-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwords.v
1325 lines (1089 loc) · 52.8 KB
/
words.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq.
From mathcomp Require Import choice tuple fintype (* finfun finset *).
Require Import extra_seq.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
(*-- 3 Letter alphabet --*)
(* Type letter is the three-letter alphabet of the words we want to count.
The names of the letters reminds how they will be interpreted as
(the direction of) small letter moves on a grid.*)
Inductive letter : Type := N | W | Se.
(* Starting boilerplate code: *)
(* Type letter has a canonical decidable equality test, is a countable (finite)
type, thus equipped with a choice function. We obtain these properties, and
the associated generic notations and theory by expliciting a bijection
bewteen type letter and the finite type 'I_3 of natural numbers {0,1,2}:
- North (N) is coded by 0
- West (W) is coded by 1
- SouthEast (SW) is coded by 2
*)
Definition ord_of_letter (l : letter) : 'I_3 :=
match l with
|N => @Ordinal 3 0 (refl_equal true)
|W => @Ordinal 3 1 (refl_equal true)
|Se => @Ordinal 3 2 (refl_equal true)
end.
Definition letter_of_ord (o : 'I_3) : letter :=
match nat_of_ord o with
|0 => N
|1 => W
|_ => Se
end.
Lemma ord_of_letterK : cancel ord_of_letter letter_of_ord.
Proof. by case. Qed.
(* Installing (canonical) structures of equality, countable, choice, finite type
type letter, deduced from the bijection. *)
Definition letter_eqMixin := CanEqMixin ord_of_letterK.
Canonical letter_eqType := EqType letter letter_eqMixin.
Definition letter_choiceMixin := CanChoiceMixin ord_of_letterK.
Canonical letter_choiceType := ChoiceType letter letter_choiceMixin.
Definition letter_countMixin := CanCountMixin ord_of_letterK.
Canonical letter_countType := CountType letter letter_countMixin.
Definition letter_finMixin := CanFinMixin ord_of_letterK.
Canonical letter_finType := FinType letter letter_finMixin.
(* End of boilerplate code *)
(* Boolean predicates characterizing each nature of letter *)
(* (#N w) is the number of occurrences of N in word w, etc. *)
Notation "#N" := (count_mem N).
Notation "#W" := (count_mem W).
Notation "#Se" := (count_mem Se).
(* Sanity check, that we do not use in the sequel. *)
Lemma count_letters_size (w : seq letter) : (#N w) + (#W w) + (#Se w) = size w.
Proof.
elim: w => // [[]] l /= <-. rewrite !add0n.
- by rewrite -[RHS]add1n !addnA.
- by rewrite [_ + (1 + _)]addnCA -!addnA add1n.
- by rewrite [_ + (1 + _)]addnCA add1n.
Qed.
(*-- Two families of words --*)
(* By definition, a word w is a pre_Motzkin word on alphabet 'letter' iff:
- for any prefix p of w, #Se p <= #N p
By definition, a word w is a Motzkin word on alphabet 'letter' iff:
- it is a pre_Motzkin word and moreover:
- #N w = #Se w = #W w
*)
(* In order to define pre_Motzkin as a boolean predicate on words,
we use a bounded quantification, over prefixes of length smaller
that the size of the list. *)
Definition pre_Motzkin (w : seq letter) : bool :=
[forall n : 'I_(size w).+1, #Se (take n w) <= #N (take n w)].
(* But this quantification is in fact a technical device, and we
prove the equivalence with the usual quantification*)
Lemma pre_MotzkinP w :
reflect (forall n : nat, #Se (take n w) <= #N (take n w)) (w \in pre_Motzkin).
Proof.
apply: (iffP forallP) => [/(_ (Ordinal _)) h| ?] n //.
case: (ltnP n (size w).+1) => [| /ltnW/take_oversize->]; first exact: h.
by rewrite -(take_size w); apply: h.
Qed.
(* The empty word is a pre_Motzkin *)
Lemma pre_Motzkin_nil : [::] \in pre_Motzkin.
Proof. by apply/pre_MotzkinP=> n. Qed.
(* A prefix of a pre_Motzkin is itself a pre_Motzkin *)
Lemma pre_Motzkin_rcons a w : rcons w a \in pre_Motzkin -> w \in pre_Motzkin.
Proof.
move/pre_MotzkinP=> pAla; apply/forallP=> [] [n ?].
by move: (pAla n); rewrite -cats1 takel_cat.
Qed.
Arguments pre_Motzkin_rcons a {w} _.
Lemma pre_Motzkin_rcons_Se w : rcons w Se \in pre_Motzkin -> #Se w < #N w.
Proof.
move/pre_MotzkinP/(_ (size w).+1); rewrite -(size_rcons w Se) take_size.
by rewrite !count_mem_rcons eqxx.
Qed.
Lemma pre_Motzkin_take n w : w \in pre_Motzkin -> take n w \in pre_Motzkin.
Proof. exact: (rcons_2_taken pre_Motzkin_nil pre_Motzkin_rcons). Qed.
Definition Motzkin (w : seq letter) : bool :=
[&& (pre_Motzkin w), #N w == #Se w & #Se w == #W w].
Lemma MotzkinP w :
reflect [/\ w \in pre_Motzkin, #N w = #Se w & #Se w = #W w] (w \in Motzkin).
Proof. by apply: (iffP and3P); case=> pAw /eqP-> /eqP->. Qed.
Lemma pre_Motzkin_Motzkin l : l \in Motzkin -> l \in pre_Motzkin.
Proof. by case/and3P. Qed.
(* By definition, a word w on alphabet 'letter' is a Yamanouchi word if
any of its prefixes has less occurrences of W than occurrences of Se,
and less occurrences of Se than occurrences of N.
Such a word is a balanced Yamanouchi word if it is a Yamanouchi word
w such that
- #Se w - #W w = #N w - #Se w
*)
(* In order to define Yamanouchi as a boolean predicate on words,
we use a bounded quantification, over prefixes of length smaller
that the size of the list. *)
Definition Yamanouchi (w : seq letter) : bool :=
[forall n : 'I_(size w).+1, #W (take n w) <= #Se (take n w) <= #N (take n w)].
(* But this quantification is in fact a technical device, and we
prove the equivalence with the usual quantification*)
Lemma YamanouchiP w :
reflect (forall n : nat, #W (take n w) <= #Se (take n w) <= #N (take n w))
(w \in Yamanouchi).
Proof.
apply: (iffP forallP) => [/(_ (Ordinal _)) h| ?] n //.
case: (ltnP n (size w).+1) => [| /ltnW/take_oversize->]; first exact: h.
by rewrite -(take_size w); apply: h.
Qed.
Lemma Yamanouchi_nil : [::] \in Yamanouchi.
Proof. by apply/YamanouchiP=> n. Qed.
Lemma Yamanouchi_rcons l w : rcons w l \in Yamanouchi -> Yamanouchi w.
Proof.
move/YamanouchiP=> Yam_wl; apply/forallP=> [] [n hn] /=.
by move: (Yam_wl n); rewrite -cats1 takel_cat.
Qed.
Arguments Yamanouchi_rcons l {w} _.
Lemma Yamanouchi_take n w : w \in Yamanouchi -> take n w \in Yamanouchi.
Proof. exact: (rcons_2_taken Yamanouchi_nil Yamanouchi_rcons). Qed.
Definition balanced_Yam (w : seq letter) : bool :=
[&& (w \in Yamanouchi) & #Se w - #W w == #N w - #Se w].
Lemma balanced_YamP (w : seq letter) :
reflect (w \in Yamanouchi /\ #Se w - #W w = #N w - #Se w) (w \in balanced_Yam).
Proof.
Proof. by apply: (iffP andP); case=> pAw /eqP->. Qed.
Lemma Yam_balanced_Yam w : w \in balanced_Yam -> w \in Yamanouchi.
Proof. by case/andP. Qed.
(* (Motzkin_tuple n) (resp. (balanced_Yam n)) is the type of Motzkin
(resp. balanced Yamanouchi) words on alphabet letter. *)
Definition Motzkin_tuple n : pred (n.-tuple letter) :=
[pred w : n.-tuple letter | Motzkin w].
Arguments Motzkin_tuple n _ : clear implicits.
Definition balanced_Yam_tuple n : pred (n.-tuple letter) :=
[pred w : n.-tuple letter | balanced_Yam w].
Arguments balanced_Yam_tuple n _ : clear implicits.
(* We want to prove that for any n, there is the same number of Motzkin words
of size n than of balanced Yamanouchi words of size n. We proceed by
showing that:
- for a Motzkin word, M2bY (bY2M w) = w
- for a Motzkin word, (bY2M w) is a balanced Yamanouchi word
- for a balanced Yamanouchi word, bY2M (M2bY w) = w
- for a balanced Yamanouchi word, (M2bY w) is a Motzkin word
*)
Section CardinalsEquality.
Variables bY2M_ M2bY_ : seq letter -> seq letter.
Hypothesis size_M2bY_ : forall w : seq letter, size (M2bY_ w) = size w.
Hypothesis size_bY2M_ : forall w : seq letter, size (bY2M_ w) = size w.
(* Suppose that for a balanced Yamanouchi word, bY2M (M2bY w) = w *)
Hypothesis M2bYK : {in balanced_Yam, cancel bY2M_ M2bY_}.
(* Suppose that for a Motzkin word, M2bY (bY2M w) = w *)
Hypothesis bY2MK : {in Motzkin, cancel M2bY_ bY2M_}.
(* Suppose that for a Motzkin word, (bY2M w) is a balanced Yamanouchi word *)
Hypothesis bYam_M2bY : forall w, w \in Motzkin -> M2bY_ w \in balanced_Yam.
(* for a balanced Yamanouchi word, (M2bY w) is a Motzkin word *)
Hypothesis Motz_bY2M : forall w, w \in balanced_Yam -> bY2M_ w \in Motzkin.
(* Let n be an arbitrary size *)
Variable n : nat.
(* Then we get the desired equality *)
Lemma eq_card_Motzkin_bYam_suff : #|Motzkin_tuple n| = #|balanced_Yam_tuple n|.
Proof.
have size_M2bYt (w : n.-tuple letter) : size (M2bY_ w) == n.
by rewrite size_M2bY_ size_tuple.
have size_bY2Mt (w : n.-tuple letter) : size (bY2M_ w) == n.
by rewrite size_bY2M_ size_tuple.
pose M2bYt (w : n.-tuple letter) : n.-tuple letter := Tuple (size_M2bYt w).
pose bY2Mt (w : n.-tuple letter) : n.-tuple letter := Tuple (size_bY2Mt w).
have sub_bY : [seq M2bYt x | x in Motzkin_tuple n] \subset balanced_Yam_tuple n.
by apply/subsetP=> w /imageP [? ? ->]; apply: bYam_M2bY.
have sub_M : [seq bY2Mt x | x in balanced_Yam_tuple n] \subset Motzkin_tuple n.
by apply/subsetP=> w /imageP [? ? ->]; apply: Motz_bY2M.
apply/eqP; rewrite eqn_leq.
have /card_in_image {1}<- : {in Motzkin_tuple n &, injective M2bYt}.
case=> [s sizes] [t sizet] /bY2MK /= Ms /bY2MK /= Mt [] est; apply/val_inj.
by rewrite /= -Ms -Mt est.
suff /card_in_image {2}<- : {in balanced_Yam_tuple n &, injective bY2Mt}.
by rewrite !subset_leq_card.
case=> [s sizes] [t sizet] /M2bYK /= bYs /M2bYK /= bYt [] est; apply/val_inj.
by rewrite /= -bYs -bYt est.
Qed.
End CardinalsEquality.
(* We want to show that for a given n, the number of Motzkin words of size n
is the same as the number of balanced Yamanouchi words of size n.
For this purpose, we construct a size-preserving bijection between the
collection of words in Motzkin and the collection of words in balanced_Yam.
Intuitively (this is not proved formally), Motzkin words (of length 3*k)
can be generated by taking:
- a Dyck word d on (N, Se) of length 2*k;
- with k letters W arbitrarily inserted in d.
Similarly, balanced Yamanouchi words (of length 3*(k1 + k2)
can be generated by taking:
- a (pseudo-)Dyck word d1 on (NSe, W) of length 3*k1, whose opening
parenthesis is the concatenation of letters N and Se;
- shuffled with a Dyck word d2 on (N, Se) of length 2*k2 (letters can be
inserted between the adjacent N and Se of the left parenthesis of d1);
- with k2 letters N arbitrarily inserted in the resulting entanglement of d1
and d2.
An other way to generate Motzkin words is by taking:
- a (pseudo)Dyck word d1' on (NW, Se) of length 3*k1, whose opening
parenthesis is the concatenation of letters N and W;
- shuffled with a Dyck word d2' on (N, Se) of length 2*k2 (letters can be
inserted between the adjacent N and Se of d1);
- with k2 letters W arbitrarily inserted in the resulting entanglement of d1
and d2.
But unfortunately these generating processes do not provide unique
factorizations.
We construct a function M2bY : seq letter -> seq letter such that if w is in
Motzkin, then there is a factorization of w as a pseudo-Dyck word d1
on (NW, Se) and a Dyck word d2 on (N, Se) such that d1 is transformed into
a pseudo-Dyck word d1' on (NSe, W), d2 stays unchanged, and the k remaining
occurrences of W are changed to Ns. We also define a candidate converse
function bY2M : seq letter -> seq letter and show that:
- M2bY and bY2M preserve the size of their arguments;
- for a Motzkin word, M2bY (bY2M w) = w
- for a Motzkin word, (bY2M w) is a balanced Yamanouchi word
- for a balanced Yamanouchi word, bY2M (M2bY w) = w
- for a balanced Yamanouchi word, (M2bY w) is a Motzkin word
This is enough to conclude that M2bY and bY2M realize a (family of)
bijection(s) between Motzkin words (of size n) and balanced Yamanouchi words
(of size n).
Each of the functions M2bY and bY2M is defined by the mean of an (infinite)
automaton, with transitions labeled with pairs letters. The states
of the automata are labeled with pairs of (natural) numbers, with
initial state (0, 0). This counters are useful to implement the
prioritized recognition of (pseudo)Dyck words. The pair of letters
labeling a transition are seen as the pair of an input letter and
an output letter, and each automaton is a transducer: we are in
fact not much interested by the state reached after reading an
input word from the initial state, although we show that Motzkin
(resp. Yamanouchi) words are recognized by the automaton, which has
(0, 0) as final state. Indeed, the output word is in fact the value
of the function M2bY (resp. bY2M) on the input word.
The transducer which is used to implement bY2M is obtained from the
transducer which is used to implement M2bY, by both reversing the arrows and
the order in the pairs of letters labeling the transitions.
In the sequel, we use the name M2bY and bY2M to refer both to the transducers
and to the corresponding functions.
*)
(*--- Transducers and bijection(s) ---*)
(* Data structure for states of the transducers: a tagged copy of nat * nat.*)
Inductive state := State of nat * nat.
Notation "'{|' c1 ; c2 '|}'" := (State (c1, c2)).
(* We coerce type state to nat * nat *)
Coercion nat2_of_state s : (nat * nat) := let: State c := s in c.
(* The transition function of the transducer t_M2bY:
t_M2bY c l is the state reached when reading l from c (and here we do not
explicit the letter output when this transition is performed). *)
Definition t_M2bY (c : state) (l : letter) : state :=
match l, c with
| W, {|0 ; c2 |} =>
{|0 ; c2 |} (* (N, {|0 ; c2 |}) *) (* _ , _ *)
| W, {|c1.+1; c2 |} =>
{|c1 ; c2.+1|} (* (Se, {|c1 ; c2.+1|}) *) (* -1, +1 *)
| N, {|c1 ; c2 |} =>
{|c1.+1; c2 |} (* (N, {|c1.+1; c2 |}) *) (* +1, _ *)
| Se, {|c1 ; c2.+1|} =>
{|c1 ; c2 |} (* (W, {|c1 ; c2 |}) *) (* _ , -1 *)
| Se, {|c1.+1; 0 |} =>
{|c1 ; 0 |} (* (Se, {|c1 ; 0 |}) *) (* -1, _ *)
| Se, {|0 ; 0 |} =>
{|0 ; 0 |} (* (N, {|0 ; 0 |}) *) (* junk *)
end.
Arguments t_M2bY c l : simpl never.
(* Similarly, the transition function of the transducer t_bY2M *)
Definition t_bY2M (c : state) (l : letter) : state :=
match l, c with
| N, {|0 ; c2 |} =>
{|0 ; c2 |} (* (W, {|0 ; c2 |}) *) (* _ , _ *)
| Se, {|c1 ; c2.+1|} =>
{|c1.+1; c2 |} (* (W, {|c1.+1; c2 |}) *) (* +1, -1 *)
| N, {|c1.+1; c2 |} =>
{|c1 ; c2 |} (* (N, {|c1 ; c2 |}) *) (* -1, _ *)
| W, {|c1 ; c2 |} =>
{|c1 ; c2.+1|} (* (Se, {|c1 ; c2.+1|}) *) (* _ , +1 *)
| Se, {|c1 ; 0 |} =>
{|c1.+1; 0 |} (* (Se, {|c1.+1; 0 |}) *) (* +1, _ *)
end.
Arguments t_bY2M c l : simpl never.
(* (M2bY_state c w) (resp. (bY2M_state c w) is the state
reached when reading w from c in the transducer M2bY (resp. bY2M)*)
Definition M2bY_state (c : state) (w : seq letter) : state :=
foldl t_M2bY c w.
Definition bY2M_state (c : state) (w : seq letter) : state :=
foldl t_bY2M c w.
(* Properties of M2bY_state (resp. bY2M_state) inherited from those of foldl *)
(*The state reached from c after reading (rcons w l) is the one reached from
"the state reached from c after reading w" after reading l *)
Lemma M2bY_state_rcons (c : state) (w : seq letter) (l : letter) :
M2bY_state c (rcons w l) = t_M2bY (M2bY_state c w) l.
Proof. exact: foldl_rcons. Qed.
Lemma bY2M_state_rcons (c : state) (w : seq letter) (l : letter) :
bY2M_state c (rcons w l) = t_bY2M (bY2M_state c w) l.
Proof. exact: foldl_rcons. Qed.
(*The state reached from c after reading (w1 ++ w2) is the one reached from
"the state reached from c after reading w1" after reading w2 *)
Lemma M2bY_state_cat (c : state) (w1 w2 : seq letter) :
M2bY_state c (w1 ++ w2) = M2bY_state (M2bY_state c w1) w2.
Proof. exact: foldl_cat. Qed.
Lemma bY2M_state_cat (c : state) (w1 w2 : seq letter) :
bY2M_state c (w1 ++ w2) = bY2M_state (bY2M_state c w1) w2.
Proof. exact: foldl_cat. Qed.
(* *_state functions in terms of foldr. Don know yet if is usefull. *)
Lemma M2bY_state_rev (c : state) (w : seq letter) :
M2bY_state c (rev w) = foldr (fun x => t_M2bY^~ x) c w.
Proof. exact: foldl_rev. Qed.
Lemma bY2M_state_rev (c : state) (w : seq letter) :
bY2M_state c (rev w) = foldr (fun x => t_bY2M^~ x) c w.
Proof. exact: foldl_rev. Qed.
(* (M2bY_states_seq c w) (resp. (bY2M_states c w) is the sequence of states
followed when reading w from c in the transducer M2bY (resp. bY2M)*)
Definition M2bY_states_seq (c : state) (w : seq letter) : seq state :=
scanl t_M2bY c w.
(* Arguments M2bY_states_seq / c w. *)
Definition bY2M_states_seq (c : state) (w : seq letter) : seq state :=
scanl t_bY2M c w.
(* Arguments bY2M_states_seq / c w. *)
(* Properties of M2bY_states_seq (resp. bY2M_states_seq) obtained from those of
scanl. *)
Lemma last_M2bY_states_seq (c : state) (w : seq letter) :
last c (M2bY_states_seq c w) = M2bY_state c w.
Proof. exact: last_scanl. Qed.
Lemma M2bY_states_seq_rcons (c : state) (w : seq letter) (l : letter) :
M2bY_states_seq c (rcons w l) =
rcons (M2bY_states_seq c w) (M2bY_state c (rcons w l)).
Proof. exact: scanl_rcons. Qed.
Lemma take_M2bY_states_seq (c : state) (w : seq letter) (n : nat) :
take n (M2bY_states_seq c w) = M2bY_states_seq c (take n w).
Proof. exact: take_scanl. Qed.
Lemma size_M2bY_states_seq c w : size (M2bY_states_seq c w) = size w.
Proof. by rewrite size_scanl. Qed.
Lemma M2bY_states_seq_cat c w1 w2 :
M2bY_states_seq c (w1 ++ w2) =
M2bY_states_seq c w1 ++ M2bY_states_seq (M2bY_state c w1) w2.
Proof. exact: scanl_cat. Qed.
Lemma last_bY2M_states_seq (c : state) (w : seq letter) :
last c (bY2M_states_seq c w) = bY2M_state c w.
Proof. exact: last_scanl. Qed.
Lemma bY2M_states_seq_rcons (c : state) (w : seq letter) (l : letter) :
bY2M_states_seq c (rcons w l) =
rcons (bY2M_states_seq c w) (bY2M_state c (rcons w l)).
Proof. exact: scanl_rcons. Qed.
Lemma take_bY2M_states_seq (c : state) (w : seq letter) (n : nat) :
take n (bY2M_states_seq c w) = bY2M_states_seq c (take n w).
Proof. exact: take_scanl. Qed.
Lemma size_bY2M_states_seq c w : size (bY2M_states_seq c w) = size w.
Proof. by rewrite size_scanl. Qed.
Lemma bY2M_states_seq_cat c w1 w2 :
bY2M_states_seq c (w1 ++ w2) =
bY2M_states_seq c w1 ++ bY2M_states_seq (bY2M_state c w1) w2.
Proof. exact: scanl_cat. Qed.
(* Crucially, for any two states cf and ci, there is a transition in
transducer M2bY (resp. bY2M) from state ci to state cf, and the output
letter is unique. We call this letter (M2bY_out ci cf)
(resp. (bY2Mout ci cf)). There is one exception, in transducer M2bY,
when ci = cf = (0, 0), in which case we we consider that the input letter
wasn't Se. *)
Definition M2bY_out (ci cf : state) : letter :=
let: {|cf1; cf2|} := cf in
let: {|ci1; ci2|} := ci in
if [&& cf1 == 0, ci1 == 0 & (cf2 == ci2)] then N
else if (ci1 == cf1.+1) && (cf2 == ci2.+1) then Se
else if (cf1 == ci1.+1) && (cf2 == ci2) then N
else if (cf1 == ci1) && (ci2 == cf2.+1) then W
else Se.
Definition bY2M_out (ci cf : state) : letter :=
let: {|cf1; cf2|} := cf in
let: {|ci1; ci2|} := ci in
if [&& cf1 == 0, ci1 == 0 & (ci2 == cf2)] then W
else if (cf1 == ci1.+1) && (ci2 == cf2.+1) then W
else if (ci1 == cf1.+1) && (cf2 == ci2) then N
else Se (* junk *).
(* It may be useful to name the analogues of these, just swapping arguments,
in order to describe the reverse path in the automaton. *)
Definition M2bY_outV ci cf := M2bY_out cf ci.
Definition bY2M_outV cf ci := bY2M_out ci cf.
(* M2bY (resp. bY2M) is defined from t_M2bY and M2bY_out
(resp. t_bY2M and bY2M_out) as follows:
- from a word w and an intial state c, produce the sequence of states
(M2bY_states_seq c w) (resp. (bY2M_states_seq c w));
- from sequence (M2bY_states_seq c w) (resp. (bY2M_states_seq c w)), produce
the sequence of corresponding output letters, using bY2M_out
(resp. M2bY_out).
M2bY and bY2M take (0, 0) as initial state c.
*)
Definition M2bY_from (c : state) (w : seq letter) : seq letter :=
pairmap M2bY_out c (M2bY_states_seq c w).
Arguments M2bY_from c w : simpl never.
Definition M2bY := M2bY_from {|0; 0|}.
Arguments M2bY : simpl never.
Definition bY2M_from (c : state) (w : seq letter) : seq letter :=
pairmap bY2M_out c (bY2M_states_seq c w).
Arguments bY2M_from c w : simpl never.
Definition bY2M (w : seq letter) := rev (bY2M_from {|0; 0|} (rev w)).
Arguments bY2M w : simpl never.
(* A few computations to see the translation at work: *)
Eval compute in M2bY [:: N; W; Se]. (* [:: N; Se; W] *)
Eval compute in M2bY [:: N; Se; W]. (* [:: N; Se; N] *)
Eval compute in M2bY [:: W; N; Se]. (* [:: N; N; Se] *)
Eval compute in bY2M [:: N; Se; W]. (* [:: N; W; Se] *)
Eval compute in bY2M [:: N; Se; N]. (* [:: N; Se; W] *)
Eval compute in bY2M [:: N; N; Se]. (* [:: W; N; Se] *)
(* Properties of M2bY_from and M2bY (resp. bY2M_from, bY2M) obtained from those
of pairmap (resp. pairmap and rev) *)
Lemma size_M2bY_from c w : size (M2bY_from c w) = size w.
Proof. by rewrite /M2bY_from size_pairmap size_M2bY_states_seq. Qed.
Lemma size_M2bY w : size (M2bY w) = size w.
Proof. by exact: size_M2bY_from. Qed.
Lemma M2bY_from_cat c w1 w2 :
M2bY_from c (w1 ++ w2) = M2bY_from c w1 ++ M2bY_from (M2bY_state c w1) w2.
Proof.
by rewrite [LHS]/M2bY_from M2bY_states_seq_cat pairmap_cat last_M2bY_states_seq.
Qed.
Lemma M2bY_from_rcons c w l :
M2bY_from c (rcons w l) =
rcons (M2bY_from c w) (M2bY_out (M2bY_state c w) (t_M2bY (M2bY_state c w) l)).
Proof. by rewrite -cats1 M2bY_from_cat cats1. Qed.
Lemma take_M2bY_from c w n : take n (M2bY_from c w) = M2bY_from c (take n w).
Proof. by rewrite take_pairmap take_M2bY_states_seq. Qed.
Lemma take_M2bY w n : take n (M2bY w) = M2bY (take n w).
Proof. exact: take_M2bY_from. Qed.
Lemma rev_M2bY_from c w l :
rev (M2bY_from c (rcons w l)) =
pairmap M2bY_outV (t_M2bY (M2bY_state c w) l)
(rcons (rev (M2bY_states_seq c w)) c).
Proof.
by rewrite /M2bY_from M2bY_states_seq_rcons rev_pairmap M2bY_state_rcons.
Qed.
Lemma M2bY_from_cons c w l :
M2bY_from c (l :: w) = M2bY_out c (t_M2bY c l) :: M2bY_from (t_M2bY c l) w.
Proof. by []. Qed.
Lemma M2bY_rcons w l (c := M2bY_state {|0; 0|} w) :
M2bY (rcons w l) = rcons (M2bY w) (M2bY_out c (t_M2bY c l)).
Proof. by rewrite /M2bY M2bY_from_rcons. Qed.
Lemma size_bY2M_from c w : size (bY2M_from c w) = size w.
Proof. by rewrite /bY2M_from size_pairmap size_bY2M_states_seq. Qed.
Lemma size_bY2M w : size (bY2M w) = size w.
Proof. by rewrite size_rev size_bY2M_from size_rev. Qed.
Lemma bY2M_from_cat c w1 w2 :
bY2M_from c (w1 ++ w2) = bY2M_from c w1 ++ bY2M_from (bY2M_state c w1) w2.
Proof.
by rewrite [LHS]/bY2M_from bY2M_states_seq_cat pairmap_cat last_bY2M_states_seq.
Qed.
Lemma bY2M_from_rcons c w l :
bY2M_from c (rcons w l) =
rcons (bY2M_from c w) (bY2M_out (bY2M_state c w) (t_bY2M (bY2M_state c w) l)).
Proof. by rewrite -cats1 bY2M_from_cat cats1. Qed.
Lemma take_bY2M_from c w n : take n (bY2M_from c w) = bY2M_from c (take n w).
Proof. by rewrite take_pairmap take_bY2M_states_seq. Qed.
Lemma take_bY2M w n :
take n (bY2M w) =
rev (bY2M_from (bY2M_state {|0; 0|} (rev (drop n w))) (rev (take n w))).
Proof.
case: (ltnP n (size w)) => [ltns | lesn]; last first.
by rewrite [in RHS]take_oversize // drop_oversize //= take_oversize ?size_bY2M.
rewrite -[in LHS](cat_take_drop n w) /bY2M rev_cat bY2M_from_cat rev_cat.
by rewrite take_size_cat // size_rev size_bY2M_from size_rev size_take ltns.
Qed.
Lemma rev_bY2M_from c w l :
rev (bY2M_from c (rcons w l)) =
pairmap bY2M_outV (t_bY2M (bY2M_state c w) l)
(rcons (rev (bY2M_states_seq c w)) c).
Proof.
by rewrite /bY2M_from bY2M_states_seq_rcons rev_pairmap bY2M_state_rcons.
Qed.
Lemma bY2M_from_cons c w l (cf := bY2M_state c (rev w)) :
bY2M_from c (l :: w) = bY2M_out c (t_bY2M c l) :: bY2M_from (t_bY2M c l) w.
Proof. by []. Qed.
Lemma bY2M_cons w l (c := bY2M_state {|0; 0|} (rev w)) :
bY2M (l :: w) = (bY2M_out c (t_bY2M c l)) :: (bY2M w).
Proof. by rewrite /bY2M rev_cons bY2M_from_rcons rev_rcons. Qed.
(* Now we start studying the various transition functions that we defined per se.
In particular, we prove various forms of cancellation properties that will
hopefully get lifted as properties of the input/output words of the
transducers. *)
Lemma M2bY_out_t_bY2M c lo : M2bY_out (t_bY2M c lo) c = lo.
Proof.
by case: lo; case: c => [] [[|c1][|c2]] //=; rewrite ?eqxx ?andbF //= ltn_eqF.
Qed.
Lemma t_bY2MK s2 : cancel (t_bY2M s2) (M2bY_outV s2).
Proof. exact: M2bY_out_t_bY2M. Qed.
Lemma bY2M_states_seqKV c w : pairmap M2bY_outV c (bY2M_states_seq c w) = w.
Proof. by rewrite (scanlK t_bY2MK). Qed.
(* But there is one degenerated case, which prevents the expected converse
identities to hold everywhere *)
Definition noex (l : letter) (c : state) :=
[|| (c.1 != 0%N), (c.2 != 0%N) | (l != Se)].
Lemma bY2M_out_t_M2bY c l : noex l c -> bY2M_out (t_M2bY c l) c = l.
Proof.
by case: l; case: c => [] [[|c1][|c2]] //= _; rewrite ?eqxx ?andbF //= ltn_eqF.
Qed.
(* t_bY2M c2 lo = c1 -> l = bY2M_out c2 c1 -> t_M2bY c1 l = c2. *)
Lemma t_M2bY_round c2 l (c1 := t_bY2M c2 l) : t_M2bY c1 (bY2M_out c2 c1) = c2.
Proof.
rewrite {}/c1. (* the c1 abbreviation is really for the sake of readability *)
by case: c2 => [] [[|?] [|?]]; case: l => //=; rewrite ?eqxx ?andbF 1?ltn_eqF.
Qed.
(* t_M2bY c1 li = c2 -> lo = M2bY_out c1 c2 -> t_bY2M c2 lo = c1. *)
Lemma t_bY2M_round c1 l (c2 := t_M2bY c1 l) : t_bY2M c2 (M2bY_out c1 c2) = c1.
Proof.
rewrite {}/c2. (* the c2 abbreviation is really for the sake of readability *)
by case: c1 => [] [] [|?] [|?]; case: l => //=; rewrite ?eqxx ?andbF // ltn_eqF.
Qed.
(* Let c1 be such that (c2) -- l --> (c1) in automaton bY2M
Then (c1) -- l --> (t_M2bY c1 (bY2M_out c2 c1)) in automaton M2bY. *)
Lemma M2bY_out_round c2 l (c1 := t_bY2M c2 l) :
M2bY_out c1 (t_M2bY c1 (bY2M_out c2 c1)) = l.
Proof. by rewrite t_M2bY_round {}/c1 M2bY_out_t_bY2M. Qed.
(* Let c2 be such that (c1) -- l --> (c2) in automaton M2bY.
Then (c2) -- l --> (t_bY2M s2 (M2bY_out c1 c2)) in automaton bY2M *)
Lemma bY2M_out_round c1 l (c2 := t_M2bY c1 l) : noex l c1 ->
bY2M_out c2 (t_bY2M c2 (M2bY_out c1 c2)) = l.
Proof. by move=> nx; rewrite t_bY2M_round bY2M_out_t_M2bY. Qed.
(* Let cf be the state reached when starting from state ci and reading word wi
with automaton bY2M. Let wf := (bY2M_from ci wi) be the word output. Then
reading (rev wf) from cf with automaton M2bY produces word wi *)
Lemma revbY2M_fromK wi ci (cf := bY2M_state ci wi) (wf := bY2M_from ci wi) :
M2bY_from cf (rev wf) = rev wi.
Proof.
rewrite {}/cf {}/wf; elim/last_ind: wi ci => [| w l ihw c] //=.
rewrite bY2M_state_rcons bY2M_from_rcons !rev_rcons /= M2bY_from_cons.
by rewrite M2bY_out_round t_M2bY_round ihw.
Qed.
(*--- Reduction: we prove that the conditions on M2bY, bY2M can be reduced to
assumptions on the states of the transducer(s), whose proofs require
introducing ghost variables to state and establish suitable invariants. ---*)
Section SufficientConditionsForCancel.
(* We leave as (temporary) hypotheses the facts that requires introducing
ghost variables: *)
Hypothesis bYam_final_state : forall w,
w \in balanced_Yam -> bY2M_state {|0; 0|} (rev w) = {|0; 0|}.
Lemma bY2MK_ : {in balanced_Yam, cancel bY2M M2bY}.
Proof.
by move=> l Bl; rewrite /M2bY -(bYam_final_state Bl) /bY2M revbY2M_fromK ?revK.
Qed.
Hypothesis pre_Motzkin_noex : forall w l c,
rcons w l \in pre_Motzkin -> noex l (M2bY_state c w).
Lemma revM2bY_fromK l c : l \in pre_Motzkin ->
rev (bY2M_from (M2bY_state c l) (rev (M2bY_from c l))) = l.
Proof.
elim/last_ind: l c => [| w l ihw c pMwl] //=.
rewrite M2bY_state_rcons M2bY_from_rcons !rev_rcons.
rewrite bY2M_from_cons bY2M_out_round; last exact: pre_Motzkin_noex.
rewrite t_bY2M_round rev_cons ihw //; exact: (pre_Motzkin_rcons l).
Qed.
Hypothesis Motzkin_final_state : forall w,
w \in Motzkin -> M2bY_state {|0; 0|} w = {|0; 0|}.
Lemma M2bYK_ : {in Motzkin, cancel M2bY bY2M}.
Proof.
move=> w Mw; rewrite /bY2M -(Motzkin_final_state Mw); apply: revM2bY_fromK.
exact: pre_Motzkin_Motzkin.
Qed.
End SufficientConditionsForCancel.
(*--- Invariant of the M2bY transducer, by decoration with ghost variables. This
proves the two remaining facts about (pre)Motzkin words, plus the important
missing property of M2bY : that a Motzkin word is mapped to a balanced
Yamanouchi ---*)
(* The states of the automaton are augmented with 3 more natural numbers, that
count respectively: the number of Dyck words (N, Se) processed so far (d1);
the number of pseudo-Dyck words (NSe, W) in progress so
far (d2); the number of "free" occurrences of W processed so far (f). These
numbers are here to retain an information which is otherwise lost during
computation, but they do not interfere with the computation nor its result.
Hence we coin these extra data "ghost variables", as in the vocabulary of
program verification. *)
Record gstate :=
GState {ct1: nat; ct2: nat; dy1 : nat; dy2 : nat; free : nat}.
Definition mkGState (c : state) (d1 d2 f : nat) : gstate :=
GState c.1 c.2 d1 d2 f.
Let g0 := GState 0 0 0 0 0.
Definition state_of_gstate (g : gstate) : state :=
let: GState c1 c2 _ _ _ := g in State (c1, c2).
Lemma mkGStateK c d1 d2 f : state_of_gstate (mkGState c d1 d2 f) = c.
Proof. by case: c => [] []. Qed.
(* Last case is junk *)
Definition gt_M2bY_ (g : gstate) (l : letter) : gstate :=
match l, g with
|W, GState 0 c2 d1 d2 f => GState 0 c2 d1 d2 f.+1
|W, GState c1.+1 c2 d1 d2 f => GState c1 c2.+1 d1 d2 f
|N, GState c1 c2 d1 d2 f => GState c1.+1 c2 d1 d2 f
|Se, GState c1 c2.+1 d1 d2 f => GState c1 c2 d1.+1 d2 f
|Se, GState c1.+1 0 d1 d2 f => GState c1 0 d1 d2.+1 f
|Se, GState 0 0 d1 d2 f => GState 0 0 d1 d2 f
end.
Definition gt_M2bY := nosimpl gt_M2bY_.
Definition M2bY_gstate := foldl gt_M2bY.
Lemma M2bY_gstate_rcons (g : gstate) (w : seq letter) (l : letter) :
M2bY_gstate g (rcons w l) = gt_M2bY (M2bY_gstate g w) l.
Proof. exact: foldl_rcons. Qed.
(* Forgeting the ghost information in a list of reached states *)
Lemma state_of_gt_M2bY g l :
state_of_gstate (gt_M2bY g l) = t_M2bY (state_of_gstate g) l.
Proof. by case: g => [[| ?] [|?]] /=; case: l. Qed.
Lemma state_of_M2bY_gstate g w :
state_of_gstate (M2bY_gstate g w) = M2bY_state (state_of_gstate g) w.
Proof.
by elim: w g => [|h w ihw] //= g; rewrite {}ihw state_of_gt_M2bY.
Qed.
(* Lemma state_of_M2bY_gstate c d1 d2 f w (g := mkGState c d1 d2 f) : *)
(* state_of_gstate (M2bY_gstate g w) = M2bY_state c w. *)
(* Proof. *)
(* have -> : c = state_of_gstate g by rewrite {}/g; case: c => [] []. *)
(* by elim: w g => [|h w ihw] //= g; rewrite {}ihw state_of_gt_M2bY. *)
(* Qed. *)
(* First invariant for gt_M2bY: it provides equations relating the number of
occurrences of each letter in the *input* word with the values of the state
reached after reading this word.
Proof is by brute force case analysis excepy for the only
interesting case of the (tail) induction on w is, i.e. when it ends with Se:
in this case the hypothesis (pre_Motzkin (rcons l Se)) forbids
ct1 c = ct2 c = 0.
We need to kind of reproduce this proof outside this one to ensure we never hit
this exceptional case... Can we do better? *)
Lemma pM_M2bY_gstateP w gi (g := M2bY_gstate gi w) :
w \in pre_Motzkin ->
[/\
#N w + dy1 gi + dy2 gi + ct1 gi + ct2 gi =
dy1 g + dy2 g + ct1 g + ct2 g ,
#Se w + dy1 gi + dy2 gi =
dy1 g + dy2 g &
#W w + dy1 gi + ct2 gi + free gi =
dy1 g + ct2 g + free g
].
Proof.
rewrite {}/g; elim/last_ind: w => [| w l ihw] /= pMwl=> //.
rewrite !M2bY_gstate_rcons.
have {ihw} /ihw := pre_Motzkin_rcons _ pMwl.
move: (M2bY_gstate gi w) => g [eN eSe eW].
case: l pMwl => pMwl; rewrite !count_mem_rcons !eqxx /=.
- rewrite !addSn {}eW {}eN {}eSe; case: g => * /=; split; ring.
- by rewrite !addSn {}eW {}eN {}eSe; case: g => [] [|c1] * /=; split; ring.
- suff {eW} : ct1 g + ct2 g != 0.
rewrite !addSn {}eW {}eN {}eSe. case: g => [] [|?] [|?] * //=; split; ring.
have {pMwl} : #Se w < #N w := pre_Motzkin_rcons_Se pMwl.
apply: contraL; rewrite addn_eq0; case/andP=> /eqP e1 /eqP e2.
suff /eqP-> : #Se w == #N w + (ct1 gi + ct2 gi) by rewrite -leqNgt leq_addr.
by rewrite -(eqn_add2r (dy1 gi + dy2 gi)) addnAC !addnA eN eSe e1 e2 !addn0.
Qed.
(* Specialization to the g0 initial case. *)
Lemma pM_M2bY_gstate0P w (g := M2bY_gstate g0 w) :
w \in pre_Motzkin ->
[/\
#N w = dy1 g + dy2 g + ct1 g + ct2 g ,
#Se w = dy1 g + dy2 g &
#W w = dy1 g + ct2 g + free g
].
Proof. by case/(pM_M2bY_gstateP g0); rewrite !addn0. Qed.
(* Reading a Motzkin word with automaton M2bY reaches state (0,0). *)
Corollary Motzkin_final l : l \in Motzkin -> M2bY_state {|0; 0|} l = {|0; 0|}.
Proof.
case/MotzkinP=> /pM_M2bY_gstate0P; rewrite -(state_of_M2bY_gstate g0).
move: (M2bY_gstate _ _) => [] ? ? d ? ? /= [-> -> ->] /eqP.
by rewrite -{2}[d + _]addn0 -!addnA !eqn_add2l addn_eq0=> /andP [] /eqP-> /eqP->.
Qed.
Corollary pre_Motzkin_noex w l c :
rcons w l \in pre_Motzkin -> noex l (M2bY_state c w).
Proof.
rewrite /noex; case: l; rewrite ?orbT // orbF => pMwl.
pose g := M2bY_gstate (mkGState c 0 0 0) w.
suff : (ct1 g != 0) || (ct2 g != 0).
suff -> : (M2bY_state c w) = state_of_gstate g by case: g.
by rewrite /g state_of_M2bY_gstate mkGStateK.
suff : ct1 g + ct2 g != 0 by rewrite addn_eq0 negb_and.
have := pM_M2bY_gstateP (mkGState c 0 0 0) (pre_Motzkin_rcons _ pMwl).
rewrite !addn0 -/g; case: g => c1 c2 d1 d2 f /= [eN eSe _].
have {pMwl} : #Se w < #N w := pre_Motzkin_rcons_Se pMwl.
apply: contraL; rewrite addn_eq0; case/andP=> /eqP e1 /eqP e2.
by rewrite e1 e2 -eSe !addn0 in eN; rewrite -eN -leqNgt -addnA leq_addr.
Qed.
(* Hence bY2M is a right inverse for M2bY on Motzkin words. *)
Theorem M2bYK : {in Motzkin, cancel M2bY bY2M}.
Proof. apply: M2bYK_; [exact: pre_Motzkin_noex | exact: Motzkin_final]. Qed.
(* Reading an N always produces an N *)
Lemma M2bY_out_N c : M2bY_out c (t_M2bY c N) = N.
Proof.
by case: c => [] [] [|?] [|?] *; rewrite //= ?eqxx //= ?andbF // ltn_eqF.
Qed.
(* Second invariant for gt_M2bY: it provides equations relating the number of
occurrences of each letter in the *output* word with the values of the state
reached after reading this word. By brute force case analysis, some branches
being eliminated by the previously established noex property. *)
Lemma pM_gM2bY_fromP wi gi (g := M2bY_gstate gi wi)
(wo := M2bY_from (state_of_gstate gi) wi) :
wi \in pre_Motzkin ->
[/\
#N wo + dy1 gi + dy2 gi + ct1 gi + ct2 gi + free gi =
dy1 g + dy2 g + ct1 g + ct2 g + free g ,
#Se wo + dy1 gi + dy2 gi + ct2 gi =
dy1 g + dy2 g + ct2 g &
#W wo + dy1 gi = dy1 g].
Proof.
rewrite {}/g {}/wo; elim/last_ind: wi => [| w l ihw] pMwl=> //.
have {ihw} /ihw := pre_Motzkin_rcons _ pMwl.
have := pre_Motzkin_noex (state_of_gstate gi) pMwl.
rewrite M2bY_from_rcons M2bY_gstate_rcons -state_of_M2bY_gstate.
set wo := M2bY_from (state_of_gstate gi) w.
move: (M2bY_gstate gi w) => g hnoex [eN eSe eW].
case: l hnoex pMwl => [_ | _ | nx] /pre_MotzkinP pMwl; rewrite !count_mem_rcons.
- rewrite M2bY_out_N eqxx /=.
have -> /= : gt_M2bY g N = GState (ct1 g).+1 (ct2 g) (dy1 g) (dy2 g) (free g).
by case: g {eN eSe eW}.
by rewrite addnS !addSn eN eSe eW.
- case: g eN eSe eW => [] [|c1] c2 d1 d2 f /=; rewrite ?addn0 !eqxx => eN eSe eW.
+ by rewrite addnS !addSn eN eW eSe.
+ by rewrite andbF /= !addSn eN eW eSe !addnS !addSn.
- case: g eN eSe eW nx => [] [|c1] [|c2] d1 d2 f //=;
rewrite ?addn0 => eN eSe eW _ /=.
+ by rewrite ltn_eqF // !eqxx eN eSe /= !addnS !addSn eW.
+ by rewrite !andbF ltn_eqF //= eN eW /= !addSn eSe !addnS !addSn.
+ by rewrite ltn_eqF //= !eqxx /= eN eSe /= !addnS !addSn eW.
Qed.
Corollary Y_M2bY_pM w : w \in pre_Motzkin -> M2bY w \in Yamanouchi.
Proof.
move=> w_in_pM; move/pre_MotzkinP: (w_in_pM) => pMw; apply/YamanouchiP=> n.
have /(pM_gM2bY_fromP g0) : take n w \in pre_Motzkin by exact: pre_Motzkin_take.
rewrite !addn0 -/M2bY take_M2bY; move: (M2bY_gstate _ _) => g.
by case=> -> -> ->; rewrite -!addnA leq_addr /= !leq_add2l addnCA leq_addr.
Qed.
Theorem bYam_M2bY_Motzkin w : w \in Motzkin -> M2bY w \in balanced_Yam.
case/MotzkinP => pMl eNSe eSeW.
rewrite -topredE /= /balanced_Yam Y_M2bY_pM //=.
pose gf := M2bY_gstate g0 w.
have /and3P [/eqP ec1 /eqP ec2 /eqP edf]:
[&& ct1 gf == 0, ct2 gf == 0 & dy2 gf == free gf].
move/(pM_M2bY_gstateP g0): (pMl); rewrite /= !addn0 -/gf; case=> eN eSe eW.
move: eNSe; rewrite eN -addnA eSe; move/(canRL (addKn _)); rewrite subnn.
move/eqP; rewrite addn_eq0; case/andP=> -> ct20; rewrite (eqP ct20) /=.
by move/eqP: eSeW; rewrite eW (eqP ct20) addn0 eSe eqn_add2l.
move/(pM_gM2bY_fromP g0): pMl; rewrite -/gf ec1 ec2 edf !addn0.
by case=> -> -> ->; rewrite addKn -{2}[dy1 _ + _]addn0 subnDl subn0.
Qed.
Lemma ct2_foldl_t_bY2M gi w (g := bY2M_state gi w) :
(forall n, #W (drop n w) <= #Se (drop n w)) -> g.2 <= gi.2.
Proof.
rewrite {}/g.
move: {2}(size w) (leqnn (size w)) => n; elim: n w gi => [| n ihn] w gi.
by rewrite leqn0 size_eq0 => /eqP ->.
rewrite leq_eqVlt; case/orP; last by apply: ihn.
case/lastP: w => [| w l] //; rewrite size_rcons eqSS => /eqP ssn.
case: l => leWSe; rewrite bY2M_state_rcons.
- have -> : (t_bY2M (bY2M_state gi w) N).2 = (bY2M_state gi w).2.
by case: (bY2M_state _ _) => [] [] [].
apply: ihn => [| k]; first by rewrite ssn.
have := leWSe k; case: (leqP k (size w)) => hkss.
by rewrite drop_rcons // !count_mem_rcons /=.
rewrite !drop_oversize ?size_rcons //; exact: ltnW.
- by move: (leWSe (size w)); rewrite -cats1 drop_cat ltnn subnn drop0.
- case hyp : [forall x : 'I_(size w).+1, (#W (drop x w) <= #Se (drop x w))].
+ have h : (t_bY2M (bY2M_state gi w) Se).2 <= (bY2M_state gi w).2.
by case: (bY2M_state _ _) => [] [] c1 [|c2] /=.
apply: leq_trans h _; apply: ihn=> [|k]; rewrite ?ssn //.
case: (leqP k (size w)) => hk; last by rewrite drop_oversize //; exact: ltnW.
by rewrite -ltnS in hk; have /= := (forallP hyp) (Ordinal hk).
+ move/negbT: hyp; rewrite negb_forall; case/existsP=> j; rewrite -ltnNge => Pj.
have [// | k Pk /= max_k {j Pj}] := @arg_maxP _ j
(fun i : 'I_(size w).+1 => #Se (drop i w) < #W (drop i w)) (fun x => val x).
have {max_k} max_k j : j < (size w).+1 -> k < j ->
#W (drop j w) <= #Se (drop j w).
move=> oj; rewrite ltnNge; apply: contraR; rewrite -ltnNge.
exact: max_k (Ordinal oj).
pose w1 := take k w. pose w2 := drop k.+1 w.
have eWw2 : drop k w = W :: w2.
rewrite {}/w2; case: k Pk max_k {w1} => [] k //=.
rewrite ltnS => leks /= Pk max_k.
move: leks; rewrite leq_eqVlt; case/orP => [/eqP ek | ltksw].
by move: Pk; rewrite ek drop_oversize.
have : #Se (drop k.+1 w) >= #W (drop k.+1 w) by exact: max_k.
move: Pk; rewrite (drop_nth W) //; case: (nth _ _) => //=.
+ by rewrite !add0n [#W(_) <= _]leqNgt; move->.
+ rewrite add0n add1n => h1 h2. have := leq_trans h1 h2.
by rewrite ltnNge leqnSn.
have ew12 : w = w1 ++ W :: w2 by rewrite -eWw2 cat_take_drop.
have hw2 i : #W (drop i w2) <= #Se (drop i w2).
rewrite /w2 -(drop_add W) addnS.
case: (ltnP (i + k).+1 (size w)) => hik; last by rewrite drop_oversize.
apply: max_k; first exact: ltnW.
by rewrite /= ltnS leq_addl.
have WSew2 : #W w2 = #Se w2.
apply/eqP; rewrite eqn_leq; move: (hw2 0); rewrite drop0=> -> /=.
by move: Pk; rewrite /w2 eWw2 /= add0n add1n ltnS /w2.
have hw1 i : #W (drop i w1) <= #Se (drop i w1).
case: (ltnP i (size w1)) => hi; last by rewrite drop_oversize.
have := (leWSe i).