-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathrun_train.py
238 lines (207 loc) · 9.9 KB
/
run_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os
import torch
import numpy as np
import torch.optim as optim
import config
from data.synthetic_training_dataset import SyntheticTrainingDataset
from models.regressor import SingleInputRegressor
from models.smpl_official import SMPL
from renderers.nmr_renderer import NMRRenderer
from losses.multi_task_loss import HomoscedasticUncertaintyWeightedMultiTaskLoss
from utils.model_utils import count_parameters
from utils.cam_utils import get_intrinsics_matrix
from train.train_synthetic_otf_rendering import train_synthetic_otf_rendering
# ----------------------- Device -----------------------
gpu = "0"
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = gpu
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('\nDevice: {}'.format(device))
print('GPU:', gpu)
# ----------------------- Dataloading settings -----------------------
num_workers = 4
pin_memory = True
# ----------------------- Network settings -----------------------
resnet_in_channels = 1 + 17 # single-channel silhouette + 17 joint heatmaps
resnet_layers = 18
ief_iters = 3
print("\nResNet in channels:", resnet_in_channels)
print("ResNet layers:", resnet_layers)
print("IEF Num iters:", ief_iters)
# ----------------------- Hyperparameters -----------------------
num_epochs = 100
batch_size = 140
lr = 0.0001
epochs_per_save = 10
print("\nBatch size:", batch_size)
print("LR:", lr)
print("Image width/height:", config.REGRESSOR_IMG_WH)
# ----------------------- Loss settings -----------------------
losses_on = ['verts', 'shape_params', 'pose_params', 'joints2D', 'joints3D']
init_loss_weights = {'verts': 1.0, 'joints2D': 0.1, 'pose_params': 0.1, 'shape_params': 0.1,
'joints3D': 1.0} # Initial loss weights - these will be updated during training.
losses_to_track = losses_on
normalise_joints_before_loss = True
silhouette_loss = ('silhouette' in losses_on)
print("\nLosses on:", losses_on)
print("Loss weights:", init_loss_weights)
# ----------------------- Metrics settings -----------------------
metrics_to_track = ['pves', 'pves_sc', 'pves_pa', 'pve-ts', 'pve-ts_sc', 'mpjpes', 'mpjpes_sc',
'mpjpes_pa', 'shape_mses', 'pose_mses', 'joints2D_l2es']
save_val_metrics = ['pves_pa', 'mpjpes_pa']
# ^ Main metrics which asses model validation performance - used to determine when to save model weights.
print("\nMetrics:", metrics_to_track)
print("Save val metrics:", save_val_metrics)
# ----------------------- Paths -----------------------
# Path to npz with training data.
train_path = 'data/amass_up3d_3dpw_train.npz'
# Path to npz with validation data.
val_path = 'data/up3d_3dpw_val.npz'
# Path to save model weights to (without .tar extension).
model_save_path = os.path.join('./checkpoints/model_training/straps_model_checkpoint_exp001')
log_path = os.path.join('./logs/straps_model_logs_exp001.pkl')
if not os.path.isdir('./checkpoints/model_training'):
os.makedirs('./checkpoints/model_training')
if not os.path.isdir('./logs'):
os.makedirs('./logs')
resume_from_epoch = None # Epoch number from which to resume training (if applicable).
if resume_from_epoch is not None:
checkpoint_path = model_save_path + '_epoch{}'.format(str(resume_from_epoch)) + '.tar'
else:
checkpoint_path = None
print("\nTrain path:", train_path)
print("Val path:", val_path)
print("Model save path:", model_save_path)
print("Log save path:", log_path)
# ----------------------- Dataset -----------------------
train_dataset = SyntheticTrainingDataset(npz_path=train_path, params_from='all')
val_dataset = SyntheticTrainingDataset(npz_path=val_path, params_from='all')
train_val_monitor_datasets = [train_dataset, val_dataset]
print("Training examples found:", len(train_dataset))
print("Validation examples found:", len(val_dataset))
# ----------------------- Models -----------------------
# Regressor
regressor = SingleInputRegressor(resnet_in_channels, resnet_layers, ief_iters=ief_iters)
num_params = count_parameters(regressor)
print("\nRegressor model Loaded. ", num_params, "trainable parameters.")
# SMPL model
smpl_model = SMPL(config.SMPL_MODEL_DIR,
batch_size=batch_size)
# Camera and NMR part/silhouette renderer
# Assuming camera rotation is identity (since it is dealt with by global_orients in SMPL)
mean_cam_t = np.array([0., 0.2, 42.])
mean_cam_t = torch.from_numpy(mean_cam_t).float().to(device)
mean_cam_t = mean_cam_t[None, :].expand(batch_size, -1)
cam_K = get_intrinsics_matrix(config.REGRESSOR_IMG_WH, config.REGRESSOR_IMG_WH, config.FOCAL_LENGTH)
cam_K = torch.from_numpy(cam_K.astype(np.float32)).to(device)
cam_K = cam_K[None, :, :].expand(batch_size, -1, -1)
cam_R = torch.eye(3).to(device)
cam_R = cam_R[None, :, :].expand(batch_size, -1, -1)
nmr_parts_renderer = NMRRenderer(batch_size,
cam_K,
cam_R,
config.REGRESSOR_IMG_WH,
rend_parts_seg=True)
regressor.to(device)
smpl_model.to(device)
nmr_parts_renderer.to(device)
# ----------------------- Augmentation -----------------------
# SMPL
augment_shape = True
delta_betas_distribution = 'normal'
delta_betas_std_vector = torch.tensor([1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5],
device=device).float() # used if delta_betas_distribution is 'normal'
delta_betas_range = [-3., 3.] # used if delta_betas_distribution is 'uniform'
smpl_augment_params = {'augment_shape': augment_shape,
'delta_betas_distribution': delta_betas_distribution,
'delta_betas_std_vector': delta_betas_std_vector,
'delta_betas_range': delta_betas_range}
# Camera
xy_std = 0.05
delta_z_range = [-5, 5]
cam_augment_params = {'xy_std': xy_std,
'delta_z_range': delta_z_range}
# BBox
crop_input = True
mean_scale_factor = 1.2
delta_scale_range = [-0.2, 0.2]
delta_centre_range = [-5, 5]
bbox_augment_params = {'crop_input': crop_input,
'mean_scale_factor': mean_scale_factor,
'delta_scale_range': delta_scale_range,
'delta_centre_range': delta_centre_range}
# Proxy Representation
remove_appendages = True
deviate_joints2D = True
deviate_verts2D = True
occlude_seg = True
remove_appendages_classes = [1, 2, 3, 4, 5, 6]
remove_appendages_probabilities = [0.1, 0.1, 0.1, 0.1, 0.05, 0.05]
delta_j2d_dev_range = [-8, 8]
delta_j2d_hip_dev_range = [-8, 8]
delta_verts2d_dev_range = [-0.01, 0.01]
occlude_probability = 0.5
occlude_box_dim = 48
proxy_rep_augment_params = {'remove_appendages': remove_appendages,
'deviate_joints2D': deviate_joints2D,
'deviate_verts2D': deviate_verts2D,
'occlude_seg': occlude_seg,
'remove_appendages_classes': remove_appendages_classes,
'remove_appendages_probabilities': remove_appendages_probabilities,
'delta_j2d_dev_range': delta_j2d_dev_range,
'delta_j2d_hip_dev_range': delta_j2d_hip_dev_range,
'delta_verts2d_dev_range': delta_verts2d_dev_range,
'occlude_probability': occlude_probability,
'occlude_box_dim': occlude_box_dim}
print('\nSMPL augment params:')
print(smpl_augment_params)
print('Cam augment params:')
print(cam_augment_params)
print('Crop input:', crop_input)
print('BBox augment params')
print(bbox_augment_params)
print('Proxy rep augment params')
print(proxy_rep_augment_params)
# ----------------------- Loss -----------------------
criterion = HomoscedasticUncertaintyWeightedMultiTaskLoss(losses_on,
init_loss_weights=init_loss_weights,
reduction='mean')
criterion.to(device)
# ----------------------- Optimiser -----------------------
params = list(regressor.parameters()) + list(criterion.parameters())
optimiser = optim.Adam(params, lr=lr)
# ----------------------- Resuming -----------------------
if checkpoint_path is not None:
print('Resuming from:', checkpoint_path)
checkpoint = torch.load(checkpoint_path, map_location=device)
regressor.load_state_dict(checkpoint['model_state_dict'])
optimiser.load_state_dict(checkpoint['optimiser_state_dict'])
criterion.load_state_dict(checkpoint['criterion_state_dict'])
else:
checkpoint = None
train_synthetic_otf_rendering(device=device,
regressor=regressor,
smpl_model=smpl_model,
nmr_parts_renderer=nmr_parts_renderer,
train_dataset=train_dataset,
val_dataset=val_dataset,
criterion=criterion,
optimiser=optimiser,
batch_size=batch_size,
num_epochs=num_epochs,
smpl_augment_params=smpl_augment_params,
cam_augment_params=cam_augment_params,
bbox_augment_params=bbox_augment_params,
proxy_rep_augment_params=proxy_rep_augment_params,
mean_cam_t=mean_cam_t,
cam_K=cam_K,
cam_R=cam_R,
model_save_path=model_save_path,
log_path=log_path,
losses_to_track=losses_to_track,
metrics_to_track=metrics_to_track,
save_val_metrics=save_val_metrics,
epochs_per_save=epochs_per_save,
checkpoint=checkpoint,
num_workers=num_workers,
pin_memory=pin_memory)