forked from RyanZotti/Self-Driving-Car
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_3d_conv_net.py
119 lines (87 loc) · 4.46 KB
/
train_3d_conv_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import tensorflow as tf
import numpy as np
import random
from util import multiple_random_windows_from_random_sessions as random_windows
'''
Helpful notes
- Excellent source explaining convoluted neural networks:
http://cs231n.github.io/convolutional-networks/
- Output size of a conv layer is computed by (W−F+2P)/S+1
W = input volumne size
F = field size of conv neuron
S = stride size
P = zero padding size
(240-6+2)/2=118
(320-6+2)/2=158
(28-5+2)/2
'''
data_path = '/Users/ryanzotti/Documents/repos/Self_Driving_RC_Car/data'
window_size = 50 # full size before it is potentially hollowed out. See actual_window_size for true size
window_count = 50
hollow_window = True
actual_window_size = window_size
if hollow_window:
actual_window_size = 2
validation_predictors, validation_targets = random_windows(data_path,window_size,window_count,hollow_window)
sess = tf.InteractiveSession(config=tf.ConfigProto())
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv3d(x, W):
return tf.nn.conv3d(x, W, strides=[1, 1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
x = tf.placeholder(tf.float32, shape=[None, actual_window_size, 240, 320, 3])
y_ = tf.placeholder(tf.float32, shape=[None, 3])
W_conv1 = weight_variable([2, 3, 3, 3, 16])
b_conv1 = bias_variable([16])
h_conv1 = tf.nn.relu(conv3d(x, W_conv1) + b_conv1)
W_conv2 = weight_variable([2, 3, 3, 16, 4])
b_conv2 = bias_variable([4])
h_conv2 = tf.nn.relu(conv3d(h_conv1, W_conv2) + b_conv2)
W_fc1 = weight_variable([actual_window_size * 240 * 320 * 4, 4])
b_fc1 = bias_variable([4])
h_pool4_flat = tf.reshape(h_conv2, [-1, actual_window_size * 240 * 320 * 4])
h_fc1 = tf.nn.relu(tf.matmul(h_pool4_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([4, 3])
b_fc2 = bias_variable([3])
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# To view graph: tensorboard --logdir=/Users/ryanzotti/Documents/repos/Self_Driving_RC_Car/tf_visual_data/runs/1/
tf.scalar_summary('accuracy', accuracy)
merged = tf.merge_all_summaries()
tfboard_dir = '/Users/ryanzotti/Documents/repos/Self_Driving_RC_Car/tf_visual_data/runs/4/'
train_writer = tf.train.SummaryWriter(tfboard_dir+"/train/",sess.graph)
validation_writer = tf.train.SummaryWriter(tfboard_dir+"/validation/",sess.graph)
sess.run(tf.initialize_all_variables())
for i in range(1000):
# creates a new sample every iteration
train_predictors, train_targets = random_windows(data_path, window_size, window_count, hollow_window)
if i%425 == 0:
# Not sure what these two lines do
run_opts = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_opts_metadata = tf.RunMetadata()
train_feed = {x: train_predictors, y_: train_targets, keep_prob: 1.0}
train_summary, train_accuracy = sess.run([merged, accuracy],feed_dict=train_feed,options=run_opts,
run_metadata=run_opts_metadata)
train_writer.add_run_metadata(run_opts_metadata, 'step%03d' % i)
train_writer.add_summary(train_summary, i)
validation_feed = {x: validation_predictors, y_: validation_targets, keep_prob: 1.0}
validation_summary, validation_accuracy = sess.run([merged, accuracy],feed_dict=validation_feed,options=run_opts,
run_metadata=run_opts_metadata)
validation_writer.add_run_metadata(run_opts_metadata, 'step%03d' % i)
validation_writer.add_summary(validation_summary, i)
print("{i} training accuracy: {train_acc}, validation accuracy: {validation_acc}".format(train_acc=train_accuracy,validation_acc=validation_accuracy,i=i))
train_step.run(feed_dict={x: train_predictors, y_: train_targets, keep_prob: 0.5})
# Save the trained model to a file
saver = tf.train.Saver()
save_path = saver.save(sess, "/Users/ryanzotti/Documents/repos/Self-Driving-Car/trained_model/model.ckpt")