-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathlocalness_report.py
executable file
·191 lines (160 loc) · 5.74 KB
/
localness_report.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#! /usr/bin/env python
"""
Calculate localness stats for each place, and print results to stdout.
Depends only on the "outputv5_*" files from add_localness.py
Does not depend on database access.
NOTE: this assumes 1000m rasters. Would need to be extended for other scales.
"""
folder = "userstats/"
infile_template = [folder + "outputv5_", "_raster_1000m.tsv"]
#import MapGardening
#from MapGardening import UserStats
#import time
import optparse
import csv
import math
usage = "usage: %prog [options]"
p = optparse.OptionParser(usage)
p.add_option('--place', '-p',
default="all"
)
options, arguments = p.parse_args()
if options.place == "all":
#places = MapGardening.get_all_places()
places = [
"amsterdam",
"auckland",
"barcelona",
"bayarea",
"berlin",
"boston",
"buenosaires",
"cairo",
"chicago",
"crimea",
"cyprus",
"douala",
"haiti",
"istanbul",
"jakarta",
"jerusalem",
"kathmandu",
"lasvegas",
"london",
"losangeles",
"manchester",
"mexicocity",
"miami",
"minsk",
"montevideo",
"montreal",
"moscow",
"mumbai",
"nairobi",
"newyork",
"quebec",
"paris",
"rio",
"santiago",
"seattle",
"seoul",
"sydney",
"tirana",
"tokyo",
"toronto",
"vancouver",
"yaounde"
]
else:
placename = options.place
#place = MapGardening.get_place(placename)
#places = {placename: place}
places = [placename]
header = "placename\tlocal users\tnonlocal users\tpercent local\tedits by locals\tedits by nonlocals\tpercent edits by locals\tpercent blankspots by locals\tpercent v1 by locals\tpercent v2 by locals"
bins = range(0,100,10)
for category in bins:
header += '\tusers'
header += str(category)
header += '\tedits'
header += str(category)
print header
for placename in places:
input_filename = infile_template[0] + placename + infile_template[1]
localusers = 0;
localedits = 0;
localv1edits = 0;
localblankedits = 0;
localv2edits = 0;
nonlocalusers = 0;
nonlocaledits = 0;
nonlocalv1edits = 0;
nonlocalblankedits = 0;
nonlocalv2edits = 0;
data = {}
for category in bins:
data[category] = {}
data[category]['users'] = 0
data[category]['edits'] = 0
data[category]['v1edits'] = 0
data[category]['blankedits'] = 0
allusers = 0
alledits = 0
fields_of_interest = ["count", "blankcount", "v1count", "firstedit", "firsteditv1", "firsteditblank", "days_active", "mean_date", "mean_date_weighted"]
head = None
doc = csv.reader(open(input_filename), dialect='excel', delimiter='\t')
for row in doc:
if not head:
head = row
else:
if row[head.index('countlocalness')] == 'NULL':
# don't count it either way
continue
localness = float(row[head.index('countlocalness')])
allusers += 1
alledits += int(row[head.index('count')])
if localness >= 0.5:
# call them a local
localusers += 1
localedits += int(row[head.index('count')])
localv1edits += int(row[head.index('v1count')])
localblankedits += int(row[head.index('blankcount')])
localv2edits = localedits - localv1edits
else:
# call them a nonlocal
nonlocalusers += 1
nonlocaledits += int(row[head.index('count')])
nonlocalv1edits += int(row[head.index('v1count')])
nonlocalblankedits += int(row[head.index('blankcount')])
nonlocalv2edits = nonlocaledits - nonlocalv1edits
# figure out which category to stick these values in.
# The bins go 0 <= x < 10 is category 0, 10 <= x < 20 is category 10, etc.
# Special case: 100 is category 90
category = int(10*math.floor(10*localness))
if category == 100:
category = 90
if not category in data:
print "error, couldn't find", category, "in", bins
data[category]['users'] += 1
data[category]['edits'] += int(row[head.index('count')])
data[category]['v1edits'] += int(row[head.index('v1count')])
data[category]['blankedits'] += int(row[head.index('blankcount')])
pctlocaledits = str(round(localedits/float(localedits+nonlocaledits),4))
if localblankedits == 0 and nonlocalblankedits == 0:
pctlocalblankedits = "0.0"
else:
pctlocalblankedits = str(round(localblankedits/float(localblankedits+nonlocalblankedits),4))
if localv1edits == 0 and nonlocalv1edits == 0:
pctlocalv1edits = "0.0"
else:
pctlocalv1edits = str(round(localv1edits/float(localv1edits+nonlocalv1edits),4))
if localv2edits == 0 and nonlocalv2edits == 0:
pctlocalv2edits = "0.0"
else:
pctlocalv2edits = str(round(localv2edits/float(localv2edits+nonlocalv2edits),4))
output = '\t'.join([placename,str(localusers),str(nonlocalusers),str(round(localusers/float(localusers+nonlocalusers),4)),str(localedits),str(nonlocaledits),pctlocaledits,pctlocalblankedits,pctlocalv1edits,pctlocalv2edits])
for category in bins:
output += '\t'
output += str(round(float(data[category]['users'])/float(allusers),4))
output += '\t'
output += str(round(float(data[category]['edits'])/float(alledits),4))
print output