Skip to content

Latest commit

 

History

History
64 lines (55 loc) · 1.91 KB

L'Hopital's Rule.md

File metadata and controls

64 lines (55 loc) · 1.91 KB
tags
Math, Math/Pure

L'Hopital's Rule

  • L'Hopital's rule states that if the limit of a ratio is indeterminate of the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$, then: $$ \boxed{\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}} $$

  • If $\lim_{x \to a} f(x)$ exists, then: $$ \boxed{\lim_{x \to a} e^{f(x)} = e^{\lim_{x \to a} f(x)}} $$


Q: Find $\lim_{x \to 0} x\ln{x}$ A: $$ \begin{align} \lim_{x \to 0} \frac{\ln{x}}{\frac{1}{x}} = \lim_{x \to 0} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}} = \lim_{x \to 0} -x = 0 \end{align} $$ Answer: 0


Q: Find $\lim_{x \to \infty} \frac{x^{2} + e^{4x}}{2x - e^{x}}$ A: The given ratio is not intdeterminate of the required form, since $\lim_{x \to \infty} 2x - e^{x}$ is unknown, therefore L'Hopital's rule is not applicable yet. $$ \begin{align} \lim_{x \to \infty} \frac{\frac{1}{x}(x^{2} + e^{4x})}{\frac{1}{x}(2x - e^{x})} = \lim_{x \to \infty} \frac{x + \frac{e^{4x}}{x}}{2 - \frac{e^{x}}{x}} = L \end{align} $$

Consider the unkown limits of ratios separately: $$ \begin{align} &l_1 = \lim_{x \to \infty} \frac{e^{4x}}{x} \overset{\text{L'Hopital}}{=} \lim_{x \to \infty} 4e^{4x} = \infty \ &l_2 = \lim_{x \to \infty} \frac{e^{x}}{x} \overset{\text{L'Hopital}}{=} \lim_{x \to \infty} e^{x} = \infty \ &L = \lim_{x \to \infty} \frac{x + l_1}{2 - l_2} = \lim_{x \to \infty} \frac{\infty}{\infty} \xRightarrow[]{\text{L'Hopital}} \dots \end{align} $$


Q: Find $\lim_{y \to 0^{+}} \cos^{\frac{1}{y^{2}}}{2y}$ A: $$ \begin{align} \lim_{y \to 0^{+}} e^{\frac{1}{y^{2}}\ln{(\cos{2y})}} = e^{\lim_{y \to 0^{+}}\frac{\ln{(\cos{2y})}}{y^{2}}} = e^{\lim_{y \to 0^{+}} \frac{-\frac{\sin{2y}}{\cos{2y}}}{2y}} = e^{\lim_{y \to 0^{+}} \frac{-\tan{2y}}{2y}} = e^{\lim_{y \to 0^{+}} \frac{-2(1 + \cancelto{0}{\tan^{2}{2y}})}{1}} = e^{-2} \end{align} $$

Answer: $e^{-2}$