.prompter.clip_model.dtype)) - # task_corr += (logits.argmax(dim=-1) == labels).sum().item() # task_tot += labels.shape[0] # print(f"CLIP on TASK {i+1}: {task_corr / task_tot}") # tot_corr += task_corr # tot_data += task_tot - # print(f"AVG CLIP ON TASKS: {tot_corr / tot_data}") # the avg of the avg != the avg of the total + # print(f"AVG CLIP ON TASKS: {tot_corr / tot_data}") # the avg of the avg != the avg of the total + # For later GR self.recall() if hasattr(self, 'opt'): @@ -271,8 +279,8 @@ def begin_task(self, dataset): def forward(self, x): x, query_x = x[:, 0], x[:, 1] # from repeated transform - # if self.args.enable_data_aug_query: - # query_x = None + if self.args.use_clip_preprocess_eval == 0: + query_x = None logits = self.net(x, query_x=query_x, cur_classes=self.n_seen_classes) logits = logits[:, :self.n_seen_classes] return logits @@ -284,6 +292,7 @@ def observe(self, inputs, labels, not_aug_inputs, epoch=None): query_stream_inputs = None stream_logits = self.net(stream_inputs, query_x=query_stream_inputs, cur_classes=self.n_seen_classes, frozen_past_classes=self.n_past_classes) + # Compute accuracy on current training batch for logging with torch.no_grad(): stream_preds = stream_logits[:, :self.n_seen_classes].argmax(dim=1) stream_acc = (stream_preds == stream_labels).sum().item() / stream_labels.shape[0] @@ -298,13 +307,13 @@ def observe(self, inputs, labels, not_aug_inputs, epoch=None): if self.epoch_iteration == 0: self.opt.zero_grad() - loss.backward() + (loss / self.args.virtual_bs_n).backward() if (self.epoch_iteration > 0 or self.args.virtual_bs_n == 1) and \ self.epoch_iteration % self.args.virtual_bs_n == 0: - # NOTE: The virtual batch size is missing `loss = loss/self.virtual_bs_n`. We did not see any significant change with this as Adam will take care of it. + # NOTE: The virtual batch size is missing `loss = loss/self.virtual_bs_n`. + # We did not see any significant change with this as Adam will take care of it. self.opt.step() self.opt.zero_grad() - self.epoch_iteration += 1 - - return {'loss': loss.item(), 'stream_accuracy': stream_acc} + return {'loss': loss.item(), + 'stream_accuracy': stream_acc} diff --git a/models/star_prompt_utils/first_stage_model.py b/models/star_prompt_utils/first_stage_model.py index e1adeb00..b63033b1 100644 --- a/models/star_prompt_utils/first_stage_model.py +++ b/models/star_prompt_utils/first_stage_model.py @@ -89,7 +89,7 @@ def create_features_dataset(self, current_task: int): features = torch.cat(features, dim=0) labels = torch.cat(labels, dim=0).long() - return create_seeded_dataloader(self.args, TensorDataset(features, labels), num_workers=0, batch_size=self.args.batch_size_gr, shuffle=True) + return create_seeded_dataloader(self.args, TensorDataset(features, labels), verbose=False, num_workers=0, batch_size=self.args.batch_size_gr, shuffle=True) def train_alignment_epoch(self, optim: torch.optim.Optimizer, current_task: int, epoch: int = 0): offset_1, offset_2 = self.dataset.get_offsets(current_task) @@ -162,6 +162,9 @@ def update_statistics(self, dataset: ContinualDataset, current_task: int): self.train() def compute_keys(self, start: int, end: int): + """ + Compute the text-encoder features the CoOp way, but separately for each class. + """ ctx = self.prompt_parameters[start:end] prefix = self.token_prefix[start:end] suffix = self.token_suffix[start:end] @@ -171,7 +174,11 @@ def compute_keys(self, start: int, end: int): keys = torch.nn.functional.normalize(keys, dim=-1) return keys - def get_keys(self, cur_classes: int, frozen_past_classes=0): + def get_keys(self, cur_classes: int, frozen_past_classes=0) -> torch.Tensor: + """ + Compute the text-encoder features for classes from 0 to `cur_classes`. + Features of classes before `frozen_past_classes` are frozen. + """ if frozen_past_classes > 0: with torch.no_grad(): past_keys = self.compute_keys(0, frozen_past_classes) @@ -182,6 +189,9 @@ def get_keys(self, cur_classes: int, frozen_past_classes=0): return keys def setup_text_prompting(self): + """ + Initialize a singly prompt (length 1) for each class. + """ self.text_encoder = TextEncoder(self.clip_model) text_prompts = ["X " + name + "." for name in self.class_names] @@ -234,7 +244,13 @@ def train(self, mode=True): return self - def forward(self, x: torch.Tensor, cur_classes: int, return_query=False, frozen_past_classes=0): + def forward(self, x: torch.Tensor, cur_classes: int, return_query=False, frozen_past_classes=0) -> torch.Tensor: + """ + Compute the logits for the current task. + Logits of classes before `frozen_past_classes` are frozen. + + If `return_query` is True, return the CLIP's visual encoder output instead of the logits. + """ clip_out = self.prompter.get_query(x) if return_query: return clip_out diff --git a/models/star_prompt_utils/second_stage_model.py b/models/star_prompt_utils/second_stage_model.py index 13b46157..45859deb 100644 --- a/models/star_prompt_utils/second_stage_model.py +++ b/models/star_prompt_utils/second_stage_model.py @@ -31,6 +31,7 @@ def __init__(self, args, dataset: ContinualDataset, self.num_classes = num_classes self.prompt_mode = args.prompt_mode + print("Loading CLIP visual encoder and the pre-computed text features...") clip_backbone = 'ViT-L/14' if args.keys_ckpt_path is not None: if args.keys_ckpt_path.endswith('.json'): @@ -54,7 +55,7 @@ def __init__(self, args, dataset: ContinualDataset, self.keys, first_stage_args = self.load_keys() if first_stage_args is not None: print("Keys loaded. Loading CLIP version:", first_stage_args.clip_backbone) - clip_backbone = first_stage_args.clip_backbone + clip_backbone = first_stage_args.clip_backbone self.clip_model, self.clip_preprocess = clip.load(clip_backbone, self.device) self.clip_model = self.clip_model.float() # force fp32 when used for eval else: # use prompt templates @@ -73,14 +74,25 @@ def __init__(self, args, dataset: ContinualDataset, for l in self.prompt_layers: if args.prompt_mode == 'residual': - setattr(self, f'p_{l}', self.get_parameter((self.num_classes, self.target_embed_dim))) + # NOTE: this initialization follows that of CODA-Prompt. + # We originally initialize a prompt for key, query, and value of the MHA layer. + tmp = self.get_parameter((self.num_classes, 3, self.target_embed_dim)) + # We only use value at the end, so we keep only a single tensor. + tmp.data = tmp.data[:, 0] + # HOWEVER: Since the orthogonal_ of pytorch flattens the tensor, the value prompt is not orthogonal anymore. + # orthogonal_ made (C, 3, D) -> (C, 3*D) -> orthogonal -> (C, 3, D), thus each 3*D is orthogonal, but not each D. + # This is intended and maked the orthogonalization loss being optimized at the beginning. + setattr(self, f'p_{l}', tmp) else: setattr(self, f'p_concat_{l}', self.get_parameter((self.num_classes, 2 * self.args.prefix_tuning_prompt_len, self.target_embed_dim))) setattr(self, f'a_{l}', self.get_parameter((self.num_classes, self.clip_model.visual.output_dim))) - def get_parameter(self, shape, type_init: str = 'orto'): + def get_parameter(self, shape, type_init: str = 'orto') -> torch.nn.Parameter: + """ + Create and initialize a parameter tensor. Code courtesy from CODA-Prompt. + """ param = torch.nn.Parameter(torch.zeros(*shape, dtype=torch.float32, device=self.device)) if type_init == 'orto': torch.nn.init.orthogonal_(param) @@ -90,6 +102,9 @@ def get_parameter(self, shape, type_init: str = 'orto'): @torch.no_grad() def load_default_prompt_templates(self, templates: List[str], dataset_classes: List[str]) -> torch.Tensor: + """ + Pre-computes the CLIP's text-encoder features if the keys are not loaded from a checkpoint. + """ if self.args.statc_keys_use_templates: all_features = [] for t in templates: @@ -105,6 +120,20 @@ def load_default_prompt_templates(self, templates: List[str], dataset_classes: L @torch.no_grad() def load_keys(self): + """ + Load the keys from a `first_stage_starprompt` checkpoint file (run with `--save_first_stage_keys=1`). + The checkpoint file can be either: + - A path to a checkpoint file (.pt) containing ONLY THE FIRST STAGE KEYS. + The number of classes and the dataset must match the current run, but we cannot check if the seed was the same. + - A path to the checkpoint made by `first_stage_starprompt` or the job-id (`conf_jobnum`) of the `first_stage_starprompt` run that made the keys. + Checks will prevent loading keys with a different order of the classes or dataset. + - A JSON file containing the job-id (`conf_jobnum`) of the `first_stage_starprompt` run that made the keys. + The JSON is expected to contain an entry for each dataset and seed: `{dataset: {seed: job-id}}`. + + Returns: + The keys tensor + The arguments used in the first stage + """ print(f'Loading keys from {self.keys_ckpt_path}', file=sys.stderr) st = torch.load(self.keys_ckpt_path) if isinstance(st, dict): @@ -124,24 +153,37 @@ def load_keys(self): @torch.no_grad() def get_query(self, x, disable_renorm=True): + """ + Compute the CLIP features for the input image `x`. + + Args: + x: the input image tensor + disable_renorm: if False, the final normalization applied to `x` will be swapped with the CLIP's one. + """ if not disable_renorm: x = self.denorm_transform(x) x = self.clip_normalization(x) clip_out = self.clip_model.encode_image(x) return clip_out - def compute_maps(self, clip_out, a, k): - filter_values = torch.softmax(a, dim=-1) + def compute_maps(self, clip_query: torch.Tensor, modulation_coeffs: torch.Tensor, keys: torch.Tensor) -> torch.Tensor: + """ + Compute the CLIP output given the `clip_query` and the `keys`. The queries are modulated by the `modulation_coeffs`. + """ + filter_values = torch.softmax(modulation_coeffs, dim=-1) - clip_out = clip_out.unsqueeze(1).expand(clip_out.shape[0], a.shape[0], clip_out.shape[-1]) - clip_out_a = clip_out * filter_values[None, :, :] + clip_query = clip_query.unsqueeze(1).expand(clip_query.shape[0], modulation_coeffs.shape[0], clip_query.shape[-1]) + clip_out_a = clip_query * filter_values[None, :, :] clip_out_a_norm = torch.nn.functional.normalize(clip_out_a, dim=-1) - clip_out = torch.einsum('bcd,cd->bc', clip_out_a_norm, k) * 5 + clip_query = torch.einsum('bcd,cd->bc', clip_out_a_norm, keys) * 5 - return clip_out + return clip_query def get_masked_clip_out(self, sim_act_map): + """ + We only need the output of the CLIP model for the most similar class, so we mask the rest. + """ with torch.no_grad(): mask = torch.ones_like(sim_act_map, dtype=torch.bool) mask.scatter_(1, sim_act_map.argmax(dim=1, keepdim=True), False) @@ -149,20 +191,42 @@ def get_masked_clip_out(self, sim_act_map): return sim_act_map - def compute_super_prompts(self, p, sim_act_map, start_idx, end_idx): - sim_act_map = sim_act_map[:, start_idx:end_idx] - p = p[start_idx:end_idx] + def compute_super_prompts(self, class_prompts: torch.Tensor, masked_clip_out: torch.Tensor, start_idx: int, end_idx: int) -> torch.Tensor: + """ + Compute the actual super-prompt by merging the individual prompts for the classes in the range `[start_idx, end_idx)`. + The merge is made according to the similarity map `sim_act_map` and scaled by it if `enable_confidence_modulation` is set. + + Args: + class_prompts: the prompt parameters for each class in the range `[start_idx, end_idx)` + masked_clip_out: the masked CLIP output for the classes in the range `[start_idx, end_idx)`, +containing the similarity value for the most similar class for each image. + start_idx: the start index of the classes to consider + end_idx: the end index of the classes to consider + + Returns: + The super-prompt for the classes in the range `[start_idx, end_idx)`. + """ + masked_clip_out = masked_clip_out[:, start_idx:end_idx] + class_prompts = class_prompts[start_idx:end_idx] if self.args.enable_confidence_modulation == 0: - sim_act_map = (sim_act_map != 0).float() # make it binary if not using confidence modulation + masked_clip_out = (masked_clip_out != 0).float() # make it binary if not using confidence modulation if self.args.prompt_mode == 'residual': - sp = torch.einsum('bc,cd->bd', sim_act_map, p) + sp = torch.einsum('bc,cd->bd', masked_clip_out, class_prompts) else: - sp = torch.einsum('bc,cmd->bmd', sim_act_map, p) + sp = torch.einsum('bc,cmd->bmd', masked_clip_out, class_prompts) return sp - def get_prompts(self, layer_idx, clip_out, cur_classes: int, frozen_past_classes=0): + def get_prompts(self, layer_idx: int, clip_query: torch.Tensor, cur_classes: int, frozen_past_classes=0): + """ + Compute the prompts for the `layer_idx`-th layer for `cur_classes` classes. + The prompts until `frozen_past_classes` are detached to prevent gradients from flowing back. + By default, all the layers require prompting. This can be changed by adjusting the `prompt_layers` attribute. + + Returns: + The computed prompt, if the layer requires prompting. Else, returns None. + """ if layer_idx in self.prompt_layers: @@ -170,15 +234,13 @@ def get_prompts(self, layer_idx, clip_out, cur_classes: int, frozen_past_classes if self.prompt_mode == 'residual': pv: torch.Tensor = getattr(self, f'p_{layer_idx}') else: - # clip_out = clip_out[:, :1] - # only use class token for prefix tuning p_concat: torch.Tensor = getattr(self, f'p_concat_{layer_idx}') p_concat_k, p_concat_v = torch.split(p_concat, self.args.prefix_tuning_prompt_len, dim=1) if frozen_past_classes > 0: - with torch.no_grad(): - clip_out_prev = self.compute_maps(clip_out, a[:frozen_past_classes].detach(), self.keys[:frozen_past_classes].detach()) - clip_out_curr = self.compute_maps(clip_out, a[frozen_past_classes:cur_classes], self.keys[frozen_past_classes:cur_classes]) + with torch.no_grad(): # detach the past prompts to prevent gradients from flowing back + clip_out_prev = self.compute_maps(clip_query, a[:frozen_past_classes].detach(), self.keys[:frozen_past_classes].detach()) + clip_out_curr = self.compute_maps(clip_query, a[frozen_past_classes:cur_classes], self.keys[frozen_past_classes:cur_classes]) clip_out = torch.cat((clip_out_prev.detach(), clip_out_curr), dim=1) clip_out = self.get_masked_clip_out(clip_out) @@ -197,7 +259,7 @@ def get_prompts(self, layer_idx, clip_out, cur_classes: int, frozen_past_classes sp_concat_v_curr = self.compute_super_prompts(p_concat_v, clip_out, frozen_past_classes, cur_classes).squeeze(2) super_prompt = (sp_concat_k_past.detach() + sp_concat_k_curr, sp_concat_v_past.detach() + sp_concat_v_curr) else: - clip_out = self.compute_maps(clip_out, a[:cur_classes], self.keys[:cur_classes]) + clip_out = self.compute_maps(clip_query, a[:cur_classes], self.keys[:cur_classes]) clip_out = self.get_masked_clip_out(clip_out) if self.prompt_mode == 'residual': @@ -207,11 +269,21 @@ def get_prompts(self, layer_idx, clip_out, cur_classes: int, frozen_past_classes sp_concat_v = self.compute_super_prompts(p_concat_v, clip_out, 0, cur_classes).squeeze(2) super_prompt = (sp_concat_k, sp_concat_v) - return super_prompt, clip_out + return super_prompt else: return None def compute_ortho_loss(self, cur_classes: int, frozen_past_classes=0) -> torch.Tensor: + """ + Compute the orthogonality loss for the prompts of the layers in `prompt_layers`. + The loss is computed in two parts: + - The intra-orthogonality loss between the prompts of the current classes (between `frozen_past_classes` and `cur_classes`). + - The inter-orthogonality loss between the prompts of the past classes (before `frozen_past_classes`). + If `frozen_past_classes` is 0, the loss is skipped and not computed. + + The argument `ortho_split_val` is used to manage the orthogonality loss computation between the layers. + The layers before `ortho_split_val` will have a weight of 0, thus the loss will not have any effect on them. + """ if frozen_past_classes == 0: # No ortho to compute between present and past return 0. @@ -219,7 +291,7 @@ def compute_ortho_loss(self, cur_classes: int, frozen_past_classes=0) -> torch.T ortho_loss_list = [] weight_loss_list = [] - def _compute_loss(p, frozen_past_classes, cur_classes): + def _compute_loss(p: torch.Tensor, frozen_past_classes: int, cur_classes: int) -> torch.Tensor: past_pv = p[:frozen_past_classes].detach() cur_pv = p[frozen_past_classes:cur_classes] @@ -280,7 +352,7 @@ def __init__(self, args, backbone: nn.Module, dataset: ContinualDataset, num_cla num_classes=num_classes, prompt_mode=args.prompt_mode) - # load pretrained weights + print("Loading the Vision Transformer backbone...") load_dict = backbone.state_dict() for k in list(load_dict.keys()): if 'head' in k: @@ -293,6 +365,7 @@ def __init__(self, args, backbone: nn.Module, dataset: ContinualDataset, num_cla self.prompt_layers = list(range(len(self.vit.blocks))) + print("Initializing the prompter and prompt parameters...") self.prompter = Prompter(args, dataset, num_classes=num_classes, @@ -300,6 +373,7 @@ def __init__(self, args, backbone: nn.Module, dataset: ContinualDataset, num_cla target_embed_dim=self.vit.embed_dim, prompt_layers=self.prompt_layers) + # freeze the backbone for n, p in self.vit.named_parameters(): if n != 'head.weight' and n != 'head.bias': p.requires_grad = False @@ -311,11 +385,25 @@ def train(self, mode=True): return self - def forward(self, x, cur_classes: int, frozen_past_classes=0, query_x=None, return_features=False): + def forward(self, x: torch.Tensor, cur_classes: int, frozen_past_classes=0, query_x=None, return_features=False) -> torch.Tensor: + """ + Compute the forward of the second-stage of STAR-Prompt. + Classes from `frozen_past_classes` to `cur_classes` will have a gradient, while all those before `frozen_past_classes` will be detached. + + If `query_x` is provided, it will be used as the query for the CLIP's visual encoder. + Otherwise, the input image `x` will be used as the query. Note that the CLIP's pre-processing will applied to `x` in this case. + + Args: + x: the input image tensor + cur_classes: the number of classes up to the current task + frozen_past_classes: the number of classes from the past tasks that will be frozen + query_x: (optional) the query tensor for the CLIP's visual encoder + return_features: if True, the features from the Vision Transformer will be returned instead of the classification output + """ enable_renorm = query_x is None query_x = x if query_x is None else query_x - clip_out = self.prompter.get_query(query_x, disable_renorm=not enable_renorm) - features = self.vit.forward_features(x, first_stage_query=clip_out, prompter=self.prompter, cur_classes=cur_classes, frozen_past_classes=frozen_past_classes) + clip_query = self.prompter.get_query(query_x, disable_renorm=not enable_renorm) + features = self.vit.forward_features(x, first_stage_query=clip_query, prompter=self.prompter, cur_classes=cur_classes, frozen_past_classes=frozen_past_classes) if return_features: return features diff --git a/models/star_prompt_utils/vision_transformer.py b/models/star_prompt_utils/vision_transformer.py index bca6b694..45190d80 100644 --- a/models/star_prompt_utils/vision_transformer.py +++ b/models/star_prompt_utils/vision_transformer.py @@ -56,7 +56,7 @@ def __init__(self, *args, prompt_mode='residual', **kwargs): super().__init__(*args, **kwargs) assert prompt_mode in ['residual', 'concat'], 'prompt_mode should be either residual or concat' - attn_layer = ResidualPromptAttention if prompt_mode=='residual' else PrefixTuningAttention + attn_layer = ResidualPromptAttention if prompt_mode == 'residual' else PrefixTuningAttention self.blocks = nn.Sequential(*[ Block( @@ -84,9 +84,8 @@ def forward_features(self, x, first_stage_query, prompter, cur_classes: int, fro x = self._pos_embed(x) x = self.norm_pre(x) for idx, blk in enumerate(self.blocks): - ret = prompter.get_prompts(idx, first_stage_query, frozen_past_classes=frozen_past_classes, cur_classes=cur_classes) - if ret is not None: - prompts, _ = ret + prompts = prompter.get_prompts(idx, first_stage_query, frozen_past_classes=frozen_past_classes, cur_classes=cur_classes) + if prompts is not None: x = blk(x, prompts) else: x = blk(x) From dc0440725b9ea33a514751f9918b0f971729708a Mon Sep 17 00:00:00 2001 From: loribonna Date: Fri, 19 Jul 2024 12:02:18 +0200 Subject: [PATCH 55/66] Autopep --- backbone/utils/lora_utils.py | 4 +- backbone/vit.py | 3 +- datasets/seq_chestx.py | 13 +- datasets/seq_cifar100_224.py | 2 +- datasets/seq_cifar10_224.py | 2 +- datasets/seq_cub200.py | 5 +- datasets/seq_eurosat_rgb.py | 15 +- datasets/seq_imagenet_r.py | 8 +- datasets/seq_isic.py | 13 +- datasets/seq_mit67.py | 46 +++--- datasets/seq_mnist.py | 2 +- datasets/seq_resisc45.py | 15 +- datasets/seq_tinyimagenet.py | 3 +- datasets/utils/continual_dataset.py | 2 +- models/attriclip_utils/clip/clip.py | 35 ++--- models/attriclip_utils/clip/clip_2.py | 34 ++--- models/attriclip_utils/clip/model.py | 128 ++++++++--------- models/attriclip_utils/clip/model_2.py | 132 +++++++++--------- .../attriclip_utils/clip/simple_tokenizer.py | 55 ++++---- models/attriclip_utils/model.py | 95 +++++++------ models/attriclip_utils/utils.py | 34 +++-- models/clip.py | 4 +- models/coda_prompt_utils/__init__.py | 5 +- models/utils/continual_model.py | 31 ++-- scripts/local_launcher.py | 2 +- scripts/prepare_grid.py | 5 +- scripts/slurm_sbatcher.py | 2 +- scripts/wandb_sync.py | 8 +- tests/test_datasets.py | 4 +- tests/test_validation.py | 9 +- tests/test_wandb.py | 3 +- tests/test_xder.py | 1 + utils/conf.py | 6 +- utils/kornia_utils.py | 3 + utils/loggers.py | 12 +- utils/stats.py | 2 +- utils/test_utils.py | 3 +- utils/training.py | 2 +- 38 files changed, 393 insertions(+), 355 deletions(-) diff --git a/backbone/utils/lora_utils.py b/backbone/utils/lora_utils.py index c1d082a4..18e06dc5 100644 --- a/backbone/utils/lora_utils.py +++ b/backbone/utils/lora_utils.py @@ -4,6 +4,7 @@ import torch import torch.nn.functional as F + def _ntuple(n): def parse(x): if isinstance(x, collections.abc.Iterable) and not isinstance(x, str): @@ -11,6 +12,7 @@ def parse(x): return tuple(repeat(x, n)) return parse + to_2tuple = _ntuple(2) @@ -203,4 +205,4 @@ def forward(self, x: torch.Tensor, AB: dict = None, **kwargs): x = self.fc2(x, AB_fc2) x = self.drop2(x) - return x \ No newline at end of file + return x diff --git a/backbone/vit.py b/backbone/vit.py index e84f4ab3..e366de0e 100644 --- a/backbone/vit.py +++ b/backbone/vit.py @@ -137,6 +137,7 @@ def __init__(self, dim, init_values=1e-5, inplace=False): def forward(self, x): return x.mul_(self.gamma) if self.inplace else x * self.gamma + class Block(nn.Module): def __init__( @@ -242,7 +243,7 @@ def __init__( use_fc_norm = global_pool == 'avg' if fc_norm is None else fc_norm norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) self.act_layer = act_layer or nn.GELU - + attn_layer = attn_layer if attn_layer is not None else (Attention if not use_lora else LoRAAttention) mlp_layer = mlp_layer if mlp_layer is not None else (Mlp if not use_lora else LoRAMlp) self.attn_layer = attn_layer diff --git a/datasets/seq_chestx.py b/datasets/seq_chestx.py index a9f665b0..c7297197 100644 --- a/datasets/seq_chestx.py +++ b/datasets/seq_chestx.py @@ -16,6 +16,7 @@ from utils.prompt_templates import templates from backbone.vit import vit_base_patch16_224_prompt_prototype + class ChestX(Dataset): N_CLASSES = 6 @@ -78,8 +79,8 @@ def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: :returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], self.targets[index] - img = np.repeat(img[np.newaxis,:,:], 3, axis=0) - img = Image.fromarray((img*255).astype(np.int8).transpose(1,2,0), mode='RGB') + img = np.repeat(img[np.newaxis, :, :], 3, axis=0) + img = Image.fromarray((img * 255).astype(np.int8).transpose(1, 2, 0), mode='RGB') original_img = img.copy() @@ -107,7 +108,7 @@ class SequentialChestX(ContinualDataset): N_TASKS = 2 N_CLASSES = 6 N_CLASSES_PER_TASK = 3 - SIZE=(224, 224) + SIZE = (224, 224) MEAN, STD = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] normalize = transforms.Normalize(mean=MEAN, std=STD) @@ -126,7 +127,7 @@ class SequentialChestX(ContinualDataset): def get_data_loaders(self): train_dataset = ChestX(base_path() + 'chestx', train=True, - download=True, transform=self.TRANSFORM) + download=True, transform=self.TRANSFORM) test_dataset = ChestX(base_path() + 'chestx', train=False, download=True, transform=self.TEST_TRANSFORM) @@ -134,14 +135,14 @@ def get_data_loaders(self): train, test = store_masked_loaders(train_dataset, test_dataset, self) return train, test - + def get_class_names(self): if self.class_names is not None: return self.class_names classes = fix_class_names_order(ChestX.LABELS, self.args) self.class_names = classes return self.class_names - + @staticmethod def get_prompt_templates(): return templates['cifar100'] diff --git a/datasets/seq_cifar100_224.py b/datasets/seq_cifar100_224.py index 45f083ac..8ef9d4b5 100644 --- a/datasets/seq_cifar100_224.py +++ b/datasets/seq_cifar100_224.py @@ -52,7 +52,7 @@ class SequentialCIFAR100224(ContinualDataset): transforms.Resize(224, interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize(MEAN, STD) - ]) + ]) def get_data_loaders(self) -> Tuple[torch.utils.data.DataLoader, torch.utils.data.DataLoader]: transform = self.TRANSFORM diff --git a/datasets/seq_cifar10_224.py b/datasets/seq_cifar10_224.py index 2e1df991..a93f8d66 100644 --- a/datasets/seq_cifar10_224.py +++ b/datasets/seq_cifar10_224.py @@ -105,4 +105,4 @@ def get_class_names(self): @staticmethod def get_prompt_templates(): - return templates['cifar100'] \ No newline at end of file + return templates['cifar100'] diff --git a/datasets/seq_cub200.py b/datasets/seq_cub200.py index 956cce73..ce4cb4e0 100644 --- a/datasets/seq_cub200.py +++ b/datasets/seq_cub200.py @@ -78,7 +78,7 @@ def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: img, target, not_aug_img] if self._return_segmask: - # TODO: add to the return tuple + # TODO: add to the return tuple raise "Unsupported segmentation output in training set!" return ret_tuple @@ -207,7 +207,8 @@ def get_class_names(self): classes = fix_class_names_order(CLASS_NAMES, self.args) self.class_names = classes return self.class_names - + + CLASS_NAMES = [ 'black footed albatross', 'laysan albatross', diff --git a/datasets/seq_eurosat_rgb.py b/datasets/seq_eurosat_rgb.py index 2d7be9b7..3105aa65 100644 --- a/datasets/seq_eurosat_rgb.py +++ b/datasets/seq_eurosat_rgb.py @@ -52,7 +52,7 @@ def __init__(self, root, split='train', transform=None, # downlaod split file form https://drive.google.com/file/d/1Ip7yaCWFi0eaOFUGga0lUdVi_DDQth1o/ gdd.download_file_from_google_drive(file_id='1Ip7yaCWFi0eaOFUGga0lUdVi_DDQth1o', - dest_path=self.root + '/split.json') + dest_path=self.root + '/split.json') print('Done', file=sys.stderr) @@ -66,7 +66,7 @@ def __init__(self, root, split='train', transform=None, def get_class_names(): if not os.path.exists(base_path() + f'eurosat/DONE'): gdd.download_file_from_google_drive(file_id='1Ip7yaCWFi0eaOFUGga0lUdVi_DDQth1o', - dest_path=base_path() + 'eurosat/split.json') + dest_path=base_path() + 'eurosat/split.json') return pd.DataFrame(json.load(open(base_path() + 'eurosat/split.json', 'r'))['train'])[2].unique() def __len__(self): @@ -92,7 +92,7 @@ def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: if self.split != 'train': return img, target - + if hasattr(self, 'logits'): return img, target, not_aug_img, self.logits[index] @@ -124,14 +124,14 @@ class SequentialEuroSatRgb(ContinualDataset): MEAN, STD = [0.48145466, 0.4578275, 0.40821073], [0.26862954, 0.26130258, 0.27577711] TRANSFORM = transforms.Compose([ - transforms.RandomResizedCrop(SIZE[0], scale=(0.08, 1.0), interpolation=InterpolationMode.BICUBIC), # from https://github.dev/KaiyangZhou/Dassl.pytorch defaults + transforms.RandomResizedCrop(SIZE[0], scale=(0.08, 1.0), interpolation=InterpolationMode.BICUBIC), # from https://github.dev/KaiyangZhou/Dassl.pytorch defaults transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=MEAN, std=STD), ]) TEST_TRANSFORM = transforms.Compose([ - transforms.Resize(SIZE[0], interpolation=InterpolationMode.BICUBIC), # bicubic + transforms.Resize(SIZE[0], interpolation=InterpolationMode.BICUBIC), # bicubic transforms.CenterCrop(SIZE[0]), transforms.ToTensor(), transforms.Normalize(mean=MEAN, std=STD), @@ -140,7 +140,7 @@ class SequentialEuroSatRgb(ContinualDataset): def get_class_names(self): if self.class_names is not None: return self.class_names - + try: classes = MyEuroSat.get_class_names() except BaseException: @@ -161,7 +161,7 @@ def get_data_loaders(self): train_dataset = MyEuroSat(base_path() + 'eurosat', split='train', transform=self.TRANSFORM) test_dataset = MyEuroSat(base_path() + 'eurosat', split='test', - transform=self.TEST_TRANSFORM) + transform=self.TEST_TRANSFORM) train, test = store_masked_loaders(train_dataset, test_dataset, self) @@ -201,4 +201,3 @@ def get_batch_size(self): @staticmethod def get_prompt_templates(): return templates['eurosat'] - diff --git a/datasets/seq_imagenet_r.py b/datasets/seq_imagenet_r.py index fa3bbcfb..bb38571c 100644 --- a/datasets/seq_imagenet_r.py +++ b/datasets/seq_imagenet_r.py @@ -122,9 +122,9 @@ class SequentialImagenetR(ContinualDataset): ]) TEST_TRANSFORM = transforms.Compose([transforms.Resize(size=(256, 256), interpolation=InterpolationMode.BICUBIC), - transforms.CenterCrop(SIZE[0]), - transforms.ToTensor(), - transforms.Normalize(mean=MEAN, std=STD)]) + transforms.CenterCrop(SIZE[0]), + transforms.ToTensor(), + transforms.Normalize(mean=MEAN, std=STD)]) def get_data_loaders(self): train_dataset = MyImagenetR(base_path() + 'imagenet-r/', train=True, @@ -139,7 +139,7 @@ def get_data_loaders(self): def get_class_names(self): if self.class_names is not None: return self.class_names - + pwd = os.path.dirname(os.path.abspath(__file__)) with open(pwd + '/imagenet_r_utils/label_to_class_name.pkl', 'rb') as f: label_to_class_name = pickle.load(f) diff --git a/datasets/seq_isic.py b/datasets/seq_isic.py index f325dcdf..75433020 100644 --- a/datasets/seq_isic.py +++ b/datasets/seq_isic.py @@ -16,6 +16,7 @@ from utils.prompt_templates import templates from backbone.vit import vit_base_patch16_224_prompt_prototype + class Isic(Dataset): N_CLASSES = 6 @@ -37,7 +38,7 @@ def __init__(self, root, train=True, transform=None, self.train = train self.transform = transform self.target_transform = target_transform - + split = 'train' if train else 'test' if not os.path.exists(f'{root}/{split}_images.pkl'): if download: @@ -46,7 +47,7 @@ def __init__(self, root, train=True, transform=None, download(ln, filename=smart_joint(root, 'isic.tar.gz'), unzip=True, unzip_path=root.rstrip('isic'), clean=True) else: raise FileNotFoundError(f'File not found: {root}/{split}_images.pkl') - + filename_labels = f'{self.root}/{split}_labels.pkl' filename_images = f'{self.root}/{split}_images.pkl' @@ -68,7 +69,7 @@ def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: :returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], self.targets[index] - img = Image.fromarray((img*255).astype(np.int8), mode='RGB') + img = Image.fromarray((img * 255).astype(np.int8), mode='RGB') original_img = img.copy() @@ -116,10 +117,10 @@ class SequentialIsic(ContinualDataset): def get_data_loaders(self): train_dataset = Isic(base_path() + 'isic', train=True, - download=True, transform=self.TRANSFORM) + download=True, transform=self.TRANSFORM) test_dataset = Isic(base_path() + 'isic', train=False, download=True, - transform=self.TEST_TRANSFORM) + transform=self.TEST_TRANSFORM) train, test = store_masked_loaders(train_dataset, test_dataset, self) @@ -140,7 +141,7 @@ def get_prompt_templates(): def get_transform(): transform = transforms.Compose([ transforms.ToPILImage(), - SequentialIsic.TRANSFORM]) + SequentialIsic.TRANSFORM]) return transform @staticmethod diff --git a/datasets/seq_mit67.py b/datasets/seq_mit67.py index 0ede142e..328f4ed2 100644 --- a/datasets/seq_mit67.py +++ b/datasets/seq_mit67.py @@ -17,7 +17,7 @@ from utils.prompt_templates import templates from backbone.vit import vit_base_patch16_224_prompt_prototype -idx_to_class_names ={ +idx_to_class_names = { 0: 'airport_inside', 1: 'artstudio', 2: 'auditorium', @@ -87,6 +87,7 @@ 66: 'winecellar' } + class MyMIT67(Dataset): NUM_CLASSES = 67 @@ -96,8 +97,8 @@ def __init__(self, root, train=True, download=True, transform=None, self.transform = transform self.train = train self.target_transform = target_transform - self.not_aug_transform = transforms.Compose([transforms.Resize((256,256)),transforms.ToTensor()]) - + self.not_aug_transform = transforms.Compose([transforms.Resize((256, 256)), transforms.ToTensor()]) + if not os.path.exists(self.root) and download: print('Downloading MIT67 dataset...') if not os.path.exists(self.root): @@ -115,12 +116,12 @@ def __init__(self, root, train=True, download=True, transform=None, r = requests.get(test_images_link) with open(os.path.join(self.root, 'TestImages.txt'), 'wb') as f: - f.write(r.content) - print('MIT67 dataset downloaded') - else: + f.write(r.content) + print('MIT67 dataset downloaded') + else: print('MIT67 dataset already downloaded') - - folder_targets = {os.path.basename(f[:-1]):i for i, f in enumerate(sorted(glob.glob(os.path.join(self.root, 'Images/*/'))))} + + folder_targets = {os.path.basename(f[:-1]): i for i, f in enumerate(sorted(glob.glob(os.path.join(self.root, 'Images/*/'))))} train_images_path = os.path.join(self.root, 'TrainImages.txt') test_images_path = os.path.join(self.root, 'TestImages.txt') @@ -150,7 +151,7 @@ def __getitem__(self, index): target = self.targets[index] img = Image.open(self.data[index]) img = img.convert('RGB') - + original_img = img.copy() not_aug_img = self.not_aug_transform(original_img) @@ -165,23 +166,24 @@ def __getitem__(self, index): return img, target, not_aug_img + class SequentialMIT67(ContinualDataset): - + NAME = 'seq-mit67' SETTING = 'class-il' N_TASKS = 10 N_CLASSES = 67 N_CLASSES_PER_TASK = [7] * 7 + [6] * 3 SIZE = (224, 224) - MEAN=[0.485, 0.456, 0.406] - STD=[0.229, 0.224, 0.225] + MEAN = [0.485, 0.456, 0.406] + STD = [0.229, 0.224, 0.225] TRANSFORM = transforms.Compose([ - transforms.Resize(256, interpolation=InterpolationMode.BICUBIC), - transforms.RandomCrop(SIZE), - transforms.RandomHorizontalFlip(), - transforms.ToTensor(), - transforms.Normalize(MEAN, STD) - ]) + transforms.Resize(256, interpolation=InterpolationMode.BICUBIC), + transforms.RandomCrop(SIZE), + transforms.RandomHorizontalFlip(), + transforms.ToTensor(), + transforms.Normalize(MEAN, STD) + ]) TEST_TRANSFORM = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(SIZE), @@ -190,15 +192,15 @@ class SequentialMIT67(ContinualDataset): ]) def get_data_loaders(self): - train_dataset = MyMIT67(base_path() + 'MIT67', train=True, - download=True, transform=self.TRANSFORM) + train_dataset = MyMIT67(base_path() + 'MIT67', train=True, + download=True, transform=self.TRANSFORM) test_dataset = MyMIT67(base_path() + 'MIT76', train=False, - download=True, transform=self.TEST_TRANSFORM) + download=True, transform=self.TEST_TRANSFORM) train, test = store_masked_loaders(train_dataset, test_dataset, self) return train, test - + def get_class_names(self): if self.class_names is not None: return self.class_names diff --git a/datasets/seq_mnist.py b/datasets/seq_mnist.py index 3db3f7f0..6d91a0dc 100644 --- a/datasets/seq_mnist.py +++ b/datasets/seq_mnist.py @@ -116,7 +116,7 @@ def get_batch_size(self): @set_default_from_args('n_epochs') def get_epochs(self): return 1 - + def get_class_names(self): if self.class_names is not None: return self.class_names diff --git a/datasets/seq_resisc45.py b/datasets/seq_resisc45.py index 7335ebe3..4ae38dc5 100644 --- a/datasets/seq_resisc45.py +++ b/datasets/seq_resisc45.py @@ -16,6 +16,7 @@ from utils.prompt_templates import templates from backbone.vit import vit_base_patch16_224_prompt_prototype + class Resisc45(Dataset): N_CLASSES = 45 @@ -148,11 +149,11 @@ class SequentialResisc45(ContinualDataset): ]) TEST_TRANSFORM = transforms.Compose([ - transforms.Resize(size=(256, 256), interpolation=InterpolationMode.BICUBIC), - transforms.CenterCrop(SIZE), - transforms.ToTensor(), - transforms.Normalize(MEAN, STD) - ]) + transforms.Resize(size=(256, 256), interpolation=InterpolationMode.BICUBIC), + transforms.CenterCrop(SIZE), + transforms.ToTensor(), + transforms.Normalize(MEAN, STD) + ]) def get_data_loaders(self): train_dataset = Resisc45(base_path() + 'NWPU-RESISC45', train=True, @@ -179,7 +180,7 @@ def get_prompt_templates(): @staticmethod def get_transform(): return transforms.Compose([transforms.ToPILImage(), - SequentialResisc45.TRANSFORM]) + SequentialResisc45.TRANSFORM]) @staticmethod def get_backbone(): @@ -200,7 +201,7 @@ def get_denormalization_transform(): @set_default_from_args('n_epochs') def get_epochs(self): return 30 - + @set_default_from_args('batch_size') def get_batch_size(self): return 128 diff --git a/datasets/seq_tinyimagenet.py b/datasets/seq_tinyimagenet.py index 306382ae..89588f93 100644 --- a/datasets/seq_tinyimagenet.py +++ b/datasets/seq_tinyimagenet.py @@ -193,6 +193,7 @@ def get_class_names(self): self.class_names = classes return self.class_names + CLASS_NAMES = [ 'egyptian_cat', 'reel', @@ -394,4 +395,4 @@ def get_class_names(self): 'binoculars', 'cauliflower', 'african_elephant' -] \ No newline at end of file +] diff --git a/datasets/utils/continual_dataset.py b/datasets/utils/continual_dataset.py index 916ec5d0..05545cec 100644 --- a/datasets/utils/continual_dataset.py +++ b/datasets/utils/continual_dataset.py @@ -301,7 +301,7 @@ def store_masked_loaders(train_dataset: Dataset, test_dataset: Dataset, train_dataset, test_dataset = _prepare_data_loaders(train_dataset, test_dataset, setting) train_loader = create_seeded_dataloader(setting.args, train_dataset, - batch_size=setting.args.batch_size, shuffle=True) + batch_size=setting.args.batch_size, shuffle=True, drop_last=True) test_loader = create_seeded_dataloader(setting.args, test_dataset, batch_size=setting.args.batch_size, shuffle=False) setting.test_loaders.append(test_loader) diff --git a/models/attriclip_utils/clip/clip.py b/models/attriclip_utils/clip/clip.py index 7c6bab89..ba6d7add 100644 --- a/models/attriclip_utils/clip/clip.py +++ b/models/attriclip_utils/clip/clip.py @@ -18,7 +18,7 @@ except ImportError: BICUBIC = Image.BICUBIC -if torch.__version__.split(".") < ["1","7","1"]: +if torch.__version__.split(".") < ["1", "7", "1"]: warnings.warn("PyTorch version 1.7.1 or higher is recommended") __all__ = ["available_models", "load", "tokenize"] @@ -34,18 +34,19 @@ "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt", "ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt", - } +} -def _download(url:str,root:str): - os.makedirs(root,exist_ok=True) + +def _download(url: str, root: str): + os.makedirs(root, exist_ok=True) filename = os.path.basename(url) expected_sha256 = url.split("/")[-2] - download_target = os.path.join(root,filename) + download_target = os.path.join(root, filename) if os.path.exists(download_target) and not os.path.isfile(download_target): raise RuntimeError(f"{download_target} exists and is not a regular file") - + if os.path.isfile(download_target): if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256: return download_target @@ -62,7 +63,7 @@ def _download(url:str,root:str): output.write(buffer) loop.update(len(buffer)) - if hashlib.sha256(open(download_target,"rb").read()).hexdigest()!= expected_sha256: + if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256: raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match") return download_target @@ -70,11 +71,11 @@ def _download(url:str,root:str): def _transform(n_px): return Compose([ - Resize(n_px,interpolation=BICUBIC), + Resize(n_px, interpolation=BICUBIC), CenterCrop(n_px), lambda image: image.convert("RGB"), ToTensor(), - Normalize((0.48145466, 0.4578275, 0.40821073),(0.26862954, 0.26130258, 0.27577711)), + Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ]) @@ -111,10 +112,10 @@ def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_a if name in _MODELS: model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip")) elif os.path.isfile(name): - model_path = name + model_path = name else: raise RuntimeError(f"Model {name} not found; available models = {available_models()}") - + try: # loading JIT archive model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval() @@ -133,14 +134,14 @@ def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_a return model, _transform(model.visual.input_resolution) # patch the device names - device_holder = torch.jit.trace(lambda:torch.ones([]).to(torch.device(device)), example_inputs=[]) + device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) device_node = [n for n in device_holder.graph.findAllNodes("prim: :Constant") if "Device" in repr(n)][-1] def patch_device(module): try: graphs = [module.graph] if hasattr(module, "graph") else [] except RuntimeError: - graphs =[] + graphs = [] if hasattr(module, "forward1"): graphs.append(module.forward1.graph) @@ -155,12 +156,11 @@ def patch_device(module): patch_device(model.encode_text) # patch dtype to float32 on CPU - if str(device)=="cpu": + if str(device) == "cpu": float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] float_node = float_input.node() - def patch_float(module): try: graphs = [module.graph] if hasattr(module, "graph") else [] @@ -173,7 +173,7 @@ def patch_float(module): for graph in graphs: for node in graph.findAllNodes("aten::to"): inputs = list(node.inputs()) - for i in [1, 2]: # dtype can be the second or third argument to aten::to() + for i in [1, 2]: # dtype can be the second or third argument to aten::to() if inputs[i].node()["value"] == 5: inputs[i].node().copyAttributes(float_node) @@ -185,6 +185,7 @@ def patch_float(module): return model, _transform(model.input_resolution.item()) + def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> torch.LongTensor: """ Returns the tokenized representation of given input string(s) @@ -222,4 +223,4 @@ def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: b raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") result[i, :len(tokens)] = torch.tensor(tokens) - return result \ No newline at end of file + return result diff --git a/models/attriclip_utils/clip/clip_2.py b/models/attriclip_utils/clip/clip_2.py index afcdcb38..ac97085a 100644 --- a/models/attriclip_utils/clip/clip_2.py +++ b/models/attriclip_utils/clip/clip_2.py @@ -18,7 +18,7 @@ except ImportError: BICUBIC = Image.BICUBIC -if torch.__version__.split(".") < ["1","7","1"]: +if torch.__version__.split(".") < ["1", "7", "1"]: warnings.warn("PyTorch version 1.7.1 or higher is recommended") __all__ = ["available_models", "load", "tokenize"] @@ -34,18 +34,19 @@ "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt", "ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt", - } +} -def _download(url:str,root:str): - os.makedirs(root,exist_ok=True) + +def _download(url: str, root: str): + os.makedirs(root, exist_ok=True) filename = os.path.basename(url) expected_sha256 = url.split("/")[-2] - download_target = os.path.join(root,filename) + download_target = os.path.join(root, filename) if os.path.exists(download_target) and not os.path.isfile(download_target): raise RuntimeError(f"{download_target} exists and is not a regular file") - + if os.path.isfile(download_target): if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256: return download_target @@ -62,7 +63,7 @@ def _download(url:str,root:str): output.write(buffer) loop.update(len(buffer)) - if hashlib.sha256(open(download_target,"rb").read()).hexdigest()!= expected_sha256: + if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256: raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match") return download_target @@ -70,11 +71,11 @@ def _download(url:str,root:str): def _transform(n_px): return Compose([ - Resize(n_px,interpolation=BICUBIC), + Resize(n_px, interpolation=BICUBIC), CenterCrop(n_px), lambda image: image.convert("RGB"), ToTensor(), - Normalize((0.48145466, 0.4578275, 0.40821073),(0.26862954, 0.26130258, 0.27577711)), + Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ]) @@ -82,6 +83,7 @@ def available_models() -> List[str]: """Returns the names of available CLIP models""" return list(_MODELS.keys()) + def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None): """Load a CLIP model @@ -111,7 +113,7 @@ def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_a if name in _MODELS: model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip")) elif os.path.isfile(name): - model_path = name + model_path = name else: raise RuntimeError(f"Model {name} not found; available models = {available_models()}") try: @@ -132,14 +134,14 @@ def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_a return model, _transform(model.visual.input_resolution) # patch the device names - device_holder = torch.jit.trace(lambda:torch.ones([]).to(torch.device(device)), example_inputs=[]) + device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) device_node = [n for n in device_holder.graph.findAllNodes("prim: :Constant") if "Device" in repr(n)][-1] def patch_device(module): try: graphs = [module.graph] if hasattr(module, "graph") else [] except RuntimeError: - graphs =[] + graphs = [] if hasattr(module, "forward1"): graphs.append(module.forward1.graph) @@ -154,12 +156,11 @@ def patch_device(module): patch_device(model.encode_text) # patch dtype to float32 on CPU - if str(device)=="cpu": + if str(device) == "cpu": float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] float_node = float_input.node() - def patch_float(module): try: graphs = [module.graph] if hasattr(module, "graph") else [] @@ -172,7 +173,7 @@ def patch_float(module): for graph in graphs: for node in graph.findAllNodes("aten::to"): inputs = list(node.inputs()) - for i in [1, 2]: # dtype can be the second or third argument to aten::to() + for i in [1, 2]: # dtype can be the second or third argument to aten::to() if inputs[i].node()["value"] == 5: inputs[i].node().copyAttributes(float_node) @@ -184,6 +185,7 @@ def patch_float(module): return model, _transform(model.input_resolution.item()) + def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> torch.LongTensor: """ Returns the tokenized representation of given input string(s) @@ -221,4 +223,4 @@ def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: b raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") result[i, :len(tokens)] = torch.tensor(tokens) - return result \ No newline at end of file + return result diff --git a/models/attriclip_utils/clip/model.py b/models/attriclip_utils/clip/model.py index 83d8a8fc..d5636f7a 100644 --- a/models/attriclip_utils/clip/model.py +++ b/models/attriclip_utils/clip/model.py @@ -19,7 +19,7 @@ def __init__(self, inplanes, planes, stride=1): self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) - self.avgpool = nn.AvgPool2d(stride) if stride >1 else nn.Identity() + self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) @@ -32,12 +32,12 @@ def __init__(self, inplanes, planes, stride=1): if stride > 1 or inplanes != planes * Bottleneck.expansion: # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 self.downsample = nn.Sequential(OrderedDict([ - ("-1",nn.AvgPool2d(stride)), - ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), + ("-1", nn.AvgPool2d(stride)), + ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), ("1", nn.BatchNorm2d(planes * self.expansion)) ])) - def forward(self,x: torch.Tensor): + def forward(self, x: torch.Tensor): identity = x out = self.relu(self.bn1(self.conv1(x))) @@ -48,7 +48,7 @@ def forward(self,x: torch.Tensor): if self.downsample is not None: identity = self.downsample(x) - out += identity + out += identity out = self.relu(out) return out @@ -59,15 +59,15 @@ def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) - self.v_proj = nn.Linear(embed_dim,embed_dim) + self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) self.num_heads = num_heads - def forward(self,x): - x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW ->(HW)NC - x= torch.cat([x.mean(dim=0, keepdim=True),x], dim=0) #(HW+1)NC - x= x+ self.positional_embedding[:, None,:].to(x.dtype) #(HW+1)NC - x,_= F.multi_head_attention_forward( + def forward(self, x): + x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW ->(HW)NC + x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC + x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC + x, _ = F.multi_head_attention_forward( query=x, key=x, value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, @@ -100,27 +100,27 @@ class ModifiedResNet(nn.Module): def __init__(self, layers, output_dim, heads, input_resolution=224, width=64): super().__init__() - self.output_dim= output_dim + self.output_dim = output_dim self.input_resolution = input_resolution # the 3-layer stem - self.conv1 = nn.Conv2d(3,width // 2, kernel_size=3, stride=2, padding=1, bias=False) + self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(width // 2) self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(width // 2) self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(width) - self.avgpool =nn.AvgPool2d(2) + self.avgpool = nn.AvgPool2d(2) self.relu = nn.ReLU(inplace=True) # residual layers - self._inplanes = width # this is a *mutable* variable used during construction + self._inplanes = width # this is a *mutable* variable used during construction self.layer1 = self._make_layer(width, layers[0]) self.layer2 = self._make_layer(width * 2, layers[1], stride=2) self.layer3 = self._make_layer(width * 4, layers[2], stride=2) self.layer4 = self._make_layer(width * 8, layers[3], stride=2) - embed_dim = width * 32 # the ResNet feature dimension + embed_dim = width * 32 # the ResNet feature dimension self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim) def _make_layer(self, planes, blocks, stride=1): @@ -132,9 +132,9 @@ def _make_layer(self, planes, blocks, stride=1): return nn.Sequential(*layers) - def forward(self,x): + def forward(self, x): def stem(x): - for conv, bn in [(self.conv1, self.bn1),(self.conv2, self.bn2),(self.conv3, self.bn3)]: + for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]: x = self.relu(bn(conv(x))) x = self.avgpool(x) return x @@ -153,7 +153,7 @@ def stem(x): class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" - def forward(self,x: torch.Tensor): + def forward(self, x: torch.Tensor): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) @@ -171,8 +171,8 @@ def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ - ("c_fc",nn.Linear(d_model, d_model * 4)), - ("gelu",QuickGELU()), + ("c_fc", nn.Linear(d_model, d_model * 4)), + ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) @@ -196,7 +196,7 @@ def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]) self.use_gradient_checkpoint = False - def forward(self,x: torch.Tensor): + def forward(self, x: torch.Tensor): if self.use_gradient_checkpoint: for layer_module in self.resblocks: @@ -204,7 +204,7 @@ def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward - x = torch.utils.checkpoint.checkpoint(create_custom_forward(layer_module),x) + x = torch.utils.checkpoint.checkpoint(create_custom_forward(layer_module), x) return x else: return self.resblocks(x) @@ -219,27 +219,27 @@ def __init__(self, input_resolution: int, patch_size: int, width: int, layers: i scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) - self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size)** 2+ 1, width)) + self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.ln_pre = LayerNorm(width) - self.transformer = Transformer(width,layers, heads) + self.transformer = Transformer(width, layers, heads) self.ln_post = LayerNorm(width) self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) - def forward(self,x: torch.Tensor): - x = self.conv1(x) # shape =[*, width, grid, grid] - x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] - x = x.permute(0,2,1)# shape =:[*,grid **2, width] - x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) #shape=[*,grid**2+1,width] + def forward(self, x: torch.Tensor): + x = self.conv1(x) # shape =[*, width, grid, grid] + x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] + x = x.permute(0, 2, 1) # shape =:[*,grid **2, width] + x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape=[*,grid**2+1,width] x = x + self.positional_embedding.to(x.dtype) x = self.ln_pre(x) - x = x.permute(1,0,2)# NLD -> LND + x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) - x = x.permute(1,0,2)# LND -> NLD + x = x.permute(1, 0, 2) # LND -> NLD - x = self.ln_post(x[:,0,:]) + x = self.ln_post(x[:, 0, :]) if self.proj is not None: x = x @ self.proj @@ -249,24 +249,24 @@ def forward(self,x: torch.Tensor): class CLIP(nn.Module): def __init__(self, - embed_dim:int, - #vision - image_resolution:int, - vision_layers: Union[Tuple[int, int, int, int], int], - vision_width:int, - vision_patch_size:int, - # text - context_length:int, - vocab_size:int, - transformer_width:int, - transformer_heads:int, - transformer_layers: int - ): + embed_dim: int, + # vision + image_resolution: int, + vision_layers: Union[Tuple[int, int, int, int], int], + vision_width: int, + vision_patch_size: int, + # text + context_length: int, + vocab_size: int, + transformer_width: int, + transformer_heads: int, + transformer_layers: int + ): super().__init__() self.context_length = context_length - if isinstance(vision_layers,(tuple, list)): + if isinstance(vision_layers, (tuple, list)): vision_heads = vision_width * 32 // 64 self.visual = ModifiedResNet( layers=vision_layers, @@ -286,7 +286,7 @@ def __init__(self, output_dim=embed_dim ) - self.transformer= Transformer( + self.transformer = Transformer( width=transformer_width, layers=transformer_layers, heads=transformer_heads, @@ -337,7 +337,7 @@ def build_attention_mask(self): # pytorch uses additive attention mask; fill with -inf mask = torch.empty(self.context_length, self.context_length) mask.fill_(float("-inf")) - mask.triu_(1) # zero out the lower diagonal + mask.triu_(1) # zero out the lower diagonal return mask @property @@ -348,17 +348,17 @@ def encode_image(self, image): return self.visual(image.type(self.dtype)) def encode_text(self, text): - x= self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model] + x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model] - x= x+ self.positional_embedding.type(self.dtype) - x= x.permute(1,0,2)# NLD -> LND - x= self.transformer(x) - x= x.permute(1, 0, 2) # LND -> NLD - x= self.ln_final(x).type(self.dtype) + x = x + self.positional_embedding.type(self.dtype) + x = x.permute(1, 0, 2) # NLD -> LND + x = self.transformer(x) + x = x.permute(1, 0, 2) # LND -> NLD + x = self.ln_final(x).type(self.dtype) # x.shape = [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) - x = x[torch.arange(x.shape[0]),text.argmax(dim=-1)] @ self.text_projection + x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection return x @@ -379,24 +379,24 @@ def forward(self, image, text): return logits_per_image, logits_per_text -def convert_weights(model:nn.Module): +def convert_weights(model: nn.Module): """Convert applicable model parameters to fp16""" def _convert_weights_to_fp16(l): - if isinstance(l,(nn.Conv1d,nn.Conv2d, nn.Linear)): + if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): l.weight.data = l.weight.data.half() if l.bias is not None: l.bias.data = l.bias.data.half() if isinstance(l, nn.MultiheadAttention): - for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k","bias_v"]: + for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: tensor = getattr(l, attr) if tensor is not None: tensor.data = tensor.data.half() for name in ["text_projection", "proj"]: - if hasattr(l,name): - attr = getattr(l,name) + if hasattr(l, name): + attr = getattr(l, name) if attr is not None: attr.data = attr.data.half() @@ -418,7 +418,7 @@ def build_model(state_dict: dict): # pdb.set_trace() vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) - vision_patch_size= None + vision_patch_size = None assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] image_resolution = output_width * 32 @@ -433,9 +433,9 @@ def build_model(state_dict: dict): embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size, context_length, vocab_size, transformer_width, transformer_heads, transformer_layers - ) + ) - for key in ["input_resolution", "context_length","vocab_size"]: + for key in ["input_resolution", "context_length", "vocab_size"]: if key in state_dict: del state_dict[key] diff --git a/models/attriclip_utils/clip/model_2.py b/models/attriclip_utils/clip/model_2.py index d6ff9351..9a85092c 100644 --- a/models/attriclip_utils/clip/model_2.py +++ b/models/attriclip_utils/clip/model_2.py @@ -7,6 +7,7 @@ from torch import nn import pdb + class Bottleneck(nn.Module): expansion = 4 @@ -19,7 +20,7 @@ def __init__(self, inplanes, planes, stride=1): self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) - self.avgpool = nn.AvgPool2d(stride) if stride >1 else nn.Identity() + self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) @@ -32,12 +33,12 @@ def __init__(self, inplanes, planes, stride=1): if stride > 1 or inplanes != planes * Bottleneck.expansion: # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 self.downsample = nn.Sequential(OrderedDict([ - ("-1",nn.AvgPool2d(stride)), - ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), + ("-1", nn.AvgPool2d(stride)), + ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), ("1", nn.BatchNorm2d(planes * self.expansion)) ])) - def forward(self,x: torch.Tensor): + def forward(self, x: torch.Tensor): identity = x out = self.relu(self.bn1(self.conv1(x))) @@ -48,7 +49,7 @@ def forward(self,x: torch.Tensor): if self.downsample is not None: identity = self.downsample(x) - out += identity + out += identity out = self.relu(out) return out @@ -59,15 +60,15 @@ def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) - self.v_proj = nn.Linear(embed_dim,embed_dim) + self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) self.num_heads = num_heads - def forward(self,x): - x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW ->(HW)NC - x= torch.cat([x.mean(dim=0, keepdim=True),x], dim=0) #(HW+1)NC - x= x+ self.positional_embedding[:, None,:].to(x.dtype) #(HW+1)NC - x,_= F.multi_head_attention_forward( + def forward(self, x): + x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW ->(HW)NC + x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC + x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC + x, _ = F.multi_head_attention_forward( query=x, key=x, value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, @@ -100,27 +101,27 @@ class ModifiedResNet(nn.Module): def __init__(self, layers, output_dim, heads, input_resolution=224, width=64): super().__init__() - self.output_dim= output_dim + self.output_dim = output_dim self.input_resolution = input_resolution # the 3-layer stem - self.conv1 = nn.Conv2d(3,width // 2, kernel_size=3, stride=2, padding=1, bias=False) + self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(width // 2) self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(width // 2) self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(width) - self.avgpool =nn.AvgPool2d(2) + self.avgpool = nn.AvgPool2d(2) self.relu = nn.ReLU(inplace=True) # residual layers - self._inplanes = width # this is a *mutable* variable used during construction + self._inplanes = width # this is a *mutable* variable used during construction self.layer1 = self._make_layer(width, layers[0]) self.layer2 = self._make_layer(width * 2, layers[1], stride=2) self.layer3 = self._make_layer(width * 4, layers[2], stride=2) self.layer4 = self._make_layer(width * 8, layers[3], stride=2) - embed_dim = width * 32 # the ResNet feature dimension + embed_dim = width * 32 # the ResNet feature dimension self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim) def _make_layer(self, planes, blocks, stride=1): @@ -132,9 +133,9 @@ def _make_layer(self, planes, blocks, stride=1): return nn.Sequential(*layers) - def forward(self,x): + def forward(self, x): def stem(x): - for conv, bn in [(self.conv1, self.bn1),(self.conv2, self.bn2),(self.conv3, self.bn3)]: + for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]: x = self.relu(bn(conv(x))) x = self.avgpool(x) return x @@ -154,7 +155,7 @@ def stem(x): class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" - def forward(self,x: torch.Tensor): + def forward(self, x: torch.Tensor): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) @@ -172,8 +173,8 @@ def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ - ("c_fc",nn.Linear(d_model, d_model * 4)), - ("gelu",QuickGELU()), + ("c_fc", nn.Linear(d_model, d_model * 4)), + ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) @@ -198,7 +199,7 @@ def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]) self.use_gradient_checkpoint = False - def forward(self,x: torch.Tensor): + def forward(self, x: torch.Tensor): # pdb.set_trace() if self.use_gradient_checkpoint: for layer_module in self.resblocks: @@ -206,7 +207,7 @@ def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward - x = torch.utils.checkpoint.checkpoint(create_custom_forward(layer_module),x) + x = torch.utils.checkpoint.checkpoint(create_custom_forward(layer_module), x) return x else: return self.resblocks(x) @@ -221,28 +222,28 @@ def __init__(self, input_resolution: int, patch_size: int, width: int, layers: i scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) - self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size)** 2+ 1, width))#[rid**2+1, width] + self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) # [rid**2+1, width] self.ln_pre = LayerNorm(width) - self.transformer = Transformer(width,layers, heads) + self.transformer = Transformer(width, layers, heads) self.ln_post = LayerNorm(width) self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) - def forward(self,x: torch.Tensor): + def forward(self, x: torch.Tensor): # pdb.set_trace() - x = self.conv1(x) # shape =[*, width, grid, grid] - x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] - x = x.permute(0,2,1)# shape =:[*,grid **2, width] - x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) #shape=[*,grid**2+1,width] + x = self.conv1(x) # shape =[*, width, grid, grid] + x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] + x = x.permute(0, 2, 1) # shape =:[*,grid **2, width] + x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape=[*,grid**2+1,width] x = x + self.positional_embedding.to(x.dtype) x = self.ln_pre(x) - x = x.permute(1,0,2)# NLD -> LND + x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) - x = x.permute(1,0,2)# LND -> NLD + x = x.permute(1, 0, 2) # LND -> NLD - x = self.ln_post(x[:,0,:]) + x = self.ln_post(x[:, 0, :]) if self.proj is not None: x = x @ self.proj @@ -252,24 +253,24 @@ def forward(self,x: torch.Tensor): class CLIP(nn.Module): def __init__(self, - embed_dim:int, - #vision - image_resolution:int, - vision_layers: Union[Tuple[int, int, int, int], int], - vision_width:int, - vision_patch_size:int, - # text - context_length:int, - vocab_size:int, - transformer_width:int, - transformer_heads:int, - transformer_layers: int - ): + embed_dim: int, + # vision + image_resolution: int, + vision_layers: Union[Tuple[int, int, int, int], int], + vision_width: int, + vision_patch_size: int, + # text + context_length: int, + vocab_size: int, + transformer_width: int, + transformer_heads: int, + transformer_layers: int + ): super().__init__() self.context_length = context_length # pdb.set_trace() - if isinstance(vision_layers,(tuple, list)): + if isinstance(vision_layers, (tuple, list)): vision_heads = vision_width * 32 // 64 self.visual = ModifiedResNet( layers=vision_layers, @@ -289,7 +290,7 @@ def __init__(self, output_dim=embed_dim ) - self.transformer= Transformer( + self.transformer = Transformer( width=transformer_width, layers=transformer_layers, heads=transformer_heads, @@ -340,7 +341,7 @@ def build_attention_mask(self): # pytorch uses additive attention mask; fill with -inf mask = torch.empty(self.context_length, self.context_length) mask.fill_(float("-inf")) - mask.triu_(1) # zero out the lower diagonal + mask.triu_(1) # zero out the lower diagonal return mask @property @@ -351,17 +352,17 @@ def encode_image(self, image): return self.visual(image.type(self.dtype)) def encode_text(self, text): - x= self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model] + x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model] - x= x+ self.positional_embedding.type(self.dtype) - x= x.permute(1,0,2)# NLD -> LND - x= self.transformer(x) - x= x.permute(1, 0, 2) # LND -> NLD - x= self.ln_final(x).type(self.dtype) + x = x + self.positional_embedding.type(self.dtype) + x = x.permute(1, 0, 2) # NLD -> LND + x = self.transformer(x) + x = x.permute(1, 0, 2) # LND -> NLD + x = self.ln_final(x).type(self.dtype) # x.shape = [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) - x = x[torch.arange(x.shape[0]),text.argmax(dim=-1)] @ self.text_projection + x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection return x @@ -382,31 +383,31 @@ def forward(self, image, text): return logits_per_image, logits_per_text -def convert_weights(model:nn.Module): +def convert_weights(model: nn.Module): """Convert applicable model parameters to fp16""" def _convert_weights_to_fp16(l): - if isinstance(l,(nn.Conv1d,nn.Conv2d, nn.Linear)): + if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): l.weight.data = l.weight.data.half() if l.bias is not None: l.bias.data = l.bias.data.half() if isinstance(l, nn.MultiheadAttention): - for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k","bias_v"]: + for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: tensor = getattr(l, attr) if tensor is not None: tensor.data = tensor.data.half() for name in ["text_projection", "proj"]: - if hasattr(l,name): - attr = getattr(l,name) + if hasattr(l, name): + attr = getattr(l, name) if attr is not None: attr.data = attr.data.half() model.apply(_convert_weights_to_fp16) -def build_model(state_dict:dict): +def build_model(state_dict: dict): vit = "visual.proj" in state_dict if vit: @@ -415,7 +416,6 @@ def build_model(state_dict:dict): vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) image_resolution = vision_patch_size * grid_size - else: # pdb.set_trace() @@ -424,7 +424,7 @@ def build_model(state_dict:dict): # pdb.set_trace() vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) - vision_patch_size= None + vision_patch_size = None assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] image_resolution = output_width * 32 @@ -439,9 +439,9 @@ def build_model(state_dict:dict): embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size, context_length, vocab_size, transformer_width, transformer_heads, transformer_layers - ) #768, 224, 24, 1024, 14, 77, vocab_size 49408, transformer_width 768, 12, 12 + ) # 768, 224, 24, 1024, 14, 77, vocab_size 49408, transformer_width 768, 12, 12 - for key in ["input_resolution", "context_length","vocab_size"]: + for key in ["input_resolution", "context_length", "vocab_size"]: if key in state_dict: del state_dict[key] diff --git a/models/attriclip_utils/clip/simple_tokenizer.py b/models/attriclip_utils/clip/simple_tokenizer.py index 4471d646..513b98d4 100644 --- a/models/attriclip_utils/clip/simple_tokenizer.py +++ b/models/attriclip_utils/clip/simple_tokenizer.py @@ -23,14 +23,14 @@ def bytes_to_unicode(): To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on.... """ - bs = list(range(ord("!"), ord("~")+1))+list(range(ord(";"), ord("-")+1))+list(range(ord("@"), ord("y")+1)) - cs= bs[:] - n=0 + bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord(";"), ord("-") + 1)) + list(range(ord("@"), ord("y") + 1)) + cs = bs[:] + n = 0 for b in range(2**8): if b not in bs: bs.append(b) - cs.append(2**8+n) - n+=1 + cs.append(2**8 + n) + n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) @@ -42,7 +42,7 @@ def get_pairs(word): pairs = set() prev_char = word[0] for char in word[1:]: - pairs.add((prev_char,char)) + pairs.add((prev_char, char)) prev_char = char return pairs @@ -54,68 +54,67 @@ def basic_clean(text): def whitespace_clean(text): - text = re.sub(r'\s+', ' ',text) + text = re.sub(r'\s+', ' ', text) text = text.strip() return text - class SimpleTokenizer(object): - def __init__(self,bpe_path: str = default_bpe()): + def __init__(self, bpe_path: str = default_bpe()): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') - merges = merges[1:49152-256-2+1] + merges = merges[1:49152 - 256 - 2 + 1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) - vocab = vocab + [v+'' for v in vocab] + vocab = vocab + [v + '' for v in vocab] for merge in merges: vocab.append(''.join(merge)) - vocab.extend(['<|startoftext|>','<|endoftext|>']) - self.encoder = dict(zip(vocab,range(len(vocab)))) + vocab.extend(['<|startoftext|>', '<|endoftext|>']) + self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} - self.bpe_ranks = dict(zip(merges,range(len(merges)))) - self.cache = {'<|startoftext|>':'<|startoftext|>','<|endoftext|>':'<|endoftext|>'} - self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",re.IGNORECASE) + self.bpe_ranks = dict(zip(merges, range(len(merges)))) + self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} + self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) - def bpe(self,token): + def bpe(self, token): if token in self.cache: return self.cache[token] - word = tuple(token[:-1]) +( token[-1] + '',) + word = tuple(token[:-1]) + (token[-1] + '',) pairs = get_pairs(word) if not pairs: - return token+'' + return token + '' while True: - bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) + bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram - new_word =[] - i=0 + new_word = [] + i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j - except: + except BaseException: new_word.extend(word[i:]) break - if word[i] == first and i < len(word)-1 and word[i+1] == second: - new_word.append(first+second) + if word[i] == first and i < len(word) - 1 and word[i + 1] == second: + new_word.append(first + second) i += 2 else: new_word.append(word[i]) - i+=1 + i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) - word =' '.join(word) + word = ' '.join(word) self.cache[token] = word return word @@ -129,5 +128,5 @@ def encode(self, text): def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) - text = bytearray([self.byte_decoder[c] for c in text]).decode( 'utf-8', errors="replace").replace('',' ') + text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('', ' ') return text diff --git a/models/attriclip_utils/model.py b/models/attriclip_utils/model.py index 0c376593..08b95785 100644 --- a/models/attriclip_utils/model.py +++ b/models/attriclip_utils/model.py @@ -24,27 +24,27 @@ def __init__(self, device, args, class_names, clip_model, text_prompt, n_ctx=12, n_cls = len(class_names) self.dtype = dtype - prompt_prefix =' '.join(['x'] * n_ctx * self.args.text_prompt) - prompts = [prompt_prefix + ' ' + name + '.' for name in class_names]# xxxxxx classe + prompt_prefix = ' '.join(['x'] * n_ctx * self.args.text_prompt) + prompts = [prompt_prefix + ' ' + name + '.' for name in class_names] # xxxxxx classe classnames = [name.replace('_', ' ') for name in class_names] self.name_lens = [len(_tokenizer.encode(name)) for name in class_names] self.prompt_pos = prompt_pos self.text_prompt = text_prompt - tokenized_prompts = torch.cat([tokenize(p) for p in prompts])# conversione frase testuale in numeri - self.tokenized_prompts = tokenized_prompts # token + tokenized_prompts = torch.cat([tokenize(p) for p in prompts]) # conversione frase testuale in numeri + self.tokenized_prompts = tokenized_prompts # token with torch.no_grad(): - embedding = clip_model.token_embedding(tokenized_prompts.to(self.device)).type(self.dtype)# - self.register_buffer( 'token_prefix', embedding[:, :1, :])# prende token del SOS (start of sequence) - self.register_buffer( 'token_suffix', embedding[:, 1+(n_ctx*self.args.text_prompt):,:]) # prende token CLS, EOS + embedding = clip_model.token_embedding(tokenized_prompts.to(self.device)).type(self.dtype) + self.register_buffer('token_prefix', embedding[:, :1, :]) # prende token del SOS (start of sequence) + self.register_buffer('token_suffix', embedding[:, 1 + (n_ctx * self.args.text_prompt):, :]) # prende token CLS, EOS - nc_prompts = [prompt_prefix+'.' ]#xxxxxxxxxxxxxxxxxxxxx. - nc_tokenized_prompts = torch.cat([tokenize(p) for p in nc_prompts])# conversione della frase senza la classe + nc_prompts = [prompt_prefix + '.'] # xxxxxxxxxxxxxxxxxxxxx. + nc_tokenized_prompts = torch.cat([tokenize(p) for p in nc_prompts]) # conversione della frase senza la classe self.nc_tokenized_prompts = nc_tokenized_prompts with torch.no_grad(): embedding = clip_model.token_embedding(nc_tokenized_prompts.to(self.device)).type(self.dtype) - self.register_buffer('nc_token_prefix', embedding[:, :1,:]) - self.register_buffer('nc_token_suffix', embedding[:, 1+n_ctx:,:]) + self.register_buffer('nc_token_prefix', embedding[:, :1, :]) + self.register_buffer('nc_token_suffix', embedding[:, 1 + n_ctx:, :]) self.n_cls = n_cls self.n_ctx = n_ctx @@ -52,7 +52,7 @@ def __init__(self, device, args, class_names, clip_model, text_prompt, n_ctx=12, def forward(self, indices, test_class=None, infer=False): if test_class is not None: - prompt_prefix =' '.join(['x'] * self.n_ctx*self.args.text_prompt) + prompt_prefix = ' '.join(['x'] * self.n_ctx * self.args.text_prompt) prompts = [prompt_prefix + ' ' + name + '.' for name in test_class] self.name_lens = [len(_tokenizer.encode(name)) for name in test_class] @@ -62,46 +62,46 @@ def forward(self, indices, test_class=None, infer=False): self.tokenized_prompts = tokenized_prompts with torch.no_grad(): embedding = self.clip_model.token_embedding(tokenized_prompts.to(self.device)).type(self.dtype) - self.register_buffer( 'token_prefix', embedding[:, :1, :]) # SOS, [n_cls, 1, ctx_dim] - self.register_buffer( 'token_suffix', embedding[:, 1+(self.n_ctx*self.args.text_prompt):,:]) # CLS, EOS, [n_cls, -1, ctx_dim] + self.register_buffer('token_prefix', embedding[:, :1, :]) # SOS, [n_cls, 1, ctx_dim] + self.register_buffer('token_suffix', embedding[:, 1 + (self.n_ctx * self.args.text_prompt):, :]) # CLS, EOS, [n_cls, -1, ctx_dim] self.n_cls = len(test_class) batch = indices.shape[0] - ctx=self.text_prompt[indices].view(batch, self.n_ctx*self.args.text_prompt, self.ctx_dim) - tokenized_prompts = self.tokenized_prompts.view(self.n_cls,-1) + ctx = self.text_prompt[indices].view(batch, self.n_ctx * self.args.text_prompt, self.ctx_dim) + tokenized_prompts = self.tokenized_prompts.view(self.n_cls, -1) n_cls = self.n_cls if self.prompt_pos == 2: - prefix = self.token_prefix.unsqueeze(0).repeat(batch,1,1,1) - suffix = self.token_suffix.unsqueeze(0).repeat(batch,1,1,1) + prefix = self.token_prefix.unsqueeze(0).repeat(batch, 1, 1, 1) + suffix = self.token_suffix.unsqueeze(0).repeat(batch, 1, 1, 1) ctx = ctx.unsqueeze(1).repeat(1, n_cls, 1, 1) - prompts = torch.cat([prefix, ctx, suffix],dim=2) + prompts = torch.cat([prefix, ctx, suffix], dim=2) elif self.prompt_pos == 1: - prompts =[] + prompts = [] half_n_ctx = self.n_ctx // 2 for i in range(n_cls): name_len = self.name_lens[i] - prefix_i = self.token_prefix[i:i+1, :,:].unsqueeze(1) - class_i = self.token_suffix[i:i+1,:name_len, :].unsqueeze(1) - suffix_i = self.token_suffix[i:i+1, name_len:,:].unsqueeze(1) - ctx_i_half1 = ctx[:,:half_n_ctx, :].unsqueeze(0) - ctx_i_half2 = ctx[:, half_n_ctx:,:].unsqueeze(0) - prompt = torch.cat([prefix_i, ctx_i_half1, class_i, ctx_i_half2, suffix_i],dim=2) + prefix_i = self.token_prefix[i:i + 1, :, :].unsqueeze(1) + class_i = self.token_suffix[i:i + 1, :name_len, :].unsqueeze(1) + suffix_i = self.token_suffix[i:i + 1, name_len:, :].unsqueeze(1) + ctx_i_half1 = ctx[:, :half_n_ctx, :].unsqueeze(0) + ctx_i_half2 = ctx[:, half_n_ctx:, :].unsqueeze(0) + prompt = torch.cat([prefix_i, ctx_i_half1, class_i, ctx_i_half2, suffix_i], dim=2) prompts.append(prompt) prompts = torch.cat(prompts, dim=0) elif self.prompt_pos == 0: - prompts =[] + prompts = [] for i in range(self.n_cls): name_len = self.name_lens[i] - prefix_i = self.token_prefix[i:i+1,:,:].unsqueeze(1) - class_i = self.token_suffix[i:i+1, :name_len,:].unsqueeze(1) - suffix_i = self.token_suffix[i:i+1, name_len:,:].unsqueeze(1) + prefix_i = self.token_prefix[i:i + 1, :, :].unsqueeze(1) + class_i = self.token_suffix[i:i + 1, :name_len, :].unsqueeze(1) + suffix_i = self.token_suffix[i:i + 1, name_len:, :].unsqueeze(1) ctx_i = ctx.unsqueeze(0) prompt = torch.cat([prefix_i, class_i, ctx_i, suffix_i], dim=2) prompts.append(prompt) prompts = torch.cat(prompts, dim=0) - prompts = prompts.squeeze(2).view(batch*self.n_cls, -1, self.ctx_dim) - tokenized_prompts = tokenized_prompts.unsqueeze(0).repeat(batch,1,1).view(batch*self.n_cls, -1) + prompts = prompts.squeeze(2).view(batch * self.n_cls, -1, self.ctx_dim) + tokenized_prompts = tokenized_prompts.unsqueeze(0).repeat(batch, 1, 1).view(batch * self.n_cls, -1) self.prompts = prompts self.prompts_token = tokenized_prompts if infer: @@ -116,7 +116,7 @@ def only_prefix(self): nc_tokenized_prompts = self.nc_tokenized_prompts.repeat(prompt_size, 1) prefix = self.nc_token_prefix.repeat(prompt_size, 1, 1) suffix = self.nc_token_suffix.repeat(prompt_size, 1, 1) - nc_prompts = torch.cat([prefix, ctx, suffix],dim=1) + nc_prompts = torch.cat([prefix, ctx, suffix], dim=1) return nc_prompts, nc_tokenized_prompts @@ -167,9 +167,9 @@ def forward(self, image, test_class=None, test=False): if test: n_test = len(test_class) probability = image_features @ self.text_key.t() - _, indices = probability.topk(k=min(self.args.text_prompt,probability.shape[1]), dim=1, largest=True) - text_prompt, tokenized_prompts = self.prompt_learner(indices,test_class,test) - text_features = self.text_encoder(text_prompt,tokenized_prompts) + _, indices = probability.topk(k=min(self.args.text_prompt, probability.shape[1]), dim=1, largest=True) + text_prompt, tokenized_prompts = self.prompt_learner(indices, test_class, test) + text_features = self.text_encoder(text_prompt, tokenized_prompts) text_features = text_features / text_features.norm(dim=-1, keepdim=True) logit_scale = self.logit_scale.exp() text_features = text_features.view(image_features.shape[0], n_test, -1) @@ -184,7 +184,7 @@ def forward(self, image, test_class=None, test=False): _, indices = probability.topk(k=min(self.args.text_prompt, probability.shape[1]), dim=1, largest=True) key_choose = self.text_key[indices] text_prompt, tokenized_prompts, nc_prompts, nc_tokenized_prompts = self.prompt_learner(indices) - text_features = self.text_encoder(text_prompt,tokenized_prompts) + text_features = self.text_encoder(text_prompt, tokenized_prompts) text_features = text_features / text_features.norm(dim=-1, keepdim=True) text_features = text_features.view(image_features.shape[0], n_class, -1) image_features = image_features.unsqueeze(1) @@ -198,7 +198,6 @@ def forward(self, image, test_class=None, test=False): return logits, image_features, key_choose, loss_m - @property def dtype(self): return self.image_encoder.conv1.weight.dtype @@ -213,16 +212,16 @@ def __init__(self, device, prev_key, prev_prompt, args, n_ctx=12, use_float32=Fa clip_model.eval() if use_float32: clip_model.float() - + if self.args.freeze_clip: for param in clip_model.parameters(): param.requires_grad = False - + self.clip_model = clip_model self.use_grad_checkpoint = use_grad_checkpoint self.num_prompt = args.num_prompt self.n_ctx = n_ctx - self.lr = args.lr*args.batch_size/20 + self.lr = args.lr * args.batch_size / 20 self.wd = args.optim_wd self.epochs = args.n_epochs self.train_batch = args.batch_size @@ -235,7 +234,7 @@ def __init__(self, device, prev_key, prev_prompt, args, n_ctx=12, use_float32=Fa nn.init.normal_(text_key, std=0.02) text_prompt = torch.empty(self.num_prompt, n_ctx, ctx_dim, dtype=self.dtype).to(self.device) nn.init.normal_(text_prompt, std=0.02) - if keep == True : + if keep == True: self.text_key = nn.Parameter(prev_key) self.text_prompt = nn.Parameter(prev_prompt) else: @@ -251,19 +250,19 @@ def init_model(self, class_names, text_key, text_prompt): if self.use_grad_checkpoint: try: self.model.text_encoder.transformer.use_gradient_checkpoint = True - except: + except BaseException: self.model.text_encoder.module.transformer.use_gradient_checkpoint = True def get_optimizer(self, per_epoch_steps): Other_params = [param for name, param in self.model.named_parameters() if 'text_key' in name] param_dict = [{'params': [p for p in self.model.prompt_learner.parameters() if p.requires_grad]}, - {'params': Other_params}] + {'params': Other_params}] optimizer = torch.optim.SGD(param_dict, lr=self.lr, weight_decay=self.wd) scheduler = build_cosine_scheduler( optimizer, lr=self.lr, - total_step=self.epochs*per_epoch_steps) + total_step=self.epochs * per_epoch_steps) return optimizer, scheduler @@ -273,12 +272,12 @@ def training(self): def train(self, mode=True): self.model.train(mode) - + def eval(self): self.model.eval() - + def to(self, device): self.model.to(device) - + def parameters(self): return self.model.parameters() diff --git a/models/attriclip_utils/utils.py b/models/attriclip_utils/utils.py index e5135b35..57291d9c 100644 --- a/models/attriclip_utils/utils.py +++ b/models/attriclip_utils/utils.py @@ -1,16 +1,18 @@ import numpy as np + def cosine_schedule_warmup(total_step, value, final_value=0, warmup_step=0, warmup_value=0): if warmup_step > 0: - warmup_schedule = np.linspace(warmup_value, value, warmup_step+2)[1:-1] + warmup_schedule = np.linspace(warmup_value, value, warmup_step + 2)[1:-1] else: warmup_schedule = np.array([]) steps = np.arange(total_step - warmup_step) - schedule = final_value + 0.5 * (value-final_value) * (1+np.cos(np.pi * steps / len(steps))) + schedule = final_value + 0.5 * (value - final_value) * (1 + np.cos(np.pi * steps / len(steps))) schedule = np.concatenate((warmup_schedule, schedule)) assert len(schedule) == total_step return schedule + class build_cosine_scheduler: def __init__(self, optimizer, lr, total_step, lr_warmup_step=0): init_lr = 0 @@ -18,43 +20,45 @@ def __init__(self, optimizer, lr, total_step, lr_warmup_step=0): self.lrs = cosine_schedule_warmup(total_step, lr, final_lr, lr_warmup_step, init_lr) self.optimizer = optimizer - def step(self,idx): + def step(self, idx): lr = self.lrs[idx] for i, param_group in enumerate(self.optimizer.param_groups): - param_group["lr"]= lr - self.lr=lr + param_group["lr"] = lr + self.lr = lr + class build_bicosine_scheduler: def __init__(self, optimizer, lr, total_step, lr_warmup_step=0): lr_promt = lr[0] lr_conv = lr[1] - init_lr=0 + init_lr = 0 final_lr_promt = lr_promt * 1e-3 final_lr_conv = lr_conv * 1e-3 self.lrs_prompt = cosine_schedule_warmup(total_step, lr_promt, final_lr_promt, lr_warmup_step, init_lr) self.lrs_conv = cosine_schedule_warmup(total_step, lr_conv, final_lr_conv, lr_warmup_step, init_lr) self.optimizer = optimizer - def step(self,idx): + def step(self, idx): lr_promt = self.lrs_prompt[idx] lr_conv = self.lrs_conv[idx] for i, param_group in enumerate(self.optimizer.param_groups): # pdb.set_trace() - if i==0: + if i == 0: param_group["lr"] = lr_conv else: - param_group["lr"] = lr_promt + param_group["lr"] = lr_promt self.lr_conv = lr_conv self.lr_prompt = lr_promt -def cosine_loss(q,k): + +def cosine_loss(q, k): # pdb.set_trace() - q = q.repeat(1,k.shape[1],1) + q = q.repeat(1, k.shape[1], 1) # k = k.squeeze(1) # q = q/q.norm(dim=-1) - k_norm = k.norm(dim=-1,keepdim=True) + k_norm = k.norm(dim=-1, keepdim=True) # pdb.set_trace() # k_norm = k.norm(dim=-1).unsqueeze(1).repeat(1,k.shape[1]) - k = k/k_norm - cos = ((q*k)/(k.shape[0]*k.shape[1])).sum() - return 1-cos \ No newline at end of file + k = k / k_norm + cos = ((q * k) / (k.shape[0] * k.shape[1])).sum() + return 1 - cos diff --git a/models/clip.py b/models/clip.py index 4efcd581..b82423f4 100644 --- a/models/clip.py +++ b/models/clip.py @@ -44,14 +44,14 @@ def __init__(self, clip_model, dataset: ContinualDataset, args) -> None: for t in templates: t_inputs = torch.cat([clip.tokenize(t.format(c)) for c in self.classes]).to(get_device()) t_inputs = self.clip_model.encode_text(t_inputs) - t_inputs /= t_inputs.norm(dim=-1, keepdim=True) # double normalization if use templates is expected (see https://github.dev/KaiyangZhou/CoOp) + t_inputs /= t_inputs.norm(dim=-1, keepdim=True) # double normalization if use templates is expected (see https://github.dev/KaiyangZhou/CoOp) text_inputs.append(t_inputs) self.text_features = torch.stack(text_inputs).mean(0) else: text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in self.classes]).to(get_device()) self.text_features = self.clip_model.encode_text(text_inputs) - self.text_features /= self.text_features.norm(dim=-1, keepdim=True) # double normalization if use templates is expected + self.text_features /= self.text_features.norm(dim=-1, keepdim=True) # double normalization if use templates is expected self.task_id = 0 @torch.no_grad() diff --git a/models/coda_prompt_utils/__init__.py b/models/coda_prompt_utils/__init__.py index b929ce33..d820c886 100644 --- a/models/coda_prompt_utils/__init__.py +++ b/models/coda_prompt_utils/__init__.py @@ -6,11 +6,12 @@ import torch + def gram_schmidt(vv, start_c, end_c, return_in_parameter=True): """ Code for this function is modified from: https://github.com/legendongary/pytorch-gram-schmidt/blob/master/gram_schmidt.py - + Perform Gram-Schmidt orthogonalization on the input matrix vv. """ @@ -68,4 +69,4 @@ def projection(u, v): if return_in_parameter: return torch.nn.Parameter(uu) - return uu \ No newline at end of file + return uu diff --git a/models/utils/continual_model.py b/models/utils/continual_model.py index 6744e5aa..f66b4a24 100644 --- a/models/utils/continual_model.py +++ b/models/utils/continual_model.py @@ -81,6 +81,20 @@ def get_parser() -> Namespace: parser = ArgumentParser(description='Base CL model') return parser + @property + def task_iteration(self): + """ + Returns the number of iterations in the current task. + """ + return self._task_iteration + + @property + def epoch_iteration(self): + """ + Returns the number of iterations in the current epoch. + """ + return self._epoch_iteration + @property def current_task(self): """ @@ -298,13 +312,14 @@ def meta_observe(self, *args, **kwargs): epoch = kwargs['epoch'] if self._past_epoch != epoch: self._past_epoch = epoch - self.epoch_iteration = 0 + self._epoch_iteration = 0 if 'cssl' not in self.COMPATIBILITY: # drop unlabeled data if not supported labeled_mask = args[1] != -1 - if labeled_mask.sum() == 0: - return 0 - args = [arg[labeled_mask] if isinstance(arg, torch.Tensor) and arg.shape[0] == args[0].shape[0] else arg for arg in args] + if (~labeled_mask).any(): # if there are any unlabeled samples + if labeled_mask.sum() == 0: # if all samples are unlabeled + return 0 + args = [arg[labeled_mask] if isinstance(arg, torch.Tensor) and arg.shape[0] == args[0].shape[0] else arg for arg in args] if 'wandb' in sys.modules and not self.args.nowand: pl = persistent_locals(self.observe) ret = pl(*args, **kwargs) @@ -319,8 +334,8 @@ def meta_observe(self, *args, **kwargs): if isinstance(ret, dict): assert 'loss' in ret, "Loss not found in return dict" ret = ret['loss'] - self.task_iteration += 1 - self.epoch_iteration += 1 + self._task_iteration += 1 + self._epoch_iteration += 1 return ret def meta_begin_task(self, dataset): @@ -332,8 +347,8 @@ def meta_begin_task(self, dataset): Args: dataset: the current task's dataset """ - self.task_iteration = 0 - self.epoch_iteration = 0 + self._task_iteration = 0 + self._epoch_iteration = 0 self._past_epoch = 0 self._n_classes_current_task = self._cpt if isinstance(self._cpt, int) else self._cpt[self._current_task] self._n_past_classes, self._n_seen_classes = self.compute_offsets(self._current_task) diff --git a/scripts/local_launcher.py b/scripts/local_launcher.py index d49aee5f..6844d50e 100644 --- a/scripts/local_launcher.py +++ b/scripts/local_launcher.py @@ -1,7 +1,7 @@ import os if os.getcwd().split('/')[-1] == 'scripts': os.chdir('..') - + import functools import subprocess import sys diff --git a/scripts/prepare_grid.py b/scripts/prepare_grid.py index 1af1a33a..82f84ad1 100644 --- a/scripts/prepare_grid.py +++ b/scripts/prepare_grid.py @@ -43,12 +43,11 @@ for k, v in zip(combos.keys(), c): if v is None: continue - if type(k) == tuple: - for i in range(len(k)): +if isinstance(k, if ) for i in range(len(k)): ll += f" --{k[i]}={v[i]}" else: ll += f" --{k}={v}" - f.write(ll +'\n') + f.write(ll + '\n') all_configs.append(ll) clines += 1 diff --git a/scripts/slurm_sbatcher.py b/scripts/slurm_sbatcher.py index 42679207..26b06c53 100644 --- a/scripts/slurm_sbatcher.py +++ b/scripts/slurm_sbatcher.py @@ -1,7 +1,7 @@ import os if os.getcwd().split('/')[-1] == 'scripts': os.chdir('..') - + import argparse import math diff --git a/scripts/wandb_sync.py b/scripts/wandb_sync.py index 510a6f06..0e59b7ed 100644 --- a/scripts/wandb_sync.py +++ b/scripts/wandb_sync.py @@ -14,10 +14,10 @@ def parse_args(): parser = argparse.ArgumentParser() - parser.add_argument("-w","-n","--n_workers", type=int, help="Number of workers to use. If not specified, will use all available cores. (Recommended: n_cpus*3)") - parser.add_argument("-l","--limit", type=int, help="Limit the number of runs to sync") - parser.add_argument("-r","--reverse", action="store_true", help="Reverse the order of runs to sync?") - parser.add_argument("-c","--clean_after", action="store_true", help="Clean run after syncing?") + parser.add_argument("-w", "-n", "--n_workers", type=int, help="Number of workers to use. If not specified, will use all available cores. (Recommended: n_cpus*3)") + parser.add_argument("-l", "--limit", type=int, help="Limit the number of runs to sync") + parser.add_argument("-r", "--reverse", action="store_true", help="Reverse the order of runs to sync?") + parser.add_argument("-c", "--clean_after", action="store_true", help="Clean run after syncing?") args = parser.parse_args() if args.n_workers is None: diff --git a/tests/test_datasets.py b/tests/test_datasets.py index 8f3ade73..db38a7af 100644 --- a/tests/test_datasets.py +++ b/tests/test_datasets.py @@ -35,8 +35,8 @@ def test_datasets(dataset): '1'] # clean all downloaded datasets - dataset_paths = ['CUB200', 'CIFAR10', 'CIFAR100', 'MNIST', - 'TINYIMG', 'imagenet-r', 'cars196', 'chestx', + dataset_paths = ['CUB200', 'CIFAR10', 'CIFAR100', 'MNIST', + 'TINYIMG', 'imagenet-r', 'cars196', 'chestx', 'cropdisease', 'eurosat', 'isic', 'MIT67', 'NWPU-RESISC45'] basepath = os.path.dirname(os.path.abspath(__file__)) diff --git a/tests/test_validation.py b/tests/test_validation.py index 341fa628..87a2ba74 100644 --- a/tests/test_validation.py +++ b/tests/test_validation.py @@ -5,9 +5,10 @@ from utils.test_utils import init_test_environ import pytest + @init_test_environ -@pytest.mark.parametrize('validation', ['0.2','0','20']) -@pytest.mark.parametrize('validation_mode', ['complete','current']) +@pytest.mark.parametrize('validation', ['0.2', '0', '20']) +@pytest.mark.parametrize('validation_mode', ['complete', 'current']) def test_validation_classil(validation, validation_mode): sys.argv = ['mammoth', '--model', @@ -43,8 +44,8 @@ def test_validation_classil(validation, validation_mode): @init_test_environ -@pytest.mark.parametrize('dataset', ['mnist-360','perm-mnist']) -@pytest.mark.parametrize('validation', ['0.2','0','20']) +@pytest.mark.parametrize('dataset', ['mnist-360', 'perm-mnist']) +@pytest.mark.parametrize('validation', ['0.2', '0', '20']) @pytest.mark.parametrize('validation_mode', ['complete']) def test_validation_domainil(dataset, validation, validation_mode): sys.argv = ['mammoth', diff --git a/tests/test_wandb.py b/tests/test_wandb.py index 35bedd25..fdc2a6dd 100644 --- a/tests/test_wandb.py +++ b/tests/test_wandb.py @@ -5,6 +5,7 @@ from utils.test_utils import init_test_environ import pytest + @init_test_environ def test_wandb_log_erace(): sys.argv = ['mammoth', @@ -34,7 +35,7 @@ def test_wandb_log_erace(): 'mammoth-test'] os.environ['WANDB_MODE'] = 'disabled' - + log_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs', f'test_wandb_log_erace.log') # log all outputs to file diff --git a/tests/test_xder.py b/tests/test_xder.py index e449c9df..bc120e42 100644 --- a/tests/test_xder.py +++ b/tests/test_xder.py @@ -5,6 +5,7 @@ from utils.test_utils import init_test_environ import pytest + @init_test_environ @pytest.mark.parametrize('model', ['xder', 'xder_rpc', 'xder_ce']) def test_xder(model): diff --git a/utils/conf.py b/utils/conf.py index 6c369ca1..88b27d39 100644 --- a/utils/conf.py +++ b/utils/conf.py @@ -154,13 +154,14 @@ def worker_init_fn(worker_id, num_workers, seed, rank=1): random.seed(worker_seed) -def create_seeded_dataloader(args, dataset, **dataloader_args) -> DataLoader: +def create_seeded_dataloader(args, dataset, verbose=True, **dataloader_args) -> DataLoader: """ Creates a dataloader object from a dataset, setting the seeds for the workers (if `--seed` is set). Args: args: the arguments of the program dataset: the dataset to be loaded + verbose: whether to print the number of workers dataloader_args: external arguments of the dataloader Returns: @@ -169,8 +170,9 @@ def create_seeded_dataloader(args, dataset, **dataloader_args) -> DataLoader: n_cpus = 4 if not hasattr(os, 'sched_getaffinity') else len(os.sched_getaffinity(0)) num_workers = n_cpus if args.num_workers is None else args.num_workers - print(f'INFO: Using {num_workers} workers for the dataloader.') dataloader_args['num_workers'] = num_workers if 'num_workers' not in dataloader_args else dataloader_args['num_workers'] + if verbose: + print(f'INFO: Using {dataloader_args["num_workers"]} workers for the dataloader.') if args.seed is not None: worker_generator = torch.Generator() worker_generator.manual_seed(args.seed) diff --git a/utils/kornia_utils.py b/utils/kornia_utils.py index 4f974c12..4e209cd6 100644 --- a/utils/kornia_utils.py +++ b/utils/kornia_utils.py @@ -6,6 +6,7 @@ from kornia.augmentation.container.params import ParamItem from kornia.constants import Resample + class KorniaMultiAug(kornia.augmentation.AugmentationSequential): """ A custom augmentation class that performs multiple Kornia augmentations. @@ -86,6 +87,7 @@ def forward(self, *args, **kwargs) -> torch.Tensor: """ return self._do_transform(*args, **kwargs) + def _convert_interpolation_to_resample(interpolation: int) -> int: interpolation_name = transforms.InterpolationMode(interpolation).name if hasattr(Resample, interpolation_name): @@ -93,6 +95,7 @@ def _convert_interpolation_to_resample(interpolation: int) -> int: else: raise NotImplementedError(f"Interpolation mode {interpolation_name} not supported by Kornia.") + def to_kornia_transform(transform: transforms.Compose, apply: bool = True) -> Union[List[kornia.augmentation.AugmentationBase2D], KorniaAugNoGrad]: """ Converts PIL transforms to Kornia transforms. diff --git a/utils/loggers.py b/utils/loggers.py index 4bb20e5f..986eed2e 100644 --- a/utils/loggers.py +++ b/utils/loggers.py @@ -43,15 +43,15 @@ def log_accs(args, logger, accs, t, setting, epoch=None, prefix="RESULT"): if not args.nowand: postfix = "" if epoch is None else f"_epoch_{epoch}" - if isinstance(mean_acc, float): # domain or gcl + if isinstance(mean_acc, float): # domain or gcl d2 = {f'{prefix}_domain_mean_accs{postfix}': mean_acc, - **{f'{prefix}_domain_acc_{i}{postfix}': a for i, a in enumerate(accs[0])}, - 'Task': t} + **{f'{prefix}_domain_acc_{i}{postfix}': a for i, a in enumerate(accs[0])}, + 'Task': t} else: d2 = {f'{prefix}_class_mean_accs{postfix}': mean_acc[0], f'{prefix}_task_mean_accs{postfix}': mean_acc[1], - **{f'{prefix}_class_acc_{i}{postfix}': a for i, a in enumerate(accs[0])}, - **{f'{prefix}_task_acc_{i}{postfix}': a for i, a in enumerate(accs[1])}, - 'Task': t} + **{f'{prefix}_class_acc_{i}{postfix}': a for i, a in enumerate(accs[0])}, + **{f'{prefix}_task_acc_{i}{postfix}': a for i, a in enumerate(accs[1])}, + 'Task': t} wandb.log(d2) diff --git a/utils/stats.py b/utils/stats.py index af7d39f7..ceec0ba6 100644 --- a/utils/stats.py +++ b/utils/stats.py @@ -140,7 +140,7 @@ def update_stats(self, cpu_res, gpu_res): self.avg_gpu_res = {g: (g_res + alpha * (g_res - self.avg_gpu_res[g])) for g, g_res in enumerate(gpu_res)} self.max_gpu_res = {g: max(self.max_gpu_res[g], g_res) for g, g_res in enumerate(gpu_res)} gpu_res = {g: g_res for g, g_res in enumerate(gpu_res)} - + if self.logger is not None: self.logger.log_system_stats(cpu_res, gpu_res) diff --git a/utils/test_utils.py b/utils/test_utils.py index ed754326..02fa250d 100644 --- a/utils/test_utils.py +++ b/utils/test_utils.py @@ -1,8 +1,9 @@ import os import decorator + def init_test_environ(func): def wrapper(func, *args, **kwargs): os.environ['MAMMOTH_TEST'] = '1' return func(*args, **kwargs) - return decorator.decorator(wrapper, func) \ No newline at end of file + return decorator.decorator(wrapper, func) diff --git a/utils/training.py b/utils/training.py index 766307eb..9a5c087b 100644 --- a/utils/training.py +++ b/utils/training.py @@ -251,7 +251,7 @@ def train(model: ContinualModel, dataset: ContinualDataset, train_loader, test_loader = dataset.get_data_loaders() model.meta_begin_task(dataset) - if not args.inference_only and args.n_epochs>0: + if not args.inference_only and args.n_epochs > 0: if t and args.enable_other_metrics: accs = evaluate(model, dataset, last=True) results[t - 1] = results[t - 1] + accs[0] From b2111627fb83bfe01b43494a24d61e16402f817d Mon Sep 17 00:00:00 2001 From: loribonna Date: Fri, 19 Jul 2024 15:17:58 +0200 Subject: [PATCH 56/66] Minor update docs, add tests for starprompt --- README.md | 97 +++++++++++------- datasets/utils/continual_dataset.py | 2 +- docs/readme.rst | 154 +++------------------------- models/first_stage_starprompt.py | 7 +- models/second_stage_starprompt.py | 9 +- tests/test_starprompt.py | 85 +++++++++++++++ utils/main.py | 4 +- 7 files changed, 168 insertions(+), 190 deletions(-) create mode 100644 tests/test_starprompt.py diff --git a/README.md b/README.md index 025f29cb..3b4a7d8f 100644 --- a/README.md +++ b/README.md @@ -4,10 +4,12 @@ # Mammoth - An Extendible (General) Continual Learning Framework for Pytorch -Official repository of [Class-Incremental Continual Learning into the eXtended DER-verse](https://arxiv.org/abs/2201.00766) and [Dark Experience for General Continual Learning: a Strong, Simple Baseline](https://papers.nips.cc/paper/2020/hash/b704ea2c39778f07c617f6b7ce480e9e-Abstract.html) +Official repository of [Class-Incremental Continual Learning into the eXtended DER-verse](https://arxiv.org/abs/2201.00766), [Dark Experience for General Continual Learning: a Strong, Simple Baseline](https://papers.nips.cc/paper/2020/hash/b704ea2c39778f07c617f6b7ce480e9e-Abstract.html), and [Semantic Residual Prompts for Continual Learning](https://arxiv.org/abs/2403.06870) -Mammoth is a framework for continual learning research. It is designed to be modular, easy to extend, and - most importantly - _easy to debug_. -Idelly, all the code necessary to run the experiments is included _in the repository_, without needing to check out other repositories or install additional packages. +Mammoth is a framework for continual learning research. With **40 methods and 21 datasets**, it includes the most complete list competitors and benchmarks for research purposes. + +The core idea of Mammoth is that it is designed to be modular, easy to extend, and - most importantly - _easy to debug_. +Ideally, all the code necessary to run the experiments is included _in the repository_, without needing to check out other repositories or install additional packages. With Mammoth, nothing is set in stone. You can easily add new models, datasets, training strategies, or functionalities. @@ -30,12 +32,13 @@ Join our Discord Server for all your Mammoth-related questions → ![Discord Shi - Install with `pip install -r requirements.txt`. NOTE: Pytorch version >= 2.1.0 is required for scaled_dot_product_attention (see: https://github.com/Lightning-AI/litgpt/issues/763). If you cannot support this requirement, uncomment the lines 136-139 under `scaled_dot_product_attention` in `backbone/vit.py`. - Use `./utils/main.py` to run experiments. -- Use argument `--load_best_args` to use the best hyperparameters from the paper. - New models can be added to the `models/` folder. - New datasets can be added to the `datasets/` folder. ## Models +Mammoth currently supports **40** models, with new releases covering the main competitors in literature. + - Efficient Lifelong Learning with A-GEM (A-GEM, A-GEM-R - A-GEM with reservoir buffer): `agem`, `agem_r` - Bias Correction (BiC): `bic`. - Continual Contrastive Interpolation Consistency (CCIC) - _Requires_ `pip install kornia`: `ccic`. @@ -63,26 +66,39 @@ Join our Discord Server for all your Mammoth-related questions → ![Discord Shi - SLCA: Slow Learner with Classifier Alignment for Continual Learning on a Pre-trained Model (SLCA) - _Requires_ `pip install timm==0.9.8`: `slca`. - Transfer without Forgetting (TwF): `twf`. - eXtended-DER (X-DER): `xder` (full version), `xder_ce` (X-DER with CE), `xder_rpc` (X-DER with RPC). +- AttriCLIP: `attriclip`. +- Slow Learner with Classifier Alignment (SLCA): `slca`. +- Semantic Two-level Additive Residual Prompt (STAR-Prompt): `first_stage_starprompt` and `second_stage_starprompt`. *(stay tuned for the end-to-end model version)* ## Datasets -**NOTE**: Datasets are automatically downloaded in the `data/`. +**NOTE**: Datasets are automatically downloaded in `data/`. +- This can be changes by changing the `base_path` function in `utils/conf.py` or using the `--base_path` argument. +- The `data/` folder should not tracked by git and is craeted automatically if missing. -- This can be changes by changing the `base_path` function in `utils/conf.py`. -- The `data/` folder is not tracked by git and is craeted automatically if missing. +Mammoth includes **21** datasets, covering *toy classification problems* (different versions of MNIST), *standard domains* (CIFAR, Imagenet-R, TinyImagenet, MIT-67), *fine-grained classification domains* (Cars-196, CUB-200), *aerial domains* (EuroSAT-RGB, Resisc45), *medical domains* (CropDisease, ISIC, ChestX). - Sequential MNIST (_Class-Il / Task-IL_): `seq-mnist`. +- Permuted MNIST (_Domain-IL_): `perm-mnist`. +- Rotated MNIST (_Domain-IL_): `rot-mnist`. +- MNIST-360 (_General Continual Learning_): `mnist-360`. - Sequential CIFAR-10 (_Class-Il / Task-IL_): `seq-cifar10`. +- Sequential CIFAR-10 resized 224x224 (ViT version) (_Class-Il / Task-IL_): `seq-cifar10-224`. +- Sequential CIFAR-10 resized 224x224 (ResNet50 version) (_Class-Il / Task-IL_): `seq-cifar10-224-rs`. - Sequential Tiny ImageNet (_Class-Il / Task-IL_): `seq-tinyimg`. - Sequential Tiny ImageNet resized 32x32 (_Class-Il / Task-IL_): `seq-tinyimg-r`. - Sequential CIFAR-100 (_Class-Il / Task-IL_): `seq-cifar100`. - Sequential CIFAR-100 resized 224x224 (ViT version) (_Class-Il / Task-IL_): `seq-cifar100-224`. - Sequential CIFAR-100 resized 224x224 (ResNet50 version) (_Class-Il / Task-IL_): `seq-cifar100-224-rs`. -- Permuted MNIST (_Domain-IL_): `perm-mnist`. -- Rotated MNIST (_Domain-IL_): `rot-mnist`. -- MNIST-360 (_General Continual Learning_): `mnist-360`. - Sequential CUB-200 (_Class-Il / Task-IL_): `seq-cub200`. - Sequential ImageNet-R (_Class-Il / Task-IL_): `seq-imagenet-r`. +- Sequential Cars-196 (_Class-Il / Task-IL_): `seq-cars196`. +- Sequential RESISC45 (_Class-Il / Task-IL_): `seq-resisc45`. +- Sequential EuroSAT-RGB (_Class-Il / Task-IL_): `seq-eurosat-rgb`. +- Sequential ISIC (_Class-Il / Task-IL_): `seq-isic`. +- Sequential ChestX (_Class-Il / Task-IL_): `seq-chestx`. +- Sequential MIT-67 (_Class-Il / Task-IL_): `seq-mit67`. +- Sequential CropDisease (_Class-Il / Task-IL_): `seq-cropdisease`. ## Pretrained backbones @@ -122,40 +138,43 @@ Join our Discord Server for all your Mammoth-related questions → ![Discord Shi - Rethinking Experience Replay: a Bag of Tricks for Continual Learning (**ICPR 2020**) [[paper](https://arxiv.org/abs/2010.05595)] [[code](https://github.com/hastings24/rethinking_er)] - Class-Incremental Continual Learning into the eXtended DER-verse (**TPAMI 2022**) [[paper](https://arxiv.org/abs/2201.00766)] - Effects of Auxiliary Knowledge on Continual Learning (**ICPR 2022**) [[paper](https://arxiv.org/abs/2206.02577)] -- Transfer without Forgetting (**ECCV 2022**) [[paper](https://arxiv.org/abs/2206.00388)][[code](https://github.com/mbosc/twf)] -- Continual semi-supervised learning through contrastive interpolation consistency (**PRL 2022**) [[paper](https://arxiv.org/abs/2108.06552)][[code](https://github.com/aimagelab/CSSL)] -- On the Effectiveness of Lipschitz-Driven Rehearsal in Continual Learning (**NeurIPS 2022**) [[paper](https://arxiv.org/abs/2210.06443)] [[code](https://github.com/aimagelab/lider)] +- Transfer without Forgetting (**ECCV 2022**) [[paper](https://arxiv.org/abs/2206.00388)] [[code](https://github.com/mbosc/twf)] (Also available here) +- Continual semi-supervised learning through contrastive interpolation consistency (**PRL 2022**) [[paper](https://arxiv.org/abs/2108.06552)] [[code](https://github.com/aimagelab/CSSL)] (Also available here) +- On the Effectiveness of Lipschitz-Driven Rehearsal in Continual Learning (**NeurIPS 2022**) [[paper](https://arxiv.org/abs/2210.06443)] [[code](https://github.com/aimagelab/lider)] (Also available here) +- Semantic Residual Prompts for Continual Learning (**ECCV 2024**) [[paper](https://arxiv.org/abs/2403.06870)] ### Other Awesome CL works using Mammoth **_Get in touch if we missed your awesome work!_** -- Prediction Error-based Classification for Class-Incremental Learning (**ICLR2024**) [[paper](https://arxiv.org/pdf/2305.18806)] [[code](https://github.com/michalzajac-ml/pec)] -- TriRE: A Multi-Mechanism Learning Paradigm for Continual Knowledge Retention and Promotion (**NeurIPS2023**) [[paper](https://arxiv.org/pdf/2310.08217.pdf)] [[code](https://github.com/NeurAI-Lab/TriRE)] -- Overcoming Recency Bias of Normalization Statistics in Continual Learning: Balance and Adaptation (**NeurIPS2023**) [[paper](https://arxiv.org/pdf/2310.08855.pdf)] [[code](https://github.com/lvyilin/AdaB2N)] -- A Unified and General Framework for Continual Learning (**ICLR2024**) [[paper](https://arxiv.org/pdf/2403.13249.pdf)] [[code](https://github.com/joey-wang123/CL-refresh-learning)] -- Decoupling Learning and Remembering: a Bilevel Memory Framework with Knowledge Projection for Task-Incremental Learning (**CVPR2023**) [[paper](https://openaccess.thecvf.com/content/CVPR2023/papers/Sun_Decoupling_Learning_and_Remembering_A_Bilevel_Memory_Framework_With_Knowledge_CVPR_2023_paper.pdf)] [[code](https://github.com/SunWenJu123/BMKP)] -- Regularizing Second-Order Influences for Continual Learning (**CVPR2023**) [[paper](https://openaccess.thecvf.com/content/CVPR2023/papers/Sun_Regularizing_Second-Order_Influences_for_Continual_Learning_CVPR_2023_paper.pdf)] [[code](https://github.com/feifeiobama/InfluenceCL)] -- Sparse Coding in a Dual Memory System for Lifelong Learning (**CVPR2023**) [[paper](https://arxiv.org/pdf/2301.05058.pdf)] [[code](https://github.com/NeurAI-Lab/SCoMMER)] -- A Unified Approach to Domain Incremental Learning with Memory: Theory and Algorithm (**CVPR2023**) [[paper](https://arxiv.org/pdf/2310.12244.pdf)] [[code](https://github.com/Wang-ML-Lab/unified-continual-learning)] -- A Multi-Head Model for Continual Learning via Out-of-Distribution Replay (**CVPR2023**) [[paper](https://arxiv.org/pdf/2208.09734.pdf)] [[code](https://github.com/k-gyuhak/MORE)] -- Preserving Linear Separability in Continual Learning by Backward Feature Projection (**CVPR2023**) [[paper](https://arxiv.org/pdf/2303.14595.pdf)] [[code](https://github.com/rvl-lab-utoronto/BFP)] -- Complementary Calibration: Boosting General Continual Learning With Collaborative Distillation and Self-Supervision (**TIP2023**) [[paper](https://ieeexplore.ieee.org/document/10002397)] [[code](https://github.com/lijincm/CoCa)] -- Continual Learning by Modeling Intra-Class Variation (**TMLR2023**) [[paper](https://arxiv.org/abs/2210.05398)] [[code](https://github.com/yulonghui/MOCA)] -- ConSlide: Asynchronous Hierarchical Interaction Transformer with Breakup-Reorganize Rehearsal for Continual Whole Slide Image Analysis (**ICCV2023**) [[paper](https://openaccess.thecvf.com/content/ICCV2023/papers/Huang_ConSlide_Asynchronous_Hierarchical_Interaction_Transformer_with_Breakup-Reorganize_Rehearsal_for_Continual_ICCV_2023_paper.pdf)] [[code](https://github.com/HKU-MedAI/ConSlide)] -- CBA: Improving Online Continual Learning via Continual Bias Adaptor (**ICCV2023**) [[paper](https://arxiv.org/pdf/2308.06925.pdf)] [[code](https://github.com/wqza/CBA-online-CL)] -- Neuro-Symbolic Continual Learning: Knowledge, Reasoning Shortcuts and Concept Rehearsal (**ICML2023**) [[paper](https://arxiv.org/pdf/2302.01242.pdf)] [[code](https://github.com/ema-marconato/NeSy-CL)] -- Learnability and Algorithm for Continual Learning (**ICML2023**) [[paper](https://arxiv.org/pdf/2306.12646.pdf)] [[code](https://github.com/k-gyuhak/CLOOD)] -- Pretrained Language Model in Continual Learning: a Comparative Study (**ICLR2022**) [[paper](https://openreview.net/pdf?id=figzpGMrdD)] [[code](https://github.com/wutong8023/PLM4CL)] -- Representational continuity for unsupervised continual learning (**ICLR2022**) [[paper](https://openreview.net/pdf?id=9Hrka5PA7LW)] [[code](https://github.com/divyam3897/UCL)] -- Continual Normalization: Rethinking Batch Normalization for Online Continual Learning (**ICLR2022**) [[paper](https://arxiv.org/abs/2203.16102)] [[code](https://github.com/phquang/Continual-Normalization)] -- Learning Fast, Learning Slow: A General Continual Learning Method based on Complementary Learning System (**ICLR2022**) [[paper](https://arxiv.org/pdf/2201.12604.pdf)] [[code](https://github.com/NeurAI-Lab/CLS-ER)] -- New Insights on Reducing Abrupt Representation Change in Online Continual Learning (**ICLR2022**) [[paper](https://openreview.net/pdf?id=N8MaByOzUfb)] [[code](https://github.com/pclucas14/AML)] -- Looking Back on Learned Experiences for Class/Task Incremental Learning (**ICLR2022**) [[paper](https://openreview.net/pdf?id=RxplU3vmBx)] [[code](https://github.com/MozhganPourKeshavarz/Cost-Free-Incremental-Learning)] -- Task Agnostic Representation Consolidation: a Self-supervised based Continual Learning Approach (**CoLLAs2022**) [[paper](https://arxiv.org/pdf/2207.06267.pdf)] [[code](https://github.com/NeurAI-Lab/TARC)] -- Consistency is the key to further Mitigating Catastrophic Forgetting in Continual Learning (**CoLLAs2022**) [[paper](https://arxiv.org/pdf/2207.04998.pdf)] [[code](https://github.com/NeurAI-Lab/ConsistencyCL)] -- Self-supervised models are continual learners (**CVPR2022**) [[paper](https://arxiv.org/abs/2112.04215)] [[code](https://github.com/DonkeyShot21/cassle)] -- Learning from Students: Online Contrastive Distillation Network for General Continual Learning (**IJCAI2022**) [[paper](https://www.ijcai.org/proceedings/2022/0446.pdf)] [[code](https://github.com/lijincm/OCD-Net)] +- Gradual Divergence for Seamless Adaptation: A Novel Domain Incremental Learning Method (**ICML 2024**) [[paper](https://arxiv.org/abs/2305.04769)] [[code](https://github.com/NeurAI-Lab/DARE)] +- Interactive Continual Learning (ICL) (**CVPR 2024**) [[paper](https://arxiv.org/abs/2403.02628)] [[code](https://github.com/Biqing-Qi/Interactive-continual-Learning-Fast-and-Slow-Thinking)] +- Prediction Error-based Classification for Class-Incremental Learning (**ICLR 2024**) [[paper](https://arxiv.org/abs/2305.18806)] [[code](https://github.com/michalzajac-ml/pec)] +- TriRE: A Multi-Mechanism Learning Paradigm for Continual Knowledge Retention and Promotion (**NeurIPS 2023**) [[paper](https://arxiv.org/abs/2310.08217)] [[code](https://github.com/NeurAI-Lab/TriRE)] +- Overcoming Recency Bias of Normalization Statistics in Continual Learning: Balance and Adaptation (**NeurIPS 2023**) [[paper](https://arxiv.org/abs/2310.08855)] [[code](https://github.com/lvyilin/AdaB2N)] +- A Unified and General Framework for Continual Learning (**ICLR 2024**) [[paper](https://arxiv.org/abs/2403.13249)] [[code](https://github.com/joey-wang123/CL-refresh-learning)] +- Decoupling Learning and Remembering: a Bilevel Memory Framework with Knowledge Projection for Task-Incremental Learning (**CVPR 2023**) [[paper](https://openaccess.thecvf.com/content/CVPR 2023/papers/Sun_Decoupling_Learning_and_Remembering_A_Bilevel_Memory_Framework_With_Knowledge_CVPR_2023_paper.pdf)] [[code](https://github.com/SunWenJu123/BMKP)] +- Regularizing Second-Order Influences for Continual Learning (**CVPR 2023**) [[paper](https://openaccess.thecvf.com/content/CVPR 2023/papers/Sun_Regularizing_Second-Order_Influences_for_Continual_Learning_CVPR_2023_paper.pdf)] [[code](https://github.com/feifeiobama/InfluenceCL)] +- Sparse Coding in a Dual Memory System for Lifelong Learning (**CVPR 2023**) [[paper](https://arxiv.org/abs/2301.05058)] [[code](https://github.com/NeurAI-Lab/SCoMMER)] +- A Unified Approach to Domain Incremental Learning with Memory: Theory and Algorithm (**CVPR 2023**) [[paper](https://arxiv.org/abs/2310.12244)] [[code](https://github.com/Wang-ML-Lab/unified-continual-learning)] +- A Multi-Head Model for Continual Learning via Out-of-Distribution Replay (**CVPR 2023**) [[paper](https://arxiv.org/abs/2208.09734)] [[code](https://github.com/k-gyuhak/MORE)] +- Preserving Linear Separability in Continual Learning by Backward Feature Projection (**CVPR 2023**) [[paper](https://arxiv.org/abs/2303.14595)] [[code](https://github.com/rvl-lab-utoronto/BFP)] +- Complementary Calibration: Boosting General Continual Learning With Collaborative Distillation and Self-Supervision (**TIP 2023**) [[paper](https://ieeexplore.ieee.org/document/10002397)] [[code](https://github.com/lijincm/CoCa)] +- Continual Learning by Modeling Intra-Class Variation (**TMLR 2023**) [[paper](https://arxiv.org/abs/2210.05398)] [[code](https://github.com/yulonghui/MOCA)] +- ConSlide: Asynchronous Hierarchical Interaction Transformer with Breakup-Reorganize Rehearsal for Continual Whole Slide Image Analysis (**ICCV 2023**) [[paper](https://openaccess.thecvf.com/content/ICCV 2023/papers/Huang_ConSlide_Asynchronous_Hierarchical_Interaction_Transformer_with_Breakup-Reorganize_Rehearsal_for_Continual_ICCV_2023_paper.pdf)] [[code](https://github.com/HKU-MedAI/ConSlide)] +- CBA: Improving Online Continual Learning via Continual Bias Adaptor (**ICCV 2023**) [[paper](https://arxiv.org/abs/2308.06925)] [[code](https://github.com/wqza/CBA-online-CL)] +- Neuro-Symbolic Continual Learning: Knowledge, Reasoning Shortcuts and Concept Rehearsal (**ICML 2023**) [[paper](https://arxiv.org/abs/2302.01242)] [[code](https://github.com/ema-marconato/NeSy-CL)] +- Learnability and Algorithm for Continual Learning (**ICML 2023**) [[paper](https://arxiv.org/abs/2306.12646)] [[code](https://github.com/k-gyuhak/CLOOD)] +- Pretrained Language Model in Continual Learning: a Comparative Study (**ICLR 2022**) [[paper](https://openreview.net/pdf?id=figzpGMrdD)] [[code](https://github.com/wutong8023/PLM4CL)] +- Representational continuity for unsupervised continual learning (**ICLR 2022**) [[paper](https://openreview.net/pdf?id=9Hrka5PA7LW)] [[code](https://github.com/divyam3897/UCL)] +- Continual Normalization: Rethinking Batch Normalization for Online Continual Learning (**ICLR 2022**) [[paper](https://arxiv.org/abs/2203.16102)] [[code](https://github.com/phquang/Continual-Normalization)] +- Learning Fast, Learning Slow: A General Continual Learning Method based on Complementary Learning System (**ICLR 2022**) [[paper](https://arxiv.org/abs/2201.12604)] [[code](https://github.com/NeurAI-Lab/CLS-ER)] +- New Insights on Reducing Abrupt Representation Change in Online Continual Learning (**ICLR 2022**) [[paper](https://openreview.net/pdf?id=N8MaByOzUfb)] [[code](https://github.com/pclucas14/AML)] +- Looking Back on Learned Experiences for Class/Task Incremental Learning (**ICLR 2022**) [[paper](https://openreview.net/pdf?id=RxplU3vmBx)] [[code](https://github.com/MozhganPourKeshavarz/Cost-Free-Incremental-Learning)] +- Task Agnostic Representation Consolidation: a Self-supervised based Continual Learning Approach (**CoLLAs 2022**) [[paper](https://arxiv.org/abs/2207.06267)] [[code](https://github.com/NeurAI-Lab/TARC)] +- Consistency is the key to further Mitigating Catastrophic Forgetting in Continual Learning (**CoLLAs 2022**) [[paper](https://arxiv.org/abs/2207.04998)] [[code](https://github.com/NeurAI-Lab/ConsistencyCL)] +- Self-supervised models are continual learners (**CVPR 2022**) [[paper](https://arxiv.org/abs/2112.04215)] [[code](https://github.com/DonkeyShot21/cassle)] +- Learning from Students: Online Contrastive Distillation Network for General Continual Learning (**IJCAI 2022**) [[paper](https://www.ijcai.org/proceedings/2022/0446)] [[code](https://github.com/lijincm/OCD-Net)] ### Contributing diff --git a/datasets/utils/continual_dataset.py b/datasets/utils/continual_dataset.py index 05545cec..916ec5d0 100644 --- a/datasets/utils/continual_dataset.py +++ b/datasets/utils/continual_dataset.py @@ -301,7 +301,7 @@ def store_masked_loaders(train_dataset: Dataset, test_dataset: Dataset, train_dataset, test_dataset = _prepare_data_loaders(train_dataset, test_dataset, setting) train_loader = create_seeded_dataloader(setting.args, train_dataset, - batch_size=setting.args.batch_size, shuffle=True, drop_last=True) + batch_size=setting.args.batch_size, shuffle=True) test_loader = create_seeded_dataloader(setting.args, test_dataset, batch_size=setting.args.batch_size, shuffle=False) setting.test_loaders.append(test_loader) diff --git a/docs/readme.rst b/docs/readme.rst index dfbcaf14..59ee6b9b 100644 --- a/docs/readme.rst +++ b/docs/readme.rst @@ -9,10 +9,12 @@ Welcome to Mammoth's documentation! Mammoth - An Extendible (General) Continual Learning Framework for Pytorch ========================================================================== -Official repository of `Class-Incremental Continual Learning into the eXtended DER-verse `_ and `Dark Experience for General Continual Learning: a Strong, Simple Baseline `_ +Official repository of `Class-Incremental Continual Learning into the eXtended DER-verse `_, `Dark Experience for General Continual Learning: a Strong, Simple Baseline `_, and `https://arxiv.org/pdf/2403.06870 `_. -Mammoth is a framework for continual learning research. It is designed to be modular, easy to extend, and - most importantly - *easy to debug*. -Idelly, all the code necessary to run the experiments is included *in the repository*, without needing to check out other repositories or install additional packages. +Mammoth is a framework for continual learning research. With **40 methods and 21 datasets**, it includes the most complete list competitors and benchmarks for research purposes. + +The core idea of Mammoth is that it is designed to be modular, easy to extend, and - most importantly - _easy to debug_. +Ideally, all the code necessary to run the experiments is included _in the repository_, without needing to check out other repositories or install additional packages. With Mammoth, nothing is set in stone. You can easily add new models, datasets, training strategies, or functionalities. @@ -60,63 +62,25 @@ Setup - Install with ``pip install -r requirements.txt``. - Use ``./utils/main.py`` to run experiments. -- Use argument ``--load_best_args`` to use the best hyperparameters from the paper. - New models can be added to the ``models/`` folder. - New datasets can be added to the ``datasets/`` folder. .. note:: - **Pytorch version >=2.1.0 is required for scaled_dot_product_attention** (see: https://github.com/Lightning-AI/litgpt/issues/763). If you cannot support this version, you can uncomment the lines 113-116 under `scaled_dot_product_attention` in `backbone/vit.py`. + **Pytorch version >=2.1.0 is required for scaled_dot_product_attention** (see: https://github.com/Lightning-AI/litgpt/issues/763). If you cannot support this version, the slower base version (see `backbone/vit.py`). Models ------ -- Efficient Lifelong Learning with A-GEM: (A-GEM), and A-GEM with Reservoir buffer (A-GEM-R) -- Bias Correction (BiC) -- Continual Contrastive Interpolation Consistency (CCIC) - *Requires* ``pip install kornia`` -- CODA-Prompt: COntinual Decomposed Attention-based Prompting for Rehearsal-Free Continual Learning (CODA-Prompt) - *Requires* ``pip install timm==0.9.8`` -- Dark Experience Replay (DER) -- Dark Experience Replay++ (DER++) -- DualPrompt: Complementary Prompting for Rehearsal-free Continual Learning (DualPrompt) - *Requires* ``pip install timm==0.9.8`` -- Experience Replay (ER) -- online Elastic Weight Consolidation (oEWC) -- Function Distance Regularization (FDR) -- Greedy Sampler and Dumb Learner (GDumb) -- Gradient Episodic Memory (GEM) - *Unavailable on windows* -- Greedy gradient-based Sample Selection (GSS) -- Hindsight Anchor Learning (HAL) -- Incremental Classifier and Representation Learning (iCaRL) -- Joint for `General Continual`` setting (JointGCL) -- Learning to Prompt (L2P) - *Requires* ``pip install timm==0.9.8`` -- LiDER (on DER++, iCaRL, GDumb, and ER-ACE) -- Learning a Unified Classifier Incrementally via Rebalancing (LUCIR) -- Learning without Forgetting (LwF) -- Meta-Experience Replay (MER) -- Progressive Neural Networks (PNN) -- Regular Polytope Classifier (RPC) -- Synaptic Intelligence (SI) -- SLCA: Slow Learner with Classifier Alignment for Continual Learning on a Pre-trained Model (SLCA) - *Requires* ``pip install timm==0.9.8`` -- Transfer without Forgetting (TwF) -- eXtended-DER (X-DER) +Mammoth currently supports **40** models, with new releases covering the main competitors in literature. Datasets -------- -**NOTE**: Datasets are automatically downloaded in the ``data/``. -- This can be changed by changing the ``base_path`` function in ``utils/conf.py``. -- The ``data/`` folder is not tracked by git and is created automatically if missing. - -- Sequential MNIST (*Class-Il / Task-IL*) -- Sequential CIFAR-10 (*Class-Il / Task-IL*) -- Sequential Tiny ImageNet (*Class-Il / Task-IL*) -- Sequential Tiny ImageNet resized 32x32 (*Class-Il / Task-IL*) -- Sequential CIFAR-100 (*Class-Il / Task-IL*) -- Sequential CIFAR-100 resized 224x224 (ViT version) (*Class-Il / Task-IL*) -- Sequential CIFAR-100 resized 224x224 (ResNet50 version) (*Class-Il / Task-IL*) -- Permuted MNIST (*Domain-IL*) -- Rotated MNIST (*Domain-IL*) -- MNIST-360 (*General Continual Learning*) -- Sequential CUB-200 (*Class-Il / Task-IL*) -- Sequential ImageNet-R (*Class-Il / Task-IL*) +**NOTE**: Datasets are automatically downloaded in ``data/``. +- This can be changes by changing the ``base_path`` function in ``utils/conf.py`` or using the ``--base_path`` argument. +- The ``data/`` folder should not tracked by git and is craeted automatically if missing. + +Mammoth includes **21** datasets, covering *toy classification problems* (different versions of MNIST), *standard domains* (CIFAR, Imagenet-R, TinyImagenet, MIT-67), *fine-grained classification domains* (Cars-196, CUB-200), *aerial domains* (EuroSAT-RGB, Resisc45), *medical domains* (CropDisease, ISIC, ChestX). Pretrained backbones -------------------- @@ -124,96 +88,4 @@ Pretrained backbones - `ResNet18 on cifar100 `_ - `ResNet18 on TinyImagenet resized (seq-tinyimg-r) `_ - `ResNet50 on ImageNet (pytorch version) `_ -- `ResNet18 on SVHN `_ - -Citing these works ------------------- - -.. code-block:: bibtex - - @article{boschini2022class, - title={Class-Incremental Continual Learning into the eXtended DER-verse}, - author={Boschini, Matteo and Bonicelli, Lorenzo and Buzzega, Pietro and Porrello, Angelo and Calderara, Simone}, - journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, - year={2022}, - publisher={IEEE} - } - - @inproceedings{buzzega2020dark, - author = {Buzzega, Pietro and Boschini, Matteo and Porrello, Angelo and Abati, Davide and Calderara, Simone}, - booktitle = {Advances in Neural Information Processing Systems}, - editor = {H. Larochelle and M. Ranzato and R. Hadsell and M. F. Balcan and H. Lin}, - pages = {15920--15930}, - publisher = {Curran Associates, Inc.}, - title = {Dark Experience for General Continual Learning: a Strong, Simple Baseline}, - volume = {33}, - year = {2020} - } - -Awesome Papers using Mammoth ----------------------------- - -Our Papers -~~~~~~~~~~~ - -- `Dark Experience for General Continual Learning: a Strong, Simple Baseline (NeurIPS 2020) `_ -- `Rethinking Experience Replay: a Bag of Tricks for Continual Learning (ICPR 2020) `_ (`code `_) -- `Class-Incremental Continual Learning into the eXtended DER-verse (TPAMI 2022) `_ -- `Effects of Auxiliary Knowledge on Continual Learning (ICPR 2022) `_ -- `Transfer without Forgetting (ECCV 2022) `_ (`code `_) -- `Continual semi-supervised learning through contrastive interpolation consistency (PRL 2022) `_ (`code `_) -- `On the Effectiveness of Lipschitz-Driven Rehearsal in Continual Learning (NeurIPS 2022) `_ (`code `_) - -Other Awesome CL works using Mammoth -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -.. important:: - - **Get in touch if we missed your awesome work!** - -`- Prediction Error-based Classification for Class-Incremental Learning (ICLR2024) <(https://arxiv.org/pdf/2305.18806)>`_ (`code <(https://github.com/michalzajac-ml/pec)>`_) -`- TriRE: A Multi-Mechanism Learning Paradigm for Continual Knowledge Retention and Promotion (NeurIPS2023) <(https://arxiv.org/pdf/2310.08217.pdf)>`_ (`code <(https://github.com/NeurAI-Lab/TriRE)>`_) -`- Overcoming Recency Bias of Normalization Statistics in Continual Learning: Balance and Adaptation (NeurIPS2023) <(https://arxiv.org/pdf/2310.08855.pdf)>`_ (`code <(https://github.com/lvyilin/AdaB2N)>`_) -`- A Unified and General Framework for Continual Learning (ICLR2024) <(https://arxiv.org/pdf/2403.13249.pdf)>`_ (`code <(https://github.com/joey-wang123/CL-refresh-learning)>`_) -`- Decoupling Learning and Remembering: a Bilevel Memory Framework with Knowledge Projection for Task-Incremental Learning (CVPR2023) <(https://openaccess.thecvf.com/content/CVPR2023/papers/Sun_Decoupling_Learning_and_Remembering_A_Bilevel_Memory_Framework_With_Knowledge_CVPR_2023_paper.pdf)>`_ (`code <(https://github.com/SunWenJu123/BMKP)>`_) -`- Regularizing Second-Order Influences for Continual Learning (CVPR2023) <(https://openaccess.thecvf.com/content/CVPR2023/papers/Sun_Regularizing_Second-Order_Influences_for_Continual_Learning_CVPR_2023_paper.pdf)>`_ (`code <(https://github.com/feifeiobama/InfluenceCL)>`_) -`- Sparse Coding in a Dual Memory System for Lifelong Learning (CVPR2023) <(https://arxiv.org/pdf/2301.05058.pdf)>`_ (`code <(https://github.com/NeurAI-Lab/SCoMMER)>`_) -`- A Unified Approach to Domain Incremental Learning with Memory: Theory and Algorithm (CVPR2023) <(https://arxiv.org/pdf/2310.12244.pdf)>`_ (`code <(https://github.com/Wang-ML-Lab/unified-continual-learning)>`_) -`- A Multi-Head Model for Continual Learning via Out-of-Distribution Replay (CVPR2023) <(https://arxiv.org/pdf/2208.09734.pdf)>`_ (`code <(https://github.com/k-gyuhak/MORE)>`_) -`- Preserving Linear Separability in Continual Learning by Backward Feature Projection (CVPR2023) <(https://arxiv.org/pdf/2303.14595.pdf)>`_ (`code <(https://github.com/rvl-lab-utoronto/BFP)>`_) -`- Complementary Calibration: Boosting General Continual Learning With Collaborative Distillation and Self-Supervision (TIP2023) <(https://ieeexplore.ieee.org/document/10002397)>`_ (`code <(https://github.com/lijincm/CoCa)>`_) -`- Continual Learning by Modeling Intra-Class Variation (TMLR2023) <(https://arxiv.org/abs/2210.05398)>`_ (`code <(https://github.com/yulonghui/MOCA)>`_) -`- ConSlide: Asynchronous Hierarchical Interaction Transformer with Breakup-Reorganize Rehearsal for Continual Whole Slide Image Analysis (ICCV2023) <(https://openaccess.thecvf.com/content/ICCV2023/papers/Huang_ConSlide_Asynchronous_Hierarchical_Interaction_Transformer_with_Breakup-Reorganize_Rehearsal_for_Continual_ICCV_2023_paper.pdf)>`_ (`code <(https://github.com/HKU-MedAI/ConSlide)>`_) -`- CBA: Improving Online Continual Learning via Continual Bias Adaptor (ICCV2023) <(https://arxiv.org/pdf/2308.06925.pdf)>`_ (`code <(https://github.com/wqza/CBA-online-CL)>`_) -`- Neuro-Symbolic Continual Learning: Knowledge, Reasoning Shortcuts and Concept Rehearsal (ICML2023) <(https://arxiv.org/pdf/2302.01242.pdf)>`_ (`code <(https://github.com/ema-marconato/NeSy-CL)>`_) -`- Pretrained Language Model in Continual Learning: a Comparative Study (ICLR2022) <(https://openreview.net/pdf?id=figzpGMrdD)>`_ (`code <(https://github.com/wutong8023/PLM4CL)>`_) -`- Representational continuity for unsupervised continual learning (ICLR2022) <(https://openreview.net/pdf?id=9Hrka5PA7LW)>`_ (`code <(https://github.com/divyam3897/UCL)>`_) -`- Continual Normalization: Rethinking Batch Normalization for Online Continual Learning (ICLR2022) <(https://arxiv.org/abs/2203.16102)>`_ (`code <(https://github.com/phquang/Continual-Normalization)>`_) -`- Learning Fast, Learning Slow: A General Continual Learning Method based on Complementary Learning System (ICLR2022) <(https://arxiv.org/pdf/2201.12604.pdf)>`_ (`code <(https://github.com/NeurAI-Lab/CLS-ER)>`_) -`- New Insights on Reducing Abrupt Representation Change in Online Continual Learning (ICLR2022) <(https://openreview.net/pdf?id=N8MaByOzUfb)>`_ (`code <(https://github.com/pclucas14/AML)>`_) -`- Looking Back on Learned Experiences for Class/Task Incremental Learning (ICLR2022) <(https://openreview.net/pdf?id=RxplU3vmBx)>`_ (`code <(https://github.com/MozhganPourKeshavarz/Cost-Free-Incremental-Learning)>`_) -`- Task Agnostic Representation Consolidation: a Self-supervised based Continual Learning Approach (CoLLAs2022) <(https://arxiv.org/pdf/2207.06267.pdf)>`_ (`code <(https://github.com/NeurAI-Lab/TARC)>`_) -`- Consistency is the key to further Mitigating Catastrophic Forgetting in Continual Learning (CoLLAs2022) <(https://arxiv.org/pdf/2207.04998.pdf)>`_ (`code <(https://github.com/NeurAI-Lab/ConsistencyCL)>`_) -`- Self-supervised models are continual learners (CVPR2022) <(https://arxiv.org/abs/2112.04215)>`_ (`code <(https://github.com/DonkeyShot21/cassle)>`_) -`- Learning from Students: Online Contrastive Distillation Network for General Continual Learning (IJCAI2022) <(https://www.ijcai.org/proceedings/2022/0446.pdf)>`_ (`code <(https://github.com/lijincm/OCD-Net)>`_) - -Contributing ------------- - -Pull requests welcome! - -Please use `autopep8` with parameters: - -- `--aggressive` -- `--max-line-length=200` -- `--ignore=E402` - -Previous versions ------------------ - -If you're interested in a version of this repo that only includes the original code for `Dark Experience for General Continual Learning: a Strong, Simple Baseline `_ or `Class-Incremental Continual Learning into the eXtended DER-verse `_, please use the following tags: - -- `neurips2020 `_ for DER (NeurIPS 2020). - -- `tpami2023 `_ for X-DER (TPAMI 2023). - +- `ResNet18 on SVHN `_ \ No newline at end of file diff --git a/models/first_stage_starprompt.py b/models/first_stage_starprompt.py index 376d715f..94c4d4bb 100644 --- a/models/first_stage_starprompt.py +++ b/models/first_stage_starprompt.py @@ -5,7 +5,7 @@ try: import clip except ImportError: - raise ImportError("Please install the CLIP package by running: pip install git+https://github.com/openai/CLIP.git") + raise ImportError("Please install the CLIP package by running: pip install git+https://github.com/openai/CLIP.git (requires also `huggingface-hub`)") from models.utils.continual_model import ContinualModel from models.star_prompt_utils.first_stage_model import Model @@ -88,8 +88,9 @@ def end_task(self, dataset): 'keys': te_outputs, 'args': self.args, } - torch.save(st, f'./coop_keys/coop_keys_{self.current_task}_{self.args.conf_jobnum}.pt') - print('Done', file=sys.stderr) + fname = f'./coop_keys/coop_keys_{self.current_task}_{self.args.conf_jobnum}.pt' + torch.save(st, fname) + print('Saved text-encoder keys in:', fname, file=sys.stderr) def get_parameters(self): return [v for k, v in self.net.named_parameters() if 'prompt_parameters' in k] diff --git a/models/second_stage_starprompt.py b/models/second_stage_starprompt.py index 30b7a5fb..ba1bcdd5 100644 --- a/models/second_stage_starprompt.py +++ b/models/second_stage_starprompt.py @@ -189,7 +189,10 @@ def update_statistics(self, dataset): with tqdm(total=self.args.num_monte_carlo_gr * len(dataset.train_loader), desc='GR update statistics') as pbar: for _ in range(self.args.num_monte_carlo_gr): - for data in dataset.train_loader: + for i, data in enumerate(dataset.train_loader): + if self.args.debug_mode and i > 3 and min([len(v) for k, v in features_dict.items()]) > self.args.gr_mog_n_components: + break + x, labels = data[0], data[1] x, labels = x.to(self.device), labels.to(self.device, dtype=torch.long) x, query_x = x[:, 0], x[:, 1] @@ -307,11 +310,9 @@ def observe(self, inputs, labels, not_aug_inputs, epoch=None): if self.epoch_iteration == 0: self.opt.zero_grad() - (loss / self.args.virtual_bs_n).backward() + loss.backward() if (self.epoch_iteration > 0 or self.args.virtual_bs_n == 1) and \ self.epoch_iteration % self.args.virtual_bs_n == 0: - # NOTE: The virtual batch size is missing `loss = loss/self.virtual_bs_n`. - # We did not see any significant change with this as Adam will take care of it. self.opt.step() self.opt.zero_grad() diff --git a/tests/test_starprompt.py b/tests/test_starprompt.py new file mode 100644 index 00000000..31790ccb --- /dev/null +++ b/tests/test_starprompt.py @@ -0,0 +1,85 @@ +import os +import sys +sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) +from utils.main import main +from utils.test_utils import init_test_environ +import pytest + + +@init_test_environ +def test_first_and_second_stage(): + sys.argv = ['mammoth', + '--model', + 'first_stage_starprompt', + '--dataset', + 'seq-cifar10-224', + '--lr', + '0.002', + '--n_epochs', + '1', + '--batch_size', + '2', + '--non_verbose', + '1', + '--num_workers', + '0', + '--seed', + '1993', + '--debug_mode', + '1'] + fn = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs', f'test_first_stage_starprompt.log') + + # log all outputs to file + if not os.path.exists(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs')): + os.mkdir(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs')) + sys.stdout = open(fn, 'w', encoding='utf-8') + sys.stderr = sys.stdout + + main() + + # read output file and search for the string 'Saved text-encoder keys in:' + with open(fn, 'r', encoding='utf-8') as f: + lines = f.readlines() + ckpt_name = [line for line in lines if 'Saved text-encoder keys in:' in line] + assert any(ckpt_name), f'Keys not found in {fn}' + + ckpt_path = ckpt_name[0].split('Saved text-encoder keys in:')[1].strip() + + assert os.path.exists(ckpt_path), f'Checkpoint file {ckpt_path} not found' + + # TEST CHECKPOINT LOAD + sys.argv = ['mammoth', + '--model', + 'second_stage_starprompt', + '--dataset', + 'seq-cifar10-224', + '--lr', + '1e-4', + '--optimizer', + 'adam', + '--n_epochs', + '1', + '--batch_size', + '4', + '--non_verbose', + '1', + '--num_workers', + '0', + '--seed', + '1993', + '--keys_ckpt_path', + ckpt_path, + '--debug_mode', + '1'] + + fn = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs', f'test_second_stage_starprompt.log') + + # log all outputs to file + if not os.path.exists(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs')): + os.mkdir(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs')) + sys.stdout = open(fn, 'w', encoding='utf-8') + sys.stderr = sys.stdout + main() + + # REMOVE CHECKPOINT FILE + os.remove(ckpt_path) diff --git a/utils/main.py b/utils/main.py index 6ada4d4d..2adfe559 100644 --- a/utils/main.py +++ b/utils/main.py @@ -75,8 +75,8 @@ def parse_args(): parser = ArgumentParser(description='mammoth', allow_abbrev=False, add_help=False) parser.add_argument('--model', type=custom_str_underscore, help='Model name.', choices=list(get_all_models().keys())) parser.add_argument('--load_best_args', action='store_true', - help='Loads the best arguments for each method, ' - 'dataset and memory buffer.') + help='(deprecated) Loads the best arguments for each method, dataset and memory buffer. ' + 'NOTE: This option is deprecated and not up to date.') args = parser.parse_known_args()[0] models_dict = get_all_models() From 82c9db03eb127d0288b9d20bcc785149e438f7f0 Mon Sep 17 00:00:00 2001 From: loribonna Date: Sun, 21 Jul 2024 00:23:25 +0200 Subject: [PATCH 57/66] Add end-to-end starprompt (beta) --- models/first_stage_starprompt.py | 18 +- models/second_stage_starprompt.py | 31 +- models/star_prompt_utils/end_to_end_model.py | 292 ++++++++++++++++++ models/star_prompt_utils/first_stage_model.py | 14 +- .../star_prompt_utils/second_stage_model.py | 51 ++- models/starprompt.py | 168 ++++++++++ scripts/local_launcher.py | 18 +- 7 files changed, 543 insertions(+), 49 deletions(-) create mode 100644 models/star_prompt_utils/end_to_end_model.py create mode 100644 models/starprompt.py diff --git a/models/first_stage_starprompt.py b/models/first_stage_starprompt.py index 94c4d4bb..0c92d6af 100644 --- a/models/first_stage_starprompt.py +++ b/models/first_stage_starprompt.py @@ -23,10 +23,10 @@ def get_parser() -> ArgumentParser: frozen_group = parser.add_argument_group('Frozen hyperparameters') frozen_group.add_argument("--virtual_bs_n", type=int, default=1, help="Virtual batch size iterations") - frozen_group.add_argument("--num_monte_carlo_gr", type=int, default=5, - help="How many times to sample from the dataset for Generative Replay") - frozen_group.add_argument('--gr_mog_n_iters', type=int, default=200, - help="Number of EM iterations during fit for GR with MOG.") + frozen_group.add_argument("--num_monte_carlo_gr", "--num_monte_carlo_gr_first_stage", dest="num_monte_carlo_gr_first_stage", + type=int, default=5, help="How many times to sample from the dataset for Generative Replay") + frozen_group.add_argument('--gr_mog_n_iters', '--gr_mog_n_iters_first_stage', dest='gr_mog_n_iters_first_stage', + type=int, default=200, help="Number of EM iterations during fit for GR with MOG.") frozen_group.add_argument('--gr_mog_n_components', type=int, default=5, help="Number of components for Generative Replay with MOG.") frozen_group.add_argument("--enable_gr", type=int, default=1, choices=[0, 1], @@ -38,12 +38,12 @@ def get_parser() -> ArgumentParser: # Tunable hyperparameters tunable_group = parser.add_argument_group('Tunable hyperparameters') - tunable_group.add_argument("--learning_rate_gr", type=float, default=0.05, - help="Learning rate for Generative Replay.") + tunable_group.add_argument("--learning_rate_gr", "--learning_rate_gr_first_stage", dest="learning_rate_gr_first_stage", + type=float, default=0.05, help="Learning rate for Generative Replay.") tunable_group.add_argument("--lambda_ortho_coop", type=float, default=30, help="Orthogonality loss coefficient for coop") - tunable_group.add_argument("--num_epochs_gr", type=int, default=10, - help="Num. of epochs for Generative Replay.") + tunable_group.add_argument("--num_epochs_gr", "--num_epochs_gr_first_stage", dest="num_epochs_gr_first_stage", + type=int, default=10, help="Num. of epochs for Generative Replay.") # Useful flags parser.add_argument("--save_first_stage_keys", type=int, default=1, @@ -129,7 +129,7 @@ def observe(self, inputs, labels, not_aug_inputs, epoch=None): if self.epoch_iteration == 0: self.opt.zero_grad() - loss.backward() + (loss / self.args.virtual_bs_n).backward() if (self.epoch_iteration > 0 or self.args.virtual_bs_n == 1) and self.epoch_iteration % self.args.virtual_bs_n == 0: self.opt.step() self.opt.zero_grad() diff --git a/models/second_stage_starprompt.py b/models/second_stage_starprompt.py index ba1bcdd5..9cdf2995 100644 --- a/models/second_stage_starprompt.py +++ b/models/second_stage_starprompt.py @@ -33,8 +33,8 @@ def get_parser() -> ArgumentParser: frozen_group.add_argument("--use_clip_preprocess_eval", type=int, default=0, choices=[0, 1], help="Use CLIP's transform during eval instead of the default test transform?") frozen_group.add_argument("--ortho_split_val", type=int, default=0) - frozen_group.add_argument('--gr_mog_n_iters', type=int, default=500, - help="Number of EM iterations during fit for GR with MOG.") + frozen_group.add_argument('--gr_mog_n_iters', '--gr_mog_n_iters_second_stage', dest='gr_mog_n_iters_second_stage', + type=int, default=500, help="Number of EM iterations during fit for GR with MOG.") frozen_group.add_argument('--gr_mog_n_components', type=int, default=5, help="Number of components for GR with MOG.") frozen_group.add_argument('--batch_size_gr', type=int, default=128, @@ -44,7 +44,7 @@ def get_parser() -> ArgumentParser: frozen_group.add_argument('--prefix_tuning_prompt_len', type=int, default=5, help="Prompt length for prefix tuning. Used only if `--prompt_mode==concat`.") - ablation_group = parser.add_argument_group('Frozen hyperparameters') + ablation_group = parser.add_argument_group('Ablations hyperparameters') ablation_group.add_argument('--gr_model', type=str, default='mog', choices=['mog', 'gaussian'], help="Type of distribution model for Generative Replay. " "- `mog`: Mixture of Gaussian. " @@ -64,12 +64,12 @@ def get_parser() -> ArgumentParser: tunable_group = parser.add_argument_group('Tunable hyperparameters') tunable_group.add_argument("--lambda_ortho", type=float, default=10, help="orthogonality loss coefficient") - tunable_group.add_argument("--num_monte_carlo_gr", type=int, default=1, - help="how many times to sample from the dataset for alignment") - tunable_group.add_argument("--num_epochs_gr", type=int, default=10, + tunable_group.add_argument("--num_monte_carlo_gr", "--num_monte_carlo_gr_second_stage", dest="num_monte_carlo_gr_second_stage", + type=int, default=1, help="how many times to sample from the dataset for alignment") + tunable_group.add_argument("--num_epochs_gr", "--num_epochs_gr_second_stage", type=int, default=10, help="Num. of epochs for GR.") - tunable_group.add_argument("--learning_rate_gr", type=float, default=0.001, - help="Learning rate for GR.") + tunable_group.add_argument("--learning_rate_gr", "--learning_rate_gr_second_stage", dest="learning_rate_gr_second_stage", + type=float, default=0.001, help="Learning rate for GR.") # Very important parameter parser.add_argument('--keys_ckpt_path', type=str, @@ -92,7 +92,8 @@ def __init__(self, backbone, loss, args, transform): self.net = Model(args, backbone=self.net, dataset=self.dataset, - num_classes=self.num_classes) + num_classes=self.num_classes, + device=self.device) # REMOVE ALL TRACK RUNNING STATS FROM CLIP for m in self.net.modules(): @@ -110,7 +111,7 @@ def _get_dist(self, embed_dim): if self.args.gr_model == 'mog': return MixtureOfGaussiansModel(embed_dim, n_components=self.args.gr_mog_n_components, - n_iters=self.args.gr_mog_n_iters) + n_iters=self.args.gr_mog_n_iters_second_stage) else: return Gaussian(embed_dim) @@ -167,12 +168,12 @@ def align(self): classifier = deepcopy(self.net.vit.head) - optim = torch.optim.SGD(lr=self.args.learning_rate_gr, + optim = torch.optim.SGD(lr=self.args.learning_rate_gr_second_stage, params=classifier.parameters(), momentum=0.0, weight_decay=0.0) - num_epochs = self.args.num_epochs_gr + (5 * self.current_task) + num_epochs = self.args.num_epochs_gr_second_stage + (5 * self.current_task) for e in range(num_epochs): self.train_alignment_epoch(classifier, optim) @@ -187,8 +188,8 @@ def update_statistics(self, dataset): self.net.eval() - with tqdm(total=self.args.num_monte_carlo_gr * len(dataset.train_loader), desc='GR update statistics') as pbar: - for _ in range(self.args.num_monte_carlo_gr): + with tqdm(total=self.args.num_monte_carlo_gr_second_stage * len(dataset.train_loader), desc='GR update statistics') as pbar: + for _ in range(self.args.num_monte_carlo_gr_second_stage): for i, data in enumerate(dataset.train_loader): if self.args.debug_mode and i > 3 and min([len(v) for k, v in features_dict.items()]) > self.args.gr_mog_n_components: break @@ -310,7 +311,7 @@ def observe(self, inputs, labels, not_aug_inputs, epoch=None): if self.epoch_iteration == 0: self.opt.zero_grad() - loss.backward() + (loss / self.args.virtual_bs_n).backward() if (self.epoch_iteration > 0 or self.args.virtual_bs_n == 1) and \ self.epoch_iteration % self.args.virtual_bs_n == 0: self.opt.step() diff --git a/models/star_prompt_utils/end_to_end_model.py b/models/star_prompt_utils/end_to_end_model.py new file mode 100644 index 00000000..272c7eac --- /dev/null +++ b/models/star_prompt_utils/end_to_end_model.py @@ -0,0 +1,292 @@ +from copy import deepcopy +import torch +from torch import nn +from torch.utils.data import TensorDataset + +from tqdm import tqdm +try: + import wandb +except ImportError: + wandb = None +try: + from clip.model import convert_weights +except ImportError: + raise ImportError("Please install the CLIP package by running: pip install git+https://github.com/openai/CLIP.git (requires also `huggingface-hub`)") + + +from utils.conf import create_seeded_dataloader +from datasets.utils.continual_dataset import ContinualDataset +from models.star_prompt_utils.first_stage_model import Model as FirstStageModel +from models.star_prompt_utils.second_stage_model import Model as SecondStageModel +from models.star_prompt_utils.generative_replay import Gaussian, MixtureOfGaussiansModel + + +class STARPromptModel(nn.Module): + first_stage: FirstStageModel + second_stage: SecondStageModel + + def __init__(self, args, backbone: nn.Module, num_classes: int, dataset: ContinualDataset, device='cpu'): + super().__init__() + self.args = args + self.num_classes = num_classes + self.device = device + self.dataset = dataset + self.first_stage = FirstStageModel(args=args, num_classes=num_classes, dataset=dataset, device=device) + + # REMOVE ALL TRACK RUNNING STATS FROM CLIP + for m in self.first_stage.modules(): + if isinstance(m, (torch.nn.BatchNorm2d, torch.nn.BatchNorm1d)): + m.track_running_stats = False + + self.second_stage = SecondStageModel(args=args, num_classes=num_classes, + dataset=dataset, backbone=backbone, + clip_model=self.first_stage.prompter.clip_model, + clip_preprocess=self.first_stage.prompter.clip_preprocess, + device=device) + + embed_dim = self.second_stage.vit.embed_dim + + self.second_stage_distributions = torch.nn.ModuleList([self._get_dist(embed_dim) + for _ in range(self.num_classes)]).to(self.device) + self.classifier_state_dict = None + + def _get_dist(self, embed_dim): + assert self.args.gr_model in ['mog', 'gaussian'], f"Invalid GR model: {self.args.gr_model}" + + if self.args.gr_model == 'mog': + return MixtureOfGaussiansModel(embed_dim, n_components=self.args.gr_mog_n_components, + n_iters=self.args.gr_mog_n_iters_second_stage) + else: + return Gaussian(embed_dim) + + def update_keys(self, start_c: int, end_c: int): + print('Updating keys for second stage...') + first_stage_keys = self.first_stage.prompter.compute_keys(start_c, end_c) + self.second_stage.prompter.set_keys(first_stage_keys, start_c, end_c) + + def forward(self, x: torch.Tensor, cur_classes: int, frozen_past_classes=0) -> torch.Tensor: + """ + Compute the complete forward pass of STAR-Prompt. + This assumes that the keys are already pre-computed. + """ + return self.second_stage(x, cur_classes=cur_classes, frozen_past_classes=frozen_past_classes) + + def train(self, mode: bool = True): + self.first_stage.train(mode) + self.second_stage.train(mode) + + def to(self, device, *args, **kwargs): + super().to(device, *args, **kwargs) + self.first_stage.to(device, *args, **kwargs) + self.second_stage.to(device, *args, **kwargs) + self.device = device + + return self + + @torch.no_grad() + def eval_first_stage_on_task(self, dataset: ContinualDataset) -> torch.Tensor: + """ + Compute and return the accuracy on each task so far. + """ + all_accs = [] + for t, test_loader in enumerate(dataset.test_loaders): + total = 0 + correct = 0 + _, end_c = dataset.get_offsets(t) + for inputs, labels in test_loader: + inputs, labels = inputs.to(self.device), labels.to(self.device, dtype=torch.long) + logits = self.first_stage(inputs, cur_classes=end_c) + _, predicted = torch.max(logits, 1) + total += labels.size(0) + correct += (predicted == labels).sum().item() + all_accs.append(correct / total) + return torch.tensor(all_accs) + + def norm(self, t): + return torch.norm(t, p=2, dim=-1, keepdim=True) + 1e-7 + + @torch.no_grad() + def create_features_dataset(self, current_task: int): + + labels, features = [], [] + + for _ti in range(current_task + 1): + + prev_t_size, cur_t_size = self.dataset.get_offsets(_ti) + + for class_idx in range(prev_t_size, cur_t_size): + current_samples = self.second_stage_distributions[class_idx](self.args.num_samples_gr) + features.append(current_samples) + labels.append(torch.ones(self.args.num_samples_gr) * class_idx) + + features = torch.cat(features, dim=0) + labels = torch.cat(labels, dim=0).long() + + return create_seeded_dataloader(self.args, TensorDataset(features, labels), + verbose=False, batch_size=self.args.batch_size_gr, + shuffle=True, num_workers=0) + + def train_alignment_epoch(self, classifier: torch.nn.Module, optim: torch.optim.Optimizer, n_seen_classes: int, loss_fn): + + dl = self.create_features_dataset() + + with tqdm(enumerate(dl), total=len(dl), desc='GR epoch') as pbar: + for i, (x, labels) in pbar: + optim.zero_grad() + x, labels = x.to(self.device, dtype=torch.float32), labels.to(self.device) + + logits = classifier(x) + + logits = logits[:, :n_seen_classes] + + norm = self.norm(logits) + logits = logits / (0.1 * norm) + + loss = loss_fn(logits, labels) + loss.backward() + optim.step() + + if not self.args.nowand: + assert wandb is not None, "wandb is not installed." + wandb.log({'ca_loss': loss.item(), 'ca_lr': optim.param_groups[0]['lr']}) + pbar.set_postfix({'loss': loss.item()}) + + def align(self, current_task: int, n_seen_classes: int, loss_fn): + + classifier = deepcopy(self.second_stage.vit.head) + + optim = torch.optim.SGD(lr=self.args.learning_rate_gr_second_stage, + params=classifier.parameters(), + momentum=0.0, + weight_decay=0.0) + + num_epochs = self.args.num_epochs_gr_second_stage + (5 * current_task) + + for e in range(num_epochs): + self.train_alignment_epoch(classifier, optim, n_seen_classes=n_seen_classes, loss_fn=loss_fn) + + self.second_stage.vit.head.weight.data.copy_(classifier.weight.data) + self.second_stage.vit.head.bias.data.copy_(classifier.bias.data) + + @torch.no_grad() + def update_statistics(self, dataset: ContinualDataset, n_past_classes: int, n_seen_classes: int): + + features_dict = {i: [] for i in range(n_past_classes, n_seen_classes)} + + self.second_stage.eval() + + with tqdm(total=self.args.num_monte_carlo_gr_second_stage * len(dataset.train_loader), desc='GR update statistics') as pbar: + for _ in range(self.args.num_monte_carlo_gr_second_stage): + for i, data in enumerate(dataset.train_loader): + if self.args.debug_mode and i > 3 and min([len(v) for k, v in features_dict.items()]) > self.args.gr_mog_n_components: + break + + x, labels = data[0], data[1] + x, labels = x.to(self.device), labels.to(self.device, dtype=torch.long) + features = self.second_stage(x, return_features=True, cur_classes=n_seen_classes, frozen_past_classes=n_past_classes) + features = features[:, 0] + + for class_idx in labels.unique(): + features_dict[int(class_idx)].append(features[labels == class_idx]) + + pbar.update(1) + + for class_idx in range(n_past_classes, n_seen_classes): + features_class_idx = torch.cat(features_dict[class_idx], dim=0) + self.second_stage_distributions[class_idx].fit(features_class_idx.to(self.device)) + + def backup(self, current_task: int, n_past_classes: int, n_seen_classes: int): + print(f"BACKUP: Task - {current_task} - classes from " + f"{n_past_classes} - to {n_seen_classes}") + self.classifier_state_dict = deepcopy(self.second_stage.vit.head.state_dict()) + + def recall_classifier_second_stage(self, current_task: int, n_past_classes: int, n_seen_classes: int): + print(f"RECALL: Task - {current_task} - classes from " + f"{n_past_classes} - to {n_seen_classes}") + + if current_task == 0 or self.args.enable_gr == 0: + return + + assert self.classifier_state_dict + + self.second_stage.vit.head.weight.data.copy_(self.classifier_state_dict['weight'].data) + self.second_stage.vit.head.bias.data.copy_(self.classifier_state_dict['bias'].data) + + @torch.enable_grad() + def train_first_stage_on_task(self, dataset: ContinualDataset, current_task: int, n_past_classes: int, n_seen_classes: int, loss_fn): + """ + Train the first stage on the current task. + + Args: + dataset: The continual dataset for the current task, containing both train and test (validation) set. + current_task: The current task index. + n_past_classes: The number of past classes. + n_seen_classes: The number of seen classes. + loss_fn: The loss function. + """ + old_train_transform = dataset.train_loader.dataset.transform + old_test_transform = dataset.test_loaders[-1].dataset.transform + + # use CLIP's preprocessing + dataset.train_loader.dataset.transform = self.first_stage.prompter.clip_preprocess + dataset.test_loaders[-1].dataset.transform = self.first_stage.prompter.clip_preprocess + + convert_weights(self.first_stage.prompter.clip_model) # convert weights to float16 during training for speedup + self.first_stage.train() + + if self.args.first_stage_optim == 'sgd': + opt = torch.optim.SGD(self.first_stage.parameters(), lr=self.args.first_stage_lr, momentum=self.args.first_stage_momentum, + weight_decay=self.args.first_stage_weight_decay) + else: + opt = torch.optim.Adam(self.first_stage.parameters(), lr=self.args.first_stage_lr, + weight_decay=self.args.first_stage_weight_decay) + + # mini train loop + for epoch in range(self.args.n_epochs): + for i, data in enumerate(dataset.train_loader): + inputs, labels = data[0].to(self.device), data[1].to(self.device, dtype=torch.long) + loss = torch.tensor(0.).to(self.device) + + opt.zero_grad() + # Check cur and past classes + clip_logits = self.first_stage(inputs, frozen_past_classes=n_past_classes, cur_classes=n_seen_classes) + + # compute clip loss + clip_logits[:, :n_past_classes] = -float('inf') + loss_clip = loss_fn(clip_logits[:, :n_seen_classes], labels) + + loss += loss_clip + + loss_ortho_coop = self.first_stage.prompter.compute_ortho_loss(frozen_past_classes=n_past_classes, cur_classes=n_seen_classes) + loss += self.args.lambda_ortho_coop * loss_ortho_coop + + if i == 0: + opt.zero_grad() + (loss / self.args.virtual_bs_n).backward() + if (i > 0 or self.args.virtual_bs_n == 1) and i % self.args.virtual_bs_n == 0: + opt.step() + opt.zero_grad() + + if not self.args.nowand: + assert wandb is not None, "wandb is not installed." + wandb.log({'first_stage_loss': loss.item(), + 'first_stage_lr': opt.param_groups[0]['lr'], + 'first_stage_epoch': epoch, + 'first_stage_loss_clip': loss_clip.item(), + 'first_stage_loss_ortho': loss_ortho_coop.item(), + 'first_stage_iteration': i}) + + # Generative replay after end of task + if self.args.enable_gr: + self.first_stage.prompter.update_statistics(dataset, current_task) + self.first_stage.prompter.align(current_task) + + cur_acc = self.eval_first_stage_on_task(dataset) + print(f'First stage accuracy: {cur_acc}') + print(f'\tAverage: {cur_acc.mean().item():.2f}') + + # restore original transforms + dataset.train_loader.dataset.transform = old_train_transform + dataset.test_loaders[-1].dataset.transform = old_test_transform + + self.first_stage.prompter.clip_model.float() # convert back to float32 diff --git a/models/star_prompt_utils/first_stage_model.py b/models/star_prompt_utils/first_stage_model.py index b63033b1..d7027175 100644 --- a/models/star_prompt_utils/first_stage_model.py +++ b/models/star_prompt_utils/first_stage_model.py @@ -58,14 +58,14 @@ def __init__(self, args, num_classes: int, dataset: ContinualDataset, device='cp embed_dim = self.clip_model.visual.output_dim self.distributions = torch.nn.ModuleList([MixtureOfGaussiansModel(embed_dim, n_components=self.args.gr_mog_n_components, - n_iters=self.args.gr_mog_n_iters) + n_iters=self.args.gr_mog_n_iters_first_stage) for _ in range(self.num_classes)]).to(self.device) def compute_ortho_loss(self, cur_classes: int, frozen_past_classes=0) -> torch.Tensor: # (num_classes, 1, clip_size) cur_coop_p = self.prompt_parameters[frozen_past_classes:cur_classes] - ortho_loss_coop = 0 + ortho_loss_coop = torch.tensor(0.0, device=self.device) if frozen_past_classes > 0: past_coop_p = self.prompt_parameters[:frozen_past_classes].detach() ortho_loss_coop = (torch.matmul(cur_coop_p.permute(1, 0, 2), past_coop_p.permute(1, 2, 0))**2).mean() @@ -96,7 +96,7 @@ def train_alignment_epoch(self, optim: torch.optim.Optimizer, current_task: int, dl = self.create_features_dataset(current_task) - with tqdm(enumerate(dl), total=len(dl), desc=f'GR epoch {epoch + 1}/{self.args.num_epochs_gr}') as pbar: + with tqdm(enumerate(dl), total=len(dl), desc=f'GR epoch {epoch + 1}/{self.args.num_epochs_gr_first_stage}') as pbar: for i, (image_features, labels) in pbar: if self.args.debug_mode and i > 3: break @@ -122,10 +122,10 @@ def train_alignment_epoch(self, optim: torch.optim.Optimizer, current_task: int, pbar.set_postfix({'loss': loss.item()}) def align(self, current_task: int): - optim = torch.optim.SGD(lr=self.args.learning_rate_gr, params=[self.prompt_parameters], + optim = torch.optim.SGD(lr=self.args.learning_rate_gr_first_stage, params=[self.prompt_parameters], momentum=0.0, weight_decay=0.0) - for e in range(self.args.num_epochs_gr): + for e in range(self.args.num_epochs_gr_first_stage): self.train_alignment_epoch(optim, current_task=current_task, epoch=e) @torch.no_grad() @@ -137,9 +137,9 @@ def update_statistics(self, dataset: ContinualDataset, current_task: int): was_training = self.training self.eval() - with tqdm(total=self.args.num_monte_carlo_gr * len(dataset.train_loader), + with tqdm(total=self.args.num_monte_carlo_gr_first_stage * len(dataset.train_loader), desc='Updating statistics for first stage Generative Replay') as pbar: - for _ in range(self.args.num_monte_carlo_gr): + for _ in range(self.args.num_monte_carlo_gr_first_stage): for i, data in enumerate(dataset.train_loader): if self.args.debug_mode == 1 and i > 3 and min([len(v) for k, v in features_dict.items()]) > self.args.gr_mog_n_components: break diff --git a/models/star_prompt_utils/second_stage_model.py b/models/star_prompt_utils/second_stage_model.py index 45859deb..56030ace 100644 --- a/models/star_prompt_utils/second_stage_model.py +++ b/models/star_prompt_utils/second_stage_model.py @@ -20,20 +20,25 @@ class Prompter(torch.nn.Module): def __init__(self, args, dataset: ContinualDataset, num_classes: int, target_embed_len: int, - target_embed_dim: int, prompt_layers: List[int]): + target_embed_dim: int, prompt_layers: List[int], + clip_model: clip.model.CLIP = None, clip_preprocess=None, + device='cpu'): super().__init__() assert args.prompt_mode in ['residual', 'concat'], 'This prompter supports only STAR-Prompt residual-style prompts (`residual`) or Prefix tuning-style prompts (`concat`).' self.args = args self.prompt_layers = prompt_layers self.target_embed_len = target_embed_len self.target_embed_dim = target_embed_dim - self.device = args.device + self.device = device self.num_classes = num_classes self.prompt_mode = args.prompt_mode + if clip_model is not None: + assert clip_preprocess is not None, 'Preprocess must be provided if the model is provided' + print("Loading CLIP visual encoder and the pre-computed text features...") - clip_backbone = 'ViT-L/14' - if args.keys_ckpt_path is not None: + clip_backbone = 'ViT-L/14' if not hasattr(args, 'clip_backbone') else args.clip_backbone + if hasattr(args, 'keys_ckpt_path') and args.keys_ckpt_path is not None: if args.keys_ckpt_path.endswith('.json'): try: key_jobnum = json.load(open(args.keys_ckpt_path, 'r'))[args.dataset][str(args.seed)] @@ -56,13 +61,21 @@ def __init__(self, args, dataset: ContinualDataset, if first_stage_args is not None: print("Keys loaded. Loading CLIP version:", first_stage_args.clip_backbone) clip_backbone = first_stage_args.clip_backbone - self.clip_model, self.clip_preprocess = clip.load(clip_backbone, self.device) - self.clip_model = self.clip_model.float() # force fp32 when used for eval + if clip_model is None: + self.clip_model, self.clip_preprocess = clip.load(clip_backbone, self.device) + self.clip_model = self.clip_model.float() # force fp32 when used for eval + else: + self.clip_model = clip_model + self.clip_preprocess = clip_preprocess else: # use prompt templates self.keys_ckpt_path = None print("No keys loaded. Using default CLIP version:", clip_backbone) - self.clip_model, self.clip_preprocess = clip.load(clip_backbone, self.device) - self.clip_model = self.clip_model.float() # force fp32 when used for eval + if clip_model is None: + self.clip_model, self.clip_preprocess = clip.load(clip_backbone, self.device) + self.clip_model = self.clip_model.float() # force fp32 when used for eval + else: + self.clip_model = clip_model + self.clip_preprocess = clip_preprocess self.keys = self.load_default_prompt_templates(dataset.get_prompt_templates(), dataset.get_class_names()) self.clip_normalization = Normalize(self.clip_preprocess.transforms[-1].mean, @@ -89,6 +102,14 @@ def __init__(self, args, dataset: ContinualDataset, setattr(self, f'a_{l}', self.get_parameter((self.num_classes, self.clip_model.visual.output_dim))) + def set_keys(self, keys: torch.Tensor, start_class: int, end_class: int): + """ + Set the keys for the classes in the range `[start_class, end_class)`. + """ + assert end_class - start_class == keys.shape[0], 'Number of classes in the keys tensor does not match the range' + + self.keys[start_class:end_class] = keys + def get_parameter(self, shape, type_init: str = 'orto') -> torch.nn.Parameter: """ Create and initialize a parameter tensor. Code courtesy from CODA-Prompt. @@ -105,7 +126,7 @@ def load_default_prompt_templates(self, templates: List[str], dataset_classes: L """ Pre-computes the CLIP's text-encoder features if the keys are not loaded from a checkpoint. """ - if self.args.statc_keys_use_templates: + if hasattr(self.args, 'statc_keys_use_templates') and self.args.statc_keys_use_templates: all_features = [] for t in templates: text_inputs = torch.cat([clip.tokenize(t.format(c)) for c in dataset_classes]).to(self.device) @@ -335,14 +356,15 @@ def _compute_loss(p: torch.Tensor, frozen_past_classes: int, cur_classes: int) - class Model(nn.Module): prompter: Prompter - def __init__(self, args, backbone: nn.Module, dataset: ContinualDataset, num_classes): + def __init__(self, args, backbone: nn.Module, dataset: ContinualDataset, num_classes, device='cpu', + clip_model: clip.model.CLIP = None, clip_preprocess=None): super().__init__() assert 'resnet' not in str(type(backbone)).lower(), "ResNet not supported" self.args = args self.num_classes = num_classes - self.device = backbone.device + self.device = device # get feature encoder vit_model = VisionTransformer(embed_dim=768, @@ -350,7 +372,7 @@ def __init__(self, args, backbone: nn.Module, dataset: ContinualDataset, num_cla num_heads=12, drop_path_rate=0, num_classes=num_classes, - prompt_mode=args.prompt_mode) + prompt_mode=args.prompt_mode).to(device) print("Loading the Vision Transformer backbone...") load_dict = backbone.state_dict() @@ -371,7 +393,10 @@ def __init__(self, args, backbone: nn.Module, dataset: ContinualDataset, num_cla num_classes=num_classes, target_embed_len=self.vit.patch_embed.num_patches, target_embed_dim=self.vit.embed_dim, - prompt_layers=self.prompt_layers) + prompt_layers=self.prompt_layers, + clip_model=clip_model, + clip_preprocess=clip_preprocess, + device=device) # freeze the backbone for n, p in self.vit.named_parameters(): diff --git a/models/starprompt.py b/models/starprompt.py new file mode 100644 index 00000000..f37533cc --- /dev/null +++ b/models/starprompt.py @@ -0,0 +1,168 @@ +import torch +from argparse import ArgumentParser + +try: + import wandb +except ImportError: + wandb = None +try: + import clip +except ImportError: + raise ImportError("Please install the CLIP package by running: pip install git+https://github.com/openai/CLIP.git (requires also `huggingface-hub`)") + +from utils.schedulers import CosineSchedule +from models.utils.continual_model import ContinualModel +from models.star_prompt_utils.end_to_end_model import STARPromptModel + + +class STARPrompt(ContinualModel): + NAME = 'starprompt' + COMPATIBILITY = ['class-il', 'domain-il', 'task-il', 'general-continual'] + net: STARPromptModel + + @staticmethod + def get_parser() -> ArgumentParser: + parser = ArgumentParser(description='Second-stage of StarPrompt. Requires the keys saved from the first stage.') + + frozen_group = parser.add_argument_group('Frozen hyperparameters') + frozen_group.add_argument("--virtual_bs_n", type=int, default=1, + help="virtual batch size iterations") + frozen_group.add_argument("--ortho_split_val", type=int, default=0) + frozen_group.add_argument('--gr_mog_n_iters_second_stage', type=int, default=500, + help="Number of EM iterations during fit for GR with MOG on the second stage.") + frozen_group.add_argument('--gr_mog_n_iters_first_stage', type=int, default=200, + help="Number of EM iterations during fit for GR with MOG on the first stage.") + frozen_group.add_argument('--gr_mog_n_components', type=int, default=5, + help="Number of components for GR with MOG (both first and second stage).") + frozen_group.add_argument('--batch_size_gr', type=int, default=128, + help="Batch size for Generative Replay (both first and second stage).") + frozen_group.add_argument('--num_samples_gr', type=int, default=256, + help="Number of samples for Generative Replay (both first and second stage).") + frozen_group.add_argument('--prefix_tuning_prompt_len', type=int, default=5, + help="Prompt length for prefix tuning. Used only if `--prompt_mode==concat`.") + + ablation_group = parser.add_argument_group('Ablations hyperparameters') + ablation_group.add_argument('--gr_model', type=str, default='mog', choices=['mog', 'gaussian'], + help="Type of distribution model for Generative Replay (both first and second stage). " + "- `mog`: Mixture of Gaussian. " + "- `gaussian`: Single Gaussian distribution.") + ablation_group.add_argument("--enable_gr", type=int, default=1, choices=[0, 1], + help="Enable Generative Replay (both first and second stage).") + ablation_group.add_argument('--prompt_mode', type=str, default='residual', choices=['residual', 'concat'], + help="Prompt type for the second stage. " + "- `residual`: STAR-Prompt style prompting. " + "- `concat`: Prefix-Tuning style prompting.") + ablation_group.add_argument("--enable_confidence_modulation", type=int, default=1, choices=[0, 1], + help="Enable confidence modulation with CLIP similarities (Eq. 5 of the main paper)?") + + tunable_group = parser.add_argument_group('Tunable hyperparameters') + # second stage + tunable_group.add_argument("--lambda_ortho", type=float, default=10, + help="orthogonality loss coefficient") + tunable_group.add_argument("--num_monte_carlo_gr_second_stage", type=int, default=1, + help="how many times to sample from the dataset for alignment") + tunable_group.add_argument("--num_epochs_gr_second_stage", type=int, default=10, + help="Num. of epochs for GR.") + tunable_group.add_argument("--learning_rate_gr_second_stage", type=float, default=0.001, + help="Learning rate for GR.") + # first stage + tunable_group.add_argument("--num_monte_carlo_gr_first_stage", type=int, default=1, + help="how many times to sample from the dataset for alignment") + tunable_group.add_argument("--learning_rate_gr_first_stage", type=float, default=0.05, + help="Learning rate for Generative Replay.") + tunable_group.add_argument("--lambda_ortho_coop", type=float, default=30, + help="Orthogonality loss coefficient for coop") + tunable_group.add_argument("--num_epochs_gr_first_stage", type=int, default=10, + help="Num. of epochs for Generative Replay.") + + parser.add_argument("--clip_backbone", type=str, default='ViT-L/14', help="CLIP backbone architecture", + choices=clip.available_models()) + + first_stage_optim_group = parser.add_argument_group('First stage optimization hyperparameters') + first_stage_optim_group.add_argument("--first_stage_optim", type=str, default='sgd', choices=['sgd', 'adam'], + help="First stage optimizer") + first_stage_optim_group.add_argument("--first_stage_lr", type=float, default=0.002, help="First stage learning rate") + first_stage_optim_group.add_argument("--first_stage_momentum", type=float, default=0, help="First stage momentum") + first_stage_optim_group.add_argument("--first_stage_weight_decay", type=float, default=0, help="First stage weight decay") + + return parser + + def __init__(self, backbone, loss, args, transform): + super().__init__(backbone, loss, args, transform) + + self.net = STARPromptModel(args, + backbone=self.net, + dataset=self.dataset, + num_classes=self.num_classes, + device=self.device) + + def end_task(self, dataset): + if hasattr(self, 'opt'): + del self.opt # free up some vram + + if self.args.enable_gr: + self.net.update_statistics(dataset, self.n_past_classes, self.n_seen_classes) + self.net.backup(self.current_task, self.n_past_classes, self.n_seen_classes) + + if self.current_task > 0: + self.net.align(self.current_task, self.n_seen_classes, self.loss) + + def get_parameters(self): + if not isinstance(self.net, STARPromptModel): # during initialization + return super().get_parameters() + return [p for p in self.net.second_stage.parameters() if p.requires_grad] + + def get_scheduler(self): + return CosineSchedule(self.opt, K=self.args.n_epochs) + + def begin_task(self, dataset): + # clean junk on GPU + if hasattr(self, 'opt'): + del self.opt + + torch.cuda.empty_cache() + + # adapt CLIP on current task + self.net.train_first_stage_on_task(dataset, self.current_task, self.n_past_classes, self.n_seen_classes, self.loss) + self.net.second_stage.train() + + # initialize second stage + + # For later GR + self.net.recall_classifier_second_stage(self.current_task, self.n_past_classes, self.n_seen_classes) + + self.opt = self.get_optimizer() + self.scheduler = self.get_scheduler() + + def forward(self, x): + logits = self.net(x, cur_classes=self.n_seen_classes) + logits = logits[:, :self.n_seen_classes] + return logits + + def observe(self, inputs, labels, not_aug_inputs, epoch=None): # second stage only + stream_inputs, stream_labels = inputs, labels + stream_logits = self.net(stream_inputs, cur_classes=self.n_seen_classes, frozen_past_classes=self.n_past_classes) + + # Compute accuracy on current training batch for logging + with torch.no_grad(): + stream_preds = stream_logits[:, :self.n_seen_classes].argmax(dim=1) + stream_acc = (stream_preds == stream_labels).sum().item() / stream_labels.shape[0] + + # mask old classes + stream_logits[:, :self.n_past_classes] = -float('inf') + loss = self.loss(stream_logits[:, :self.n_seen_classes], stream_labels) + + loss_ortho = self.net.second_stage.prompter.compute_ortho_loss(frozen_past_classes=self.n_past_classes, cur_classes=self.n_seen_classes) + loss += self.args.lambda_ortho * loss_ortho + + if self.epoch_iteration == 0: + self.opt.zero_grad() + + (loss / self.args.virtual_bs_n).backward() + if (self.epoch_iteration > 0 or self.args.virtual_bs_n == 1) and \ + self.epoch_iteration % self.args.virtual_bs_n == 0: + self.opt.step() + self.opt.zero_grad() + + return {'loss': loss.item(), + 'stream_accuracy': stream_acc} diff --git a/scripts/local_launcher.py b/scripts/local_launcher.py index 6844d50e..cc4f9524 100644 --- a/scripts/local_launcher.py +++ b/scripts/local_launcher.py @@ -1,6 +1,12 @@ import os -if os.getcwd().split('/')[-1] == 'scripts': - os.chdir('..') +import sys + +if 'scripts' in os.path.dirname(os.path.abspath(__file__)): + mammoth_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) +else: + mammoth_path = os.getcwd() +os.chdir(mammoth_path) +sys.path.append(mammoth_path) import functools import subprocess @@ -33,7 +39,7 @@ def parse_args(): assert args.redundancy >= 1, "redundancy must be at least 1" assert args.start_from >= 0, "start_from must be at least 0" - jobs_list = [l for l in open(args.file, "r").read().splitlines() if l.strip() != "" and not l.startswith("#")][args.start_from:] * args.redundancy + jobs_list = [l for l in open(args.file, "r").read().splitlines() if l.strip() != "" and not l.strip().startswith("#")][args.start_from:] * args.redundancy if args.reverse: jobs_list = list(reversed(jobs_list)) jobname = args.file.strip().split("/")[-1].split("\\")[-1].split(".")[0] @@ -97,9 +103,11 @@ def main(): def signal_handler(sig, frame): print('Killing all processes') if os.name == 'nt': - os.system("taskkill /F /T /PID {}".format(os.getpid())) + for job_index, (jobname, pid) in active_jobs.items(): + os.system("taskkill /F /PID {}".format(pid)) else: - os.system("kill -9 -1") + for job_index, (jobname, pid) in active_jobs.items(): + os.system("kill -9 {}".format(pid)) sys.exit(0) signal.signal(signal.SIGINT, signal_handler) From 5156f0cf60332c342abc0092781de65591bb928d Mon Sep 17 00:00:00 2001 From: loribonna Date: Mon, 22 Jul 2024 23:24:59 +0200 Subject: [PATCH 58/66] minor fix starprompt --- models/star_prompt_utils/end_to_end_model.py | 6 +++--- models/starprompt.py | 5 +++++ 2 files changed, 8 insertions(+), 3 deletions(-) diff --git a/models/star_prompt_utils/end_to_end_model.py b/models/star_prompt_utils/end_to_end_model.py index 272c7eac..242e45e7 100644 --- a/models/star_prompt_utils/end_to_end_model.py +++ b/models/star_prompt_utils/end_to_end_model.py @@ -126,9 +126,9 @@ def create_features_dataset(self, current_task: int): verbose=False, batch_size=self.args.batch_size_gr, shuffle=True, num_workers=0) - def train_alignment_epoch(self, classifier: torch.nn.Module, optim: torch.optim.Optimizer, n_seen_classes: int, loss_fn): + def train_alignment_epoch(self, classifier: torch.nn.Module, optim: torch.optim.Optimizer, n_seen_classes: int, current_task: int, loss_fn): - dl = self.create_features_dataset() + dl = self.create_features_dataset(current_task) with tqdm(enumerate(dl), total=len(dl), desc='GR epoch') as pbar: for i, (x, labels) in pbar: @@ -163,7 +163,7 @@ def align(self, current_task: int, n_seen_classes: int, loss_fn): num_epochs = self.args.num_epochs_gr_second_stage + (5 * current_task) for e in range(num_epochs): - self.train_alignment_epoch(classifier, optim, n_seen_classes=n_seen_classes, loss_fn=loss_fn) + self.train_alignment_epoch(classifier, optim, n_seen_classes=n_seen_classes, current_task=current_task, loss_fn=loss_fn) self.second_stage.vit.head.weight.data.copy_(classifier.weight.data) self.second_stage.vit.head.bias.data.copy_(classifier.bias.data) diff --git a/models/starprompt.py b/models/starprompt.py index f37533cc..9f743e3b 100644 --- a/models/starprompt.py +++ b/models/starprompt.py @@ -84,10 +84,15 @@ def get_parser() -> ArgumentParser: first_stage_optim_group.add_argument("--first_stage_lr", type=float, default=0.002, help="First stage learning rate") first_stage_optim_group.add_argument("--first_stage_momentum", type=float, default=0, help="First stage momentum") first_stage_optim_group.add_argument("--first_stage_weight_decay", type=float, default=0, help="First stage weight decay") + first_stage_optim_group.add_argument("--first_stage_epochs", type=float, help="First stage epochs. If not set, it will be the same as `n_epochs`.") return parser def __init__(self, backbone, loss, args, transform): + if not hasattr(args, 'first_stage_epochs') or args.first_stage_epochs is None: + print("INFO: `first_stage_epochs` not set. Setting it to `n_epochs`.") + args.first_stage_epochs = args.n_epochs + super().__init__(backbone, loss, args, transform) self.net = STARPromptModel(args, From 716a5bb6b48db99598dbe7e3f5a23f8e527ce627 Mon Sep 17 00:00:00 2001 From: loribonna Date: Tue, 23 Jul 2024 10:13:00 +0200 Subject: [PATCH 59/66] Minor changes --- README.md | 4 ++-- docs/readme.rst | 2 +- models/star_prompt_utils/end_to_end_model.py | 2 +- utils/args.py | 6 ++++++ utils/conf.py | 2 +- 5 files changed, 11 insertions(+), 5 deletions(-) diff --git a/README.md b/README.md index 3b4a7d8f..18b68cee 100644 --- a/README.md +++ b/README.md @@ -37,7 +37,7 @@ Join our Discord Server for all your Mammoth-related questions → ![Discord Shi ## Models -Mammoth currently supports **40** models, with new releases covering the main competitors in literature. +Mammoth currently supports **41** models, with new releases covering the main competitors in literature. - Efficient Lifelong Learning with A-GEM (A-GEM, A-GEM-R - A-GEM with reservoir buffer): `agem`, `agem_r` - Bias Correction (BiC): `bic`. @@ -68,7 +68,7 @@ Mammoth currently supports **40** models, with new releases covering the main co - eXtended-DER (X-DER): `xder` (full version), `xder_ce` (X-DER with CE), `xder_rpc` (X-DER with RPC). - AttriCLIP: `attriclip`. - Slow Learner with Classifier Alignment (SLCA): `slca`. -- Semantic Two-level Additive Residual Prompt (STAR-Prompt): `first_stage_starprompt` and `second_stage_starprompt`. *(stay tuned for the end-to-end model version)* +- Semantic Two-level Additive Residual Prompt (STAR-Prompt): `starprompt`. Also includes the first-stage only (`first_stage_starprompt`) and second-stage only (`second_stage_starprompt`) versions. ## Datasets diff --git a/docs/readme.rst b/docs/readme.rst index 59ee6b9b..77e53146 100644 --- a/docs/readme.rst +++ b/docs/readme.rst @@ -71,7 +71,7 @@ Setup Models ------ -Mammoth currently supports **40** models, with new releases covering the main competitors in literature. +Mammoth currently supports **41** models, with new releases covering the main competitors in literature. Datasets -------- diff --git a/models/star_prompt_utils/end_to_end_model.py b/models/star_prompt_utils/end_to_end_model.py index 242e45e7..51c67cee 100644 --- a/models/star_prompt_utils/end_to_end_model.py +++ b/models/star_prompt_utils/end_to_end_model.py @@ -242,7 +242,7 @@ def train_first_stage_on_task(self, dataset: ContinualDataset, current_task: int weight_decay=self.args.first_stage_weight_decay) # mini train loop - for epoch in range(self.args.n_epochs): + for epoch in range(self.args.first_stage_epochs): for i, data in enumerate(dataset.train_loader): inputs, labels = data[0].to(self.device), data[1].to(self.device, dtype=torch.long) loss = torch.tensor(0.).to(self.device) diff --git a/utils/args.py b/utils/args.py index 90050086..cff91403 100644 --- a/utils/args.py +++ b/utils/args.py @@ -99,6 +99,12 @@ def add_management_args(parser: ArgumentParser) -> None: help='Permute classes before splitting into tasks? This applies the seed before permuting if the `seed` argument is present.') mng_group.add_argument('--base_path', type=str, default="./data/", help='The base path where to save datasets, logs, results.') + mng_group.add_argument('--device', type=str, + help='The device (or devices) available to use for training. ' + 'More than one device can be specified by separating them with a comma. ' + 'If not provided, the code will use the least used GPU available (if there are any), otherwise the CPU. ' + 'MPS is supported and is automatically used if no GPU is available and MPS is supported. ' + 'If more than one GPU is available, Mammoth will use the least used one if `--distributed=no`.') mng_group.add_argument('--notes', type=str, default=None, help='Helper argument to include notes for this run. Example: distinguish between different versions of a model and allow separation of results') mng_group.add_argument('--eval_epochs', type=int, default=None, diff --git a/utils/conf.py b/utils/conf.py index 88b27d39..15600a91 100644 --- a/utils/conf.py +++ b/utils/conf.py @@ -79,7 +79,7 @@ def get_alloc_memory_all_devices(return_all=False) -> list[int]: return gpu_memory_allocated -def get_device() -> torch.device: +def get_device(avail_devices: str = None) -> torch.device: """ Returns the least used GPU device if available else MPS or CPU. """ From f0d7da643a42d2969d91fcede4c85f453f3631c2 Mon Sep 17 00:00:00 2001 From: apanariello4 Date: Wed, 24 Jul 2024 11:30:11 +0200 Subject: [PATCH 60/66] add cgil, add tqdm instead of progbar and logging.info --- models/cgil.py | 88 +++ models/cgil_utils/README.md | 39 ++ models/cgil_utils/cgil_utils.py | 395 ++++++++++++ models/cgil_utils/diffusion.py | 195 ++++++ models/cgil_utils/generative_replay.py | 560 ++++++++++++++++++ models/cgil_utils/vae.py | 178 ++++++ models/second_stage_starprompt.py | 2 +- models/star_prompt_utils/end_to_end_model.py | 2 +- models/star_prompt_utils/first_stage_model.py | 2 +- models/starprompt.py | 18 +- models/utils/future_model.py | 17 + scripts/prepare_grid.py | 3 +- scripts/wandb_sync.py | 7 +- utils/args.py | 3 +- utils/conf.py | 13 +- utils/loggers.py | 14 +- utils/main.py | 11 +- utils/training.py | 76 ++- 18 files changed, 1570 insertions(+), 53 deletions(-) create mode 100644 models/cgil.py create mode 100644 models/cgil_utils/README.md create mode 100644 models/cgil_utils/cgil_utils.py create mode 100644 models/cgil_utils/diffusion.py create mode 100644 models/cgil_utils/generative_replay.py create mode 100644 models/cgil_utils/vae.py create mode 100644 models/utils/future_model.py diff --git a/models/cgil.py b/models/cgil.py new file mode 100644 index 00000000..ed6c5a6d --- /dev/null +++ b/models/cgil.py @@ -0,0 +1,88 @@ +from argparse import ArgumentParser + +import torch + +from datasets import get_dataset +from datasets.utils.continual_dataset import ContinualDataset +from models.cgil_utils.cgil_utils import Model +from models.utils.future_model import FutureModel + + +class IncrementalCoopVAE(FutureModel): + NAME = 'cgil' + COMPATIBILITY = ['class-il', 'domain-il', 'task-il', 'general-continual'] + + @staticmethod + def get_parser() -> ArgumentParser: + parser = ArgumentParser() + + parser.add_argument("--backbone", type=str, default='ViT-L/14', help="Clip backbone") + parser.add_argument("--learning_rate_alignment", type=float, default=0.05, help="Learning rate for GR.") + parser.add_argument("--optim_alignment", type=str, default='adamw', choices=('sgd', 'adam', 'adamw'), help="Optimizer for GR.") + parser.add_argument("--optim_alignment_wd", type=float, default=0, help="Weight decay for GR.") + parser.add_argument("--lambda_ortho_coop", type=float, default=1, help="Orthogonality loss coefficient for coop") + parser.add_argument("--num_epochs_alignment", type=int, default=30, help="Num. of epochs for GR.") + parser.add_argument("--batch_size_alignment", type=int, default=128, help="Batch size for alignment.") + parser.add_argument('--gr_mog_n_components', type=int, default=5, help="Number of components for GR with MOG.") + parser.add_argument('--gr_mog_n_iters', type=int, default=500, help="Number of EM iterations during fit for GR with MOG.") + parser.add_argument('--gr_vae_hidden_dim', type=int, default=512, help="Hidden dimension for GR with VAE.") + parser.add_argument('--gr_vae_latent_dim', type=int, default=256, help="Latent dimension for GR with VAE.") + parser.add_argument('--gr_vae_n_iters', type=int, default=500, help="Number of iterations for GR with VAE.") + parser.add_argument('--train_only_current_prompts', type=int, default=0, choices=(0, 1), help="Train only current prompts.") + parser.add_argument('--align_with_ortholoss', type=int, default=0, choices=(0, 1), help="Align with orthogonality loss.") + parser.add_argument('--lr_vae', type=float, default=2e-4, help="Learning rate for VAE.") + parser.add_argument('--general_context', type=int, default=0, help="Use general context (number of contexts created).") + parser.add_argument('--generated_context', type=int, default=0, help="Use generated context.") + parser.add_argument('--cocoop', type=int, default=0, help="Use image embedding to generate context.") + parser.add_argument('--combo_context', type=int, default=1, help="Use both generated and prompt context.") + parser.add_argument('--n_context', type=int, default=1, help="Use both generated and prompt context.") + parser.add_argument("--g_models", type=str, default='vae', choices=('vae', 'mog', 'gauss', "diffusion"), help="Generative model to use for alignment") + + return parser + + def __init__(self, backbone, loss, args, transform): + args.n_epochs = 0 + + if args.debug_mode: + args.num_epochs_alignment = 1 + args.gr_mog_n_iters = 1 + args.gr_vae_n_iters = 10 + + backbone = Model(args, num_classes=get_dataset(args).N_CLASSES) + super().__init__(backbone, loss, args, transform) + + # REMOVE ALL TRACK RUNNING STATS FROM CLIP + for m in self.net.modules(): + if isinstance(m, (torch.nn.BatchNorm2d, torch.nn.BatchNorm1d)): + m.track_running_stats = False + + def end_task(self, dataset: ContinualDataset) -> None: + + self.net.prompter.update_statistics(dataset) + + self.net.prompter.align() + + self.net.prompter.current_task += 1 + + def begin_task(self, dataset: ContinualDataset) -> None: + + self.change_transform(dataset) + + self.old_epoch = 0 + self.iteration = 0 + + torch.cuda.empty_cache() + + def change_transform(self, dataset: ContinualDataset) -> None: + dataset.train_loader.dataset.transform = self.net.prompter.clip_preprocess + dataset.test_loaders[-1].dataset.transform = self.net.prompter.clip_preprocess + + def forward(self, x: torch.Tensor) -> torch.Tensor: + logits = self.net(x, train=False) + return logits[:, :self.n_seen_classes] + + def future_forward(self, x: torch.Tensor) -> torch.Tensor: + return self.net.future_forward(x) + + def observe(self, *args, **kwargs): + return 0 diff --git a/models/cgil_utils/README.md b/models/cgil_utils/README.md new file mode 100644 index 00000000..d5bbd78a --- /dev/null +++ b/models/cgil_utils/README.md @@ -0,0 +1,39 @@ +# How to Run +`cd` into the root directory of mammoth. + +It may be required to add the root directory to the python path. if you are using bash, you can do this by running the following command: +```bash +export PYTHONPATH=$PYTHONPATH:/path/to/mammoth +``` + +In the paper we employ the following hyperparameters for the different datasets accross the seeds `1992`, `1996` and `1997` (we report only the seed `1992` for brevity). The hyperparameters are the same for the other seeds: + +- **Imagenet-R** + +```bash +python utils/main.py --dataset=seq-imagenet-r --model=cgil --backbone=ViT-L/14 --lr=0.01 --g_models=vae --optim_alignment=adamw --learning_rate_alignment=0.05 --eval_future=1 --seed=1992 --combo_context=1 --gr_vae_n_iters=500 --num_epochs_alignment=60 +``` + +- **Cars-196** + +```bash +python utils/main.py --dataset=seq-cars196 --model=cgil --backbone=ViT-L/14 --lr=0.01 --g_models=vae --optim_alignment=adamw --learning_rate_alignment=0.03 --eval_future=1 --seed=1992 --combo_context=1 --gr_vae_n_iters=500 --num_epochs_alignment=60 +``` + +- **CUB-200** + +```bash +python utils/main.py --dataset=seq-cub200 --model=cgil --backbone=ViT-L/14 --lr=0.01 --g_models=vae --optim_alignment=adamw --learning_rate_alignment=0.01 --eval_future=1 --seed=1992 --combo_context=1 --gr_vae_n_iters=500 --num_epochs_alignment=60 +``` + +- **EuroSAT-RGB** + +```bash +python utils/main.py --dataset=seq-eurosat-rgb --model=cgil --backbone=ViT-L/14 --lr=0.01 --g_models=vae --optim_alignment=adamw --learning_rate_alignment=0.03 --eval_future=1 --seed=1992 --combo_context=1 --gr_vae_n_iters=500 --num_epochs_alignment=150 +``` + +- **ISIC** + +```bash +python utils/main.py --dataset=seq-isic --model=cgil --backbone=ViT-L/14 --lr=0.01 --g_models=vae --optim_alignment=adamw --learning_rate_alignment=0.05 --eval_future=1 --seed=1992 --combo_context=1 --gr_vae_n_iters=750 --num_epochs_alignment=150 +``` diff --git a/models/cgil_utils/cgil_utils.py b/models/cgil_utils/cgil_utils.py new file mode 100644 index 00000000..5b13e60f --- /dev/null +++ b/models/cgil_utils/cgil_utils.py @@ -0,0 +1,395 @@ +import os +from pathlib import Path +from typing import Optional + +import torch +import torch.nn.functional as F +from tqdm import tqdm, trange + +from datasets import get_dataset +from datasets.utils.continual_dataset import ContinualDataset +from models.cgil_utils.diffusion import DiffusionCA +from models.cgil_utils.generative_replay import (FeaturesDataset, Gaussian, + MixtureOfGaussiansModel) +from models.cgil_utils.vae import VariationalAutoEncoderModel +from utils.conf import get_device + +try: + import clip +except ImportError: + raise ImportError("Please install the CLIP package by running: pip install git+https://github.com/openai/CLIP.git") +try: + import wandb +except ImportError: + wandb = None + + +class TextEncoder(torch.nn.Module): + def __init__(self, clip_model): + super().__init__() + self.transformer = clip_model.transformer + self.positional_embedding = clip_model.positional_embedding + self.ln_final = clip_model.ln_final + self.text_projection = clip_model.text_projection + self.dtype = clip_model.dtype + + def forward(self, x: torch.Tensor, tokenized_prompts: torch.Tensor) -> torch.Tensor: + x = x + self.positional_embedding.type(self.dtype) + x = self.transformer(x.permute(1, 0, 2)).permute(1, 0, 2) + x = self.ln_final(x).type(self.dtype) + x = x[torch.arange(x.shape[0]), tokenized_prompts.argmax(dim=-1)] @ self.text_projection + return x + + +class Model(torch.nn.Module): + def __init__(self, args, num_classes: int): + super().__init__() + self.args = args + self.num_classes = num_classes + self.device = get_device() + + self.prompter = Prompter(args) + + def train(self, mode=True): + super().train(False) + self.prompter.train(False) + + return self + + def forward(self, x: torch.Tensor, train: bool = True) -> torch.Tensor: + clip_out = self.prompter.get_query(x) + + keys = self.prompter.get_keys(train=train, image_embeds=clip_out) + + return self.prompter.get_clip_logits(clip_out, keys) + + def future_forward(self, x: torch.Tensor) -> torch.Tensor: + clip_out = self.prompter.get_query(x) + trained_keys = self.prompter.get_keys(train=False, image_embeds=clip_out) + untrained_keys = self.prompter.just_text_features[len(trained_keys):] + keys = torch.cat((trained_keys, untrained_keys), dim=0) + + return self.prompter.get_clip_logits(clip_out, keys) + + +class Prompter(torch.nn.Module): + def __init__(self, args): + super().__init__() + self.args = args + self.device = get_device() + + self.seq_dataset = get_dataset(self.args) + self.num_classes = self.seq_dataset.N_CLASSES + + self.clip_model, self.clip_preprocess = clip.load(args.backbone, self.device) + self.clip_model = self.clip_model.float() + + for p in self.clip_model.parameters(): + p.requires_grad = False + + self.current_task = 0 + self.class_names = self.seq_dataset.get_class_names() + self.setup_text_prompting() + self.clip_logit_scale = self.clip_model.logit_scale + + embed_dim = self.clip_model.visual.output_dim + + if self.args.g_models == 'gauss': + self.distributions = torch.nn.ModuleList([Gaussian(embed_dim) for _ in range(self.num_classes)]).to(self.device) + elif self.args.g_models == 'mog': + self.distributions = torch.nn.ModuleList([MixtureOfGaussiansModel(embed_dim, n_components=self.args.gr_mog_n_components, + n_iters=self.args.gr_mog_n_iters) + for _ in range(self.num_classes)]).to(self.device) + elif self.args.g_models == 'vae': + self.distributions = torch.nn.ModuleList([VariationalAutoEncoderModel(input_dim=embed_dim, + hidden_dim=self.args.gr_vae_hidden_dim, + latent_dim=self.args.gr_vae_latent_dim, + lr=self.args.lr_vae, + n_iters=self.args.gr_vae_n_iters, + class_idx=i) + for i in range(self.num_classes)]) + elif self.args.g_models == 'diffusion': + self.distributions = torch.nn.ModuleList([DiffusionCA(embed_dim, + self.device, + target="img", + num_hidden=5, + hidden_dim=self.args.gr_vae_latent_dim, + n_iters=self.args.gr_vae_n_iters, + class_idx=i) for i in range(self.num_classes)]) + + def compute_ortho_loss(self) -> torch.Tensor: + """Computes the orthogonality loss between the prompt parameters. + + Returns: + torch.Tensor: The orthogonality loss. + """ + offset_1, offset_2 = self.seq_dataset.get_offsets(self.current_task) + + if not self.args.train_only_current_prompts: + coop_p = torch.cat([getattr(self, f'prompt_parameters_{i}') for i in range(0, offset_2)], dim=0) + I = torch.eye(coop_p.shape[0], device=self.device, dtype=coop_p.dtype) + ortho_loss_coop = (coop_p @ coop_p.t() - I).pow(2).mean() + else: + cur_coop_p = torch.cat([getattr(self, f'prompt_parameters_{i}') for i in range(offset_1, offset_2)], dim=0).unsqueeze(1) + if self.current_task > 0: + past_coop_p = torch.cat([getattr(self, f'prompt_parameters_{i}').detach() for i in range(offset_1)], dim=0) + ortho_loss_coop = (torch.matmul(cur_coop_p.permute(1, 0, 2), past_coop_p.permute(1, 2, 0))**2).mean() + + return ortho_loss_coop + + @torch.no_grad() + def build_features_dataset(self) -> torch.utils.data.DataLoader: + """Builds a dataset of features and labels for the alignment task using the current distributions. + + Returns: + torch.utils.data.DataLoader: The dataloader for the alignment task. + """ + + labels, features = [], [] + + for _ti in range(self.current_task + 1): + + prev_t_size, cur_t_size = self.seq_dataset.get_offsets(_ti) + + for class_idx in range(prev_t_size, cur_t_size): + + curr_dist = self.distributions[class_idx] + prev_train = curr_dist.training + curr_dist.eval() + curr_dist = curr_dist.to(self.device) + current_samples = curr_dist(256) + curr_dist.train(prev_train) + curr_dist = curr_dist.to('cpu') + features.append(current_samples) + labels.append(torch.ones((256)) * class_idx) + + features = torch.cat(features, dim=0).detach() + labels = torch.cat(labels, dim=0).long() + + return torch.utils.data.DataLoader(FeaturesDataset(features, labels), + batch_size=self.args.batch_size_alignment, shuffle=True, num_workers=0) + + def train_alignment_epoch(self, optim: torch.optim.Optimizer) -> None: + """Trains the alignment task for one epoch. + + Args: + optim (torch.optim.Optimizer): The optimizer to use for training. + """ + offset_1, offset_2 = self.seq_dataset.get_offsets(self.current_task) + + data_loader = self.build_features_dataset() + + for i, (image_features, labels) in enumerate(data_loader): + if self.args.debug_mode and i > 3: + break + optim.zero_grad() + + image_features, labels = image_features.to(self.device, dtype=self.clip_model.dtype), labels.to(self.device) + image_features = F.normalize(image_features, dim=-1) + if self.args.train_only_current_prompts and self.current_task > 0: + with torch.no_grad(): + past_keys = self.compute_keys(0, offset_1, image_features) + cur_keys = self.compute_keys(offset_1, offset_2, image_features) + text_features = torch.cat((past_keys.detach(), cur_keys), dim=0) + else: + text_features = self.compute_keys(0, offset_2, image_features) + + text_features = F.normalize(text_features, dim=-1) + + if self.args.generated_context and self.args.cocoop: + text_features = text_features.reshape(image_features.shape[0], -1, text_features.shape[-1]) + image_features = image_features.unsqueeze(1) + clip_logits = (text_features * image_features).sum(-1) + else: + clip_logits = torch.einsum('bd,cd->bc', image_features, text_features) + clip_logits = clip_logits * self.clip_logit_scale.exp() + loss = F.cross_entropy(clip_logits, labels) + + wandb_log = {'alignment_loss_ce': loss.item()} + + if self.args.align_with_ortholoss and not self.args.generated_context: + ortho_loss = self.compute_ortho_loss() + loss += self.args.lambda_ortho_coop * ortho_loss + wandb_log['alignment_loss_ortho'] = ortho_loss.item() + + wandb_log['alignment_loss'] = loss.item() + if wandb.run: + wandb.log(wandb_log) + + loss.backward() + optim.step() + + def align(self) -> None: + """Trains the alignment task for the current task.""" + offset_1, offset_2 = self.seq_dataset.get_offsets(self.current_task) + if not self.args.train_only_current_prompts: + offset_1 = 0 + + if self.args.generated_context: + parameters = self.context_generator.parameters() + elif self.args.combo_context: + parameters = [getattr(self, f'prompt_parameters_{i}') for i in range(offset_1, offset_2)] + parameters += self.context_generator.parameters() + elif self.args.general_context == 0: + parameters = [getattr(self, f'prompt_parameters_{i}') for i in range(offset_1, offset_2)] + else: + parameters = [self.prompt_parameters] + + if self.args.optim_alignment == 'sgd': + optim = torch.optim.SGD(lr=self.args.learning_rate_alignment, params=parameters, momentum=0.0, weight_decay=0.0) + elif self.args.optim_alignment == 'adam': + optim = torch.optim.Adam(lr=self.args.learning_rate_alignment, params=parameters, weight_decay=0.0) + elif self.args.optim_alignment == 'adamw': + optim = torch.optim.AdamW(lr=self.args.learning_rate_alignment, params=parameters, weight_decay=self.args.optim_alignment_wd) + else: + raise ValueError(f'Invalid optimizer: {self.args.optim_alignment}') + + for _ in trange(self.args.num_epochs_alignment, desc=f'Alignment Task {self.current_task}', unit='epoch'): + self.train_alignment_epoch(optim) + + @torch.no_grad() + def update_statistics(self, dataset: ContinualDataset) -> None: + """Fit the distributions to the features of the current task. + + Args: + dataset (ContinualDataset): The dataset to use for updating the statistics. + """ + offset_1, offset_2 = dataset.get_offsets(self.current_task) + + features_dict = {i: [] for i in range(offset_1, offset_2)} + + was_training = self.training + self.eval() + + Path('./cache').mkdir(parents=True, exist_ok=True) + backbone = self.args.backbone.replace('/', '_') + cache_path = Path(f'./cache/{dataset.NAME}_{self.current_task}_{backbone}_features.pt') + if dataset.args.seed is not None: + cache_path = Path(f'./cache/{dataset.NAME}_{self.current_task}_seed_{dataset.args.seed}_{backbone}_features.pt') + + if cache_path.exists(): + features_dict = torch.load(cache_path) + print(f'Loaded cached features from {cache_path}') + else: + with tqdm(total=len(dataset.train_loader), desc='Updating statistics for first stage Generative Replay') as pbar: + for i, data in enumerate(dataset.train_loader): + if self.args.debug_mode == 1 and i > 3 and min([len(v) for v in features_dict.values()]) > self.args.gr_mog_n_components: + break + inputs, labels = data[0], data[1] + inputs, labels = inputs.to(self.device), labels.to(self.device).long() + + clip_query = self.get_query(inputs) + + for class_idx in labels.unique(): + features_dict[int(class_idx)].append(clip_query[labels == class_idx]) + + pbar.update(1) + if not self.args.debug_mode: + torch.save(features_dict, cache_path) + + for class_idx in range(offset_1, offset_2): + features_class_idx = torch.cat(features_dict[class_idx], dim=0) + self.distributions[class_idx].fit(features_class_idx.to(self.device)) + + if was_training: + self.train() + + def compute_keys(self, start: int, end: int, image_embeds=None): + prefix = self.token_prefix[start:end] + suffix = self.token_suffix[start:end] + tokenized_prompts = self.tokenized_prompts[start:end] + if self.args.generated_context: + if self.args.cocoop: + ctx = self.context_generator(image_embeds).unsqueeze(1).unsqueeze(1).expand(-1, end - start, -1, -1).reshape(-1, 1, image_embeds.shape[-1]) + prefix = prefix.unsqueeze(0).expand(image_embeds.shape[0], -1, -1, -1).reshape(-1, prefix.shape[1], prefix.shape[2]) + suffix = suffix.unsqueeze(0).expand(image_embeds.shape[0], -1, -1, -1).reshape(-1, suffix.shape[1], suffix.shape[2]) + tokenized_prompts = tokenized_prompts.unsqueeze(0).expand(image_embeds.shape[0], -1, -1).reshape(-1, self.tokenized_prompts.shape[-1]) + else: + ctx = self.context_generator(self.just_text_features[start:end]).unsqueeze(1) + elif self.args.combo_context: + ctx = torch.cat([getattr(self, f'prompt_parameters_{i}') for i in range(start, end)], dim=0) + ctx = torch.cat([ctx, self.context_generator(self.just_text_features[start:end]).unsqueeze(1)], dim=1) + elif self.args.general_context == 0: + ctx = torch.cat([getattr(self, f'prompt_parameters_{i}') for i in range(start, end)], dim=0) + else: + ctx = self.prompt_parameters.unsqueeze(0).expand(end - start, -1, -1) + prompts = torch.cat((prefix, ctx, suffix), dim=1) + keys = self.text_encoder(prompts.to(self.clip_model.dtype), tokenized_prompts) + keys = F.normalize(keys, dim=-1) + return keys + + def get_keys(self, train: bool = True, image_embeds: Optional[torch.Tensor] = None) -> torch.Tensor: + task_id = self.current_task if train else self.current_task - 1 + offset_1, offset_2 = self.seq_dataset.get_offsets(task_id) + if train and self.current_task > 0: + with torch.no_grad(): + past_keys = self.compute_keys(0, offset_1, image_embeds) + cur_keys = self.compute_keys(offset_1, offset_2, image_embeds) + keys = torch.cat((past_keys.detach(), cur_keys), dim=0) + else: + keys = self.compute_keys(0, offset_2, image_embeds) + return keys + + def setup_text_prompting(self) -> None: + """Setup the text prompting for the model.""" + self.text_encoder = TextEncoder(self.clip_model) + + text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in self.class_names]).to(self.device) + with torch.no_grad(): + self.just_text_tokens = self.clip_model.token_embedding(text_inputs) + self.just_text_features = self.clip_model.encode_text(text_inputs) + + if self.args.generated_context or self.args.combo_context: + in_dim = self.just_text_features.shape[-1] + out_dim = self.clip_model.token_embedding.weight.shape[1] + self.context_generator = torch.nn.Sequential( + torch.nn.Linear(in_dim, in_dim), + torch.nn.BatchNorm1d(in_dim), + torch.nn.SELU(True), + torch.nn.Linear(in_dim, in_dim), + torch.nn.BatchNorm1d(in_dim), + torch.nn.SELU(True), + torch.nn.Linear(in_dim, out_dim), + torch.nn.BatchNorm1d(out_dim), + torch.nn.SELU(True), + torch.nn.Linear(out_dim, out_dim), + ).to(self.device) + + n_ctx = max(self.args.n_context, 1) + if self.args.combo_context: + n_ctx += 1 + prefix = " ".join(["X"] * n_ctx) + text_prompts = [prefix + " " + name + "." for name in self.class_names] + tokenized_prompts = torch.cat([clip.tokenize(p) for p in text_prompts], dim=0).to(self.device) + self.tokenized_prompts = tokenized_prompts + + with torch.no_grad(): + embedding = self.clip_model.token_embedding(tokenized_prompts).type(self.clip_model.dtype) + self.register_buffer("token_prefix", embedding[:, :1, :]) # SOS + self.register_buffer("token_suffix", embedding[:, 1 + n_ctx:, :]) # CLS, EOS + + if not self.args.generated_context: + if not self.args.general_context: + for i in range(self.num_classes): + prompt_parameter = torch.empty(1, self.args.n_context, self.clip_model.token_embedding.weight.shape[1], device=self.device, dtype=torch.float32) + torch.nn.init.normal_(prompt_parameter, std=0.02) + self.register_parameter(f"prompt_parameters_{i}", torch.nn.Parameter(prompt_parameter)) + else: + prompt_parameter = torch.empty(self.args.n_context, self.clip_model.token_embedding.weight.shape[1], device=self.device, dtype=torch.float32) + torch.nn.init.normal_(prompt_parameter, std=0.02) + self.prompt_parameters = torch.nn.Parameter(prompt_parameter) + + @torch.no_grad() + def get_query(self, x: torch.Tensor) -> torch.Tensor: + return self.clip_model.encode_image(x) + + def get_clip_logits(self, clip_out: torch.Tensor, keys: torch.Tensor) -> torch.Tensor: + image_features = F.normalize(clip_out, dim=-1) + if self.args.generated_context and self.args.cocoop: + keys = keys.reshape(image_features.shape[0], -1, keys.shape[-1]) + image_features = image_features.unsqueeze(1) + clip_logits = (keys * image_features).sum(-1) + else: + clip_logits = torch.einsum('bd,cd->bc', image_features, keys) + clip_logits = clip_logits * self.clip_logit_scale.exp() + return clip_logits diff --git a/models/cgil_utils/diffusion.py b/models/cgil_utils/diffusion.py new file mode 100644 index 00000000..2aed193e --- /dev/null +++ b/models/cgil_utils/diffusion.py @@ -0,0 +1,195 @@ +import math +from dataclasses import dataclass + +import torch +import tqdm + + +@dataclass +class NoiseSchedule: + num_steps: int + beta_t: torch.Tensor + alpha_t: torch.Tensor + alpha_bar_t: torch.Tensor + img_weight: torch.Tensor + noise_weight: torch.Tensor + + def init( + self, + num_steps: int, + beta_t: torch.Tensor, + alpha_t: torch.Tensor, + alpha_bar_t: torch.Tensor, + img_weight: torch.Tensor, + noise_weight: torch.Tensor, + ) -> None: + self.num_steps = num_steps + self.beta_t = beta_t + self.alpha_t = alpha_t + self.alpha_bar_t = alpha_bar_t + self.img_weight = img_weight + self.noise_weight = noise_weight + + def to(self, device: torch.device): + self.beta_t = self.beta_t.to(device) + self.alpha_t = self.alpha_t.to(device) + self.alpha_bar_t = self.alpha_bar_t.to(device) + self.img_weight = self.img_weight.to(device) + self.noise_weight = self.noise_weight.to(device) + return self + + +def get_cosine_schedule(num_steps: int, s: float = 0, exp: int = 2): + alpha_bar_t = torch.cos( + (torch.linspace(1, num_steps, steps=num_steps) / num_steps + s) + / (1 + s) + * math.pi + / 2 + ).pow(exp) + beta_t = 1 - alpha_bar_t / (alpha_bar_t.roll(1)) + beta_t[0] = max(2 * beta_t[1] - beta_t[2], 0) + alpha_t = 1 - beta_t + img_weight = torch.sqrt(alpha_bar_t) + noise_weight = torch.sqrt(1 - alpha_bar_t) + return NoiseSchedule( + num_steps, beta_t, alpha_t, alpha_bar_t, img_weight, noise_weight + ) + + +def sinusoidal_embedding( + index: torch.Tensor, + embedding_dim: int, + num_training_steps: int, + device: torch.device, +) -> torch.Tensor: + assert len(index.shape) == 1 + + half_dim = embedding_dim // 2 + emb = math.log(num_training_steps) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=torch.float32, device=device) * -emb) + emb = index.unsqueeze(1) * emb.unsqueeze(0).to(device) + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + return emb + + +class MLPDiffusion(torch.nn.Module): + def __init__(self, embed_dim, hidden_dim, num_hidden, num_steps, device) -> None: + super().__init__() + self.silu = torch.nn.SiLU() + + self.fc_input = torch.nn.Linear(embed_dim, hidden_dim) + self.hidden_layers = torch.nn.ModuleList( + [torch.nn.Linear(hidden_dim, hidden_dim) for _ in range(num_hidden)] + ) + self.fc_output = torch.nn.Linear(hidden_dim, embed_dim) + self.fc_emb1 = torch.nn.Linear(hidden_dim, hidden_dim) + self.fc_emb2 = torch.nn.Linear(hidden_dim, hidden_dim) + + self.num_steps = num_steps + self.device = device + self.hidden_dim = hidden_dim + + def forward(self, x, timestep): + t_emb = sinusoidal_embedding(timestep, self.hidden_dim, self.num_steps, self.device) + t_emb = self.silu(self.fc_emb1(t_emb)) + t_emb = self.fc_emb2(t_emb) + + x = self.silu(self.fc_input(x)) + for layer in self.hidden_layers: + x = self.silu(layer(x) + t_emb) + return self.fc_output(x) + + +class DiffusionCA(torch.nn.Module): + + @staticmethod + def q_function(x, schedule, timestep=None): + if timestep is None: + timestep = torch.randint(low=0, high=schedule.num_steps, size=(x.shape[0],)) + + noise = torch.randn_like(x) * torch.randn_like(x) + + noise_weight = schedule.noise_weight[timestep].reshape(-1, 1) + img_weight = schedule.img_weight[timestep].reshape(-1, 1) + + return x * img_weight + noise * noise_weight, noise, timestep + + def __init__(self, embed_dim, device, hidden_dim=256, num_hidden=1, diffusion_steps=32, greediness=2e-3, target="img", lr=1e-3, n_iters=1000, class_idx=0): + super().__init__() + self.n_iters = n_iters + self.lr = lr + self.class_idx = class_idx + self.embed_dim = embed_dim + self.hidden_dim = hidden_dim + self.device = device + self.schedule = get_cosine_schedule(diffusion_steps).to(device) + self.net = MLPDiffusion(embed_dim, hidden_dim, num_hidden, self.schedule.num_steps, device) + self.net = self.net.to(device) + self.signal_to_noise_ratio = torch.log(self.schedule.img_weight / self.schedule.noise_weight).clamp(1) + self.pred_weight = torch.linspace(1, 1 + greediness, steps=self.schedule.num_steps).to(device) + self.target = target + self.optimizer = torch.optim.AdamW(self.net.parameters(), lr=lr, weight_decay=1e-2) + + @torch.enable_grad() + def fit(self, x): + self.min = torch.min(x, dim=0).values + self.max = torch.max(x, dim=0).values + x = (x - self.min) / (self.max - self.min) + + self.mu = torch.mean(x, dim=0) + self.std = torch.std(x, dim=0) + x = (x - self.mu) / self.std + + ds = torch.utils.data.TensorDataset(x) + self.train() + loader = torch.utils.data.DataLoader(ds, batch_size=64, shuffle=True, num_workers=0, drop_last=False) + iters = 0 + with tqdm.trange(self.n_iters, desc=f"Training Diffusion [{self.class_idx}]") as pbar: + for epoch in pbar: + for data in loader: + self.optimizer.zero_grad() + inputs = data[0] + noisy_inputs, noise, timestep = self.q_function(inputs, self.schedule) + outputs = self.net(noisy_inputs, timestep.to(self.device) + 1) + if self.target == "noise": + loss = torch.mean((outputs - noise) ** 2) + else: + loss = (self.signal_to_noise_ratio[timestep] * torch.mean((outputs - inputs) ** 2, -1)).mean() + + loss.backward() + self.optimizer.step() + pbar.set_postfix(loss=loss.item()) + iters += 1 + if iters >= self.n_iters: + break + if iters >= self.n_iters: + break + pbar.update(1) + self.eval() + + def sample(self, n_sample, resample_period=1): + x = torch.randn(n_sample, self.embed_dim).to(self.device) + noise = torch.randn_like(x) + if self.target == "noise": + for i in reversed(range(self.schedule.num_steps)): + out = self.net(x, torch.tensor([i + 1]).to(self.device)) + x -= self.schedule.beta_t[i] / torch.sqrt(1 - self.schedule.alpha_bar_t[i]) * out + if i > 0: + x += noise * torch.sqrt(self.schedule.beta_t[i]) + else: + for i in reversed(range(self.schedule.num_steps)): + if i % resample_period == 0: + noise = torch.randn_like(x) + x = self.net(x, torch.tensor([i + 1]).to(self.device)) + if i > 0: + x = x * self.schedule.img_weight[i - 1] + noise * self.schedule.noise_weight[i - 1] + + x = x * self.std + self.mu + x = x * (self.max - self.min) + self.min + return x + + def forward(self, n_sample): + return self.sample(n_sample) diff --git a/models/cgil_utils/generative_replay.py b/models/cgil_utils/generative_replay.py new file mode 100644 index 00000000..c4ca8420 --- /dev/null +++ b/models/cgil_utils/generative_replay.py @@ -0,0 +1,560 @@ +from math import pi + +import numpy as np +import torch + + +class FeaturesDataset(torch.utils.data.Dataset): + + def __init__(self, X, y): + self.X, self.y = X, y + + def __getitem__(self, idx): + return self.X[idx], self.y[idx] + + def __len__(self): + return len(self.X) + + +class Gaussian(torch.nn.Module): + + def __init__(self, embed_dim): + super(Gaussian, self).__init__() + self.embed_dim = embed_dim + self.register_buffer("mean", torch.zeros(embed_dim)) + self.register_buffer("std", torch.ones(embed_dim)) + + def fit(self, x): + self.std, self.mean = torch.std_mean(x, dim=0) + + def sample(self, n_sample, scale_mean): + return torch.distributions.normal.Normal(scale_mean * self.mean, self.std).sample((n_sample,)) + + def forward(self, n_sample, scale_mean: float = 1.0): + return self.sample(n_sample, scale_mean) + + +class MixtureOfGaussiansModel(torch.nn.Module): + + def __init__(self, embed_dim, n_components: int = 3, n_iters: int = 100): + super().__init__() + self.n_iters = n_iters + self.gm = GaussianMixture(n_components, embed_dim, covariance_type='diag') + + def fit(self, x): + self.gm.fit(x, n_iter=self.n_iters) + + def sample(self, n_sample): + return self.gm.sample(n_sample)[0] + + def forward(self, n_sample): + return self.sample(n_sample) + + +def calculate_matmul_n_times(n_components, mat_a, mat_b): + """ + Calculate matrix product of two matrics with mat_a[0] >= mat_b[0]. + Bypasses torch.matmul to reduce memory footprint. + args: + mat_a: torch.Tensor (n, k, 1, d) + mat_b: torch.Tensor (1, k, d, d) + """ + res = torch.zeros(mat_a.shape).to(mat_a.device) + + for i in range(n_components): + mat_a_i = mat_a[:, i, :, :].squeeze(-2) + mat_b_i = mat_b[0, i, :, :].squeeze() + res[:, i, :, :] = mat_a_i.mm(mat_b_i).unsqueeze(1) + + return res + + +def calculate_matmul(mat_a, mat_b): + """ + Calculate matrix product of two matrics with mat_a[0] >= mat_b[0]. + Bypasses torch.matmul to reduce memory footprint. + args: + mat_a: torch.Tensor (n, k, 1, d) + mat_b: torch.Tensor (n, k, d, 1) + """ + assert mat_a.shape[-2] == 1 and mat_b.shape[-1] == 1 + return torch.sum(mat_a.squeeze(-2) * mat_b.squeeze(-1), dim=2, keepdim=True) + + +class GaussianMixture(torch.nn.Module): + """ + Fits a mixture of k=1,..,K Gaussians to the input data (K is supplied via n_components). + Input tensors are expected to be flat with dimensions (n: number of samples, d: number of features). + The model then extends them to (n, 1, d). + The model parametrization (mu, sigma) is stored as (1, k, d), + probabilities are shaped (n, k, 1) if they relate to an individual sample, + or (1, k, 1) if they assign membership probabilities to one of the mixture components. + """ + + def __init__(self, n_components, n_features, covariance_type="full", eps=1.e-6, init_params="kmeans", mu_init=None, + var_init=None): + """ + Initializes the model and brings all tensors into their required shape. + The class expects data to be fed as a flat tensor in (n, d). + The class owns: + x: torch.Tensor (n, 1, d) + mu: torch.Tensor (1, k, d) + var: torch.Tensor (1, k, d) or (1, k, d, d) + pi: torch.Tensor (1, k, 1) + covariance_type: str + eps: float + init_params: str + log_likelihood: float + n_components: int + n_features: int + args: + n_components: int + n_features: int + options: + mu_init: torch.Tensor (1, k, d) + var_init: torch.Tensor (1, k, d) or (1, k, d, d) + covariance_type: str + eps: float + init_params: str + """ + super(GaussianMixture, self).__init__() + + self.n_components = n_components + self.n_features = n_features + + self.mu_init = mu_init + self.var_init = var_init + self.eps = eps + + self.log_likelihood = -np.inf + + self.covariance_type = covariance_type + self.init_params = init_params + + assert self.covariance_type in ("full", "diag") + assert self.init_params in ("kmeans", "random") + + self._init_params() + + def _init_params(self): + if self.mu_init is not None: + assert self.mu_init.size() == (1, self.n_components, + self.n_features), "Input mu_init does not have required tensor dimensions (1, %i, %i)" % ( + self.n_components, self.n_features) + # (1, k, d) + self.mu = torch.nn.Parameter(self.mu_init, requires_grad=False) + else: + self.mu = torch.nn.Parameter(torch.randn(1, self.n_components, self.n_features), requires_grad=False) + + if self.covariance_type == "diag": + if self.var_init is not None: + # (1, k, d) + assert self.var_init.size() == (1, self.n_components, + self.n_features), "Input var_init does not have required tensor dimensions (1, %i, %i)" % ( + self.n_components, self.n_features) + self.var = torch.nn.Parameter(self.var_init, requires_grad=False) + else: + self.var = torch.nn.Parameter(torch.ones(1, self.n_components, self.n_features), requires_grad=False) + elif self.covariance_type == "full": + if self.var_init is not None: + # (1, k, d, d) + assert self.var_init.size() == (1, self.n_components, self.n_features, + self.n_features), "Input var_init does not have required tensor dimensions (1, %i, %i, %i)" % ( + self.n_components, self.n_features, self.n_features) + self.var = torch.nn.Parameter(self.var_init, requires_grad=False) + else: + self.var = torch.nn.Parameter( + torch.eye(self.n_features).reshape(1, 1, self.n_features, self.n_features).repeat(1, + self.n_components, + 1, 1), + requires_grad=False + ) + + # (1, k, 1) + self.pi = torch.nn.Parameter(torch.Tensor(1, self.n_components, 1), requires_grad=False).fill_( + 1. / self.n_components) + self.params_fitted = False + + def check_size(self, x): + if len(x.size()) == 2: + # (n, d) --> (n, 1, d) + x = x.unsqueeze(1) + + return x + + def bic(self, x): + """ + Bayesian information criterion for a batch of samples. + args: + x: torch.Tensor (n, d) or (n, 1, d) + returns: + bic: float + """ + x = self.check_size(x) + n = x.shape[0] + + # Free parameters for covariance, means and mixture components + free_params = self.n_features * self.n_components + self.n_features + self.n_components - 1 + + bic = -2. * self.__score(x, as_average=False).mean() * n + free_params * np.log(n) + + return bic + + def fit(self, x, delta=1e-3, n_iter=100, warm_start=False): + """ + Fits model to the data. + args: + x: torch.Tensor (n, d) or (n, k, d) + options: + delta: float + n_iter: int + warm_start: bool + """ + if not warm_start and self.params_fitted: + self._init_params() + + x = self.check_size(x) + + if self.init_params == "kmeans" and self.mu_init is None: + mu = self.get_kmeans_mu(x, n_centers=self.n_components) + self.mu.data = mu + + i = 0 + j = np.inf + + while (i <= n_iter) and (j >= delta): + + log_likelihood_old = self.log_likelihood + mu_old = self.mu + var_old = self.var + + self.__em(x) + self.log_likelihood = self.__score(x) + + if torch.isinf(self.log_likelihood.abs()) or torch.isnan(self.log_likelihood): + device = self.mu.device + # When the log-likelihood assumes unbound values, reinitialize model + self.__init__(self.n_components, + self.n_features, + covariance_type=self.covariance_type, + mu_init=self.mu_init, + var_init=self.var_init, + eps=self.eps) + for p in self.parameters(): + p.data = p.data.to(device) + if self.init_params == "kmeans": + self.mu.data, = self.get_kmeans_mu(x, n_centers=self.n_components) + + i += 1 + j = self.log_likelihood - log_likelihood_old + + if j <= delta: + # When score decreases, revert to old parameters + self.__update_mu(mu_old) + self.__update_var(var_old) + + self.params_fitted = True + + def predict(self, x, probs=False): + """ + Assigns input data to one of the mixture components by evaluating the likelihood under each. + If probs=True returns normalized probabilities of class membership. + args: + x: torch.Tensor (n, d) or (n, 1, d) + probs: bool + returns: + p_k: torch.Tensor (n, k) + (or) + y: torch.LongTensor (n) + """ + x = self.check_size(x) + + weighted_log_prob = self._estimate_log_prob(x) + torch.log(self.pi) + + if probs: + p_k = torch.exp(weighted_log_prob) + return torch.squeeze(p_k / (p_k.sum(1, keepdim=True))) + else: + return torch.squeeze(torch.max(weighted_log_prob, 1)[1].type(torch.LongTensor)) + + def predict_proba(self, x): + """ + Returns normalized probabilities of class membership. + args: + x: torch.Tensor (n, d) or (n, 1, d) + returns: + y: torch.LongTensor (n) + """ + return self.predict(x, probs=True) + + def sample(self, n): + """ + Samples from the model. + args: + n: int + returns: + x: torch.Tensor (n, d) + y: torch.Tensor (n) + """ + counts = torch.distributions.multinomial.Multinomial(total_count=n, probs=self.pi.squeeze()).sample() + x = torch.empty(0, device=counts.device) + y = torch.cat([torch.full([int(sample)], j, device=counts.device) for j, sample in enumerate(counts)]) + + # Only iterate over components with non-zero counts + for k in torch.arange(self.n_components, device=counts.device)[counts > 0]: + if self.covariance_type == "diag": + x_k = self.mu[0, k] + torch.randn(int(counts[k]), self.n_features, device=x.device) * torch.sqrt( + self.var[0, k]) + elif self.covariance_type == "full": + d_k = torch.distributions.multivariate_normal.MultivariateNormal(self.mu[0, k], self.var[0, k]) + x_k = torch.stack([d_k.sample() for _ in range(int(counts[k]))]) + + x = torch.cat((x, x_k), dim=0) + + return x, y + + def score_samples(self, x): + """ + Computes log-likelihood of samples under the current model. + args: + x: torch.Tensor (n, d) or (n, 1, d) + returns: + score: torch.LongTensor (n) + """ + x = self.check_size(x) + + score = self.__score(x, as_average=False) + return score + + def _estimate_log_prob(self, x): + """ + Returns a tensor with dimensions (n, k, 1), which indicates the log-likelihood that samples belong to the k-th Gaussian. + args: + x: torch.Tensor (n, d) or (n, 1, d) + returns: + log_prob: torch.Tensor (n, k, 1) + """ + x = self.check_size(x) + + if self.covariance_type == "full": + mu = self.mu + var = self.var + + precision = torch.inverse(var) + d = x.shape[-1] + + log_2pi = d * np.log(2. * pi) + + log_det = self._calculate_log_det(precision) + + x_mu_T = (x - mu).unsqueeze(-2) + x_mu = (x - mu).unsqueeze(-1) + + x_mu_T_precision = calculate_matmul_n_times(self.n_components, x_mu_T, precision) + x_mu_T_precision_x_mu = calculate_matmul(x_mu_T_precision, x_mu) + + return -.5 * (log_2pi - log_det + x_mu_T_precision_x_mu) + + elif self.covariance_type == "diag": + mu = self.mu + prec = torch.rsqrt(self.var) + + log_p = torch.sum((mu * mu + x * x - 2 * x * mu) * prec, dim=2, keepdim=True) + log_det = torch.sum(torch.log(prec), dim=2, keepdim=True) + + return -.5 * (self.n_features * np.log(2. * pi) + log_p - log_det) + + def _calculate_log_det(self, var): + """ + Calculate log determinant in log space, to prevent overflow errors. + args: + var: torch.Tensor (1, k, d, d) + """ + log_det = torch.empty(size=(self.n_components,)).to(var.device) + + for k in range(self.n_components): + log_det[k] = 2 * torch.log(torch.diagonal(torch.linalg.cholesky(var[0, k]))).sum() + + return log_det.unsqueeze(-1) + + def _e_step(self, x): + """ + Computes log-responses that indicate the (logarithmic) posterior belief (sometimes called responsibilities) that a data point was generated by one of the k mixture components. + Also returns the mean of the mean of the logarithms of the probabilities (as is done in sklearn). + This is the so-called expectation step of the EM-algorithm. + args: + x: torch.Tensor (n, d) or (n, 1, d) + returns: + log_prob_norm: torch.Tensor (1) + log_resp: torch.Tensor (n, k, 1) + """ + x = self.check_size(x) + + weighted_log_prob = self._estimate_log_prob(x) + torch.log(self.pi) + + log_prob_norm = torch.logsumexp(weighted_log_prob, dim=1, keepdim=True) + log_resp = weighted_log_prob - log_prob_norm + + return torch.mean(log_prob_norm), log_resp + + def _m_step(self, x, log_resp): + """ + From the log-probabilities, computes new parameters pi, mu, var (that maximize the log-likelihood). This is the maximization step of the EM-algorithm. + args: + x: torch.Tensor (n, d) or (n, 1, d) + log_resp: torch.Tensor (n, k, 1) + returns: + pi: torch.Tensor (1, k, 1) + mu: torch.Tensor (1, k, d) + var: torch.Tensor (1, k, d) + """ + x = self.check_size(x) + + resp = torch.exp(log_resp) + + pi = torch.sum(resp, dim=0, keepdim=True) + self.eps + mu = torch.sum(resp * x, dim=0, keepdim=True) / pi + + if self.covariance_type == "full": + eps = (torch.eye(self.n_features) * self.eps).to(x.device) + var = torch.sum((x - mu).unsqueeze(-1).matmul((x - mu).unsqueeze(-2)) * resp.unsqueeze(-1), dim=0, + keepdim=True) / torch.sum(resp, dim=0, keepdim=True).unsqueeze(-1) + eps + + elif self.covariance_type == "diag": + x2 = (resp * x * x).sum(0, keepdim=True) / pi + mu2 = mu * mu + xmu = (resp * mu * x).sum(0, keepdim=True) / pi + var = x2 - 2 * xmu + mu2 + self.eps + + pi = pi / x.shape[0] + + return pi, mu, var + + def __em(self, x): + """ + Performs one iteration of the expectation-maximization algorithm by calling the respective subroutines. + args: + x: torch.Tensor (n, 1, d) + """ + _, log_resp = self._e_step(x) + pi, mu, var = self._m_step(x, log_resp) + + self.__update_pi(pi) + self.__update_mu(mu) + self.__update_var(var) + + def __score(self, x, as_average=True): + """ + Computes the log-likelihood of the data under the model. + args: + x: torch.Tensor (n, 1, d) + sum_data: bool + returns: + score: torch.Tensor (1) + (or) + per_sample_score: torch.Tensor (n) + + """ + weighted_log_prob = self._estimate_log_prob(x) + torch.log(self.pi) + per_sample_score = torch.logsumexp(weighted_log_prob, dim=1) + + if as_average: + return per_sample_score.mean() + else: + return torch.squeeze(per_sample_score) + + def __update_mu(self, mu): + """ + Updates mean to the provided value. + args: + mu: torch.FloatTensor + """ + assert mu.size() in ((self.n_components, self.n_features), (1, self.n_components, + self.n_features)), "Input mu does not have required tensor dimensions (%i, %i) or (1, %i, %i)" % ( + self.n_components, self.n_features, self.n_components, self.n_features) + + if mu.size() == (self.n_components, self.n_features): + self.mu = mu.unsqueeze(0) + elif mu.size() == (1, self.n_components, self.n_features): + self.mu.data = mu + + def __update_var(self, var): + """ + Updates variance to the provided value. + args: + var: torch.FloatTensor + """ + if self.covariance_type == "full": + assert var.size() in ((self.n_components, self.n_features, self.n_features), ( + 1, self.n_components, self.n_features, + self.n_features)), "Input var does not have required tensor dimensions (%i, %i, %i) or (1, %i, %i, %i)" % ( + self.n_components, self.n_features, self.n_features, self.n_components, self.n_features, self.n_features) + + if var.size() == (self.n_components, self.n_features, self.n_features): + self.var = var.unsqueeze(0) + elif var.size() == (1, self.n_components, self.n_features, self.n_features): + self.var.data = var + + elif self.covariance_type == "diag": + assert var.size() in ((self.n_components, self.n_features), (1, self.n_components, + self.n_features)), "Input var does not have required tensor dimensions (%i, %i) or (1, %i, %i)" % ( + self.n_components, self.n_features, self.n_components, self.n_features) + + if var.size() == (self.n_components, self.n_features): + self.var = var.unsqueeze(0) + elif var.size() == (1, self.n_components, self.n_features): + self.var.data = var + + def __update_pi(self, pi): + """ + Updates pi to the provided value. + args: + pi: torch.FloatTensor + """ + assert pi.size() == (1, self.n_components, 1), "Input pi does not have required tensor dimensions (%i, %i, %i)" % (1, self.n_components, 1) + + self.pi.data = pi + + def get_kmeans_mu(self, x, n_centers, init_times=50, min_delta=1e-3): + """ + Find an initial value for the mean. Requires a threshold min_delta for the k-means algorithm to stop iterating. + The algorithm is repeated init_times often, after which the best centerpoint is returned. + args: + x: torch.FloatTensor (n, d) or (n, 1, d) + init_times: init + min_delta: int + """ + if len(x.size()) == 3: + x = x.squeeze(1) + x_min, x_max = x.min(), x.max() + x = (x - x_min) / (x_max - x_min) + + min_cost = np.inf + + for i in range(init_times): + center_idxs = torch.from_numpy(np.random.choice(np.arange(x.shape[0]), size=n_centers, replace=False)).to(x.device) + tmp_center = x[center_idxs, ...] + l2_dis = torch.norm((x.unsqueeze(1).repeat(1, n_centers, 1) - tmp_center), p=2, dim=2) + l2_cls = torch.argmin(l2_dis, dim=1) + + cost = 0 + for c in range(n_centers): + cost += torch.norm(x[l2_cls == c] - tmp_center[c], p=2, dim=1).mean() + + if cost < min_cost: + min_cost = cost + center = tmp_center + + delta = np.inf + + while delta > min_delta: + l2_dis = torch.norm((x.unsqueeze(1).repeat(1, n_centers, 1) - center), p=2, dim=2) + l2_cls = torch.argmin(l2_dis, dim=1) + center_old = center.clone() + + for c in range(n_centers): + center[c] = x[l2_cls == c].mean(dim=0) + + delta = torch.norm((center_old - center), dim=1).max() + + return (center.unsqueeze(0) * (x_max - x_min) + x_min) diff --git a/models/cgil_utils/vae.py b/models/cgil_utils/vae.py new file mode 100644 index 00000000..a9662820 --- /dev/null +++ b/models/cgil_utils/vae.py @@ -0,0 +1,178 @@ +from typing import Tuple + +import torch +import torch.nn as nn +import tqdm + +try: + import wandb +except ImportError: + wandb = None + + +class Encoder(nn.Module): + def __init__(self, input_dim, hidden_dim, latent_dim): + ''' + Args: + input_dim: A integer indicating the size of input dimension. + hidden_dim: A integer indicating the size of hidden dimension. + latent_dim: A integer indicating the latent dimension. + ''' + super(Encoder, self).__init__() + self.latent_dim = latent_dim + self.encoder = nn.Sequential( + nn.Linear(input_dim, hidden_dim), + nn.BatchNorm1d(hidden_dim), + nn.LeakyReLU(0.2, inplace=True), + nn.Linear(hidden_dim, hidden_dim), + nn.BatchNorm1d(hidden_dim), + nn.LeakyReLU(0.2, inplace=True), + nn.Linear(hidden_dim, 2 * latent_dim), + ) + + def forward(self, x: torch.Tensor): + hidden = self.encoder(x) + z_mu, z_logvar = hidden[:, :self.latent_dim], hidden[:, self.latent_dim:] + return z_mu, z_logvar + + +class Decoder(nn.Module): + def __init__(self, output_dim: int, hidden_dim: int, latent_dim: int): + ''' + Args: + latent_dim: A integer indicating the latent size. + hidden_dim: A integer indicating the size of hidden dimension. + output_dim: A integer indicating the output dimension. + ''' + super(Decoder, self).__init__() + self.decoder = nn.Sequential( + nn.Linear(latent_dim, hidden_dim), + nn.LeakyReLU(0.2, inplace=True), + nn.Linear(hidden_dim, hidden_dim), + nn.LeakyReLU(0.2, inplace=True), + nn.Linear(hidden_dim, output_dim), + ) + + def forward(self, x: torch.Tensor): + return self.decoder(x) + + +class VariationalAutoEncoderModel(torch.nn.Module): + + def __init__(self, input_dim: int, hidden_dim: int, latent_dim: int, + lr: float, class_idx: int, n_iters: int = 100) -> None: + super().__init__() + self.n_iters = n_iters + self.lr = lr + self.class_idx = class_idx + self.vae = VariationalAutoEncoder(input_dim, hidden_dim, latent_dim, self.n_iters) + + def fit(self, x: torch.Tensor) -> None: + self.vae.fit(x, n_iters=self.n_iters, lr=self.lr, class_idx=self.class_idx) + + def sample(self, n_sample: int) -> torch.Tensor: + return self.vae.sample(n_sample)[0] + + def forward(self, n_sample: int) -> torch.Tensor: + return self.sample(n_sample) + + def reconstruct(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + x = self.vae.normalize(x) + x_rec, z_mu, z_logvar = self.vae(x) + x_rec = self.vae.denormalize(x_rec) + return x_rec, z_mu, z_logvar + + +class VariationalAutoEncoder(nn.Module): + def __init__(self, input_dim: int, hidden_dim: int, latent_dim: int, n_iters: int) -> None: + super().__init__() + self.n_iters = n_iters + self.input_dim = input_dim + self.hidden_dim = hidden_dim + self.latent_dim = latent_dim + self.elbo = ELBO() + self.register_buffer("mu", torch.zeros(input_dim)) + self.register_buffer("std", torch.ones(input_dim)) + self.register_buffer("min", torch.zeros(input_dim)) + self.register_buffer("max", torch.ones(input_dim)) + self.enc = Encoder(input_dim, hidden_dim, latent_dim) + self.dec = Decoder(input_dim, hidden_dim, latent_dim) + + def reparameterization_trick(self, z_mu: torch.Tensor, z_logvar: torch.Tensor) -> torch.Tensor: + return torch.randn_like(z_mu) * torch.exp(z_logvar) + z_mu + + def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + z_mu, z_logvar = self.enc(x) + z_post = self.reparameterization_trick(z_mu, z_logvar) + + return self.dec(z_post), z_mu, z_logvar + + def sample(self, num_samples: int = 1) -> Tuple[torch.Tensor, torch.Tensor]: + device = next(self.parameters()).device + z = torch.randn(num_samples, self.enc.latent_dim, device=device) + + x = self.dec(z) + x = self.denormalize(x) + return x, z + + @torch.enable_grad() + def fit(self, x: torch.Tensor, n_iters: int, lr: float, class_idx: int) -> None: + self.min = torch.min(x, dim=0).values + self.max = torch.max(x, dim=0).values + x = (x - self.min) / (self.max - self.min) + + self.mu = torch.mean(x, dim=0) + self.std = torch.std(x, dim=0) + x = (x - self.mu) / self.std + optimizer = torch.optim.Adam(self.parameters(), lr=lr) + sched = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=n_iters // 10, T_mult=2) + self.train() + loader = torch.utils.data.DataLoader(x, batch_size=64, shuffle=True, num_workers=0, drop_last=False) + with tqdm.trange(n_iters, desc=f"Training VAE [{class_idx}]") as t: + for _ in t: + for batch in loader: + if len(batch) == 1: + continue + optimizer.zero_grad() + predicted, z_mu, z_logvar = self.forward(batch) + loss = self.elbo(batch, predicted, z_mu, z_logvar) / len(batch) + loss.backward() + optimizer.step() + t.set_postfix(loss=loss.item(), lr=optimizer.param_groups[0]['lr']) + sched.step() + self.eval() + + def normalize(self, x: torch.Tensor) -> torch.Tensor: + x = (x - self.min) / (self.max - self.min) + return (x - self.mu) / self.std + + def denormalize(self, x: torch.Tensor) -> torch.Tensor: + x = x * self.std + self.mu + return x * (self.max - self.min) + self.min + + +def gaussian_nll(mu: torch.Tensor, x: torch.Tensor) -> torch.Tensor: + return torch.nn.functional.gaussian_nll_loss(x, mu, torch.ones_like(mu), full=True, reduction='sum') + + +class ELBO(nn.Module): + def __init__(self): + super().__init__() + + def compute_rec_error(self, x: torch.Tensor, x_rec: torch.Tensor): + return gaussian_nll(x_rec, x) + + def compute_kl(self, z_mu: torch.Tensor, z_logvar: torch.Tensor): + return 0.5 * torch.sum(torch.exp(z_logvar) + z_mu**2 - 1.0 - z_logvar) + + def forward(self, x: torch.Tensor, x_rec: torch.Tensor, + z_mu: torch.Tensor, z_logvar: torch.Tensor) -> torch.Tensor: + + recon_loss = self.compute_rec_error(x, x_rec) + + kl_loss = self.compute_kl(z_mu, z_logvar) + + if wandb.run: + wandb.log({"reconstruction loss": recon_loss, "kl loss": kl_loss}) + + return recon_loss + kl_loss diff --git a/models/second_stage_starprompt.py b/models/second_stage_starprompt.py index 9cdf2995..525cac22 100644 --- a/models/second_stage_starprompt.py +++ b/models/second_stage_starprompt.py @@ -136,7 +136,7 @@ def create_features_dataset(self): labels = torch.cat(labels, dim=0).long() return create_seeded_dataloader(self.args, TensorDataset(features, labels), - verbose=False, batch_size=self.args.batch_size_gr, + batch_size=self.args.batch_size_gr, shuffle=True, num_workers=0) def train_alignment_epoch(self, classifier: torch.nn.Module, optim: torch.optim.Optimizer): diff --git a/models/star_prompt_utils/end_to_end_model.py b/models/star_prompt_utils/end_to_end_model.py index 51c67cee..380bf4f8 100644 --- a/models/star_prompt_utils/end_to_end_model.py +++ b/models/star_prompt_utils/end_to_end_model.py @@ -123,7 +123,7 @@ def create_features_dataset(self, current_task: int): labels = torch.cat(labels, dim=0).long() return create_seeded_dataloader(self.args, TensorDataset(features, labels), - verbose=False, batch_size=self.args.batch_size_gr, + batch_size=self.args.batch_size_gr, shuffle=True, num_workers=0) def train_alignment_epoch(self, classifier: torch.nn.Module, optim: torch.optim.Optimizer, n_seen_classes: int, current_task: int, loss_fn): diff --git a/models/star_prompt_utils/first_stage_model.py b/models/star_prompt_utils/first_stage_model.py index d7027175..e7c066e4 100644 --- a/models/star_prompt_utils/first_stage_model.py +++ b/models/star_prompt_utils/first_stage_model.py @@ -89,7 +89,7 @@ def create_features_dataset(self, current_task: int): features = torch.cat(features, dim=0) labels = torch.cat(labels, dim=0).long() - return create_seeded_dataloader(self.args, TensorDataset(features, labels), verbose=False, num_workers=0, batch_size=self.args.batch_size_gr, shuffle=True) + return create_seeded_dataloader(self.args, TensorDataset(features, labels), num_workers=0, batch_size=self.args.batch_size_gr, shuffle=True) def train_alignment_epoch(self, optim: torch.optim.Optimizer, current_task: int, epoch: int = 0): offset_1, offset_2 = self.dataset.get_offsets(current_task) diff --git a/models/starprompt.py b/models/starprompt.py index 9f743e3b..0d9ab003 100644 --- a/models/starprompt.py +++ b/models/starprompt.py @@ -1,19 +1,17 @@ -import torch +import logging from argparse import ArgumentParser -try: - import wandb -except ImportError: - wandb = None +import torch + +from models.star_prompt_utils.end_to_end_model import STARPromptModel +from models.utils.continual_model import ContinualModel +from utils.schedulers import CosineSchedule + try: import clip except ImportError: raise ImportError("Please install the CLIP package by running: pip install git+https://github.com/openai/CLIP.git (requires also `huggingface-hub`)") -from utils.schedulers import CosineSchedule -from models.utils.continual_model import ContinualModel -from models.star_prompt_utils.end_to_end_model import STARPromptModel - class STARPrompt(ContinualModel): NAME = 'starprompt' @@ -90,7 +88,7 @@ def get_parser() -> ArgumentParser: def __init__(self, backbone, loss, args, transform): if not hasattr(args, 'first_stage_epochs') or args.first_stage_epochs is None: - print("INFO: `first_stage_epochs` not set. Setting it to `n_epochs`.") + logging.info("`first_stage_epochs` not set. Setting it to `n_epochs`.") args.first_stage_epochs = args.n_epochs super().__init__(backbone, loss, args, transform) diff --git a/models/utils/future_model.py b/models/utils/future_model.py new file mode 100644 index 00000000..395d17b0 --- /dev/null +++ b/models/utils/future_model.py @@ -0,0 +1,17 @@ +""" This is the base class for all models that support future prediction, i.e., zero-shot prediction. + + It extends the ContinualModel class and adds the future_forward method, which should be implemented by all models that inherit from this class. + Such a method should take an input tensor and return a tensor representing the future prediction. This method is used by the future prediction evaluation protocol. + + The change_transform method is used to update the transformation applied to the input data. This is useful when the model is trained on a dataset and then evaluated on a different dataset. In this case, the transformation should be updated to match the new dataset. +""" + +from .continual_model import ContinualModel + + +class FutureModel(ContinualModel): + def future_forward(self, x): + raise NotImplementedError + + def change_transform(self, dataset): + pass diff --git a/scripts/prepare_grid.py b/scripts/prepare_grid.py index 82f84ad1..e8594489 100644 --- a/scripts/prepare_grid.py +++ b/scripts/prepare_grid.py @@ -43,7 +43,8 @@ for k, v in zip(combos.keys(), c): if v is None: continue -if isinstance(k, if ) for i in range(len(k)): + if isinstance(k, (list, tuple)): + for i in range(len(k)): ll += f" --{k[i]}={v[i]}" else: ll += f" --{k}={v}" diff --git a/scripts/wandb_sync.py b/scripts/wandb_sync.py index 0e59b7ed..15eb06b0 100644 --- a/scripts/wandb_sync.py +++ b/scripts/wandb_sync.py @@ -1,10 +1,11 @@ import argparse -from functools import partial +import logging import os +from functools import partial +from multiprocessing.pool import ThreadPool from pathlib import Path from tqdm import tqdm -from multiprocessing.pool import ThreadPool if 'scripts' in os.path.dirname(os.path.abspath(__file__)): mammoth_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) @@ -58,7 +59,7 @@ def sync_run(run, clean_after=False): print("Limiting to", args.limit, "runs") if args.clean_after: - print("INFO: Cleaning after syncing") + logging.info("Cleaning after syncing") print(len(runlist), "runs to sync") diff --git a/utils/args.py b/utils/args.py index cff91403..60a1c478 100644 --- a/utils/args.py +++ b/utils/args.py @@ -35,7 +35,8 @@ def add_experiment_args(parser: ArgumentParser) -> None: exp_group.add_argument('--lr', type=float, required=True, help='Learning rate.') exp_group.add_argument('--batch_size', type=int, help='Batch size.') exp_group.add_argument('--label_perc', type=float, default=1, help='Percentage in (0-1] of labeled examples per task.') - exp_group.add_argument('--joint', type=int, choices=[0, 1], default=0, help='Train model on Joint (single task)?') + exp_group.add_argument('--joint', type=int, choices=(0, 1), default=0, help='Train model on Joint (single task)?') + exp_group.add_argument('--eval_future', type=int, choices=(0, 1), default=0, help='Evaluate future tasks?') validation_group = parser.add_argument_group('Validation and fitting arguments', 'Arguments used to define the validation strategy and the method used to fit the model.') diff --git a/utils/conf.py b/utils/conf.py index 15600a91..f06fd353 100644 --- a/utils/conf.py +++ b/utils/conf.py @@ -7,12 +7,14 @@ # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. -from functools import partial +import logging import os -import sys import random -import torch +import sys +from functools import partial + import numpy as np +import torch from torch.utils.data import DataLoader @@ -154,7 +156,7 @@ def worker_init_fn(worker_id, num_workers, seed, rank=1): random.seed(worker_seed) -def create_seeded_dataloader(args, dataset, verbose=True, **dataloader_args) -> DataLoader: +def create_seeded_dataloader(args, dataset, **dataloader_args) -> DataLoader: """ Creates a dataloader object from a dataset, setting the seeds for the workers (if `--seed` is set). @@ -171,8 +173,7 @@ def create_seeded_dataloader(args, dataset, verbose=True, **dataloader_args) -> n_cpus = 4 if not hasattr(os, 'sched_getaffinity') else len(os.sched_getaffinity(0)) num_workers = n_cpus if args.num_workers is None else args.num_workers dataloader_args['num_workers'] = num_workers if 'num_workers' not in dataloader_args else dataloader_args['num_workers'] - if verbose: - print(f'INFO: Using {dataloader_args["num_workers"]} workers for the dataloader.') + logging.info(f'Using {dataloader_args["num_workers"]} workers for the dataloader.') if args.seed is not None: worker_generator = torch.Generator() worker_generator.manual_seed(args.seed) diff --git a/utils/loggers.py b/utils/loggers.py index 986eed2e..ac0e7723 100644 --- a/utils/loggers.py +++ b/utils/loggers.py @@ -20,7 +20,7 @@ import wandb -def log_accs(args, logger, accs, t, setting, epoch=None, prefix="RESULT"): +def log_accs(args, logger, accs, t, setting, epoch=None, prefix="RESULT", future=False): """ Logs the accuracy values and other metrics. @@ -35,7 +35,10 @@ def log_accs(args, logger, accs, t, setting, epoch=None, prefix="RESULT"): epoch: The epoch number (optional). prefix: The prefix for the metrics (default="RESULT"). """ - mean_acc = print_mean_accuracy(accs, t + 1 if isinstance(t, (float, int)) else t, setting, joint=args.joint, epoch=epoch) + + mean_acc = print_mean_accuracy(accs, t + 1 if isinstance(t, (float, int)) else t, + setting, joint=args.joint, + epoch=epoch, future=future) if not args.disable_log: logger.log(mean_acc) @@ -43,6 +46,8 @@ def log_accs(args, logger, accs, t, setting, epoch=None, prefix="RESULT"): if not args.nowand: postfix = "" if epoch is None else f"_epoch_{epoch}" + if future: + prefix += "_transf" if isinstance(mean_acc, float): # domain or gcl d2 = {f'{prefix}_domain_mean_accs{postfix}': mean_acc, **{f'{prefix}_domain_acc_{i}{postfix}': a for i, a in enumerate(accs[0])}, @@ -57,7 +62,7 @@ def log_accs(args, logger, accs, t, setting, epoch=None, prefix="RESULT"): def print_mean_accuracy(accs: np.ndarray, task_number: int, - setting: str, joint=False, epoch=None) -> None: + setting: str, joint=False, epoch=None, future=False) -> None: """ Prints the mean accuracy on stderr. @@ -86,6 +91,7 @@ def print_mean_accuracy(accs: np.ndarray, task_number: int, print('\tRaw accuracy values: Class-IL {} | Task-IL {}'.format(accs[0], accs[1]), file=sys.stderr) else: prefix = "Accuracy" if epoch is None else f"Accuracy (epoch {epoch})" + prefix = "Future " + prefix if future else prefix if setting == 'domain-il' or setting == 'general-continual': mean_acc, _ = mean_acc print('{} for {} task(s): [Domain-IL]: {} %'.format(prefix, @@ -96,7 +102,7 @@ def print_mean_accuracy(accs: np.ndarray, task_number: int, print('{} for {} task(s): \t [Class-IL]: {} % \t [Task-IL]: {} %'.format(prefix, task_number, round( mean_acc_class_il, 2), round(mean_acc_task_il, 2)), file=sys.stderr) print('\tRaw accuracy values: Class-IL {} | Task-IL {}'.format(accs[0], accs[1]), file=sys.stderr) - + print('\n', file=sys.stderr) return mean_acc diff --git a/utils/main.py b/utils/main.py index 2adfe559..b8c7c3e5 100644 --- a/utils/main.py +++ b/utils/main.py @@ -16,6 +16,7 @@ # LICENSE file in the root directory of this source tree. # needed (don't change it) +import logging import numpy # noqa import os import sys @@ -150,8 +151,8 @@ def parse_args(): assert 0 < args.label_perc <= 1, "label_perc must be in (0, 1]" if args.validation is not None: - print(f"INFO: Using {args.validation}% of the training set as validation set.", file=sys.stderr) - print(f"INFO: Validation will be computed with mode `{args.validation_mode}`.", file=sys.stderr) + logging.info(f"Using {args.validation}% of the training set as validation set.") + logging.info(f"Validation will be computed with mode `{args.validation_mode}`.") return args @@ -160,6 +161,7 @@ def main(args=None): from models import get_model from datasets import ContinualDataset, get_dataset from utils.training import train + from models.utils.future_model import FutureModel lecun_fix() if args is None: @@ -173,8 +175,8 @@ def main(args=None): if args.code_optimization != 0: torch.set_float32_matmul_precision('high' if args.code_optimization == 1 else 'medium') - print("INFO: code_optimization is set to", args.code_optimization, file=sys.stderr) - print(f"Using {torch.get_float32_matmul_precision()} precision for matmul.", file=sys.stderr) + logging.info("Code_optimization is set to", args.code_optimization) + logging.info(f"Using {torch.get_float32_matmul_precision()} precision for matmul.") if args.code_optimization == 2: if not torch.cuda.is_bf16_supported(): @@ -218,6 +220,7 @@ def main(args=None): loss = dataset.get_loss() model = get_model(args, backbone, loss, dataset.get_transform()) # model = torch.compile(model) + assert isinstance(model, FutureModel) or not args.eval_future, "Model does not support future_forward." if args.distributed == 'dp': if args.batch_size < torch.cuda.device_count(): diff --git a/utils/training.py b/utils/training.py index 9a5c087b..cd08d1ca 100644 --- a/utils/training.py +++ b/utils/training.py @@ -8,9 +8,11 @@ import os import sys from argparse import Namespace +from time import time from typing import Iterable, Tuple import torch +from tqdm import tqdm from datasets import get_dataset from datasets.utils.continual_dataset import ContinualDataset from datasets.utils.gcl_dataset import GCLDataset @@ -19,7 +21,6 @@ from utils.checkpoints import mammoth_load_checkpoint from utils.loggers import * from utils.stats import track_system_stats -from utils.status import ProgressBar try: import wandb @@ -66,6 +67,8 @@ def evaluate(model: ContinualModel, dataset: ContinualDataset, last=False, retur n_classes = dataset.get_offsets()[1] loss_fn = dataset.get_loss() avg_loss = 0 + total_len = sum(len(x) for x in dataset.test_loaders) if hasattr(dataset.test_loaders[0], '__len__') else None + pbar = tqdm(dataset.test_loaders, total=total_len, desc='Evaluating') for k, test_loader in enumerate(dataset.test_loaders): if last and k < len(dataset.test_loaders) - 1: continue @@ -84,7 +87,10 @@ def evaluate(model: ContinualModel, dataset: ContinualDataset, last=False, retur if 'class-il' not in model.COMPATIBILITY and 'general-continual' not in model.COMPATIBILITY: outputs = model(inputs, k) else: - outputs = model(inputs) + if model.args.eval_future and k >= model.current_task: + outputs = model.future_forward(inputs) + else: + outputs = model(inputs) if return_loss: loss = loss_fn(outputs, labels) @@ -94,6 +100,9 @@ def evaluate(model: ContinualModel, dataset: ContinualDataset, last=False, retur correct += torch.sum(pred == labels).item() total += labels.shape[0] i += 1 + pbar.set_postfix({f'acc_task_{k+1}': max(0, correct / total * 100)}) + pbar.set_description(f"Evaluating Task {k+1}") + pbar.update(1) if dataset.SETTING == 'class-il': mask_classes(outputs, dataset, k) @@ -103,6 +112,7 @@ def evaluate(model: ContinualModel, dataset: ContinualDataset, last=False, retur accs.append(correct / total * 100 if 'class-il' in model.COMPATIBILITY or 'general-continual' in model.COMPATIBILITY else 0) accs_mask_classes.append(correct_mask_classes / total * 100) + pbar.close() model.net.train(status) if return_loss: @@ -129,7 +139,6 @@ def initialize_wandb(args: Namespace) -> None: def train_single_epoch(model: ContinualModel, train_loader: Iterable, - progress_bar: ProgressBar, args: Namespace, epoch: int, current_task: int, @@ -142,7 +151,6 @@ def train_single_epoch(model: ContinualModel, Args: model: the model to be trained train_loader: the data loader for the training set - progress_bar: the progress bar for the current epoch args: the arguments from the command line epoch: the current epoch current_task: the current task index @@ -156,6 +164,9 @@ def train_single_epoch(model: ContinualModel, train_iter = iter(train_loader) i = 0 + previous_time = time() + + pbar = tqdm(train_iter, total=data_len, desc=f"Task {current_task + 1} - Epoch {epoch + 1}") while True: try: data = next(train_iter) @@ -163,7 +174,7 @@ def train_single_epoch(model: ContinualModel, break if args.debug_mode and i > model.get_debug_iters(): break - if args.fitting_mode == 'iters' and progress_bar.current_task_iter >= model.args.n_iters: + if args.fitting_mode == 'iters' and model.task_iteration >= model.args.n_iters: break if hasattr(train_loader.dataset, 'logits'): @@ -182,15 +193,18 @@ def train_single_epoch(model: ContinualModel, if args.code_optimization == 0 and 'cuda' in str(args.device): torch.cuda.synchronize() - progress_bar.prog(i, data_len, epoch, current_task, loss) system_tracker() i += 1 + time_diff = time() - previous_time + previous_time = time() + ep_h = 3600 / (data_len * time_diff) if data_len else 'N/A' + pbar.set_postfix({'loss': loss} if ep_h == 'N/A' else {'loss': loss, 'ep/h': ep_h}) + pbar.update() + if scheduler is not None: scheduler.step() - return i - def train(model: ContinualModel, dataset: ContinualDataset, args: Namespace) -> None: @@ -216,6 +230,9 @@ def train(model: ContinualModel, dataset: ContinualDataset, with track_system_stats(logger) as system_tracker: results, results_mask_classes = [], [] + if args.eval_future: + results_transf, results_mask_classes_transf = [], [] + if args.start_from is not None: for i in range(args.start_from): train_loader, _ = dataset.get_data_loaders() @@ -231,8 +248,6 @@ def train(model: ContinualModel, dataset: ContinualDataset, print('Checkpoint Loaded!') - progress_bar = ProgressBar(joint=args.joint, verbose=not args.non_verbose) - if args.enable_other_metrics: dataset_copy = get_dataset(args) for t in range(dataset.N_TASKS): @@ -245,15 +260,25 @@ def train(model: ContinualModel, dataset: ContinualDataset, start_task = 0 if args.start_from is None else args.start_from end_task = dataset.N_TASKS if args.stop_after is None else args.stop_after + if args.eval_future: + eval_dataset = get_dataset(args) + for _ in range(dataset.N_TASKS): + eval_dataset.get_data_loaders() + model.change_transform(eval_dataset) + del eval_dataset.train_loader + else: + eval_dataset = dataset + torch.cuda.empty_cache() for t in range(start_task, end_task): model.net.train() - train_loader, test_loader = dataset.get_data_loaders() + train_loader, _ = dataset.get_data_loaders() + model.meta_begin_task(dataset) if not args.inference_only and args.n_epochs > 0: if t and args.enable_other_metrics: - accs = evaluate(model, dataset, last=True) + accs = evaluate(model, eval_dataset, last=True) results[t - 1] = results[t - 1] + accs[0] if dataset.SETTING == 'class-il': results_mask_classes[t - 1] = results_mask_classes[t - 1] + accs[1] @@ -269,16 +294,16 @@ def train(model: ContinualModel, dataset: ContinualDataset, if not isinstance(dataset, GCLDataset): data_len = len(train_loader) - train_single_epoch(model, train_loader, progress_bar, args, current_task=t, epoch=epoch, + train_single_epoch(model, train_loader, args, current_task=t, epoch=epoch, system_tracker=system_tracker, data_len=data_len, scheduler=scheduler) epoch += 1 if args.fitting_mode == 'epochs' and epoch >= model.args.n_epochs: break - elif args.fitting_mode == 'iters' and progress_bar.current_task_iter >= model.args.n_iters: + elif args.fitting_mode == 'iters' and model.task_iteration >= model.args.n_iters: break elif args.fitting_mode == 'early_stopping' and epoch % args.early_stopping_freq == 0 and epoch > 0: - epoch_accs, _, epoch_loss = evaluate(model, dataset, return_loss=True, last=True) + epoch_accs, _, epoch_loss = evaluate(model, eval_dataset, return_loss=True, last=True) if args.early_stopping_metric == 'accuracy': ea_metric = np.mean(epoch_accs) # Higher accuracy is better @@ -304,20 +329,31 @@ def train(model: ContinualModel, dataset: ContinualDataset, cur_stopping_patience = args.early_stopping_patience if args.eval_epochs is not None and (epoch > 0 or args.eval_epochs == 1) and epoch % args.eval_epochs == 0 and epoch < model.args.n_epochs: - epoch_accs = evaluate(model, dataset) + epoch_accs = evaluate(model, eval_dataset) log_accs(args, logger, epoch_accs, t, dataset.SETTING, epoch=epoch) - progress_bar.reset() - model.meta_end_task(dataset) - accs = evaluate(model, dataset) + accs = evaluate(model, eval_dataset) + + if args.eval_future and t < dataset.N_TASKS - 1: + transf_accs = accs[0][t + 1:], accs[1][t + 1:] + accs = accs[0][:t + 1], accs[1][:t + 1] + results_transf.append(transf_accs[0]) + results_mask_classes_transf.append(transf_accs[1]) + results.append(accs[0]) results_mask_classes.append(accs[1]) log_accs(args, logger, accs, t, dataset.SETTING) + if args.eval_future: + avg_transf = np.mean([np.mean(task_) for task_ in results_transf]) + print(f"Transfer Metrics - AVG Transfer {avg_transf:.2f}") + if t < dataset.N_TASKS - 1: + log_accs(args, logger, transf_accs, t, dataset.SETTING, future=True) + if args.savecheck: save_obj = { 'model': model.state_dict(), @@ -338,8 +374,6 @@ def train(model: ContinualModel, dataset: ContinualDataset, if checkpoint_name is not None: torch.save(save_obj, checkpoint_name) - del progress_bar - if args.validation: # Final evaluation on the real test set print("Starting final evaluation on the real test set...", file=sys.stderr) From 5569c91021489b786ea423b6f4b1e2aae76e215f Mon Sep 17 00:00:00 2001 From: loribonna Date: Wed, 24 Jul 2024 16:35:47 +0200 Subject: [PATCH 61/66] uniformed logging. Update e2e, first, and second stage starprompt. updated docs. --- README.md | 141 ++++++++++++++++-- backbone/vit.py | 2 +- datasets/seq_eurosat_rgb.py | 3 +- datasets/utils/continual_dataset.py | 3 +- docs/how_to_run/starprompt.rst | 48 ++++++ docs/how_to_upgrade/index.rst | 29 ++++ docs/index.rst | 8 + docs/readme.rst | 2 +- docs/utils/args.rst | 12 +- models/coda_prompt.py | 3 +- models/dualprompt.py | 3 +- models/first_stage_starprompt.py | 9 +- models/second_stage_starprompt.py | 6 +- models/star_prompt_utils/end_to_end_model.py | 135 ++++++++++------- models/star_prompt_utils/first_stage_model.py | 8 + .../star_prompt_utils/second_stage_model.py | 5 +- models/starprompt.py | 4 + models/twf.py | 7 +- models/twf_utils/afd.py | 5 +- models/utils/continual_model.py | 7 +- models/utils/lider_model.py | 3 +- scripts/slurm_sbatcher.py | 3 +- utils/conf.py | 20 ++- utils/main.py | 17 ++- 24 files changed, 380 insertions(+), 103 deletions(-) create mode 100644 docs/how_to_run/starprompt.rst create mode 100644 docs/how_to_upgrade/index.rst diff --git a/README.md b/README.md index 18b68cee..affe4d7c 100644 --- a/README.md +++ b/README.md @@ -37,7 +37,7 @@ Join our Discord Server for all your Mammoth-related questions → ![Discord Shi ## Models -Mammoth currently supports **41** models, with new releases covering the main competitors in literature. +Mammoth currently supports **42** models, with new releases covering the main competitors in literature. - Efficient Lifelong Learning with A-GEM (A-GEM, A-GEM-R - A-GEM with reservoir buffer): `agem`, `agem_r` - Bias Correction (BiC): `bic`. @@ -68,6 +68,7 @@ Mammoth currently supports **41** models, with new releases covering the main co - eXtended-DER (X-DER): `xder` (full version), `xder_ce` (X-DER with CE), `xder_rpc` (X-DER with RPC). - AttriCLIP: `attriclip`. - Slow Learner with Classifier Alignment (SLCA): `slca`. +- Continual Generative training for Incremental prompt-Learning (CGIL): `cgil` - Semantic Two-level Additive Residual Prompt (STAR-Prompt): `starprompt`. Also includes the first-stage only (`first_stage_starprompt`) and second-stage only (`second_stage_starprompt`) versions. ## Datasets @@ -134,34 +135,148 @@ Mammoth includes **21** datasets, covering *toy classification problems* (differ ### Our Papers -- Dark Experience for General Continual Learning: a Strong, Simple Baseline (**NeurIPS 2020**) [[paper](https://arxiv.org/abs/2004.07211)] -- Rethinking Experience Replay: a Bag of Tricks for Continual Learning (**ICPR 2020**) [[paper](https://arxiv.org/abs/2010.05595)] [[code](https://github.com/hastings24/rethinking_er)] -- Class-Incremental Continual Learning into the eXtended DER-verse (**TPAMI 2022**) [[paper](https://arxiv.org/abs/2201.00766)] -- Effects of Auxiliary Knowledge on Continual Learning (**ICPR 2022**) [[paper](https://arxiv.org/abs/2206.02577)] -- Transfer without Forgetting (**ECCV 2022**) [[paper](https://arxiv.org/abs/2206.00388)] [[code](https://github.com/mbosc/twf)] (Also available here) -- Continual semi-supervised learning through contrastive interpolation consistency (**PRL 2022**) [[paper](https://arxiv.org/abs/2108.06552)] [[code](https://github.com/aimagelab/CSSL)] (Also available here) -- On the Effectiveness of Lipschitz-Driven Rehearsal in Continual Learning (**NeurIPS 2022**) [[paper](https://arxiv.org/abs/2210.06443)] [[code](https://github.com/aimagelab/lider)] (Also available here) -- Semantic Residual Prompts for Continual Learning (**ECCV 2024**) [[paper](https://arxiv.org/abs/2403.06870)] +

    +
  • Dark Experience for General Continual Learning: a Strong, Simple Baseline (NeurIPS 2020) paper + +
    @inproceedings{buzzega2020dark,
    + author = {Buzzega, Pietro and Boschini, Matteo and Porrello, Angelo and Abati, Davide and Calderara, Simone},
    + booktitle = {Advances in Neural Information Processing Systems},
    + editor = {H. Larochelle and M. Ranzato and R. Hadsell and M. F. Balcan and H. Lin},
    + pages = {15920--15930},
    + publisher = {Curran Associates, Inc.},
    + title = {Dark Experience for General Continual Learning: a Strong, Simple Baseline},
    + volume = {33},
    + year = {2020}
    +}
    + +
    +
  • +
  • Rethinking Experience Replay: a Bag of Tricks for Continual Learning (ICPR 2020) paper code + +
    @inproceedings{buzzega2021rethinking,
    +  title={Rethinking experience replay: a bag of tricks for continual learning},
    +  author={Buzzega, Pietro and Boschini, Matteo and Porrello, Angelo and Calderara, Simone},
    +  booktitle={25th International Conference on Pattern Recognition},
    +  pages={2180--2187},
    +  year={2021},
    +  organization={IEEE}
    +}
    + +
  • +
  • Class-Incremental Continual Learning into the eXtended DER-verse (TPAMI 2022) paper + +
    @article{boschini2022class,
    +  title={Class-Incremental Continual Learning into the eXtended DER-verse},
    +  author={Boschini, Matteo and Bonicelli, Lorenzo and Buzzega, Pietro and Porrello, Angelo and Calderara, Simone},
    +  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
    +  year={2022},
    +  publisher={IEEE}
    +}
    + +
  • +
  • Effects of Auxiliary Knowledge on Continual Learning (ICPR 2022) paper + +
    @inproceedings{bellitto2022effects,
    +  title={Effects of auxiliary knowledge on continual learning},
    +  author={Bellitto, Giovanni and Pennisi, Matteo and Palazzo, Simone and Bonicelli, Lorenzo and Boschini, Matteo and Calderara, Simone},
    +  booktitle={26th International Conference on Pattern Recognition},
    +  pages={1357--1363},
    +  year={2022},
    +  organization={IEEE}
    +}
    + +
  • +
  • Transfer without Forgetting (ECCV 2022) paper code (Also available here) + +
    @inproceedings{boschini2022transfer,
    +  title={Transfer without forgetting},
    +  author={Boschini, Matteo and Bonicelli, Lorenzo and Porrello, Angelo and Bellitto, Giovanni and Pennisi, Matteo and Palazzo, Simone and Spampinato, Concetto and Calderara, Simone},
    +  booktitle={17th European Conference on Computer Vision},
    +  pages={692--709},
    +  year={2022},
    +  organization={Springer}
    +}
    + +
  • +
  • Continual semi-supervised learning through contrastive interpolation consistency (PRL 2022) paper code (Also available here) + +
    @article{boschini2022continual,
    +  title={Continual semi-supervised learning through contrastive interpolation consistency},
    +  author={Boschini, Matteo and Buzzega, Pietro and Bonicelli, Lorenzo and Porrello, Angelo and Calderara, Simone},
    +  journal={Pattern Recognition Letters},
    +  volume={162},
    +  pages={9--14},
    +  year={2022},
    +  publisher={Elsevier}
    +}
    + +
  • +
  • On the Effectiveness of Lipschitz-Driven Rehearsal in Continual Learning (NeurIPS 2022) paper code (Also available here) + +
    @article{bonicelli2022effectiveness,
    +  title={On the effectiveness of lipschitz-driven rehearsal in continual learning},
    +  author={Bonicelli, Lorenzo and Boschini, Matteo and Porrello, Angelo and Spampinato, Concetto and Calderara, Simone},
    +  journal={Advances in Neural Information Processing Systems},
    +  volume={35},
    +  pages={31886--31901},
    +  year={2022}
    +}
    + +
  • +
  • Mask and Compress: Efficient Skeleton-based Action Recognition in Continual Learning (ICPR 2024) paper code + +
    @inproceedings{mosconi2024mask,
    +  title={Mask and Compress: Efficient Skeleton-based Action Recognition in Continual Learning},
    +  author={Mosconi, Matteo and Sorokin, Andriy and Panariello, Aniello and Porrello, Angelo and Bonato, Jacopo and Cotogni, Marco and Sabetta, Luigi and Calderara, Simone and Cucchiara, Rita},
    +  booktitle={International Conference on Pattern Recognition},
    +  year={2024}
    +}
    + +
  • +
  • Semantic Residual Prompts for Continual Learning (ECCV 2024) paper + +
    @inproceedings{menabue2024semantic,
    +  title={Semantic Residual Prompts for Continual Learning},
    +  author={Menabue, Martin and Frascaroli, Emanuele and Boschini, Matteo and Sangineto, Enver and Bonicelli, Lorenzo and Porrello, Angelo and Calderara, Simone},
    +  booktitle={18th European Conference on Computer Vision},
    +  year={202},
    +  organization={Springer}
    +}
    + +
  • +
  • CLIP with Generative Latent Replay: a Strong Baseline for Incremental Learning (BMVC 2024) paper + +
    @inproceedings{heng2022enhancing,
    +  title={CLIP with Generative Latent Replay: a Strong Baseline for Incremental Learning},
    +  author={Frascaroli, Emanuele and Panariello, Aniello and Buzzega, Pietro and Bonicelli, Lorenzo and Porrello, Angelo and Calderara, Simone},
    +  booktitle={35th British Machine Vision Conference},
    +  year={2024}
    +}
    + +
  • + +
### Other Awesome CL works using Mammoth **_Get in touch if we missed your awesome work!_** -- Gradual Divergence for Seamless Adaptation: A Novel Domain Incremental Learning Method (**ICML 2024**) [[paper](https://arxiv.org/abs/2305.04769)] [[code](https://github.com/NeurAI-Lab/DARE)] +- Gradual Divergence for Seamless Adaptation: A Novel Domain Incremental Learning Method (**ICML 2024**) [[paper](https://arxiv.org/abs/2305.04769)] [[code](https://github.com/NeurAI-Lab/DARE)] +- AGILE - Mitigating Interference in Incremental Learning through Attention-Guided Rehearsal (**CoLLAs 2024**) [[paper](https://arxiv.org/abs/2405.13978)] [[code](https://github.com/NeurAI-Lab/AGILE)] - Interactive Continual Learning (ICL) (**CVPR 2024**) [[paper](https://arxiv.org/abs/2403.02628)] [[code](https://github.com/Biqing-Qi/Interactive-continual-Learning-Fast-and-Slow-Thinking)] - Prediction Error-based Classification for Class-Incremental Learning (**ICLR 2024**) [[paper](https://arxiv.org/abs/2305.18806)] [[code](https://github.com/michalzajac-ml/pec)] - TriRE: A Multi-Mechanism Learning Paradigm for Continual Knowledge Retention and Promotion (**NeurIPS 2023**) [[paper](https://arxiv.org/abs/2310.08217)] [[code](https://github.com/NeurAI-Lab/TriRE)] - Overcoming Recency Bias of Normalization Statistics in Continual Learning: Balance and Adaptation (**NeurIPS 2023**) [[paper](https://arxiv.org/abs/2310.08855)] [[code](https://github.com/lvyilin/AdaB2N)] - A Unified and General Framework for Continual Learning (**ICLR 2024**) [[paper](https://arxiv.org/abs/2403.13249)] [[code](https://github.com/joey-wang123/CL-refresh-learning)] -- Decoupling Learning and Remembering: a Bilevel Memory Framework with Knowledge Projection for Task-Incremental Learning (**CVPR 2023**) [[paper](https://openaccess.thecvf.com/content/CVPR 2023/papers/Sun_Decoupling_Learning_and_Remembering_A_Bilevel_Memory_Framework_With_Knowledge_CVPR_2023_paper.pdf)] [[code](https://github.com/SunWenJu123/BMKP)] -- Regularizing Second-Order Influences for Continual Learning (**CVPR 2023**) [[paper](https://openaccess.thecvf.com/content/CVPR 2023/papers/Sun_Regularizing_Second-Order_Influences_for_Continual_Learning_CVPR_2023_paper.pdf)] [[code](https://github.com/feifeiobama/InfluenceCL)] +- Decoupling Learning and Remembering: a Bilevel Memory Framework with Knowledge Projection for Task-Incremental Learning (**CVPR 2023**) [[paper](https://openaccess.thecvf.com/content/CVPR2023/papers/Sun_Decoupling_Learning_and_Remembering_A_Bilevel_Memory_Framework_With_Knowledge_CVPR_2023_paper.pdf)] [[code](https://github.com/SunWenJu123/BMKP)] +- Regularizing Second-Order Influences for Continual Learning (**CVPR 2023**) [[paper](https://openaccess.thecvf.com/content/CVPR2023/papers/Sun_Regularizing_Second-Order_Influences_for_Continual_Learning_CVPR_2023_paper.pdf)] [[code](https://github.com/feifeiobama/InfluenceCL)] - Sparse Coding in a Dual Memory System for Lifelong Learning (**CVPR 2023**) [[paper](https://arxiv.org/abs/2301.05058)] [[code](https://github.com/NeurAI-Lab/SCoMMER)] - A Unified Approach to Domain Incremental Learning with Memory: Theory and Algorithm (**CVPR 2023**) [[paper](https://arxiv.org/abs/2310.12244)] [[code](https://github.com/Wang-ML-Lab/unified-continual-learning)] - A Multi-Head Model for Continual Learning via Out-of-Distribution Replay (**CVPR 2023**) [[paper](https://arxiv.org/abs/2208.09734)] [[code](https://github.com/k-gyuhak/MORE)] - Preserving Linear Separability in Continual Learning by Backward Feature Projection (**CVPR 2023**) [[paper](https://arxiv.org/abs/2303.14595)] [[code](https://github.com/rvl-lab-utoronto/BFP)] - Complementary Calibration: Boosting General Continual Learning With Collaborative Distillation and Self-Supervision (**TIP 2023**) [[paper](https://ieeexplore.ieee.org/document/10002397)] [[code](https://github.com/lijincm/CoCa)] - Continual Learning by Modeling Intra-Class Variation (**TMLR 2023**) [[paper](https://arxiv.org/abs/2210.05398)] [[code](https://github.com/yulonghui/MOCA)] -- ConSlide: Asynchronous Hierarchical Interaction Transformer with Breakup-Reorganize Rehearsal for Continual Whole Slide Image Analysis (**ICCV 2023**) [[paper](https://openaccess.thecvf.com/content/ICCV 2023/papers/Huang_ConSlide_Asynchronous_Hierarchical_Interaction_Transformer_with_Breakup-Reorganize_Rehearsal_for_Continual_ICCV_2023_paper.pdf)] [[code](https://github.com/HKU-MedAI/ConSlide)] +- ConSlide: Asynchronous Hierarchical Interaction Transformer with Breakup-Reorganize Rehearsal for Continual Whole Slide Image Analysis (**ICCV 2023**) [[paper](https://openaccess.thecvf.com/content/ICCV2023/papers/Huang_ConSlide_Asynchronous_Hierarchical_Interaction_Transformer_with_Breakup-Reorganize_Rehearsal_for_Continual_ICCV_2023_paper.pdf)] [[code](https://github.com/HKU-MedAI/ConSlide)] - CBA: Improving Online Continual Learning via Continual Bias Adaptor (**ICCV 2023**) [[paper](https://arxiv.org/abs/2308.06925)] [[code](https://github.com/wqza/CBA-online-CL)] - Neuro-Symbolic Continual Learning: Knowledge, Reasoning Shortcuts and Concept Rehearsal (**ICML 2023**) [[paper](https://arxiv.org/abs/2302.01242)] [[code](https://github.com/ema-marconato/NeSy-CL)] - Learnability and Algorithm for Continual Learning (**ICML 2023**) [[paper](https://arxiv.org/abs/2306.12646)] [[code](https://github.com/k-gyuhak/CLOOD)] diff --git a/backbone/vit.py b/backbone/vit.py index e366de0e..87e48c4e 100644 --- a/backbone/vit.py +++ b/backbone/vit.py @@ -669,7 +669,7 @@ def vit_base_patch16_224_prompt_prototype(pretrained=False, pretrain_type='in21k """ assert pretrain_type in ['in21k', 'in21k_old', 'in21k-ft-in1k'], f"Invalid pretrain_type: {pretrain_type}" if not pretrained: - print("WARNING: creating a ViT without pre-trained weights. This is not recommended.") + logging.warning("creating a ViT without pre-trained weights. This is not recommended.") model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12) if kwargs is None: diff --git a/datasets/seq_eurosat_rgb.py b/datasets/seq_eurosat_rgb.py index 3105aa65..c93d8928 100644 --- a/datasets/seq_eurosat_rgb.py +++ b/datasets/seq_eurosat_rgb.py @@ -1,5 +1,6 @@ import io import json +import logging import os import sys import zipfile @@ -144,7 +145,7 @@ def get_class_names(self): try: classes = MyEuroSat.get_class_names() except BaseException: - print("WARNING: dataset not loaded yet -- loading dataset...") + logging.warning("dataset not loaded yet -- loading dataset...") MyEuroSat(base_path() + 'eurosat', train=True, transform=None) classes = MyEuroSat.get_class_names() diff --git a/datasets/utils/continual_dataset.py b/datasets/utils/continual_dataset.py index cf329d43..48a4de5f 100644 --- a/datasets/utils/continual_dataset.py +++ b/datasets/utils/continual_dataset.py @@ -4,6 +4,7 @@ # LICENSE file in the root directory of this source tree. from argparse import Namespace +import logging import sys from typing import List, Tuple @@ -100,7 +101,7 @@ def update_default_args(self): setattr(self.args, k, v) else: if getattr(self.args, k) != v: - print('Warning: {} set to {} instead of {}.'.format(k, getattr(self.args, k), v), file=sys.stderr) + logging.warning('{} set to {} instead of {}.'.format(k, getattr(self.args, k), v)) return self.args diff --git a/docs/how_to_run/starprompt.rst b/docs/how_to_run/starprompt.rst new file mode 100644 index 00000000..62130025 --- /dev/null +++ b/docs/how_to_run/starprompt.rst @@ -0,0 +1,48 @@ +How to run STAR-Prompt +====================== + +.. important:: + + You can find the complete paper at this `link `_. + +First stage only +---------------- + +In the following we report the commands to run the *first stage* of STAR-Prompt on the different datasets. + +The most important Hyperparameters are: + +* ``lambda_ortho_coop``: the weight of the orthogonality loss. :math:`\lambda` in the main paper (Alg 1, Tab D, E). +* ``learning_rate_gr``: the learning rate of the Generative Replay. :math:`lr` in the main paper (Alg 1, Tab D, E). +* ``num_epochs_gr``: the number of epochs for the Generative Replay. :math:`E_1` in the main paper (Alg 1, Tab D, E). + +Other hyperparameters such as ``gr_mog_n_iters`` and ``num_monte_carlo_gr`` have a much smaller impact. Here are reported the best configurations, but the default ones already give pretty much the same results. + +.. list-table:: Hyperparameter table + :header-rows: 1 + + * - Dataset + - Command + * - EuroSAT-RGB + - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=5 --gr_mog_n_iters=200 --lambda_ortho_coop=30 --dataset=seq-eurosat-rgb`` + * - CropDisease + - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=5 --lambda_ortho_coop=30 --learning_rate_gr=0.01 --dataset=seq-cropdisease`` + * - Resisc45 + - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=30 --lambda_ortho_coop=10 --dataset=seq-resisc45`` + * - CIFAR-100 + - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=20 --lambda_ortho_coop=10 --num_monte_carlo_gr=1 --dataset=seq-cifar100-224`` + * - Imagenet-R + - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=20 --gr_mog_n_iters=200 --lambda_ortho_coop=30 --dataset=seq-imagenet-r`` + * - ISIC + - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=30 --lambda_ortho_coop=5 --num_epochs_gr=50 --learning_rate_gr=0.01 --dataset=seq-isic`` + * - ChestX + - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=10 --lambda_ortho_coop=30 --dataset=seq-chestx`` + * - CUB-200 + - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=50 --lambda_ortho_coop=30 --num_epochs_gr=50 --num_monte_carlo_gr=5 --dataset=seq-cub200`` + * - Cars-196 + - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=50 --lambda_ortho_coop=30 --learning_rate_gr=0.01 --dataset=seq-cars196`` + +Second stage only +----------------- + +The *second stage* of STAR-Prompt can take either the class-specific embeddings learned during the first stage or the pre-existing templates of CLIP. This is controlled by the ``--keys_ckpt_path`` argument. If supplied (see :ref:`module-second_stage_starprompt`), it will load the pre-trained embeddings from the first stage. If not supplied, it will use the pre-existing templates of CLIP. The most important Hyperparameters are: diff --git a/docs/how_to_upgrade/index.rst b/docs/how_to_upgrade/index.rst new file mode 100644 index 00000000..ef341da8 --- /dev/null +++ b/docs/how_to_upgrade/index.rst @@ -0,0 +1,29 @@ +Upgrading to the new Mammoth +============================ + +The new Mammoth is almost a complete rewrite of the old Mammoth. The new Mammoth is faster, more efficient (thanks to the ``--code_optimization``), more stable (thanks to tests), supports more validations strategies and settings, and includes more methods and datasets. + +Models +------ +To upgrade your model to the new Mammoth, you need to take some care: + +- The *Continual Model* already supports widely used properties such as `current_task`, `n_tasks`, `num_classes`. Check the documentation in :ref:`module-continual_model` for more information. +- The *get_parser* has been moved **inside** the model. This is to make it easier to automatically load the arguments of a model in the case of automated parsing. This is easy to fix, just move the `get_parser` function inside the model class and make it a static method. *NOTE*: you do not need to add `add_experiment_args` and `add_management_args` to the get_parser function. These are automatically added. +- The *observe* function should follow the new signature: `def observe(inputs, labels, not_aug_inputs, epoch=None) -> dict|float`. If a `dict` is returned, it should contain at least the `loss` key. All other values will be logged in WandB (if available). + +Datasets +-------- +The datasets had only some minor changes. Just ensure to defined for each dataset the following properties: + +- `NAME`: the name of the dataset. This will be used to load the dataset with `--dataset=`. +- `SETTING`: the setting supported by the dataset. See :ref:`module-datasets` for more information. +- `N_CLASSES_PER_TASK`: the number of classes per task. This can be either a single value or a list of values (one for each task). +- `N_TASKS`: the number of tasks. +- `N_CLASSES`: if missing, it will be computed from `N_CLASSES_PER_TASK` and `N_TASKS`. +- `SIZE`: the size of each input dimension (*i.e.*, height and width as a tuple for images). +- `MEAN` and `STD` for normalization. +- `TRANSFORM`: the train transform. +- `TEST_TRANSFORM`: the test transform. + +Take a look at :ref:`module-seq_cifar10` for more information on how to define a dataset. + diff --git a/docs/index.rst b/docs/index.rst index dbdeee1a..335f85a0 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -39,4 +39,12 @@ generated/backbone.rst generated/utils.rst +.. toctree:: + :glob: + :maxdepth: 1 + :hidden: + :caption: How to run: + + how_to_run/starprompt.rst + .. include:: readme.rst diff --git a/docs/readme.rst b/docs/readme.rst index 77e53146..aab19dad 100644 --- a/docs/readme.rst +++ b/docs/readme.rst @@ -71,7 +71,7 @@ Setup Models ------ -Mammoth currently supports **41** models, with new releases covering the main competitors in literature. +Mammoth currently supports **more than 40 models**, with new releases covering the main competitors in literature. Datasets -------- diff --git a/docs/utils/args.rst b/docs/utils/args.rst index 72bc43fa..919a23f3 100644 --- a/docs/utils/args.rst +++ b/docs/utils/args.rst @@ -13,12 +13,12 @@ Arguments *Help*: Which dataset to perform experiments on. - *Default*: None - - *Choices*: seq-mnist, seq-cub200, seq-chestx, seq-cifar100-224, seq-tinyimg, seq-tinyimg-r, seq-cropdisease, seq-eurosat-rgb, perm-mnist, seq-cifar100, seq-isic, seq-mit67, seq-cifar10-224-rs, seq-cifar10, mnist-360, seq-imagenet-r, rot-mnist, seq-resisc45, seq-cifar10-224, seq-cars196, seq-cifar100-224-rs + - *Choices*: seq-tinyimg, seq-mit67, seq-cars196, seq-cifar100-224-rs, seq-cifar100-224, seq-chestx, seq-cifar10-224-rs, mnist-360, seq-cropdisease, seq-eurosat-rgb, seq-imagenet-r, seq-cifar100, seq-cifar10-224, perm-mnist, seq-cub200, seq-cifar10, rot-mnist, seq-resisc45, seq-mnist, seq-isic, seq-tinyimg-r **\-\-model** : custom_str_underscore *Help*: Model name. - *Default*: None - - *Choices*: twf, derpp-lider, l2p, der, icarl, xder-rpc, rpc, pnn, bic, second-stage-starprompt, slca, gdumb-lider, xder-ce, mer, coda-prompt, joint-gcl, ccic, gss, gem, agem, ewc-on, clip, er-ace, derpp, lwf, er, lwf-mc, icarl-lider, first-stage-starprompt, lucir, agem-r, fdr, gdumb, dualprompt, xder, sgd, er-ace-lider, hal, si + - *Choices*: joint-gcl, second-stage-starprompt, lwf-mc, gdumb-lider, ewc-on, xder, hal, sgd, si, first-stage-starprompt, icarl, lucir, fdr, icarl-lider, derpp, der, derpp-lider, gem, bic, attriclip, starprompt, coda-prompt, clip, pnn, er-ace, xder-ce, dualprompt, twf, mer, er-ace-lider, gdumb, l2p, ccic, slca, agem-r, rpc, xder-rpc, gss, lwf, er, agem **\-\-lr** : float *Help*: Learning rate. @@ -128,12 +128,16 @@ Arguments **\-\-permute_classes** : int *Help*: Permute classes before splitting into tasks? This applies the seed before permuting if the `seed` argument is present. - - *Default*: 0 + - *Default*: 1 - *Choices*: 0, 1 **\-\-base_path** : str *Help*: The base path where to save datasets, logs, results. - *Default*: ./data/ +**\-\-device** : str + *Help*: The device (or devices) available to use for training. More than one device can be specified by separating them with a comma. If not provided, the code will use the least used GPU available (if there are any), otherwise the CPU. MPS is supported and is automatically used if no GPU is available and MPS is supported. If more than one GPU is available, Mammoth will use the least used one if `--distributed=no`. + + - *Default*: None **\-\-notes** : str *Help*: Helper argument to include notes for this run. Example: distinguish between different versions of a model and allow separation of results @@ -218,7 +222,7 @@ Arguments **\-\-wandb_project** : str *Help*: Wandb project name - - *Default*: mammoth + - *Default*: None .. rubric:: REEHARSAL-ONLY ARGS diff --git a/models/coda_prompt.py b/models/coda_prompt.py index e43ac038..52749301 100644 --- a/models/coda_prompt.py +++ b/models/coda_prompt.py @@ -6,6 +6,7 @@ The backbone is a ViT-B/16 pretrained on Imagenet 21k and finetuned on ImageNet 1k. """ +import logging import timm from utils.args import * from models.utils.continual_model import ContinualModel @@ -32,7 +33,7 @@ def get_parser() -> ArgumentParser: def __init__(self, backbone, loss, args, transform): del backbone print("-" * 20) - print(f"WARNING: CODA-Prompt USES A CUSTOM BACKBONE: `vit_base_patch16_224`.") + logging.warning(f"CODA-Prompt USES A CUSTOM BACKBONE: `vit_base_patch16_224`.") print("Pretrained on Imagenet 21k and finetuned on ImageNet 1k.") print("-" * 20) diff --git a/models/dualprompt.py b/models/dualprompt.py index 7e711fb2..e840ace4 100644 --- a/models/dualprompt.py +++ b/models/dualprompt.py @@ -6,6 +6,7 @@ The backbone is a ViT-B/16 pretrained on Imagenet 21k and finetuned on ImageNet 1k. """ +import logging import torch from models.dualprompt_utils.model import Model @@ -70,7 +71,7 @@ def get_parser() -> ArgumentParser: def __init__(self, backbone, loss, args, transform): del backbone print("-" * 20) - print(f"WARNING: DualPrompt USES A CUSTOM BACKBONE: `vit_base_patch16_224`.") + logging.warning(f"DualPrompt USES A CUSTOM BACKBONE: `vit_base_patch16_224`.") print("Pretrained on Imagenet 21k and finetuned on ImageNet 1k.") print("-" * 20) diff --git a/models/first_stage_starprompt.py b/models/first_stage_starprompt.py index 0c92d6af..8d8288b2 100644 --- a/models/first_stage_starprompt.py +++ b/models/first_stage_starprompt.py @@ -1,3 +1,4 @@ +import logging import os import sys import torch @@ -23,10 +24,8 @@ def get_parser() -> ArgumentParser: frozen_group = parser.add_argument_group('Frozen hyperparameters') frozen_group.add_argument("--virtual_bs_n", type=int, default=1, help="Virtual batch size iterations") - frozen_group.add_argument("--num_monte_carlo_gr", "--num_monte_carlo_gr_first_stage", dest="num_monte_carlo_gr_first_stage", - type=int, default=5, help="How many times to sample from the dataset for Generative Replay") frozen_group.add_argument('--gr_mog_n_iters', '--gr_mog_n_iters_first_stage', dest='gr_mog_n_iters_first_stage', - type=int, default=200, help="Number of EM iterations during fit for GR with MOG.") + type=int, default=500, help="Number of EM iterations during fit for GR with MOG.") frozen_group.add_argument('--gr_mog_n_components', type=int, default=5, help="Number of components for Generative Replay with MOG.") frozen_group.add_argument("--enable_gr", type=int, default=1, choices=[0, 1], @@ -38,6 +37,8 @@ def get_parser() -> ArgumentParser: # Tunable hyperparameters tunable_group = parser.add_argument_group('Tunable hyperparameters') + tunable_group.add_argument("--num_monte_carlo_gr", "--num_monte_carlo_gr_first_stage", dest="num_monte_carlo_gr_first_stage", + type=int, default=2, help="How many times to sample from the dataset for Generative Replay") tunable_group.add_argument("--learning_rate_gr", "--learning_rate_gr_first_stage", dest="learning_rate_gr_first_stage", type=float, default=0.05, help="Learning rate for Generative Replay.") tunable_group.add_argument("--lambda_ortho_coop", type=float, default=30, @@ -56,7 +57,7 @@ def get_parser() -> ArgumentParser: return parser def __init__(self, backbone, loss, args, transform): - print("WARNING: The first stage of STAR-Prompt ignores the backbone as it uses CLIP") + logging.warning("The first stage of STAR-Prompt ignores the backbone as it uses CLIP") del backbone super().__init__(None, loss, args, transform) diff --git a/models/second_stage_starprompt.py b/models/second_stage_starprompt.py index 525cac22..ecf3bf77 100644 --- a/models/second_stage_starprompt.py +++ b/models/second_stage_starprompt.py @@ -66,8 +66,8 @@ def get_parser() -> ArgumentParser: help="orthogonality loss coefficient") tunable_group.add_argument("--num_monte_carlo_gr", "--num_monte_carlo_gr_second_stage", dest="num_monte_carlo_gr_second_stage", type=int, default=1, help="how many times to sample from the dataset for alignment") - tunable_group.add_argument("--num_epochs_gr", "--num_epochs_gr_second_stage", type=int, default=10, - help="Num. of epochs for GR.") + tunable_group.add_argument("--num_epochs_gr", "--num_epochs_gr_second_stage", dest="num_epochs_gr_second_stage", + type=int, default=10, help="Num. of epochs for GR.") tunable_group.add_argument("--learning_rate_gr", "--learning_rate_gr_second_stage", dest="learning_rate_gr_second_stage", type=float, default=0.001, help="Learning rate for GR.") @@ -255,7 +255,6 @@ def begin_task(self, dataset): dataset.test_loaders[-1].dataset.transform = RepeatedTransform([dataset.test_loaders[-1].dataset.transform, self.net.prompter.clip_preprocess]) # NOTE: Remove these comments if you want to check if the keys are loaded correctly and results are the same as the first stage - # from utils.augmentations import RepeatedTransform # tot_data, tot_corr = 0, 0 # for i, ts in enumerate(dataset.test_loaders): # task_tot, task_corr = 0, 0 @@ -312,6 +311,7 @@ def observe(self, inputs, labels, not_aug_inputs, epoch=None): self.opt.zero_grad() (loss / self.args.virtual_bs_n).backward() + # loss.backward() if (self.epoch_iteration > 0 or self.args.virtual_bs_n == 1) and \ self.epoch_iteration % self.args.virtual_bs_n == 0: self.opt.step() diff --git a/models/star_prompt_utils/end_to_end_model.py b/models/star_prompt_utils/end_to_end_model.py index 380bf4f8..11b9217e 100644 --- a/models/star_prompt_utils/end_to_end_model.py +++ b/models/star_prompt_utils/end_to_end_model.py @@ -1,4 +1,5 @@ from copy import deepcopy +from typing import Tuple import torch from torch import nn from torch.utils.data import TensorDataset @@ -59,17 +60,24 @@ def _get_dist(self, embed_dim): else: return Gaussian(embed_dim) + @torch.no_grad() def update_keys(self, start_c: int, end_c: int): print('Updating keys for second stage...') first_stage_keys = self.first_stage.prompter.compute_keys(start_c, end_c) self.second_stage.prompter.set_keys(first_stage_keys, start_c, end_c) - def forward(self, x: torch.Tensor, cur_classes: int, frozen_past_classes=0) -> torch.Tensor: + def forward(self, x: torch.Tensor, cur_classes: int, frozen_past_classes=0, return_query=False) -> torch.Tensor | Tuple[torch.Tensor, torch.Tensor]: """ Compute the complete forward pass of STAR-Prompt. This assumes that the keys are already pre-computed. + + Args: + x: The input tensor. + cur_classes: The number of current classes. + frozen_past_classes: The number of past classes. + return_query: Whether to return the query tensor with the output. """ - return self.second_stage(x, cur_classes=cur_classes, frozen_past_classes=frozen_past_classes) + return self.second_stage(x, cur_classes=cur_classes, frozen_past_classes=frozen_past_classes, return_query=return_query) def train(self, mode: bool = True): self.first_stage.train(mode) @@ -84,22 +92,26 @@ def to(self, device, *args, **kwargs): return self @torch.no_grad() - def eval_first_stage_on_task(self, dataset: ContinualDataset) -> torch.Tensor: + def eval_first_stage_on_task(self, dataset: ContinualDataset, n_seen_classes: int) -> torch.Tensor: """ Compute and return the accuracy on each task so far. """ + was_training = self.first_stage.training + self.first_stage.eval() all_accs = [] - for t, test_loader in enumerate(dataset.test_loaders): - total = 0 - correct = 0 - _, end_c = dataset.get_offsets(t) - for inputs, labels in test_loader: - inputs, labels = inputs.to(self.device), labels.to(self.device, dtype=torch.long) - logits = self.first_stage(inputs, cur_classes=end_c) - _, predicted = torch.max(logits, 1) - total += labels.size(0) - correct += (predicted == labels).sum().item() - all_accs.append(correct / total) + with tqdm(total=sum([len(test_loader) for test_loader in dataset.test_loaders]), desc='Eval first stage on seen tasks') as pbar: + for t, test_loader in enumerate(dataset.test_loaders): + total = 0 + correct = 0 + for inputs, labels in test_loader: + inputs, labels = inputs.to(self.device), labels.to(self.device, dtype=torch.long) + logits = self.first_stage(inputs, cur_classes=n_seen_classes)[:, :n_seen_classes] + _, predicted = torch.max(logits, 1) + total += labels.size(0) + correct += (predicted == labels).sum().item() + pbar.update(1) + all_accs.append(correct / total) + self.first_stage.train(was_training) return torch.tensor(all_accs) def norm(self, t): @@ -224,6 +236,8 @@ def train_first_stage_on_task(self, dataset: ContinualDataset, current_task: int n_seen_classes: The number of seen classes. loss_fn: The loss function. """ + print("Starting training of first stage on task", current_task) + # BEGIN-TASK old_train_transform = dataset.train_loader.dataset.transform old_test_transform = dataset.test_loaders[-1].dataset.transform @@ -232,61 +246,82 @@ def train_first_stage_on_task(self, dataset: ContinualDataset, current_task: int dataset.test_loaders[-1].dataset.transform = self.first_stage.prompter.clip_preprocess convert_weights(self.first_stage.prompter.clip_model) # convert weights to float16 during training for speedup + self.first_stage.prompter.text_encoder.dtype = torch.float16 + was_training = self.first_stage.training self.first_stage.train() + first_stage_params = [v for k, v in self.first_stage.named_parameters() if 'prompt_parameters' in k] if self.args.first_stage_optim == 'sgd': - opt = torch.optim.SGD(self.first_stage.parameters(), lr=self.args.first_stage_lr, momentum=self.args.first_stage_momentum, + opt = torch.optim.SGD(first_stage_params, lr=self.args.first_stage_lr, momentum=self.args.first_stage_momentum, weight_decay=self.args.first_stage_weight_decay) else: - opt = torch.optim.Adam(self.first_stage.parameters(), lr=self.args.first_stage_lr, + opt = torch.optim.Adam(first_stage_params, lr=self.args.first_stage_lr, weight_decay=self.args.first_stage_weight_decay) - # mini train loop - for epoch in range(self.args.first_stage_epochs): - for i, data in enumerate(dataset.train_loader): - inputs, labels = data[0].to(self.device), data[1].to(self.device, dtype=torch.long) - loss = torch.tensor(0.).to(self.device) - - opt.zero_grad() - # Check cur and past classes - clip_logits = self.first_stage(inputs, frozen_past_classes=n_past_classes, cur_classes=n_seen_classes) - - # compute clip loss - clip_logits[:, :n_past_classes] = -float('inf') - loss_clip = loss_fn(clip_logits[:, :n_seen_classes], labels) - - loss += loss_clip - - loss_ortho_coop = self.first_stage.prompter.compute_ortho_loss(frozen_past_classes=n_past_classes, cur_classes=n_seen_classes) - loss += self.args.lambda_ortho_coop * loss_ortho_coop + # MINI TRAINING LOOP FOR CURRENT TASK + with tqdm(total=self.args.first_stage_epochs * len(dataset.train_loader), desc='First stage training') as pbar: + for epoch in range(self.args.first_stage_epochs): + for i, data in enumerate(dataset.train_loader): + if self.args.debug_mode and i > 3: + break + inputs, labels = data[0].to(self.device), data[1].to(self.device, dtype=torch.long) + loss = torch.tensor(0.).to(self.device) - if i == 0: - opt.zero_grad() - (loss / self.args.virtual_bs_n).backward() - if (i > 0 or self.args.virtual_bs_n == 1) and i % self.args.virtual_bs_n == 0: - opt.step() opt.zero_grad() + # Check cur and past classes + clip_logits = self.first_stage(inputs, frozen_past_classes=n_past_classes, cur_classes=n_seen_classes) + + # compute clip loss + clip_logits[:, :n_past_classes] = -float('inf') + loss_clip = loss_fn(clip_logits[:, :n_seen_classes], labels) + + loss += loss_clip + + loss_ortho_coop = self.first_stage.prompter.compute_ortho_loss(frozen_past_classes=n_past_classes, cur_classes=n_seen_classes) + loss += self.args.lambda_ortho_coop * loss_ortho_coop + + if i == 0: + opt.zero_grad() + (loss / self.args.virtual_bs_n).backward() + if (i > 0 or self.args.virtual_bs_n == 1) and i % self.args.virtual_bs_n == 0: + opt.step() + opt.zero_grad() + + if not self.args.nowand: + assert wandb is not None, "wandb is not installed." + wandb.log({'first_stage_loss': loss.item(), + 'first_stage_lr': opt.param_groups[0]['lr'], + 'first_stage_epoch': epoch, + 'first_stage_loss_clip': loss_clip.item(), + 'first_stage_loss_ortho': loss_ortho_coop.item(), + 'first_stage_iteration': i}) - if not self.args.nowand: - assert wandb is not None, "wandb is not installed." - wandb.log({'first_stage_loss': loss.item(), - 'first_stage_lr': opt.param_groups[0]['lr'], - 'first_stage_epoch': epoch, - 'first_stage_loss_clip': loss_clip.item(), - 'first_stage_loss_ortho': loss_ortho_coop.item(), - 'first_stage_iteration': i}) + pbar.update(1) + pbar.set_postfix({'loss': loss.item()}) + + # END-TASK + opt.zero_grad(set_to_none=True) + del opt + torch.cuda.empty_cache() # Generative replay after end of task if self.args.enable_gr: self.first_stage.prompter.update_statistics(dataset, current_task) self.first_stage.prompter.align(current_task) - cur_acc = self.eval_first_stage_on_task(dataset) - print(f'First stage accuracy: {cur_acc}') - print(f'\tAverage: {cur_acc.mean().item():.2f}') + cur_acc = self.eval_first_stage_on_task(dataset, n_seen_classes) + print(f'First stage accuracy: {[acc.item() for acc in cur_acc]}') + print(f'\tAverage: {cur_acc.mean().item():.4f}') + if not self.args.nowand: + assert wandb is not None, "wandb is not installed." + log_dict = {f'first_stage_acc_{i}': acc.item() for i, acc in enumerate(cur_acc)} + log_dict['first_stage_acc'] = cur_acc.mean().item() + wandb.log(log_dict) # restore original transforms dataset.train_loader.dataset.transform = old_train_transform dataset.test_loaders[-1].dataset.transform = old_test_transform self.first_stage.prompter.clip_model.float() # convert back to float32 + self.first_stage.prompter.text_encoder.dtype = torch.float32 + self.first_stage.train(was_training) diff --git a/models/star_prompt_utils/first_stage_model.py b/models/star_prompt_utils/first_stage_model.py index e7c066e4..4b066cb1 100644 --- a/models/star_prompt_utils/first_stage_model.py +++ b/models/star_prompt_utils/first_stage_model.py @@ -10,6 +10,10 @@ import clip except ImportError: raise ImportError("Please install the CLIP package by running: pip install git+https://github.com/openai/CLIP.git") +try: + import wandb +except ImportError: + wandb = None from datasets.utils.continual_dataset import ContinualDataset from models.star_prompt_utils.generative_replay import MixtureOfGaussiansModel @@ -121,6 +125,10 @@ def train_alignment_epoch(self, optim: torch.optim.Optimizer, current_task: int, pbar.set_postfix({'loss': loss.item()}) + if not self.args.nowand: + assert wandb is not None, "wandb is not installed." + wandb.log({'ca_loss': loss.item(), 'ca_lr': optim.param_groups[0]['lr']}) + def align(self, current_task: int): optim = torch.optim.SGD(lr=self.args.learning_rate_gr_first_stage, params=[self.prompt_parameters], momentum=0.0, weight_decay=0.0) diff --git a/models/star_prompt_utils/second_stage_model.py b/models/star_prompt_utils/second_stage_model.py index dade7c25..ceb92650 100644 --- a/models/star_prompt_utils/second_stage_model.py +++ b/models/star_prompt_utils/second_stage_model.py @@ -410,7 +410,7 @@ def train(self, mode=True): return self - def forward(self, x: torch.Tensor, cur_classes: int, frozen_past_classes=0, query_x=None, return_features=False) -> torch.Tensor: + def forward(self, x: torch.Tensor, cur_classes: int, frozen_past_classes=0, query_x=None, return_features=False, return_query=False) -> torch.Tensor: """ Compute the forward of the second-stage of STAR-Prompt. Classes from `frozen_past_classes` to `cur_classes` will have a gradient, while all those before `frozen_past_classes` will be detached. @@ -424,6 +424,7 @@ def forward(self, x: torch.Tensor, cur_classes: int, frozen_past_classes=0, quer frozen_past_classes: the number of classes from the past tasks that will be frozen query_x: (optional) the query tensor for the CLIP's visual encoder return_features: if True, the features from the Vision Transformer will be returned instead of the classification output + return_query: if True, the query tensor will be returned with the output """ enable_renorm = query_x is None query_x = x if query_x is None else query_x @@ -433,4 +434,6 @@ def forward(self, x: torch.Tensor, cur_classes: int, frozen_past_classes=0, quer return features out = self.vit.forward_head(features) + if return_query: + return out, clip_query return out diff --git a/models/starprompt.py b/models/starprompt.py index 0d9ab003..c4ae4df9 100644 --- a/models/starprompt.py +++ b/models/starprompt.py @@ -1,4 +1,5 @@ import logging +import torch from argparse import ArgumentParser import torch @@ -108,6 +109,8 @@ def end_task(self, dataset): self.net.backup(self.current_task, self.n_past_classes, self.n_seen_classes) if self.current_task > 0: + if self.args.seed is not None: + torch.manual_seed(self.args.seed) self.net.align(self.current_task, self.n_seen_classes, self.loss) def get_parameters(self): @@ -127,6 +130,7 @@ def begin_task(self, dataset): # adapt CLIP on current task self.net.train_first_stage_on_task(dataset, self.current_task, self.n_past_classes, self.n_seen_classes, self.loss) + self.net.update_keys(self.n_past_classes, self.n_seen_classes) self.net.second_stage.train() # initialize second stage diff --git a/models/twf.py b/models/twf.py index 14648535..2bdd55bb 100644 --- a/models/twf.py +++ b/models/twf.py @@ -1,3 +1,4 @@ +import logging import torch from models.twf_utils.utils import init_twf from utils.augmentations import CustomRandomCrop, CustomRandomHorizontalFlip, DoubleCompose, DoubleTransform, apply_transform @@ -56,13 +57,13 @@ def __init__(self, backbone, loss, args, transform): self.buf_transform = self.get_custom_double_transform(self.original_transform.transforms) if self.args.loadcheck is None: - print("Warning: no checkpoint loaded!") + logging.warning("no checkpoint loaded!") if self.args.lambda_fp_replay == 0: - print('Warning: lambda_fp_replay is 0, so no replay of attention masks will be used') + logging.warning('lambda_fp_replay is 0, so no replay of attention masks will be used') if self.args.lambda_diverse_loss == 0: - print('Warning: lambda_diverse_loss is 0, so no diverse loss will be used') + logging.warning('lambda_diverse_loss is 0, so no diverse loss will be used') def get_custom_double_transform(self, transform): tfs = [] diff --git a/models/twf_utils/afd.py b/models/twf_utils/afd.py index 4112d4f1..0bd928f6 100644 --- a/models/twf_utils/afd.py +++ b/models/twf_utils/afd.py @@ -7,6 +7,7 @@ from utils.conditional_bn import ConditionalBatchNorm1d from utils.conditional_bn import ConditionalBatchNorm2d +from utils.conf import warn_once def get_rnd_weight(num_tasks, fin, fout=None, nonlinearity='relu'): @@ -110,9 +111,7 @@ def forward(self, logits): if self.training: if str(logits.device) == 'cpu': - if not hasattr(self, 'warned') or not self.warned: - print('Warning: GumbelSoftmax may be unstable in CPU (see https://github.com/pytorch/pytorch/issues/101620)') - self.warned = True + warn_once('GumbelSoftmax may be unstable in CPU (see https://github.com/pytorch/pytorch/issues/101620)') h = nn.functional.gumbel_softmax(logits, tau=self.tau, hard=True) h = h[..., 0] return h diff --git a/models/utils/continual_model.py b/models/utils/continual_model.py index f66b4a24..a33bc1a7 100644 --- a/models/utils/continual_model.py +++ b/models/utils/continual_model.py @@ -24,6 +24,7 @@ # LICENSE file in the root directory of this source tree. from abc import abstractmethod +import logging import sys from argparse import ArgumentParser, Namespace from contextlib import suppress @@ -183,14 +184,14 @@ def __init__(self, backbone: nn.Module, loss: nn.Module, self.transform = to_kornia_transform(transform.transforms[-1].transforms) self.normalization_transform = to_kornia_transform(self.dataset.get_normalization_transform()) except BaseException: - print("Warning: could not initialize kornia transforms.") + logging.error("could not initialize kornia transforms.") self.normalization_transform = transforms.Compose([transforms.ToPILImage(), self.dataset.TEST_TRANSFORM]) if hasattr( self.dataset, 'TEST_TRANSFORM') else transforms.Compose([transforms.ToPILImage(), transforms.ToTensor(), self.dataset.get_normalization_transform()]) if self.net is not None: self.opt = self.get_optimizer() else: - print("Warning: no default model for this dataset. You will have to specify the optimizer yourself.") + logging.warning("no default model for this dataset. You will have to specify the optimizer yourself.") self.opt = None self.device = get_device() @@ -198,7 +199,7 @@ def __init__(self, backbone: nn.Module, loss: nn.Module, raise NotImplementedError('Please specify the name and the compatibility of the model.') if self.args.label_perc != 1 and 'cssl' not in self.COMPATIBILITY: - print('WARNING: label_perc is not explicitly supported by this model -> training may break') + logging.info('label_perc is not explicitly supported by this model -> training may break') def to(self, device): """ diff --git a/models/utils/lider_model.py b/models/utils/lider_model.py index 77b55b49..0ee0ae79 100644 --- a/models/utils/lider_model.py +++ b/models/utils/lider_model.py @@ -2,6 +2,7 @@ Base class for all models that use the Lipschitz regularization in LiDER (https://arxiv.org/pdf/2210.06443.pdf). """ +import logging import torch import torch.nn.functional as F from tqdm import tqdm @@ -33,7 +34,7 @@ def __init__(self, backbone, loss, args, transform): super().__init__(backbone, loss, args, transform) if self.args.alpha_lip_lambda == 0 and self.args.beta_lip_lambda == 0: - print("WARNING: LiDER is enabled but both `alpha_lip_lambda` and `beta_lip_lambda` are 0. LiDER will not be used.") + logging.error("LiDER is enabled but both `alpha_lip_lambda` and `beta_lip_lambda` are 0. LiDER will not be used.") def transmitting_matrix(self, fm1: torch.Tensor, fm2: torch.Tensor): if fm1.size(2) > fm2.size(2): diff --git a/scripts/slurm_sbatcher.py b/scripts/slurm_sbatcher.py index 26b06c53..b7420282 100644 --- a/scripts/slurm_sbatcher.py +++ b/scripts/slurm_sbatcher.py @@ -1,3 +1,4 @@ +import logging import os if os.getcwd().split('/')[-1] == 'scripts': os.chdir('..') @@ -33,7 +34,7 @@ args = parser.parse_args() if args.ddp: - print("Warning: distributed stuff not yet supported in mammoth (problems with buffer synchronization). Use at your own risk!") + logging.error("distributed stuff not yet supported in mammoth (problems with buffer synchronization). Use at your own risk!") with open(args.file, 'r') as f: all_com = f.read().splitlines() diff --git a/utils/conf.py b/utils/conf.py index f06fd353..45229084 100644 --- a/utils/conf.py +++ b/utils/conf.py @@ -13,6 +13,7 @@ import sys from functools import partial +from typing import List import numpy as np import torch from torch.utils.data import DataLoader @@ -30,7 +31,7 @@ def warn_once(*msg): warn_once.warned = set() if msg not in warn_once.warned: warn_once.warned.add(msg) - print(msg, file=sys.stderr) + logging.warning(msg) def _get_gpu_memory_pynvml_all_processes(device_id: int = 0) -> int: @@ -85,24 +86,29 @@ def get_device(avail_devices: str = None) -> torch.device: """ Returns the least used GPU device if available else MPS or CPU. """ - def _get_device(): + def _get_device(avail_devices: List[int] = None) -> torch.device: # get least used gpu by used memory - if torch.cuda.is_available() and torch.cuda.device_count() > 0: + if torch.cuda.is_available() and torch.cuda.device_count() > 0 and len(avail_devices) > 0: gpu_memory = get_alloc_memory_all_devices() - device = torch.device(f'cuda:{np.argmin(gpu_memory)}') + gpu_memory = [gpu_memory[i] for i in avail_devices] + device = torch.device(f'cuda:{avail_devices[np.argmin(gpu_memory)]}') return device try: if torch.backends.mps.is_available() and torch.backends.mps.is_built(): - print("WARNING: MSP support is still experimental. Use at your own risk!") + logging.warning("MSP support is still experimental. Use at your own risk!") return torch.device("mps") except BaseException: - print("WARNING: Something went wrong with MPS. Using CPU.") + logging.error("Something went wrong with MPS. Using CPU.") return torch.device("cpu") # Permanently store the chosen device if not hasattr(get_device, 'device'): - get_device.device = _get_device() + if avail_devices is not None: + avail_devices = [int(d) for d in avail_devices.split(',')] + else: + avail_devices = list(range(torch.cuda.device_count())) if torch.cuda.is_available() else [] + get_device.device = _get_device(avail_devices=avail_devices) print(f'Using device {get_device.device}') return get_device.device diff --git a/utils/main.py b/utils/main.py index b8c7c3e5..29d018ff 100644 --- a/utils/main.py +++ b/utils/main.py @@ -123,7 +123,7 @@ def parse_args(): args.model = models_dict[args.model] if args.lr_scheduler is not None: - print('Warning: lr_scheduler set to {}, overrides default from dataset.'.format(args.lr_scheduler), file=sys.stderr) + logging.info('`lr_scheduler` set to {}, overrides default from dataset.'.format(args.lr_scheduler)) if args.seed is not None: set_random_seed(args.seed) @@ -133,6 +133,15 @@ def parse_args(): args.conf_timestamp = str(datetime.datetime.now()) args.conf_host = socket.gethostname() + # Add the current git commit hash to the arguments if available + try: + import git + repo = git.Repo(path=os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) + args.conf_git_hash = repo.head.object.hexsha + except Exception: + logging.error("Could not retrieve git hash.") + args.conf_git_hash = None + if args.savecheck: assert args.inference_only == 0, "Should not save checkpoint in inference only mode" if not os.path.isdir('checkpoints'): @@ -167,7 +176,7 @@ def main(args=None): if args is None: args = parse_args() - device = get_device() + device = get_device(avail_devices=args.device) args.device = device # set base path @@ -206,7 +215,7 @@ def main(args=None): # from https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html if torch.cuda.get_device_capability()[0] >= 7 and os.name != 'nt': print("================ Compiling model with torch.compile ================") - print("WARNING: `torch.compile` may break your code if you change the model after the first run!") + logging.warning("`torch.compile` may break your code if you change the model after the first run!") print("This includes adding classifiers for new tasks, changing the backbone, etc.") print("ALSO: some models CHANGE the backbone during initialization. Remember to call `torch.compile` again after that.") print("====================================================================") @@ -243,7 +252,7 @@ def main(args=None): args.wandb_project = os.getenv('WANDB_PROJECT', None) if args.wandb_entity is None or args.wandb_project is None: - print('Warning: wandb_entity and wandb_project not set. Disabling wandb.') + logging.warning('`wandb_entity` and `wandb_project` not set. Disabling wandb.') args.nowand = 1 else: print('Logging to wandb: {}/{}'.format(args.wandb_entity, args.wandb_project)) From c4a4171879cda7d125a2005677ae6c37cc6010fd Mon Sep 17 00:00:00 2001 From: loribonna Date: Wed, 24 Jul 2024 23:05:17 +0200 Subject: [PATCH 62/66] Add args to models in docs. Minor changes --- .gitignore | 4 ++- docs/_templates/custom-module-template.rst | 14 +++++--- docs/conf.py | 6 ++-- docs/how_to_run/starprompt.rst | 16 ++++++++- docs/utils/args.rst | 15 +++++++- models/__init__.py | 10 +++--- models/second_stage_starprompt.py | 6 ++-- models/star_prompt_utils/first_stage_model.py | 2 +- models/utils/continual_model.py | 2 +- utils/args.py | 34 ++++++++++++++++--- 10 files changed, 85 insertions(+), 24 deletions(-) diff --git a/.gitignore b/.gitignore index 8517450f..a1cb24d1 100644 --- a/.gitignore +++ b/.gitignore @@ -98,4 +98,6 @@ generated val_permutations # Other prepare grid scripts except the example one -scripts/prepare_grid* \ No newline at end of file +scripts/prepare_grid* + +docs/models/*_args.rst \ No newline at end of file diff --git a/docs/_templates/custom-module-template.rst b/docs/_templates/custom-module-template.rst index bdd36329..bf1e160a 100644 --- a/docs/_templates/custom-module-template.rst +++ b/docs/_templates/custom-module-template.rst @@ -2,11 +2,14 @@ .. currentmodule:: {{ fullname }} +.. include:: ../models/{{ name }}_args.rst + .. automodule:: {{ fullname }} {% block attributes %} {% if attributes %} - .. rubric:: {{ _('Module Attributes') }} +Module Attributes +~~~~~~~~~~~~~~~~~~ {% for item in attributes %} .. autoattribute:: {{ item }} @@ -17,7 +20,8 @@ {% block classes %} {% if classes %} - .. rubric:: {{ _('Classes') }} +Classes +~~~~~~~~ {% for item in classes %} .. autoclass:: {{ item }} @@ -30,7 +34,8 @@ {% block functions %} {% if functions %} - .. rubric:: {{ _('Functions') }} +Functions +~~~~~~~~~~ {% for item in functions %} .. autofunction:: {{ item }} @@ -47,7 +52,8 @@ {% block exceptions %} {% if exceptions %} - .. rubric:: {{ _('Exceptions') }} +Exceptions +~~~~~~~~~~ {% for item in exceptions %} .. autoexception:: {{ item }} diff --git a/docs/conf.py b/docs/conf.py index 9fb72e22..129e3dc5 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -135,10 +135,10 @@ def get_headling_module(fullname): fs = open(f'./docs/{ module }/{ name }.rst', 'r').read() return fs else: - if os.path.isdir('./' + '/'.join(paths)): - name = name.capitalize() + if os.path.isdir('./' + '/'.join(paths)) or os.path.dirname(module) == 'models': + name = name.replace('_', ' ') else: - name = name + name = name.upper().replace('_', ' ') return f".. _module-{name}:\n{name}\n" + "=" * (len(name) + 1) diff --git a/docs/how_to_run/starprompt.rst b/docs/how_to_run/starprompt.rst index 62130025..21900f93 100644 --- a/docs/how_to_run/starprompt.rst +++ b/docs/how_to_run/starprompt.rst @@ -3,7 +3,7 @@ How to run STAR-Prompt .. important:: - You can find the complete paper at this `link `_. + You can find the complete paper at this `link `_. The hyperparameters reported in Tab. D and E are the ones used to obtain the results in the paper. Here we report the best hyperparameters we found for each dataset after a more thorough search. The results are very similar to the ones reported in the paper. First stage only ---------------- @@ -46,3 +46,17 @@ Second stage only ----------------- The *second stage* of STAR-Prompt can take either the class-specific embeddings learned during the first stage or the pre-existing templates of CLIP. This is controlled by the ``--keys_ckpt_path`` argument. If supplied (see :ref:`module-second_stage_starprompt`), it will load the pre-trained embeddings from the first stage. If not supplied, it will use the pre-existing templates of CLIP. The most important Hyperparameters are: + +* ``lambda_ortho``: the weight of the orthogonality loss. :math:`\lambda` in the main paper (Alg 1, Tab D, E). +* ``learning_rate_gr``: the learning rate of the Generative Replay. :math:`lr` in the main paper (Alg 1, Tab D, E). +* ``num_epochs_gr``: the number of epochs for the Generative Replay. :math:`E_2` in the main paper (Alg 1, Tab D, E). + +.. list-table:: Hyperparameter table + :header-rows: 1 + + * - Dataset + - Command + * - ISIC + - ``--model=second_stage_starprompt --lr=0.001 --optimizer=adam --n_epochs=30 --num_epochs_gr=50 --num_monte_carlo_gr=5 --learning_rate_gr=0.01 --dataset=seq-isic --lambda_ortho=50 --keys_ckpt_path=`` + * - CUB-200 + - ``--model=second_stage_starprompt --dataset=seq-cub200 --n_epochs=50 --batch_size=64 --virtual_bs_n=2 --lr=0.001 --optimizer=adam --lambda_ortho=30 --learning_rate_gr=0.01 --num_monte_carlo_gr=5`` \ No newline at end of file diff --git a/docs/utils/args.rst b/docs/utils/args.rst index 919a23f3..efd1ae4e 100644 --- a/docs/utils/args.rst +++ b/docs/utils/args.rst @@ -5,6 +5,10 @@ Arguments .. rubric:: EXPERIMENT-RELATED ARGS +.. rubric:: Options + + + .. rubric:: Experiment arguments *Arguments used to define the experiment settings.* @@ -18,7 +22,7 @@ Arguments *Help*: Model name. - *Default*: None - - *Choices*: joint-gcl, second-stage-starprompt, lwf-mc, gdumb-lider, ewc-on, xder, hal, sgd, si, first-stage-starprompt, icarl, lucir, fdr, icarl-lider, derpp, der, derpp-lider, gem, bic, attriclip, starprompt, coda-prompt, clip, pnn, er-ace, xder-ce, dualprompt, twf, mer, er-ace-lider, gdumb, l2p, ccic, slca, agem-r, rpc, xder-rpc, gss, lwf, er, agem + - *Choices*: joint-gcl, second-stage-starprompt, lwf-mc, gdumb-lider, ewc-on, xder, hal, sgd, si, first-stage-starprompt, icarl, lucir, fdr, icarl-lider, derpp, der, derpp-lider, gem, bic, attriclip, starprompt, coda-prompt, clip, pnn, er-ace, xder-ce, dualprompt, twf, mer, er-ace-lider, gdumb, l2p, ccic, slca, agem-r, rpc, xder-rpc, gss, lwf, cgil, er, agem **\-\-lr** : float *Help*: Learning rate. @@ -34,6 +38,11 @@ Arguments **\-\-joint** : int *Help*: Train model on Joint (single task)? + - *Default*: 0 + - *Choices*: 0, 1 +**\-\-eval_future** : int + *Help*: Evaluate future tasks? + - *Default*: 0 - *Choices*: 0, 1 @@ -117,6 +126,10 @@ Arguments .. rubric:: MANAGEMENT ARGS +.. rubric:: Options + + + .. rubric:: Management arguments *Generic arguments to manage the experiment reproducibility, logging, debugging, etc.* diff --git a/models/__init__.py b/models/__init__.py index 692fb475..d297f396 100644 --- a/models/__init__.py +++ b/models/__init__.py @@ -6,7 +6,7 @@ import os import sys from argparse import Namespace -from typing import List +from typing import Dict, List from torch import nn import importlib import inspect @@ -69,16 +69,16 @@ def get_model_class(args: Namespace) -> ContinualModel: return names[model_name] -def get_model_names() -> List[str]: +def get_model_names() -> Dict[str, ContinualModel]: """ - Return the list of the available continual model names. + Return the available continual model names and classes. Returns: - the list of the available continual model names + A dictionary containing the names of the available continual models and their classes. """ def _get_names(): - names = {} + names: Dict[str, ContinualModel] = {} for model_name, model in get_all_models().items(): try: mod = importlib.import_module('models.' + model) diff --git a/models/second_stage_starprompt.py b/models/second_stage_starprompt.py index ecf3bf77..7d4f2e25 100644 --- a/models/second_stage_starprompt.py +++ b/models/second_stage_starprompt.py @@ -139,11 +139,11 @@ def create_features_dataset(self): batch_size=self.args.batch_size_gr, shuffle=True, num_workers=0) - def train_alignment_epoch(self, classifier: torch.nn.Module, optim: torch.optim.Optimizer): + def train_alignment_epoch(self, classifier: torch.nn.Module, optim: torch.optim.Optimizer, epoch: int): dl = self.create_features_dataset() - with tqdm(enumerate(dl), total=len(dl), desc='GR epoch') as pbar: + with tqdm(enumerate(dl), total=len(dl), desc=f'GR second stage epoch {epoch + 1}/{self.args.num_epochs_gr_second_stage}', leave=False) as pbar: for i, (x, labels) in pbar: optim.zero_grad() x, labels = x.to(self.device, dtype=torch.float32), labels.to(self.device) @@ -176,7 +176,7 @@ def align(self): num_epochs = self.args.num_epochs_gr_second_stage + (5 * self.current_task) for e in range(num_epochs): - self.train_alignment_epoch(classifier, optim) + self.train_alignment_epoch(classifier, optim, e) self.net.vit.head.weight.data.copy_(classifier.weight.data) self.net.vit.head.bias.data.copy_(classifier.bias.data) diff --git a/models/star_prompt_utils/first_stage_model.py b/models/star_prompt_utils/first_stage_model.py index 4b066cb1..6489a949 100644 --- a/models/star_prompt_utils/first_stage_model.py +++ b/models/star_prompt_utils/first_stage_model.py @@ -100,7 +100,7 @@ def train_alignment_epoch(self, optim: torch.optim.Optimizer, current_task: int, dl = self.create_features_dataset(current_task) - with tqdm(enumerate(dl), total=len(dl), desc=f'GR epoch {epoch + 1}/{self.args.num_epochs_gr_first_stage}') as pbar: + with tqdm(enumerate(dl), total=len(dl), desc=f'GR first stage epoch {epoch + 1}/{self.args.num_epochs_gr_first_stage}', leave=False) as pbar: for i, (image_features, labels) in pbar: if self.args.debug_mode and i > 3: break diff --git a/models/utils/continual_model.py b/models/utils/continual_model.py index a33bc1a7..c52c9aea 100644 --- a/models/utils/continual_model.py +++ b/models/utils/continual_model.py @@ -70,7 +70,7 @@ class ContinualModel(nn.Module): n_tasks: int # Total number of tasks in the dataset @staticmethod - def get_parser() -> Namespace: + def get_parser() -> ArgumentParser: """ Returns the parser of the model. diff --git a/utils/args.py b/utils/args.py index 60a1c478..bf9e1186 100644 --- a/utils/args.py +++ b/utils/args.py @@ -175,7 +175,7 @@ def parse_choices(self) -> str: return ', '.join([c.keys() if isinstance(c, dict) else str(c) for c in self.choices]) def __str__(self): - tb = f"""**\\-\\-{self.name}** : {self.type.__name__} + tb = f"""**\\-\\-{self.name}** : {self.type.__name__ if self.type is not None else 'unknown'} \t*Help*: {self.help}\n \t- *Default*: {self.default}""" if self.choices is not None: @@ -195,7 +195,11 @@ def __init__(self, group_name: str, group_desc: str, doc_args: _DocsArgs): def __str__(self): args_str = '\n'.join([arg.__str__() for arg in self.doc_args]) - return f""".. rubric:: {self.group_name.capitalize()}\n\n*{self.group_desc}*\n\n{args_str}""" + s = f""".. rubric:: {self.group_name.capitalize()}\n\n""" + if self.group_desc: + s += f"*{self.group_desc}*\n\n" + s += args_str + return s def _parse_actions(actions: list, group_name: str, group_desc: str) -> _DocArgsGroup: @@ -225,7 +229,9 @@ def _parse_actions(actions: list, group_name: str, group_desc: str) -> _DocArgsG add_experiment_args(parser) docs_args = [] - for group in parser._action_groups[2:]: # first two groups are the positional and optional arguments + for group in parser._action_groups: + if len(group._group_actions) == 0: + continue docs_args.append(_parse_actions(group._group_actions, group.title, group.description)) with open('docs/utils/args.rst', 'w') as f: @@ -239,7 +245,9 @@ def _parse_actions(actions: list, group_name: str, group_desc: str) -> _DocArgsG parser = ArgumentParser() add_management_args(parser) docs_args = [] - for group in parser._action_groups[2:]: # first two groups are the positional and optional arguments + for group in parser._action_groups: + if len(group._group_actions) == 0: + continue docs_args.append(_parse_actions(group._group_actions, group.title, group.description)) with open('docs/utils/args.rst', 'a') as f: @@ -262,3 +270,21 @@ def _parse_actions(actions: list, group_name: str, group_desc: str) -> _DocArgsG print("Saving documentation in docs/utils/args.rst") print("Done!") + + from models import get_model_names + + for model_name, model_class in get_model_names().items(): + parser = model_class.get_parser() + + model_args_groups = [] + for group in parser._action_groups: + if len(group._group_actions) == 0: + continue + model_args_groups.append(_parse_actions(group._group_actions, group.title, group.description)) + model_filename = model_name.replace("-", "_") + with open(f'docs/models/{model_filename}_args.rst', 'w') as f: + f.write(f'Arguments\n') + f.write(f'~~~~~~~~~~~\n\n') + for arg in model_args_groups: + f.write(str(arg) + '\n\n') + print(f"Saving documentation in docs/models/{model_filename}_args.rst") From 3ee1940498600a0f8b4cfa8f8b2e6a1cab6fdff5 Mon Sep 17 00:00:00 2001 From: loribonna Date: Wed, 24 Jul 2024 23:14:29 +0200 Subject: [PATCH 63/66] fix epochs first stage parsing --- models/starprompt.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/models/starprompt.py b/models/starprompt.py index c4ae4df9..1a3b5304 100644 --- a/models/starprompt.py +++ b/models/starprompt.py @@ -83,7 +83,7 @@ def get_parser() -> ArgumentParser: first_stage_optim_group.add_argument("--first_stage_lr", type=float, default=0.002, help="First stage learning rate") first_stage_optim_group.add_argument("--first_stage_momentum", type=float, default=0, help="First stage momentum") first_stage_optim_group.add_argument("--first_stage_weight_decay", type=float, default=0, help="First stage weight decay") - first_stage_optim_group.add_argument("--first_stage_epochs", type=float, help="First stage epochs. If not set, it will be the same as `n_epochs`.") + first_stage_optim_group.add_argument("--first_stage_epochs", type=int, help="First stage epochs. If not set, it will be the same as `n_epochs`.") return parser From 59a46381df50e4830c6b708af9a6e651449ac433 Mon Sep 17 00:00:00 2001 From: loribonna Date: Thu, 25 Jul 2024 15:03:45 +0200 Subject: [PATCH 64/66] Updated docs. Add starprompt tests. --- docs/Makefile | 1 + docs/_templates/custom-module-template.rst | 20 +-- docs/conf.py | 6 +- docs/datasets/index.rst | 14 +- docs/getting_started/fast_training.rst | 2 +- docs/how_to_run/starprompt.rst | 49 +++++-- docs/models/index.rst | 4 +- docs/readme.rst | 6 +- docs/utils/args.rst | 136 +++++++++---------- models/cgil.py | 2 +- models/cgil_utils/README.md | 2 +- models/cgil_utils/cgil_utils.py | 2 +- models/first_stage_starprompt.py | 4 +- models/second_stage_starprompt.py | 4 +- models/star_prompt_utils/end_to_end_model.py | 2 +- models/starprompt.py | 6 +- tests/test_starprompt.py | 34 +++++ utils/args.py | 10 +- utils/simclrloss.py | 11 +- utils/stats.py | 16 ++- 20 files changed, 191 insertions(+), 140 deletions(-) diff --git a/docs/Makefile b/docs/Makefile index 7a34cc2c..faeed095 100644 --- a/docs/Makefile +++ b/docs/Makefile @@ -15,6 +15,7 @@ help: .PHONY: help Makefile clean: + rm models/*_args.rst @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) # rm -rf generated # rm -rf **/generated diff --git a/docs/_templates/custom-module-template.rst b/docs/_templates/custom-module-template.rst index bf1e160a..6b212bac 100644 --- a/docs/_templates/custom-module-template.rst +++ b/docs/_templates/custom-module-template.rst @@ -8,8 +8,8 @@ {% block attributes %} {% if attributes %} -Module Attributes -~~~~~~~~~~~~~~~~~~ + Module Attributes + ~~~~~~~~~~~~~~~~~~ {% for item in attributes %} .. autoattribute:: {{ item }} @@ -20,8 +20,8 @@ Module Attributes {% block classes %} {% if classes %} -Classes -~~~~~~~~ + Classes + ~~~~~~~~ {% for item in classes %} .. autoclass:: {{ item }} @@ -34,9 +34,9 @@ Classes {% block functions %} {% if functions %} -Functions -~~~~~~~~~~ - + Functions + ~~~~~~~~~~ + {% for item in functions %} .. autofunction:: {{ item }} :members: @@ -52,8 +52,8 @@ Functions {% block exceptions %} {% if exceptions %} -Exceptions -~~~~~~~~~~ + Exceptions + ~~~~~~~~~~ {% for item in exceptions %} .. autoexception:: {{ item }} @@ -76,7 +76,7 @@ Exceptions .. toctree:: :hidden: {% for item in modules | reorder_modules %} - {{ item }} + {{ item | get_item_name }} <{{ item }}> {%- endfor %} {% endif %} diff --git a/docs/conf.py b/docs/conf.py index 129e3dc5..92f218bb 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -135,11 +135,12 @@ def get_headling_module(fullname): fs = open(f'./docs/{ module }/{ name }.rst', 'r').read() return fs else: - if os.path.isdir('./' + '/'.join(paths)) or os.path.dirname(module) == 'models': + ref_name = name + if os.path.isdir('./' + '/'.join(paths)): # or os.path.dirname(module).lower() in ['models', 'datasets', 'utils', 'backbone']: name = name.replace('_', ' ') else: name = name.upper().replace('_', ' ') - return f".. _module-{name}:\n{name}\n" + "=" * (len(name) + 1) + return f".. _module-{ref_name}:\n{name}\n" + "=" * (len(name) + 1) def reorder_modules(modules): @@ -178,3 +179,4 @@ def parse_toctree_name(item): FILTERS["has_items"] = has_items FILTERS["drop_torch_items"] = drop_torch_items FILTERS["get_attributes"] = get_attributes +FILTERS["get_item_name"] = lambda x: x.split('.')[-1].lower() diff --git a/docs/datasets/index.rst b/docs/datasets/index.rst index a56ef064..ef46f955 100644 --- a/docs/datasets/index.rst +++ b/docs/datasets/index.rst @@ -45,11 +45,11 @@ each dataset **must statically define** all the necessary information to run a c - **get_class_names** (``callable``): returns the class names for the dataset. This method is not implemented by default, but is expected for some methods (e.g., `clip`). The method *should* populate the **class_names** attribute of the dataset to cache the result and call the ``fix_class_names_order`` method to ensure that the class names are in the correct order. -See :ref:`continual_dataset` for more details or **SequentialCIFAR10** in :ref:`seq_cifar10` for an example. +See :ref:`module-continual_dataset` for more details or **SequentialCIFAR10** in :ref:`module-seq_cifar10` for an example. .. note:: Datasets are downloaded by default in the **data** folder. You can change this - default location by setting the **base_path** function in :ref:`conf`. + default location by setting the **base_path** function in :ref:`module-conf`. .. _settings: @@ -95,9 +95,9 @@ This is done with the **set_default_from_args** decorator, which takes the name Steps to create a new dataset: ------------------------------ -All datasets must inherit from the **ContinualDataset** class, which is defined in :ref:`continual_dataset`. The only -exception are datasets that follow the `general-continual` setting, which inherit from the **GCLDataset** class, (defined in :ref:`gcl_dataset`). -These classes provide some useful methods to create data loaders and store masked data loaders for continual learning experiments. See more in section :ref:`Utils`. +All datasets must inherit from the **ContinualDataset** class, which is defined in :ref:`module-continual_dataset`. The only +exception are datasets that follow the `general-continual` setting, which inherit from the **GCLDataset** class, (defined in :ref:`module-gcl_dataset`). +These classes provide some useful methods to create data loaders and store masked data loaders for continual learning experiments. See more in section :ref:`module-utils`. 1. Create a new file in the `datasets` folder, e.g. ``my_dataset.py``. @@ -107,7 +107,7 @@ These classes provide some useful methods to create data loaders and store maske .. tip:: For convenience, most datasets are initially created with all classes and then masked appropriately by the **store_masked_loaders** function. - For example, in :ref:`seq_cifar10` the **get_data_loaders** function of **SequentialCIFAR10** dataset first inizializes the **MyCIFAR10** and **TCIFAR10** + For example, in :ref:`module-seq_cifar10` the **get_data_loaders** function of **SequentialCIFAR10** dataset first inizializes the **MyCIFAR10** and **TCIFAR10** datasets with train and test data for all classes respectively, and then masks the data loaders to return only the data for the current task. .. important:: @@ -123,7 +123,7 @@ Utils - **get_data_loaders**: This function should take care of downloading the dataset if necessary, make sure that it contains samples and labels for **only** the current task (you can use the **store_masked_loaders** function), and create the data loaders. -- **store_masked_loaders**: This function is defined in :ref:`continual_dataset` and takes care of masking the data loaders to return only the data for the current task. +- **store_masked_loaders**: This function is defined in :ref:`module-continual_dataset` and takes care of masking the data loaders to return only the data for the current task. It is used by most datasets to create the data loaders for each task. - If the ``--permute_classes`` flag is set to ``1``, it also applies the appropriate permutation to the classes before splitting the data. diff --git a/docs/getting_started/fast_training.rst b/docs/getting_started/fast_training.rst index 95d2f05b..56c5c17e 100644 --- a/docs/getting_started/fast_training.rst +++ b/docs/getting_started/fast_training.rst @@ -17,7 +17,7 @@ Mammoth provides a number of optimizations to speed up training. These are **dis - It may not give a significant speedup for small models. Distributed training -==================== +-------------------- Mammoth supports distributed training via `DataParallel `_. To use it, simply pass the `--distributed=dp` argument to ``utils/main.py``. This will automatically use all available GPUs on the machine using the **make_dp** function in :ref:`module-distributed`. diff --git a/docs/how_to_run/starprompt.rst b/docs/how_to_run/starprompt.rst index 21900f93..c488dd4d 100644 --- a/docs/how_to_run/starprompt.rst +++ b/docs/how_to_run/starprompt.rst @@ -5,14 +5,33 @@ How to run STAR-Prompt You can find the complete paper at this `link `_. The hyperparameters reported in Tab. D and E are the ones used to obtain the results in the paper. Here we report the best hyperparameters we found for each dataset after a more thorough search. The results are very similar to the ones reported in the paper. +STAR-Prompt +----------- + +The most important hyperparameters for STAR-Prompt are a combination of those of the first and second stage (detailed below). The most important ones are: + +- ``lambda_ortho_first_stage``: the weight of the orthogonality loss for the first stage. +- ``lambda_ortho_second_stage``: the weight of the orthogonality loss for the second stage. +- ``learning_rate_gr_first_stage``: the learning rate of the Generative Replay for the first stage. +- ``learning_rate_gr_second_stage``: the learning rate of the Generative Replay for the second stage. +- ``num_epochs_gr_first_stage``: the number of epochs for the Generative Replay for the first stage. +- ``num_epochs_gr_second_stage``: the number of epochs for the Generative Replay for the second stage. + +The best configurations can be found in the tables below by merging the tables of the first and second stage. + +.. note:: + + In the paper we report the results with 3 different choices of random seeds: ``1993``, ``1996``, and ``1997``. We to not report the seed in the commands below for brevity but the seed can be set with the ``--seed`` argument. + First stage only ----------------- +~~~~~~~~~~~~~~~~ + In the following we report the commands to run the *first stage* of STAR-Prompt on the different datasets. The most important Hyperparameters are: -* ``lambda_ortho_coop``: the weight of the orthogonality loss. :math:`\lambda` in the main paper (Alg 1, Tab D, E). +* ``lambda_ortho_first_stage``: the weight of the orthogonality loss. :math:`\lambda` in the main paper (Alg 1, Tab D, E). * ``learning_rate_gr``: the learning rate of the Generative Replay. :math:`lr` in the main paper (Alg 1, Tab D, E). * ``num_epochs_gr``: the number of epochs for the Generative Replay. :math:`E_1` in the main paper (Alg 1, Tab D, E). @@ -24,30 +43,30 @@ Other hyperparameters such as ``gr_mog_n_iters`` and ``num_monte_carlo_gr`` have * - Dataset - Command * - EuroSAT-RGB - - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=5 --gr_mog_n_iters=200 --lambda_ortho_coop=30 --dataset=seq-eurosat-rgb`` + - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=5 --gr_mog_n_iters=200 --lambda_ortho_first_stage=30 --dataset=seq-eurosat-rgb`` * - CropDisease - - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=5 --lambda_ortho_coop=30 --learning_rate_gr=0.01 --dataset=seq-cropdisease`` + - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=5 --lambda_ortho_first_stage=30 --learning_rate_gr=0.01 --dataset=seq-cropdisease`` * - Resisc45 - - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=30 --lambda_ortho_coop=10 --dataset=seq-resisc45`` + - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=30 --lambda_ortho_first_stage=10 --dataset=seq-resisc45`` * - CIFAR-100 - - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=20 --lambda_ortho_coop=10 --num_monte_carlo_gr=1 --dataset=seq-cifar100-224`` + - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=20 --lambda_ortho_first_stage=10 --num_monte_carlo_gr=1 --dataset=seq-cifar100-224`` * - Imagenet-R - - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=20 --gr_mog_n_iters=200 --lambda_ortho_coop=30 --dataset=seq-imagenet-r`` + - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=20 --gr_mog_n_iters=200 --lambda_ortho_first_stage=30 --dataset=seq-imagenet-r`` * - ISIC - - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=30 --lambda_ortho_coop=5 --num_epochs_gr=50 --learning_rate_gr=0.01 --dataset=seq-isic`` + - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=30 --lambda_ortho_first_stage=5 --num_epochs_gr=50 --learning_rate_gr=0.01 --dataset=seq-isic`` * - ChestX - - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=10 --lambda_ortho_coop=30 --dataset=seq-chestx`` + - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=10 --lambda_ortho_first_stage=30 --dataset=seq-chestx`` * - CUB-200 - - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=50 --lambda_ortho_coop=30 --num_epochs_gr=50 --num_monte_carlo_gr=5 --dataset=seq-cub200`` + - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=50 --lambda_ortho_first_stage=30 --num_epochs_gr=50 --num_monte_carlo_gr=5 --dataset=seq-cub200`` * - Cars-196 - - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=50 --lambda_ortho_coop=30 --learning_rate_gr=0.01 --dataset=seq-cars196`` + - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=50 --lambda_ortho_first_stage=30 --learning_rate_gr=0.01 --dataset=seq-cars196`` Second stage only ------------------ +~~~~~~~~~~~~~~~~~ The *second stage* of STAR-Prompt can take either the class-specific embeddings learned during the first stage or the pre-existing templates of CLIP. This is controlled by the ``--keys_ckpt_path`` argument. If supplied (see :ref:`module-second_stage_starprompt`), it will load the pre-trained embeddings from the first stage. If not supplied, it will use the pre-existing templates of CLIP. The most important Hyperparameters are: -* ``lambda_ortho``: the weight of the orthogonality loss. :math:`\lambda` in the main paper (Alg 1, Tab D, E). +* ``lambda_ortho_second_stage``: the weight of the orthogonality loss. :math:`\lambda` in the main paper (Alg 1, Tab D, E). * ``learning_rate_gr``: the learning rate of the Generative Replay. :math:`lr` in the main paper (Alg 1, Tab D, E). * ``num_epochs_gr``: the number of epochs for the Generative Replay. :math:`E_2` in the main paper (Alg 1, Tab D, E). @@ -57,6 +76,6 @@ The *second stage* of STAR-Prompt can take either the class-specific embeddings * - Dataset - Command * - ISIC - - ``--model=second_stage_starprompt --lr=0.001 --optimizer=adam --n_epochs=30 --num_epochs_gr=50 --num_monte_carlo_gr=5 --learning_rate_gr=0.01 --dataset=seq-isic --lambda_ortho=50 --keys_ckpt_path=`` + - ``--model=second_stage_starprompt --lr=0.001 --optimizer=adam --n_epochs=30 --num_epochs_gr=50 --num_monte_carlo_gr=5 --learning_rate_gr=0.01 --dataset=seq-isic --lambda_ortho_second_stage=50 --keys_ckpt_path=`` * - CUB-200 - - ``--model=second_stage_starprompt --dataset=seq-cub200 --n_epochs=50 --batch_size=64 --virtual_bs_n=2 --lr=0.001 --optimizer=adam --lambda_ortho=30 --learning_rate_gr=0.01 --num_monte_carlo_gr=5`` \ No newline at end of file + - ``--model=second_stage_starprompt --dataset=seq-cub200 --n_epochs=50 --batch_size=64 --virtual_bs_n=2 --lr=0.001 --optimizer=adam --lambda_ortho_second_stage=30 --learning_rate_gr=0.01 --num_monte_carlo_gr=5`` \ No newline at end of file diff --git a/docs/models/index.rst b/docs/models/index.rst index 6ba50f33..7a8dd413 100644 --- a/docs/models/index.rst +++ b/docs/models/index.rst @@ -69,7 +69,7 @@ Besides the **observe** and **forward** methods, the **ContinualModel** provides Automatic attributes ~~~~~~~~~~~~~~~~~~~~ -The base class **ContinualModel** provides a few properties that are automatically set during the incremental training (see :ref:`continual_model` for more details). The most important attributes are: +The base class **ContinualModel** provides a few properties that are automatically set during the incremental training (see :ref:`module-continual_model` for more details). The most important attributes are: .. admonition:: Task-related attributes: @@ -112,7 +112,7 @@ The base class **ContinualModel** provides a few properties that are automatical - **args**: the arguments passed to the framework. .. note:: - The automatic conversion between `PIL `_ and `kornia `_ is handeled by the **to_kornia_transform** function in :ref:`kornia_utils`, which converts (*most*) PIL transforms to kornia transforms. However, not all the transforms are supported, and thus this function *may not be always available*. If you want to use a custom transform, you have to extend the **to_kornia_transform** function. + The automatic conversion between `PIL `_ and `kornia `_ is handeled by the **to_kornia_transform** function in :ref:`module-kornia_utils`, which converts (*most*) PIL transforms to kornia transforms. However, not all the transforms are supported, and thus this function *may not be always available*. If you want to use a custom transform, you have to extend the **to_kornia_transform** function. Model parameters ~~~~~~~~~~~~~~~~~ diff --git a/docs/readme.rst b/docs/readme.rst index aab19dad..8773ac8d 100644 --- a/docs/readme.rst +++ b/docs/readme.rst @@ -9,12 +9,12 @@ Welcome to Mammoth's documentation! Mammoth - An Extendible (General) Continual Learning Framework for Pytorch ========================================================================== -Official repository of `Class-Incremental Continual Learning into the eXtended DER-verse `_, `Dark Experience for General Continual Learning: a Strong, Simple Baseline `_, and `https://arxiv.org/pdf/2403.06870 `_. +Official repository of `Class-Incremental Continual Learning into the eXtended DER-verse `_, `Dark Experience for General Continual Learning: a Strong, Simple Baseline `_, and `Semantic Residual Prompts for Continual Learning `_. Mammoth is a framework for continual learning research. With **40 methods and 21 datasets**, it includes the most complete list competitors and benchmarks for research purposes. -The core idea of Mammoth is that it is designed to be modular, easy to extend, and - most importantly - _easy to debug_. -Ideally, all the code necessary to run the experiments is included _in the repository_, without needing to check out other repositories or install additional packages. +The core idea of Mammoth is that it is designed to be modular, easy to extend, and - most importantly - *easy to debug*. +Ideally, all the code necessary to run the experiments is included *in the repository*, without needing to check out other repositories or install additional packages. With Mammoth, nothing is set in stone. You can easily add new models, datasets, training strategies, or functionalities. diff --git a/docs/utils/args.rst b/docs/utils/args.rst index efd1ae4e..30c9d7e3 100644 --- a/docs/utils/args.rst +++ b/docs/utils/args.rst @@ -5,10 +5,6 @@ Arguments .. rubric:: EXPERIMENT-RELATED ARGS -.. rubric:: Options - - - .. rubric:: Experiment arguments *Arguments used to define the experiment settings.* @@ -16,35 +12,35 @@ Arguments **\-\-dataset** : str *Help*: Which dataset to perform experiments on. - - *Default*: None - - *Choices*: seq-tinyimg, seq-mit67, seq-cars196, seq-cifar100-224-rs, seq-cifar100-224, seq-chestx, seq-cifar10-224-rs, mnist-360, seq-cropdisease, seq-eurosat-rgb, seq-imagenet-r, seq-cifar100, seq-cifar10-224, perm-mnist, seq-cub200, seq-cifar10, rot-mnist, seq-resisc45, seq-mnist, seq-isic, seq-tinyimg-r + - *Default*: ``None`` + - *Choices*: ``seq-tinyimg, seq-mit67, seq-cars196, seq-cifar100-224-rs, seq-cifar100-224, seq-chestx, seq-cifar10-224-rs, mnist-360, seq-cropdisease, seq-eurosat-rgb, seq-imagenet-r, seq-cifar100, seq-cifar10-224, perm-mnist, seq-cub200, seq-cifar10, rot-mnist, seq-resisc45, seq-mnist, seq-isic, seq-tinyimg-r`` **\-\-model** : custom_str_underscore *Help*: Model name. - - *Default*: None - - *Choices*: joint-gcl, second-stage-starprompt, lwf-mc, gdumb-lider, ewc-on, xder, hal, sgd, si, first-stage-starprompt, icarl, lucir, fdr, icarl-lider, derpp, der, derpp-lider, gem, bic, attriclip, starprompt, coda-prompt, clip, pnn, er-ace, xder-ce, dualprompt, twf, mer, er-ace-lider, gdumb, l2p, ccic, slca, agem-r, rpc, xder-rpc, gss, lwf, cgil, er, agem + - *Default*: ``None`` + - *Choices*: ``joint-gcl, second-stage-starprompt, lwf-mc, gdumb-lider, ewc-on, xder, hal, sgd, si, first-stage-starprompt, icarl, lucir, fdr, icarl-lider, derpp, der, derpp-lider, gem, bic, attriclip, starprompt, coda-prompt, clip, pnn, er-ace, xder-ce, dualprompt, twf, mer, er-ace-lider, gdumb, l2p, ccic, slca, agem-r, rpc, xder-rpc, gss, lwf, cgil, er, agem`` **\-\-lr** : float *Help*: Learning rate. - - *Default*: None + - *Default*: ``None`` **\-\-batch_size** : int *Help*: Batch size. - - *Default*: None + - *Default*: ``None`` **\-\-label_perc** : float *Help*: Percentage in (0-1] of labeled examples per task. - - *Default*: 1 + - *Default*: ``1`` **\-\-joint** : int *Help*: Train model on Joint (single task)? - - *Default*: 0 - - *Choices*: 0, 1 + - *Default*: ``0`` + - *Choices*: ``0, 1`` **\-\-eval_future** : int *Help*: Evaluate future tasks? - - *Default*: 0 - - *Choices*: 0, 1 + - *Default*: ``0`` + - *Choices*: ``0, 1`` .. rubric:: Validation and fitting arguments @@ -53,42 +49,42 @@ Arguments **\-\-validation** : float *Help*: Percentage of samples FOR EACH CLASS drawn from the training set to build the validation set. - - *Default*: None + - *Default*: ``None`` **\-\-validation_mode** : str *Help*: Mode used for validation. Must be used in combination with `validation` argument. Possible values: - `current`: uses only the current task for validation (default). - `complete`: uses data from both current and past tasks for validation. - - *Default*: current - - *Choices*: complete, current + - *Default*: ``current`` + - *Choices*: ``complete, current`` **\-\-fitting_mode** : str *Help*: Strategy used for fitting the model. Possible values: - `epochs`: fits the model for a fixed number of epochs (default). NOTE: this option is controlled by the `n_epochs` argument. - `iters`: fits the model for a fixed number of iterations. NOTE: this option is controlled by the `n_iters` argument. - `early_stopping`: fits the model until early stopping criteria are met. This option requires a validation set (see `validation` argument). The early stopping criteria are: if the validation loss does not decrease for `early_stopping_patience` epochs, the training stops. - - *Default*: epochs - - *Choices*: epochs, iters, time, early_stopping + - *Default*: ``epochs`` + - *Choices*: ``epochs, iters, time, early_stopping`` **\-\-early_stopping_patience** : int *Help*: Number of epochs to wait before stopping the training if the validation loss does not decrease. Used only if `fitting_mode=early_stopping`. - - *Default*: 5 + - *Default*: ``5`` **\-\-early_stopping_metric** : str *Help*: Metric used for early stopping. Used only if `fitting_mode=early_stopping`. - - *Default*: loss - - *Choices*: loss, accuracy + - *Default*: ``loss`` + - *Choices*: ``loss, accuracy`` **\-\-early_stopping_freq** : int *Help*: Frequency of validation evaluation. Used only if `fitting_mode=early_stopping`. - - *Default*: 1 + - *Default*: ``1`` **\-\-early_stopping_epsilon** : float *Help*: Minimum improvement required to consider a new best model. Used only if `fitting_mode=early_stopping`. - - *Default*: 1e-06 + - *Default*: ``1e-06`` **\-\-n_epochs** : int *Help*: Number of epochs. Used only if `fitting_mode=epochs`. - - *Default*: None + - *Default*: ``None`` **\-\-n_iters** : int *Help*: Number of iterations. Used only if `fitting_mode=iters`. - - *Default*: None + - *Default*: ``None`` .. rubric:: Optimizer and learning rate scheduler arguments @@ -97,39 +93,35 @@ Arguments **\-\-optimizer** : str *Help*: Optimizer. - - *Default*: sgd - - *Choices*: sgd, adam, adamw + - *Default*: ``sgd`` + - *Choices*: ``sgd, adam, adamw`` **\-\-optim_wd** : float *Help*: optimizer weight decay. - - *Default*: 0.0 + - *Default*: ``0.0`` **\-\-optim_mom** : float *Help*: optimizer momentum. - - *Default*: 0.0 + - *Default*: ``0.0`` **\-\-optim_nesterov** : int *Help*: optimizer nesterov momentum. - - *Default*: 0 + - *Default*: ``0`` **\-\-lr_scheduler** : str *Help*: Learning rate scheduler. - - *Default*: None + - *Default*: ``None`` **\-\-lr_milestones** : int *Help*: Learning rate scheduler milestones (used if `lr_scheduler=multisteplr`). - - *Default*: [] + - *Default*: ``[]`` **\-\-sched_multistep_lr_gamma** : float *Help*: Learning rate scheduler gamma (used if `lr_scheduler=multisteplr`). - - *Default*: 0.1 + - *Default*: ``0.1`` .. rubric:: MANAGEMENT ARGS -.. rubric:: Options - - - .. rubric:: Management arguments *Generic arguments to manage the experiment reproducibility, logging, debugging, etc.* @@ -137,88 +129,88 @@ Arguments **\-\-seed** : int *Help*: The random seed. If not provided, a random seed will be used. - - *Default*: None + - *Default*: ``None`` **\-\-permute_classes** : int *Help*: Permute classes before splitting into tasks? This applies the seed before permuting if the `seed` argument is present. - - *Default*: 1 - - *Choices*: 0, 1 + - *Default*: ``1`` + - *Choices*: ``0, 1`` **\-\-base_path** : str *Help*: The base path where to save datasets, logs, results. - - *Default*: ./data/ + - *Default*: ``./data/`` **\-\-device** : str *Help*: The device (or devices) available to use for training. More than one device can be specified by separating them with a comma. If not provided, the code will use the least used GPU available (if there are any), otherwise the CPU. MPS is supported and is automatically used if no GPU is available and MPS is supported. If more than one GPU is available, Mammoth will use the least used one if `--distributed=no`. - - *Default*: None + - *Default*: ``None`` **\-\-notes** : str *Help*: Helper argument to include notes for this run. Example: distinguish between different versions of a model and allow separation of results - - *Default*: None + - *Default*: ``None`` **\-\-eval_epochs** : int *Help*: Perform inference on validation every `eval_epochs` epochs. If not provided, the model is evaluated ONLY at the end of each task. - - *Default*: None + - *Default*: ``None`` **\-\-non_verbose** : int *Help*: Make progress bars non verbose - - *Default*: 0 - - *Choices*: 0, 1 + - *Default*: ``0`` + - *Choices*: ``0, 1`` **\-\-disable_log** : int *Help*: Disable logging? - - *Default*: 0 - - *Choices*: 0, 1 + - *Default*: ``0`` + - *Choices*: ``0, 1`` **\-\-num_workers** : int *Help*: Number of workers for the dataloaders (default=infer from number of cpus). - - *Default*: None + - *Default*: ``None`` **\-\-enable_other_metrics** : int *Help*: Enable computing additional metrics: forward and backward transfer. - - *Default*: 0 - - *Choices*: 0, 1 + - *Default*: ``0`` + - *Choices*: ``0, 1`` **\-\-debug_mode** : int *Help*: Run only a few training steps per epoch. This also disables logging on wandb. - - *Default*: 0 - - *Choices*: 0, 1 + - *Default*: ``0`` + - *Choices*: ``0, 1`` **\-\-inference_only** : int *Help*: Perform inference only for each task (no training). - - *Default*: 0 - - *Choices*: 0, 1 + - *Default*: ``0`` + - *Choices*: ``0, 1`` **\-\-code_optimization** : int *Help*: Optimization level for the code.0: no optimization.1: Use TF32, if available.2: Use BF16, if available.3: Use BF16 and `torch.compile`. BEWARE: torch.compile may break your code if you change the model after the first run! Use with caution. - - *Default*: 0 - - *Choices*: 0, 1, 2, 3 + - *Default*: ``0`` + - *Choices*: ``0, 1, 2, 3`` **\-\-distributed** : str *Help*: Enable distributed training? - - *Default*: no - - *Choices*: no, dp, ddp + - *Default*: ``no`` + - *Choices*: ``no, dp, ddp`` **\-\-savecheck** : str *Help*: Save checkpoint every `task` or at the end of the training (`last`). - - *Default*: None - - *Choices*: last, task + - *Default*: ``None`` + - *Choices*: ``last, task`` **\-\-loadcheck** : str *Help*: Path of the checkpoint to load (.pt file for the specific task) - - *Default*: None + - *Default*: ``None`` **\-\-ckpt_name** : str *Help*: (optional) checkpoint save name. - - *Default*: None + - *Default*: ``None`` **\-\-start_from** : int *Help*: Task to start from - - *Default*: None + - *Default*: ``None`` **\-\-stop_after** : int *Help*: Task limit - - *Default*: None + - *Default*: ``None`` .. rubric:: Wandb arguments @@ -227,25 +219,25 @@ Arguments **\-\-wandb_name** : str *Help*: Wandb name for this run. Overrides the default name (`args.model`). - - *Default*: None + - *Default*: ``None`` **\-\-wandb_entity** : str *Help*: Wandb entity - - *Default*: None + - *Default*: ``None`` **\-\-wandb_project** : str *Help*: Wandb project name - - *Default*: None + - *Default*: ``None`` .. rubric:: REEHARSAL-ONLY ARGS **\-\-buffer_size** : int *Help*: The size of the memory buffer. - - *Default*: None + - *Default*: ``None`` **\-\-minibatch_size** : int *Help*: The batch size of the memory buffer. - - *Default*: None + - *Default*: ``None`` diff --git a/models/cgil.py b/models/cgil.py index ed6c5a6d..85fa76ef 100644 --- a/models/cgil.py +++ b/models/cgil.py @@ -20,7 +20,7 @@ def get_parser() -> ArgumentParser: parser.add_argument("--learning_rate_alignment", type=float, default=0.05, help="Learning rate for GR.") parser.add_argument("--optim_alignment", type=str, default='adamw', choices=('sgd', 'adam', 'adamw'), help="Optimizer for GR.") parser.add_argument("--optim_alignment_wd", type=float, default=0, help="Weight decay for GR.") - parser.add_argument("--lambda_ortho_coop", type=float, default=1, help="Orthogonality loss coefficient for coop") + parser.add_argument("--lambda_ortho_first_stage", type=float, default=1, help="Orthogonality loss coefficient for coop") parser.add_argument("--num_epochs_alignment", type=int, default=30, help="Num. of epochs for GR.") parser.add_argument("--batch_size_alignment", type=int, default=128, help="Batch size for alignment.") parser.add_argument('--gr_mog_n_components', type=int, default=5, help="Number of components for GR with MOG.") diff --git a/models/cgil_utils/README.md b/models/cgil_utils/README.md index d5bbd78a..12f67b9f 100644 --- a/models/cgil_utils/README.md +++ b/models/cgil_utils/README.md @@ -6,7 +6,7 @@ It may be required to add the root directory to the python path. if you are usin export PYTHONPATH=$PYTHONPATH:/path/to/mammoth ``` -In the paper we employ the following hyperparameters for the different datasets accross the seeds `1992`, `1996` and `1997` (we report only the seed `1992` for brevity). The hyperparameters are the same for the other seeds: +In the [[paper](https://arxiv.org/abs/2407.15793)] we employ the following hyperparameters for the different datasets accross the seeds `1992`, `1996` and `1997` (we report only the seed `1992` for brevity). The hyperparameters are the same for the other seeds: - **Imagenet-R** diff --git a/models/cgil_utils/cgil_utils.py b/models/cgil_utils/cgil_utils.py index 5b13e60f..270fe869 100644 --- a/models/cgil_utils/cgil_utils.py +++ b/models/cgil_utils/cgil_utils.py @@ -209,7 +209,7 @@ def train_alignment_epoch(self, optim: torch.optim.Optimizer) -> None: if self.args.align_with_ortholoss and not self.args.generated_context: ortho_loss = self.compute_ortho_loss() - loss += self.args.lambda_ortho_coop * ortho_loss + loss += self.args.lambda_ortho_first_stage * ortho_loss wandb_log['alignment_loss_ortho'] = ortho_loss.item() wandb_log['alignment_loss'] = loss.item() diff --git a/models/first_stage_starprompt.py b/models/first_stage_starprompt.py index 8d8288b2..014e01cd 100644 --- a/models/first_stage_starprompt.py +++ b/models/first_stage_starprompt.py @@ -41,7 +41,7 @@ def get_parser() -> ArgumentParser: type=int, default=2, help="How many times to sample from the dataset for Generative Replay") tunable_group.add_argument("--learning_rate_gr", "--learning_rate_gr_first_stage", dest="learning_rate_gr_first_stage", type=float, default=0.05, help="Learning rate for Generative Replay.") - tunable_group.add_argument("--lambda_ortho_coop", type=float, default=30, + tunable_group.add_argument("--lambda_ortho_first_stage", type=float, default=30, help="Orthogonality loss coefficient for coop") tunable_group.add_argument("--num_epochs_gr", "--num_epochs_gr_first_stage", dest="num_epochs_gr_first_stage", type=int, default=10, help="Num. of epochs for Generative Replay.") @@ -126,7 +126,7 @@ def observe(self, inputs, labels, not_aug_inputs, epoch=None): loss += loss_clip loss_ortho_coop = self.net.prompter.compute_ortho_loss(frozen_past_classes=self.n_past_classes, cur_classes=self.n_seen_classes) - loss += self.args.lambda_ortho_coop * loss_ortho_coop + loss += self.args.lambda_ortho_first_stage * loss_ortho_coop if self.epoch_iteration == 0: self.opt.zero_grad() diff --git a/models/second_stage_starprompt.py b/models/second_stage_starprompt.py index 7d4f2e25..4e927d69 100644 --- a/models/second_stage_starprompt.py +++ b/models/second_stage_starprompt.py @@ -62,7 +62,7 @@ def get_parser() -> ArgumentParser: # Tunable hyperparameters tunable_group = parser.add_argument_group('Tunable hyperparameters') - tunable_group.add_argument("--lambda_ortho", type=float, default=10, + tunable_group.add_argument("--lambda_ortho_second_stage", type=float, default=10, help="orthogonality loss coefficient") tunable_group.add_argument("--num_monte_carlo_gr", "--num_monte_carlo_gr_second_stage", dest="num_monte_carlo_gr_second_stage", type=int, default=1, help="how many times to sample from the dataset for alignment") @@ -305,7 +305,7 @@ def observe(self, inputs, labels, not_aug_inputs, epoch=None): loss = self.loss(stream_logits[:, :self.n_seen_classes], stream_labels) loss_ortho = self.net.prompter.compute_ortho_loss(frozen_past_classes=self.n_past_classes, cur_classes=self.n_seen_classes) - loss += self.args.lambda_ortho * loss_ortho + loss += self.args.lambda_ortho_second_stage * loss_ortho if self.epoch_iteration == 0: self.opt.zero_grad() diff --git a/models/star_prompt_utils/end_to_end_model.py b/models/star_prompt_utils/end_to_end_model.py index 11b9217e..6707fd4e 100644 --- a/models/star_prompt_utils/end_to_end_model.py +++ b/models/star_prompt_utils/end_to_end_model.py @@ -278,7 +278,7 @@ def train_first_stage_on_task(self, dataset: ContinualDataset, current_task: int loss += loss_clip loss_ortho_coop = self.first_stage.prompter.compute_ortho_loss(frozen_past_classes=n_past_classes, cur_classes=n_seen_classes) - loss += self.args.lambda_ortho_coop * loss_ortho_coop + loss += self.args.lambda_ortho_first_stage * loss_ortho_coop if i == 0: opt.zero_grad() diff --git a/models/starprompt.py b/models/starprompt.py index 1a3b5304..3e075727 100644 --- a/models/starprompt.py +++ b/models/starprompt.py @@ -56,7 +56,7 @@ def get_parser() -> ArgumentParser: tunable_group = parser.add_argument_group('Tunable hyperparameters') # second stage - tunable_group.add_argument("--lambda_ortho", type=float, default=10, + tunable_group.add_argument("--lambda_ortho_second_stage", type=float, default=10, help="orthogonality loss coefficient") tunable_group.add_argument("--num_monte_carlo_gr_second_stage", type=int, default=1, help="how many times to sample from the dataset for alignment") @@ -69,7 +69,7 @@ def get_parser() -> ArgumentParser: help="how many times to sample from the dataset for alignment") tunable_group.add_argument("--learning_rate_gr_first_stage", type=float, default=0.05, help="Learning rate for Generative Replay.") - tunable_group.add_argument("--lambda_ortho_coop", type=float, default=30, + tunable_group.add_argument("--lambda_ortho_first_stage", type=float, default=30, help="Orthogonality loss coefficient for coop") tunable_group.add_argument("--num_epochs_gr_first_stage", type=int, default=10, help="Num. of epochs for Generative Replay.") @@ -160,7 +160,7 @@ def observe(self, inputs, labels, not_aug_inputs, epoch=None): # second stage o loss = self.loss(stream_logits[:, :self.n_seen_classes], stream_labels) loss_ortho = self.net.second_stage.prompter.compute_ortho_loss(frozen_past_classes=self.n_past_classes, cur_classes=self.n_seen_classes) - loss += self.args.lambda_ortho * loss_ortho + loss += self.args.lambda_ortho_second_stage * loss_ortho if self.epoch_iteration == 0: self.opt.zero_grad() diff --git a/tests/test_starprompt.py b/tests/test_starprompt.py index 31790ccb..de7e53cd 100644 --- a/tests/test_starprompt.py +++ b/tests/test_starprompt.py @@ -83,3 +83,37 @@ def test_first_and_second_stage(): # REMOVE CHECKPOINT FILE os.remove(ckpt_path) + + +@init_test_environ +def test_full_starprompt(): + sys.argv = ['mammoth', + '--model', + 'starprompt', + '--dataset', + 'seq-cifar10-224', + '--lr', + '1e-4', + '--optimizer', + 'adam', + '--n_epochs', + '1', + '--batch_size', + '4', + '--non_verbose', + '1', + '--num_workers', + '0', + '--seed', + '1993', + '--debug_mode', + '1'] + + fn = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs', f'test_full_starprompt.log') + + # log all outputs to file + if not os.path.exists(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs')): + os.mkdir(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs')) + sys.stdout = open(fn, 'w', encoding='utf-8') + sys.stderr = sys.stdout + main() diff --git a/utils/args.py b/utils/args.py index bf9e1186..ce757da6 100644 --- a/utils/args.py +++ b/utils/args.py @@ -177,9 +177,9 @@ def parse_choices(self) -> str: def __str__(self): tb = f"""**\\-\\-{self.name}** : {self.type.__name__ if self.type is not None else 'unknown'} \t*Help*: {self.help}\n -\t- *Default*: {self.default}""" +\t- *Default*: ``{self.default}``""" if self.choices is not None: - tb += f"\n\t- *Choices*: {self.parse_choices()}" + tb += f"\n\t- *Choices*: ``{self.parse_choices()}``" return tb @@ -230,7 +230,7 @@ def _parse_actions(actions: list, group_name: str, group_desc: str) -> _DocArgsG docs_args = [] for group in parser._action_groups: - if len(group._group_actions) == 0: + if len([a for a in group._group_actions if a.dest != 'help']) == 0: continue docs_args.append(_parse_actions(group._group_actions, group.title, group.description)) @@ -246,7 +246,7 @@ def _parse_actions(actions: list, group_name: str, group_desc: str) -> _DocArgsG add_management_args(parser) docs_args = [] for group in parser._action_groups: - if len(group._group_actions) == 0: + if len([a for a in group._group_actions if a.dest != 'help']) == 0: continue docs_args.append(_parse_actions(group._group_actions, group.title, group.description)) @@ -278,7 +278,7 @@ def _parse_actions(actions: list, group_name: str, group_desc: str) -> _DocArgsG model_args_groups = [] for group in parser._action_groups: - if len(group._group_actions) == 0: + if len([a for a in group._group_actions if a.dest != 'help']) == 0: continue model_args_groups.append(_parse_actions(group._group_actions, group.title, group.description)) model_filename = model_name.replace("-", "_") diff --git a/utils/simclrloss.py b/utils/simclrloss.py index 5d74e178..148c6bd0 100644 --- a/utils/simclrloss.py +++ b/utils/simclrloss.py @@ -21,14 +21,15 @@ def __init__(self, temperature=0.07, contrast_mode='all', self.reduction = reduction def forward(self, features, labels=None, mask=None): - """Compute loss for model. If both `labels` and `mask` are None, - it degenerates to SimCLR unsupervised loss: - https://arxiv.org/pdf/2002.05709.pdf + """ + Compute loss for model. If both `labels` and `mask` are None, + it degenerates to SimCLR unsupervised loss: https://arxiv.org/pdf/2002.05709.pdf . + Args: features: hidden vector of shape [bsz, n_views, ...]. labels: ground truth of shape [bsz]. - mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j - has the same class as sample i. Can be asymmetric. + mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j has the same class as sample i. Can be asymmetric. + Returns: A loss scalar. """ diff --git a/utils/stats.py b/utils/stats.py index ceec0ba6..f214f6c9 100644 --- a/utils/stats.py +++ b/utils/stats.py @@ -8,8 +8,7 @@ def get_memory_mb(): Returns: dict: A dictionary containing the memory usage of the current process and its children. - The dictionary has the following - keys: + The dictionary has the following keys: - self: The memory usage of the current process. - children: The memory usage of the children of the current process. - total: The total memory usage of the current process and its children. @@ -49,12 +48,15 @@ class track_system_stats: Tracks both CPU and GPU memory usage if available. Usage: - with track_system_stats() as t: - for i in range(100): - ... # Do something - t() - cpu_res, gpu_res = t.cpu_res, t.gpu_res + .. code-block:: python + + with track_system_stats() as t: + for i in range(100): + ... # Do something + t() + + cpu_res, gpu_res = t.cpu_res, t.gpu_res Args: logger (Logger): external logger. From 0a5e53fb1da1d896f7bb2b4689872623d3e86614 Mon Sep 17 00:00:00 2001 From: loribonna Date: Thu, 25 Jul 2024 19:02:14 +0200 Subject: [PATCH 65/66] Add cub200 with resnet50. Updated tests and docs. Minor fixes. Tests pass. --- datasets/seq_cub200_rs.py | 87 +++++++++++++++++++++++++++++ datasets/seq_imagenet_r.py | 10 +++- datasets/utils/continual_dataset.py | 6 +- docs/getting_started/index.rst | 1 + docs/how_to_run/starprompt.rst | 43 +++++++++----- docs/utils/index.rst | 26 ++++++++- models/utils/continual_model.py | 10 +--- tests/test_cgil.py | 37 ++++++++++++ tests/test_datasets.py | 4 +- tests/test_scheduler.py | 4 +- tests/test_twf.py | 2 +- utils/checkpoints.py | 15 ++++- utils/stats.py | 2 + 13 files changed, 209 insertions(+), 38 deletions(-) create mode 100644 datasets/seq_cub200_rs.py create mode 100644 tests/test_cgil.py diff --git a/datasets/seq_cub200_rs.py b/datasets/seq_cub200_rs.py new file mode 100644 index 00000000..afaac1ce --- /dev/null +++ b/datasets/seq_cub200_rs.py @@ -0,0 +1,87 @@ +""" +Implements the Sequential CUB200 Dataset, as used in `Transfer without Forgetting `_ (Version with ResNet50 as backbone). +""" + +import torch +import torchvision.transforms as transforms +from typing import Tuple + +from backbone.ResNetBottleneck import resnet50 +from datasets.seq_cub200 import SequentialCUB200, MyCUB200, CUB200 +from datasets.transforms.denormalization import DeNormalize +from datasets.utils import set_default_from_args +from datasets.utils.continual_dataset import store_masked_loaders +from utils.conf import base_path + + +class MyCUB200RS(MyCUB200): + MEAN, STD = (0.4856, 0.4994, 0.4324), (0.2272, 0.2226, 0.2613) + TEST_TRANSFORM = transforms.Compose([transforms.Resize(MyCUB200.IMG_SIZE), transforms.ToTensor(), transforms.Normalize(MEAN, STD)]) + + +class SequentialCUB200RS(SequentialCUB200): + """Sequential CUB200 Dataset. Version with ResNet50 (as in `Transfer without Forgetting`) + + Args: + NAME (str): name of the dataset. + SETTING (str): setting of the dataset. + N_CLASSES_PER_TASK (int): number of classes per task. + N_TASKS (int): number of tasks. + SIZE (tuple): size of the images. + MEAN (tuple): mean of the dataset. + STD (tuple): standard deviation of the dataset. + TRANSFORM (torchvision.transforms): transformation to apply to the data. + TEST_TRANSFORM (torchvision.transforms): transformation to apply to the test data. + """ + NAME = 'seq-cub200-rs' + SETTING = 'class-il' + N_CLASSES_PER_TASK = 20 + N_TASKS = 10 + SIZE = (MyCUB200RS.IMG_SIZE, MyCUB200RS.IMG_SIZE) + MEAN, STD = (0.4856, 0.4994, 0.4324), (0.2272, 0.2226, 0.2613) + TRANSFORM = transforms.Compose([ + transforms.Resize(MyCUB200RS.IMG_SIZE), + transforms.RandomCrop(MyCUB200RS.IMG_SIZE, padding=4), + transforms.RandomHorizontalFlip(), + transforms.ToTensor(), + transforms.Normalize(MEAN, STD)]) + TEST_TRANSFORM = MyCUB200RS.TEST_TRANSFORM + + def get_data_loaders(self) -> Tuple[torch.utils.data.DataLoader, torch.utils.data.DataLoader]: + train_dataset = MyCUB200RS(base_path() + 'CUB200', train=True, + download=True, transform=SequentialCUB200RS.TRANSFORM) + test_dataset = CUB200(base_path() + 'CUB200', train=False, + download=True, transform=SequentialCUB200RS.TEST_TRANSFORM) + + train, test = store_masked_loaders( + train_dataset, test_dataset, self) + + return train, test + + @staticmethod + def get_transform(): + transform = transforms.Compose( + [transforms.ToPILImage(), SequentialCUB200RS.TRANSFORM]) + return transform + + @staticmethod + def get_backbone(): + num_classes = SequentialCUB200RS.N_CLASSES_PER_TASK * SequentialCUB200RS.N_TASKS + return resnet50(num_classes, pretrained=True) + + @staticmethod + def get_normalization_transform(): + return transforms.Normalize(SequentialCUB200RS.MEAN, SequentialCUB200RS.STD) + + @staticmethod + def get_denormalization_transform(): + transform = DeNormalize(SequentialCUB200RS.MEAN, SequentialCUB200RS.STD) + return transform + + @set_default_from_args('batch_size') + def get_batch_size(self): + return 16 + + @set_default_from_args('n_epochs') + def get_epochs(self): + return 30 diff --git a/datasets/seq_imagenet_r.py b/datasets/seq_imagenet_r.py index bb38571c..87142ee5 100644 --- a/datasets/seq_imagenet_r.py +++ b/datasets/seq_imagenet_r.py @@ -1,5 +1,11 @@ +import logging +try: + import requests +except ImportError as e: + logging.error("Please install requests using 'pip install requests'") + raise e + import os -from urllib import request import torchvision.transforms as transforms import torch.nn.functional as F from torch.utils.data import Dataset @@ -41,7 +47,7 @@ def __init__(self, root, train=True, transform=None, # download from https://people.eecs.berkeley.edu/~hendrycks/imagenet-r.tar print("Downloading imagenet-r dataset...") url = 'https://people.eecs.berkeley.edu/~hendrycks/imagenet-r.tar' - r = request('GET', url, allow_redirects=True) + r = requests.get(url, allow_redirects=True) if not os.path.exists(self.root): os.makedirs(self.root) print("Writing tar on disk...") diff --git a/datasets/utils/continual_dataset.py b/datasets/utils/continual_dataset.py index 48a4de5f..dcaa4f43 100644 --- a/datasets/utils/continual_dataset.py +++ b/datasets/utils/continual_dataset.py @@ -70,12 +70,10 @@ def __init__(self, args: Namespace) -> None: if not hasattr(self.args, 'class_order'): # set only once if self.args.seed is not None: np.random.seed(self.args.seed) - if isinstance(self.N_CLASSES_PER_TASK, int): - self.args.class_order = np.random.permutation(self.N_CLASSES_PER_TASK * self.N_TASKS) - else: - self.args.class_order = np.random.permutation(sum(self.N_CLASSES_PER_TASK)) + self.args.class_order = np.random.permutation(self.N_CLASSES) if args.joint: + assert self.SETTING in ['class-il', 'task-il'], 'Joint training is only supported for class-il and task' self.N_CLASSES_PER_TASK = self.N_CLASSES self.N_TASKS = 1 diff --git a/docs/getting_started/index.rst b/docs/getting_started/index.rst index d9ba6c76..ce9fc110 100644 --- a/docs/getting_started/index.rst +++ b/docs/getting_started/index.rst @@ -35,3 +35,4 @@ Mammoth includes a few tests to ensure that the code is working as expected for pytest --verbose tests +The tests are quite long, as they evaluate most of the functionality of Mammoth. The estimated runtime is around 1 hour on a RTX 4080 GPU. diff --git a/docs/how_to_run/starprompt.rst b/docs/how_to_run/starprompt.rst index c488dd4d..4eab5a6c 100644 --- a/docs/how_to_run/starprompt.rst +++ b/docs/how_to_run/starprompt.rst @@ -17,7 +17,7 @@ The most important hyperparameters for STAR-Prompt are a combination of those of - ``num_epochs_gr_first_stage``: the number of epochs for the Generative Replay for the first stage. - ``num_epochs_gr_second_stage``: the number of epochs for the Generative Replay for the second stage. -The best configurations can be found in the tables below by merging the tables of the first and second stage. +The best configurations can be found in the tables below by merging the tables of the first and second stage. The only difference is that the number of epochs for the first stage is set as ``--first_stage_epochs`` (by default, is set as ``--n_epochs``). .. note:: @@ -26,14 +26,13 @@ The best configurations can be found in the tables below by merging the tables o First stage only ~~~~~~~~~~~~~~~~ - In the following we report the commands to run the *first stage* of STAR-Prompt on the different datasets. The most important Hyperparameters are: * ``lambda_ortho_first_stage``: the weight of the orthogonality loss. :math:`\lambda` in the main paper (Alg 1, Tab D, E). -* ``learning_rate_gr``: the learning rate of the Generative Replay. :math:`lr` in the main paper (Alg 1, Tab D, E). -* ``num_epochs_gr``: the number of epochs for the Generative Replay. :math:`E_1` in the main paper (Alg 1, Tab D, E). +* ``learning_rate_gr_first_stage``: the learning rate of the Generative Replay. :math:`lr` in the main paper (Alg 1, Tab D, E). +* ``num_epochs_gr_first_stage``: the number of epochs for the Generative Replay. :math:`E_1` in the main paper (Alg 1, Tab D, E). Other hyperparameters such as ``gr_mog_n_iters`` and ``num_monte_carlo_gr`` have a much smaller impact. Here are reported the best configurations, but the default ones already give pretty much the same results. @@ -43,23 +42,23 @@ Other hyperparameters such as ``gr_mog_n_iters`` and ``num_monte_carlo_gr`` have * - Dataset - Command * - EuroSAT-RGB - - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=5 --gr_mog_n_iters=200 --lambda_ortho_first_stage=30 --dataset=seq-eurosat-rgb`` + - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=5 --gr_mog_n_iters_first_stage=200 --lambda_ortho_first_stage=30 --dataset=seq-eurosat-rgb`` * - CropDisease - - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=5 --lambda_ortho_first_stage=30 --learning_rate_gr=0.01 --dataset=seq-cropdisease`` + - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=5 --lambda_ortho_first_stage=30 --learning_rate_gr_first_stage=0.01 --dataset=seq-cropdisease`` * - Resisc45 - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=30 --lambda_ortho_first_stage=10 --dataset=seq-resisc45`` * - CIFAR-100 - - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=20 --lambda_ortho_first_stage=10 --num_monte_carlo_gr=1 --dataset=seq-cifar100-224`` + - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=20 --lambda_ortho_first_stage=10 --num_monte_carlo_gr_first_stage=1 --dataset=seq-cifar100-224`` * - Imagenet-R - - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=20 --gr_mog_n_iters=200 --lambda_ortho_first_stage=30 --dataset=seq-imagenet-r`` + - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=20 --gr_mog_n_iters_first_stage=200 --lambda_ortho_first_stage=30 --dataset=seq-imagenet-r`` * - ISIC - - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=30 --lambda_ortho_first_stage=5 --num_epochs_gr=50 --learning_rate_gr=0.01 --dataset=seq-isic`` + - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=30 --lambda_ortho_first_stage=5 --num_epochs_gr_first_stage=50 --learning_rate_gr_first_stage=0.01 --dataset=seq-isic`` * - ChestX - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=10 --lambda_ortho_first_stage=30 --dataset=seq-chestx`` * - CUB-200 - - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=50 --lambda_ortho_first_stage=30 --num_epochs_gr=50 --num_monte_carlo_gr=5 --dataset=seq-cub200`` + - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=50 --lambda_ortho_first_stage=30 --num_epochs_gr_first_stage=50 --num_monte_carlo_gr_first_stage=5 --dataset=seq-cub200`` * - Cars-196 - - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=50 --lambda_ortho_first_stage=30 --learning_rate_gr=0.01 --dataset=seq-cars196`` + - ``--model=first_stage_starprompt --lr=0.002 --n_epochs=50 --lambda_ortho_first_stage=30 --learning_rate_gr_first_stage=0.01 --dataset=seq-cars196`` Second stage only ~~~~~~~~~~~~~~~~~ @@ -67,8 +66,8 @@ Second stage only The *second stage* of STAR-Prompt can take either the class-specific embeddings learned during the first stage or the pre-existing templates of CLIP. This is controlled by the ``--keys_ckpt_path`` argument. If supplied (see :ref:`module-second_stage_starprompt`), it will load the pre-trained embeddings from the first stage. If not supplied, it will use the pre-existing templates of CLIP. The most important Hyperparameters are: * ``lambda_ortho_second_stage``: the weight of the orthogonality loss. :math:`\lambda` in the main paper (Alg 1, Tab D, E). -* ``learning_rate_gr``: the learning rate of the Generative Replay. :math:`lr` in the main paper (Alg 1, Tab D, E). -* ``num_epochs_gr``: the number of epochs for the Generative Replay. :math:`E_2` in the main paper (Alg 1, Tab D, E). +* ``learning_rate_gr_first_stage``: the learning rate of the Generative Replay. :math:`lr` in the main paper (Alg 1, Tab D, E). +* ``num_epochs_gr_second_stage``: the number of epochs for the Generative Replay. :math:`E_2` in the main paper (Alg 1, Tab D, E). .. list-table:: Hyperparameter table :header-rows: 1 @@ -76,6 +75,20 @@ The *second stage* of STAR-Prompt can take either the class-specific embeddings * - Dataset - Command * - ISIC - - ``--model=second_stage_starprompt --lr=0.001 --optimizer=adam --n_epochs=30 --num_epochs_gr=50 --num_monte_carlo_gr=5 --learning_rate_gr=0.01 --dataset=seq-isic --lambda_ortho_second_stage=50 --keys_ckpt_path=`` + - ``--model=second_stage_starprompt --lr=0.001 --optimizer=adam --n_epochs=30 --num_epochs_gr_second_stage=50 --num_monte_carlo_gr_second_stage=5 --learning_rate_gr_second_stage=0.01 --dataset=seq-isic --lambda_ortho_second_stage=50 --keys_ckpt_path=`` * - CUB-200 - - ``--model=second_stage_starprompt --dataset=seq-cub200 --n_epochs=50 --batch_size=64 --virtual_bs_n=2 --lr=0.001 --optimizer=adam --lambda_ortho_second_stage=30 --learning_rate_gr=0.01 --num_monte_carlo_gr=5`` \ No newline at end of file + - ``--model=second_stage_starprompt --dataset=seq-cub200 --n_epochs=50 --lr=0.001 --optimizer=adam --lambda_ortho_second_stage=30 --learning_rate_gr_second_stage=0.01 --num_monte_carlo_gr_second_stage=5`` + * - Imagenet-R + - ``--model=second_stage_starprompt --optimizer=adam --dataset=seq-imagenet-r --batch_size=16 --n_epochs=5 --lr=0.001 --lambda_ortho_second_stage=10 --learning_rate_gr_second_stage=0.001`` + * - CIFAR-100 + - ``--model=second_stage_starprompt --dataset=seq-cifar100-224 --n_epochs=20 --lr=0.001 --optimizer=adam --lambda_ortho_second_stage=2 --learning_rate_gr_second_stage=0.001`` + * - ChestX + - ``--model=second_stage_starprompt --dataset=seq-chestx --n_epochs=30 --lr=0.001 --optimizer=adam --lambda_ortho_second_stage=5 --learning_rate_gr_second_stage=0.05 --num_monte_carlo_gr_second_stage=1`` + * - CropDisease + - ``--model=second_stage_starprompt --optimizer=adam --dataset=seq-cropdisease --lr=0.001 --lambda_ortho_second_stage=5 --learning_rate_gr_second_stage=0.001 --num_monte_carlo_gr_second_stage=5 --num_epochs_gr_second_stage=10`` + * - Cars-196 + - ``--model=second_stage_starprompt --dataset=seq-cars196 --n_epochs=50 --lr=0.001 --optimizer=adam --lambda_ortho_second_stage=10 --learning_rate_gr_second_stage=0.01`` + * - Resisc45 + - ``--model=second_stage_starprompt --lr=0.001 --optimizer=adam --dataset=seq-resisc45 --n_epochs=30 --lambda_ortho_second_stage=5 --learning_rate_gr_second_stage=0.01 --num_monte_carlo_gr_second_stage=1 --num_epochs_gr_second_stage=10`` + * - Cars-196 + - ``--model=second_stage_starprompt --num_monte_carlo_gr_second_stage=2 --optimizer=adam --dataset=seq-eurosat-rgb --lr=0.001 --lambda_ortho_second_stage=5.0 --learning_rate_gr_second_stage=0.1`` \ No newline at end of file diff --git a/docs/utils/index.rst b/docs/utils/index.rst index cafeab82..9bc706f0 100644 --- a/docs/utils/index.rst +++ b/docs/utils/index.rst @@ -40,12 +40,36 @@ Other arguments such as the size of the training batch and the number of epochs .. note:: To ease hyper-parameter tuning, all boolean arguments follow the convention: ``--=1`` for ``True`` and ``--=0`` for ``False``. +Reproducibility +~~~~~~~~~~~~~~~~ + +By default, the library does not guarantee reproducibility and seeds are set randomly. However, this can be changed by setting the seed manually. + +For example, to run the `er` model on the `seq-cifar10` dataset with a seed of `42`, run the following command: + +.. code-block:: bash + + python utils/main.py --dataset seq-cifar10 --model der --buffer_size 500 --lr 0.03 --seed 42 + +Setting the seed affects: + +- The random number generators in `numpy`, `torch`, and `random`. +- The seed for all GPUs (if available). See `PyTorch's docs `_ for more informations. +- The order of the classes in each task (and the order of the tasks themselves). +- The random number generators in the data loaders. + +We do not set ``torch.use_deterministic_algorithms(True)`` by default, as it can slow down the training process and in our tests does not seem to affect results too much. However, it can be set manually in the `main.py` script if desired. + +.. important:: + + Setting the seed also influences **the order and the classes** present in each task. While this is desired in most cases, it can be disabled by setting the `permute_classes` argument to `0`. + Other useful arguments ~~~~~~~~~~~~~~~~~~~~~~ * ``--debug_mode``: If set to ``1``, the model will run for only a few iterations per each epoch and will disable WandB logging. This is useful for debugging. -* ``--num_workers**: The number of workers to use for the data loaders. If set to ``0``, the data loaders will run in the main process. This is useful for debugging. +* ``--num_workers``: The number of workers to use for the data loaders. If set to ``0``, the data loaders will run in the main process. This is useful for debugging. * ``--seed``: The seed to use for the random number generators. If this is not set, the seed will be randomly generated. diff --git a/models/utils/continual_model.py b/models/utils/continual_model.py index c52c9aea..a1791bd2 100644 --- a/models/utils/continual_model.py +++ b/models/utils/continual_model.py @@ -250,15 +250,7 @@ def compute_offsets(self, task: int) -> Tuple[int, int]: Returns: the start and end offset """ - if isinstance(self._cpt, int): - cpt = self.N_CLASSES // self.N_TASKS - offset1 = task * cpt - offset2 = (task + 1) * cpt - else: - offset1 = sum(self._cpt[:task]) - offset2 = sum(self._cpt[:task + 1]) - - return offset1, offset2 + return self.dataset.get_offsets(task) def get_debug_iters(self): """ diff --git a/tests/test_cgil.py b/tests/test_cgil.py new file mode 100644 index 00000000..47d30dc9 --- /dev/null +++ b/tests/test_cgil.py @@ -0,0 +1,37 @@ +import os +import sys +sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) +from utils.main import main +from utils.test_utils import init_test_environ +import pytest + + +@init_test_environ +def test_dualprompt(): + sys.argv = ['mammoth', + '--model', + 'cgil', + '--dataset', + 'seq-cifar100-224', + '--lr', + '1e-4', + '--n_epochs', + '1', + '--batch_size', + '2', + '--non_verbose', + '1', + '--num_workers', + '0', + '--seed', + '0', + '--debug_mode', + '1'] + + # log all outputs to file + if not os.path.exists(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs')): + os.mkdir(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs')) + sys.stdout = open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logs', f'test_cgil.log'), 'w', encoding='utf-8') + sys.stderr = sys.stdout + + main() diff --git a/tests/test_datasets.py b/tests/test_datasets.py index db38a7af..fa2db994 100644 --- a/tests/test_datasets.py +++ b/tests/test_datasets.py @@ -9,9 +9,9 @@ @init_test_environ @pytest.mark.parametrize('dataset', ['seq-mnist', 'seq-cifar10', 'seq-cifar100', 'seq-tinyimg', 'rot-mnist', 'perm-mnist', 'mnist-360', 'seq-cifar100-224', - 'seq-cifar10-224', 'seq-cifar100-224-rs', + 'seq-cifar10-224', 'seq-cifar100-224-rs', 'seq-cub200-rs', 'seq-cifar100-224-rs', 'seq-tinyimg-r', 'seq-cub200', 'seq-imagenet-r', - 'seq-cafr196', 'seq-chestx', 'seq-cropdisease', 'seq-eurosat-rgb', + 'seq-cars196', 'seq-chestx', 'seq-cropdisease', 'seq-eurosat-rgb', 'seq-isic', 'seq-mit67', 'seq-resisc45']) def test_datasets(dataset): sys.argv = ['mammoth', diff --git a/tests/test_scheduler.py b/tests/test_scheduler.py index 12610b5f..8d25a266 100644 --- a/tests/test_scheduler.py +++ b/tests/test_scheduler.py @@ -29,7 +29,7 @@ def test_der_cifar100_defaultscheduler(): '--debug_mode', '1', '--savecheck', - '1', + 'task', '--seed', '0'] @@ -83,7 +83,7 @@ def test_der_cifar100_customscheduler(): '--debug_mode', '1', '--savecheck', - '1', + 'task', '--lr_scheduler', 'multisteplr', '--lr_milestones', diff --git a/tests/test_twf.py b/tests/test_twf.py index 9650ecb0..c413d07c 100644 --- a/tests/test_twf.py +++ b/tests/test_twf.py @@ -59,7 +59,7 @@ def test_twf_random_init(dataset, resize_maps): @init_test_environ @pytest.mark.parametrize(('dataset', 'loadcheck'), [('seq-cifar100', 'https://unimore365-my.sharepoint.com/:u:/g/personal/215580_unimore_it/EeWEOSls505AsMCTXAxWoLUBmeIjCiplFl40zDOCmB_lEw?e=Izv0jh'), - ('seq-cub200', 'https://unimore365-my.sharepoint.com/:u:/g/personal/215580_unimore_it/EV7I5BpJvURIhMMk95r3x5YBAZKch-NPFEJ9hhPQghcWCw?e=dt8wp3'), + ('seq-cub200-rs', 'https://unimore365-my.sharepoint.com/:u:/g/personal/215580_unimore_it/EV7I5BpJvURIhMMk95r3x5YBAZKch-NPFEJ9hhPQghcWCw?e=dt8wp3'), ('seq-cifar10', 'https://unimore365-my.sharepoint.com/:u:/g/personal/215580_unimore_it/EWttSkmKfkNEpEWNiPoS3zUB6uzZydc0irOW0Xbu3jtr3Q?e=JQ6Fay')]) @pytest.mark.parametrize('resize_maps', ['0', '1']) def test_twf_with_checkpoint(dataset, loadcheck, resize_maps): diff --git a/utils/checkpoints.py b/utils/checkpoints.py index c4b8ce07..6bb1f9fb 100644 --- a/utils/checkpoints.py +++ b/utils/checkpoints.py @@ -1,6 +1,7 @@ import random import string +import numpy as np import torch from torch import distributed as dist import os @@ -170,10 +171,20 @@ def mammoth_load_checkpoint(args, model: torch.nn.Module, ignore_classifier=Fals def _check_loaded_args(args, loaded_args): + def _check_arg(arg, loaded_arg): + if isinstance(arg, (list, tuple)): + return any([a != la for a, la in zip(arg, loaded_arg)]) + elif isinstance(arg, dict): + return any([k not in loaded_arg or _check_arg(v, loaded_arg[k]) for k, v in arg.items()]) + elif isinstance(arg, (torch.Tensor, np.ndarray)): + return (arg != loaded_arg).any() + return arg != loaded_arg + ignored_args = ['loadcheck', 'start_from', 'stop_after', 'conf_jobnum', 'conf_host', 'conf_timestamp', 'distributed', 'examples_log', 'examples_full_log', - 'intensive_savecheck', 'job_number', 'conf_git_commit', 'loss_log', 'tensorboard', 'seed', 'savecheck', 'notes', 'non_verbose', 'autorelaunch', 'force_compat', 'conf_external_path'] + 'intensive_savecheck', 'job_number', 'conf_git_commit', 'loss_log', 'tensorboard', 'seed', 'savecheck', 'notes', 'non_verbose', 'autorelaunch', + 'force_compat', 'conf_external_path', 'ckpt_name'] mismatched_args = [x for x in vars(args) if x not in ignored_args and ( - x not in vars(loaded_args) or getattr(args, x) != getattr(loaded_args, x))] + x not in vars(loaded_args) or _check_arg(getattr(args, x), getattr(loaded_args, x)))] if len(mismatched_args): if 'force_compat' not in vars(args) or args.force_compat: diff --git a/utils/stats.py b/utils/stats.py index f214f6c9..9a91a460 100644 --- a/utils/stats.py +++ b/utils/stats.py @@ -117,6 +117,8 @@ def __exit__(self, exc_type, exc_val, exc_tb): if self.disabled: return + torch.cuda.synchronize() # this allows to raise errors triggered previously by the GPU + cpu_res, gpu_res = self.get_stats() self.update_stats(cpu_res, gpu_res) From ff0a3357475caf0829a53defee188a29e5c25704 Mon Sep 17 00:00:00 2001 From: loribonna Date: Thu, 25 Jul 2024 19:24:35 +0200 Subject: [PATCH 66/66] Updated requirements --- .github/workflows/deploy_pages.yml | 2 +- docs/how_to_run/starprompt.rst | 6 +++++- models/attriclip.py | 8 -------- models/attriclip_utils/model.py | 3 --- models/coda_prompt.py | 1 - models/slca.py | 1 - requirements-optional.txt | 8 +++++++- 7 files changed, 13 insertions(+), 16 deletions(-) diff --git a/.github/workflows/deploy_pages.yml b/.github/workflows/deploy_pages.yml index 4101931a..d311f831 100644 --- a/.github/workflows/deploy_pages.yml +++ b/.github/workflows/deploy_pages.yml @@ -39,7 +39,7 @@ jobs: python-version: "3.10" - name: Install dependencies run: | - pip install -r docs/requirements.txt -r requirements.txt + pip install -r docs/requirements.txt -r requirements.txt -r requirements-optional.txt pip install quadprog==0.1.11 - name: Sphinx build run: | diff --git a/docs/how_to_run/starprompt.rst b/docs/how_to_run/starprompt.rst index 4eab5a6c..787fa355 100644 --- a/docs/how_to_run/starprompt.rst +++ b/docs/how_to_run/starprompt.rst @@ -69,6 +69,10 @@ The *second stage* of STAR-Prompt can take either the class-specific embeddings * ``learning_rate_gr_first_stage``: the learning rate of the Generative Replay. :math:`lr` in the main paper (Alg 1, Tab D, E). * ``num_epochs_gr_second_stage``: the number of epochs for the Generative Replay. :math:`E_2` in the main paper (Alg 1, Tab D, E). +.. important:: + + Remember to set the ``--keys_ckpt_path`` argument to the path of the checkpoint of the first stage. Otherwise, the second stage will not be able to load the class-specific embeddings and will use the pre-existing templates of CLIP. + .. list-table:: Hyperparameter table :header-rows: 1 @@ -89,6 +93,6 @@ The *second stage* of STAR-Prompt can take either the class-specific embeddings * - Cars-196 - ``--model=second_stage_starprompt --dataset=seq-cars196 --n_epochs=50 --lr=0.001 --optimizer=adam --lambda_ortho_second_stage=10 --learning_rate_gr_second_stage=0.01`` * - Resisc45 - - ``--model=second_stage_starprompt --lr=0.001 --optimizer=adam --dataset=seq-resisc45 --n_epochs=30 --lambda_ortho_second_stage=5 --learning_rate_gr_second_stage=0.01 --num_monte_carlo_gr_second_stage=1 --num_epochs_gr_second_stage=10`` + - ``--model=second_stage_starprompt --lr=0.001 --optimizer=adam --dataset=seq-resisc45 --n_epochs=30 --lambda_ortho_second_stage=5 --learning_rate_gr_second_stage=0.01 --num_monte_carlo_gr_second_stage=1 --num_epochs_gr_second_stage=50`` * - Cars-196 - ``--model=second_stage_starprompt --num_monte_carlo_gr_second_stage=2 --optimizer=adam --dataset=seq-eurosat-rgb --lr=0.001 --lambda_ortho_second_stage=5.0 --learning_rate_gr_second_stage=0.1`` \ No newline at end of file diff --git a/models/attriclip.py b/models/attriclip.py index 9f49e93b..852b5d98 100644 --- a/models/attriclip.py +++ b/models/attriclip.py @@ -3,15 +3,7 @@ from utils.args import * from models.utils.continual_model import ContinualModel -import timm from datasets import get_dataset -from torchvision import transforms -from copy import deepcopy -import torch -import sys -import pickle -import os -import numpy as np import wandb from models.attriclip_utils.model import CoOp from models.attriclip_utils.utils import cosine_loss diff --git a/models/attriclip_utils/model.py b/models/attriclip_utils/model.py index 08b95785..519b3ae2 100644 --- a/models/attriclip_utils/model.py +++ b/models/attriclip_utils/model.py @@ -1,10 +1,7 @@ import torch import torch.nn as nn -from torch.nn import functional as F -from tqdm import tqdm from copy import deepcopy -import numpy as np from models.attriclip_utils.clip.clip_2 import load, tokenize from models.attriclip_utils.clip.simple_tokenizer import SimpleTokenizer as _Tokenizer diff --git a/models/coda_prompt.py b/models/coda_prompt.py index 52749301..2a0a35c5 100644 --- a/models/coda_prompt.py +++ b/models/coda_prompt.py @@ -7,7 +7,6 @@ """ import logging -import timm from utils.args import * from models.utils.continual_model import ContinualModel import torch diff --git a/models/slca.py b/models/slca.py index 9647e187..5d9fec9c 100644 --- a/models/slca.py +++ b/models/slca.py @@ -11,7 +11,6 @@ from utils.args import * from models.utils.continual_model import ContinualModel -import timm import torch from utils.conf import get_device from models.slca_utils.slca import SLCA_Model diff --git a/requirements-optional.txt b/requirements-optional.txt index 0e9c2c08..66f9fd7c 100644 --- a/requirements-optional.txt +++ b/requirements-optional.txt @@ -3,4 +3,10 @@ onedrivedownloader==1.1.3 pytest==7.4.2 quadprog==0.1.11 setproctitle==1.3.2 -wandb \ No newline at end of file +wandb +deeplake +pandas +timm==0.9.8 +clip @ git+https://github.com/openai/CLIP.git +scikit-learn +decorator \ No newline at end of file

MmcrSAt1=dxs^0NPn3)$^cQvvQS(EUa{e-?IM!u0w4r ziGxQ?2CwIks@Ft(1p}EB_1lk1KWmgj1&O@+2SB zKHQco$38o6_iOcmG8j!@KS_@meaLF?S9Fo>565B%dHUfm$g8{K6O{`+dJW z6#)ND%8ZyIL|`JpJowaXo}A6*+E5y>vzb8VG^`MDk!*qmASwVNlv z515=6tG*<XH!USOY-|FmZuaOXJ{@-W_L$$pfds2sHW(+_ z2O;Y^u7kgH(Nb@&?FR?@?)#Ia9w%~ z7^N<(Yfch^`DZQzAO?IkLtnC;r+(!vp6t%?vGV5&y;(cp5efZ8mvzj?p*daAcwV-o zy;7d7qtgW-)2jKlB3WElfX=U2+727p;#rSoiqMywFW<1fY_+;uxq5$}4$sekZpJiO zmaYnT^rgPn<=U^;tS%yj+l(>bz0fnZs828P#oL$UuYGAp`#Zb;t1>Zdrdrs+fhSg4 z2zi1FfcfSvJllW?k-`r=9Hb-Z19obdAWQbz0pGgqN)PZeiIzPW=NJr8j_In)A3@t6 z=?LOzxSH=Jy!KAL-A1yT?dYj}zaD7mAz6EXpu#@q26WGK(IJ&2o{reIR=HfxGkQWG zC@x*k!2`PzCZaWk&Zb{cAy35YZCd8jV53kU?VZ9*weFXzDt%p^!0#P;OM#)Yu(Bu`W-lV$GZ2=}L zm#c%eC3zo{xe!qw+n!QL3sYB2F)mj?buDE=YsN&U0hI^7#5OjBqZ@DhOdoO^v<$fQ zrLCmD&w$$*uq#x3Yd`2F;T}N`D{X}r%p9Q+bhDWr=Il!!=_Arh2w3Rv(e&=msII5` zX@URx_0LIr_cIuvzy0vkrzQdBV>^EoW@IM>`rZ$z-c-tCa~xQCTxKlY`7)^8ZbR5I zAo|&kaY;_ukgukMPP!P#Qrj02zvP3nt-2j0`pP8#w92&0;K5?&*zJyPkG$`~!h+K* z;83hkgs0ia;y0?m6-Q4gt`)!HFn%1Ee z@Y^ay9uC*q>S)0Y2qB`L1rR#ls19(2CwwOq2`}3+Idq=Cy`0fN(E{4tF_ghdlE@)*@Sa!IM@3>fISFu-hGH$87-|1PzjGy)(?4 z58UhaWL>*_z!x8`4{y&RHMR9Jt9B;(mwAFO$KvIkiYHh)y!1-u((oiPlW+L$bBAd<4f!uF~(QeT_ncrsaL=vl;%kz z*x+}vc`hX@=$*aJprj1z`OP48cdW{kgW?J17LzNHM`W19#%P1`8DRjda}1!m)1Hw) zv7?r8cTz0KZ9mH)bO~i5QB^YIu`mNT!sxL9cnx*L!;HL1;Q!nDP^L4~;o&n+upn@h z?Lkyyi|2*bp1O{zgya-_@ciVOzpai_U@c#`hE7+pV|4*V6<$Ld|#*gv}tq|%CBoCms&jY{UpZ55A&sB!r+nHZ|55q0B z+v9>s`RiBz!au`b{{{clpMKz^mdJu42Bo_8_vrHka+I875`9&2nW)QU*7KZpF*>Ht zC>;Gsh)O-I`!R3eh^=h2)6a8P4V(on(}c!;{Up48p;;c}Qu|#h?`Uo<7QC)%^QFcH zs#Z+giME>oPn!qYfxrLN+h4-lZ_yZ-ur}>{l#K9^4M2CKoR14EO{CU7>pZt77z>f& zzdQx+X&48^+k@t zf(~d_j2E!jVFyJ)shT)gnQ_m5Ms>7Fs_CG3Z@W+#5eo;sk0_;524ZOE0*BbITDs)s5@0Ur7rzt!bGmInS)jhj z>h{`$lwi;_&Xkg3%fMeBzx@y=&c|<`sHo8dN7q62?)fD66@g|-5oS4$*^!+)SK2Fp z*#uME^e#aaj3{9Awea`pdG%Rw-kjj9gy_Lk*En;W1cM&QQy_s(e@FD`?<_EY-9~Pe zi||!YiFWxNpU-t{3^htI_pWts$je`ZEH z39A&cFZ&Y%3b{4k5p!~iJT3g)7KOyYbQ|oWD98F`eVmZFYaGu7_KgF~5#2W{HmacX zB)hf=T@b350;3BCxv>(O;saKK4ht?)BPS}S{XX80w8jDXC|EKr=UCL-1Fw0ocpIMq ziS))@NiM_Do_vIH`Y#uiKC@IiI$@)oF=wl0O7(-mV{%5=`)YnZ=F5Ue{-$Fr*&y|i zrDit>oQJEt4!eI4{fPD9P4R1Z=u8l&tk3*Ed%1_$WULd2UmS1{o_?@N5Zqt@=*hXsmbpYm?2l!daEi-ib(dkb2?392SNwkyE^4%l}y1VbqsD3|`YFF8!jjM5SdIoT+03V^juXo0RIb^h~-1fSDnR{d} zyuO(%8%TXyc?1aEYLO3YW_Pz(Ag8>!>7v=I_*>7c5=JUn#u{o;Lm}z%x}B|0Fp@)zq0q!J$QBv~ zblA~NRfHfBLuy{76=haA&HXv1Q78#9&rtD&ieX#j>z#KDha#GvK&5HDK*8P)D6C|f zOG+}@*uw#QcvZ@wwSV>RUjhMMRE~o5JXX-gD9>S;G5a^}BTEhMSqOfE9^AaP0J}@D z=jMJW&P<*;m?o}&dJrijfq)=T!%i#c-02E;SEIolF}MgkKMU*yi3J^P7&~t#pYdT= z*)1C_l;&0a6DE>c8WnRGod62p-~}pl8>}|=_>2P`CVEsw2#VURl*L{%ELqodi+bc! z5y@o4KBG6_pKXa)2P-P-z~bah4dc_tjGBigS~BYoDId&55T0p=?DETh;`|#x2cLKU zN`9hE%21ArS)C20_5e1Vp7k>zDS|#3`r~PqstA4ujgMiJ|D_G8wA#R%hweo$D+;># zzBOkmZ31FMmJnvM*@YAGaCe4x;8H3sFSK4Dj1ZI62?_J}@UT(KmP@Or`4QwMz~Uo^ z>ic7Y%}S6xu-IarSR7xW#VPw22Fh-hL{REhJZn8TsVE2gZ7r6(EfjT!agvFgYn%ft zlt>z=St{2PnjO&{E=S&SeR;v=m#5{oqL+j)EnFxQ0X1Qe(omQj-^3L?A{3zBzEfCw zg5ZT0?$`K1iyqlKl~UxKD;_8JG#19Uq@wICNG&b3P-wBn<ru zl2QG?fv5V<7JZ!A7ok+D-mDw!((P?hAL}>hNu%h+g--O2s(`t!hJJMJSoDNEHw_tV{nQ*h-L^`lmAuih%@3NOOYm?is{Pet)=odiKynt(m9wq^ z)wZ~U(S3TjLj*c}tuJXLV|#}R^T)EN42Pq58>u#i#M^df0@X(MyriU>!tICyo4_OF zS6~=g&@6L_UQSJ=B&Y+7aT?|+;l_W%Oy_B)bS3%`E3G&xig;Hm{H!!<`p}LPH0W}(rtobF!Wjkr)QWvzy9FR+6s^`` z0s*|B-tLNtZFJ+3G~sIsJBZEK#OnL+Qq%k1*K+IaB~XPXe+mp6IMI>A-ga3Jpb$Ai zMeT093n5=xK6}eeClNQOP)hc+L^51fAHG8-+h%^j_;~6HE?EIwF{&%Ht%htejXtBK z(w+_K&{icNR98MiQnSzSZo~&0OHzo$#EN3>6R$dj_7i!|-n56LO)Xa|>c<0inm%&R!!dfd7MP123XhQFNw!jeB3@1K zYF2tl?T4^i(9zOGLf2sM&mKqc9Rq5$Ng&ySakHmoQsaG)1P5@KAobIx!)=5(7 zwLJ!}*}0LkP9>tIlogn$lOCViuq_LIeC-fQs)Bad4s^NY5Wu^_!5Meo9@%~i&+qK4 zDPRL@ebm$i(Eo<>H};(2c;OpuJln8>30lXJ2b@8YZN>mtjGR0755q4ue1xK!ZFD)u z4Dial39RtVHXWR9`^0=p8El5e)O2Zlq-G0V3)CPeHCUQl!TbPcA-yb$bdSs=-g=uZ zD4}EO=G3=&{eF1+5~z182i5t@q9gPWOClmrMROhuVpu6hX;LzJBov3?K*H|QrmDD> z0PhQNM+(mc?pF0zdU(_%5`WEQta>hab2)6QoonR@@O6e*AT3geD+WLuo?bK63`RO6 zCaQ{+RzIO)QAr4)B1F8;U#lq-u|0eRV0@&;?Y9n%TEdTjmUM~eMV%+`2-5<-yOK8N zzAH>bJy6^f_c6^kLUdpgikf*=(5OiYSVaIZ7bHxww&m7G9IxcQ+{{8@N`8!yx3mh4 z?}0Dgew_Xr&flb{mGBj8=YTltOBF+Is^`jAt(sS#y`1eL{@%*79Wv<J^Yl9Uz|5bgk^=NV>HpQ8z&P|4w~AfG&Chcg!|oSqZ(3MTi?`J9wC&;wM-SO^6h zB%!OWBO3&+XBqL|zJ5k~na^x_%BcmW`p~eGr-rx~*X~(FTJgKqTOKqY0k(O9=S=T~ z@05mNNqnF>tk(vKHlV`O&3U{a1oET3J7TWdT8-hbX&O#KM4ft4+qR!iBO{y$rDVsd zx@BnP|0AR!>3LsFAG9DhJSXl4rfo0Jzou4<@}guTfX(3tlH@47#{GonhY1I{ z^Hlw5`aGYC568it$hHd<0Sac6BSwowWDG7D=8C#FX=N>}uokre-W?%DscxVVjZg7d zX6T1dGOb?*MS0qrcMpt33QS;14u`;n+idr#K1^XN`ID8T@mHy59@DEbHs(UHJ zx`Z_O{VKY79XJ(*;R&-%o_~`*hR!H{W+%%K2mrzve-dBhbaN>RG#274<|<;GhCa()Ia(m~PpX04HVjTNG9{HA8QNKb#de9~jJ8 z(|>ZnLj&!m;WXktviNNpH*WdNkDIKm+hWfRvpr;J=~?tIFX+rr$$5oZu6=M&8=43( zMeQf$UJfdg;ivp2kKgttA_>=H+h?kzS6=S3hWgUfB}FbS%%vI$yoUHswS3o z4hmHlgaTj5#3qoDph9?(gLHj~YR^)a4Q+)gk3I;`e|`?n&(HkDEZjY>CoWM^8?n!_ zw#dgSPU>n90G&Ut#6P$Gg9Q8)!;WG#o+xIwHV}dAQ(lxutCGyL;?Rw?=bqwb9oD%z zRCetoT-{m0i$GNzq$N`&@#=d&a*nEn3Fa@MK4{}pXwnA>R2ZG7pLf;hUGbGtM}aZn zLPex=5l(ICsTZ@}_Nh=oTu(r~&p9E)-KynR42B~&pqp4F*gIaSoq`F%3d>EG)q%s%L23FXx+*US;2Yzqd2gqaF1-H9 z9v9N;z2DkmO{e-lnIlcI$0m0S**`K$#f0QTmt2=hu`cLUTiKXZ^wF4$IVKC>RS&$s$ z>paLl?qdJpbN)iHYHMHR>ClE#J1dj#^2y;vv&vc+@>IJgolCs~YcOJQvz`xzbV- zGZxPo!G<6gS~_mdiQuBJujypH_uKIH>E->WP%~EqLp1deG%hy6ZU3EcThk&#Xpnjj zgdmg1wt5eC5P_kvr}}byt_BF>k^B|L9`mKW1Ejr|j~TDH;e=e?l}%_haj{O0O@oE{ z&usnTQTy=6GZ4trN^!=mse%4%k5~ZgZX}X$Qhia^RZBdS99#2%c92K~%RjsVL$rEt zS$H>9B_0n>z(fetaX_e*#jg!@gk^$q%cGGRVTRzHZP@oelC19a=M;hc#N>nzXi2Lu zKwo*qvwHg)M#tpaVN=+26~y~FTTITtDbT=8*@+62o7&4tDQ!3ixa{)HwyiCwF;KF1 zU%e-YdmOxJaO=1JtbD4?j?oUzQd{vrJIx->Aw8ZFp8e43XQtGnYBO6V>I#~8I__%u z&eno<$GrWnf_0#p#2bOQs>Cy*#W@c(O59n3Rd*n7(N3cR;w8@6aVUFX^L~ybjl(JT z?_5i(fl?kEf-OuzcyVVC(LF&dqWlaLh&lW$`Z~40(t`y)NYynRwAIZS#4qa=x3Ez( zi`_<~CVhooSDm3{#nf7IwJ3A(Nhugm$m}6kok2Wu)aq=86#NPdGTDj+xuN%P5UvC9 zXIZ$lA1CT;;{a;7MUDx{(TDod!YtuKf*BdXClM-%Jb{D^IwAK7w{GCg?=sO=H7P2~EHllbEoG?@Lu3}$b$%Eg1( z5-&QuLowepNlpbv+q_6hbI@$;!Bf1PCA@^ExtoZrxEH<0-hPxLFl2iTq0K1~An|VD zCE}vIjHh-RhKjNvV+>C&OoyKL?vpX}0PB1c|3o^;(x2FPvQ^Use?9z1TT${r6%@q& zz@at;W6~m4aG?95Ny4*Gq7c6bL${cDswg!IbrXRt?pUhn8j=+n8a!qzYL-k;>au{) zvKiJv9qH5CcnLT)`pJvt}dwuM4nOkv{y|0q3N zZ?d)O;gp_F4|keI9v4qlq_gqnpZ5_C=mAAQeY^oH+o0=}5=gjxj|SG7dfh+BO&$LR zK;3jNGBvruGO@-ns=|)gsLqX0js;C9RH^ofy;8o<;YE?Le@SIRW)-;lMR+<;Zq+#) zIfMo3Q?@rxc}cStD#gQGYDAw(C9f?Y0+Nhh0k#haGU%7{4s zPN;s?Nu?23nCRy~+Y#V^VMXL1(zT;h4e*e}xao%MmLrK28G?kq19DD$`O0WkwQq|1E z1XyC$0VV`HJfPxycM-zftzVIc?x|3vYzGLW_yJD@y-LU4r1UDN_lW0eL^iADG8;3g z7{O=+9bX>$@J=$g!eNK6RNHi_7=~o^>Qo@;H5a?emm0d))81KeM0V(X`uZ8$A$Qar zw#eY#hBtZw4QQ977{F1?I(PLRpftULH8J|;)JE&7jP|pPVBa2K02+D(Y^KOUlrTNX zoQ;q&oRJ)o4cG~{l^X-rLmr{WzwwZcp+dO~?p`Tv% zS^}50>UG*@1-C;VB|q08B8rG3LiSQpQMxY|E5{io}Iov2gcL+w8iXdlW zbMTql9$5H+b)ejZE5~$_9wY@Xj@C4-MgoZZl0Blh-a?k$1j4+B=mmWPF}rQSX((#a zb0L0UPv%qfr=4!Lqd|Jx{?~QsFJw${$E~ylfL;V zd_BF^{VcMGPRzy)_XG_Q30-y~$LB>=XdL~bGLG0$Dg`WshSc%!(xCtw$vIE4!Oy_t z2XIF&Ar)$1Ceb5mZHp|)p3OpeL1iE5H#dw`ZIrCzZtp1;!@lbH(q&z-(njr^rijxf znazvVroPpdBO^M%m9^m~lJ7w-9`j_o+t~VRtcIS3RiFdAf1E4v7T`EA+DLT9fF9lX zfm>uy(3>}kgUO`bl{@TppM++ebsm#vjD{3```zUQd(n!Z{p_*=w+;y_IOc8J$SoR9 zXPO$Kq|yfTG@XCKv_j40*+V$UDU!P|K#klYnD~cw&)Y+l;t^9R^tz)VWby8 zHfYgd9sn+d>0i3NkI-Iu#4(nP6G%Qb?g3tYJ2ByK#oI$RR;3OnY8B)7#iu^VL$*B| zM^(cu)x5^j86;_T<~DMu)-1nEv_CG5(iUg}b}(1y32>TvHMOwK&5C#o6InNy$*dCQ z2lvjA8hIfoiPHDEiF2qoA?0BK1l=@QNuM??QnoCCwL<%q6B4NwAyO_!G-LU-kn;y{ zX4nE+H3HdeRTIq?8{o%FPPg{9)vuT@+X4MFd%LYqj5yAO(b_1o$dOd~&`7cx8(o%L z?@(HmT>3mIFC_s1wFY$)KA3!6-Vtu|bf6GpPa-*wK;$D+EbigD0dSm4CNvL7Lx9%L zBtc^IWtIvi%s9eOn*h*UBHMQ7m#9QT7p;(c2H!7(rfJtlYN>lHF-2tG6}3f+Q*AoC zt!|1qO+Ns%uE(&A4CONv9sNuxQsyBwn+M9%5b>5NEc+>3sxF#G-ec=vS}L1^t(vv- zx&p~$p=~w-|6}$*HUD;MAvia5QNtA-(%x)J56mjr`%}2lCa#2T&aForsU+~o=UpF~ z1g|q$)ELBQEG1ghtN8lx)^6pj!m&_a@3-Hd$As^H3WxLE9aX!Bc0wSum9iqqG*LBb z0;kqU_PQ$9+N&Qf8_x^m=^BOq6|zw7>bp_8C>3g^x(^TQ8x>KFv$O?YA+3u(?xzj= z=)5&3TR&*sBU`6|L(vdU;R@P-1+0mo-1b!TI}1-`u)73osZu~d6Gm1}_i#HdeJuwq zP^_k4tDbj~RrnC3NggWrhcUbUq)l{V9#RwF;lqKFlIj}u)WxFn*K2?In`3OY!J&B-!J zREa7f@(*+YTTMS$#Zoh0Ya`0FJxSI;mB(>4I<}QEfYLVGXqf!*XlS``?en1yA4vcu zPL;)Wg}Z@!nX;pAI#T#aFkT?4f*@o1$|mf0l3YM4l6dIq#PRM>RpJ*HLYJqN+R7;G z8IP+96~u?`N7Ue@$Ax)xETlEC#mdBg$0@aa05ojgG;Zop2C3sd>_4%U6Fp5XJvM12Y2b&4? ziX}4pL$d+894{q`T$~ObIVPt}zq2TlG}68qKKiyElX~KA6cI)kt9;bZLvS5XPM8KA0i*qU-27M%D^gRTfws9c2%v<29u%d%jCJSxk^0(K+)<@M+$!(H4;(L z9(OgiH#|e+@1Qrc*mX1{7Qtc=TNISMfyWTAlU@UOhLXGtih+?IK*k9 zdz`fCQK%9&kqp_HdE{d~O&*m(9+^_b5AFwCC-$Jqx#VC`WQ0o7UvXWp>JZL3v{Zl4rp5*28uUlb1AjabUj+4SP4>fqdE) zH2{< zGTS%bmH!3&N1kMtUI-nDhlK0S$M#Ssf?5Ep$o1TQL9??oLc-KnXnf*~os2AcSBnSv zw3~K%Y40b8EK+8jOISqu`0bO|-#}>RhbGuL7VFiGGaiGgiv~zSroVwxNaVA1c$#cm zD4R9VpR$zd3cLvxB&dyU=!ap9MT4X4W-Ca%XE0y+@(@_5-9PkWnTM zc2avGI`M|$$u1GS!OK-`0_AkfIEJ(Rc-`Mr#ja-6Nqu){a&<~j)8>XZALV>q3zaA@ zZILU=QLc654c{C}B;_0YmRf695#g8E?rH2W^cVn00`d)4ZN>({1Gk;?`Z1K=M&u71 zvw;$iOif?G^%elwmd~f^=S%<&X!pdhrhLqG{p8c^Nz1?i2$F=jKFUt&K~!1pkyuI) zBVF!C%~**QmRR^m!lqmkvrV!OToslfpjc(kB(l!xogMsk;KB@7#Z^ypSu>a=QDUoj z05C1-6ZIq$Z(U^ifjr`dJfohecT3GZZ= zEuD()dUvuqLHA*}HyxLOA_l6PsUm=FRCx#stCe@}MhK3hah9RKU{}3R{Vk2fGr8Y|H}XJa5Qxa&QdT#irtSJiM`?7PE0^)xvm2 zoX}yNMVz8Ow^d==&GB(tsJ`Yy?=kQV8%>vCyk^%<^oUa6JdI_wp=u*!X-KlPoG_mg zyzH~2Z<+fRPE>mi zPyIMTnhdi&{@m{ZrSzRp)IvSb7An(hs5hfJ>L@=a-)fx)C`%un4z9UPF^#TnASpnV z5zEN$s=-|f1MksD-C#Lh?Cf8Iw{@{GFa^lL-V_fCrw^{gLp0!NFBhnAT-~niB|LQC zR?~(a&h55P7mNnxvnO>;kqlKC9-J+R8CZ7=Z17hxS(sVus?qbXoh9qZ*=kx3vb(M7 ztG@0lISnO?;~qqok|+9F658_svcsMOPcXT~#;Gk>l{Og}2@}!-K?s&>cE%2_ZHeV+ zdd@f}vn+KdImM}mpl*#>z9{YvUm0ek>2B*NMaiTU+vBqIk3&v^c7Cv-x+a)z#au?p zvNVE8==Z}5IV^c?8)Oy_z+C!I3(%MvRw9eKC`a@-c3jG@0d7k3u=K9HQ?|For8|I z2S7RLOVjSO+Y5yD#GBsOg9q}!Iz^Zz^e0$)GpJf@x_v9it37eT2w(HcU_jIe0NN61 z(f6>xzoV&@fmNK?Pj!*FHf$N7Vx^{_sn4cch!OG+AzljTn*ny z@@Puib3_uR54~iEhSgQNC9U0CBr_bER(AIGedsO!JHW|52nujSgZ+x)kU@;pOiCLu*d~jC}el8$y ze9X<6?vsRJ=w@g)d~)Z7C^xd1U6HLAnb91zg@E~v>Y`3biR${1T%s(SAv+8Wew3q0lUDpAT4^@|cI(FWNk8I*KK%{gc}Xhl zOGfQagTY|OqV@?sOl=GKfUsex08C0Rh-wbVZCl8NoKJf}u`kRW(Id;zGHDCA__C}z zyy1_iuM0%g3uTT#L6~_>f0iFQP1fdTi3(O1Lif^xxt!noi{r`>J!WR#)sXQ}NI~|) z8|V_6@Iib^&>c(%FrYW!&JdQSM>Z$>VYZtO8X6hT$^1}`WLNhn51rp(jgRUHXzO@T zFe^I$sCKC@pnN#0O6br{TcYX4^ipeXRK=4efw7^YceFdQff}xpF#Ftbw4 z)E$X4;D&K-|NeWg-^Xz8`*wk;Da)ViCmJL$O({_(4>*(+Yp?KXd;cO_XWL}JQ!MtN z!;_Q>$*^EtHm5sxDtR5l6}S(bicgI1CxtAW{IbA_MN<1qse3QaS=?`6t-q@~i|38e zv1>!0eI`m*%iRV812;uyIvMcYG({`=ygdVr1JtRK&g=n8ZQNroQG%*Va{ufX92&TY z=tbLQuFpuxI$!znc8zF;swHc8F%Gh*HodBDqQ{w+_2BUelnYR3<|HgtG#f3 zI(I>BGD%yRZGl3z7DgH)h{g~VIjY?;kZ}(r>vUH%&MgTq$f4Pq@cEShAw+ z+?*sHLy|>eM{COsVt_a;0glf*nu>0zjsb)Vi!@5%CS;k2ms&^Zp2Mo;ds@sJU}Y-= zSXSa;wm4tI6HVMv71}}4$gXttcMiR!dT6wLT{&?ldXFJRkcm{C5o`5y8mQ0PPM5$# zef2V!#DSc~3;l!C>cN^evNx>O({9M>TY^y}E3A92M_8Bv4wF_2X~G(N z4y&|#z?6tg0s^~8_VA<{`6Df|-HC>I7D3R98XKg@iS3xCF4Q zU9jB)rSz0+rnb_+)uvFFj&Bk_Ti=P0Om&)x)LxmOz^3obtuTGv$wN9w!=rCehZ8V zHRg*ni)N&}Ln7j^n5JiK*)+lk^C+&=?3 z5Ma1#d|=S&spXO35^zlnWUZIQFz;#s$$+$;6-W8$a`CSNG47C6Hm!XkU5!d7S9m(G z$YXipv~KF6!!!!|_xZDLKv`kDfe()5WFKW$vs&Ckd%vseti1gqO%>5slKhb4r@*Y$ zYTdI8Qh59QrJaW+RKsDTGReqSJuj*SGz?+GsI`G^Kl#)wDJAVUVnv4-jac@`y#BWkA(3J zQ;bo{r*xT^CwX@oPGMFp(sfgX@|qdy<%f|FZHCRNo@eW#?hi8D zR9#H@Ei1fSUr;EMh)q6a-JKsWgVV`(a-J7unccMy=W&4IR_f*pJ3Q|SM@D&@o_tW!acY~gY$VT(* z3oX`}IvGlZvYGg?+ffQNfz1s-0nc1#_aXa@6dwvm2lPzx5IAXC((k~%c~aG%NZ5jR zz!oVW;p=*1rQO2P1_X@vzkukK$v?_+W#hTXxm2&e2Fc_p@k=MRUf}8_DWdVnFhQlE zfhLrR`Nh^|esWhJ+!iJb#=E3jBVu>SMv&6*xp`R#q}_InK;Wo0mydtwsA@#MS(sbKC1ixe2g(%*iMx& zOf-=HcmgpTQ%0Rp93RznaO<{aWqV$}xv!b-Cf{!vs!|LPY#P-SkK<~&#gK*1?%dF= zY%_vrS8e{pLAVn4+B8bcyOiBg!r>4h+=Bs^40NJmP&61YzG0=OMAv&;7wTSeTo85`Q&N6p?UtX(TmRx5{;}|$j5+4{!r;xIf)z#uz~*H zuLmTf&SSj&+@Y4_gB)f_RUs88M<%jBOE6U$?)zt*xbL4jf&ewF7#-P}V#)@)3b%T| z10iB|(ZoB3cJ|at)N2$OP-P>FcJF`u`tRZG7tpN&G^4nJTKfL`I6?ON37I6TPC^3X zs$6Vt?t+sCtZiR9u^nX2BU05Vn zI@h!`M8dP$0%esJpbgSdbl53=gxovDV8Q+wC_wbB#uN}#_1xrCDMy_=BS9%lD`#-% zF~;A;nof$`Tah1V)J)=7TeZlD!(-wmuV91w&|{jluKE>2HEzn(BPP{vztpVn?dSSn zif0Ei!ZdJpyL0(%bX5t)Xkoyft_5IsqDz7I+31mu_6sG`o6ySMDi0!oY9!1bO!|TK zR_o=HmVmEp*QH<&{ubuOSRHi-5;ca29dkOm9Z;sy&lcP5d^nK8ywJBsevN% zm9PF8%kks4q&c!$hGe@$@(j+kB;L;pNO|@#=RG6->zJhOA>FeXc6Zcn2g!5=G#Xs7 zaDT~h8Rmafy-?|?CRVQTz?N+VcOUP&0Sf7+ZfF3QmM0!97$bpGV{D?RqIDa)TR;$6 z*`GMja!wU0I01(b)#ZU>C8Vm}CL|MiQI{;=(bq>-p$wB}bI>yMyA zb1XP#%{Z`gUep~uLhYzQ@s}8R?(1qQA)i}A>kGZJ4h;IiSKoX4!TyGZ&x33NIgwDf8k{A72#o5ErXafr3OVOYE6;ZJ$BR$u{*T~oZ=r| ze+|zxw8>Dz{hFXCaD?IoU~URanPOHTd|}Q$vTD{>v=Lv`xe$7BHoFR3(7^IoRZK<^ z;f2I>3kXj-ze^if;!nD}SBbaOH1+DSA?M>59@$kv33)EC_ai7En^?Ab;aX;mCs$CY z82LD{Jdk7Z{=*}@GsxMjt$s9WAq!%QE-b~1oh-dJ=m|pf4p;zWyO<9n(2C% zj}y5%suoyAO@;NKtF+Vxu%Y)LE63QF;8=C9OzZL}`I;qOQ%$Ig(NLTjqJr^4Q}j$< zcG8OGd&t70PJvMyP1mp;(Y?xr|LYIKTN)wAK?d@y9C;%I4zftc;HkPYtnbWzaDtYIw;t6)Qt^qJvf9Jb#y6yQGPckO zkOCB8pY-z63_u6iH~~w799tfYSM(W7#^O)>le!j3bmWGy`PxgmKIV=I7E251p#Kh7 zwrc&QGJit!dkIF!^&r$($!)2M1)OCS4x;Y!mNcL(I-XhCXV#dkqkyKu&US?ZRE?51IWclnXt0fH$Ml_TB3b?9%`1zcs3nUAjDE&3 zR1iIALU(pB0OXjwE;6JT^El`ynv*-MdQS<*uW?F4Kj1TizvKbbOr^@J9HQ)}!-?>r zHe1_HpkRa9%}x(2^bw%A4Mmy4?xm!4)tMEwI(BPO{O-WM184wAK(@c6#RgB$s6o`W zM&c^~;Zuyo3%A`<#IV}It~i$H?gp~~-q^SWV9=+@XSnk^rGbq-hHrm6eEZwVVyjOY zSI|y|!h~-W5O*ctSP6PaVT<^b9u0LKxstrwtqHk{>V^2m(^MPeD>0aAPr(fXba4&j zCS34ll{yQNP=Yigc>VXlFZ4c6Bz*3gA=vpk5`rl^V+TSHO&ULc8;sI|Lq?QbCo!9x z9uSldrQeYN8sRV4%}}kmONjaN&fw>5(+o9+2TAn#A~vg zGE*QaT}+4UDa0{NTdgtEwoYEDDAQhy>R*J#;5^8($o&NLM|_a*KhU#oK}Pk)9!EY3 zu1tVon0%pVBTF$k3$faiSa&HIi@@Bsy^SKma2wi>m@fAYSdC4+H?GPp0#-a@d*m6z zDq8z%ceWW4r1$L?7A%8WTV`tzMQOBpSh8$njA;~ zCkfe2$rYAsCtcSs&;-QewV6=&fc6*d9V<(?F}JYAfw*cklaXIZ;yj1!&No$=Ji9_2 z!421e8T~81v4qO=VW8qes_mfq(&ee-(p4r`EV07wTsgayrbO9y;K+TB!J`B;wKvX} zF{v1>qNM04+AjTZ8qEIKR^oOvjfASJGFj)m6J?zA8jv5q6G?$0xbhpi%Q++Df&-pNJy$=*g#^8Pe1v&fTnh1JLn z+v79n{!y1F5F?7aWBU`u9+e2zp4jybF7O@#M>f;^k=5mE zwFR-|qaq*l5r%$(b=)AO9WOVe9+qXytC}j31h4?8njUq{K?Ja75BAaTCX#DgJz&J+ z4Q=GfMV@YDp_ z*4=?o7rAu=jv(ekK9K^~lJ8h=s|gmE%d9D3I{VRja1{@-9Z+X~i?odfmEG591Wgl@`HB!fLoJH_l!)6q=|+09y9 zdTh6vmgZ8id>r0BJ+&9F=wD0P=EE8TCL*>FD?s1mdGqF-97H>P=6#T$2p064*Q3u| zy5f*!*juX#6n{SmR?wm*1$9uEag9*uP?E`icwJSe6`Rw=^Q?mP(3PUWF2JT za@AWQ;plC1$Qm0S>^f1_)h)$BY?7hTZWx(}G1huQoBS@k{y-^cvTal(?*cmPVwPQq z`5lzIb>x8K$`%tQdc8XYsGSzQXCL_5bMGtj`~WQG-NK@lvez`e)a zIr9(-=2?EY(=xpAZhrxZst4&_cWtvU;RJl*TNKMm)}5;NcZDm8EnZoA;AN2&tl&}! zv+@k3U~wZx@S?q(J7{uMt8t%Ys?ek$4zyv9Wm{yu-eDb(zJGyC2+;vrtlK00diZ+k zvGedipwchD5&pwBEezHt6IsaF$pf(?vVh_&JXtp>hO9_*{f}^q|^zA{V^=h6Sg(Rs-olN^0ur=kVOo}|o&OW`s00ubX8f9$h%BiQh zV+EEi9()KT%S$kgyeL_TpF`>N)xV?y>ZizZZSz!g)c_g_mZoYrn6(^L>$U*NEIo=V zNq?{nQ!1G|g`suM?r&c|2G{b5aOK7P14+4$C?knKJI)s=UyIs1trW+&_ruAbT`Mo5 z8XL9K;Fu_x=s_?K6HN!L*n&IRW8(yb5`wj!b3du6W)J!K>nFBeR0u8Iq1|2& zP;8rGG_v4f!`Mk}lkAG^dT=-Gwx|dMyhD+ zrD}O@I&*>YgrduPV@gQmx;lXA{ijkNy#DZVy`wQ`Axg>u;2&;Yq4nktr6*OD?I;{| zI`-bHlcctm;6Ulr+V$m!x!K*9O76L7cB@F#)GVI*YTljo zAgLp~Ax2BSW*h>t!O?0CUbVl>W2y5=>?R8WIO0}J$~NlDDGhbMJY+*)SnjjIzDlmN7rBR48{dEm zQGy;FOHTG%904IC@ME(jp{^?F=M$~O0J-Q??bqr_-8wC%E8OR=Ml)nU-K3J#QWm>6 z#Jpw_ELcuM&aZD0e5}@lpR5A5FtncUa-PAq$)+{i2fC&5h(>wl{UFif8h0b8Em4vK zIa5sY9f~1xsT&F6P~nLN-BH@9#I7w{Re{*W#peCvBnGTb@=)Hv-ePLntLi<>WB_>W zhkKD_Lkz``TE^*b&{nY=<_JZxK)2koR@}0xKlyK<^GKY}v0TbS4dn4)-J55FbvVqT zGl>oIt;EfB;b7d1Y#*#+pB$)8Ymn4VIAk8vC97B0$@RwNO;U~d`g^Z2Q{x=7ZhA-9 zxig^)v|T|kQZNj`i?foG9e1H#OeWOgtoRm#s>yz1zlRJal#qyiNES&#$Wv{_la`wz zHz@a|k?G3X1wb}BOsHmF+PY16P8FCej7ecL_5{FKbk>Q=vio;MlfcRiQA~=&VTd)c z92abzp?rv0tB2Xvqv=L;rD*zQ1?MB_f*cxd8UJKwn!;j?dXW{CpO4bEp7}JnC+Y7}_)s;Yo z9h8xu0RU~zeu3EEJK1A)#NwRq5ushK{YV0~{^M-(ZIW5soj@{@v?yu3LTVkLSK3_4 zPG$1AwdX{65Y!p=5aHhj=P2V@vNYFe!%lLIi;$^yrfsJnduPBE9wUk^<2_^GPe#?Q zod)RBAtTL80y2n!bSIS@$FBfLdrSb6`HV>a4o)XteiJaxz_ zFuvfyVRe*q}o4zdnsH^HS2wl>8@whaNqAhZ+%sS9|p;IOW-r|*gc-)o27I-gwe zV$)Q}<}Zu@*BIIKrIhleLsORG7OIM8$Jn?8S!#zpIFvV!e5Jjnv>m0or%X# z9PFXhcT1SpsICivYjo0LL;hPE0}v<8qX`Hng%cR{@t2({{}xQ2O* z7lZdFSJQq{dpok-)u4>^{{~8P`sy82V{DGI=5hfQiR7?PYED*RQVoE9MI9q9CQQxC zi^6QdxXzbpk4P@S;vE8`)CI<{!+v4Lr<|PuBVVRAYUCi#`Z2)+k`(zDI72fO)~bI7 z%tiXEw_j#JyX=q?oLCLUa;B`V*XtuRj7;eKEN;ReHFTS!H%fb}+WJ+Fn%U$SF`4`7 zd+ER7{EghgC))y;cpiEZDu+>iyH(FvKl0^)(?W>xd7f~DRg7h&&iY#wPlK~7GbVVFCCH&~4@Ex9S`1{`VFA{q_s;#Y0VgQ>s*$9+u z=Ev;m47>sn^~*5Bvrxs=I!wJsACYy7W&0e1|GM~fn9i{Z7 zn=KOX^|kQbuYH#>I6oHPeX{4>j+tiIY}&i+#3QK;r^2%kp`f`W1+b|TNd4{;K;TWU zDh}nAEC2?e#Pq?il8EVbC`WoOA>ed1$w4A#`34Oh1DS%H6z3+a1lNw0-YY1O!E%Ac z+d{um*oU3zm*Mr(q$SOfSrG$;1*DqNgX8_LaH#zbVoFhOZ2E9RQ~@(@CM_;AmPe#2 zEia2m_A+j|PMH+n1H0AJi4MR>X;t}bzuTySlggALkl%Xh#7YSfj>Aaj9qor`BpR}`mOW&8}TuT61sgtCpS1lvP?7O<)%vK}T zn;eJgUcrCgl7h&C!IC`>bS3Lqj(ShIP`ph5{YO^73y)LX9#FV=?y$CHBU z5*VV6*kr>xokxcRszXd{w2ImLy;~q?nb;K|PQW`B?kf@6J%+HxOXPd{>(?*CsloKa zQ-euSDp6rkQvnm;yd|CftD}*l#0avMc)2PAXirH zrV=L-RS^!&H$4+7&T|t1^?wrfCQG(t*LC3he#HS~RTM}eHAhh(Kcq}BZ_ai1xZb5V z_lCznCK9u%8fZwFCQ`OYW}-(DAdm#i;ywIV?X}Nd`*@^86RU*xGV{HN8}8@qb~Tzl z)LJU@K9;@gQ}c(-+6Mi#cUZOhZ&>~ho?zpw?fPDa#Mdi>vEQ9_U%}5 zZZSLuYD~`bxc=Wf0w; z7yO*uIzZL9&!b6mz+RARGk<=hd&2F2qT>^~QOj^T06Reh7RSV?Y-Pnp$Dom!lDlR# z=w#%2chXp&{81HQC5`>mjHn%*SfQv8`aNO(1mRFXx$Ks7Nogb5Qgs`xt0W{IZ17P= z`y_1iaeJd|I5%u7ds|Lbs@uZG;``qZKm1|(ntSLsDRCfGO@`+VRNkQ`CN`x4xm}}9 zdehrIl#8@(sCf>KwL#_9vGI((gaM5j=ky)&U(trGE9`5qU%RTPDm7$lqAaw{NxcDw zMkiG(2%g6dx2@};wj28l7ARcHH7Zr_f_`AqSo4WR4+i-op{8jj?6!5-y{aN}I!VL07(ieYluWY1D zJa))KnW2nXE?Y_o1*gX*7wlRMs)#k&@?o5O`dtGzoqlfVW?p|1K&Cb>bxZ$igo$(j z=CE&@R%x`{t&K#n z^hF^GRFqVQwVq!wwv$=;qI8tch()4;5pW$#^s8CzC?lI+SKjf?DoxI>B)#NSPA1YR6$W{&j;kUmyr%C|B*rn~c?6z}4)8tN%V z!L&5o`fx{SS}=@Hm#gFHqIP|(niV{q75Iv)M4DaMD3<$43!1^7cIsO2fDB#$mR2hX zGjL|%(WtYvt7*jHba#ZqCz-bC(NmU|k~3OKgWX&gJpCAuX9kY#M^aQk2+Yk@OBl=sbxhHi;?xj$T zeFeuLsYV}w#jns-ac_-|u2I{bu-UX(NO)07n4?KKp;W#XzVjW+z!_XExx}V;GyDN< zWTX=#l_09!+e1pawYnVSTe?VRl+Vx}Mx9*?^}o@9KM*E9tpZSs5qKt$2>NUzw=@}C zIb!ZZ#C0!!aox1*=eXvX@nky;ez^Ian0r@GRw|4YI-oxk-fe~(lrpD5$~y%IadrjZ zziA2C=&{doEE4Ea3`#)$i$fbG?}V!5Fn?;rq+4B!-B2xOv!7I|#VqADpb%68%9xc9WLFK6r!vAGC;M)1$DMM4)3!D24-$P$c92YDu!S0yb zNeRu5qO`Lqhs;DvHnh-$rp=w&xM$6aMO~w7UymvX_aA}K_TIAE6Q7HtiFf}cNadv{ zP{lzMo!IQNgxGOLy+9t_rzR zBxbL;WuEn>+&~ulhu6>F{nzmRbE$r4o1KXHc8x=C5@rC_$@yDywx-==grXK3*sGd8 z4Jxe%u~-lb9I}c{zOG$oZ`tZN!4>c_txDdaGQ|srcILLdwVc3UIlow}A~kA;bH$X! zOE3s^M2oEwRQji6h8WJFv0t1fX}-< zhqmD+rXQ|qvSs*Sqvbtml`MpPNsyOh|=jXVkT!ClU){Z}b=zO<7bh|5=)l4LzpFb7KD&~(7% zRCX*UId>7FIn#at?Bq~z{@g4vFQxe%_ko26ESq&gu`HEVvLX;?pJ)YFp(xo0SGu7cT4H&YF%Na zSH>~{+-!kAJ_C(t)zA?}7D6axsEwTE1VNFp=a`vY)@tl(0op1*R?=uQDVy?CkGRKE z(UB3s`FJg4$6&U70yzE(oNr}5^nl?z7H%`+WV&E?No~qTuANRqmZJ7~FZ3PDXdE?= zd-2$$l*5pb!N&14Aj_bDSAK+Ts^ma3CCDq4jDztgs6>qvah7&=PfZo@JD22F3a*X4 zDk)r0LfYHdrl6~q9E|VXq}{R$Phq*&6<(!j+w8TAiY91&gri&jQFo29wrVb2bP5~I zUa0`Z$@l>Hse|J7o$3VwCEN}0rbbWZbmg{NFu9`R-d4Dfqhi+8n*q;I0_q^ytmD*F zYWdzp(^O*?AIk2%7C4^;a|pe|!~we#AgpYb^O#;>v9V5hjsThFxGb=(Up5eS>Ml?T zyD9o&D|Gm0<0YwPURX8bAbZ(tO1bYpwP%ktj}EO@z*8hQQGYzFd6gtR6|^W|6x2EG zoXd09B1f3`Re1fAy>*VQq_vtQ7N=j(kk6X>F9y#arK!^u7kl8|zF=as|}Ku=$Q z7&WKh#RZ6`;@L$}B$i`hanfj$6jtfr4UiuQfriOGJ%IJdm6%v<(l9DzMd3Wh<+fA) z=c&k)8fj+w?CVudz??R`z0`_GwxZSiGG~4M*61jKf z@6vs=yJq1gH512@-yv91&g{e_t6@adxh3PddQbM*KJtHgv6uettM_s({-j%KJ5Ks3 zED()5;!a;=JO}tCw*Ew;-knCTzb0Q6Vg~Pj8{Yl&{cqp@URx|QnI+CoO(=q<1=kXl zOILntdPw&?U71T0&3k}0Clx$ES=;U-3IYCL7)ib zVnHzjDd{$8=&#t`Hv{pXMF2k6P@Kt9r3CqOpA9=nYwc8h_a(q>t z=&GW$BZq!b5(l5)JKLboQU`DOnEf8jvi*kHZcp3$m42d7E+o4E6TeZc96)owu+X#X_^!^M_>$KG=yi%ZEAHdogGp~ zNoVybqAg^~tv+UujQ3Q`ydDw}k}*Y!iVIuj=xbvXvkWlM1#deA5lgv1V>#twjFbU_ z7Mr}yyqS=A)m^zb+q@sC70f9&&-PmzaIjfeT5g;Yy&zl?TpCWjl-$PwfY0*a87MG> z?Jr}83A=Tp5SFB$ul&~+%mh|D!Bg+>tlFn{_YUSDYuwuXG7jNkx-Kh67dIVA7|IuN z$&h+AF8!(!faH=*uDNqV4u!4P&WU83i~-BA8d&wiko_Nw*D7J_Mnt$ee5W6JvBtEx zgDCDG(IV4Rclf%d&t0nJ56=dcsP6V}FlwxhFJZ^ikenMT%B)0 zSfa=#4ye(u7GE4C7zbSyDTy1yJ-u zvaKgRxD?&LMPF6NyU#oT=5h>^`ULBIYT===)S()YM3UhJ>~d>Ch@BYLRY#voe3cQ& zr|lQ-P0;BV#uBMJ1)oJVC>iAKx=@+Cdw%doK>{dtvQi{uw^3lM#<4&GbGKjZ=0{xI zY-?bS zj`QLkUZpAG37ePo21t`1r43gt0o*Uw9k%n#nKgKX7YwiLs2j6{Kf;M4FZCli9WTLm zR`RxX>c}1GXe2kRnzBMok?g;j8EaJqf+r}J@=M-3YbLWSwYkPgtt!H>50JC^6e$ce zEw`96gi%x7{ck{NcxV7X1D_dja&;d(#}L|;$W-u-hv_11ryDLwp5olxrUIq~#*uDO zhVr;18?>6lMR=;(Tf+oQj+~-C z_LW#vbvw67-Z4vZC+8wUV4g2)2GEW<^r6IYP*X1hRGeJWaz~H2C0u18AM%PBh<%Xh z*##d92(5-;S8YN{6NYn{=2hCj;T0sXVQf5R>(pX_ce$1S9oQ&xaV-6HCsG4Q^!@3s zj~%xjeRq2!wS?IZxXV%*s{YIp6<@m`NP!E4+J|f9gK{4$mf=mdO%L7W35|ujssqVy zns)H*mas*^FHQG<{?B&V?T;tDIRZ{$-D9A#CrA#-&tk;{HXU7)1xu$Y*4dY5=uAST zRlLnboiZACbm34jv+*#69JqB>8ZxT-7-3X#yzw4+n?iz*HhcdO~ z1aRW0u8$8ckTFQ5e&*I~;M+2L0ibHWaf|(cK-|_@ztXh@NfiLLpF|Pt3Zr?uwa%JS z^Fk@HMqrg~429vDFC*RP(-uvWI)M}VRAbzRE5TViLJ9Kr7dbEIjqV*gtZm1Qg9NtkE4Kq^r%l5 zIdn{m%GLr(x}6qtg&L|YD-i~>asqQ{#L@h_|B52yA6|c{KsH}4sh0U0YAAjV&uN*)(~n^Vn$bsQBA#@&xi5-x|giWBe(dI@cOd^K`AH?wLUse zzIT;lclIIV0x>MHTJ<>$lU<}2-{z|Xn?1LBuTImZK9Bw(nwgp2#D}w3{W84%3do|z z!#u-^6>7(>jnYA+6hPAhR(Pz5fqdjt6S50a)?}dr+q`fi4l%|O|3<^{f? z1xgkD>FdYgZ_|k$`Nc3VrBuZA8nc46lvq}x-4*uf^Am+k;vQ|CQKnk+0&T)LRqR9| zTG}*LHeozVEw9aYsSL}r; z1)+0z8-mCI=K!i;$y6WIRor605+%jJ zyQs>F@wE>_U$US22CX3S{}UW`*`$Vg|0ft`p!KhDNmeLbjt&8=r5d%JKvAD+JQZ{G zqE{aDQ@q@crIB2(!u((AzDTtabEJ}D{{hmJVmw01plKucc-=L=KSQi428)^@SfdTi3@ zmU5f%Br_oS$3=rGBI*jIfJMhEnEg^(jPc=nG(&E$kmRyik6YvbwU+FO zGATABbrCy)5IVu)J%Tz1B?Kqa5+gsT(|lcQAR~IxnCw3*R2MRF4nUaTpEotkm-uT_ z4;|Y!B+HE)#j;5KS!*W^bF*2HfvWLbEVn-B{M#MgdNoTI)s=_=ZaSl&zm_xk1AAhN zZ-Fr{@2HLODSr*${ugh=*BbXUGIv)(?-bc1Jy6dMI5>QHi5f(FW_%E$v=p8eP3lbz ziT-3LSmV`Lv%}bLc z_R@!+kglYDT`OA;BpOl3k|4uQoGnlX08n(W<;xouT{zZWy+PrS$kliY06_v3THK4S z_lP`47)XOFe^KUyrYD=+=>6@yOE=k>a72uCi<1hMgai`MCm*AxK7>2?MMH%C{y&B9 zrcbqOsn*h_Mw=EX7tzAGwq0}?9v!W9W3u2q%ujdOXX=ojIU7|W0qowLa27qZC>dd{ zoUK+MM)RdAddYeKgmE8jVWEoh&*yjR1Q37dNI4&`Dmy;ImAZr~1q=l+a z`4kQc#d-v3_Ji|iw*a@$y(EqDO!{X;qi1xx^7 zR!{)z1UH^;&3Gkxgd`yu%eTE8Xvk3&n5R*>>?R3D-UIE_$l1c3q(E)C^CyNz+KoL@ zr)c28Ol;ILz3U~W4%+Wa+#q;^T0?quMxgc_9zW~-^q&t@uD`py`v(|`tt$Uw<-V@! zT1&O36O>(;fhMYl8T;ecloI@P*6Dd6X>9~_iSs8#iI=+J zHHuT$*ZP^?4nR=mQIu+SFC9g!reif=_(h@Tf&=^odD7kq7Ol4U(4u|6aikwfLax)n|w?&~F`rz_J>!*JrejgY||a~TnzXUO&Yw8J>@K#h^fP%(lR zkQe8u;7%!}wSxjAx$eL*+jg{=foHioG(J*y08zEH&oev-H;ggieCJS>kS6GSUcYWC z_GMpI{)|+$L3KsA(89dIia=;=`}K)L0`hrwH5OV+*FccP#+IaB-1x^p;l)bs4JHB_ zstITFa9h;*wA4Gv>$mX2#i-rJKavY9`>I$QhxCIg2wFCs2@G1!%mnD$RqaIuVqprs zV^4GdFK?l>l?Nrolblx<1}%t5UehjT%#@U#r>@kNn;SVr^~pB|s*H+{Dp7ynJvcT1 z*~Mjx##P+LG>+!)BH8ZKA(bkNHSt_3L}Oo8TC${A zQ^_GcpnTvjz0)~@?}#bDIE2Qm2|5)PWfaZ!I+glSH_f8XI8MdH{cx1myC2KDMe?gD zzkm_7eclhTT_r&^o~S0Zl&+k#D2v){5%4gqxSCM0UXz@A30PNsQD{`T#AjbjVbupU zqdc@yXY4oe>|gse{O|riLS6%#f6Fm%S3urXU7v{Gt<)2CkRo!-yVWNx)->#7kl~Q= z$=jau>xco2tHVek@MKC%a$qMsPy3R`^hVk9=Mq-ZpHt{H5t=jVT50%Za2Vy&x5>8Q zN|4|O-%ZV=fmVKuks=2CgTtsQc&z0$Qs+K(un0Br#Wd1y-Z3~A=-#||2CM^=mf`YTvr1N2uWEa0~ zO_v2np;%o{rpDU|Lg2V!0ic+D|&bZKf~zgoF4j+r8*q)npXCGdjrrPD;oDlLzW z>!d^pRM;Nyb7HW?2mgPVn8nV9eA}fY=qVJW1VzF#VI2(j8jJ2d-&k^dWTxQV0su6$ zPAzyiK3%ec%6nKCmYBJ^G}Id);EagwPGJ)`8}9q7WH@=RUG195hTQn-ErerHr2R-T z{V?ak{0jXJ{q3{-%Ou%+VtJylg^N)7jzGt{clp-Mu8*W}Q?>6f zR%8hVDcAV0vxLRxMY_CERZEQA1VCH1G@(C&p267+rJ|C<^XTSI@dcO~)a%^kB}bY!HgrjxhQ@n&^ILN~!nWxZ~ zxhB;Dn@YI`Y=h9c`XyL(c#E)6?2!L`Bc9R?Gx+$@z}g%Oq!Nrppc4km-$@-lOwS#= ziAPu4KSGvwgWD*J&Z&iVxSjEnA;RENqjJvSgV%91c=Of!YLNs473OIPgzeOWum+(U zxUS0mH8GKd2w#e;JyJ}ME4AaY725^9Yup@p34xGVWu@5QzzANxH1OWx0oa!P6!IAZ zjV`4iFw{BNr@ZpRY2^tr*MzS=!@FV4EwMUsbzWLxBuo%apFC9^28-Uy%=SLzuYtee z1-Eq+%FC7Uk+e~#yfpWSqZ6EVl4bfnN?1OTaUtwEGT-5ZkAReeG*^Q^*$SdGIr z&C<;c%S6T1$~A0yY@L?Wy6$utE0t-Qzg(kKGisj9CV^`l9^QVZRZS(3s9sWlHNg%U zBOGZ+-+lc4)9~m240eWz2Nn23C7Xev;J&=eMuAt=9jjXXjgE>eu1w(xsIM{E>8_lc zo@V#RhmPKJdr935S_qtr6C-WM-i~i^E{wL|vsb!tA++SX-Uzl71 zTUoYLhECQ4HP@6XB(wS;Qsv{*t>Orekyo#Z-U zdc)wH^-&VxQN;yKfwctg8rA{ZetKt+hJZBu>gRq_4}tMAKFO=jpcq&7;O+^)xWe_C zF>6{UsEy9k3_9>i*EztK`u|CR=Nl+-&r4Lhp6-mr{yMz>oq33d_uojyM7RL|E^}}8 z5+En`b$ICmrh6_Q3*84BHinx!&RWk6#o5XMI$bE~5CC0WR0MYq{!&GndIv<`%8Ak` zW6X+&*gQ)3*Z&RYe}LaP-1+1QCl!bEak<)9!4J<6H`Usq{x_ zYc{RPTkMBRvSCM++IIl*RYk;5?wrQ`@4tC(ED!n3WrjrGsOqfJwM*)?Tm#ryS=1^< zH$u%fF7VK?C18{~5g;~KIFf$@(cgz6XrNMMWwZM`)=QCX+*A(Gy%egwM2&gRBZS`T z^qOcd)RV5b^l)q)T6x3VV-^|uy<#K%paEB|m@UbKr$Pq;k`VZGuTbCSd=w_(aq-9t z>oCrg04y+0D3p4gRCjLFU%%k5B-5lBM558itEhmE9!Cxh1Ludt-ee7EiLPkHR(`B$ zRt-b8v5J1?9flN(1F@8@eB|(V+Ly0tNXFqA_*BMnfoi2>@(W7qkp#ryj95j79t}kJ zgm6Bm(TByM3Y?)Lp*ww&9U-(4}q~>7Q)7Tev86jj?fr-W|8{Al_;l zrjYn&b$PJOr&@Bs*oY`Llu2@UgN@#iWy+{#15!Ch7k)o2%O?4Q+#`MMA zv869wFx}y@4E~{RtD!MKE^4d$Fn;b1Y@F%BqRn3P;zkZl3%PHqB==G?W_OZOm6i-( zEe)MDa*r0%EsxKtg||hrC*gq&k;FwIPTZ;un<~HK@PlY*e-od$oo?YK{qDs0a8voU zzVUIN!r0jtl&ShBZxlq)qL8|glN2d!=@UO6cmFXb4W%t9f>cKMK3Q&2!-^@0vn9`A0WX-uGNmY3a__GxciFky6JRHkan zq<}6>kxEw9Qyv5*e!LkLVLGQ)q!t!>Iw~~ebE!ZOPrp@&7RGe1%g$2nttGE+gn3e2 za=5A0iR;wHWAAR0#t8l$U8u45XbO9OI2bP~x6FN2EuY(x#BP@brkB>aYM)$`EjW8a z^f0j9?S{>)3lIsbYF}ImR*J(UVkqg(f zP&xprh$_i@y{z6|mhcp*fu}rKVJ%#M%xRli{xN2c&q;bP%t_Mq6Fk9~ZQ6 zfYBB`v@KF4=F>(wJx*m!)W2WYhXnD1Ds^aPJ1XrSK^dmjBZB8kFxbRAfUs#YeH|a$ z`p9&^xV*8C16#!BrPnJ_%E0|g0>K1mM4jUKrZw^n1lPd;XWrEsv7NF&1IAd%!VY>A z#gH{1)}(vM%Q+{rT?qM%z_R$tP93!!kforFISUDNXedr2QBUq;Poku`I&tbUqXfKM z2|KO|%8x7eaf?_%w+>7SEw54180Z1VBG{C&pKxVaCZgcBL@?a|c=iXTSJ)>%i8r^! zMiO8Eyvd1eOENh~jBa3j+?WKIn3)6F7hufOgX}86NEYT0Oa$;8%^i+@9r80DN~Ex- z-6~zd?03R&=e_8#G|yatN6U5@smGmm0bZNgt4e{PA_dfhj;H2zR1XyJ!q*+)aBy@O zgrz9O#NRbqif7@a^$q_HN)0dmS*#8Kzv8yj1m;>SScv!p;0l3FCxlu}{2La>zu`NU zn+pOZcec`#E=Ptd&kEJUoQsCUV0}E2G|Ds6ot!eCt|jHo7+DnrpQ}B~t0K*mO1+S2 zkdO%NVRfUj&j7C3q^co{D*W}{X#Z4~U}S#6)FmXZY?hG)#1%c4tKJiYCmn+MI6S89 zgiWNwnspO3qNb-kg=orbCvZ(UI+&&y6^zL3OiI9)@7Vu^@0iM>lK2XL6bLT3Of{{e z?h&$(D;Di827;z{3vlF1Z}6-4-!MJ`1Zc&}5FD_dg*}@C9xS7#t+;e2gewlHDa5Bd+g@4+i)c7d*ki~aAldhz^KFGGRtck> z)A;T66F_Ir;3~CdMm*5vUV}MR=c{^M^G^E)JvjIoEk>Vw6y^;JS^o$yV$FkYNQ#Bc zc8c&)-cXryqZRWN5PUWolFRrkhWUgn=a}WhMP=!&YwwmUgAc-A{Ds}62_n=!DbQW6 zJxTRUYgCnMd$GW@kx?Z-BUP4^o=|slHUoXZ$j}PVe)X*t2h6|b3$~yx$1bj>N@Xpc z{PyMS83J6Qg2cMX>$2<+41;Y@4f2+ZB4iyBD3!FK`0bO@q+>r_6Hw9j>PJvZs@SDcWQhmt%*dHJu8ve`=>-oy zuTflt5@aZDj_>7WF`d_-SM@Z2H=4!0m6|&`^p-vXero!B$d7=9PuhWuh1=F7i5UI;UB1PK zyD_Rh+zWWlT7fiZJ+d4ma2bzBU>D&CxDIhOQ zY11`pOZ_N(hjAU11VIv#ua=4UCaW!nF$bQs!H>d-bhrV2vs(%6sd$t(1bhQOGan4K*t{%J#^HS`fM)dOq+(*8|2sZA76^`rE@d{KxDd# zJM}OX2M@+yxt)k-NJ%K#VX=$kz}z4K;Xc8m6qBJ51>(ps=1M9Es3hI0s`J2~?eKjH zz!Ur|B`{V}H`m&bTD&d+nw%6BzHs{7Z6S+9U3FLeGSS-*%q~2D=JJS10^;nVtqa7} zc@veIL3Qiuk~vpm>))&j+?NGMq8l#v;aDS% z!!m1c&b4Zrtt*}QT>O9qkmQx1*#)J0j^Tk_Y#=v{S4swZFv2?Mbrt*xoINA zVxa&zhBM>E9L(gatiU~`*M`2D;$+xrP4XlU6~95;-h7=URa9BLQN<#vz~mOYfkntntSiY}KZ1rV?*j7u+oHW@+$1&HF#{&ZTZ}1vAG7=>Uvyh411k)ub15 zbFjs4QppS1dFgNz&n8`C?tg(gOHbn#VV*9%W;3m5@-Fg|fh0qn*(}UVBx~rWrAxq; z_g|{`cc;{y)9`sS8Zf>EgB(YWEw|@+1%wM2!J(B3#DNV+hotH~c`O zYIr>+!fKaE64o}&EIVKf%o^h<3>H@)%#+TL*>%`w%bf5bJFuV&ks5V?`Yam|6cig* zuBDtSV!TlbTN1rT0svH4cUngN@os^{K$VSaF$$2Q4R#H?k*#Q*(g@UyL-^qhW1TP9 zAScuVbReAe0Ue0QOgZnPdQUPN%FW#&+)gZ&DhZPzWzhXft)HFAK2EfV@%~vJzX1!L zaOo{ltB83Pxmsd-`QYv5^{Ly#laxwEZ>?1PhO@(cZIfJ1D4uxtfVFfTVrYoTX*f6q zFV;#$c(^!RnzYE_OU2}^bp99vgYYTKX&E-tP+k4>Drcoe0onA%K8VY#}5yeeq2 z!yFziVFb4!2+3P@(5K^VQHMyT=Nsx~AT#RdV zG*E!Zcngi%M2QF zKc?t|MEp!9pR!|X5f84)fAIbA@6(g{@2|gm{W{1m|7;+fm`F@eD5N>|gfnT~s0y1{ ztQ_28v?y$z7w<*2JG88IXOWr$tq&y2qErfT`T@(}-Ui7)2mmgrhwfC2xxE`M5>k zY?;HL?2B4m&)6S8S%n90sWL$?zT{KSWczU@Qe9`YityB;&r+$J@Ly!sD!N8+ix(2LqZrAN_mt=o+5e2W8b2Rd6WLY?5&MP&@X z|2pN0uXVLiy(wyc9&8)6tL0*rKve-C;&{snh>qfRrNwlihooRuTz$l7XuMC}!t(Sd zcR_kMC#8!JotV4>5?;L7EpNp|BJe`tD5dLJh|5eHc=L2#6sa8)H>Ysp!)oDDw~9ly z;c4rib!)o?wYqdKi&H|M3O8^}@a6PJX~IA z5Sni3byhoFRXh;AxPAFiL3zg0ERi%gvNONR04QnMe={6-}j66pYaNRt_9A(dX%!GHO!XNr;1s3%OCo`NykLR zC!NER_4c&wd$dX0*a)J_bXDElY~l!sgbnqJn@xvUDIb6BZlr@%x8$!xUAm2C&P%dt zPv39^>U4C;);lEr;o68K;WXQde(=RxI$Wu9`1AuNAG-9YGpkEtijwGgn?aMG1#{UFb#j9a#fD^e-#o8#rzM!(eiXo~PEF=)IGCKwI#u!2u$4baTwUdLhsB60 z8LK8bi(H9j8Qj}6p=nfTO3J1KPQD8W#Q;*aJ9HXG!pFA)xu-vTKP#2^x9qI{WSI%B zeoy;Kw`~Z>k7IWVXKOZUt9SKWz3~d0eZh_Dobp3Jg$KlGB|KIOptGQ;gJR87I2JzX z#?Tk9nV_GN6A4K{XA-6=BjrVv^%tYs-}IV`?g{6zNbg~CoeM|xp>SJ@SiN2T5^4;P6rhl zVNzs>pAn2sO3~7e_1$Oiv#zz!Kc~=7vxhen3$6dd)C|^nIAy*!>lU3VJ2ylg@^;4X z00T+0RK?EMKzrD=6J~v5!`$@I_ zgoZ;HsW_W#yWD-D_>$_FxRft0OTzM4mw_7N^fdm7c)EXj{W^UqVhTzyJT7&jD5mfJ zz!lxRGKOgWgi^g$VH+pur~-^6L+R2mKwPK}03!uLD4$fN3YR!#m^esQXc|m;uf@2^ zcVDfuduZk1X;jM@rag&2`$&3@JW_8bI%X>gYtDmFAWBZV;o+`7kfo}5VkM(N{lxyU z(DC0R+@x*-CH*~(Hu83#ca^Y2QFrh&$Fsu_t!vd4!s4x*@=h}%RE`-QCpX+e z`L#_4C31Znx#o8%u{ry`U%RUmx>5ph333cPe)O>i9-&+NI9zM&&==S75f7v_!|DC`TRXit`l@<^PBC3giBRA(eZ7g#FOIu;6o z2cvI^+?oAzu-~MiysFUIkR6RV&fX2Kob*_(VKs0vL6-Qv5LEMRBaDB9(gvZT$b7ax z?l2iNE~${99ZC7fFlR(lV~Q1+yQsX3 z&mqm42ujfqE|3Q@8NyA|^8$+y2A&D9i#VchIBE4KD`;QYPtGPDmf+*F@dVe1si5FI z?cGn`|1=oLmM({xjPV5i#R~J@EN_?n#3fD{ELDeI_6!!x^^2O+KjeaECah5A)qs`c zDyWeDz(x;2RJ}&32-B*Uq{$|UZ2ar72&0Ncu$QP3;J3z>8XcAnM(myU zp6TX^#sXDdhbR46dpe=)pmZ5gVRws{Aq&U&g9*+_79y$>T9fQZ!8@_c5d)<(>dq;S zD(!Z1n7Qx$i0iApn-7{h?gi5HTjfMtD-mAo=>Q;$&M=3tGSpO9aFiySc+TtL>y}#K zTo!w$>83cmGu-z5zr0Q;Kd^uPgFOeiXOajxQYduqWbo@5T-#j@ z?l3+ki?OPb7b2mVQ^-{)k1po`-5owX<+he3C(#x7+5L$m23AjcE5M+!+L-rQnjhXo zNyEQ;{qhXp+g^xng*N+D8A};gYscuJD%m#GqKTt@gFY5-7#4DqwvDAN5ER_L;XYAm zI5zSkG5zJ1bDdRALlG1`j!U>OR`#ZAJ@}aQ3J(Un9J`-X z=~XiJ=q@b~7=mAqlou@&WpBExBz*3}eNtV^sYd;tHN(O8+nj`BAqBX6fD}hB?AL^7 zwog!_!myhRE%vpd)L#;dCd(Ou!pZUb5lx2}L$;+mPk6BQ>K5mZnGyjcI5)%80kCW* za|bHiStYA;!L$M(1&cm*(!xQ)&3tTKSwYvLp9g|5AbOMYxT>j4hyivD5f*&P#SXja z=P3`xSm zi8{nW&|Sji&TU>dK)IBqoU*mfhC%VMhS95DDU&4>(n4J;1bHqln<}w>3elJ1T;EPr z)WMX6rco8OdkmE0Y1XGs5&knt1Duv~bSsu#mejQk1qFc;7;{On02SMEvT4q{{~{Hb zZ>%r>@%!OFrlX7T-o{%*ebZ%gLG-IOZ{Te1shfNEUm=|F52h%9mdb8-d$>1EExEDD zNPtSwRmALIUgo1<%x(8E?doGwwo6r4)zm$S(=AZzZh0)=`QeD}Xkos8^B! z?D4|(b>Z<=-Cnx@q28fX&JLqED~Umpgz{7<9-R+f$h*afE+s>#cC|doWMRWL&-y*B zW@qMQ$AUUVjYIDY;)Wl(W$viEk6FvYQumde2Q)vb` zybIBuQUyh-B@@V5g=?j}M?0o>h5yd#Txq#ot^GLSDGLyUMDL+!KsJ>!5~8SE@*>vm+F1E(p_U|Z3rrdNcz#|9ERnx9I(S^A4e2Zd`s*E))_f0&?bVSxZ!DJwMO z6C9x%Tz#sM7U`M6H#% z&f0jt$t%X#AbmxsfiX5i2X$aeEtN1IkF*sd27Qw1+R4t{K#ylA!`WBHOo-94vMw~Q z_scv|!$6JIgy*p0;j$G&1sj`=ZmaMZ;pn=byfX(m2w~f{6&gxRFG}6vcSp%fWZcyh zhNJiHsx%=9=m>A^i*ur=Z z^!X`EckY(AEA5{|^Hpk!1r?#o{;N7F5K&9#{b(Q*Yr{;`>QVqHqfYu8_;A9zjE4t+ z2i4E^9t}HxwhFCeFPr7dJ@6uX*QBeyhHlJVLmtwWgVKdgZZ`eyD?rCSy1e^TMK`-} zYts{3CiNP05G$Bw4&y-AMLtXO;O&813t>e41cRQPO2)NH{3<0zPNMD!B`Z*o0U)Z@ zuaQdA0QQ4o*h-G?ob97VsG7^GDdg?66bx4L(K(Yqy3z{a1{e}z@)9jA`?@0LIp5NK zW8`r^6~0!eCLYS{3e)w3EKoVZ_%kPWEG1Orrmc?+J71}l4yk-NYnMa-@ddenlG~!9 zbwG)}p$5e6C97BAM6KjUl$cw94#n}^=KSMy^(0o(`DdCpg=_QZ6ovC!G3@jiti?Pi zG$bSj^wPa?hVstVrY#an0)@lcH| zq`KmuYPCvpsk~jQvrWCsuK2p>o~t!A(PIqEuNYN4IrLZx8dI>WxI>W6&{~JiJxyWK zm^CXF2m9Y{#?^!CkNwdD-e7%{uprm)@JYp^vne5@p6 z@=fg4s+-jo)T{z9arW8AZM)k?ui+f*9sW+jeTyDI?XJ1&FTBQ-q?V^F>N0tLW_Ils zT|sc9bW-Bth(I2{?(V0@>VnXlT7396v^qbZ&v;cof7g8R-(ZfB*g`A^oENMD-`BMdBmm7Czfsmza9w-Du(6ZxRBx z3KGMG9`lU57V7pPbbYt*Mc|ZCRGnOl&%^58hgAEe(N%|1b0!k~zZB!!VYh3pqm2NLM1I0@iJKr^Xl3 zDEj5Gl%QgHf(r;*x8W_2@Tf;7N$<9X^$|BY}`giV)QBwpwtL}9kcG$ zolovVqsPOphH`3v09Jj>qkbfxA%ghWnfM(fJnYBsP9{uGh3=tH0y~j+eG-T!5l~Eo@^66Ijekt54?&r zwiy4sMAcs=<=`Huxwz25c2cEX%00kU8u7rwIibk%V7lz74PtEPxFF=fDK~gpzji{edhre zIeTzw6g0q1zz`0_0$&T{mr47s9WIG0_};dJj5_b~f@XSlLqc4YcJkF}tIU-2PF$#Q z0&-&yWD)e>i7G)SUM(OzV!UA!aqmh;4PWKrsBUI9h(XM}ck$s>IIK0(mHyy^55f<= zm%dnXrz2uYCpMV}T8GOhL z^IxR{QK2v+I0s|2F5bBdkYhPrRMywM2CIsJ8X4WRP*p(5(h~@Bpt~P(y7IJ1O@|J< zAz+Zve3cdO=XOqtF_%?q*DGh&36w=v(yhVKmT#PxA#Xs5KV<~@DOBc6nOAor_F3X4 z&2VxPseH1hUMB8N5n-{xdbN{tb_0@Bm+X91YcjlC(CRZMsA!_RPu3e_powhF zf@+?0*znuo>jw!hrg1nZ<(6YKP|)lQefs(du%<)8R9c3Um}035Shy>0#2$k3QIkv}GxA(2`rk81go{{dKdCE6NQHyGjYPZDA9xqk&6ghhvK0 z+iwGOf{nAMq#0LvPZ|{VNuU5}WB;lGz07wytJ%t>e?;E6j3*t`Ti#Vb)`)WIO8bJ0 zl;32G9_$JJ`1OC#l}C5|DK6JKb+C-r%jXEs`2V@nL&IN-~$cAX^S)MkA*d6=DUGFq7IU zg*=q=C~xKg>E>{~6tQvdWVqQI6Zkw&1r*-G2b97T+38{G3C@KXH4H;3Af|w*$=?!p zeHgM{5!|P3{)jj&kEnQr20_}e=JG9%VA8yHS>$)!tX3CH;c!RXUT%!O37nZVFce3b zPu?m;_`q1Ly*=7)Ih(_wOU+d?Sj+bCu@UiuxI~o^Mha+@t=t>k;3_=uz%Qec?b4&` zE0X_PqzcII64ASyLBuC&)?TqV*zj<#692uj-8OK_;1?k+IUE0zxF%oOT%c z?@k+NLF_j3(WVtNsHQR+ojs!0WVJoQRZ zbRdkbqROZf^m6Z3*Y?`r-au(|AZ%2(16*3XiJ??w1eES_crT55S~`yndc^f5nLxSX zRkkOzg8KLN>+in(&*6Xf2a=m3rpJp@rsW){yNI{NK*BZ+mpEZVm4Oy#n%e?oODvNy zQqrNz#^Aea+?Qf#gS=q5%ikF~^sr1bC1R8r)uVy0Res&(M|V}c#Am9I>4@^q4ef(5Of5|v^g@T2jY)N7VX1LQnDoh7>A@#m z_$l3FO5z>f{<|+xXNnB2z}%x*xKY8? zy}Bx*d{X1UtHzv)H5Mm3r8YRSGte-k@%V0B!~a8lmrG zzb`uoE?cfDfI3ZIewnhpmD(f|MEmlRv<~aZ$!kz_WfH-ke_kQBEPx3yo9VC)?WduLk5(~YGF!_RnKQiIxdo0;qv|m4(ASO z%0m6;X|DvCWi_UeR>wnqYe7IM8-;`_FSOJr$l(OAVscCjK>2WLaNmJ4dE`z^2(@|K^@oP!@&)#^!MVJ7QnuIM=(XBTKsuPXqfikW=H}p-^KMsH&BhzP8G) zn({VNmvS`^rRrVcQ`%+Lp3JBewjS-13{Llw;-_T?+)o|~ZrZPGo8^lKL=Alxx$4|dik4}$LSw`aXvq~#92CF#8bWIy1de=Y=xq_ZMzt(*9k>BcHVU&~jn*=-nVxrAK=5sZ?7H zV2X`dc1Ra7TDF}E&8oT($PbNFz86XV6ZH}j3^mXI7P4qgxoz+%30sRpIpsMOI6mvf zg@-5c8MCre(UI&gifiO<0Dumpdal5Q^HBI!=x!?KnW`EBO@`#4O8IQCa#H z__qzarf4Djs%SKl!>T2De_OP^(E+EhB8$ri~H4-Z|LQ zUS@G&Ipr4{N|1#{R^(T(uaqck#DBN>56)pjb$wPmt56S}}@tZ5p*U;(NtJeAcfJ=j;VpV#$mdtOUTDsOQ+(4ArtJY8H z2ZRXvq^7L>L|Z=HZPx_VF54CT+r&{(UP~%}0LFzD$av{>R@M7@vcc-T=tDcLv!@A= zJ=EAQp{rPqHdJkIy=Iog=uU}J7Cf>emei6DLw3jI-X#t)6C`lJhF6g%6)qtq+vR3L$F&pUK&77kE2nMieF8yDU1o~TRkATAzZ(sTpG z4eJ1!JlU5BIC8B1Q%0+w^4FB5cb(!_D4eZ@Y(weKI>b_kRrjoG2P*zbx!tyNIk`Gc zwN{vvGVp~6ZJNGK7fsdE0Wb;x(2p!4{6a5rAOJQZ>X(oQ2Pc6A*o>qzT;Qk4N-faq;whcN7vXT-;a< zdG>Ly!Sgf!Y`ynH9c-bo&1D{jav&NI^%vbgi|VB9 zL7vWM5_bu~Ox)_rzY8Cv;u|j16p=tVkEM6|gU?m$F_2vt3?X_3u|Wwy=}(MA8*a-U zPb*H)V(W`7o~1)OhS@z{@;np6J)iD@jalwpuJT?&x$I=`PFO6A)J`l&+C=nLs)n3Z z*TlY|qpdU&X>6nu_}UFzv{>GTOSMNo5Gk`dc;;wzp2nBrmi8$2zVJxx9et=j{vw^v zuz;w53Fpn8X;6X(cMF&ZRE2A7l|b+=^zUp{Ue$sX8eWdy*-U-vL)Fg~%qS%pJNxL}t5jg|?_Sv#^II(he;V^e?+;-QcDMe(vTB_|avT z*JZCx?OsvQ!Tr6295wahrP^HWZN@=4N%I7!H{GZ@?h228zU=OEG|LMZHvR1mwnKqgd55eGKqArNMKBY`P+GfCSkF- zbh2vL!DWhR@hQu^)e#irm{D6O6EX#PU()QJQ;KoR(i3IzMBg`1t8P@ay?45UoTW=J z1k1W`Nv#w9j5k$jW33v#QK9VKfFX@a)g^VbeOW9VyHX92?GG5W=$7!_(XR*P_|>AM zyhe}+1KqAVkhM33z^kIYt5}xqMDp%S47iU%Rjmytk22T(Gt61-cSr(Y-dx`OPsdd_8o6k&>MwlBTm)BnibcM<=;*$?W(}iRXZrPfW zI4|HMrjMR9JZJ=@>$HmE(*|LCDoz`m(>c41eca?GnaIW71>2eo78 zZZB4dQcj&&X)0Z+eu@gz!D0>6D3@Nn2V!~NefA!nx7x23giXD?0CK--!8#D{EzQ2J zdYOcXU7K}f>Q5KycUUr1iB1VTjMVe9J3}e$Cd-2W1kf^={Zc+j5)eOp=(etT@QXFD z`rOrK^0ul@OW~4UrS#u!^;E2TaQ{+W@>fa>D9^d#*Cs#bsbfu>>+8SU)j`7R?4`hBa8tAKNIXT^Cs-74*_OZnso=m* zlH7`*WQAUNYG=nZynqx8bG6zQ<4EIwG3l}IE2n;t+UrAv*~3vkF}2Xn83e7x>fK#| zGX~B{LzgFtfnw&ec0`)>>Md;3OXES$7Smf-qQ34b+_>=TNfty?Vg;%~`>5%>x&k(O zy`~^8E8OK|$`4-xfu9TWCZw$`nlgXV@)iu0wshrcpygxX#OmeBuwiaZ?GvBp=1D?X>jXy@us$$1d+R^c)c1>BScE z*X?$GVE-5Nf74Gh^%&?bj`jt_wQ=S;UdcX6XP9eU90t2qPdky6Nh6Ol9oX0T!2)x_ zmvc}C^&BGj^N zS`hHcPPcL}>Iv&Gq36uYZ0R2|5?s@a4ZHSC>?@LYy<`1XHn=Mll8!J=deG2^LShb> zck78eC{lWh=2P+;oEyGD6)fQ;J<}Ixvg!0s4%HnX#*KJh#A9>21DVL?Nn^5q;C(w$ zbyO;G%iCr6i~XJEc5h>o5S6!!bK!16a&r%P6r+3<^edhpK_-xEHrq2#4|tu>T+qvM zRJ=NoyUya-7Ilu6zw*@aTZG0(aA&JNy;blAflCNEHju4qxUd_cciu^`UgiEsQh+0b z_dm^kLY5RaY<8HtHW$rs*A3S=8N;$;A`uCKF9Ak3a1OfQ%T2c>t{Az*N{#Sr>4QA2 zVBYRj8caBGEYOpI8{Az2mBPx$YnD5Z95WE1zWQbRahVx@zXdFul4>2`Wi;Q&Q!ryqLvgVS-WmSp&W>(8&>T2$~~!VeeTB;5tbe|5XcfY)CW(g4pIV>yQx@FvipDVJ#t!R zj3pha*M+^}K=bO5vkl`FY-~Z$yg8slkx8XO{}Y!_9lTSHMQdE`4(aXH{7GFCqG_Jf z>rf71AL>ipH6v!KoOgt){iF%Wg?@o(ct~VM=yxjBE5no&uz`?kkzmtdVICFCO9ISl zH=VvzmnBk1Pz-{13pm2rj z-Ye!Pp8iHkj9=NMb}S0aH{_G2;{pw+%Xfo0kU^>TG}5v0Iri&P4})LDLy?S4*tCKl zaI=c&1>k?fXOi*>oSxJVTLJ4dp94U_s_uy6hsQ7Br_ir^P?S)6H4`!b%+~ly5~Mnp zR2vT|BWJ(>El{3--R4r}9(H`0?U3qe~g6zCv zFGCx%NkUR9m^|-K)UO%a9^)7*O?p^T>x^{A=rmU9S8aF(bWQz49=nuFCkJoXC=-MO z^8zf;&{<%P(PXtj+e!U`OR8U7kVz~=spE|m7C5{!HWL;b27XfO0Tx zgdajgT9#rc-L9o8OE*lEu<>LB==-^^k}`PiC&fMugLjnJebIUv2=2((4N3 z;)UT28tBGA?h{K?dO$G$Xv7BwS4UCE6_gb4M=_jia4#*b?R1j>X~-<-FjePMJESgV zfVwM2&cWdm$YDexB0}sl&viybOAa2+Iw2dc`xT+gBpeVTDehumYuAIEs8@SOEKQmw#=ka&qS*Kq%lk2T=gijgf@m zG*-}UE4k5}IB3iQ6i2>adKQmkgqWI%CCtjDVB7#U%F!8^L`EJ7W8H|1K(pOh}IboipC^?Njh zx~1Vd4SLziR!mN7pUO*Cxtwxh$AX)$|X&bJN_36KN0E2tq)Qvb?_6^#z zxCG>}<(wt&LHquy-Oq*!f+nimG=kU|U+n9V_GMt#3GNs=rGnBY#W>`M!q-bjTSTJ| zrB-xup$w@LogW1$#$lp)qk2>GsZXQly06{}2cS*ASzW!|c$j<1ThcDHg-VfKR-mD1 z(>J;#Hn>gQ+J?rIp;|0>QSpGl<O2K z+q5Ld0$nZKGpBs^dFK-*VvFlPfhu7|5$^V=q-~Y&EYvTzJp6gQHZx95=X;n#CmrX@QLciKcNzFEi zktCu1lAT)(Mt1sLX^CV0|Oi{+-BA zUZ^x|R2-gkIE9J<*=3b0zmOjaFgZ0>*GWxn?e>-`__Euky^RETK6^ zNW4jCJ(7s-azMs472DzUW911&mjICR#}p$5wF_MonQ`w3835sfXhi^BGBdt&;fL|e z=)>YSy#7-2AV&q+JhM;`v)tU1D%a2c{CE5{@HhHjUtpXw#JIRH82S-YU6v}TqmaNg zJj|xJOv(%_SFpxG%qX&vrz%kwm9KXu$1+1t*Y%kG30n>Q#l{~}Cfz&?d3b_rmsj^A zGMSM`d!lvGEjkzqATAyVorlZiO!oyd-0UN~IqVUTbXsB+;loSk3b<8osQbIRCM}9+ zj5shou+!Tx8Nm1jAWiVDpaX%B8K#m*B30>u+Ak(xTUHPTRnAHwz&e;q2J9#~3B)O? zDQV&SiKjh0?G&VPMT0)erlOkIQ6SOD^LYb4gFkxmvyMLS)2fNzF^m}Z{?`^t-M<}8@*tIEqtu9Lp$iKJy} zE1wW>zj^&Re+~RidVmuB7GE7yh@2TCqnsTIs4geA11s5B~9 zzcXpIYkz?1cPARHQpr&MUfLw150vb3>WQ@aGJ;V+CqfBikeQNxvX=Np7%ql}(*4)W zEkLbxmjlHX=M~V<>P+#MMD@M^AY^fv+E@T@uyh0cIKWh7LSIlyUe<^7Wn33X0+gb1 zbya%|DYNV->EjCXx_}ku=Gm!zJ*`yJ2V*?KP-ULMD6>_+3N#tEKiq7#s@pBBb^vH3 zPvnq5(qzIb$^*XXk#o0gr9KbJKDv{HZId%qViay$eC{5B-*OkM#7}y#N&e1)On+2Dpz zmI0-D+L7D82#?FV&)@$O61L*TPO!0SJ}67x`z`D4K8&ip&+T1F;nSj)3+WliimIuP#-)cz$SCw8CQO10T> zhNAQgtVAs2~pL?p5vLpSRFro~l;mXlDjlVmO#;pXiiLMoJZGw^;D) zZ!g%(IHy>vWK;-k=M2SWT4&ug?hYKDm3Pj;X!HUC{wRGR!9p7mOBWr<)So5YQJ9=v zF(+x7gcGiJ_B`s z7hXTb71-$8hN1-rX5ih!x@JrUC+p?f)wQDrV4r1g{*EYsy-VjbhAtc4V#Lk!+}BR4 zyFw=nT^V&M-lEf69;*%0yPfSfGRdF=UByG#w^;lpfk|VZoY=F0at&R_b@jD(L=&2A zR!Ndqphc0+)xJs0wk&q`o?5Xzj2BQ6@10!Er=rqTl6K8bS*nVyb};)mDXmm$%%-0* zcMPz$CAKOq;R-nlK(OjgVq;nQ<|w!uh*BFSKiipppm<}(S+y-n@A{+nAHQm=F2C3h z(JJtrTu5vh6cJnGl?RsE-A0At5r+x`HR)x19xj(Rx@ch;lXoGP=IT8{Ek9RgOTpZi zZ2I`u6$3H?ZDA?vW@pfqa0Gh z-PIOEKpb-yKCXVH@U9qZL0ok$Ku-B|b0rT<;Xz4J37%-blz6>4Uv;6+(lCu{l4kZ* ziTvFjUwgBwesGPuLY(2|Yde=rdpNmdmoH`0cC=TS95p#Kx=m6*L^9)&faXLplQdty z3a@|UXA9ec&_gTY=5U=6XWqkrv?pV&SdZ`&ofpN9q>KmlKWZQjrCi#50$?Wj0S11A zg29HXJ(Lod^z8gt!8K6Y>_W+37^yi@@OOB;8@?SI?1w9`jWBIqIKsb&1JtLY@2=C5 z$pKJ@7`t=lqh!vMsX7o(PH^J5OXvhmY13w@bQ100n^X>1k}r4k#iFu;(nnlk@~gw+MOY54R~1Vg zO0J5pS++rCp?bG=URP*X*?)Tg`F)4c7!8Z3?0G!5T@SW8=r_iEcw!kWFC30Sev+=N zR8~yPi$s?K0xlhQBterAa1$1}+AC$>7YM?U71Jm6Lm#EjQKiUS#Y8GGC5%e>4Jefo zBzq}o!So|KE$us?Ur^k@n6)Q?nbM+~_w0P0B0%=`;p7LtDlj-5v|%ZrR#r&S)7if% z%C2buDJsS_Jnh)dmR+PLlw8;V%hk>?Vqp1_2#eJP@Qmqfp#_&uW9tK05yB(R&0i&Q zvWs zr~@DetCspCefsf z%qR0HlOh}7&0_@+*4L>XuBU!dUq$;2sQgUbUpIsowMod~8#{0lmTiw2Tq*y%YnJ8E z4&RP9yq~>|MI4v^C;z`i)@R6UMd}?(R7_DN0eg|w8OaZM+xAQ%I1$t6OrzFa8OlA5 z$nl+1h<1p2&up70eW3$2Rq0i&;Vq%>Q(V=7q^@Y}Coa{^VH!%7Ztefi*qbd$b6jVF z_xTh~^^A>VP4WRoZOwTTna7fmkr^9e$*iccX_G|j%bAhxB%7Ni2rk%25Cj1d;9^#P z;l1X3$Io{>3X*IFG~%!NQI#1P;ePxq-xA5Yto!L`sf)(Dv$xd@Tz;=$Z)4hEU1BaI zL)PI2>0RYul8_~B3Kcdpn(c~8!ag!sghj)+gKuYN`0EESZchIW$8Rty*#p&SgLH!lO{t5eGos<~L}r-{HAQiKc@%$u%g z8308?==|DvNloia$jogscsvD~~Fi7phs!xt*jpZEEZzNyq}uFlK*lJPze~2+w=XIswO6 zvmqeYH&COZ#UXaF&fUE~6#F9>ktqW0JmEG_8y29oH~S$#=F^>lHOZ`u$@ezUUK#L4 zn9Q)X2)w5OjcN?=FQb(k4SHGiye3h7FEA9%c$)lNJlBd_%kn>xom3##P~c~9#`tEK zL2WG)4?9#k6v6Iy1fANv*;U|)T@r@0*)ac~GckR0p|I88q?4OW9E$uZPnEN7W(Wup ze1~ordI{(y5?cRg7tjN- z^U4TWv&zAt<8kxOn|A=-eT34=P#G5>@G~Y}<%!cJt6m|!7?5DohBmso=Q_&s1UR(K z(j()Uvuc$shWcRgwBUef8G_&6l{f%(yJ=k^rf7*5exwcvJXO4ccmQ&iz5-HTb?B{J zGtY|$Rn@Lh4SvuAT2~Juc!u87p5%zXV487|CzM<~3-S~PaciZ&e3V!)AK4uPrC}XU z5TLZ;DS;eS>F~3I@{h$4kO`YBl`& zr_&Qy!i6drNZF>MfzwI7ZHFA()2-=zleE2RP%-b-m1@WS8MCqco6tfkl9~oQE7T#o zN&|{>H`0nl@;vqbF70mi(7X3-T6Wm9JfN@(M&7wEgAK7;p5xFkmbb`!AO-Ku?3C}` z!7LmOia`bE-}0R0;cZq*f&G99n=1bUA;3#QLbZU*KSFyOu2E>MSPcUk(amZ1)hHjW zxolMWQfC3gqcn18X$aC3M9HW&NUOscd5e*Wy1MS#lULu}ZU;IJ{Xl0T8Wfq~L*2N7*CJJxJcWLMEe2V2Yn!tMxix!~ z)dw`cLI0Ftzi?H;*IT`Nf2S6{FA21`!l5G@&7kL-D*YsY&aDPFN7Xx6uO;>fD`Fy*g!-o4m`PoMj>ECRJOU`cjVB{6f|f#Mz7hScc`y z_nuX|j%%umz|x0i(0_k zxKQfqwCs>&DK<7@It=DIAJ>~LspY*=`1QNIs1}=`!w|~%?T=qSPX%{4ev_W2<6U$T zM!ko##2f3D4IsdeTzIk)pkbbV_gtpoD_SuUuc4e@m`H5aS(UTp#I1SeZn&tr3cLOP5=+y-PV_Jjv@_3hIl>5S{jsTXaG?PR5*$PYe~cWU~B}1{XH)sKP_4J+?rd`J-Ev$-*GVq@K$>I)Yoab;i-;sa^gM zSxZT0EO6MfIz7^4Rl>4cv~DM~f}YgeAM6Uh{*??ze0J@?YCV|Z>EN~F-0 zl+5!V42djo4xu?gScf`LsvA48d7iqxgB-qN~ zhQh7wU7}Rs+r;K)iK;inCQL??LD#`biKo=1mHk=D@&ogU3UZwzh8p#uHF(dDUp};a z2zD=QC`nLyvgJ@G&5cK!ElGBCM$(qFiP0CQXY4hjEMT*7r%_S@RF!A%({oTTf<;Pr zqa1|j$A?uadH4L;`mDdbY_8i41TOnSY6*utNCL8hi#o3XB!F;sJ2pBzRlZ#brfCv^ zlRx1L)bCWAsgs-;#SC!RGz=x@EnH7`pPE1b$?h;A3p z7Wzkv;}iSwd_EXURfZ^uc))~bnT@mofmXP`Akb-t9CD**R>*l+)R)}qggT^E@}n9z zr#Fvt0_=1yPd=xvF{4+rom3-9d6?KYWm0NzbImyHWXTRb=3kPkyrtDp*!WTwxGKm4 zpRxD_6c`b?x8nPp6A|db*3aT z0je%g+5oTbzFT%ZuV1@{&L7gp!V;0ARnE}eG(57`Wf{TD*S{nRI}t%HnJlrFpugkN&MPe zb{`ARm8dkJGmap$CA8-CE7)>MxV35@S&-@oLGUEd)uaohwe$cqjj0qLIah~kN~bRO zZjmxxtW@vRMY2m#@R?dPrJPufiw^9pUC!D(+txOU;+`Ylu54 zHI+x*4X{mh799D+Fw&NnDj0?kqi)RSrg0%#XB+w!NGPAa!JD{|vf;jVq9^E3Dn~fvlsE#-|itigy2?6X-C4&gmzJG?kBSle4K4 zG!Z%P?V8>bBncNpIV+UuXfb7Z%A{uW>BY9({OMtl`9>4?i}3Q3(>~bvX;SD)EkW?E z1kv>NOq^W9Rbp3&(+26+l6qeU$v~jeB*W?03v1-ew)-<|x^y|0lJk9mfnLYmh}8qB z?NfuHqaWWWfI=K?M0G|VgP!T&yZ|NC{3eq<-%6v%v=gI;e>} zLL*sz)T&TYkQ*zy_N};ZL({l&h8_q`+<}aW#AC8dPUTNz`_fISl>-CvL)M`U&!@#% zc1t*$Dqrf*xRW4eUT4n+H&+erYG;Jqp!`YRm(F-NIg-7!p`to1nu%Igs`zTUaHBT~ zTFDAZHfbhxSeRkA5GvCq8mmwYOe2*UtM)AK;g_q`=MJ^6*<0bWd}_0s7#H)ctR-|etQe;r;vJjj;H(ev)p*H109s|CA@AncNf$l9%mT_1vR=%8Ue9i~4^ zoswdrVVYS>9ir}9v+ccVHx1_~H(0wV5Jl%ler)eCof6Vt*psvogH z*r5;2z-J)2pbcu^QlG9E^S=$!vSHZ_G5~B!@P#LjsqD6JFhPNMMNKvMv+R6pe3gMU zk@5qR?T;i%x6>Uh|Kg;`D4sA~-Ke-TIS2|UwaA!C0Cj7y$KR*y-d23}WG=Ca;?`VX zyJ%ZfHI;w$midh%+~Ad9dd+g{RYKV3J8_ZRHCrq#7%qU)gm#9!x)k3P*xmu2wkNm? zWpEa#1%0A|F7fvQOLDQFPf3 zPOTtwq3aIHbf`9lI>@^$v^-N>F4a^Z3{`VQz}SNgNvN%IxWZmJaA0j(TT$)qaHwaO z8n8xqA&~Wv1$^cN0;771LQ(1O@Hvd&ocscMBY6|FJYC0hYDy);;Zr{ZSH`Xv9c#;8k>_po z94=E8SP_n2nU9UYsL(9sdLj+(U5{Ptz z=!dOg5W*;DPu4UTFy#&Qg9@UsYycFUun#)=GJFIf&~DTgv5uv)Sls{>TPa zkOg1u>Bw^V8m1EKJc6Uu-u3^pB;^>+I?w`59*i zqvHN zcuh>ZZ3@^qIW<;&;_MU@nx^H+#U0RvVMnW|7$J5pvGiG&@u;+I`gXYJ*n$c$UBbnb z`)t|(Pdj%q@>v3QiB$Q-f2-FSozZ63l#c3+!HF|w(JGTIk$#%86}9ZUk)c2zyP<{vUjn}`qx_;8*13mv zyg}x{9>ZVQ>i$dmJP$i;FbSlt$)GYO!+27&DRBLhlNRX=ZFtzMx+ueN*bQI2{_L$% zGX`&E=`9N%E5(RnhD$nRapZTOgqNRN%tgjuV1A9H#ywVmMr#im9Fyk5b`nBw2>C?o z26`3@aZi_0g>wyxm5d#;J#^Z)ZRT0c$KBX{*J$~(*N-XF|AAlm=UAQI;gkb9-P_By z+z8@OH_@Hz1kzdMsmwqLkne6fErJZ~QqPlm(l9|)qt!E!h0tNyNwAX`ex`55E;sjK zrN_msuM5RnWkwtLhwV)#?di!&S;d-Zh8r)4?2LMVt>y`eI(Mfw|y>?C( zX0dmUrW^RVc1jmeAIqm!4H;7;!?N#A7x^d1|83hs#|HiY6yoJ`!rYZO&cds5Ipe@g ztdpwUgS#56Ld$FvWu$%8QMTWKDTDa z59nCge6A1F#h9VkVda^;%?{{LoH%wz!lminVl%^sB#b~=l^dJZ10tS0x(cN@q!_@+ zNgo$8xrXQclI6vlacuH!XxjX=DlmT-#oi0|(pNQseZUYW%OkIeP+m_HEh6Wu0W&mg_joXH^_kVjB4PwtB1K{Fjgq3&=#da zlizhokj7D^dDhl9VHf zcG;o_hClFXwr5pCm=iO7=fAWn4#=AgUqB>@Hg%}6l7JxGPYTb~V8UJpQn8sr1CknU z*`;ogxT5dN$B*sV9j2^k=9M^`JbfD+I=dv@DNn-3TaGV_s^v(Wn8s;gm*HPYmw~VNw+GKln9rP`9UDEUbH4v&| z894x<#TXg_@YFqk%vhv{g;(MA1e8g+&91t|L=jE{Q#eFSR#1w(jw^F>aB)>c*M9J- ze-Vo`-ExN%IpEt>ojvG41ox{vUsna6bVEOR{R*0O>YDxT69TRZ!=vnSGz@#sIv0XI z35INo45Nkz8&dxaC&qsQ8xVvh#pJF;w!jW{1HELZG*+3T#Cnm8-W(Rx6kUrv<@ zm)ZX6i#9iUp>als8abOA-wO~Fx}dKCSKG`eDrEmp*<)@q3BMZv2yL&&VHtd0HKXo0 zW|SYke8dsh?-h!1pa9R&sRTfptfQP57dANHlVqRhrqgs=IT*r1N^pI4+Ey{j9j&2~ zD+M}LGgLcMp^q@uM(7?{GhA@oFLEZ!38rHpCQTAyPB%qN3^g?b0Whwg^kUGh%BI54 zlB1=wc!z}4l*r9#(T%Q@vP<&b+J<_Js125s71=2c5+AVUeYQnsmjLtom(SA_Kk+o~ za$D1EB>mWJDaI1&q3o!gT&yV|adU8Ki*c zz%jll!qF-eIV!=HC*M%B4DX^qHir9Iq3hP>f>2{pT8y(p;BiZnw^2(HgT%oHC92@P zWoH5$;TP+NN#-R9%nyGU{>IjeJkZsws-(ou&*D})=(DrwAe5KF>z`FSaj3bl5f6+k zl@3Q_+G_T${s3uTn~W&OhBr=M*ZK*kx9g_^uG-kZ)e|_d zwvbikDZSZ)uEOeP;^!K+A>Q|@y3;GVvaQQp&qw7&LIo2rSC4l$Jqm9+jvqol2b^bF z1g-=wW&9*}Hh1tDtP_s=4UkTu{F5A-WYI~CxTu!(>?PG7)O{R+O?Ifp+->Y{Vf8_J zSy%NUH>^odQcK9!Kb#)ug^#dagT)Qg@bgxyz7@&zDN1~$2&Nh%6RcH)D{fHL=(fl5 z*Wm})_fPU+7)kC~L}dYS#Ps7kh=Dbi(^+MP`LxdHsnk!Cqh%sYzisJPuq9E0;x`9q zas}72CPf&RKTMUc-PXmAzAj1_U5`daawBjbqz-5sx77rAO3rkPrznEtQ1S!O@Zhmi zS?pOsO`{z+$f4L|lOQVRfLxq!Z8`GPM~Pj_GS$4_`(F4_j^z;AZHXuxaeAmvX(FR2 z5c}G^rNDv>~f4&GLyC6ng)_2>DwLb9-aDB zTX&02A%GZp`jln3o8L&n-j6Mlf}YN7kdTG&QHw~o^Xg_)5E8XpvKY|xvXLQjgl%@_ z@&yvR$SpOM@|ME|(qy$9bpwDXCf-B%!?{zePFl$yhS#5=#k}SDCrq^_$fjqTy&-F{ zpnZNF??>A<&smqYgH=QAy#Ge+c#sxy>GyI%wm18az`K&i0A0P7aawL;cNkGgnj}f7 z6lYQgj+>`pVeG1tw#L%u@(w*9$>wcZSTw)8K-@$1$7|*U$y9rP(>}BKC4qRp=@i~= z5u=kD&Iis3N^Tr@4Oe^MqaNosXhZrqYfBh{XmDvaGGKeib|4>%4Aq)$0d|a)`tl;{ zxW@w$g><)Cn?xYy8oo{*je*)Lzi5ehvYU^9=~Bn?l8{LKmp&rEyGzZkFfVzE{d93Y zynOiQXQw>1=*->GMkQKwUU6>7rak>H^qEG1MGP|3UaZv!_u!ErNLTp*N|U!xiJwwO z(SEW+;q90R_xF@k_ts+DdT0ekKy#w5KVnGZAASbw$LDe?r{vSQ@lb_hlm3E^O|?ouV*Er81=mAeNAw zdR7y(uw{?6CCpH9L4^-X-cH%SN#{8CS{ZuNWx5ANq;Mz&J1M7#2IO3i0* z3A?&NCx;?>y|ol~*i6y|yMHSK_l=a^78(?YR^JT?LA>H`StMC6`a_6uWOvW`3fE@# z9fKUX$S|N4HMN%TEogDd#@q_;r*z2;FkR6!1`E&gvSL7S6$6o9f1M*gKQPWi^bn9O7ps%-ST% z0lt43owK&^;Vx(6nt^j}_;5KFcRzrZAq5;<(2Y=33942vDzbW3Wpj7=?L%cvb*Y$Y ziE&TCxvEi3n|cTjfLJ9-(K$cGueGoZB?U8SLs&vBsm+ICLEzO=DjX3Ti|cx{I8?>9 z_hap`=ZP)qWZ4-7g$UY3iGf@gE#Yt#Kh9gQpnP$9_c08WevY0`ht8D23XU;ek^4w9 zmn5rPW@RN%u*{WjX5uEh4e~y$<1p%iwo0iHK?47xvpIJUZko)b39r8gT|(jzdqA?- zZ|oxBh_c|c0Rm}j$eNBBO5U zvTR9dlPkLICpoaz2XqH=101CmqR!$%@EdA6gcEg^fy;Y(^^G4x;Y>gh?;R>kFk8Cq zhCB!=P3N|dPXH-dD#^b4mzUp!cmMkOk*rGj#akj|UkR44?_+r|2us!MAMHpxS{)@} zTj%oB07Dud9EXvmPQ-7;b@}^SsYV3J&`CdUA1BG&6S*n(#1nJ zv};OlV6FhqE@ca+RI(oB_a5yD?fa44U<4Yjz?v5fSd*R1MD@XMu&KLDvH0g;Jjk_$ zRQ}n!x!|VFY=TJY*tx>TyI+AakT9D|!gvrefc7hvF=qcZmK`j+>f5~GQ4t4Z1Vxxz z^emM(aZ8d1lCB^k4;&%f4|=h~hO>j)3zjo%N_T)r)Ti;u$)K`mYAOL72&^&V1>gN7 zeEauc3vbXvBryQqp#W@kmct*U40Ocj-$|mn6pZZ)W-Ch(z0?Gw5AmNM@}*u6ULD8* z_>d!xGwz`ZQCwLKQW8*790itCuI9=1@)=0|zraxh1dj==G)~j6D}{7gL~3ig$R@QV zDk%(5$tLTw?&ZpFITbNr&+E_9j*{S7cj`W54=~9~+uG{t%-`k5DDu4OVUE#O9LSUK z=_hOfw~SJjNOkDz6G4?SVJ;`LIM73)F&J%5fdL_kYA-mn=1WxH6*DbQ@8$C^fO-xx zws-QUpd(;-g@cryY*)BhTL6W~Se4~FRQtYnfRoAjUKJ;SH8AN zVznIjVt(b?V8`eRGsbPm!^(34WMLA=c^Y6rKG>Jjwc1qz0u4hw2@8)I-mQ<`=T9q_$ zDTFPO~7_2vfP7($D8VTR7_=pOz6RK$;?l zPrri}$$2Aym$G?irUY_Rqk^L7qg1EdVc;S4Fx%1z^Sm2d-AJ1E45k3;%@f*{ zay}AzEKoPI!t9MS3QNUk2)PPqKnC*-+-O$R`*1)PEtdqqC!TxD(DXSydq1W7EPb>> zVZ^dzNLw%3MTKpN)cRR;7yWk5)ow=#Iu)*H=8q;sL@ zzJ#;0(+1EZA$Jz7BhHX8=3Z|DyvOh;66)reE zw_^2;P{m$PgWc^C+l>Cd?KB4(7li!X%YaKwCS@nDT1YJ>>yg>a0=Gcc@Yg-i#KFc` z8)u}P1u-bgt%uZ%`fl4+m=8RTaOpJDp-5;|lZ&FBOwOk&3fujgB3QU>Q3?dWr8r}k z!*yI8hJ*nvfFkvp8z-fnKMTO8=m)8yuiWVH6to&lh`Yz|hRvY$Z=yWq9z<#Y*G`FYsVQg>s-nG-M0qVJQuq#QR*t}YN`7D%_&Dz)9P zND5C1N06vdYB^>PJO?saC=eK0PJa`A_*d!kqN7nd7MQgt@`{CtI+#m9s~X^aN#e${ znG8I+q{E>8r5Sf9HTPEfR2)EGNNc(uSOIY{dR)m>MrN)6&cxCx@nIy#zk&=ZscDEb zUc*anD`!@3(WxJ|VO8zRjWhG`l(HB=84>sv@4`u%tNsGxfTHR>UKr31s?A*j3%#qp zfDHuI)R#K|%x(yRWh-Vm?c!>4MT})>R5Y)!OD(fHB-)`VZq#7Sl>|6I-X<%xwp|Ok zL~F*JlaQkwpOQ_GW&uh!@tOf67?p-31quolCt1ZQ@YEYRY2IppZhqFLNtRYUv#=!Q zYEdY>`|-Cwwu$NUGZfG*x~-aEvl*>70ZI2%`%J)KjXd}uYSKO*QV*yEq|fpMtKHTK zSE~wBt`wlTv34>XI|!-L)Zf{ zJo#58+13Kq0>m@aKF07&&=|}uwb}|dI8CbN3!WLExlGv$TGRt=mcD9qW{}mWwYiTX zMaj`T%*+ID1fhXQi1tAXQMWGnrwC zPpcCTd2>&(X%fwi$_1bSsmbZPe^D#c?OClt0Pjc%$N*YCmLA3=7&F?0J!$rx>Wc@_ zlJ27*^*`{uOss_doXg2l<3_pj@FVq z)bi7+1pu;SwZG($)`Pw6+)cQELS6C<3Hodn1kpIv|M7q^d)ChE(VAYhJyzLB`Jk5E zxr7V|s~>b_#!Xp;vT+I(8ayrfiBrT>xcI3j!!0$qQ~{|76UMqx5-bz&#!=(44suZ6 z;XHcmFD30E78gP^e?7wQXBzV5~mDk{$=$LdOO z+GHxn>7<>WSjp2QE=E0S92e7j6Sc%nj0V0^5coBgBO7p#Gl0@}*7&Z0qAhUUz2s?b zg`{gyHA8V*)P&LcTM*G^WfsA+a&P8%Oniw4{7KrUEE;jUE@Q!?M+#~)#k_$zwGdwc z9p1jTMV{_aPoH1ao@r;oZ^rI+#35EQ%n_VJxS+U`ttmB>4krC^j#PRC-i*N^LT}ev zL=DJ*#4^OSQ=BErznV!9rc~{L04(dlDw*jgG4KnkcIB^Ru&o zuKFQcRWpNQ^TPhK6!8vJa|`69Z<*z3Lq!5OOV}!@qQ)4mQPpUgR)V|gR$%0~sL=!Y zH6`YHIH)t|3)IWZ=uK%~eIW3b<8VE|fA$fw<2q?^6+0M;X&GZLGOQ}K^&vlMJky!0 z2pNk{+f&*3>ClUJl~mrdV1!ahi3terI(AMt>W0~f%4 zcjggmj|t0s#dbvK_YG582Hio@&iZzZBAl$v3gEZF7n1I(oglJtLM}NV2q8hp8o$Z7 z-0r3xk@Q)@8m0`xL@RVfA43lCpa$5(_`28@MwfLph{n{GV8Vp)ESK-Cl^Z7Er(K)X zU}M)jhNlGSt)-4I|GAcvKoHkJXu;?!`3$sv7c*W6@Oy2BNYT)Rp`})?Y(msaRp#nN z+KWn2G*hG{_`xOz*uu*NC7{=nFwX{*3R=yhjcovQuzb3O%n=i6v}p!CQgST(b$I#2 z4rN&$11aGvDAN(*p{g*BgR-5O8aA!o^_lH1xxCTs)1>aSZ0w;^45?V8AhJddn9&)@ zDLc$y91+yx1Ma$l9K0i=&!BR6jZ$}Y@{oftfx2cozNtbjgC`7la$0PuX^V}$p|7z} z*t3d`78+Ce<`YAB+@=2nND0F(Cl(L9;;Q5dDHW8;l40 z1@_Xt_^a@PAJ~nTB!s{bALuUGmih`7Y3I3eeca~?U`=aaBa#5Fz`())rt{v$P0>Qw zg6M`L>7eexRmodRhZ`|JPNJb7Fw!E_c<8y^)3a<0|QU)2P%#ehdvdc*P# zz*1rmHh21pYAZ&psL7vCR89e%%k=k0Nps4PA{n!AjYPiQ3lu!mM0Ss_SR^2r2MY=WQ|F{@S;SlP{x zv{f=2w+y(Tr|PC85EpDHj#mW9vJIVzqa&plg4ISj6wWhfzJ(2?& ztzOpD5+0XPpLK&Wd{%Qv7f6-$Is2iG3*W5Wkwrr3RRgTM1}V(yNBYx zfha%M*_-MlYLixukekb_;yBurX~(P%wHuZ#Jz^y%hF0)O5x={uu=Gp}q4L#_+9Qr! z3=5WNKb^k)`*7I!?<7=wgbW*RvGqx@Tyc&Ha}0;a)ok#1%W@YQ}!z!6ej`}*66qLaiPsw1QG71zKtNPTZAw#unC z3J+Y?|2r*`X8KiVLt1L7&B`4BdVQ=WA4vPky}4#abq0`kncVJgR!+>|f@xA})$YYr zAjhz8V5g>LUFkkP0J}LAa&|TK$Zp+Zu%29}_!G1XE5Fs}86BmNorY817wbR?#oH54 zH1$L`yeQAmvpXLZ&`q#M)7fhIU&DV+pC^VIv? zCVIETJz)YlXZtC$43*DxhfNS5Yxet7i=MOEJK{@q)M(tyWuQUMdF42uH8Okp*x-ZP zFm=P2%+HNjs-m~otUz!{5|R}Gr>q;)*ABpzq3IC<$MMRFJ)paTpX9apx6cp)QMJ;ARPf=nAMyB~>r5 z`g_%LM1E!1_K&4XfMir@#vALrC5oIyZz&EuOu>#c0Ge?^;S^2h&Q@@IZU}WN!m{ zc=ESX$IKEan3hm*j1)>uUL1d;G7_pH5z?-)gBszt9RLktzr_z4eKu&iNyuiC2=AK> zorgQxB9zG7(0sR{M3ynERP4%o(w#O7>;P_5DZ}2DJH8mLcu)6x7+UCQ74R@ zbDRA?HJ-wCF+5H+@Y(|az`o2ed$q@;oTJ>)D95?=BW?jozCNqWq@tlr(PY{ri2$1x zi;h<>+;X{-=EzX#Bf80MY=O z(F!dnRr`k=i2c;|UX~hz=Aa8CjB;+ELgt{-CFi>OMohaUKfnFXCfF7=W?wuJUC5{F z;x?2QxiH?%zzw&cjiOk#(O&l39}~OvrJZz=3InoXj1jc%cT^fKBmY1s;krd9%xl25VHg#xkRa8Hw9-9fz0bR}TB^nUtx@?c7`Guk6I-r7=U zp<3ndccX(j%6$k2M^f5G^npF?R)uXBIk?~@0W0maP_Jy>I~MVWwiJL8h1K-L@dH}l z$(AhrZUYxlJN)FzY~QxB$K_D*rjLXK?@6=r`W#kwNl0#)?(%Zp2tut1MM+a@_dhuqWi+x=?FR3hURev@dTjS?}OAcbwZ{6%NgIf)Y#Y+|2#6 z)7pfJ0zpzN$vJaC5zI;4n1S)2FM885HnQykz=*BTP!$$vo)S6%q_P^_T+~g($G~cV zNQ_&QCAQ@~|Eut7vJxxKy2A_~1_#!APm(w!l^m2F(dlMTsxW1$9pKlz2`yhjHo~|{ zM3~?lu-0!Y_hYo=uWPee5k`is6hR#%Y)G;0UjO6eSL*z5sgK?%DMKg|e$q}kP@ABK5b27n6587MlN=Q> z{v(pwo@-*5A8}VL5IJil#Bp;%D_*rw*b2WS@KXsu@Dh6M0)u>DcTZlx*~6_;1T7S7 znC361X~Z_6ju6~gX$yeCyWvSM3SmL!-fJDh-qeGv8VF3RM-&6#o-|pIkmsI5Q*drt zX!Aaw56W8*xhPMQNwq>)-B}<29V2hEO1dvJ3YUDHc&=RudO{yW#hX#i?x(hoOhRp;AH&{Zo<7{hKmgUds?<&=r)XIaz=2a4+ z5n>DJ@@u%9%XQ6TnLpjUMDrG z&LVGE9^_B8Xj_1l`ixG@0%V~*bMoL2blyjMMRL~*8VO77jw|47q%bYNrj!@pnVWm1Ife0njPITu(pBX0;Q4c%;$m@W2vop8sw;K zFUcYQ`7k|6@E54<*nLD>*?C82=$~hq_pYW9J;wZ&IT)sFhUB&FDb6u*tC3^cn$@9K zX177As8Wx>mBd->A5BFrXuHM;03rfsc4FfNE)P~2JM)QFT9B)^hc(#gQ-+@PPhFnkkUS5SE&`4RkH;cDg$c(<-ubp;geT;Dl@1!qJR#w~n@^+~;< z;jxw|i5Mh)iiGx$xW)fTAgZ{mH(50DGaw2!A816fvDB-2yru5Y{6@qYBni z&>h|>bc;l#4aG;Trs&8~=?vhk0#eOM&75jq-yw(ap@N*!!nbpfk_zTSFabJ8XfHr* zOC?VY1Jgb`;YDYK!{Q@6r5s&1T>F8TG8AQ~&IYM%-7d>&A`66Dq?riUI*M48ZD#k}0g8HkyM7^BXjY!QW#RA=^)-UR)Y_bVUKk*R5ALCxJ^ty@L+sgHU8Q zyF3aXl~K6OUe5b^%K-1&qjbF4`HtztD6oJI<#Q_w6+%<)0t)uv#73sRg=Hl(*uqQw zwy;E|y&e1g3W^Fo_LW8bOG%bt*d76$XD_~8w(xA-y)lzM(Bg$MlHJO?S~6O|zmB;h zK~zv`3`=#>z#x;1el>A}ZdTXo`8*$_8GeUJF)u7v;2Q>>=_~ zjK0jwebl0*`D`cbWIF093+lsEl3KtBN zCv@}0*v+P~7~G{*`NQy63Dt6qwi6}UDcM9myF<0A|9Mspc^V1Rg<1;R(^fc$thp8H zg?V{#WApnfJ<1fGRe{!oR&+|TcWB1-z&>gtGD3<&^^PWnUd_k{6SYB_k1=QZB;a>` zFWsYC8z>*Mf{rrA^PxZ6R-+MM6lLxFS`6lsYO#=q$IB^wgyaCQKY4@w?g-=8V9&;(1|(lik-^06ez0}^BK9kjhOZOR?+Owf@zh^|8 zyAJFuNUW$W9mAqF@}AJ$A&{4HA17I(-_0UwuFD;=0;*$WHJvVCR}KZXAAVkP^?j=X z<6ED?6MWxXRJeAbzDlCz`lbt89z;WnD9M04oK@@kX6sn?uez+K=w6EX#z!rd<-9*N z_b|=zM%5rielBoT8MqUjP$%)-RH2ScwCBC_t z)%!1hOyMsazX1v8Ng3AOzpPwBra(YLcNF603dBmE7U_GftX5{Nz@`CWat5ksKIBt4 zf^4<|g@^&J&h~5<3ROZDU|Ev>3c*ZLy(Zf#}9r(!(Au1)(}u`uCWWPV+1No{T8@ z!gaBKWucC)GO#v~S|J_eH^913F3ucPt1Ys_G5?bd2Ib*>$Trow5t5E(IBl{pEOkwz zpd=v2$JMTT1?f-aVA)#LG~UrdTe5Ga#!I-9ls$N?m(&KpA)dkrlG~vl^O>tYgq~`S z<;^pKQi`D`UX+J}1;o}{rko@7JfeJxajQIS9@-MAI2MAh16lHfswvq>tuooH1_1^s zwr-xi&s$VV-*YTc3$A(JXVxx=U)|~Z-w)saKBRWX4jC332pby6<2!!n)B%nkByoXd~=S|WMcwQrJm^(2$>ScG3kMMaOo~3 zd@t|&0KBuPb4Y~7&iPD6x1Ns9p?v@KPvPaa79J(u-_aMj1S&X4R4Wd+*vLsJxz#Dh9&+A$h;j@{30BglwW_HgA6<&Y+KzoFMHK{|9if5iK^1J41Tu;#W zfo9wc>_l6;8dlLcjtH$c%5p*u%*%oHLa~iCD1h9W<6vYhe!y4b*0`%OGEKQpri_$) z9(P)Y6h}q|#9|jDw1wX$jiqz0w88wd9AgB$ra$yvhU^%8j^3P{RQbG*m<`SS~8mk9LQqLrJbgl_78=`RIaK9mGXl`8Rkn6Bes<>r2K=xJ$d7%IWV>G z1f=f z8Fn#xw+#;m&dXS`!}ORHwe4_xrJC{d#Yo)v{on!^#6!j7({{UK>i}>V{79&S zkz-!Rvw=rP{V6n;WUCraoRPPSZKAQJniaTs)BRgLXg< z?S-oyS8A37gfpc0ZYi6#Uj&S8=ht94_2Vt8Dplbk@$e3qOLrRYX6T!?RFWCr>>#UG zZ*G?{c}l;x9neXw@@~zfbOcy{X`w2J%?EbH`3Qq#?D^(3CGhEK5*qZLeZb4+&#pzI z6{>?$Tgh^_cq+H&f-IZZt)xXxC-!fEhwP7dm7!K zp_j#-nGhJ1tuWiTWAwJtE4hg0vllrXve^YpQVGc(BOZu!=ToRg4VN=&7UTTU;`u0vPDMJE%Tgc69j@00tfM z?b$|kQYRVg@vOH`GFNSh1u9q|NKs7{FJ>#@JMu*sd)abV4W0Dvn`fdL>7)o8FIiCG zy9l`de-Jt4PB9V|yr6d<1FZNBp!MrayxWnEs&X{YCy-!etsXf=JO8SLw;EKFW^1<8 z_cva!^3dHORI4Y;lUj()W!oiy4%HsUM)BngkoT^`^mL*B^70F4+9W(v$HbsW)Lm5S*jK*z~CAMwh2o z_mir1^w#f@cx|o+9xvPymsSa}-nIE{y4;xlb_6&JkqPA#eOW181S>Xpe5)*(>~e|0 zm8s-BBm=o!Vn-)*K+kr0$%^ChZM~>KPnnM*D6asie%atk<271RiB9%99CqqlRZg6< zDz4{aO+xH1!|TVVgKkx3F9AjVBTsu<+POTv2TT+^={CrM%FTth>X$zm7`D0O;( zo-=q)ocMyeS<_szE}>7pw6HpJT=$wLk&C-i1EyDH2l@uBJT+4sx5AsWkVHpzZ^@};->Wxs+JSPy(|Ki*^fV8sQ$ivCXX0PTX}W^;e~uJE1vnQ+nB|63p0P_p z8A}h7)EOG|=tbS9M&^bQk}9T$T{xV9W-3boGq`L%W6|a61s4poeMx-RJ3a{n%zJgn zq$f1=dglVSASVopYU|tr#9hc5b&HLF4z^9mzm@DDO^pY%NL)fnK&($&OG)Bh>@&&t zsw1P%7Nx?b9HfY}zeZhPhQ;Fgt@%zN}n~I;-si?^YdgC4q@=PI{Vz2& z9+E(X2YLyVRSLThgInD=80dOpGnT~GS26qCK33~Fm(W>@;JE7zO-H4sxyplNm1u{! z(Xq;=aJ;N+AvI%z3UD@~#u1rr*JdlCtr+a~aZ}n6I;o@x4laM*x6MK3?%Az7FvzZ2 zh{zw!L6HhK-<`Vr@|0SC>Gv>C_aBjilVlU^uIC^G?4KN5%hkdUL>?%7!}2>;a!{=Y zK*K$E-Z8l$_zdS6r?XbKncbi2a-~lOA5ue+?4z1CGlfYCY&yb|LVx0xUusLKThAF) zWZW5fa+-U`ohAXMCM~6a#AHb?Ws8wwU&+O`*vh?ti0 znFb|JdXP0G6}Z7JE)HsKM(uQRe@tK=XEyXD4e`sCb3(vLpvD<} zh3t8A;Xr224{VRd?nX*qvUtUCA=xY0Ii>7qn+9G8 z_mYr*FO)i4LOucf%@o7_6kd`iiMlfEL@OdfbV*3|+;OEPSGljS0egQ#N!ih%rN*f& zXSwghShrF^xF+7EUfvAo8>O|UA55PqKkL*Ef!)|8AI?-E&)_3+-EjMR-X)2Kjq=qnn} zYjki%Bgd8m0XZ})n$wr#f+JB5m=fnYS;3M)ZnCZ=WoHWn>fKQfVPxnwFz-Odv&>oT z%OxYN*C;XF*(o~ua%a~~!cB4(gbzu|h!|ia)KHF1Ni{{3BS2*`Zlr6=S!VJtfR5p* z+)fQ7kuKvpD$3diUOLL?%zadfZF51K>N@xp>5s5(#0unj(w4~?I+DaK<<~@#Mx`TB z{c=zm5MXe?NEx6ad$5#QHJ~gFS7UzJ?p#!)JjYZCf=X{$1kj-jktQmJx4)5ed1fOq ziE;Q4V|_^Uu}z9RN1~adaB#DXi`UNU_MKIRJo|187xWd@OeexT(}o+ntdECwWOM># zZCYq(v@@lm-rL-0p#q#F$r2nIo1ceo|4}^><=`y9Z-uIE;5Eg zHr1Q;KzfZ`qR&L21TM14N%ES3mB{++O|>)~86CpH$rOfUu~rzDwa*vGqG8*)Jan&m z2`zK5TSPZUi+lQp$Owt%-c9CSQRIRv= z4(kG8k{D2|4s=30b$gYh>ZH@bq#V_-uNMaUX+S{LY|-@0-svperblm+2vY=7#`=KSo|vV+3Zppd3Q6m8<~yPY+^hmFsV(DXO=FC5ckVlB*rG5o+g% z0L{gH3H`?c({au((1EWQRcCbU(glU<1~lYCKI~NvEiYkZ>7ITh{{;De3jT0$HFv7k zg?*LS-9gTDhw@fuJ?nCmwSQr&3LLH999mD1?orWuwg;AWEL>G-sljQbHl$7OblKG7V4%Jrh1Zfv*+VApCJY6s;`=RP;e>E4t^ z)~TWOdfJIbQluorRKmvdTU(1mb4o_-)*SE;+10oZ#J35p%-ik?2njvmYY7v7M<6C` zchF!>+M*j_%R1>JZY~^>5quUzlI&y}kO8zpCOV zCg-sNN@tV{bixtKl zOXd-jVWS(sp)Z|pd z+cweNbl^+!-o~1K>kCO3!-|g4f#r79ZjnU}NfhB}9NRpoj~I)N745NP7gYREo$F*E z?Wox%O8*O_WS?7w^3sE{Ql#}jN{cG0oeuK9P-0h(u^mhOxVHCyCy7Qv2fcpV;~hl= z8q|M^H{5cs@PzXE0^qE1)t8TK`5dc=#lGl@x0s_4IdU#LH_)i6 zEPW$86fAU#4XyP9p*5)vtrwMnt$~G=XKXm$2(Zs@49wX(#-_)nIl+^9*$5p!qa&7~ z-7)!`P;Qvlg|3@>!O0uS_rU+Dk1!h$YE25~Cpb!FdCN@I1)5!gdPdIM+;B(wG!ebq z)#Ygi;J2qXJVwvy1*Dj^woP|XIZ|5*%hKi4?w!Dd9tMN~ZT74P7B@pv&EMXQISM%@ zV4#dXv^9Id{xp5fy1Wc-p1FW3JO`?ep)YZXcU3E*tAsoV4C(f9yA76&DDWYzBozkQ zm{Q`H+^MbRD%@y8POPp5bO?RN*E$vB%5JpAaad5bJEj`>bWhYsCqD+~Tq<nXORrXVx%moMWDBo`=z+<} z8%cl-Q)6F?Gdf8f6p0tE-7Cn!*k8ma-R}RHu5saAfPZ zg#&BtmAcOGh+4~3T*$SL8C3+)LCp3n(ju{-Mm>mr*$`oY_-*HB59mC08Z==^a>Ej> z;#PqlmkmrVl7dP4TE(3f0N%Z5(XmWx2cN)rcUuw^y8*N?#SVfh>k)V?LDu@`d$_66 z3`Sn@%1sS}1nP|@1pxH&oivU%ZFS&D58fSZ<-Xo)1?fOhls}@3&>tRL34R?+zf+4| zM%q49P71K2bEq?juN|P9U{85)*{Z9P-y?_tD!O5tE!C5uaSw?1xblraU=J zNM&x#z#@|mB*V)V?j_A`B#74D^MP~MO95^aLZMXq~6n(F4llAb#i{?2#RO8`HX%8w!017iexE6U~$xAdQAn znX@NV?>>I{2)fEh0T#kg&z)6=Ns<~MYhLolrr!DbQ?yXzz)CQ_e|`OVkbnI`iN5r$ z2e4@-sjsLrc6m};DMM*O9Is5RAWI>7h%q|XsF9)w;6ZqESz6wPUPplpqQokXIL|1c zF9-A4o*I;QWcLid|79QVP<^%Y6HFt9a8$=Qt}*eaw2PV#$TNIqG63J!fy_k^U2=;b zEZma4;L@rN2X3D#6nBcMt0!4H*L+y~_Vq(&&!3*3gB2EI@zzEj z`mlD&$)o*1_UpTkm7z0b3B68=zm+NzW9Q9WDI!3U;_-jRjIxNAP_mn&te<2Pl?RGa zG_S6b*oUb@att>=^9FXd5iritk|Jp2a-GPdD&*0_n3HU-2=i_TvahZFmJQWDl1TdU zna(%id@4^2PcotmQdQuY3= zanD^lM_kEcvY>DSBq*2ZH%;s9j9QTtE=%z7v6hKxk2(g5@r&1=zI7~LwnYc%u4aq4M2C@ioDk}AhS7tCP1T{#WIjI|KGy@WNQwB4NPFs)>&P?G56p5x18llm5+$}F5xwQKMcyt zR=q}+gL1<~QrcFL&(=5Z=*KXd)OuOF*7HmG*oTi=k%uMSJ|^_ToJeD^O-$|u{I ziK)F&x@QB_{32>UPI-JHxq(Vkp;qpJPg=l~_4RiLZhKa@t1jLNK#vXubHNfxeg_L5 z?|%0B%hzwhyI;Ki`P+XuEmff3*DSYwc2D)&1&Sl5J6KeNtWnMf$o_V*7Dxq^dD-et z?N3>GMwKU5X~7?QrqW*3}s2jM@7=!Tt~>EM?;)T zRY+ViQ&4w(q{WE?W_UxY9$orQFFd@gLRQ@<}%FcusESt|BvD2_ooq2*Y%gOFo+_Z zRCb_#s>|)rWUJ5GsAN%v{J?^7(Pa{+S|(Hu3}xd%)u0vFqC$6hk^oA!Wk$bx{rvTd zkp4(=nLhd5kf+`cAOiHMR-<0R?aey8-m9%*R@^RNVUC0kw4ZPP9?}w!vZr46l63U? z1GHjuR&ke=4&f;!$z%Z?M7xY<%w#DPw&3;I^}aE(>uRkWvMH6`1QQdCO0}D5Jeic2 zq@Q^}XHmzEbS<1ye~MMIeDc#9m9S!~Y?nS@cZf=+%-b)&y9CHClThBG0md8+fWCtJzL(McZ4LM|mj!!36rT1RDFfs?Nh zLK@`shve_4uRn!ao%|uEDH5$`6n0mYH?afU`|Nf$f5Suij|pdIC&?r77@cMLUfSD% zu3dWu%j#Rb?Ax%j>l0{XC7HLv(pU8x=U{HodsyeGk(S8#y{0yf-A|$FdFCk%idw%R z1!&==t;Ddi3v&R&J+}#(P!y%?$#E^HJ|ZE}ZsL2PRJYXtP%0-uYD>C8^-vx7(g#x) zg?QxNQ8`>? zb298~mS9aO{4**Ad**uYHI2!41DhQY&Ll#B!ZD)-)OeI%u63-g)m^7vIto}l64=5^ zN}3h6AyE+d1m)7f`RNbg%*Uq6D1&2;&u+lwmXrIvPy?c_P8V|1Fmqm%@yU>xfDN|9 z0b2~Y{Q_{Np)y(s-%1ryW)zGfgLisk`0?1M%t|#hK?h2jX3A-S2WZC7%T0Wjz@%%d5-x! zMIy{~yhy?iE~Qs^xI;xNaT#+rDL?C{QBl2sBvCANZrZE~reZ9PsZGF@UK4IQrNWAR zGrpeMU9BfQ2}AELu_OU>H3xM!t!wR<#_W5eR%g`tik2YMlp>RYC4mu$t5YMn(;bFM zc~34|S;}_sEJ>GayI@Vfw;gL;c{sP4e7E5_-1USc2uV9ONlBfBb5!NUxx7eVrGS(U zWEyI$1y?guwY5f;DGpIm$n(SNd6L(#MUidWUVs=U`|J{*oQYn0=pS1*V>`1wHW2XkA%CG{~!@ z{rBO^XTiSs%9c98>kEppf?G~knnd6~X6&7!Uu;E4evq9Cc<7=J&Y~byj%S;A=F7C-lWrfJHalSYMMzTwuQS~4kCtK zcQ~M;gU_|{uCo^^5^2}QPQK=nhz>Ye6pTPP$I!@*F6{Cp4zU7-Qx{BS*3JH_iWWP@ zdQkZ_2t*8fWdB56$nN~;@}DFJ%?8l$&6S&666~`^sh=RANsq&@#Ts zzfx%m?gBhfJJR$?hNz;uQrwZmyBz(B{zNs~QNHX0+>d23n?j0R44Rzq7;bN}4Q%>> zvi62`<)IAD5OsL=VL#@`kf5~6G^3Mjbs6QngZzSxhdEHhHRHGWiFZo56yFLzXqWkCvzl z3%aRE@W+vTN*hG4Cv{~QL5j0`Wz#4Czur2a+r@q{fG522jmz~_Ag!bT?#A| z?B$J`96*)$99`8q>m+piL?-(KElwB}OWZwU-rv_;gdh}h3NnVvX&hCxyH0oJkp^aow<0^Oh?w<5|H_}p97zG_lC2E8P6x?z7{)G@)Gxoo(jTtwvbew{F?iFVQhOrnvfO6OXn2ZA zy*MgZ7EePTA@vsI$<`|Rl1@~BSd$p2YXpocX>A|;sg+O*y(BroN;!GmHl*8!I>TF+ zEqUbT;%A}UGI+ugyMf!GN{`whpS0JPgs=E13WX56Jhe{Y9do-R+H-Rs$p;D$JFq2y7=NN4(HyqW%7#oj1)NNW zjE~jQHmWa%e)m08!QZ?jRP-DHjXf2iCtUoQJqh@4hh`+a0pN#t0~4`I2v`aXoI>H~r z*+83xmm*Q^c#Iuab8d@p89k>SeL^_Mxf;1^pO7G1kXL2dxuHll7n8)YMLkk3I6po( zH4vw7(E?Srk-e?dWFVoqPgS~zOR7`iFb;cvPzi@V&|owB#rCHk^$;RklMXRuZl^k9 z=jGX_I|nK{yUwm>aKK_mMS9yE>XHw4T2sEunZNBIhDLDL>?Bfx3p%hjm4+@=!j-dfQ&wv0>QJfuHoT))SO`&zpw6GxJ(wzXgYL+gL{2z|Hld;)&IpDmx}d?FHuhRlC6(~7 zBL;!OmV)|@T8Fg?RYi!2s{0cidB7B47iZHi`SsMRfWFC%rynfTs*~jU>~>Id8rI74 z7&VE zseFVA3DELKiaoo#c;LAWrX#9SL6mI`jQd69zAwB=9=!wm*;x36-5(UTpMigUHQa$N zdXuPXP~YFi$70M50H{&y9AKsff+DqE(yhJbT(BD@8Wc%!@({V34c)-mAvyJuY-iHs z=jG=pc57wtvabVx{l=E)fLZSZ0*4NkLCyz*j$<)EBGQja(ROgG%ie3?Bwyq{^??jK zm0QH;y5k2~+HF&UH>j7bGO+MZe_ zH3Fa$NAlf1#ii6f&g0TDKP}NdxFuw@Z8pb=0;w5xOv`Q94TAqIKb$YZ>nG{TRojE? znW0h6!@M;G`++JvJloL^3z)7;rVh*1h=5QaUVO! zb@#~|slW;FkTB;u)G%bP8FWEg9;ZA)jDEmhHu<;{85cll=j?n@5}kIVjh|Ay?b%)t zP$E!Fl$Q5mR7Em~t=YqQd_qvNrqeBYypWgNBQfpdFrdf|8aWykF9F%%g;vjpg&BW@ouq9KBT?mE?RV zBYGO@C>G0_YVqzA;|anVtc-if8xAm6`GV)s=d}{0+6vdjn8@dGl2f(#8J>JT_?4Yb7b+Ue5FTzy>y<|ou>5186v!PKj zO)zAzX{Jl@ncKEFohiVMKEZ(+a~*k*Ua&T?K-tw-Pmc-`Z?fDqOHB{1w-!bZBp#4< zryCAJ^6yp#C4|GmHwO4NSykf5G2}9Ovs)r%%X|?W-6@~NIm09X z@Zq;J%oQYRKzO7d2{bDw740foSqYM6WS#2{JSHH!BtXFQwmzxTByZL{DwB?3B8*RI z13l!p5>a#vv!sT27Z2$UF}0|z@C@|4e^A&xAeI%b5?P1nw3!}-Wyq>3TKJ{U&}LxRHG+>k$GZ*Tpg@|*ba5EQ zHJ{9|vRn^}PhSRO4@}_PMz+^sNhMp1sT5R?h&zI!oqxC$I+;3Tl6~*Ag?^jiCsk2y zCqfMR6alBTUSid^L$bo*d?(PlTKU-=xFf>5Y2@;7jgSR{6FY>U=6QIU6Lz8lb44Vx!2-VN?pS_F3`luyYMu<5egwxy%Hi-HD%lYptvF`;qxe{TPF_|7zKoND zhGpfazLu*(Z$qbWSGE*TJZX(kN)}No>U-eEYdZ<$U@KUBXu}1O4aimxm~udu2L+RN zKYjh#>sRvc4^VrkG@{Q+fKP^WZrocoTQ_$J${CdeXAA#5QR|oevf5KAWHpIDxF!f=(o=t0-q|x zQWDGn)N;Yo8BI>JzR05LpnkzIM(gg3IO%o@o)n2)`+)wgr&*BsM#ItdUi*zS$WoP| z0M}K04DFp#{z8GQ!F8)j6x)IBf<4GKmK1D(TJ(hM7U~xP)yKfGxCG9^o{M~H9~+kv zT|Ay+G<RL0h^ zWLDGzZ3yUb9;CP7Jdxdv#?lQm8tBH-*v#ry|1X{I`1y{e-U0kmK9^lzLGPqE03WW@}xa_w;4t_Q+*QCgDjH;9+W(q zJR<77&G_yUiFc-!{A?dxBa1=uw`nMsA~zxdwt&DL^?bla?%cvQW9=d3X%-LK04$Fv zQ7++%Ar2=eZt~Gkx{JzzGF3nijW0O6m@bOP2Vp`;JSO|36J!iHH*J+R#eNKwX}E)d z<>4r%KOv3)5SuVow1o@RxKUoka{?Tft3;LJCAf%jC>x%}y%kRBMsr>XNagC-;OYRG zT;AiJ0`>#<(_N+4YLD)vp}d@n{Jbo;tIFjSuAEDEngZ$l1v+51_s|Ek?JY&7%YLT%t3!uC~4f&E--sKs(jP3~PmqUB*{RIAIxHr7k) zY87Z$Nj%uqlw_&)*(cQ%;Kw&q4@kz0S)mfM7A;UL+qF$ngM|m4In@(7$hBD=gKnp+ z{`%0q?QCGml9FZ#I`bKZs$GBL8pZ@-wC^m?A@$n>2{M}=#K7-Wddla`WV^ltqg5~a z$mnWPCz4#H!TkZoAtklhr9|pfBL_64OT8ljc#*RKmHUwp)Ob<3KYf(6kL=l^TV%sL z3a3Qbu%BHa$y4O$W?)Y40nApRVR!kv@W0y%qfqVu#ib5(ui^k=y8sKIXPCm zBP13KIf-c1R}2i4vgn@uHuP!@3OGKk#6gmk1n_=}WFK9I3}Q_}lz*{@GODDv>jey6 z95>qWO{BnrcN7Llsvrho|B*P05@G_jZ5QW^q#m6G_=aFK(8k*=8DnAU8P7AVC5(=t zDA-4*Yd~-X%U8lo$1ngTENX$KM(~Y}$iSjA7pS45Xfe4`9o=$&VS1rsZUuCj?pNUq zh$p~0RH}X`d>4LS{tNQ|3`&5wt#Xve&ILEY@}Ky;nb3fRY}hQ|rQ1D;m6Q3nd6IUI z7$+kyX97dAIoOE?7S7qNEAo1g%Pq$!H*HhDJWLv%LG&#HhC3Bcv{WOd#1c;=h zvx$3Epe`#aVu68BvuJ5PZ9Nc!%q8RU5~Y5+b4@ppBpN;QfA{mZ&t88QBvtyu+lO+5 zB!x_moZ98Ea`2j+zX64jg>ADmmFBu6D{e~e!0;=2mwryvgokJGQmh#b!YEOTf-br> z78D`|*7)#sOd47@ma13`wV{~Dc@;7_q-q0tw~{K!Dw8W1i~!AwOI9e>>L7nRGi?P; zYImi`t3=(#A`CqyI5&>N+cVVcF$y;aVnwb;#aMxvFXdzPC!p9J+aiZ6=HZ`KbF$d8`1HiC2@*S;bkXdCrGh#uL4MtQfm3|&Hx)6WL-;PUdgSc64;%1;h&2RpvBxU&Z^z}xZW!D2!6n0g2R~gd*Fi#U}^4-M9iZ442L` z*-68!XWon5y&dazR5c{vIhka5J*pr+hq3H{vDj}y|H;%j!DiZAh7FaK0X;y9a7$^p zYlgZe5e-d7+vJ7c4oEe&D^V4KxSz>>@?OJ#wk#IA3z=!T7>w?#() zl);lQY(;G`XAPe@+)ePSLs^Yr-;l;0Ggw(x+c-T;^<5dx-b|JAH!lO`!w*GQMzvvq zD6hrZMQ@C)%!Ml)&+N7*)HZ8Ulr53nszY9BPUgrKRHS-xO}U#+)S|_2QZp*&Ws`AYi}Fc(?-A~s z`k5{)Mw3dQp8;`R-EOysH50c%H(urPHwfw*4s%twuF3{{65c*Rse{b1qy$#7%yT&T z9I_=XB;zc{N!+oM=e4Gy>j_DYaqpn0Sn%r{^^b(rf)Hn)-n6)bVe%}opbD!wUX04% z3(0wp)+x_;&a66$7r`5HSvAR?QE`X5t)2bUUtUbv{tq34#T3Nw+cUSZCCOLac6b$0S=RR|5oqBX%H- zl!R&9m6^t&+sN6EEZtH*BRE(q8#9Fk5dMs?z9y-K^eJJ01nHwOVnB`l2pEU7FGg9^ zSdXZ*Yz8UCBC!zP(p3Ty($2BOR*={iCEUv0!Rc5MK&Vfi7NrS}Wmm{Fq(4wMdwz}t zu{l{Gwh_L$1ZM(9o&F#n=#hirFJYcze*l+CGThED7GBqSvm|XLYeC5qr;Ut!0M(o< z%3(rVz$h00W8CSnEa{M(D_yiB28JH1HThwivzcm#0{m6N+0yOk%s&MLc9K9uxLPu!*U zPA2Z0^id?|f%t8c%B-hpZ2?v=gjNJhAv=e`AVDq_at$XLokD7##p1&@_3`AFyhIS= zt|vQnJ;*nS<-o1o4p{QY1DKjU`u+DDWS$5IgiDv4Km=DxmAsP_+8h*D1d}k_Vw@d^ zfK^RkZ-aAC;_q+6+pne8A>VFG@?Is3OL#9%LlEQm0c+!MgQW#7g*3$ zPUzs(9iV_!q{Ga&!ry$)9tyZ+8Z5KePJ5s0|;_o|dv~fQL}F42Vtz z9=$>YxmL3#xZ?o_e2KH{PhnwlS-MW`9><)!Kh(X7ec@tX+ z7=KFoT1V>|ReGYViltv~Y!?G&ZcqF_g}<`H4?L?ls6d+U@-+z;OmxabMC9}by49y8 z|K;0<{K{_Hhv}6ggyhsO80{VgPRRhehVEd1FoF?*p7TEHERlBvPZK8z&=#^xIf%j` z3XN>qDtycS3-}*~h34#bs#qS%;42dGMw501g{fT6e#(&PupZ?#RMkadd(8;ZIn(Bz zpe{G%d-JJU>jeV>YHP-80{)aI3(l$-v_Z^d%2hgH%E%=w2S7K<}IcIA@`C=SMK%-fAQO|V zvn${PZi;+@>&cV^OC?#L`2| zOg&~<5?uRT5wqZ;S=I;qc`kvQ2gX)gys{asXh(MOR_CrEV;x;bMqM1BM#}kx4#mGp zG-No>7$g8}cB#D5BCOpOs8`RMZbh|B?LN4+`q;eKCKZ3S#=&pcLHLdBxc;7oXE0)% z8VsE!8xA(`ek5_G&X1Pe#i^Ua?+rY}uyiuqZ>*KW9zC%qv61L~HY}Ng7_^@8r_Sl6bb~xlPZhgUP^pWE$eT zpN4OKs9j?pOMyWLHA)s08)QRn9WoHxJ0#D+DcMO;$PHeU+o3Y#C)Hfpp6KSP(&E(9 zg9{QPZXsQCYYV%!LynL>wB|e^tEy8o8FtW~tKy#Lh?QDVkup`xXor+Ew_mfPZ3HJYS8H;J0j8LKa7V;$8BDNWxZ`@ov65}K z-hlaaP`)Gswt*okHp2O;_X!K;e^wrK)q$(VgQG3$yMKL^3r-adI!)HNnjW%^(s2X- z@u|mh?T9p5$i`9_uIK&e_JNp5yfc*7C11j=v4>U4b34cwk{yCcvP}po)pIDuoHf+4 zI^pzd<#rfddU1(;df=_>o|CwZ5-7T=gRc`*iP9sJx)DleWIL8X3J~H70XK-8AlBs8 z?Nv%3_wlh{^Akp$pYUrslreVNa;pv2TiPVCo*z2n>C<$1l3gz9Ys;a})hwa8jR0Ce zrN0;T#@cdcuy8SNpm#AlEN$r`4YLutM)r}4ICY?Gz=-{gJo~bifr)~0BPxw9bj#>n zkxR*hjz6D1Th6phLM6O4(7ZmTBDWs zJOUjlYV~RxF1HhpwoEVziE_t57B3@Z2?Dqs7fbFZDbD&WiDbO&ghN$D5}`wOU&qTX z{{{RH#?SoFKzg1ep54pqP<%v3+TqFp3Sc@ohrF75_vzbT!s{PZa2^A2d%EfFVn9Wy zj~35Vu~7FeW{wi1wCv`=VJaMm&vwQjwINx4$;ws#7{32~$HS)eIjt6YP}_oenW%&e z&m@2wi>0Nc^AK0eA>94&7HN#3ttX|Q5PgqNJrd9WYy-|JS;Vn(#AAQBqUpqWwghEZFnV8ZCsb<2FmUb4GXnT)TBv<(-oam+W$*!~OttB4C!}Nr zGyy=wBmz#7W>*2sY=I=$d*Xd{sgQoj(~}0R22DD2s>Gb22AAJQJ(VgRr%wytOUFOm zllatL^$6b#sH%WXNTS@WnB_eNoEr>vPG=tWO{ES^bvi5j+zUCx_5nvA>C|ZRciWEh z7sDI1pBRvMtw1z@2xU-Q(ENb|cCy0fBoaIdhoEfj-sF+=P$5sm$~|V5U+?}U@F932 zy%cbs8I*(pWY-leO9w(!SU?rlogMa7g_;5&=(SKLGxdzXHvqDx#@(~J09QKfe9>JWg8aT7*sEj+~vJ9fNA@kOQpf`b7)#dcu~k zCifkKY~y=uk++ZE_rZ~pZMx?{^fZ95E^9r9A>p)w|BNDV^hw~wIyAwUs+lW1Dyu~$}-BsFzx+zq6!A#g~ zU27DA$EvOJox8xt+^!%i!P~@xJ2|P{(j3r9XmBc=*1ExvQGH0=$g^2dEm)g987h15 zNqyje;I4*#l)_7hVyGq>>^Uy#2WJUGjStdC=Vd;$&SL$#YR2AB-xH@WJ?}ApUQFa| z1Fo!rJP%^VfB=dihg}+$M)!RAK$?2T^P)xUX_(+aiC!y+KPt&Tm;!TA|zuOB%1c zUEX`K;q~L!kCFx}PdsoNEl2`&OlKZ=UmJ*R&|{#@c%IU{BxGCM>5raWqiZ6%(j>N8 z$bz2L#`-j(j033Qi9CsPBB#W8kl^eLR`?dR%}^fhh@a1ONO#W`~6 zQCrb;0tsLh(OOYL3v-FPoOBXiMiSyvztQ`I(4pWVo-M;tg6pkTC!PriP|KY%1Kq^MX1{lB(w!6E!n>>DaSBHa!pFrhU0n^3+as^h% zm84|_al^zZdzy~uB!e3tD$K=^!<W|*;9%wG~ZYw+$yPibKqq1{a=2UWo-PF~`ST? za7;mVM*i=wzgMmC#wSx~V*pn$F*vlrxkey9k^7GIN!1xxo}OX(SMA{tyiOEhn5|WxBA- zE<|Uzb%h{I<3Y3Gd~Ay<&Meu~+`|q<4u^qbMRkE{reySHFoX_h84F5roeL?Tz6fS9 z{ep7pk7zWw(AWy7>fkF^i4KOXt;`Wjmi}{hlJUI*%*h98zCUzkM`o;DP^mHUB)=^d z2;)o_%w!a1O>3;71Jc0)ru+yay8Nu_9rWmk$JzP8$K?IO*uAjOkf)GxW&OE)Ptl!5+dh$CLSu9=q^0)bz&_D^yC*#p`%O_o4tVsNigD z1MF*3vXZqdGJHThNTi?!g;?izJ$HPJ>7$IOwag$0o{dg>b1L~}3Oqq+06#*;P^s4420m);Vt zp0-fkKc$Cm`gE0=q?aPydk4h~zul!fXD+Gyv-6%QDZx;kCZr3L1KC1&lFzhN+-p#7 z;j!Gg521!h3S65L^_?MIu6JgGObu}OPtZS7<-FAvQYcK@4I;8H1fh(F!<$BQ|NR3K zjjx*V_JPtsAmPKXZ;CuGTMM+p?Un+)XX2Dnx_|-fCk~FkeEv1l3BX!+oTo{xN!Hd} zAnj@B&wLB2bMQE|c2rD*Bk>x#DU*ur+3i!Yr9}UvL<-dLqSt@Ly6$e=ShyF4r0a1* z@|&!9Eh`7aMrup#INmIUFhz8qJtbIC=k&Bedn*@RmfGG&=g*_|@59>{muD9%ks9(Q z)d|MnHR0vR2PNp(5^dzubEFR-#*RtooTg;NhHo9_SXK!^82h{5wMTrDb7bd}g$rM# zumK>Zgyloxl@ezV452yobh6UGVtA5GuJQ%1zfAYyq4rg*_1D}gT2!k)Ep$kvf+7le z>2xhx-g^IUfE4-D<*8FGj4Jt+WhnLA@3SDdf5W3q*<%Hd4#)yd&nlL&!2+$j$-kEr ztm_=j_Bnk3k^(6obL-utBx7U79 zHsGNfqiiMOtx8X{$kL;T=_ih^YAo}#&a@?E^T4&zOwSbpN5BwOtd0Z#6*0u#bTrPE z(wd5fsYt=5g7ov~=Bw9T-BE1DA)imuhaNaH(%n@mdh}l48b8SHI}&c@VW+?Ws)LLp$D(LI`elo?Fh98b^ z@S_jL00sBS@4{=cn+N8@)zvW01JZ0G$E-nmB#E2TEwyRtVO{p%BEdm1v&{ppB-Zq3 zk|hi;`UALd+a<{w2I?>U9LlcoFf8U7Wr)L5b?RK>NYg@h}d0%gaR@CHDHgPV7CGMm4D2&$ND^H--T+Ni>DePr5-xo?TqcWwSUHf1@D zbC~R8dbuU4&~250$#A)~u5v$Nh~V~d+~V*vbff~z%q;nnrPkF%PN9F?6N99%sO`iC zg6X?#!z)@G>Ajw8J^%f;!ry-jqWrRNb4bD|Hzi9ou&($ z8A<$~_EpE)jzp3aN6|8b?*BKMV?9jo#kyXSkbspGZX*ctQ1-d@4$J_vg2?{K$~x%7 z6G|=bY+Zi%8;wMe*3({QJ0P7=Np2xeucvHNQ?K8Uvb?rG zc7O@Ae9A1_o2sZh+a}{WQ!(zw%^H&15+A!Pl6j(C7WCw79qG!2s)KiDe0pwiZ zJK-Embpgl#^IEn*v(MH^d{F?Z5$-gGTBAJqu2|er_p#1Lg?n{&Y-6p^qXpq2EyipN zkM2@+clg4;oC2?rzvVA%P%@R^k;{%9l!9T;5i0PWWBkwIdmekJ}7xW!PU3R^cI2-e@K+akF=fo$AfUl2@ z>bmK~KxMEcBd~_T1JY?s%%8)94^~bQ31C(O6yE5CUY?6tPUBh36tKgvy4z*ybVHWF zjm_}9Rn0b4fSrfb8z6%n@p`g%=IKP@dH3n-=dXVZ?|%OFwH>hch=YEahTKTpD5wL` ze-}f7K;Q;wt&MBrZnyww*_9O4gpD~)u9=8Gb^4fTtTmsQF}e%0koAO3xa`(tFzWK# zujI+ef(F$;?cy2^M`=uICHWPtOeBG76yc&9#(g&Gg~TmY2`)MlBaz$0%#yD(Ozzrv z?US&m2^~Xh4$Fc2^9E^C$vh4Es{U%|jWfvKBs7}>%z zIy+Jvy&^=wu-B%9<<6$G-@lLfUTdT<)Z-Mq=AP?TnnkqB44nvz4zsPKwYgszqO z4c{8H5N3mNb<0T_&Xk=$r4`1f=)(>>rWI&;dwfl2`PyZkwd7A@n@hkH?8&05^!UI zm4lL{FDi$z0L>qvCD=}`S_BFEDmenyoxNQdx9mTKLSDA}iKi>OiznSs?lrplPU5t= zKy!q7JuRz>MOgGxO_PR196wAR3$qdtx3(IO$0?4C?)075A+sBOdz z#f#Tj5CXqqhHh-z4^DKS)Vne@uyr@}%!6#c#`g=89tu-SI4e;Nz+2j&aaJBZTkoX{h#s^4At0 zj`tlOs7|UtoGrCWJiu0&*472(eH;f9 z;5fk4=cuws9xr)x0v{@*%~H&EIOLeMojWZB)oL~_$dFMmUoK~7Q`Bb}_8j;a?X!29}@${P%*tP@HWq#7jkmttNNzd>B#W9qMo=D-`QD#X*( zZtfCzu)xUNp`>s|4J3X6j?oc@51TwyN3y%pcIYX>TmD)}jI#scQ5n#qFCOSo!4c0{ zN{p2ds*LG%SN`(?6w4r)swA+c7F@?`cb@OJs?WMmgmwbI`U0d6GZ&=V@=S67{`?^8i0#wcwT0+H8Ts$e6@awm|zNZ4g0=(1{& zB|sd?K8uy?k|(Giqt#9K*k~`ufJQ*Vw|wY4Ddbu*hqZ*I4)A27w|o#zY)}MBU~Yox zY}rbwFJAwwj#h78fHO%ITHEqf*ai;K6KDJ{1^>RTzf2NJpvWM~akG zh}8oY6zTI#C;5x_0-yR}_8?|u7cIH+mzPUR$f;r-hXbaL9V zO!m-$#+TJf28eC4;DkD5-4SS5$*!zC+TfsHz{hc99I(g~eSA@{eM`M=ZD={AYz;%H zDf*Qtmv{d|r$kXXUkO>ZbN>cRIO#NDh{l48j`#cerw?^i}MRp4pa>FcLa z;mb<_HK_C)7q_a#LUIe4&bhGtiJ2D_*4OgMmEi;6q*zytNQ9QB-O4vf$=@6Ny?ueB zN75#s>w7jifH|us)l8H3q*~Q&_YM`B+*DnTtJ>G6cQe6ou1@ul0?#m5uuL2 zO6C4w4bFB;gBwiWi&W0J?mD)4cbVqIUFO(FufjRbeK$<|>RsjTCG1wOD6T9Cn%OBL zXJ!u(LF>|Pux*))_W^Q&9f0U65hb_oSl|47gd_7rN;%7+#w$hJ(OH%(d89b!Y%vwc^E=0L)Y!L4N6kbprs|8uD_lC|UqF7P=K|0yYH<2FWRf=vLF zW6cc7RPm@h$zl|S%JSmV`f!^rH}$RLq~}CdFICg7vA|m*oU9Xu7Yy1iHn9{lkAHJD zlh-_OIJY?D(I;Nds)VC9k^D3+`7gTcFr%$#ktZ)>lF+J|(e%_SLdC;ymg;N8uI&hC zP(;ekuPb&=WE58QKUtcn=D{ViZVbfqP87l-yVoUgFB9d4%z39~c0iU;#zsk(q!Y<8 zm~fFwFjlFdk+{U6Vgn^SO})y#U^dsE!5J`YwSY~Gg`Aud;khlS6?Lq%uT8$M9ztm^ z|C7xU9?AgcAZ#zS64P(s5K|*NF+_2o=MQFezP+nZS_5gDa$de*w&UtvT#9pN`67_@ zMAM;ZUUsBpDz6P}SC05cgN1=Crzio{Ei8r)`rQ zeX1=fsv8ahC3r2zMLqM{6HD{~s2JwiHlynU1!mKzz%;#dXm3l)FlPM(@G<)o?j>Fj zU#sLe#lWgqFPFRIcvFLcDABUP+-s7&QALi+0Nbx#s(%UVvfTHEEb67~k`Auq6?W^Y zDz%dB5?>h6TOu>Afi#kO}Ym(9iJ)Q>KsKE9@A z^{PVWr9?7SO6E;e=}}O&eE_{LXrf_-Ne;=~+O0|xQ;Nl!Mb0phz2!SK%;3;Uo_|q& zQo7*AV&71?)p!Xc(yyOp#MU2Qe|9cI_5~0jP0B8Izh%$!oR%n@Xgth5sY;XDag<(8 z%Y7jRM^DP)=8g0%!)+^-e9n4AC>c21ofKNh{$2xy7=bDK3#d5{o>Z|X?M%mLm2(Kb zmC~@^m`~UW?;Ke^NMiS_%({mgkSDge9$k)%0N}Hw)x(~2G|AmU(P_5!m1PGTy9yVg zjx68&bGkpOc}Tb5EhipBw?-YlS*KNrc~#V*>8)G+fS;!|+k{lTj;XV=Y{dc{_G+~Q zd3yPTpgGwVqw8S}N4t)%+(!;jr3fst$cH>)Df3+ia&=7Ltoq6*J40!_mL0jArN-ew zuo(p9k&^-pR$_=3Nm)*xRUWFc8&@f+U3xuqOmXfU1ZSu>$*beOsR4Y}Y=TIOH|=V< z{qnA(vj`l(sz%mr`W#P5x)+Z#`dppjS&y!--|M-o5JIRI`dh1S!H^67pEhz)IZi(I}<+b$y|7aV%Q&rU^Hl03Ldt8!e*}eWC z%!?!?NIh-A)>1;Eqf_odNwZ4h%W3-~Y9L(-ARA`13M~-BY?}~eNJCO`0iea5r(zv3 zxL#e%9C-6WgOu$Z1Nt%rc@&{d+Yr6_Ohnier4GI)xo7C7G78Rm$%_a1jkGGj4&*q@ zzCoyVJwo<2)=pT#!&SF?yBqoMQ50j6B`_rfBzxN-_f>5h zv}-tCre`^M>~^JTX)wLxPcf*pl14Ez4e=X8dI#gBjH1SGT_t#v1*yd z$uV>ddLMY+Nv=eaYtwp{#AcQa-XP2}C>-%*nqWb*jB;T7TX_4~Wkc{%$IWE3ZM`}q zW#eUN5@Rcr7Z^A4w0`V#jYqb>xJxypMsMFL3d#A*d?xf^7F7~7)#rLcs^L6VSG;PZUbP6|;r$hG}qcr)2D@M~tu`>(I5c zL`nO?kusz5N6w4kiS=TuNbR66#SXy+u(<5rmdV1z`8leqQBXHyjqVP!N@AC&Kdyy5 zgpDH<`NYo_`qUzW&*z&TXnX$%^G-lcaoA#3dImiYGZ1M99?^ z0T4_KDT^kSTxgsv#06N&kSDn#ftR<98Ds}1qx9Z#a$F=0r+%1ck{h^svMQ%u>ce@L z)m4mgpMNabSMF5PrtLkuhAD~J7d=KtQY7t*L(MT%f4I@^q<#tm7wg(-8+c{Vp!;E= ztxt05B8xsyd$g+oO-`*hEUF_9fUGd@I2p2l>yzj~p_wEqo_+5kdDXyju`dg*>vdp| zW~mh_o2J|_qd^nj-bl`k1tRvygKqKi{qVQxwI_A9**9QovE;Ax2M}oUC&Bxq|T&laW|5{8=1Rs zvf91#))0~!DF|}UNrKGHmhLq5nHJ!N=Sprmc&?8pZ672m@UBT8;<*Z3OXK@+V1Ng^ z%ex=F{^<2jit+e7VLX1OPFve~0##wTqOh>AO~C7=yVcN(ouT_at!+j9*VG} zFfhoj+=I&~8P$t_9LbtcciwIJgWtLsO$zn=*o{!rogL!%vXWlLJsGwpVNFZ|=*^N42AE+WQ4i;ufJY%ZW*WZ`T-StB^_zrY7n;7pB#eLtY=WW7kA_outle z$hu`X4!Wpleqy4M-tl4^O0}Y?Vx=;HPkUM!Uxn8sY%Z$u>$ zwMlwpl*5-<|?BK zv4IVq1nb%EA@M9|rbw-P;Dc&E=y+P-kAP}yE)O;YT{)mB7};Ht&sLLYIEFz`!Mc7b zFZtD}sj&gDn%mlvJRX-0&=#8<$qRwB$mBW!3GaS;Wnq;CdB^+v_BI}d;SuM|%E!d2 z7QN-*@2zSk7Bgz4t3BM$ju72Q@lT*s+BcRnn?l1ZKJg z;wzIO*{Lf08bV(Zq`H=Oc#c40N${u-g$ZJ-DRzKha*!f5Ws>amGSM9rlVDpb<~@EH zcN_7doN6vWS*@9*xF#)q8^sof7ZBm)h2dz-pK{3pl7>u2x35a zJ;f011bqTzigYXGUXm|SLl$8&-lrsLwC~td+00fKo#d0wDJN_n5Yv0cFeJ4G&?zk* zFNn1ANhaBNsEBie-hqmo5>WZ<N7|>ca+Nw(#G;UIC*e$o3Zr;|I zP))(}gR^7$y-DtZAnBYHqED=21c@CBGU%qRI6csKWR;kZaqm8T{dIW#QpMrvvIus4 zVFTd-22^*pa;g@MRnk3v9Nzw*igrnO4fI5(r0Ss)ogs)egVa|;p>JAit!&4@;>|G> zCqSUp);@gN7YLeET9n(_9@%?cRA5v|(@^`BFRpg{JEGQqMQznzVI(0t4}Cv1t%-_> zDQ=gVA_xXt`zaA@mORc842Z&J9}p_5b^6TaT9go3yzt?zwECSH3$9u>t)BL&I1cIT zVH(|{>?EZMk^3yIxf6zjW*}@l$Eb1zcWjH_}A$xd7^qs5qA$;-Lac3a=;ghhT&)(xzgPy z_K`!?7o95v%zadt`i3T-Dye#Tg1$IgHLA+1$}@z}N|+uai*?D0(ymqM5ef-u1J5Q^ z;L@mSjf?X9CA@uwjN-xbT9%1*k04iCqY-?)vNMHZ#_B(`F4V6wP1T@Jd{I9%e~fd+ z5)P?-1NOn|CuDCYVS)7Lz6)8x8!nUEX~uy*5QmB5$;;qo{{{X*yUM$@gOZnSMd4D- z!P5;{rbm71w=KneVj=|hW+I+^th%Z^kJ_+V)aal;;w_gaC<0z|etAhABAwy^9_ThWq2qC}?64wIz40c*gL-(DpL-0ahhX&MMOr8oO7 z349I0xvopk2Ed0|BI>3X1j>=T=Ita%%tSn@^&0(m zX|}bfgNS4e2-VrUfq+e~}4KlVj;wRNElm(uSN-djXQG~*RBF;)U2H~r4;gglS_^tx- z&O9tUcPkGLo>T_x_0Jc~_Mr)Jhj~&|F1>Ab-&-kQk0;Idq`*yDq{OjjJ;#!l2X`Xn z9M60mDZ!q33L&}i22o3;1q<+YH2?JVXL7uLz*kCe{PZ0VK+xUl)e<TQ0do>1BmF2lGAX|ByQ?o%f^WJM4s`fBm!n;#_fH@F( zVE7|PEl*n=Msk3iylnepJVClq8dW>$l=W(_aPk=kttmafp2Ch#P(hZ}+hw}Os+|LS z5)T}4bf!YTce3RDCdG!==PO297fcuPnkg1liz?VtNBv4E8u`!|45-VQl`d7Fd-;?a zueQQvCERm(D&ysWKrn%e&u&q7S3|55c>pLj*#J8WUEndf^HPF4d)UR0ZERtVN=lx`DR+T5w3`zdXp_TIlEX z(1TMlUtni_$OV+NH3|D9l3PCx&xznRL>cIcvtvn+eiz<;e_8KPtlIlR@+lh#N{%hX zQRT=0)t6eK)=Vww4YU%K0$~*Y%+mC4ewcoz!@~A1C>qkXM`J!?D)HH1 z2Nfu8pIaLx7FGJ|4|e1LELBQm_30Tr5uOHsQQ;(D9QoiMRt`i5+{lo8*3^0XeTty1 zI>B4P3^TPXFEqG17D@;QsiRQ-Eml9zI+fPvy<2E9W>O;-$pL&G4QG&AxH`HV3P`d;nWAUHHqXL<*FV+hlggEib6r)XPgwP;x8;urZ|c1vzCq` z7@16qiiD}myDL{ecj}{H8|4YOdU;n9r~@BOTQOk%HQ@QzVRex>$*Adehd#z*%CJ{u z+WQHv+QH$hb_t6Tn0+5om_3xGG<46=RYtxJuODAtpvj?jLN_PE_H3L00|I5ZNcmo! zz^oTcWnJx1E#?x=`|@4;FQhN_ROAW5FBw9$**u}-{PQT)RAb9s(S2~|+NFECtpI66 z3%0;69xe@37MI1QADm>#&$`{_&_RD_t)|%$+Z)>N9P42*bP!a4`U=f{QaWjALQIYk z=t~x*9JEcU!&2kdaT?WrHa-SDCZw}EAJy`Slx0AY{g@m7Yn3hJcBpF*^}Is|XUU|N z(Liz7_PwKj)q1*XB~job12KEDJtH3-ZC3yhO!uS;cN_CS0evwXtP0dGgfSLSkyLmN2Kaz#{pfPXD<6?WLwGr{+Urz%s$f7xB9~ZW@yZ6~HD{BKCDE%M;nBlgh?Aooo{WD=pugID5cK>ys>YdEy%fcIqF5qOeZoyrq+r z^lwNsM!O5aPL|4D&yt<^87bPaeJF9hrsS;Vo5E4;Qeaf7BzOJm?|moyCtKxZaLtM$ z`Ex7Nw#dDvrE8R6!+kRiV@88V?@dRSW4TmUjpzTtT`A;UPkUY1F_)W#nA>60oya zPe3TQ&JE?QtM(IhI9b)rl5fGQ#;vb!x`VJoVbg&r%mjt--bBqBB^^-YcQ`f8zIgkH zC&))CDPPi+aOgspdV<}UbFw>qZMI{td)`fu0?RqcUQvNr1*;oi&((6^X68qFNK1$F1Y`rug{n%Sv3vUR2QQX2v4iRG^`&3m5_MTN373yX=H zLKoGp>CTV6)R36*p}Lvjp^lQ2T>_)Zb6^6b)T_>C=4_V!9y?T0imavu=^eSMc|BB~ zn_fW)O?KVK>O@`YCG+Cs0mFg%1;B;SMc}De&?kHZ|ioDxAhl1O# zSIh5y5?+6$QqYXidd(IT#vS%(>_$9czcIX7^U7LXk`(`#{RQo-D22(rldEaCLg(t5 z8L01m_{|SF+h&4#?Fs*qMEwY-5tgJwTHX@w0T<=BU*IT!Beanm#sZ#I-Nu>tklYV! z<(r!rD#IJ3Z-~c5JRYH+vPGu)kj$paKb{}EX7jY2(B!D$RNhtAk*77)1hoW=HNK1AymkaTxF_#iDW@6^KMA|CVLbq&R=B+^t8_Lo=&e zpb)dk6{7LVgarhIT92qnCx(B5SEP@$6lhcKNf`;ce8)xo&nH8i9?;gQp%h+c_+eFB zxIn?sbAx;YD4?TgFzXx`wiH%3u9X8_TbHFpyL8#Pn$`KO!+Mn?0#dyzKO-(*)|N2< zllDx{sd}ynqYdibOdV2zZ{nh0_OH6Fm!;7D#kN;Bc*c%WyXR6 z!}6ys2~niqY!gDV@GD8z?m>jTLKNU`N;k$5CbditCh}h8J~OQkJ4aL&p)WB8I|4 zi)$E@RNeummU{I-*aAz$RI& zg%H(MwCi7F1-QrCQrtA_p`YT@zPK-V3st&>N6s~>orSw{$I0yfOPk94Vt}_Sy3-cPpb*rqSU{V^q$}WeBT1^ysqo z$R@!aEB9gcp^U^D&-yC~-#kdzvPPFM4wtf%)p?iuduJM2Yabp%!wRSQo%scrX(r7J zui_Wt&*Z0{W%p?3(xv8?oc8~9I9cO%V0aNM=LYfB0tVSt_stL9KK%dx zzaf1|F;4abTIxo1YE_Q87)_rVg5^qWKXo65LGG|SKxz(RR;$4BVIn>k;RS@=nlPoO zNk_w391bFgOb*S6aR|5e^3)|`Ux-t<6*I6`e$t@EWuTot9Zvc8f~Iz}SE-X^e9236!Y)?lf-(?oCE0Hn(Ow zIL$CsPHI9{WlWW{7{On#l&X=CQoIy>WNCoHDNpN$!SU)+dtgHBN-gTvh?L1T^sJaF zxD2P~q@FkZbV!C%900BpP!yqPGJ5g&f^ZTM_l`v20)5c#kNlH`{NSaX9)e8CDtN;| zba_(5)S_J?<2bIrP>P zYF%8fNGig>L_^;w4V#p7s2zx!CVsoAcro?t>RMHqca#Fa^96n3i$?zCjeC3O-d%_Dw5{}?ZAXSw>$$SbQ*Ab_)#th>>k-@NPw^C zY&{sgSV{Ns>(|gi1T*U=?|%IH`?sGfS?d?7#QPck{LMe>-+W@HbPuJ#bTvvLUb;CK z9c|n|B8KjmZ0Ow&K@h{ivsMw&{~lgH*B;*bz(j9XwLcva`NA47AOc~D>yCh?tBhE9 zA6;pM0Ogh)6rno>3elerg|twb=L$EZb0XU=vpn#kMJX&R*z2TV#< z39vTbObxoggcfmVYoVXaQ}y93ETDjPU>0CqVXGQlt1Y!A)PKwg!-Lk16TzZ#gwLG4 z)Ga4TAMCoJ_>5*_$7>H1<0FHJ_PANApOh$4{I1vlP+NQROrPAiW&N{zr@^3OT(#F8{iD3JM3Z@M7f2+;R8}_Jm7ob{PAwgGne*2insT8AqW%| z<7tM|PGwFE77UJ^7Z}(Uxj}Qfg4j}AN(v9F#ygV2oxcIl96qhog${wC$V8fo{*`?M z1&W^85?{c|=0C_^C%I>btm>T9anD*J?@RXh8W^qK{oCtT;q6P+a+h@DP)>nloU+>` zoBinp#U7lrYV0v>fB^2B-UL;s{D2CZtKHYOse}TTDyATkpkT$)?-G`Hh z@Z6u6mH5<7>vTOq*s8H+FB9kxF+GsoqtFy3CK-gSk(V*Zyh^>T4xe12>=7WWy#U70 zk_QEjAPzm`>FLn`4O_tAWV4S)1)wmDPPsDRko(X@V@Y-oafTFe65j{2tT7qf5>c%< zI%1_T@F)+pr6{07O6E2aPtdaP&K|aV1k@&YULv*h!nTe6qLnm z5l~hGdTU&~=yXVc9?1WIOI$A7PW4}!^}YTk@DKJV(G+oY(z%uzuG>!3)Orf%rB|v5 zOkw z|H@K(&NF~F0W_Ld=Q6(nx$HnjFh%m@fiv}L4**Om2 zt1jz7_ zx8`rPn{p%bzKz*p23EV26H%d11>a<4Pzdf$Qmf%?PJbacxHLflNM7KduC^33SB>h~ z(HE;hlWPe^nBOfFqg=F4EtRU}`NIZKyiV@irW)BE2BqE+v2px2KQ!><&n*{F&VST( zS9efZv&aFrc|ILE5pMA=nV0w3F&ER(jO~26JfKIKa80W|!Uaj9U1lrDf_|~(1T1N0 zf;!B+mYUfXNOzSy+{DcfNlk5Hgl-+|24q3(H#?(bvDW~d+Aw46;7(QYjBE?gV9%PD zSUsvWzp=N6Hr+BQeBmq%uY*R(2)h>_rJ*zBBSt89`JW*>;a%Wa=P@KSKRL^~l_0=G zUg{sonpcWBOZ`_>AY}d^y!|;nq1WGE9uMw(z?~$~A6hDR>~+Y#wy-OD7yunGKG`)8 zH0g=vujSM$-5SG7oO{fACMxCz^*l-IO&pXE<2q$hm*S>Qgrn5Mt=5Uqr`OY`Eke(dUgfut;Gcuu1S{};mdatox+Y8lL7;?u}SCP6+vh|`|MQQ z=gL;sh_;#p<=T}ix0GAWOqwN_Zxp^!%~OYboQT&FT}~FZkifd2`^7b0)L?XG;>sX5 zXQZIBY|sWh&a^q2KIuuY8Yxw~esR_1Yc}5*7#ltS0MDRzA%ZP{)#EHY4who$cz{OK04zq3&!=xcmjplkS*qaI06{>$zkdt* zwIvuWa&;d;G%_pib~S@`yh)P=Qcsqh)3 z4tkCaJDBEbscBez_#TfrtlYWYI(4SX%}|RX>RG)?Y1!JtS{B3=kN)WT>=y-0$tzfI zuHH|p568W;^WI59{3GaJ_tWkwX;9@{dF~AAdTNbW*eH#TX@-Lxy3~6=FOG#x(i>7} z+!)0$N+Y0IRk&>Af1spIXT6{GD@hhuul)uXz$PLnJ*+_3q%w6N5>{R7~ z@1gvzbH~GzcE2@W*y-@7WPZ?IcQwYlp(qPa^1x5HIoYX_RkX^p1stfzmJ#=}zdE2e zgU)gXD~Ev?CpAxjchyv1-u)ctGo8wGjsw~XjLNE_2 z4>`+uktC}7-X3J zECD5Q#5e*|$s}9h(5@9WbPdT48`>x}l>h7HgzQF32V$oAe!!`? zlT#&$*{WRWzNKbGy4izE7ezLh%3Y-jWut6%0q}EyHZ1C6lU-3b zF?%9|5qbv#8+&D4xTZJ49o4}ZhDBSV*zN@E=nY-vmUK@!d0t=$!A{Z*I25SD0(4av zdrA(gm*~ho$hI&(OWw`Dj}=T0%-8AltBXE=32IlM{bsFtnFL52h)H6&+$@7q)M|qj zSPYZA2kzC4Ki+w3p?fL9ojWB<0YC6oKC%X*--7*`RC-mVB3mQRiU87yC`O)S?shP| z;7o2&`Y`=Dc1Tls)bny3i?oPA=hwKf77)pDK)-t3vSc9^WG&l1tsgn-rYj+t5O z+(#$}ne13sX;rDl(@SI+ICIpbaFdkJvszop7qM%Psy+S?NE-%m(nZYW$aZRg~ z;sH47ngPlZ5sa(U?rJc?0|#Oos)`PY0qd+TMR$__l{)(}o~#*CHxA7>YoGLcXfBOr zUFqg3gup^SFmXL{;es!>6}N=YcLZ4BnKG2a-JVgA=iu4eaHeRrc5FGrzjg%2TwO>P zMiJJzE#YPbh01XUlz2cYZ*wg8lvwbvG7#id>llCs;%f##jBdn>P16m?9kiH6+2_s( z1v0HwU94{L2D_}7PHs38HZAV|Wb0g_V@yC%?s}w(9MTqUNEY|1XM6&P-HxNXYPjZk zUd0~cIBlSoDj!;#5kMx>jYeLUW$jISFMLDmR$F|%5)H0BeMws@H=Qh1RVIC&#L)Z| zg;WyR59+RapQd3w&-S7*@DGOmgbILNlie;Ks+Z1V+2M@KgaV2)oFvs*b`Y_W2rfDM zKFCRdP9sN%NI~2qfIc;{JxbiAN%?74oGxKH%M^|gWY!guL$YHIDabDHEeLe*mAAWj zMI3=w>EZb70v5|MJ#vE<23>OU>=-H-U-O|O1jlY~puJ9;Vs$wp9g$)$mbYzmvzXC9 zz%YAF5Jdm!6%qHnNYffLw%=6%?$+*p{p}?8<+|thx}NanV9wi?co6t-_puPvG~~!b zP#PlO{p6?I+I~{M3T2@bq^Y9bX$uw2TQaEiJsE1mVPkX)cpi4NejJ(`MQ{pI4rn1jee6WKx2qVo5CRvRz{Roru z3h@)xZa}Ux7OVx~9|NhXOQl0wsou$j2JmQC0{YUt!s|y#SHu*iV9JL< zTKWi>7Z#TTGR<~12WWn#ftoIxmPAdm-cf;x0>i6}r8}5DBr$i{(-m?k^n6#29Z{>k_?eqy~;DQj_}e#;k>qKR?6TylUl`!q*#_B3sIsv`Ua}8>Cf0saJmD|N3Kl; zPgVcS&Mz=dprQuyA1B~?N}x%?-0@K?_{kFC{1_#%eiX#4EY>8wrh}^SS4eysoB`>M z0uvz#DC3VE?24DKc~Gm-3bE-BQncEB9WvB##pLaJr8qRum$%4F1vg@40G2C&tP!nP ziD`~WVBNQ9XgcG(ML()pBEBZKWQN27&8ySlk7>U%kao7TS z%<+Dyi+iW0OUU`;Tu$K`A-za&ym)Z|>d)2qw!1;EVgjLxQ(UnGqzQpnECW~$IxJ`Fo*_xi8 z=+s#9l3gja)`6VW!j+jR1m4zp%4lDgDchMUm%Wz0n~y0toGB&8QJSQF_gCS22|)Jl zGe{$Tje1}xFR+V*f-2MNM+7jXR%J9#dCE8<%-BPKxPnSz?_&>~Z|;XG3dW6jk^GTu zt9}q1bV*c}BVb;*L6Q{_l{J9`Ovcl84i?+4=c6U2J@ha-)Q>-6!ymcbV9^XX925w0 z^gYOK2KFC95@gt{Pu%f?Do^#GF4*#X!U!k*mf`g6EZsc!nv|+7Tr3pf01f4PYiLvG6jH0DVRG$bMrBwDkt< z!wPnJ!tC5KjVj&P@!cmFwr|T>8F42icq}XQ8t)T5T|g{2fw%6;ue8(U^{aFuoF!FS zWb`kxG}4obscw@8`;^BWjXd*3J_X?9QXShFdNd;wnPO0Ehb&4MVshB1;h9@HBY@-hy1&kB7I~8u15!6TBKA0kk85m zZ6~hfaYr?@@J%H@SvsW+N+D1w*!`JP6A+4ungGr}g#W0+rG);%9&thw?@Qv!Pl?QG zYP%oXO@tbT(iYc(E?|EMrp5b$NtNYkvfGG32Zkj*SM(jzL8B^#sW)Lx>%ax`kzZ*m zg}%OmynSp@Do>1HwQ_n6k%FaY&Ij$Eq&Gt|eL7i)Sy1d@c!whec;+a-Z#xkrpr+1% zbQFUtAlpr?q;y}J)YFsv%bON3aol)?tpOyjdGO!#chD+qJ)Pf`sLG=+|boo(_Gd!BpYD75rrpRwlGOf%R) zV_4i~MxUO6g0K&OrKt1qUF=(T1?i%=bt|EC&*5&}#tt(UBm}E#EUvrz!rY719@iDa z>%q|zrVsun`}#);hX297{@D*_+n^gn0g&3kb<8~%*2+>dOrfpce3iRE!Anq`sam6) zXN)X4U)YMHSJNeXu@AzufkV+L+OJ3FQc`%dm${1u68&L_F)0{g*6h@Gd6lF)Gc+8E zw#oU0L2x>u^I+UbM?uJs=;$YfQs5@mmKabcU|gjF1n_E*jnf)x7plVQk(pkz!(4=c zVAI9C6c__fd(S3jc*nR^T4Vz64NIR?LMym=-B`bTUa&VgOSSVMU-*g=d zCYNlFYB$gt@037k&khhO0|;jdfEu`KhkYoeH4h3a4%=`(Ku3@u*_||3J09cN&w7fY9b;ck} z0=D%Lz@ooN!L+FXEjs(F(|I)dLlC2J8U1d3PpYs;3JVzYRn`!K+8Kr^CV`JdD96zI z%vqcRo~<+-lD5Tz2fyS^$QG3m8Qy+(5_Nq5c(FPD%Mq0Y5eQw<4}oEnYG*eI#Pws@ zZs`IaPNex@?@kofjmFKZ(&X*(@!*x%h&>oFHzBxr2}fEi|M>myhks0$Axk~$e-{c` zY?M4dUXq$s_G+pM9r`WDsd8LYd=Wy4^?@>SP-&)(=UAyW@3v zKqicy>-suJR$^O{jtqm=#M4*&3dd+FW#Iz6#2l4wDRg0?o2%2RblUd>nvb-Z>O zhBG<}0TW&L8uFyi;kc-E{o->T%g*mfpTZWPHWn=q1;+5^)xK0xU-L1irLUu53k_t2BthhK?fmxg^RGz_kN|=c8#TLmpRZt!w zEL_qogm4&wTPF^@$QtoHy&MifYWP4a(sPUmcfCAb1n!MeO+7VKZc1ne#6zKljGYQ& zO)C+~93=^fY9B~Jx8fcqq?BCRa$|ePFW((wgh^tfMsZ755?zi&V}G_g4L68ocMpo(xv4tlBaCEH#f0r)lP#^8|XGKJlvv=~7OC5E1EMfP7E$gF*Vv*xI z9-&+F>94xAJpidLS(OsUPI7@*Be z?xG|W4eLMs(mr!WWe4rR(JW+s8SfVgncW5B2k41?Y=B zD+{+0+^=@QAe^?R+1O9Q+aE8`NZ^bSWCkLnVYS}N6K4w?u7Gk-jbmQQES)i2VF_`K z?-6wrFW|#>NPa}QXwZyYb9LR3cioZ4I68RLzGo{32@JQqX^v?Oy0Q>*QGSZ`wp(|Q z@b(xL^jcUBirdblRc*fif+ohAY~dc^13_x(B+^& zW+ZlPVk+F91U2FnIL^9DGW(QNnDy;8!)kt_j8ji2@+&$wyl`6>d3Nd>&|AC%Ii-rheQ$#P>4Zi>2b9z zz+{cXhvZ>+xpz;+u|^13o@L39-*4^8p+7+UvtqRY_0>~)1=SuK>9XU_wYm3a#Gpze zg31Ln9SROLCO3hEPhWoqHPp}EK70N6-Ot~C^!A|wZV=bB#$Wc?nQ{+o9qmFYgxA91 znP0?-yasTW3xiSsC2{~JH%=J<{+Q>cBtVW5r(M@}n&XPu@F?KA?p^y&EgYyzVMWuO z8$8Bw`>ZoB`H5q>KMZf5UrhDtEMSiFL+X`o&6+p3$injvb-J0+ptq?yI$>ajKkW=R z@Lj7=9BnGH(RUYsXAhnqe}4N#NMCqlsF(`xD#VK20~C4EymTC^!D67FtWk9*6n-7p z^?*DIy>>=6YsTrM7>mjKaoNW3c=iBjc=++`ISb(jLodZD6DaI?a_L{tEkmUg`w7qWO|najWAGGwhK;o z3F@Sej(%()V@*q?mgB(gGi0OP{GsfsBUG|dRjpv%E2&yI4+eo!P6PJ(fCtMdgmvGG zGBqxok*NmMy!qT`t}xV6&<`pgd*%wXYC^_9QA7B{N+)%7qN0ZUOqHL@FW){5@4KMp zul6RlSUlWwbU;2TA=N_vRJGX|M`~Wb_tjLoX*+zR25^h*XjxT$*C0UJ+epcI##FGu zP)*s`xVT<{{?5T>Db#~E9U3g6fp{)_Db`a35y3I}E>+Y802~aKX-NLtusUL`bi=wz z9-B!?$zC{M!k2UyPYwg8dQ@s_Aoe)!9=j{LhW2#jAhcZkWePq^cN-T5h7bySY5})PK;W*SLGrP%g z=CbKQzXg{EH~M&JjrHNK}d#{jjH)tby6}%h7Oe7a`n8(*r4)IbbuS2 z6#bq(u_T&o>BJwDmB(85gvXapk$@xVJLm-2kPm7v_+Y*^)X&QvvQs8|GU101O=VfGdU zz`?pMN>Xz*dALz`5^d#8l$TaIHxPvSC%a#77G0(@oV9Mrr+Lx1N@?A{}75PSn|@q?97HF2q- zhDU2hwt!?=Ha=9h5nG9ftKPM#tTKScr&OVqg-G7HCY8dqWad=V-3MT2n5-_;5}Ygr zj9q%8|1Bgi*aPF9+F#p^M!-37kkgFAMF~F4u`rC5^VVoF=)R@N+Mi{Y&C{A;ONkNM5oM1W znR~q9q+F_ACU?Vp!grM#>&}k;q7yueA}KW>^?my zHx0-o;4o}&)ZGH8g3p1VuOQR6{_LTlc|ml>Gbz>s>R)4-qV}-^?%{N} zwLg?D3L&bqsgVPtOC{)}5A?6EzkB^v;%5E9c0ErbfK>kI0-V-TR~l34j9#4q$^MKsL<^#s9i{ZQpBq z6l87U15Ta8b24La-@b=6JYc}fgAiDN?NUQ2ExIZJ`YH}ML85=l?b=?sg=x`5sNPzn zT@Kl}i3MuUM6N)&sgfRsr_KwRg>1ZOPHxyPXP3R|lzYZTQZvEPigB}n!W7hi6)pZk z1C?h&=y;r-rUnq3fj`>Li%El*7982KEq+YZk?52u}7l0(aHO3AWFgNOUD5btE zNVhlyp*9QEV;H`$74W29ban@YC6@Kgy&Mbuz%4pp92PP3JllABj)3OKg7O~VppGQ4 zSiV99(@#y=l3jK=1Of*#GeE7UFDwcG^ko5Clulo%lhaKBn;GYVx~P>D&^F4gCfPU^ zQX{`u_W~tpaakod*r7r+BsX=8`>?2HJ9;qKUbjLDC?;ey74xKd7Ue#K`&1dpoV8EMFYT^J}*A0eff($@#lluNGkrywP4irttFam zM6(i|tGWST<%C`ii&|TJk<_Yt$N?D_souG8VcP!Swa%E~ySQrYYNZ3L2K|FmN@0hL z1S*u(e6VU2WwXYYu-`801VBN6vIgM?dQ94Z1vGWzf-%La5DY^+efak0@cL_8#5ndg zXBoiw+csnJqR&+30Z3HYkK1tQXdZ#UkVWWnrT(Dn{Cq$B@Vlqe<@GE6N>85@m_f@t zfe@48>ja(co+n*FTFL+}PCQGZ|L5?ZsS}l|-7;_LUk5E{r zR+qWoA+NKsy;g;nS}H0|>Uwl^2p(;;9_PM*_>@2Q0uV`f$;Me2}!>W;hmf8AA8Yn*w0fYbJJDdoum0nU0s{ee0Mi9ioGB7>$5#a_+&EJ2Xa#$=)j#{AVXsX2O7 z!G2XqMC0P^v@e3RYi9xuT1(1lhT41~Q(ZH7iHm&ipg#g6L~TQ0S?mIlrZzkReA+ay z(IcD7;_O0wQg9By7UkIsoP{rIxIGNDB0|YnKB;pS(~;r71^5h3B-dMYMCqnf2}1C3 zUR?&1Hu4LYF)kfkX$8HP$-*{K8GQ3k@r{RL+>^6|{k$w}ADc&#jT_-AT8BwzsPbZGuEo7-( zJXG0nGo1%#NiO~QEg&NRe(EUzsrFfNUXmeHqIRLFVW7{5{S3gE@LDKJ3AJ5Hzn7MU z{GCb5uPv%sd$q7iG4d}Ov`*~@M48Z@;6bkkK#^1TNTr(_IdV_%P!EMQHjuR~Di#G_ zTn;nj=!Wz`g?MV>2tN$p`ObGNN>E!^mHYC5w|6DmRFz0LW?FL8r;+*yzrgLq?m>+b znPb$?-AO5~Myqg za)2t!GFjCFFb2BTBbDeH=VeRawP_u(1YObLkKN3C#Dn>Z9Lv;K1nd4x3Iz{+EF%)U4)Tk=tgxRM~CoBb$ICQoBmYhpI2SeQzZy_$d zP1L#sFlr%rkfLn+qT&;E866e{{O-=l8Z>f^LRU9BaXaWBSG|+^9%|J(mrL7nKt%t@ zS+4Azguk(K7L7p3AaW~YfqAAy9Gnyh%FDw8d1=<5)G`e71-7d@r(YKEK&S}zm2kzk zB}ewdoj@U<;e4WI+O)E-)TrFfMzv87>i`=Vh>_ZkySWi-Co6Hm*qkZRfbS5iSIiB{Y(wLybIJ;$=xW~~zW zo;M)uvcoy52cy&}mr)k4g%(oNitWV3fUriTPGmOyZ&Ac#4MvX#3J0(s)u+BkZ=LW! zD6ro1wW+eYN-RhYTy~&iF<643v}WYyW>GN8NfD{-6tXTjX3UMQiz7{mTP7$_@^*89 z$~|R)B9NGtrfroI{iU?&s+}im+1CKXuyx-mzIE;&KhCsfk3!*nz54 zsoU6kgAZJ%Bc6@WC7m^c zQL`5hq%t%p&qj3MCZvD5DVCv^-P&uH+5JV}Zb!Nf4#f>9loZcUjUhFc6Ddk8I^sx+ z2^GnW+r%{SnmID^(srqMa_c|3{V6FH%vF?J6HQA=Gg%y;5DMo)-y%)Xmbyeur3UkI zq)vmqh~hCBmkkR2oWzBfU6N1`xp*ifeLa}PxYUSdXKt2q@9toE*jqgoU*Xo8{)8ma zPxxzE8JJcLvx1~Zr|0Eb_UB=5&!9L{72=4Hrg7Dm3lY340qBjNxqN;+T#!+`(|#Z6=Ks1A#7nV z@*Wkod7$oK`MX z7t3-vQ?KPh6AX5#s8(Mce`=31L-~ z9??c=L!xAJb{V~XkOKIa(7FaIG%0Y-mlyRwL;FY-vX*@;$yCX5K%FgMStXj>5z+*~ z1)Oq2R~zsh(yha+N_GAKYn|$!8NRaVn7LYzqJ6oU#E(9nN-lFh3H%{xJ%5y*e>nff z&O-DGraqT`bta|(>3OB8kUldK#BmDSR2QaBYUssizrhb|fs(IXJz4?Q4pV`o1%W-x zXel?7;xJb@4MDg$sR~-lLwzr2(A01SPK(>x?Xp8A^+AHjulF5hs%OyGc?eBm$6Bem zI)ISYmxCB@EuXE;?25XR*)>JGn6*OxK&|0~{1#^ojt5IM00Gk@!44RbKz}F6Nej>| zthqu_0Q6=;;f$V=O+9l`@7^!_^E>^0ITyIUO#y^RdsO*6=<5M`g2;o>@CG142x9(9(tLRZ8< ze~JCDNe=Dkvux8Bv;Ekb-LzA}iw@&u*fgTpz4zomcQ4tF2HkU70;_88uVra(dB!kk z+cNz#71+@H2ze7Gp$N;+$(CTPvWF?`KnR1b^+k~+T|yd-r0bUNRBF3adbVc41TU%3 z3DimFD-IYb!|=cb1d~BDT&wIqXCOcQ9R{3Mg&5&KC$k43HVEa>kx>AZS}>5RNSp7_ zd|h_KTOt#1=zSX_t|1+vVAT7jza3JqF9bFdwF|^@$t-`U>|la1d{+YH4EVnte>mYK z!AD6xPL4~9{o(VHLnTojiGyPYk@nQ zzR%AkND17h&>5ErczjRtUtYq?OL`fP=>^wcnldlS?$Fcl6f*$$9(Sx(ue&+gE1MUv zW7p>14M4GPq{mR+#hu2Tjf5Z7Vk}Feg0xh?L zhhT-X*UqIGYJ(BP7SCdkGE?6G!IJPQQg1ERjY$|uo!?%FO4h~@{+oUe7#gn;=bQdF zoPT3S7`&uCK8XP&L@H2E2;>R@`Dri_VwvSule9-ThRjTZg$nLGYMP zW&w7U>9Q$H3_D}bz&Yp(GnQspeYm26SctffDq`x6jibrBe!#nMAy+taNn73$vt- zTaTVJ#3)iIkhcjbo!bRYZYCW^SYUUPV1GpQ<%tVB zUK7g2ixxAML#cNcP8g`Y-#g2B)75EvZ2aaE>h7F9e*NiR|0%rv7Wb@jq6;-{m%X5> z1t`guw;wRoV+$R|WvFx}mrJ^F$|mtZCHxiD`HU$^oV#bo%^-E13U-4rcI{NE(=x_H z$ZK5=1M^+=c|>QPH-m{MQTfwQoaV^TNGx{AuAq!^nySicmXNS#{v+%H_F5j2`w*kV zO=DwOz@=RCmXdSZXiwxS%L1qpI@OjM0SB=b;)wwj@Gt%(ALi?)~aM-WETug9n}Jwenn4iI;mf#^0gwT$8u6!c0g>fJu8sm*sEGl_~sL!eOSsN%i%H^UO zJ@jjtke1UjyFAiP_lV?Q+z|2s^!@;K*{b4Q-DGog@*t(|yL>17r~d~W{}>L`qMZ}c z6m^Q{H&T}xjvwIjY!#{@+UA~uxQ z;86JXd+=jEef!Jn?=G4KA_d8QzXqjh0Q{^7g>8|__49na2ct!ONZB{Py@ z#=ja$%kIc?kLvSt;2j&tctc}4y_A~#&`xQlCn9`$<``$%^U_pjy#VE6eR^mjvRB?w zP3Z;!B3ah{+hsYvNrt|`N>G9nuC`%};S5b%8BMJc-JFfcsosp8;)~K6fOcE@>u9&o zjcPjE_M+9(jfsH?=z~=sat_1W0Q!@*!xn1!&m}A38~AK?QY?8-H+nNef`F{MgB#;H ziw0#1M(}L&$uSwTJR8&=fnjUmRfCQOLFD(iXThgc^>`H$)9ed?3=nun1)9lxn@&v@ zh>c;s3-Jv#CZ)9w9!s}rnw$SoY7S*d*QAtDb0!7Uh8=pNLQ3apaAfo4QCIRW|2Mt1 zM;u)gxd$&6zCG#PU}S=c1h;XY5=@SWp_s5b2#PGEj{%pE0}5JZwB_hc`EC&TUF?Gjtzo_uML(4i6W#mXIckLoFd6-G8 zkqs^9Jr(j(MNOieOSz*CA0ufY#iXgc-HP(9Hri(=83A-GZDxT0LJVx8NH3Ajc#`qj zJPQ&m?ANQ`)uvjzEqoxBu2-=6WG_>89SU{%GN~(T60>T5O;ChRKXh*9h1|M#ku(Tw zK9+2!e1a?66DkX8UzPYWpth46~&4gsP?c}xPe90T@t9Whu2e30{j3>ssU3>+O2Of?aEb#Dgn!&|?&u16DAH@hF3r(aj z^VHGoBWfRH)SX5O&0z4GoetemVRgLA$17rb7 zF=AbH>sTMUAyvpPJ+vmc6V5PN+B#s?CF^di3G0KNa(%aF>d2bJ$)%nocB#Ywmv!6%w(RZ-?*xI}0NanmYX9sPVx>sQ8qUtd-(z zK>ILVTzmp^-O&KIxCNRFGe8V1aVQhyT07-THpe3Q#5O%f?VoJ5>n{E{FPAS#V3r>) zN&@sr;@3ZV{nJGuZfVkB$hfuFLy1xXH4scVG%bx;_Og?T=9#Y?vvY5IKDrkqtR?Wu z#Lmk>9$o5fy)nyDU_sSgw2FLqU3HcE?WC)*s8CM@i9Zu7#L4B53Is9M_8>$WJVj+L znZry<#W8q+?6-rg&E&O`PV`+>m}xJmtjUZg&Sb`N0l1-nm_)<8^AA+T4!C(e>)@LnadtjuI*;MZJycq26j ztf9{JIkk3n`*}?HB}KI0tLFmwJR5rIa_2-z(w`54@hcU)h8wz- zd|W(LwT53zk_t0~h2*{HO&_J}c`E>fX3nPh;_o$}B$9HcBF|1TK+tU%Lw$1eUdKxt z2J0~nl6yFCU(U`OlS+sPn(Li5`EiCN+qEk&vi7Mf88>h`?b+Et7mb~wICR;^?>hB2 zwie5?gSW)$0}b`dFvBFNcZJnkTmW2-H|Rv+_?G98?(Xh$4!}Lw?pz@g2+6ul_U;Dt zY}-T5t8R8R4RR&=LfaJZEC;S5`KDgIc2G8+Y_!4eNYX1P_vw5q33{gst$_@F0^%~% z3CgF`EDM9Rq0-*SOT&Lxqc6Z{glSaGj!3D-*N!~qShHV{BRq=H)jQVnp^7zn?1xY)p z!Hz04hLJn$U$<~QVddPj23`;KrGYiKeC$vJ3Z~Rcck{YFUZ*9?{v5<}eG{~T``$SE z8TXZ7V(JP0(c)y3l4J2zpehcwv|;PHU7l20v?cIy1iEIa2`O-R3J#kS87pnBsSS{S zP)8Vf+0j7}p0r1omWT8OIC6FzowS%i)6xN}EQR+Liu6vc>KMMxAuo+nRRBbFS?)<(Z9~vy#+i&2ihU;ISnd zn>>tkd{k4DJCZMT$G2YPIvs-lU@-$;><4aOl{(ta_Y`Ohv`Cq85GKR~r8gE-B3mf@scJK}>1=bp9 zD&Ik>@3XOTTF8)uOExxllwoG+hiym^R9J0WsydyhZGHl!>|EP>j;jFF8;+>MR6)Rt zkcnPR;5zbKB{@KS*cB4LV1WXpqqS8!urzAo=mB?{0<1$MxLLg!N`pxZ64N=EY>!5# zN``4bW=z_LtcIj4oPJwQI*U{bzt+YVQ*dgeLcZ)bgIk#Yjy65$f5D@uXON9(W?C~~ zwe4AH#seiiZd(T+Ln%fna4~q-I>}edo{>1eb1c>?iqRv?t$qYKYNaw}cSF17nhVPp zR4#r~^pJhaq^k^!1?S|0UA|}IT@pU+!2xOY!Ct||yWmM7S^75c#Zyjxntu7-GRZAcz}PvN?5W=xN+h{ zo4cBZLX!)C12R0YOM@PSg`{mg&VWQX`ohpx!l;Rd-p^)Rc(zu;Mhq=UCPzL1&DHd% zBq8&6DtX3ed6H_##)%UM(9;$s$%(SdX#=oQ5+6^9iHF*O?)LwuX|*%&NA`IY)qk?; z1oRfeJ7^X{LFwF)m+U&d_&cv?=Cc~nb4(wgFhg0=YaN_pgdxl0RNY`3SC_d8GkOrC zPAmYOuV3;c#$Cr@1ovOj000vVBeGaRZhPfucD0!q+#8qf1pDbT8M?z*UJkEohang; zbo-);qitEDt|B%gc0zj02Dk$%BM>r)b{y}Wqtc3~e&^E_f>(y#{fJ%2KO=PB4aMAL zJi}8m^zs*(yIK+`Q#4mBrX0YN!!>mPEA`f0R>hNTyE_!Dxz?8Yz2%9C5v4a&!UuXI z9q9_j5sWs`-mt!eyzUu{#`F*VCj213`k%f2(Req1{gHiDr;^P6mLOXq@8swhU`lym zIp9>>1>XtZ|Ni$=gjAbqD3E}U_TY3Dm2V>j(=khmyPO)?F-FO?+sEOX`6aoWa z&||3(f%1kFJJo=%YN|#JrzH&gvNy4sR?oLmZDW0?c+(AkGIy9#IxIZmpvqAoD=Nr`ju*_*itZp~(Xb16WSh07w6t zfXezg`c2nmc5p%kXbmsSv>f$(Kr7V-axhw2kfn@OQd6_b-UINpGcu1>{RrgYvuuRW zzm>bnLMH$fic9E26n3y^4>{eA_9P4uf)UB2Byf~R^6?|TwE)ZA?KZv}zV)qd9sKn1ww3<{wgZj0x%R=gg8(KxQ+H5i{}C= zGI4Jli!;=jZz_i~>CTEJrRA0^$$e$>BGvV@FUC44BzNk`xdoTi07Vd;TV<1%1=?ZV zD#x*dBL=|UPRG%gA%#~garU9nS}%5Ww~v(B2``b#2`VpV?Nl_mp`(EvC+AbQ<;E^( zZ))$u9v2km?BynuWH)!00nkR&z+Cf(w-hCF%Hysh-|4mh7OQaRzEVqTjuVyC>i-^~ z$ZnDqlVlVDL=82zg{61H^J) z6ZB`9K_D();k=lZZ!i#Q-MdgVtVw5Jdm%__ka2JhTrBC3SZI~C)Qv-)aH_1>daJiG zqa_#&H26)|B!teo1nZDUY`CV{?DD^fs0HCJgd^u*M}o@TER=p*>6ykPAa)LFB<$ z7{$DAS}uPZzMu3q(P3>VJFpWi_7qF#saeOj?XXiy0FcqB<#__~w$aQm5bta(tVZ)= zGMmU;yaxRn-_U?HRXgWRp6>lpcJ|xHXl=qxSl-)YNa#{CUR7zgutL;~Iir3nXKefN$^b!0aYNX2X2E2#`wcSljXVnGNwsvgytd3Axv{l#_ zMte6<((Ppc*JOcrKCobq=!xp2;>6d^X}C{#%wLl)_G?LuRXuJ2 z=mf4hg!(D{JesAm-TMjY%Z&ar>t28$h=k6TW}{XE-lYF+c>QVKIuJ!_z;|MAMS>}i zb2y9N(b~S?WhPrYY)0??>Dx;Nu9`bxogA19Fz47Mx1hGmezFX#$aO%V*i=UEiK;`g zS8}Dcwo(SmQ|x#eUo&g^5yO+DK!9IKNrj~jZ6Er)+;O5B#a?1MXq`=EQ)Cv2n^$_tr^{H3&v)6wK_CunYfF*Y2KudC* zeokJl6^Ad9u=PlLr6iajKnGNb9nPw*s7DD{qkz$srScT5-=V(TH?lgR84Q&(E?1Db z%Xda_gX>kcIl<{CL|M1Yn3VHOoKXYC0W*rbDl*!!J*n00ENy(W%_srLX*?``2u~(p zN10`~h#166G&&84Yx10IcG*!Dpp*dUmV1zaPMuqzlo-Bd(zO7jMmD_p&{LL8Iv}1V zDxjyl6b#2sX<$qCU;!L|8O|dM2)8Cr_yb-@)J0gKyw+oX{n`gtH`U9LvuA<-1#}p0 z9&&hj>K&z?aN0gmadPLn>>5hVU=&HoV@mQ(UIe`UG@QCP`?xq#UJayA;{sTZ*h#vp z`~$W_6YFeDjVIl#R-sDDcLO??B_?3a4AJEaYK5gvYsnrV3DgKxP-XGWaF1n4n2ePx z4>+L`*=KDa+jjHqM)_o9PWKcrC1EIJjUZ~rY-kLML*l>suJ8 z5CC&9P_Ua24@*;ES6nG3$+rIj=F`2?RdDT`Z<|^Q9a{ae$kU>|%K2*Bwk!iNU>Ftv zXAZw7BhDk)L62o?7a!RyNz=u5Tro*p>BdZ?LB|%o#0~?7Ma31ZaR(<5i5WL*!88^) z+vU_HZjyUToE0p-5;={!`EVV`M27zQN3Z`(fbSkofMAKQc6YJc79Ep8)x?kN;xv@*WY;1|y~4`Uxi!g79N5{Y zx*mcnF*gQbikVWS^w;Yn6H2bYnx`u|=?sDU!6Xhc5{A*e*V!IM!Z)hDgS-LxO}lf9 zp(Y7%X)`+=cO+_17IO{@COafB{V79lX45Jz0T5@4Nw5XrloNvPet<#X>;DCi>VLj| zjz^~LZq99>WQ(z)z$%dQsy1OwUa&UH# z3TWD{lXp_tNqN!R1bK*WXRh6D6cWskLan_^TSMeWGB62{*7Dhv(o6(a3d*@m762`4v(qZ}FjXZd0LRfk4Gp%lzmN_+s>;fS*wGvMuX(BKYn;)@o&7_dbG(b+!$(s+N zLH;&;$6nzco;<(l;jG48FW=&Zqf$%PXLWFNdMrRKNM{fPoNEEjpsm#ZF8PoA=g+|Q z&03|v-l9YpFshX&KP4K%9+@R4t=>g`w6kM>W!_D+?&>fnblY}j>uvaeftkh-(JiA5 zZNTDbJ9{v~y-P}cLdwD8miM=2qYA=GKToerse~56H~~dA@1{WL&&kUh{h*N3GHZJw zTW{HAokQCpFV3bO-B6=P-K|R`_Z))&cUDI+05l(KTrB7VltJE`s-1be4AXj$YkIjT*HF^W;Dx|hq*p%Wl!)r*{x+OkgWi5c zTYC8c`i6mV5AMLcopgLaMbVRB<&#s&_K6&g^1$*epcn2f2-@JO)<6e$FIziW<|_Ag zx=fB#ER$3wPsI(o8$O!_*lVjL_rSTpEA8A~Kq;P%D@6{Cex>#h=md))wyVH(V0k4Y zBU4?|w#`nYe^)H*WWR7&3Olf@@dEV(!+*p1VN;N`g?G#jFSR^F2@)^4BLi4zZqT&A z^$t!>QJvzEyW=HGh{~2jT}(X+h_0lI{2<&_mYqcYI`i((^}S1#3beEo0+Io`Cpug= zZNyVReQM)Z%C6fN9Q-|Ucd!d?5Vx^Mt*3y+!h$j4HsM$&Up4Cy$n&Vpg_szeWN)Fl z=i~DA{{U;?e_Yhi5*XU6n%tE3^siyO!d`dwf66vcJY+i%VuSN`>MPBkN({KO$ZD2H zVUD4KD_b;PIpC$$@=mH!4m#5g!o8wOClqFsYGbfhvtj_X>^Jl006Wq;l#+o(?e|-^ z91MBMzWW`vFQgAZ5nx;11+p*by7KjhZ-06HNtU(xSL+IW{r`p6UtJD4nyj#boi}yT zytSxh)pSKSr-aH=RD>(=kMbxi!RyAOmnuFx z|2ddY7eGS>N@zUGZPhY#y|mcj0IO`&$d-)F;OA>%UQ#U;ZISya#w^rZ=u{k*C4kgh zl>e(jK~Ah3vGy2FR?tHSfjji_*&@9HfE%)qLWdNEpDdM5OCs1cg`%`I0DC`S5+qq5 z!81eZ0B!EHV097*$kIj6nQ))k{qYL*TvUf=pTM|pFp%lCj52@;(LMs~vPoRGUJ@+R zmnw5}#`huxda#ySt=gKyNM%Z;s|qinZOb~SP;zv-gTo~qlAtqv0rONgz1m4d79G*D zOb|g)g-j|(C{ci;g@HOODANlHEvizZeMF(Q9(it8kedQ)vy_FsYpni`(?gms!Mxkg zeWqkga!DfL4Dv;0W;hk6iIn!l`bZ_ly>>61SL&Q2i*JPbJ zkw%0vv(Npv)$vB^yoJVsBAKwA;-NfyO$xEb8r7L?F^@P;=w=Go9;hZq*#QDzTAA9gdmAb?poK>Y$ zj@Bm^U4&zK4>jUJ%`(8nn`bGMYOG=E!NmTqU?O8DPg3yVKhDIr+YKrWh=%lpmZqge z+R#(DIC#-26bzvj4@)rkxiUh-|CSC2DqqDG!ZkWJQW6f3wD0ydq>xR|>sqU*4DcZw z*uneO8gI^wR+GiI-$OJKu=S+w12jZVR=O8b6~JuG2GTeZrNp{{HFGFpy>3rfy;!Uh z-~s8vFmhm$00Qjlc5;y4u>&JHQgo^#LUm$H4a!<|Bx=?E%~$qNmuAat!xMeDT}EiE z<#{|=nChp@KZ<&qY7R~DIQk%boNTKl6|+)rq1+4{$1l)4ctT&=j?ESsZ;FAcuhmTQ zY-^(-KER{!3b5Tz8n>7ccg3D{$|Mby2slp0I8sg>LWMob7P5x#CX%1{MDntB?8&UE zO+o7pHOE#vAeUqASYU-nNE1dP$l*Z+wstO*-6GNJd!@)E4vU9LGR};LyX`E<6AG4( zt(iy~D<|gx;teJz*^y8Z$=Lj};2SKbkw)nkEW;XH_4@=XREg+`;%xL|H|MF;Yk}5I zm2497{!)Qujh2@CB_$*8kPicerjYJ4`-k)L=fFIu17YPztqG1+ZQ{?MC^0DVbJ_3S zi9-*GV;;z%%Nw%(V0wg7u3V9MTy6^wNhAZ5b4xfonokDy7{O&;T|;J7i8$!N;ZS{0 z!Kw-UVUrY$eV01-Xd&m)kjU4CTR!03M%eU$2!`%E$XK3cX%J0i?-BD*DTvv_+ujj! zZB9)<3if2=`7%IZVM#Ay*-v)HT~GCLjC>?gUhNUeJ6RlEUdXOmYYyWut;f|Q1;hkF;Fw}NIi}t-GmA4W=5`i0VaXP6r#K$xGHg(crNEiDJb+(f+ z>g$J>2SNC1?rSe_i6Ab{{tB_IvVRlEY{bS6F4{LxOS|`m82q)ndd-HMZOWCY*rnoY zq=Lx<+9X|o>6402Lh-qNmhU2fQlTmnyayfm{Dii%uNolBvSSp?2}8B}4Im)f$a!$% z;xb;bzzyeSmhWHaDsOvskSeF%2LpOE zQyJ8R`|@l)zpn;b>U33ZyHi6ht`rznvr%8tZY(_TNa)n4NEL{NB*K?%4FFB#6I2i) zrg+SgOIOl2m5QdJ@BE;>4g31QFVvXiW^$m1(W ztDanItV9d&qOLpa5Xtf1TKy@hbv72Rg8ajEO?32GP89ooMa_|lO?}HJNi0tlDe+%` zUtJ}RqUGXdJQ4h%W3V!HZ!8hpn7*!$&@DYDIZFo@mffdyR1Lxf<`()Wxf!GaOj2X- zCE;}mDhb=2SAgaDD1ZSieY?K}Y=57 zSfIE}`8KHmWig!TJfDLMN1nphpQ2y(+1I~NAD_2>vCjN|Osh~ied@PYuWodW`Cu61 zPKe>C&SIO2%K$aM0fcK}M_|=w%PsryTjAT^(;p6YPnTWQKP%e`sM(0QD^YXSTPli6 z6BvASE5=&yvtX4re7;P*1iBlGD|ARD<$G_<$~CmQSY89~M+bUWd$zbLk|K6>IXW0a z5KkMy#imFOM$(JxeaQnb^&!b^4me4-3q<8z(mRQ*y#6fkhjgW-YqqFK0$VTxj$$`V z!0}1+Q$i?|I*q5U{Ex!xS5SKlkyu8=1{~;pK7@yES+sn%jUfp|yq{4wB?JXF>&zMA z37Yp7MeZIEpb?DGwp>HHcsb50=AE*l{uthVsXyP9nn3t*@OCPgiL?tw;B84KlB(&8 z3mO$8KkHAg|D0RU{+sj9X>Cvw@)j|lx8|!JyPX@Q=!kUj8R`u^(p$8)k`x(FDslrg zO%$&=11+X!Y%1q=JRJ6d?C~HmKq;8iNEwvUTjx@gZM}T}RO+NXJE=8qjlRB;7ojC? zjGtf<&@)&+kc^lZ7{*MS1@iw^vmN*)e+}RK1B5;k|BxL@qaZMyrsO}CK!dVm>f!PN z7Y`@CB*`j<;jx2QqdNwILTmx+2R{fu_`whO>LkP@8CD4=_9T-xw_!ddZLl%6Yh_}N zzYmJF&G|FXR2v3GCK!=zuqBJXtC1vUkSnC(x2y&*OSMW>`7yZ0Gg?S2R2t=r$kKQ+ za6^-bRa9(RuG%-F+|V%XS9SHW60}Rlu6-N05OS?!8HqiG%o{$LF%y+o|8jy8W%_c`WbcEk6PQzc*70nJ|RaG$iV}^j-gCyUM>u2w3xU-%YCx| zaEp#(YvbB(>cc3h6%E|y`5k&(j!ilXNOUP28M{5KCQ#5Di1Fb_=OYLrTvWutLC?~1 zlXi(!#de({V3D2!Rc$ld*7bw;1r4zBNVpX0PmS;fHBvwW2hmLYt&Ev>nm+6VCG5`jOIm@0i0tcbuqf(X5*{>HuukA zs%N>_u}c(K`*^2+9k$vWB~Q3)2jciRB|MVx#Q~!n=^GfUL5m8`K#$<$Ml_b|i>kS- zUO`HLJx+a=--g$ZE{EJfi1HLRUI5IvUD81=!cF;*RS@Vb3Fy@C*l(fpciiitdr@