-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgetPerf.py
executable file
·314 lines (304 loc) · 13.4 KB
/
getPerf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#!/usr/bin/env python -w
import sys,urllib,urllib2,re,time,os
import json
import optparse
import httplib
import datetime
import itertools
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as pp
import numpy as np
metrics = ['PeakValueVsize', 'AvgEventTime', 'TotalJobTime', 'PeakValueRss']
def getTaskNames(workflow):
"""
This method gets the TaskName for Task1.
In order to get the TaskName for Task2, it has also to get the
InputTask and the InputFromOutputModule in the Task2 dict,
otherwise we are not able to build the correct URL.
FIXME: it's not able to get TaskNames for Task3+
"""
conn = httplib.HTTPSConnection('cmsweb.cern.ch', cert_file = os.getenv('X509_USER_PROXY'), key_file = os.getenv('X509_USER_PROXY'))
r1=conn.request('GET','/reqmgr/view/showWorkload?requestName=' + workflow)
r2=conn.getresponse()
data = r2.read()
conn.close()
data = data.replace('<br/>','')
list = data.split('\n')
taskNames = []
nbTasks = 1
# Get the number of tasks and the TaskName1
for raw in list:
if 'request.schema.Task1.TaskName' in raw:
taskNames.append(raw.split("'")[1])
elif 'request.schema.TaskChain' in raw:
nbTasks = int(raw.split('=')[1])
print "\nNumber of tasks: %d" % nbTasks
for nb in range(2, nbTasks+1):
task = 'request.schema.Task'+str(nb)
for raw in list:
if task+'.InputTask' in raw:
previousTask = raw.split("'")[1]
elif task+'.InputFromOutputModule' in raw:
outputModule = raw.split("'")[1]
elif task+'.TaskName' in raw:
Task = raw.split("'")[1]
if nb == 2:
taskNames.append(previousTask+'/'+previousTask+'Merge'+outputModule+'/'+Task)
else:
previous = taskNames[-1]
taskNames.append(previous+'/'+previousTask+'Merge'+outputModule+'/'+Task)
print taskNames
return taskNames
def getWorkloadSummary(workflow):
"""
It retrieves the whole workloadSummary
"""
conn = httplib.HTTPSConnection('cmsweb.cern.ch', cert_file = os.getenv('X509_USER_PROXY'), key_file = os.getenv('X509_USER_PROXY'))
#r1=conn.request('GET','/reqmgr/reqMgr/request?requestName=' + workflow)
r1=conn.request('GET','/couchdb/workloadsummary/' + workflow)
r2=conn.getresponse()
data = r2.read()
s = json.loads(data)
conn.close()
#except:
# print "Cannot get request (getWorkloadSummary) "
# sys.exit(1)
print "\nJust got the workloadSummary"
return s
def getPerformance(workload, workflow, task):
"""
It receives the workloadSummary and then looks for the performance
information according to the workflow and the task path built earlier.
Notice tasks greater or equal than 2 run over the merged output...
Note2: we are dropping values=0.0 for 'average', so it does not count
when calculating the average.
"""
semiPath = '/'+workflow+'/'+task
finalValues = {}
print "\ngetPerformance():\t%s" % semiPath
for i in metrics:
finalValues[i] = []
for j in workload['performance'][semiPath]['cmsRun1'][i]['histogram']:
if j['nEvents']:
if j['average'] != 0.0:
avg = [j['average']]
finalValues[i].append(avg * j['nEvents'])
finalValues[i] = list(itertools.chain.from_iterable(finalValues[i]))
print "FinalValues: ", finalValues
return finalValues
# print "PeakValueVsize: ", workload['performance'][semiPath]['cmsRun1']['PeakValueVsize']['histogram']
# print "AvgEventTime: ", workload['performance'][semiPath]['cmsRun1']['AvgEventTime']['histogram']
# print "TotalJobTime: ", workload['performance'][semiPath]['cmsRun1']['TotalJobTime']['histogram']
# print "PeakValueRss: ", workload['performance'][semiPath]['cmsRun1']['PeakValueRss']['histogram']
def getWorstOffenders(workload, workflow, task):
"""
It receives the workloadSummary and then looks for the worst offenders
"""
semiPath = '/'+workflow+'/'+task
finalWorst = {}
print "\ngetWorstOffenders():\t%s" % semiPath
for i in metrics:
finalWorst[i] = []
for j in workload['performance'][semiPath]['cmsRun1'][i]['worstOffenders']:
if not np.isinf(float(j['value'])):
finalWorst[i].append(float(j['value']))
else:
print "\n?????????? I FOUND AN INF VALUE FOR:"
print "Workflow: %s\tTask: %s\tValue:%f" % (workflow, task, float(j['value']))
print "FinalWorst: ", finalWorst
return finalWorst
def getYArray(metric, maximum):
"""
It returns an array that will be used to create the grid lines in the plots (Y axis only)
Starting with the premisse that plots won't support more than 50 horizontal lines.
"""
step = float(maximum/30)
ypos = []
if metric == 'AvgEventTime':
if step <= 0.5:
ypos = np.arange(0., maximum+1, .5)
elif 0.5 < step <= 1.0:
ypos = np.arange(0., maximum+1, 1.0)
elif 1. < step <= 5.0:
ypos = np.arange(0., maximum+5, 5.0)
elif 5. < step <= 10.0:
ypos = np.arange(0., maximum+10, 10.0)
elif 10. < step <= 20.0:
ypos = np.arange(0., maximum+20, 20.0)
elif 20. < step <= 30.0:
ypos = np.arange(0., maximum+30, 30.0)
elif 30. < step <= 50.0:
ypos = np.arange(0., maximum+50, 50.0)
elif 50. < step <= 100.0:
ypos = np.arange(0., maximum+100, 100.0)
else:
ypos = np.arange(0., maximum+step, int(step+1))
elif metric == 'PeakValueVsize':
if step <= 200:
ypos = np.arange(0, maximum+200, 200)
else:
ypos = np.arange(0, maximum+step, int(step+1))
elif metric == 'PeakValueRss':
if step <= 200:
ypos = np.arange(0, maximum+200, 200)
else:
ypos = np.arange(0, maximum+step, int(step+1))
else: # TotalJobTime
if step <= 500:
ypos = np.arange(0, maximum+500, 500)
elif 500 < step <= 2000:
ypos = np.arange(0, maximum+2000, 2000)
elif 2000 < step <= 5000:
ypos = np.arange(0, maximum+5000, 5000)
elif 5000 < step <= 10000:
ypos = np.arange(0, maximum+10000, 10000)
elif 10000 < step <= 20000:
ypos = np.arange(0, maximum+20000, 20000)
elif 20000 < step <= 50000:
ypos = np.arange(0, maximum+50000, 50000)
else:
ypos = np.arange(0, maximum+step, int(step+1))
return ypos
def getWorstValue(iniWorst, xvalues):
"""
Return the real worst case in the workflow, taking into consideration
the worstOffenders and the xvalues list
"""
print "Is iniWorst (%f) > max(xvalues) (%r)\n" % (iniWorst, xvalues)
if iniWorst > (max(xvalues)):
return iniWorst
else:
return (max(xvalues))
def makePlots(perf, worst):
"""
It receives a dict of a dict of a dict containing the workflowName,
taskName/pathToTask and the performance values according to the metrics.
It receives a dictionary with the worst values for those 4 metrics.
Finally it makes a plot.
"""
print "\nmakePlots()"
print "\nIterating over perf dict..."
metrics = ['PeakValueVsize','PeakValueRss','AvgEventTime','TotalJobTime']
steps = ['GEN-SIM', 'DIGI', 'RECO', 'ALCA']
# iterating over metrics
for metric in metrics:
print " ****** Metric: %s ******" % metric
xnames = {steps[0] : [], steps[1] : [], steps[2] : [], steps[3] : []}
xvalues = {steps[0] : [], steps[1] : [], steps[2] : [], steps[3] : []}
yworst = {steps[0] : [], steps[1] : [], steps[2] : [], steps[3] : []}
# iterating over workflows
for wf,val1 in perf.iteritems():
# iterating over tasks
for task,val2 in val1.iteritems():
# Reducing the size of the workflow name
aux = wf.split('_')[:-3]
aux = '_'.join(aux)
aux = aux.split('_')[4:]
shortWf = '_'.join(aux)
shortWf = shortWf[1:]
# Fix for when the worstOffenders list is empty, then set it to [0]
if not worst[wf][task][metric]:
worst[wf][task][metric] = [0]
# Fix for when xvalues (aka val2[metric]) is an empty list, then set it to [0]
if not val2[metric]:
val2[metric] = [0]
if steps[1] in task:
xnames[steps[1]].append(shortWf)
# it gets the mean of all values in the array
xvalues[steps[1]].append(np.mean(val2[metric]))
# Gets the worst of the worstOffenders only
yworst[steps[1]].append(getWorstValue(max(worst[wf][task][metric]), val2[metric]))
elif steps[2] in task:
xnames[steps[2]].append(shortWf)
xvalues[steps[2]].append(np.mean(val2[metric]))
yworst[steps[2]].append(getWorstValue(max(worst[wf][task][metric]), val2[metric]))
elif steps[3] in task:
xnames[steps[3]].append(shortWf)
xvalues[steps[3]].append(np.mean(val2[metric]))
yworst[steps[3]].append(getWorstValue(max(worst[wf][task][metric]), val2[metric]))
else: # means GEN-SIM step
xnames[steps[0]].append(shortWf)
xvalues[steps[0]].append(np.mean(val2[metric]))
yworst[steps[0]].append(getWorstValue(max(worst[wf][task][metric]), val2[metric]))
for step in steps:
# if here is one workflow for this step, then it must be plotted
if xnames[step]:
print "\nCreating plots for %s step and %s metric\n" % (step, metric)
print "xnames: ", xnames[step]
print "xvalues: ", xvalues[step]
print "yworst: ", yworst[step]
width = len(yworst[step]) * 0.5
# width needs to be at least 3.5
if width < 3.5:
width = 3.5
fig = pp.figure(figsize=(width, 10))
#pp.title('CMSSW_X_Y_Z: '+step+' performance')
pp.title(step+': '+metric)
pos = np.arange(len(xnames[step])) # bars start in these points and have width=0.5
posticks = np.arange(len(xnames[step]))+0.25 # ticks are placed in the middle of the bars
print "pos: ", pos
pp.bar(pos, xvalues[step], ecolor='r', width=0.5)
pp.plot(posticks, yworst[step], 'r.', markersize=9)
pp.xticks(posticks, xnames[step], rotation=90)
# tweaking y axis
ypos = getYArray(metric, max(yworst[step]))
pp.yticks(ypos)
### Tweaking the figure
fig.subplots_adjust(left=0.18, bottom=0.4) # Automatically adjust subplot parameters to give specified padding
#pp.ylabel(metric)
#pp.grid(True)
pp.grid(True, which='major')
filename = step+'_'+metric+'.png'
fig.savefig('/afs/cern.ch/work/a/amaltaro/www/testPlots/pileup/'+filename)
else:
print "\nNothing to plot for: %s and %s\n" % (step, metric)
def main():
"""
Based on a list of workflows, it does the following steps for each wf:
* getTaskNames(): receives the workflow name and retrieves the tasknames
(including the inputTask/outputModule) and returns a list.
* getWorkloadSummary(): receives a workflow name and retrieves the workloadSummary
* Then for every Task, it gets the Performance and WorstOffenders information. The
methods return a dictionary containing the metric names as key and a list of the
averages as value
* Finally it makes 4 plots: 1 for Gen-Sim level step, one for DIGI, one for RECO
and the last one for ALCA.
"""
#list = ['anlevin_RVCMSSW_6_2_0QCD_Pt_600_800_130714_020114_1012','anlevin_RVCMSSW_6_2_0TTbarLepton_130714_015656_8806']
args=sys.argv[1:]
if len(args) != 1:
print "usage: python getPerf.py <inputFile_containing_a_list_of_workflows>"
sys.exit(0)
inputFile=args[0]
f = open(inputFile, 'r')
list = []
for line in f:
list.append(line.rstrip('\n'))
print "This is the list of workflows: ", list
f.close
count = 1
finalPerf = {}
finalWorst = {}
for workflow in list:
print "\n%d: %s" % (count,workflow)
taskNames = getTaskNames(workflow)
workload = getWorkloadSummary(workflow)
singlePerf = {}
singleWorst = {}
# 'task' is the whole task chain here. There is no need to save all of this in the final dicts
for task in taskNames:
shortTask = task.split('/')[-1]
singlePerf[shortTask] = getPerformance(workload, workflow, task)
singleWorst[shortTask] = getWorstOffenders(workload, workflow, task)
finalPerf[workflow] = singlePerf
finalWorst[workflow] = singleWorst
count+=1
print "\n***** Time to make the plots *****\n"
print "\nfinalPerf: ", finalPerf
print "\nfinalWorst: ", finalWorst
makePlots(finalPerf, finalWorst)
print "\nEND_OF_SCRIPT"
sys.exit(0)
if __name__ == "__main__":
main()