-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconvergenceplot.m
62 lines (47 loc) · 1.99 KB
/
convergenceplot.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
clear all;
GA_bests = 0;
PSO_bests = 0;
IPO_bests = 0;
save('bests');
Na = 'testfunc';
% Change funcnum to see plots for other functions
funcnum = 1;
numofruns = 1;
bestfit = zeros(23, numofruns);
%meanfit = bestfit;
cont = num2str(funcnum);
fitnessfunc = [Na, cont];
[c1, c2, shift1, shift2, scale1, scale2,numofballs, numofdims, ...
numofiterations, Xmininit, Xmaxinit] = initialization(fitnessfunc);
for j = 1:numofruns
% generating initial particles
Xmin = repmat(Xmininit, numofballs, 1);
Xmax = repmat(Xmaxinit, numofballs, 1);
X = Xmin + (Xmax - Xmin) .* rand(numofballs, numofdims);
options = gaoptimset('Generations', numofiterations, 'PopulationSize', ...
numofballs, 'StallGenLimit', numofiterations, ...
'UseParallel', 'always', 'PopInitRange', [Xmininit; Xmaxinit], ...
'OutputFcns', @outfun, 'InitialPopulation', X);%, 'PlotFcns', @gaplotbestf);
ga(str2func(fitnessfunc), numofdims, [], [], [], [], Xmininit, Xmaxinit, [], options);
load('bests');
[~, ~, tmpIPO_bests, ~, ~, ~] = ...
IPO(numofballs, numofdims, numofiterations, 1000, 1e-6, ...
c1, c2, shift1, shift2, scale1, scale2, Xmininit, Xmaxinit, fitnessfunc, 0, 5);
IPO_bests = IPO_bests + tmpIPO_bests;
[~, ~, tmpPSO_bests, ~, ~] = ...
PSO(numofballs, numofdims, numofiterations, 1000, 1e-6, 2, 2, ...
Xmininit, Xmaxinit, fitnessfunc, 0, 5);
PSO_bests = PSO_bests + tmpPSO_bests;
save('bests', 'GA_bests', 'PSO_bests', 'IPO_bests');
% display('GA, PSO and IPO bests saved.');
end
% save('bests1', 'GA_bests', 'PSO_bests', 'IPO_bests');
p1 = plot(1:numofiterations, GA_bests ./ numofruns, '-.k');
hold on;
p2 = plot(1:numofiterations, PSO_bests ./ numofruns, '--k');
p3 = plot(1:numofiterations, IPO_bests ./ numofruns, '-k');
xlabel('Iteration');
ylabel('Average of best fitnesses for 30 runs');
legnd1 = legend([p1, p2, p3], 'GA', 'PSO', 'IPO');
set(legnd1,'Location','SouthWest')
set(gca, 'YScale', 'log');