forked from knaughten/roms_tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmip_ts_distribution_ecco2.py
186 lines (169 loc) · 6.99 KB
/
mip_ts_distribution_ecco2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from netCDF4 import Dataset
from numpy import *
from matplotlib.pyplot import *
from matplotlib.colors import *
from cartesian_grid_3d import *
from unesco import *
def mip_ts_distribution_ecco2 ():
# Beginning of ECCO2 filenames
temp_file_head = '/short/m68/kaa561/metroms_iceshelf/data/originals/ECCO2/THETA.1440x720x50.1992'
salt_file_head = '/short/m68/kaa561/metroms_iceshelf/data/originals/ECCO2/SALT.1440x720x50.1992'
# Northern boundary of water masses to consider
nbdry = -65
# Number of temperature and salinity bins
num_bins_temp = 1000
num_bins_salt = 2000
# Bounds on temperature and salinity bins (pre-computed, change if needed)
min_salt = 32.3
max_salt = 40.1
min_temp = -3.1
max_temp = 3.8
# Bounds to actually plot
min_salt_plot = 33.25
max_salt_plot = 35.1
min_temp_plot = -3
max_temp_plot = 3.8
# Radius of the Earth in metres
r = 6.371e6
# Degrees to radians conversion factor
deg2rad = pi/180.0
print 'Setting up bins'
# Calculate boundaries of temperature bins
temp_bins = linspace(min_temp, max_temp, num=num_bins_temp)
# Calculate centres of temperature bins (for plotting)
temp_centres = 0.5*(temp_bins[:-1] + temp_bins[1:])
# Repeat for salinity
salt_bins = linspace(min_salt, max_salt, num=num_bins_salt)
salt_centres = 0.5*(salt_bins[:-1] + salt_bins[1:])
# Set up 2D array of temperature bins x salinity bins to hold average
# depth of water masses, weighted by volume
ts_vals = zeros([size(temp_centres), size(salt_centres)])
# Also array to integrate volume
volume = zeros([size(temp_centres), size(salt_centres)])
# Calculate surface freezing point as a function of salinity as seen by
# CICE
freezing_pt = salt_centres/(-18.48 + 18.48/1e3*salt_centres)
# Get 2D versions of the temperature and salinity bins
salt_2d, temp_2d = meshgrid(salt_centres, temp_centres)
# Calculate potential density of each combination of temperature and
# salinity bins
density = unesco(temp_2d, salt_2d, zeros(shape(temp_2d)))-1000
# Density contours to plot
density_lev = arange(26.6, 28.4, 0.2)
print 'Reading grid'
# Read grid from first file
id = Dataset(temp_file_head + '01.nc', 'r')
lon = id.variables['LONGITUDE_T'][:]
lat = id.variables['LATITUDE_T'][:]
z = id.variables['DEPTH_T'][:]
id.close()
num_lon = size(lon)
num_lat = size(lat)
num_depth = size(z)
# Calculate integrands
# Interpolate to get longitude at the edges of each cell
lon_edges = zeros(num_lon+1)
lon_edges[1:-1] = 0.5*(lon[:-1] + lon[1:])
lon_edges[0] = 0.5*(lon[0] + lon[-1] - 360)
lon_edges[-1] = 0.5*(lon[0] + 360 + lon[-1])
dlon = lon_edges[1:] - lon_edges[:-1]
# Similarly for latitude; linearly extrapolate for edges (which don't matter)
lat_edges = zeros(num_lat+1)
lat_edges[1:-1] = 0.5*(lat[:-1] + lat[1:])
lat_edges[0] = 2*lat[0] - lat_edges[1]
lat_edges[-1] = 2*lat[-1] - lat_edges[-2]
dlat = lat_edges[1:] - lat_edges[:-1]
# Make 2D versions
lon_2d, lat_2d = meshgrid(lon, lat)
dlon_2d, dlat_2d = meshgrid(dlon, dlat)
# Convert to Cartesian space
dx_2d = r*cos(lat_2d*deg2rad)*dlon_2d*deg2rad
dy_2d = r*dlat_2d*deg2rad
# We have z at the midpoint of each cell, now find it on the top and
# bottom edges of each cell
z_edges = zeros(num_depth+1)
z_edges[1:-1] = 0.5*(z[:-1] + z[1:])
# At the surface, z=0
# At bottom, extrapolate
z_edges[-1] = 2*z[-1] - z_edges[-2]
# Now find dz
dz_1d = z_edges[1:] - z_edges[:-1]
# Tile each array to be 3D
dx_3d = tile(dx_2d, (num_depth,1,1))
dy_3d = tile(dy_2d, (num_depth,1,1))
dz_3d = transpose(tile(dz_1d, (num_lon,num_lat,1)))
# Get volume integrand
dV = dx_3d*dy_3d*dz_3d
print 'Reading data'
# Annual average over 1992
temp = ma.empty([num_depth, num_lat, num_lon])
salt = ma.empty([num_depth, num_lat, num_lon])
temp[:,:,:] = 0.0
salt[:,:,:] = 0.0
for month in range(12):
if month+1 < 10:
month_string = '0' + str(month+1)
else:
month_string = str(month+1)
id = Dataset(temp_file_head + month_string + '.nc', 'r')
temp[:,:,:] += id.variables['THETA'][0,:,:,:]
id.close()
id = Dataset(salt_file_head + month_string + '.nc', 'r')
salt[:,:,:] += id.variables['SALT'][0,:,:,:]
id.close()
# Convert from integrals to averages
temp /= 12.0
salt /= 12.0
print 'Binning temperature and salinity'
# Loop over grid boxes
# Find the first latitude index north of 65S; stop there
j_max = nonzero(lat > nbdry)[0][0]
for k in range(num_depth):
for j in range(j_max):
for i in range(num_lon):
if temp[k,j,i] is ma.masked:
# Land
continue
# Figure out which bins this falls into
temp_index = nonzero(temp_bins > temp[k,j,i])[0][0] - 1
salt_index = nonzero(salt_bins > salt[k,j,i])[0][0] - 1
# Integrate depth*dV in this bin
ts_vals[temp_index, salt_index] += z[k]*dV[k,j,i]
volume[temp_index, salt_index] += dV[k,j,i]
# Mask bins with zero volume
ts_vals = ma.masked_where(volume==0, ts_vals)
volume = ma.masked_where(volume==0, volume)
# Convert depths from integrals to volume-averages
ts_vals /= volume
# Find the maximum depth for plotting
max_depth = amax(ts_vals)
# Make a nonlinear scale
bounds = linspace(0, max_depth**(1.0/2.5), num=100)**2.5
norm = BoundaryNorm(boundaries=bounds, ncolors=256)
# Set labels for density contours
manual_locations = [(33.4, 3.0), (33.65, 3.0), (33.9, 3.0), (34.2, 3.0), (34.45, 3.5), (34.65, 3.25), (34.9, 3.0), (35, 1.5)]
print "Plotting"
fig = figure(figsize=(9,9))
ax = fig.add_subplot(1, 1, 1)
img = pcolor(salt_centres, temp_centres, ts_vals, norm=norm, vmin=0, vmax=max_depth, cmap='jet')
# Add surface freezing point line
plot(salt_centres, freezing_pt, color='black', linestyle='dashed')
# Add density contours
cs = contour(salt_centres, temp_centres, density, density_lev, colors=(0.6,0.6,0.6), linestyles='dotted')
clabel(cs, inline=1, fontsize=14, color=(0.6,0.6,0.6), fmt='%1.1f', manual=manual_locations)
xlim([min_salt_plot, max_salt_plot])
ylim([min_temp_plot, max_temp_plot])
ax.tick_params(axis='x', labelsize=14)
ax.tick_params(axis='y', labelsize=14)
xlabel('Salinity (psu)', fontsize=16)
ylabel(r'Temperature ($^{\circ}$C)', fontsize=16)
title('Water masses south of 65$^{\circ}$S: depth (m)\n1992 annual average, ECCO2', fontsize=20)
# Add a colourbar on the right
cbaxes = fig.add_axes([0.91, 0.3, 0.02, 0.4])
cbar = colorbar(img, cax=cbaxes, ticks=[0,50,100,200,500,1000,2000,4000])
cbar.ax.tick_params(labelsize=14)
fig.show()
fig.savefig('ts_distribution_ecco2.png')
# Command-line interface
if __name__ == "__main__":
mip_ts_distribution_ecco2()