-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFastSAM_Everything.py
27 lines (23 loc) · 1.05 KB
/
FastSAM_Everything.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
from FastSAM.fastsam import FastSAM, FastSAMPrompt
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
import supervision as sv
import roboflow
from roboflow import Roboflow
import os
import torch
model = FastSAM('./weights/FastSAM.pt')
DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'
folder = 'images/carne/'
# get every image in the folder
Images = []
for filename in os.listdir(folder):
if filename.endswith(('.png', '.jpg', '.jpeg', '.tiff', '.bmp', '.gif')): # add or modify image file extensions as needed
Images.append(filename)
for idx, img_name in enumerate(Images):
path = os.path.join(folder, img_name)
everything_results = model(path, device=DEVICE, retina_masks=True, imgsz=512, conf=0.80, iou=0.9)
prompt_process = FastSAMPrompt(path, everything_results, device=DEVICE)
ann = prompt_process.everything_prompt()
output_filename = f'output_{idx}.jpg'
output_path = os.path.join('./output/', output_filename)
prompt_process.plot(annotations=ann, output_path=output_path)