tags |
---|
Math, Math/Pure |
%% links: [[Differential Equations]] %%
-
A homogeneous SDE is an [[./Second-order Differential Equations (SDEs).md|SDE]] of the form: $$ f(y'', y', y) = 0 $$
-
A linear homogeneous SDE has the following form: $$ a\frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}} + b\frac{\mathrm{d}y}{\mathrm{d}x} + cy = 0,\ \text{where constants } a, b, c \in \mathbb{R} \tag{1} $$
To find a general solution of a linear homogeneous SDE, let us assume that
-
To find the general solution of a linear homogeneous SDE (1), first find
the discriminant (
$\Delta$ ) of the auxiliary equation (3) that has roots$\alpha$ and$\beta$ , and then if:-
$\Delta > 0$ ($\alpha, \beta \in \mathbb{R}, \alpha \neq \beta$ ):$\qquad \boxed{y = Ae^{\alpha x} + Be^{\beta x}}$ -
$\Delta = 0$ ($\alpha, \beta \in \mathbb{R}, \alpha = \beta$ ):$\qquad \boxed{y = (A + Bx)e^{\alpha x}}$ -
$\Delta < 0$ ($\alpha, \beta \in \mathbb{C} \text{ and } \alpha = z = p + qi,\ \beta = z^{*} = p - qi$ ):$\qquad \boxed{y = e^{px}(A \cos{qx} + B \sin{qx})}$ where$A$ and$B$ are arbitrary constants. ^solve-homogeneous-sde
-
Q: Find the particular solution of
After substitutin the given values into (1) and (2) respectively we get:
Answer: