forked from knaughten/roms_tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathera_gpcp.py
116 lines (103 loc) · 3.85 KB
/
era_gpcp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from numpy import *
from netCDF4 import Dataset
from matplotlib.pyplot import *
# Plot precipitation (1992-2005 average) in the ERA-Interim versus GPCP datasets
# over the Southern Ocean.
def era_gpcp ():
# Beginning and end of paths to ERA-Interim precip files, monthly averaged,
# on original grid
era_head = '/short/y99/kaa561/CMIP5_forcing/atmos/climatology/ERA_Interim_monthly/FC_'
era_tail = '_monthly_orig.nc'
# Beginning of paths to GPCP files
gpcp_head = '/short/m68/kaa561/gpcp/gpcp_cdr_v23rB1_y'
# Days per month (leap years will be handled later)
days_per_month = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
start_year = 1992
end_year = 2005
deg2rad = pi/180.0
# Read each grid
id = Dataset(gpcp_head + str(start_year) + '_m01.nc', 'r')
gpcp_lat_1d = id.variables['latitude'][:]
gpcp_lon_1d = id.variables['longitude'][:]
id.close()
id = Dataset(era_head + str(start_year) + era_tail, 'r')
era_lat_1d = id.variables['latitude'][:]
era_lon_1d = id.variables['longitude'][:]
id.close()
# Start integrating precipitation data
gpcp_precip = zeros([size(gpcp_lat_1d), size(gpcp_lon_1d)])
era_precip = zeros([size(era_lat_1d), size(era_lon_1d)])
# Number of days so far
ndays = 0
# Loop over years
for year in range(start_year, end_year+1):
# Check if it's a leap year
leap_year = False
if mod(year, 4) == 0:
leap_year = True
if mod(year, 100) == 0:
leap_year = False
if mod(year, 400) == 0:
leap_year = True
if leap_year:
days_per_month[1] = 29
else:
days_per_month[1] = 28
# Loop over months
for month in range(12):
if month + 1 < 10:
month_string = '0' + str(month+1)
else:
month_string = str(month+1)
# Read GPCP data
id = Dataset(gpcp_head + str(year) + '_m' + month_string + '.nc', 'r')
gpcp_precip += id.variables['precip'][:,:]*days_per_month[month]
id.close()
# Read ERA-Interim data
id = Dataset(era_head + str(year) + era_tail, 'r')
era_precip += id.variables['tp'][month,:,:]*days_per_month[month]
id.close()
ndays += days_per_month[month]
# Convert from integral to average
gpcp_precip /= ndays
era_precip /= ndays
# Convert to m/y
gpcp_precip *= 1e-3*365.25 # originally mm/day
era_precip *= 2*365.25 # originally m/12h
# Make 2D versions of lat and lon arrays
gpcp_lon, gpcp_lat = meshgrid(gpcp_lon_1d, gpcp_lat_1d)
era_lon, era_lat = meshgrid(era_lon_1d, era_lat_1d)
# Polar coordinates for plotting
gpcp_x = -(gpcp_lat+90)*cos(gpcp_lon*deg2rad+pi/2)
gpcp_y = (gpcp_lat+90)*sin(gpcp_lon*deg2rad+pi/2)
era_x = -(era_lat+90)*cos(era_lon*deg2rad+pi/2)
era_y = (era_lat+90)*sin(era_lon*deg2rad+pi/2)
# Colour levels
lev = linspace(0, 2, num=50)
# Northern boundary 40S
bdry = -40+90
# Make figure
fig = figure(figsize=(20,9))
# GPCP
fig.add_subplot(1,2,1, aspect='equal')
contourf(gpcp_x, gpcp_y, gpcp_precip, lev, extend='max')
title('GPCP', fontsize=24)
xlim([-bdry, bdry])
ylim([-bdry, bdry])
axis('off')
# ERA-Interim
fig.add_subplot(1,2,2, aspect='equal')
img = contourf(era_x, era_y, era_precip, lev, extend='max')
title('ERA-Interim', fontsize=24)
xlim([-bdry, bdry])
ylim([-bdry, bdry])
axis('off')
# Add colourbar on the bottom
cbaxes = fig.add_axes([0.3, 0.04, 0.4, 0.04])
cbar = colorbar(img, orientation='horizontal', cax=cbaxes)
# Main title
suptitle('Precipitation (m/y), 1992-2005 average', fontsize=30)
fig.savefig('era_gpcp.png')
# Command-line interface
if __name__ == "__main__":
era_gpcp()