-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathdata.py
66 lines (62 loc) · 2.84 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import numpy as np
import skimage.transform as sktransform
import random
import matplotlib.image as mpimg
import os
# Cameras we will use
cameras = ['left', 'center', 'right']
cameras_steering_correction = [.25, 0., -.25]
def preprocess(image, top_offset=.375, bottom_offset=.125):
"""
Applies preprocessing pipeline to an image: crops `top_offset` and `bottom_offset`
portions of image, resizes to 32x128 px and scales pixel values to [0, 1].
"""
top = int(top_offset * image.shape[0])
bottom = int(bottom_offset * image.shape[0])
image = sktransform.resize(image[top:-bottom, :], (32, 128, 3))
return image
def generate_samples(data, root_path, augment=True):
"""
Keras generator yielding batches of training/validation data.
Applies data augmentation pipeline if `augment` is True.
"""
while True:
# Generate random batch of indices
indices = np.random.permutation(data.count()[0])
batch_size = 128
for batch in range(0, len(indices), batch_size):
batch_indices = indices[batch:(batch + batch_size)]
# Output arrays
x = np.empty([0, 32, 128, 3], dtype=np.float32)
y = np.empty([0], dtype=np.float32)
# Read in and preprocess a batch of images
for i in batch_indices:
# Randomly select camera
camera = np.random.randint(len(cameras)) if augment else 1
# Read frame image and work out steering angle
image = mpimg.imread(os.path.join(root_path, data[cameras[camera]].values[i].strip()))
angle = data.steering.values[i] + cameras_steering_correction[camera]
if augment:
# Add random shadow as a vertical slice of image
h, w = image.shape[0], image.shape[1]
[x1, x2] = np.random.choice(w, 2, replace=False)
k = h / (x2 - x1)
b = - k * x1
for i in range(h):
c = int((i - b) / k)
image[i, :c, :] = (image[i, :c, :] * .5).astype(np.int32)
# Randomly shift up and down while preprocessing
v_delta = .05 if augment else 0
image = preprocess(
image,
top_offset=random.uniform(.375 - v_delta, .375 + v_delta),
bottom_offset=random.uniform(.125 - v_delta, .125 + v_delta)
)
# Append to batch
x = np.append(x, [image], axis=0)
y = np.append(y, [angle])
# Randomly flip half of images in the batch
flip_indices = random.sample(range(x.shape[0]), int(x.shape[0] / 2))
x[flip_indices] = x[flip_indices, :, ::-1, :]
y[flip_indices] = -y[flip_indices]
yield (x, y)