-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqsfp.c
1054 lines (964 loc) · 37.1 KB
/
qsfp.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* qsfp.c: Implements SFF-8636 based QSFP+/QSFP28 Diagnostics Memory map.
*
* Copyright 2010 Solarflare Communications Inc.
* Aurelien Guillaume <[email protected]> (C) 2012
* Copyright (C) 2014 Cumulus networks Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Freeoftware Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Vidya Ravipati <[email protected]>
* This implementation is loosely based on current SFP parser
* and SFF-8636 spec Rev 2.7 (ftp://ftp.seagate.com/pub/sff/SFF-8636.PDF)
* by SFF Committee.
*/
/*
* Description:
* a) The register/memory layout is up to 5 128 byte pages defined by
* a "pages valid" register and switched via a "page select"
* register. Memory of 256 bytes can be memory mapped at a time
* according to SFF 8636.
* b) SFF 8636 based 640 bytes memory layout is presented for parser
*
* SFF 8636 based QSFP Memory Map
*
* 2-Wire Serial Address: 1010000x
*
* Lower Page 00h (128 bytes)
* ======================
* | |
* |Page Select Byte(127)|
* ======================
* |
* V
* ----------------------------------------
* | | | |
* V V V V
* ---------- ---------- --------- ------------
* | Upper | | Upper | | Upper | | Upper |
* | Page 00h | | Page 01h | | Page 02h | | Page 03h |
* | | |(Optional)| |(Optional)| | (Optional) |
* | | | | | | | |
* | | | | | | | |
* | ID | | AST | | User | | For |
* | Fields | | Table | | EEPROM | | Cable |
* | | | | | Data | | Assemblies |
* | | | | | | | |
* | | | | | | | |
* ----------- ----------- ---------- --------------
*
*
**/
#include <stdio.h>
#include <math.h>
#include <errno.h>
#include "internal.h"
#include "sff-common.h"
#include "qsfp.h"
#include "cmis.h"
#include "netlink/extapi.h"
struct sff8636_memory_map {
const __u8 *lower_memory;
const __u8 *upper_memory[4];
#define page_00h upper_memory[0x0]
#define page_03h upper_memory[0x3]
};
#define SFF8636_PAGE_SIZE 0x80
#define SFF8636_I2C_ADDRESS 0x50
#define SFF8636_MAX_CHANNEL_NUM 4
#define MAX_DESC_SIZE 42
static struct sff8636_aw_flags {
const char *str; /* Human-readable string, null at the end */
int offset;
__u8 value; /* Alarm is on if (offset & value) != 0. */
} sff8636_aw_flags[] = {
{ "Laser bias current high alarm (Chan 1)",
SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_1_HALARM) },
{ "Laser bias current low alarm (Chan 1)",
SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_1_LALARM) },
{ "Laser bias current high warning (Chan 1)",
SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_1_HWARN) },
{ "Laser bias current low warning (Chan 1)",
SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_1_LWARN) },
{ "Laser bias current high alarm (Chan 2)",
SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_2_HALARM) },
{ "Laser bias current low alarm (Chan 2)",
SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_2_LALARM) },
{ "Laser bias current high warning (Chan 2)",
SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_2_HWARN) },
{ "Laser bias current low warning (Chan 2)",
SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_2_LWARN) },
{ "Laser bias current high alarm (Chan 3)",
SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_3_HALARM) },
{ "Laser bias current low alarm (Chan 3)",
SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_3_LALARM) },
{ "Laser bias current high warning (Chan 3)",
SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_3_HWARN) },
{ "Laser bias current low warning (Chan 3)",
SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_3_LWARN) },
{ "Laser bias current high alarm (Chan 4)",
SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_4_HALARM) },
{ "Laser bias current low alarm (Chan 4)",
SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_4_LALARM) },
{ "Laser bias current high warning (Chan 4)",
SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_4_HWARN) },
{ "Laser bias current low warning (Chan 4)",
SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_4_LWARN) },
{ "Module temperature high alarm",
SFF8636_TEMP_AW_OFFSET, (SFF8636_TEMP_HALARM_STATUS) },
{ "Module temperature low alarm",
SFF8636_TEMP_AW_OFFSET, (SFF8636_TEMP_LALARM_STATUS) },
{ "Module temperature high warning",
SFF8636_TEMP_AW_OFFSET, (SFF8636_TEMP_HWARN_STATUS) },
{ "Module temperature low warning",
SFF8636_TEMP_AW_OFFSET, (SFF8636_TEMP_LWARN_STATUS) },
{ "Module voltage high alarm",
SFF8636_VCC_AW_OFFSET, (SFF8636_VCC_HALARM_STATUS) },
{ "Module voltage low alarm",
SFF8636_VCC_AW_OFFSET, (SFF8636_VCC_LALARM_STATUS) },
{ "Module voltage high warning",
SFF8636_VCC_AW_OFFSET, (SFF8636_VCC_HWARN_STATUS) },
{ "Module voltage low warning",
SFF8636_VCC_AW_OFFSET, (SFF8636_VCC_LWARN_STATUS) },
{ "Laser tx power high alarm (Channel 1)",
SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_1_HALARM) },
{ "Laser tx power low alarm (Channel 1)",
SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_1_LALARM) },
{ "Laser tx power high warning (Channel 1)",
SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_1_HWARN) },
{ "Laser tx power low warning (Channel 1)",
SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_1_LWARN) },
{ "Laser tx power high alarm (Channel 2)",
SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_2_HALARM) },
{ "Laser tx power low alarm (Channel 2)",
SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_2_LALARM) },
{ "Laser tx power high warning (Channel 2)",
SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_2_HWARN) },
{ "Laser tx power low warning (Channel 2)",
SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_2_LWARN) },
{ "Laser tx power high alarm (Channel 3)",
SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_3_HALARM) },
{ "Laser tx power low alarm (Channel 3)",
SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_3_LALARM) },
{ "Laser tx power high warning (Channel 3)",
SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_3_HWARN) },
{ "Laser tx power low warning (Channel 3)",
SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_3_LWARN) },
{ "Laser tx power high alarm (Channel 4)",
SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_4_HALARM) },
{ "Laser tx power low alarm (Channel 4)",
SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_4_LALARM) },
{ "Laser tx power high warning (Channel 4)",
SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_4_HWARN) },
{ "Laser tx power low warning (Channel 4)",
SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_4_LWARN) },
{ "Laser rx power high alarm (Channel 1)",
SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_1_HALARM) },
{ "Laser rx power low alarm (Channel 1)",
SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_1_LALARM) },
{ "Laser rx power high warning (Channel 1)",
SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_1_HWARN) },
{ "Laser rx power low warning (Channel 1)",
SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_1_LWARN) },
{ "Laser rx power high alarm (Channel 2)",
SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_2_HALARM) },
{ "Laser rx power low alarm (Channel 2)",
SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_2_LALARM) },
{ "Laser rx power high warning (Channel 2)",
SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_2_HWARN) },
{ "Laser rx power low warning (Channel 2)",
SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_2_LWARN) },
{ "Laser rx power high alarm (Channel 3)",
SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_3_HALARM) },
{ "Laser rx power low alarm (Channel 3)",
SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_3_LALARM) },
{ "Laser rx power high warning (Channel 3)",
SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_3_HWARN) },
{ "Laser rx power low warning (Channel 3)",
SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_3_LWARN) },
{ "Laser rx power high alarm (Channel 4)",
SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_4_HALARM) },
{ "Laser rx power low alarm (Channel 4)",
SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_4_LALARM) },
{ "Laser rx power high warning (Channel 4)",
SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_4_HWARN) },
{ "Laser rx power low warning (Channel 4)",
SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_4_LWARN) },
{ NULL, 0, 0 },
};
static void sff8636_show_identifier(const struct sff8636_memory_map *map)
{
sff8024_show_identifier(map->lower_memory, SFF8636_ID_OFFSET);
}
static void sff8636_show_ext_identifier(const struct sff8636_memory_map *map)
{
printf("\t%-41s : 0x%02x\n", "Extended identifier",
map->page_00h[SFF8636_EXT_ID_OFFSET]);
static const char *pfx =
"\tExtended identifier description :";
switch (map->page_00h[SFF8636_EXT_ID_OFFSET] &
SFF8636_EXT_ID_PWR_CLASS_MASK) {
case SFF8636_EXT_ID_PWR_CLASS_1:
printf("%s 1.5W max. Power consumption\n", pfx);
break;
case SFF8636_EXT_ID_PWR_CLASS_2:
printf("%s 2.0W max. Power consumption\n", pfx);
break;
case SFF8636_EXT_ID_PWR_CLASS_3:
printf("%s 2.5W max. Power consumption\n", pfx);
break;
case SFF8636_EXT_ID_PWR_CLASS_4:
printf("%s 3.5W max. Power consumption\n", pfx);
break;
}
if (map->page_00h[SFF8636_EXT_ID_OFFSET] & SFF8636_EXT_ID_CDR_TX_MASK)
printf("%s CDR present in TX,", pfx);
else
printf("%s No CDR in TX,", pfx);
if (map->page_00h[SFF8636_EXT_ID_OFFSET] & SFF8636_EXT_ID_CDR_RX_MASK)
printf(" CDR present in RX\n");
else
printf(" No CDR in RX\n");
switch (map->page_00h[SFF8636_EXT_ID_OFFSET] &
SFF8636_EXT_ID_EPWR_CLASS_MASK) {
case SFF8636_EXT_ID_PWR_CLASS_LEGACY:
printf("%s", pfx);
break;
case SFF8636_EXT_ID_PWR_CLASS_5:
printf("%s 4.0W max. Power consumption,", pfx);
break;
case SFF8636_EXT_ID_PWR_CLASS_6:
printf("%s 4.5W max. Power consumption, ", pfx);
break;
case SFF8636_EXT_ID_PWR_CLASS_7:
printf("%s 5.0W max. Power consumption, ", pfx);
break;
}
if (map->lower_memory[SFF8636_PWR_MODE_OFFSET] &
SFF8636_HIGH_PWR_ENABLE)
printf(" High Power Class (> 3.5 W) enabled\n");
else
printf(" High Power Class (> 3.5 W) not enabled\n");
printf("\t%-41s : ", "Power set");
printf("%s\n", ONOFF(map->lower_memory[SFF8636_PWR_MODE_OFFSET] &
SFF8636_LOW_PWR_SET));
printf("\t%-41s : ", "Power override");
printf("%s\n", ONOFF(map->lower_memory[SFF8636_PWR_MODE_OFFSET] &
SFF8636_PWR_OVERRIDE));
}
static void sff8636_show_connector(const struct sff8636_memory_map *map)
{
sff8024_show_connector(map->page_00h, SFF8636_CTOR_OFFSET);
}
static void sff8636_show_transceiver(const struct sff8636_memory_map *map)
{
static const char *pfx =
"\tTransceiver type :";
printf("\t%-41s : 0x%02x 0x%02x 0x%02x " \
"0x%02x 0x%02x 0x%02x 0x%02x 0x%02x\n",
"Transceiver codes",
map->page_00h[SFF8636_ETHERNET_COMP_OFFSET],
map->page_00h[SFF8636_SONET_COMP_OFFSET],
map->page_00h[SFF8636_SAS_COMP_OFFSET],
map->page_00h[SFF8636_GIGE_COMP_OFFSET],
map->page_00h[SFF8636_FC_LEN_OFFSET],
map->page_00h[SFF8636_FC_TECH_OFFSET],
map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET],
map->page_00h[SFF8636_FC_SPEED_OFFSET]);
/* 10G/40G Ethernet Compliance Codes */
if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] &
SFF8636_ETHERNET_10G_LRM)
printf("%s 10G Ethernet: 10G Base-LRM\n", pfx);
if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] &
SFF8636_ETHERNET_10G_LR)
printf("%s 10G Ethernet: 10G Base-LR\n", pfx);
if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] &
SFF8636_ETHERNET_10G_SR)
printf("%s 10G Ethernet: 10G Base-SR\n", pfx);
if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] &
SFF8636_ETHERNET_40G_CR4)
printf("%s 40G Ethernet: 40G Base-CR4\n", pfx);
if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] &
SFF8636_ETHERNET_40G_SR4)
printf("%s 40G Ethernet: 40G Base-SR4\n", pfx);
if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] &
SFF8636_ETHERNET_40G_LR4)
printf("%s 40G Ethernet: 40G Base-LR4\n", pfx);
if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] &
SFF8636_ETHERNET_40G_ACTIVE)
printf("%s 40G Ethernet: 40G Active Cable (XLPPI)\n", pfx);
/* Extended Specification Compliance Codes from SFF-8024 */
if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] &
SFF8636_ETHERNET_RSRVD) {
switch (map->page_00h[SFF8636_OPTION_1_OFFSET]) {
case SFF8636_ETHERNET_UNSPECIFIED:
printf("%s (reserved or unknown)\n", pfx);
break;
case SFF8636_ETHERNET_100G_AOC:
printf("%s 100G Ethernet: 100G AOC or 25GAUI C2M AOC with worst BER of 5x10^(-5)\n",
pfx);
break;
case SFF8636_ETHERNET_100G_SR4:
printf("%s 100G Ethernet: 100G Base-SR4 or 25GBase-SR\n",
pfx);
break;
case SFF8636_ETHERNET_100G_LR4:
printf("%s 100G Ethernet: 100G Base-LR4\n", pfx);
break;
case SFF8636_ETHERNET_100G_ER4:
printf("%s 100G Ethernet: 100G Base-ER4\n", pfx);
break;
case SFF8636_ETHERNET_100G_SR10:
printf("%s 100G Ethernet: 100G Base-SR10\n", pfx);
break;
case SFF8636_ETHERNET_100G_CWDM4_FEC:
printf("%s 100G Ethernet: 100G CWDM4 MSA with FEC\n", pfx);
break;
case SFF8636_ETHERNET_100G_PSM4:
printf("%s 100G Ethernet: 100G PSM4 Parallel SMF\n", pfx);
break;
case SFF8636_ETHERNET_100G_ACC:
printf("%s 100G Ethernet: 100G ACC or 25GAUI C2M ACC with worst BER of 5x10^(-5)\n",
pfx);
break;
case SFF8636_ETHERNET_100G_CWDM4_NO_FEC:
printf("%s 100G Ethernet: 100G CWDM4 MSA without FEC\n", pfx);
break;
case SFF8636_ETHERNET_100G_RSVD1:
printf("%s (reserved or unknown)\n", pfx);
break;
case SFF8636_ETHERNET_100G_CR4:
printf("%s 100G Ethernet: 100G Base-CR4 or 25G Base-CR CA-L\n",
pfx);
break;
case SFF8636_ETHERNET_25G_CR_CA_S:
printf("%s 25G Ethernet: 25G Base-CR CA-S\n", pfx);
break;
case SFF8636_ETHERNET_25G_CR_CA_N:
printf("%s 25G Ethernet: 25G Base-CR CA-N\n", pfx);
break;
case SFF8636_ETHERNET_40G_ER4:
printf("%s 40G Ethernet: 40G Base-ER4\n", pfx);
break;
case SFF8636_ETHERNET_4X10_SR:
printf("%s 4x10G Ethernet: 10G Base-SR\n", pfx);
break;
case SFF8636_ETHERNET_40G_PSM4:
printf("%s 40G Ethernet: 40G PSM4 Parallel SMF\n", pfx);
break;
case SFF8636_ETHERNET_G959_P1I1_2D1:
printf("%s Ethernet: G959.1 profile P1I1-2D1 (10709 MBd, 2km, 1310nm SM)\n",
pfx);
break;
case SFF8636_ETHERNET_G959_P1S1_2D2:
printf("%s Ethernet: G959.1 profile P1S1-2D2 (10709 MBd, 40km, 1550nm SM)\n",
pfx);
break;
case SFF8636_ETHERNET_G959_P1L1_2D2:
printf("%s Ethernet: G959.1 profile P1L1-2D2 (10709 MBd, 80km, 1550nm SM)\n",
pfx);
break;
case SFF8636_ETHERNET_10GT_SFI:
printf("%s 10G Ethernet: 10G Base-T with SFI electrical interface\n",
pfx);
break;
case SFF8636_ETHERNET_100G_CLR4:
printf("%s 100G Ethernet: 100G CLR4\n", pfx);
break;
case SFF8636_ETHERNET_100G_AOC2:
printf("%s 100G Ethernet: 100G AOC or 25GAUI C2M AOC with worst BER of 10^(-12)\n",
pfx);
break;
case SFF8636_ETHERNET_100G_ACC2:
printf("%s 100G Ethernet: 100G ACC or 25GAUI C2M ACC with worst BER of 10^(-12)\n",
pfx);
break;
case SFF8636_ETHERNET_100GE_DWDM2:
printf("%s 100GE-DWDM2 (DWDM transceiver using 2 wavelengths on a 1550 nm DWDM grid with a reach up to 80 km)\n",
pfx);
break;
case SFF8636_ETHERNET_100G_1550NM_WDM:
printf("%s 100G 1550nm WDM (4 wavelengths)\n", pfx);
break;
case SFF8636_ETHERNET_10G_BASET_SR:
printf("%s 10GBASE-T Short Reach (30 meters)\n", pfx);
break;
case SFF8636_ETHERNET_5G_BASET:
printf("%s 5GBASE-T\n", pfx);
break;
case SFF8636_ETHERNET_2HALFG_BASET:
printf("%s 2.5GBASE-T\n", pfx);
break;
case SFF8636_ETHERNET_40G_SWDM4:
printf("%s 40G SWDM4\n", pfx);
break;
case SFF8636_ETHERNET_100G_SWDM4:
printf("%s 100G SWDM4\n", pfx);
break;
case SFF8636_ETHERNET_100G_PAM4_BIDI:
printf("%s 100G PAM4 BiDi\n", pfx);
break;
case SFF8636_ETHERNET_4WDM10_MSA:
printf("%s 4WDM-10 MSA (10km version of 100G CWDM4 with same RS(528,514) FEC in host system)\n",
pfx);
break;
case SFF8636_ETHERNET_4WDM20_MSA:
printf("%s 4WDM-20 MSA (20km version of 100GBASE-LR4 with RS(528,514) FEC in host system)\n",
pfx);
break;
case SFF8636_ETHERNET_4WDM40_MSA:
printf("%s 4WDM-40 MSA (40km reach with APD receiver and RS(528,514) FEC in host system)\n",
pfx);
break;
case SFF8636_ETHERNET_100G_DR:
printf("%s 100GBASE-DR (clause 140), CAUI-4 (no FEC)\n", pfx);
break;
case SFF8636_ETHERNET_100G_FR_NOFEC:
printf("%s 100G-FR or 100GBASE-FR1 (clause 140), CAUI-4 (no FEC)\n", pfx);
break;
case SFF8636_ETHERNET_100G_LR_NOFEC:
printf("%s 100G-LR or 100GBASE-LR1 (clause 140), CAUI-4 (no FEC)\n", pfx);
break;
case SFF8636_ETHERNET_200G_ACC1:
printf("%s Active Copper Cable with 50GAUI, 100GAUI-2 or 200GAUI-4 C2M. Providing a worst BER of 10-6 or below\n",
pfx);
break;
case SFF8636_ETHERNET_200G_AOC1:
printf("%s Active Optical Cable with 50GAUI, 100GAUI-2 or 200GAUI-4 C2M. Providing a worst BER of 10-6 or below\n",
pfx);
break;
case SFF8636_ETHERNET_200G_ACC2:
printf("%s Active Copper Cable with 50GAUI, 100GAUI-2 or 200GAUI-4 C2M. Providing a worst BER of 2.6x10-4 for ACC, 10-5 for AUI, or below\n",
pfx);
break;
case SFF8636_ETHERNET_200G_A0C2:
printf("%s Active Optical Cable with 50GAUI, 100GAUI-2 or 200GAUI-4 C2M. Providing a worst BER of 2.6x10-4 for ACC, 10-5 for AUI, or below\n",
pfx);
break;
case SFF8636_ETHERNET_200G_CR4:
printf("%s 50GBASE-CR, 100GBASE-CR2, or 200GBASE-CR4\n", pfx);
break;
case SFF8636_ETHERNET_200G_SR4:
printf("%s 50GBASE-SR, 100GBASE-SR2, or 200GBASE-SR4\n", pfx);
break;
case SFF8636_ETHERNET_200G_DR4:
printf("%s 50GBASE-FR or 200GBASE-DR4\n", pfx);
break;
case SFF8636_ETHERNET_200G_FR4:
printf("%s 200GBASE-FR4\n", pfx);
break;
case SFF8636_ETHERNET_200G_PSM4:
printf("%s 200G 1550 nm PSM4\n", pfx);
break;
case SFF8636_ETHERNET_50G_LR:
printf("%s 50GBASE-LR\n", pfx);
break;
case SFF8636_ETHERNET_200G_LR4:
printf("%s 200GBASE-LR4\n", pfx);
break;
case SFF8636_ETHERNET_64G_EA:
printf("%s 64GFC EA\n", pfx);
break;
case SFF8636_ETHERNET_64G_SW:
printf("%s 64GFC SW\n", pfx);
break;
case SFF8636_ETHERNET_64G_LW:
printf("%s 64GFC LW\n", pfx);
break;
case SFF8636_ETHERNET_128FC_EA:
printf("%s 128GFC EA\n", pfx);
break;
case SFF8636_ETHERNET_128FC_SW:
printf("%s 128GFC SW\n", pfx);
break;
case SFF8636_ETHERNET_128FC_LW:
printf("%s 128GFC LW\n", pfx);
break;
default:
printf("%s (reserved or unknown)\n", pfx);
break;
}
}
/* SONET Compliance Codes */
if (map->page_00h[SFF8636_SONET_COMP_OFFSET] &
(SFF8636_SONET_40G_OTN))
printf("%s 40G OTN (OTU3B/OTU3C)\n", pfx);
if (map->page_00h[SFF8636_SONET_COMP_OFFSET] & (SFF8636_SONET_OC48_LR))
printf("%s SONET: OC-48, long reach\n", pfx);
if (map->page_00h[SFF8636_SONET_COMP_OFFSET] & (SFF8636_SONET_OC48_IR))
printf("%s SONET: OC-48, intermediate reach\n", pfx);
if (map->page_00h[SFF8636_SONET_COMP_OFFSET] & (SFF8636_SONET_OC48_SR))
printf("%s SONET: OC-48, short reach\n", pfx);
/* SAS/SATA Compliance Codes */
if (map->page_00h[SFF8636_SAS_COMP_OFFSET] & (SFF8636_SAS_6G))
printf("%s SAS 6.0G\n", pfx);
if (map->page_00h[SFF8636_SAS_COMP_OFFSET] & (SFF8636_SAS_3G))
printf("%s SAS 3.0G\n", pfx);
/* Ethernet Compliance Codes */
if (map->page_00h[SFF8636_GIGE_COMP_OFFSET] & SFF8636_GIGE_1000_BASE_T)
printf("%s Ethernet: 1000BASE-T\n", pfx);
if (map->page_00h[SFF8636_GIGE_COMP_OFFSET] & SFF8636_GIGE_1000_BASE_CX)
printf("%s Ethernet: 1000BASE-CX\n", pfx);
if (map->page_00h[SFF8636_GIGE_COMP_OFFSET] & SFF8636_GIGE_1000_BASE_LX)
printf("%s Ethernet: 1000BASE-LX\n", pfx);
if (map->page_00h[SFF8636_GIGE_COMP_OFFSET] & SFF8636_GIGE_1000_BASE_SX)
printf("%s Ethernet: 1000BASE-SX\n", pfx);
/* Fibre Channel link length */
if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_LEN_VERY_LONG)
printf("%s FC: very long distance (V)\n", pfx);
if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_LEN_SHORT)
printf("%s FC: short distance (S)\n", pfx);
if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_LEN_INT)
printf("%s FC: intermediate distance (I)\n", pfx);
if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_LEN_LONG)
printf("%s FC: long distance (L)\n", pfx);
if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_LEN_MED)
printf("%s FC: medium distance (M)\n", pfx);
/* Fibre Channel transmitter technology */
if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_TECH_LONG_LC)
printf("%s FC: Longwave laser (LC)\n", pfx);
if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_TECH_ELEC_INTER)
printf("%s FC: Electrical inter-enclosure (EL)\n", pfx);
if (map->page_00h[SFF8636_FC_TECH_OFFSET] & SFF8636_FC_TECH_ELEC_INTRA)
printf("%s FC: Electrical intra-enclosure (EL)\n", pfx);
if (map->page_00h[SFF8636_FC_TECH_OFFSET] &
SFF8636_FC_TECH_SHORT_WO_OFC)
printf("%s FC: Shortwave laser w/o OFC (SN)\n", pfx);
if (map->page_00h[SFF8636_FC_TECH_OFFSET] & SFF8636_FC_TECH_SHORT_W_OFC)
printf("%s FC: Shortwave laser with OFC (SL)\n", pfx);
if (map->page_00h[SFF8636_FC_TECH_OFFSET] & SFF8636_FC_TECH_LONG_LL)
printf("%s FC: Longwave laser (LL)\n", pfx);
/* Fibre Channel transmission media */
if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] &
SFF8636_FC_TRANS_MEDIA_TW)
printf("%s FC: Twin Axial Pair (TW)\n", pfx);
if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] &
SFF8636_FC_TRANS_MEDIA_TP)
printf("%s FC: Twisted Pair (TP)\n", pfx);
if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] &
SFF8636_FC_TRANS_MEDIA_MI)
printf("%s FC: Miniature Coax (MI)\n", pfx);
if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] &
SFF8636_FC_TRANS_MEDIA_TV)
printf("%s FC: Video Coax (TV)\n", pfx);
if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] &
SFF8636_FC_TRANS_MEDIA_M6)
printf("%s FC: Multimode, 62.5m (M6)\n", pfx);
if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] &
SFF8636_FC_TRANS_MEDIA_M5)
printf("%s FC: Multimode, 50m (M5)\n", pfx);
if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] &
SFF8636_FC_TRANS_MEDIA_OM3)
printf("%s FC: Multimode, 50um (OM3)\n", pfx);
if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] &
SFF8636_FC_TRANS_MEDIA_SM)
printf("%s FC: Single Mode (SM)\n", pfx);
/* Fibre Channel speed */
if (map->page_00h[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_1200_MBPS)
printf("%s FC: 1200 MBytes/sec\n", pfx);
if (map->page_00h[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_800_MBPS)
printf("%s FC: 800 MBytes/sec\n", pfx);
if (map->page_00h[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_1600_MBPS)
printf("%s FC: 1600 MBytes/sec\n", pfx);
if (map->page_00h[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_400_MBPS)
printf("%s FC: 400 MBytes/sec\n", pfx);
if (map->page_00h[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_200_MBPS)
printf("%s FC: 200 MBytes/sec\n", pfx);
if (map->page_00h[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_100_MBPS)
printf("%s FC: 100 MBytes/sec\n", pfx);
}
static void sff8636_show_encoding(const struct sff8636_memory_map *map)
{
sff8024_show_encoding(map->page_00h, SFF8636_ENCODING_OFFSET,
ETH_MODULE_SFF_8636);
}
static void sff8636_show_rate_identifier(const struct sff8636_memory_map *map)
{
/* TODO: Need to fix rate select logic */
printf("\t%-41s : 0x%02x\n", "Rate identifier",
map->page_00h[SFF8636_EXT_RS_OFFSET]);
}
static void
sff8636_show_wavelength_or_copper_compliance(const struct sff8636_memory_map *map)
{
printf("\t%-41s : 0x%02x", "Transmitter technology",
map->page_00h[SFF8636_DEVICE_TECH_OFFSET] &
SFF8636_TRANS_TECH_MASK);
switch (map->page_00h[SFF8636_DEVICE_TECH_OFFSET] &
SFF8636_TRANS_TECH_MASK) {
case SFF8636_TRANS_850_VCSEL:
printf(" (850 nm VCSEL)\n");
break;
case SFF8636_TRANS_1310_VCSEL:
printf(" (1310 nm VCSEL)\n");
break;
case SFF8636_TRANS_1550_VCSEL:
printf(" (1550 nm VCSEL)\n");
break;
case SFF8636_TRANS_1310_FP:
printf(" (1310 nm FP)\n");
break;
case SFF8636_TRANS_1310_DFB:
printf(" (1310 nm DFB)\n");
break;
case SFF8636_TRANS_1550_DFB:
printf(" (1550 nm DFB)\n");
break;
case SFF8636_TRANS_1310_EML:
printf(" (1310 nm EML)\n");
break;
case SFF8636_TRANS_1550_EML:
printf(" (1550 nm EML)\n");
break;
case SFF8636_TRANS_OTHERS:
printf(" (Others/Undefined)\n");
break;
case SFF8636_TRANS_1490_DFB:
printf(" (1490 nm DFB)\n");
break;
case SFF8636_TRANS_COPPER_PAS_UNEQUAL:
printf(" (Copper cable unequalized)\n");
break;
case SFF8636_TRANS_COPPER_PAS_EQUAL:
printf(" (Copper cable passive equalized)\n");
break;
case SFF8636_TRANS_COPPER_LNR_FAR_EQUAL:
printf(" (Copper cable, near and far end limiting active equalizers)\n");
break;
case SFF8636_TRANS_COPPER_FAR_EQUAL:
printf(" (Copper cable, far end limiting active equalizers)\n");
break;
case SFF8636_TRANS_COPPER_NEAR_EQUAL:
printf(" (Copper cable, near end limiting active equalizers)\n");
break;
case SFF8636_TRANS_COPPER_LNR_EQUAL:
printf(" (Copper cable, linear active equalizers)\n");
break;
}
if ((map->page_00h[SFF8636_DEVICE_TECH_OFFSET] &
SFF8636_TRANS_TECH_MASK) >= SFF8636_TRANS_COPPER_PAS_UNEQUAL) {
printf("\t%-41s : %udb\n", "Attenuation at 2.5GHz",
map->page_00h[SFF8636_WAVELEN_HIGH_BYTE_OFFSET]);
printf("\t%-41s : %udb\n", "Attenuation at 5.0GHz",
map->page_00h[SFF8636_WAVELEN_LOW_BYTE_OFFSET]);
printf("\t%-41s : %udb\n", "Attenuation at 7.0GHz",
map->page_00h[SFF8636_WAVE_TOL_HIGH_BYTE_OFFSET]);
printf("\t%-41s : %udb\n", "Attenuation at 12.9GHz",
map->page_00h[SFF8636_WAVE_TOL_LOW_BYTE_OFFSET]);
} else {
printf("\t%-41s : %.3lfnm\n", "Laser wavelength",
(((map->page_00h[SFF8636_WAVELEN_HIGH_BYTE_OFFSET] << 8) |
map->page_00h[SFF8636_WAVELEN_LOW_BYTE_OFFSET]) * 0.05));
printf("\t%-41s : %.3lfnm\n", "Laser wavelength tolerance",
(((map->page_00h[SFF8636_WAVE_TOL_HIGH_BYTE_OFFSET] << 8) |
map->page_00h[SFF8636_WAVE_TOL_LOW_BYTE_OFFSET]) * 0.005));
}
}
/*
* 2-byte internal temperature conversions:
* First byte is a signed 8-bit integer, which is the temp decimal part
* Second byte are 1/256th of degree, which are added to the dec part.
*/
#define SFF8636_OFFSET_TO_TEMP(offset) ((__s16)OFFSET_TO_U16(offset))
static void sff8636_dom_parse(const struct sff8636_memory_map *map,
struct sff_diags *sd)
{
const __u8 *id = map->lower_memory;
int i = 0;
/* Monitoring Thresholds for Alarms and Warnings */
sd->sfp_voltage[MCURR] = OFFSET_TO_U16_PTR(id, SFF8636_VCC_CURR);
sd->sfp_temp[MCURR] = SFF8636_OFFSET_TO_TEMP(SFF8636_TEMP_CURR);
if (!map->page_03h)
goto out;
sd->sfp_voltage[HALRM] = OFFSET_TO_U16_PTR(map->page_03h,
SFF8636_VCC_HALRM);
sd->sfp_voltage[LALRM] = OFFSET_TO_U16_PTR(map->page_03h,
SFF8636_VCC_LALRM);
sd->sfp_voltage[HWARN] = OFFSET_TO_U16_PTR(map->page_03h,
SFF8636_VCC_HWARN);
sd->sfp_voltage[LWARN] = OFFSET_TO_U16_PTR(map->page_03h,
SFF8636_VCC_LWARN);
sd->sfp_temp[HALRM] = (__s16)OFFSET_TO_U16_PTR(map->page_03h,
SFF8636_TEMP_HALRM);
sd->sfp_temp[LALRM] = (__s16)OFFSET_TO_U16_PTR(map->page_03h,
SFF8636_TEMP_LALRM);
sd->sfp_temp[HWARN] = (__s16)OFFSET_TO_U16_PTR(map->page_03h,
SFF8636_TEMP_HWARN);
sd->sfp_temp[LWARN] = (__s16)OFFSET_TO_U16_PTR(map->page_03h,
SFF8636_TEMP_LWARN);
sd->bias_cur[HALRM] = OFFSET_TO_U16_PTR(map->page_03h,
SFF8636_TX_BIAS_HALRM);
sd->bias_cur[LALRM] = OFFSET_TO_U16_PTR(map->page_03h,
SFF8636_TX_BIAS_LALRM);
sd->bias_cur[HWARN] = OFFSET_TO_U16_PTR(map->page_03h,
SFF8636_TX_BIAS_HWARN);
sd->bias_cur[LWARN] = OFFSET_TO_U16_PTR(map->page_03h,
SFF8636_TX_BIAS_LWARN);
sd->tx_power[HALRM] = OFFSET_TO_U16_PTR(map->page_03h,
SFF8636_TX_PWR_HALRM);
sd->tx_power[LALRM] = OFFSET_TO_U16_PTR(map->page_03h,
SFF8636_TX_PWR_LALRM);
sd->tx_power[HWARN] = OFFSET_TO_U16_PTR(map->page_03h,
SFF8636_TX_PWR_HWARN);
sd->tx_power[LWARN] = OFFSET_TO_U16_PTR(map->page_03h,
SFF8636_TX_PWR_LWARN);
sd->rx_power[HALRM] = OFFSET_TO_U16_PTR(map->page_03h,
SFF8636_RX_PWR_HALRM);
sd->rx_power[LALRM] = OFFSET_TO_U16_PTR(map->page_03h,
SFF8636_RX_PWR_LALRM);
sd->rx_power[HWARN] = OFFSET_TO_U16_PTR(map->page_03h,
SFF8636_RX_PWR_HWARN);
sd->rx_power[LWARN] = OFFSET_TO_U16_PTR(map->page_03h,
SFF8636_RX_PWR_LWARN);
out:
/* Channel Specific Data */
for (i = 0; i < SFF8636_MAX_CHANNEL_NUM; i++) {
u8 rx_power_offset, tx_bias_offset;
u8 tx_power_offset;
switch (i) {
case 0:
rx_power_offset = SFF8636_RX_PWR_1_OFFSET;
tx_power_offset = SFF8636_TX_PWR_1_OFFSET;
tx_bias_offset = SFF8636_TX_BIAS_1_OFFSET;
break;
case 1:
rx_power_offset = SFF8636_RX_PWR_2_OFFSET;
tx_power_offset = SFF8636_TX_PWR_2_OFFSET;
tx_bias_offset = SFF8636_TX_BIAS_2_OFFSET;
break;
case 2:
rx_power_offset = SFF8636_RX_PWR_3_OFFSET;
tx_power_offset = SFF8636_TX_PWR_3_OFFSET;
tx_bias_offset = SFF8636_TX_BIAS_3_OFFSET;
break;
case 3:
rx_power_offset = SFF8636_RX_PWR_4_OFFSET;
tx_power_offset = SFF8636_TX_PWR_4_OFFSET;
tx_bias_offset = SFF8636_TX_BIAS_4_OFFSET;
break;
}
sd->scd[i].bias_cur = OFFSET_TO_U16(tx_bias_offset);
sd->scd[i].rx_power = OFFSET_TO_U16(rx_power_offset);
sd->scd[i].tx_power = OFFSET_TO_U16(tx_power_offset);
}
}
static void sff8636_show_dom(const struct sff8636_memory_map *map)
{
struct sff_diags sd = {0};
char *rx_power_string = NULL;
char power_string[MAX_DESC_SIZE];
int i;
/*
* There is no clear identifier to signify the existence of
* optical diagnostics similar to SFF-8472. So checking existence
* of page 3, will provide the gurantee for existence of alarms
* and thresholds
* If pagging support exists, then supports_alarms is marked as 1
*/
if (map->page_03h)
sd.supports_alarms = 1;
sd.rx_power_type = map->page_00h[SFF8636_DIAG_TYPE_OFFSET] &
SFF8636_RX_PWR_TYPE_MASK;
sd.tx_power_type = map->page_00h[SFF8636_DIAG_TYPE_OFFSET] &
SFF8636_RX_PWR_TYPE_MASK;
sff8636_dom_parse(map, &sd);
PRINT_TEMP("Module temperature", sd.sfp_temp[MCURR]);
PRINT_VCC("Module voltage", sd.sfp_voltage[MCURR]);
/*
* SFF-8636/8436 spec is not clear whether RX power/ TX bias
* current fields are supported or not. A valid temperature
* reading is used as existence for TX/RX power.
*/
if ((sd.sfp_temp[MCURR] == 0x0) ||
(sd.sfp_temp[MCURR] == (__s16)0xFFFF))
return;
printf("\t%-41s : %s\n", "Alarm/warning flags implemented",
(sd.supports_alarms ? "Yes" : "No"));
for (i = 0; i < SFF8636_MAX_CHANNEL_NUM; i++) {
snprintf(power_string, MAX_DESC_SIZE, "%s (Channel %d)",
"Laser tx bias current", i+1);
PRINT_BIAS(power_string, sd.scd[i].bias_cur);
}
for (i = 0; i < SFF8636_MAX_CHANNEL_NUM; i++) {
snprintf(power_string, MAX_DESC_SIZE, "%s (Channel %d)",
"Transmit avg optical power", i+1);
PRINT_xX_PWR(power_string, sd.scd[i].tx_power);
}
if (!sd.rx_power_type)
rx_power_string = "Receiver signal OMA";
else
rx_power_string = "Rcvr signal avg optical power";
for (i = 0; i < SFF8636_MAX_CHANNEL_NUM; i++) {
snprintf(power_string, MAX_DESC_SIZE, "%s(Channel %d)",
rx_power_string, i+1);
PRINT_xX_PWR(power_string, sd.scd[i].rx_power);
}
if (sd.supports_alarms) {
for (i = 0; sff8636_aw_flags[i].str; ++i) {
printf("\t%-41s : %s\n", sff8636_aw_flags[i].str,
map->lower_memory[sff8636_aw_flags[i].offset]
& sff8636_aw_flags[i].value ? "On" : "Off");
}
sff_show_thresholds(sd);
}
}
static void sff8636_show_signals(const struct sff8636_memory_map *map)
{
unsigned int v;
/* There appears to be no Rx LOS support bit, use Tx for both */
if (map->page_00h[SFF8636_OPTION_4_OFFSET] & SFF8636_O4_TX_LOS) {
v = map->lower_memory[SFF8636_LOS_AW_OFFSET] & 0xf;
sff_show_lane_status("Rx loss of signal", 4, "Yes", "No", v);
v = map->lower_memory[SFF8636_LOS_AW_OFFSET] >> 4;
sff_show_lane_status("Tx loss of signal", 4, "Yes", "No", v);
}
v = map->lower_memory[SFF8636_LOL_AW_OFFSET] & 0xf;
if (map->page_00h[SFF8636_OPTION_3_OFFSET] & SFF8636_O3_RX_LOL)
sff_show_lane_status("Rx loss of lock", 4, "Yes", "No", v);
v = map->lower_memory[SFF8636_LOL_AW_OFFSET] >> 4;
if (map->page_00h[SFF8636_OPTION_3_OFFSET] & SFF8636_O3_TX_LOL)
sff_show_lane_status("Tx loss of lock", 4, "Yes", "No", v);
v = map->lower_memory[SFF8636_FAULT_AW_OFFSET] & 0xf;
if (map->page_00h[SFF8636_OPTION_4_OFFSET] & SFF8636_O4_TX_FAULT)
sff_show_lane_status("Tx fault", 4, "Yes", "No", v);
v = map->lower_memory[SFF8636_FAULT_AW_OFFSET] >> 4;
if (map->page_00h[SFF8636_OPTION_2_OFFSET] & SFF8636_O2_TX_EQ_AUTO)
sff_show_lane_status("Tx adaptive eq fault", 4, "Yes", "No", v);
}
static void sff8636_show_page_zero(const struct sff8636_memory_map *map)
{
sff8636_show_ext_identifier(map);
sff8636_show_connector(map);
sff8636_show_transceiver(map);
sff8636_show_encoding(map);
sff_show_value_with_unit(map->page_00h, SFF8636_BR_NOMINAL_OFFSET,
"BR, Nominal", 100, "Mbps");
sff8636_show_rate_identifier(map);
sff_show_value_with_unit(map->page_00h, SFF8636_SM_LEN_OFFSET,
"Length (SMF,km)", 1, "km");
sff_show_value_with_unit(map->page_00h, SFF8636_OM3_LEN_OFFSET,
"Length (OM3 50um)", 2, "m");
sff_show_value_with_unit(map->page_00h, SFF8636_OM2_LEN_OFFSET,
"Length (OM2 50um)", 1, "m");
sff_show_value_with_unit(map->page_00h, SFF8636_OM1_LEN_OFFSET,
"Length (OM1 62.5um)", 1, "m");
sff_show_value_with_unit(map->page_00h, SFF8636_CBL_LEN_OFFSET,
"Length (Copper or Active cable)", 1, "m");
sff8636_show_wavelength_or_copper_compliance(map);
sff_show_ascii(map->page_00h, SFF8636_VENDOR_NAME_START_OFFSET,
SFF8636_VENDOR_NAME_END_OFFSET, "Vendor name");
sff8024_show_oui(map->page_00h, SFF8636_VENDOR_OUI_OFFSET);
sff_show_ascii(map->page_00h, SFF8636_VENDOR_PN_START_OFFSET,
SFF8636_VENDOR_PN_END_OFFSET, "Vendor PN");
sff_show_ascii(map->page_00h, SFF8636_VENDOR_REV_START_OFFSET,
SFF8636_VENDOR_REV_END_OFFSET, "Vendor rev");
sff_show_ascii(map->page_00h, SFF8636_VENDOR_SN_START_OFFSET,
SFF8636_VENDOR_SN_END_OFFSET, "Vendor SN");
sff_show_ascii(map->page_00h, SFF8636_DATE_YEAR_OFFSET,
SFF8636_DATE_VENDOR_LOT_OFFSET + 1, "Date code");
sff_show_revision_compliance(map->lower_memory,
SFF8636_REV_COMPLIANCE_OFFSET);
sff8636_show_signals(map);
}
static void sff8636_show_all_common(const struct sff8636_memory_map *map)
{
sff8636_show_identifier(map);
switch (map->lower_memory[SFF8636_ID_OFFSET]) {
case SFF8024_ID_QSFP:
case SFF8024_ID_QSFP_PLUS:
case SFF8024_ID_QSFP28:
sff8636_show_page_zero(map);
sff8636_show_dom(map);
break;
}
}
static void sff8636_memory_map_init_buf(struct sff8636_memory_map *map,
const __u8 *id, __u32 eeprom_len)
{
/* Lower Memory and Page 00h are always present.
*
* Offset into Upper Memory is between page size and twice the page
* size. Therefore, set the base address of each page to base address
* plus page size multiplied by the page number.
*/
map->lower_memory = id;
map->page_00h = id;
/* Page 03h is only present when the module memory model is paged and
* not flat and when we got a big enough buffer from the kernel.
*/
if (map->lower_memory[SFF8636_STATUS_2_OFFSET] &
SFF8636_STATUS_PAGE_3_PRESENT ||
eeprom_len != ETH_MODULE_SFF_8636_MAX_LEN)
return;
map->page_03h = id + 3 * SFF8636_PAGE_SIZE;
}
void sff8636_show_all_ioctl(const __u8 *id, __u32 eeprom_len)
{
struct sff8636_memory_map map = {};
if (id[SFF8636_ID_OFFSET] == SFF8024_ID_QSFP_DD ||
id[SFF8636_ID_OFFSET] == SFF8024_ID_OSFP ||
id[SFF8636_ID_OFFSET] == SFF8024_ID_DSFP) {
cmis_show_all_ioctl(id);
return;
}
sff8636_memory_map_init_buf(&map, id, eeprom_len);
sff8636_show_all_common(&map);
}
static void sff8636_request_init(struct ethtool_module_eeprom *request, u8 page,
u32 offset)
{
request->offset = offset;
request->length = SFF8636_PAGE_SIZE;
request->page = page;
request->bank = 0;
request->i2c_address = SFF8636_I2C_ADDRESS;
request->data = NULL;
}