forked from sugi-chan/tragedy-of-the-commons-RL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnetlearner.py
219 lines (152 loc) · 5.48 KB
/
netlearner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.optimizers import RMSprop,Adam
import numpy as np
import pandas as pd
from tragedy import team
import itertools
from random import choice, randint
from keras.models import load_model
def use_predicted_probability(predicted_classs):
if predicted_classs == 0:
fish_to_play = 1
elif predicted_classs == 1:
fish_to_play = 2
elif predicted_classs == 2:
fish_to_play = 3
elif predicted_classs == 3:
fish_to_play = 4
elif predicted_classs == 4:
fish_to_play = 5
elif predicted_classs == 5:
fish_to_play = 6
elif predicted_classs == 6:
fish_to_play = 7
elif predicted_classs == 7:
fish_to_play = 8
elif predicted_classs == 8:
fish_to_play = 9
elif predicted_classs == 9:
fish_to_play = 10
elif predicted_classs == 10:
fish_to_play = 11
elif predicted_classs == 11:
fish_to_play = 12
elif predicted_classs == 12:
fish_to_play = 13
elif predicted_classs == 13:
fish_to_play = 14
elif predicted_classs == 14:
fish_to_play =15
elif predicted_classs == 15:
fish_to_play = 16
elif predicted_classs == 16:
fish_to_play = 17
elif predicted_classs == 17:
fish_to_play = 18
elif predicted_classs == 18:
fish_to_play = 19
elif predicted_classs == 19:
fish_to_play = 20
return fish_to_play
def random_fish():
fish_to_play = randint(0,19)
return fish_to_play
class DQNLearner(team):
def __init__(self):
super().__init__()
self._learning = True
self._learning_rate = .1
self._discount = .1
self._epsilon = .8
# Create Model
# input. opp last played, player last played, opp_score,player_score, current_fishery_count,
model = Sequential()
model.add(Dense(32, init='glorot_normal', activation = 'relu', input_dim=5))
model.add(Dense(64, init='glorot_normal', activation = 'relu'))
#model.add(Dense(128, init='glorot_normal', activation = 'relu'))
#model.add(Dense(128, init='glorot_normal', activation = 'relu'))
#output in this case should be a 60 way classification
#representing the 60 ways you can choose 3 cards out of 5
model.add(Dense(20, init='glorot_normal',activation='linear'))
opt = RMSprop()
model.compile(loss='mse', optimizer=opt)
self._model = model
def get_action(self, state):
#need to modify the way that it does the prediction....
#print(state.shape)
#print(convert_card_list(state),convert_card_list(state).shape,type(convert_card_list(state)))
#print('state in get action',state)
fish_state_array = np.reshape(np.asarray(state), (1, 5))
#print('np array',state)
rewards = self._model.predict(fish_state_array, batch_size=1)
predicted_classs = np.argmax(rewards)
#print('class', predicted_classs, rewards.shape)
#print('looking at weird thing',rewards[0][0],rewards[0][1],rewards)
# can probably solve using a mapping of the actions and just outputing the label of the max of the chain
if np.random.uniform(0,1) < self._epsilon:
#get argmax of 60 way classification array
# see use_predicted_probability() in choice testing notebook
action = use_predicted_probability(predicted_classs)
else:
#if above the epsilon value, then choose one of 60
# see picked_cards() in battle_prototype
action = random_fish() #i can generate the permutations and throw the list in here
self._last_state = fish_state_array
self._last_action = action
self._last_target = rewards
return action
def update(self,new_state,reward):
if self._learning:
#print('state in get action',new_state)
fish_state_array = np.reshape(np.asarray(new_state), (1, 5))
#print('np array',new_state)
rewards = self._model.predict([fish_state_array], batch_size=1)
maxQ = np.amax(rewards)
new = self._discount * maxQ
#### This looks annoying AF...
if self._last_action == 1:
self._last_target[0][0] = reward+new
elif self._last_action == 2:
self._last_target[0][1] = reward+new
elif self._last_action == 3:
self._last_target[0][2] = reward+new
elif self._last_action == 4:
self._last_target[0][3] = reward+new
elif self._last_action == 5:
self._last_target[0][4] = reward+new
elif self._last_action == 6:
self._last_target[0][5] = reward+new
elif self._last_action == 7:
self._last_target[0][6] = reward+new
elif self._last_action == 8:
self._last_target[0][7] = reward+new
elif self._last_action == 9:
self._last_target[0][8] = reward+new
elif self._last_action == 10:
self._last_target[0][9] = reward+new
elif self._last_action == 11:
self._last_target[0][10] = reward+new
elif self._last_action == 12:
self._last_target[0][11] = reward+new
elif self._last_action == 13:
self._last_target[0][12] = reward+new
elif self._last_action == 14:
self._last_target[0][13] = reward+new
elif self._last_action == 15:
self._last_target[0][14] = reward+new
elif self._last_action == 16:
self._last_target[0][15] = reward+new
elif self._last_action == 17:
self._last_target[0][16] = reward+new
elif self._last_action == 18:
self._last_target[0][17] = reward+new
elif self._last_action == 19:
self._last_target[0][18] = reward+new
elif self._last_action == 20:
self._last_target[0][19] = reward+new
#print('last_state', self._last_state[0])
# Update model
self._model.fit(self._last_state, self._last_target, batch_size=1, epochs=1, verbose=0)
def save_rl_model(self,name_model):
self._model.save(str(name_model)+'.h5')