-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathrun_metrics.py
executable file
·124 lines (100 loc) · 4.08 KB
/
run_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
"""Main entry point for calculating the metrics for MSG-StyleGAN network."""
import os
import config
import dnnlib
import dnnlib.tflib as tflib
from dnnlib import EasyDict
from metrics import metric_base
from training import misc
# ----------------------------------------------------------------------------
def run_pickle(submit_config, metric_args, network_pkl, dataset_args, mirror_augment):
ctx = dnnlib.RunContext(submit_config)
tflib.init_tf()
print(
'Evaluating %s metric on network_pkl "%s"...' % (metric_args.name, network_pkl)
)
metric = dnnlib.util.call_func_by_name(**metric_args)
print()
metric.run(
network_pkl,
dataset_args=dataset_args,
mirror_augment=mirror_augment,
num_gpus=submit_config.num_gpus,
)
print()
ctx.close()
# ----------------------------------------------------------------------------
def run_snapshot(submit_config, metric_args, run_id, snapshot):
ctx = dnnlib.RunContext(submit_config)
tflib.init_tf()
print(
"Evaluating %s metric on run_id %s, snapshot %s..."
% (metric_args.name, run_id, snapshot)
)
run_dir = misc.locate_run_dir(run_id)
network_pkl = misc.locate_network_pkl(run_dir, snapshot)
metric = dnnlib.util.call_func_by_name(**metric_args)
print()
metric.run(network_pkl, run_dir=run_dir, num_gpus=submit_config.num_gpus)
print()
ctx.close()
# ----------------------------------------------------------------------------
def run_all_snapshots(submit_config, metric_args, run_id):
ctx = dnnlib.RunContext(submit_config)
tflib.init_tf()
print(
"Evaluating %s metric on all snapshots of run_id %s..."
% (metric_args.name, run_id)
)
run_dir = misc.locate_run_dir(run_id)
network_pkls = misc.list_network_pkls(run_dir)
metric = dnnlib.util.call_func_by_name(**metric_args)
print()
for idx, network_pkl in enumerate(network_pkls):
ctx.update("", idx, len(network_pkls))
metric.run(network_pkl, run_dir=run_dir, num_gpus=submit_config.num_gpus)
print()
ctx.close()
# ----------------------------------------------------------------------------
def main():
submit_config = dnnlib.SubmitConfig()
# Which metrics to evaluate?
metrics = []
metric_base.fid50k.update(
{"inception_net_path": os.path.join(config.result_dir, "inception_network", "inception_v3_features.pkl")})
metrics += [metric_base.fid50k]
# Which networks to evaluate them on?
tasks = []
tasks += [
EasyDict(
run_func_name="run_metrics.run_pickle",
network_pkl="/home/karnewar/msg-stylegan/00002-msg-stylegan-indian_celebs-4gpu/network-snapshot.pkl",
dataset_args=EasyDict(tfrecord_dir="indian_celebs/tfrecords", shuffle_mb=0),
mirror_augment=True,
)
]
# tasks += [EasyDict(run_func_name='run_metrics.run_snapshot', run_id=100, snapshot=25000)]
# tasks += [EasyDict(run_func_name='run_metrics.run_all_snapshots', run_id=100)]
# How many GPUs to use?
submit_config.num_gpus = 1
# submit_config.num_gpus = 2
# submit_config.num_gpus = 4
# submit_config.num_gpus = 8
# Execute.
submit_config.run_dir_root = dnnlib.submission.submit.get_template_from_path(
config.result_dir
)
submit_config.run_dir_ignore += config.run_dir_ignore
for task in tasks:
for metric in metrics:
submit_config.run_desc = "%s-%s" % (task.run_func_name, metric.name)
if task.run_func_name.endswith("run_snapshot"):
submit_config.run_desc += "-%s-%s" % (task.run_id, task.snapshot)
if task.run_func_name.endswith("run_all_snapshots"):
submit_config.run_desc += "-%s" % task.run_id
submit_config.run_desc += "-%dgpu" % submit_config.num_gpus
dnnlib.submit_run(submit_config, metric_args=metric, **task)
# ----------------------------------------------------------------------------
if __name__ == "__main__":
main()
# ----------------------------------------------------------------------------