forked from Tencent/FaceDetection-DSFD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
executable file
·222 lines (201 loc) · 8.29 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from __future__ import print_function
import argparse
import math
import os
#from resnet50_ssd import build_sfd
import pdb
import sys
import time
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.utils.data as data
import torchvision.transforms as transforms
from PIL import Image
from torch.autograd import Variable
from data import *
from data import BaseTransform, TestBaseTransform
from data import WIDERFace_CLASSES as labelmap
from data import (WIDERFace_ROOT, WIDERFaceAnnotationTransform,
WIDERFaceDetection)
from face_ssd import build_ssd
from widerface_val import bbox_vote
plt.switch_backend('agg')
parser = argparse.ArgumentParser(description='DSFD:Dual Shot Face Detector')
parser.add_argument('--trained_model', default='weights/WIDERFace_DSFD_RES152.pth',
type=str, help='Trained state_dict file path to open')
parser.add_argument('--save_folder', default='eval_tools/', type=str,
help='Dir to save results')
parser.add_argument('--visual_threshold', default=0.1, type=float,
help='Final confidence threshold')
parser.add_argument('--cuda', default=True, type=bool,
help='Use cuda to train model')
parser.add_argument('--img_root', default='./data/worlds-largest-selfie.jpg', help='Location of test images directory')
parser.add_argument('--widerface_root', default=WIDERFace_ROOT, help='Location of WIDERFACE root directory')
args = parser.parse_args()
if args.cuda and torch.cuda.is_available():
torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
if not os.path.exists(args.save_folder):
os.mkdir(args.save_folder)
def write_to_txt(f, det , event , im_name):
f.write('{:s}\n'.format(event + '/' + im_name))
f.write('{:d}\n'.format(det.shape[0]))
for i in range(det.shape[0]):
xmin = det[i][0]
ymin = det[i][1]
xmax = det[i][2]
ymax = det[i][3]
score = det[i][4]
f.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n'.
format(xmin, ymin, (xmax - xmin + 1), (ymax - ymin + 1), score))
def infer(net , img , transform , thresh , cuda , shrink):
if shrink != 1:
img = cv2.resize(img, None, None, fx=shrink, fy=shrink, interpolation=cv2.INTER_LINEAR)
x = torch.from_numpy(transform(img)[0]).permute(2, 0, 1)
x = Variable(x.unsqueeze(0) , volatile=True)
if cuda:
x = x.cuda()
#print (shrink , x.shape)
y = net(x) # forward pass
detections = y.data
# scale each detection back up to the image
scale = torch.Tensor([ img.shape[1]/shrink, img.shape[0]/shrink,
img.shape[1]/shrink, img.shape[0]/shrink] )
det = []
for i in range(detections.size(1)):
j = 0
while detections[0, i, j, 0] >= thresh:
score = detections[0, i, j, 0]
#label_name = labelmap[i-1]
pt = (detections[0, i, j, 1:]*scale).cpu().numpy()
coords = (pt[0], pt[1], pt[2], pt[3])
det.append([pt[0], pt[1], pt[2], pt[3], score])
j += 1
if (len(det)) == 0:
det = [ [0.1,0.1,0.2,0.2,0.01] ]
det = np.array(det)
keep_index = np.where(det[:, 4] >= 0)[0]
det = det[keep_index, :]
return det
def infer_flip(net , img , transform , thresh , cuda , shrink):
img = cv2.flip(img, 1)
det = infer(net , img , transform , thresh , cuda , shrink)
det_t = np.zeros(det.shape)
det_t[:, 0] = img.shape[1] - det[:, 2]
det_t[:, 1] = det[:, 1]
det_t[:, 2] = img.shape[1] - det[:, 0]
det_t[:, 3] = det[:, 3]
det_t[:, 4] = det[:, 4]
return det_t
def infer_multi_scale_sfd(net , img , transform , thresh , cuda , max_im_shrink):
# shrink detecting and shrink only detect big face
st = 0.5 if max_im_shrink >= 0.75 else 0.5 * max_im_shrink
det_s = infer(net , img , transform , thresh , cuda , st)
index = np.where(np.maximum(det_s[:, 2] - det_s[:, 0] + 1, det_s[:, 3] - det_s[:, 1] + 1) > 30)[0]
det_s = det_s[index, :]
# enlarge one times
bt = min(2, max_im_shrink) if max_im_shrink > 1 else (st + max_im_shrink) / 2
det_b = infer(net , img , transform , thresh , cuda , bt)
# enlarge small iamge x times for small face
if max_im_shrink > 2:
bt *= 2
while bt < max_im_shrink:
det_b = np.row_stack((det_b, infer(net , img , transform , thresh , cuda , bt)))
bt *= 2
det_b = np.row_stack((det_b, infer(net , img , transform , thresh , cuda , max_im_shrink) ))
# enlarge only detect small face
if bt > 1:
index = np.where(np.minimum(det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1) < 100)[0]
det_b = det_b[index, :]
else:
index = np.where(np.maximum(det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1) > 30)[0]
det_b = det_b[index, :]
return det_s, det_b
def vis_detections(im, dets, image_name , thresh=0.5):
'''Draw detected bounding boxes.'''
class_name = 'face'
inds = np.where(dets[:, -1] >= thresh)[0]
if len(inds) == 0:
return
print (len(inds))
im = im[:, :, (2, 1, 0)]
fig, ax = plt.subplots(figsize=(12, 12))
ax.imshow(im, aspect='equal')
for i in inds:
bbox = dets[i, :4]
score = dets[i, -1]
ax.add_patch(
plt.Rectangle((bbox[0], bbox[1]),
bbox[2] - bbox[0],
bbox[3] - bbox[1], fill=False,
edgecolor='red', linewidth=2.5)
)
'''
ax.text(bbox[0], bbox[1] - 5,
'{:s} {:.3f}'.format(class_name, score),
bbox=dict(facecolor='blue', alpha=0.5),
fontsize=10, color='white')
'''
ax.set_title(('{} detections with '
'p({} | box) >= {:.1f}').format(class_name, class_name,
thresh),
fontsize=10)
plt.axis('off')
plt.tight_layout()
plt.savefig(args.save_folder+image_name, dpi=fig.dpi)
def test_oneimage():
# load net
cfg = widerface_640
num_classes = len(WIDERFace_CLASSES) + 1 # +1 background
net = build_ssd('test', cfg['min_dim'], num_classes) # initialize SSD
net.load_state_dict(torch.load(args.trained_model))
net.cuda()
net.eval()
print('Finished loading model!')
# evaluation
cuda = args.cuda
transform = TestBaseTransform((104, 117, 123))
thresh=cfg['conf_thresh']
#save_path = args.save_folder
#num_images = len(testset)
# load data
path = args.img_root
img_id = 'face'
img = cv2.imread(path, cv2.IMREAD_COLOR)
max_im_shrink = ( (2000.0*2000.0) / (img.shape[0] * img.shape[1])) ** 0.5
shrink = max_im_shrink if max_im_shrink < 1 else 1
det0 = infer(net , img , transform , thresh , cuda , shrink)
det1 = infer_flip(net , img , transform , thresh , cuda , shrink)
# shrink detecting and shrink only detect big face
st = 0.5 if max_im_shrink >= 0.75 else 0.5 * max_im_shrink
det_s = infer(net , img , transform , thresh , cuda , st)
index = np.where(np.maximum(det_s[:, 2] - det_s[:, 0] + 1, det_s[:, 3] - det_s[:, 1] + 1) > 30)[0]
det_s = det_s[index, :]
# enlarge one times
factor = 2
bt = min(factor, max_im_shrink) if max_im_shrink > 1 else (st + max_im_shrink) / 2
det_b = infer(net , img , transform , thresh , cuda , bt)
# enlarge small iamge x times for small face
if max_im_shrink > factor:
bt *= factor
while bt < max_im_shrink:
det_b = np.row_stack((det_b, infer(net , img , transform , thresh , cuda , bt)))
bt *= factor
det_b = np.row_stack((det_b, infer(net , img , transform , thresh , cuda , max_im_shrink) ))
# enlarge only detect small face
if bt > 1:
index = np.where(np.minimum(det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1) < 100)[0]
det_b = det_b[index, :]
else:
index = np.where(np.maximum(det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1) > 30)[0]
det_b = det_b[index, :]
det = np.row_stack((det0, det1, det_s, det_b))
det = bbox_vote(det)
vis_detections(img , det , img_id, args.visual_threshold)
if __name__ == '__main__':
test_oneimage()