forked from Samsung/veles.znicz
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgd_pooling.py
287 lines (224 loc) · 9.61 KB
/
gd_pooling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# -*- coding: utf-8 -*-
"""
.. invisible:
_ _ _____ _ _____ _____
| | | | ___| | | ___/ ___|
| | | | |__ | | | |__ \ `--.
| | | | __|| | | __| `--. \
\ \_/ / |___| |___| |___/\__/ /
\___/\____/\_____|____/\____/
Created on Dec 3, 2013
Gradient descent units for **pooling** layers.
* :class:`GDMaxPooling` couples with :class:`veles.znicz.pooling.MaxPooling`
* :class:`GDAvgPooling` couples with :class:`veles.znicz.pooling.AvgPooling`
* :class:`GDMaxAbsPooling` couples with \
:class:`veles.znicz.pooling.MaxAbsPooling`
███████████████████████████████████████████████████████████████████████████████
Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.
███████████████████████████████████████████████████████████████████████████████
"""
from __future__ import division
import logging
import numpy
import time
from zope.interface import implementer
import veles.error as error
from veles.accelerated_units import IOpenCLUnit, ICUDAUnit, INumpyUnit
import veles.znicz.nn_units as nn_units
from veles.distributable import TriviallyDistributable
from veles.znicz.pooling import PoolingBase
@implementer(IOpenCLUnit, ICUDAUnit, INumpyUnit)
class GDPooling(PoolingBase, nn_units.GradientDescentBase,
TriviallyDistributable):
"""Gradient Descent for pooling unit.
Must be assigned before initialize():
err_output
input
Updates after run():
err_input
Creates within initialize():
err_input
Attributes:
kx: pooling kernel width.
ky: pooling kernel height.
sliding: tuple of kernel sliding (by x-axis, by y-axis).
err_output: backpropagation errors for output.
input: input (will get only shape from it).
err_input: backpropagation errors for input (will compute its).
krn_err_input_: OpenCL kernel for computing err_input.
"""
MAPPING = set()
def __init__(self, workflow, **kwargs):
super(GDPooling, self).__init__(workflow, **kwargs)
self.kernel_name = None
self.demand("input", "err_output", *self.POOL_ATTRS)
def init_unpickled(self):
super(GDPooling, self).init_unpickled()
self.sources_["gradient_descent_pooling"] = {}
self.krn_err_input_ = None
self.krn_err_input_clear_ = None
def link_pool_attrs(self, other):
self.link_attrs(other, *self.POOL_ATTRS)
def initialize(self, device, **kwargs):
if self.err_output.size != self.output_size:
raise error.BadFormatError(
"Size of err_output differs "
"from the size computed based on kx, ky, size of input.")
super(GDPooling, self).initialize(device=device, **kwargs)
def _gpu_init(self):
defines = {
'SX': self.sx,
'SY': self.sy,
'N_CHANNELS': self.n_channels,
'KX': self.kx,
'KY': self.ky,
'SLIDE_X': self.sliding[0],
'SLIDE_Y': self.sliding[1],
'OUTPUT_SIZE': self.err_output.size
}
self.build_program(
defines, "%s_%d_%dx%dx%d_%dx%d" %
(self.__class__.__name__, self.err_output.shape[0],
self.sx, self.sy, self.n_channels,
self.kx, self.ky),
dtype=self.err_output.dtype)
self.assign_kernel(self.kernel_name)
self.set_args(self.err_output, self.err_input)
def ocl_init(self):
self._gpu_init()
if self.krn_err_input_clear_ is None:
self.krn_err_input_clear_ = self.get_kernel("err_input_clear")
self.krn_err_input_clear_.set_arg(0, self.err_input.devmem)
def cuda_init(self):
self._gpu_init()
block_size = self.device.suggest_block_size(self._kernel_)
self._global_size = lambda: (
int(numpy.ceil(self.current_batch_size *
self.err_output.sample_size / block_size)), 1, 1)
self._local_size = (block_size, 1, 1)
def print_debug_data(self, t_start):
if not self.logger.isEnabledFor(logging.DEBUG):
return
output = self.err_input.mem
self.debug(
"%s: %d samples of size %dx%dx%d and sliding %dx%d in %.2f sec" % (
self.__class__.__name__,
output.shape[0], output.shape[2], output.shape[1],
output.shape[3], self.sliding[0], self.sliding[1],
time.time() - t_start))
def ocl_run(self):
"""Do gradient descent.
"""
self.unmap_vectors(self.err_input, self.err_output)
# Clear err_h
self.execute_kernel([self.err_input.size], None,
self.krn_err_input_clear_)
# Compute err_h
self.execute_kernel(
[self.current_batch_size * self.err_output.sample_size], None)
def cuda_run(self):
self.unmap_vectors(self.err_input, self.err_output)
# Clear err_input
self.err_input.devmem.memset32_async()
# Compute err_input
self.execute_kernel(self._global_size(), self._local_size)
def numpy_run(self):
raise NotImplementedError()
def run(self):
t1 = time.time()
retval = super(GDPooling, self).run()
if retval:
return retval
self.print_debug_data(t1)
class GDMaxPooling(GDPooling):
"""Gradient Descent for max pooling unit.
Must be assigned before initialize():
input_offset
Updates after run():
Creates within initialize():
Attributes:
input_offset: offsets in err_input where to copy err_output.
krn_err_input_clear_: OpenCL kernel for setting err_input with zeros.
"""
MAPPING = {"max_pooling", "stochastic_pooling", "stochastic_pool_depool",
"stochastic_abs_pool_depool"}
def __init__(self, workflow, **kwargs):
super(GDMaxPooling, self).__init__(workflow, **kwargs)
self.input_offset = None # memory.Array()
self.demand("input_offset")
def initialize(self, device, **kwargs):
self.kernel_name = "gd_max_pooling"
super(GDMaxPooling, self).initialize(device=device, **kwargs)
if self.err_output.size != self.input_offset.size:
raise error.BadFormatError("Shape of err_output differs from "
"that of input_offset")
self.input_offset.initialize(self.device)
def ocl_init(self):
super(GDMaxPooling, self).ocl_init()
self.set_arg(2, self.input_offset)
def cuda_init(self):
super(GDMaxPooling, self).cuda_init()
self.set_arg(2, self.input_offset)
def ocl_run(self):
"""Do gradient descent on OpenCL device.
"""
self.input_offset.unmap() # we will use input_offset
return super(GDMaxPooling, self).ocl_run()
def cuda_run(self):
self.input_offset.unmap()
return super(GDMaxPooling, self).cuda_run()
def numpy_run(self):
"""Do gradient descent on CPU.
"""
self.err_output.map_read()
self.input_offset.map_read()
self.err_input.map_invalidate()
self.err_input.mem[:] = 0
# self.input_offset can contain equal values
for err, offset in numpy.nditer([self.err_output.mem,
self.input_offset.mem]):
batch, y, x, ch = numpy.unravel_index(offset,
self.err_input.shape)
self.err_input.mem[batch, y, x, ch] += err
class GDMaxAbsPooling(GDMaxPooling):
"""Gradient descent is the same as in GDMaxPooling.
"""
MAPPING = {"maxabs_pooling", "stochastic_abs_pooling"}
class GDAvgPooling(GDPooling):
"""Gradient Descent for avg pooling unit.
Must be assigned before initialize():
Updates after run():
Creates within initialize():
"""
MAPPING = {"avg_pooling"}
def initialize(self, device, **kwargs):
self.kernel_name = "gd_avg_pooling"
super(GDAvgPooling, self).initialize(device=device, **kwargs)
def numpy_run(self):
self.err_output.map_read()
self.err_input.map_invalidate()
self.err_input.mem[:] = 0
for (batch, y, x, ch), err in numpy.ndenumerate(self.err_output.mem):
hx1 = x * self.sliding[0]
hx2 = hx1 + self.kx
hx2 = hx2 if hx2 < self.sx else self.sx
hy1 = y * self.sliding[1]
hy2 = hy1 + self.ky
hy2 = hy2 if hy2 < self.sy else self.sy
delta = err / ((hx2 - hx1) * (hy2 - hy1))
for i, j in ((ii, jj) for ii in range(hy1, hy2)
for jj in range(hx1, hx2)):
self.err_input.mem[batch, i, j, ch] += delta