-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy path_pkgdown.yml
180 lines (179 loc) · 4.16 KB
/
_pkgdown.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
title: mice
url: https://amices.org/mice/
template:
bootstrap: 5
params:
bootswatch: lumen
reference:
- title: Missing data exploration
desc: |
Functions to count and explore the structure of the missing data.
contents:
- md.pattern
- md.pairs
- cc
- cci
- ic
- ici
- mcar
- ncc
- nic
- nimp
- fico
- flux
- fluxplot
- title: Main imputation functions
desc: |
The workflow of multiple imputation is: multiply-impute the data, apply the complete-data model to each imputed data set, and pool the results to get to the final inference. The main functions for imputing the data are:
contents:
- mice
- mice.mids
- parlmice
- futuremice
- title: Elementary imputation functions
desc: |
The elementary imputation function is the workhorse that creates the actual imputations. Elementary functions are called through the `method` argument of `mice` function. Each function imputes one or more columns in the data. There are also `mice.impute.xxx` functions outside the `mice` package.
contents: starts_with("mice.impute")
- title: Imputation model helpers
desc: |
Specification of the imputation models can be made more convenient using the following set of helpers.
contents:
- quickpred
- squeeze
- make.blocks
- make.blots
- make.formulas
- make.method
- make.post
- make.predictorMatrix
- make.visitSequence
- make.where
- construct.blocks
- name.blocks
- name.formulas
- title: Plots comparing observed to imputed/amputed data
desc: |
These plots contrast the observed data with the imputed/amputed data, usually with a blue/red distinction.
contents:
- bwplot.mids
- densityplot.mids
- plot.mids
- stripplot.mids
- xyplot.mids
- title: Repeated analyses and combining analytic estimates
desc: |
Multiple imputation creates m > 1 completed data sets, fits the model of interest to each of these, and combines the analytic estimates. The following functions assist in executing the analysis and pooling steps:
contents:
- with.mids
- pool
- pool.r.squared
- pool.scalar
- pool.table
- nelsonaalen
- pool.compare
- anova.mira
- fix.coef
- D1
- D2
- D3
- title: Data manipulation
desc: |
The multiply-imputed data can be combined in various ways, and exported into other formats.
contents:
- complete
- cbind
- rbind
- ibind
- as.mids
- as.mira
- as.mitml.result
- filter.mids
- mids2mplus
- mids2spss
- title: Class descriptions
desc: |
The data created at the various analytic phases are stored as list objects of a specific class. The most important classes and class-test functions are:
contents:
- mids
- mira
- mipo
- is.mids
- is.mipo
- is.mira
- is.mitml.result
- title: Extraction functions
desc: |
Helpers to extract and print information from objects of specific classes.
contents:
- convergence
- getfit
- getqbar
- glance.mipo
- print.mids
- print.mira
- print.mice.anova
- print.mice.anova.summary
- summary.mira
- summary.mids
- summary.mice.anova
- tidy.mipo
- title: Low-level imputation functions
desc: |
Several functions are dedicated to common low-level operations to generate the imputations:
contents:
- estimice
- norm.draw
- .norm.draw
- .pmm.match
- title: Multivariate amputation
desc: |
Amputation is the inverse of imputation, starting with a complete dataset, and creating missing data pattern according to the posited missing data mechanism. Amputation is useful for simulation studies.
contents:
- ampute
- bwplot.mads
- xyplot.mads
- is.mads
- mads
- print.mads
- summary.mads
- title: Datasets
desc: Built-in datasets
contents:
- boys
- brandsma
- employee
- fdd
- fdgs
- leiden85
- mammalsleep
- mnar_demo_data
- nhanes
- nhanes2
- pattern
- popmis
- pops
- potthoffroy
- selfreport
- tbc
- toenail
- toenail2
- walking
- windspeed
- title: Miscellaneous functions
desc: Miscellaneous functions
contents:
- appendbreak
- extractBS
- glm.mids
- lm.mids
- matchindex
- mdc
- mice.theme
- supports.transparent
- version
articles:
- title: General
navbar: ~
contents:
- overview
- oldfriends