-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpysipfennTutorial1.tex
1192 lines (1012 loc) · 42.9 KB
/
pysipfennTutorial1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{MatSE580 Guest Lecture 1 - Quick Guide to Manipulating Materials With \texttt{pymatgen}, Setting up \texttt{MongoDB}, and Getting Started with \texttt{pySIPFENN}}
\label{chap:pysipfenntutorial1}
\hypertarget{introduction}{%
\section{Introduction}\label{pysipfenntutorial:introduction}}
In this guest lecture, we will cover:
\begin{enumerate}
\item \protect\hyperlink{Manipulating-and-analyzing-materials}{Manipulating and analyzing materials} - using \href{https://github.com/materialsproject/pymatgen}{pymatgen}
\item \protect\hyperlink{Setting-up-MongoDB}{Setting up a small NoSQL database on the cloud to synchronize decentralized processing} - using \href{https://www.mongodb.com/atlas}{MongoDB Atlas} Free Tier
\item \protect\hyperlink{pymongo}{Interacting with the database} - using \href{https://github.com/mongodb/mongo-python-driver}{pymongo} library
\item \protect\hyperlink{pysipfenn-install}{Installing machine learning (ML) tools} to predict stability of materials - using \href{https://pysipfenn.readthedocs.io/en/stable/}{pySIPFENN}
\end{enumerate}
Before you begin, you will need to set up a few essential development
tools.
While not required, it is recommended first to set up a virtual
environment using venv or Conda. This ensures that one of the required
versions of Python (3.9+) is used and there are no dependency conflicts.
It often comes preinstalled, like in GitHub Codespaces and some Linux
distributions. You can quickly check that by running.
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
conda --version
\end{minted}
And if it is not installed, you can follow the
(\href{https://docs.conda.io/en/latest/miniconda.html}{miniconda
instructions} ) for a quick clean setup.
Once you have Conda installed on your system, you can create a new
environment with:
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
conda create -n 580demo python=3.10 jupyter numpy scipy
conda init
\end{minted}
Restart your terminal, and activate the environment with:
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
conda activate 580demo
\end{minted}
At this point, you should be able to run
\texttt{jupyter notebook} and open this notebook in
your browser with it or select the kernel
\texttt{580demo} in VS Code (top-right corner) or other
IDEs.
First, we will import some libraries that ship with Python so that we
don't need to worry about getting them, and are used in this notebook:
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
from pprint import pprint # pretty printing
from collections import defaultdict # convenience in the example
import os # file handling
from datetime import datetime # time handling
from zoneinfo import ZoneInfo # time handling
\end{minted}
Now, we need to use \texttt{pip} package manager to
install the rest of the libraries we will use. If you are using Conda,
you could also use \texttt{conda install} instead, but
it is more elaborate for non-Anaconda-default packages.
We start with \texttt{pymatgen}, used in the next part
of this notebook. To install it, simply remove the
\texttt{\#} in the following line and run it, or open a
terminal and run \texttt{pip install pymatgen}.
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
!pip install pymatgen
\end{minted}
And then install \texttt{pymongo} used in the 2nd part:
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
!pip install pymongo
\end{minted}
Now, you should be ready to go!
\hypertarget{manipulating-and-analyzing-materials}{%
\section{Manipulating and analyzing
materials}\label{pysipfenntutorial:manipulating-and-analyzing-materials}}
To start working with atomic structures, often referred to as atomic
configurations or simply materials, we must be able to represent and
manipulate them. One of the most powerful and mature tools to do so is
\href{https://github.com/materialsproject/pymatgen}{pymatgen}, which we
just installed. The critical component of pymatgen is its library of
representations of fundamental materials objects, such as
\texttt{Structure} and
\texttt{Molecule}, contained in the
\texttt{pymatgen.core} module. Let's import it and
create a simple cubic structure of Al just as we did in the DFTTK
tutorial last week:
\hypertarget{basics}{%
\subsection{Basics}\label{pysipfenntutorial:basics}}
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
from pymatgen.core import Structure
s = Structure(
lattice=[[4.0384, 0, 0], [0, 4.0384, 0], [0, 0, 4.0384]],
species=['Al', 'Al', 'Al', 'Al'],
coords=[[0.0, 0.0, 0.0], [0, 0.5, 0.5], [0.5, 0.0, 0.5], [0.5, 0.5, 0.0]]
)
\end{minted}
Now, \texttt{s} holds our initialized structure, and we
can apply print on it to see what it looks like:
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
print(s)
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
Full Formula (Al4)
Reduced Formula: Al
abc : 4.038400 4.038400 4.038400
angles: 90.000000 90.000000 90.000000
pbc : True True True
Sites (4)
# SP a b c
--- ---- --- --- ---
0 Al 0 0 0
1 Al 0 0.5 0.5
2 Al 0.5 0 0.5
3 Al 0.5 0.5 0
\end{minted}
\textbf{Initialized} is a critical word here because the
\texttt{Structure} object is not just a collection of
``numbers''. It holds a lot of information we can access using the
\texttt{Structure} object's attributes and methods. For
example, the density of the material is immediately available:
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
s.density
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
2.721120664587368
\end{minted}
We can also ``mutate'' the object with a few intuitive methods like
\texttt{apply\_strain}:
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
s.apply_strain(0.1)
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
Structure Summary
Lattice
abc : 4.442240000000001 4.442240000000001 4.442240000000001
angles : 90.0 90.0 90.0
volume : 87.66092623767148
A : 4.442240000000001 0.0 0.0
B : 0.0 4.442240000000001 0.0
C : 0.0 0.0 4.442240000000001
pbc : True True True
PeriodicSite: Al (0.0, 0.0, 0.0) [0.0, 0.0, 0.0]
PeriodicSite: Al (0.0, 2.221, 2.221) [0.0, 0.5, 0.5]
PeriodicSite: Al (2.221, 0.0, 2.221) [0.5, 0.0, 0.5]
PeriodicSite: Al (2.221, 2.221, 0.0) [0.5, 0.5, 0.0]
\end{minted}
Importantly, as you can see, \texttt{s} has been
printed out when we ran the command, as if the
\texttt{s.apply\_strain} returned a modified
\texttt{Structure} object. This is true! However, by
default, pymatgen will also strain the original object, as you can see
looking at the \texttt{s} density:
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
s.density
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
2.0444182303436262
\end{minted}
This is a very convenient feature, but it can be dangerous if you are
not careful and, for instance, try to generate 10 structures with
increasing strains:
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
strainedList = [s.apply_strain(0.1 * i) for i in range(1, 11)]
for strained in strainedList[:2]:
print(strained)
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
Full Formula (Al4)
Reduced Formula: Al
abc : 297.826681 297.826681 297.826681
angles: 90.000000 90.000000 90.000000
pbc : True True True
Sites (4)
# SP a b c
--- ---- --- --- ---
0 Al 0 0 0
1 Al 0 0.5 0.5
2 Al 0.5 0 0.5
3 Al 0.5 0.5 0
Full Formula (Al4)
Reduced Formula: Al
abc : 297.826681 297.826681 297.826681
angles: 90.000000 90.000000 90.000000
pbc : True True True
Sites (4)
# SP a b c
--- ---- --- --- ---
0 Al 0 0 0
1 Al 0 0.5 0.5
2 Al 0.5 0 0.5
3 Al 0.5 0.5 0
\end{minted}
We will now end up with a single object with 67 times the original
volume (1.1 * 1.2 * \ldots{} * 2.0) repeated 10 times. To avoid this, we
can get (or regenerate) original \texttt{s} and use the
\texttt{copy} method to create a new object each time:
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
from copy import copy
s = Structure(
lattice=[[4.0384, 0, 0], [0, 4.0384, 0], [0, 0, 4.0384]],
species=['Al', 'Al', 'Al', 'Al'],
coords=[[0.0, 0.0, 0.0], [0, 0.5, 0.5], [0.5, 0.0, 0.5], [0.5, 0.5, 0.0]]
)
\end{minted}
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
strainedList = [copy(s).apply_strain(0.1 * i) for i in range(0, 11)]
for strained in strainedList[:2]:
print(strained)
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
Full Formula (Al4)
Reduced Formula: Al
abc : 4.038400 4.038400 4.038400
angles: 90.000000 90.000000 90.000000
pbc : True True True
Sites (4)
# SP a b c
--- ---- --- --- ---
0 Al 0 0 0
1 Al 0 0.5 0.5
2 Al 0.5 0 0.5
3 Al 0.5 0.5 0
Full Formula (Al4)
Reduced Formula: Al
abc : 4.442240 4.442240 4.442240
angles: 90.000000 90.000000 90.000000
pbc : True True True
Sites (4)
# SP a b c
--- ---- --- --- ---
0 Al 0 0 0
1 Al 0 0.5 0.5
2 Al 0.5 0 0.5
3 Al 0.5 0.5 0
\end{minted}
And now everything works as expected! We can also easily do some
modifications to the structure, like replacing one of the atoms with
another
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
s.replace(0, "Au")
print(s)
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
Full Formula (Al3 Au1)
Reduced Formula: Al3Au
abc : 4.038400 4.038400 4.038400
angles: 90.000000 90.000000 90.000000
pbc : True True True
Sites (4)
# SP a b c
--- ---- --- --- ---
0 Au 0 0 0
1 Al 0 0.5 0.5
2 Al 0.5 0 0.5
3 Al 0.5 0.5 0
\end{minted}
or all of the atoms of a given element at once
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
s.replace_species({"Al": "Ni"})
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
Structure Summary
Lattice
abc : 4.0384 4.0384 4.0384
angles : 90.0 90.0 90.0
volume : 65.860951343104
A : 4.0384 0.0 0.0
B : 0.0 4.0384 0.0
C : 0.0 0.0 4.0384
pbc : True True True
PeriodicSite: Au (0.0, 0.0, 0.0) [0.0, 0.0, 0.0]
PeriodicSite: Ni (0.0, 4.038, 4.038) [0.0, 0.5, 0.5]
PeriodicSite: Ni (4.038, 0.0, 4.038) [0.5, 0.0, 0.5]
PeriodicSite: Ni (4.038, 4.038, 0.0) [0.5, 0.5, 0.0]
\end{minted}
Lastly, with \texttt{Structure} objects, we also have
access to lower-order primitives, such as
\texttt{Composition}
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
c = s.composition
c
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
Composition('Au1 Ni3')
\end{minted}
which may look like a simple string but is actually a powerful object
that can be used to do things like calculate the fraction of each
element in the structure:
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
c.fractional_composition
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
Composition('Au0.25 Ni0.75')
\end{minted}
including the weight fractions (I wrote this part of pymatgen :)):
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
c.to_weight_dict
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
{'Au': 0.5279943035775228, 'Ni': 0.47200569642247725}
\end{minted}
\hypertarget{symmetry-analysis}{%
\subsection{Symmetry Analysis}\label{pysipfenntutorial:symmetry-analysis}}
With some basics of the way, let's look at some more advanced features
of pymatgen that come from the integration with 3rd party libraries like
\href{https://spglib.readthedocs.io/en/latest/index.html}{spglib}, which
is a high-performance library for symmetry analysis (1) written in C,
(2) wrapped in Python by the authors, and finally (3) wrapped in
pymatgen for convenience.
Such an approach introduces a lot of performance bottlenecks (4-20x
slower and 50x RAM needs compared to my interface written in
\href{https://nim-lang.org}{Nim}), but allows us to get started with
things like symmetry analysis in with just one line of code where
\texttt{SpacegroupAnalyzer} puts
\texttt{s} in a new context:
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
from pymatgen.symmetry.analyzer import SpacegroupAnalyzer
spgA = SpacegroupAnalyzer(s)
\end{minted}
Now many useful methods are available to us, allowing quickly getting
\texttt{crystal\_system},
\texttt{space\_group\_symbol}, and
\texttt{point\_group\_symbol}:
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
spgA.get_crystal_system()
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
'cubic'
\end{minted}
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
spgA.get_space_group_symbol()
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
'Pm-3m'
\end{minted}
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
spgA.get_point_group_symbol()
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
'm-3m'
\end{minted}
We can also do some more advanced operations involving symmetry. For
example, as some may have noticed, the \texttt{s}
structure we created is primitive, but if we fix its symmetry, we can
describe it with just 1 face-centered atom instead of 3, as they are
symmetrically equivalent. We can do this with the
\texttt{get\_symmetrized\_structure}:
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
symmetrized = spgA.get_symmetrized_structure()
symmetrized
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
SymmetrizedStructure
Full Formula (Ni3 Au1)
Reduced Formula: Ni3Au
Spacegroup: Pm-3m (221)
abc : 4.038400 4.038400 4.038400
angles: 90.000000 90.000000 90.000000
Sites (4)
# SP a b c Wyckoff
--- ---- --- --- --- ---------
0 Au 0 0 0 1a
1 Ni 0 0.5 0.5 3c
\end{minted}
Which we can then use to get the primitive or conventional structure
back. Here, they happen to be the same, but that is often not the case.
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
symmetrized.to_primitive()
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
Structure Summary
Lattice
abc : 4.0384 4.0384 4.0384
angles : 90.0 90.0 90.0
volume : 65.860951343104
A : 4.0384 0.0 2.472806816838336e-16
B : -2.472806816838336e-16 4.0384 2.472806816838336e-16
C : 0.0 0.0 4.0384
pbc : True True True
PeriodicSite: Ni (-1.236e-16, 2.019, 2.019) [0.0, 0.5, 0.5]
PeriodicSite: Ni (2.019, 0.0, 2.019) [0.5, 0.0, 0.5]
PeriodicSite: Ni (2.019, 2.019, 2.473e-16) [0.5, 0.5, 0.0]
PeriodicSite: Au (0.0, 0.0, 0.0) [0.0, 0.0, 0.0]
\end{minted}
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
symmetrized.to_conventional()
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
Structure Summary
Lattice
abc : 4.0384 4.0384 4.0384
angles : 90.0 90.0 90.0
volume : 65.860951343104
A : 4.0384 0.0 2.472806816838336e-16
B : -2.472806816838336e-16 4.0384 2.472806816838336e-16
C : 0.0 0.0 4.0384
pbc : True True True
PeriodicSite: Ni (-1.236e-16, 2.019, 2.019) [0.0, 0.5, 0.5]
PeriodicSite: Ni (2.019, 0.0, 2.019) [0.5, 0.0, 0.5]
PeriodicSite: Ni (2.019, 2.019, 2.473e-16) [0.5, 0.5, 0.0]
PeriodicSite: Au (0.0, 0.0, 0.0) [0.0, 0.0, 0.0]
\end{minted}
\hypertarget{more-complex-structures}{%
\subsection{More Complex Structures}\label{pysipfenntutorial:more-complex-structures}}
Armed with all the basics, let's look at some more complex structures
and start to modify them! For that purpose, we will take a topologically
close-packed (TCP) phase from the Cr-Fe-Ni system called Sigma, which is
both difficult to predict and critical to the performance of Ni-based
superalloys.
The structure is available here under
\texttt{assets/0-Cr8Fe18Ni4.POSCAR}, in plain-text
looking like
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
Cr8 Fe18 Ni4
1.0
8.547048 0.000000 0.000000
0.000000 8.547048 0.000000
0.000000 0.000000 4.477714
Cr Fe Ni
8 18 4
direct
0.737702 0.063709 0.000000 Cr
0.262298 0.936291 0.000000 Cr
...
0.899910 0.100090 0.500000 Ni
\end{minted}
,or when visualized in Figure \ref{pysipfenntutorial:simgaexample} below:
\begin{figure}[H]
\centering
\includegraphics[width=0.6\textwidth]{pysipfennTutorial1/112-Cr12Fe10Ni8.png}
\caption{Rendering of $Cr_{12}Fe_{10}Ni_8$ endmember occupancy of the $\sigma$-phase.}
\label{pysipfenntutorial:simgaexample}
\end{figure}
Now, we can quickly load it into pymatgen with either (1)
\texttt{Structure.from\_file} or (2)
\texttt{pymatgen.io.vasp} module using
\texttt{Poscar} class, with the latter being more
reliable in some cases. Since it is an example of Sigma TCP phase
occupation, we will call it \texttt{baseStructure}.
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
baseStructure = Structure.from_file("assets/0-Cr8Fe18Ni4.POSCAR")
baseStructure
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
Structure Summary
Lattice
abc : 8.547048 8.547048 4.477714
angles : 90.0 90.0 90.0
volume : 327.10609528461225
A : 8.547048 0.0 0.0
B : 0.0 8.547048 0.0
C : 0.0 0.0 4.477714
pbc : True True True
PeriodicSite: Cr (6.305, 0.5445, 0.0) [0.7377, 0.06371, 0.0]
PeriodicSite: Cr (2.242, 8.003, 0.0) [0.2623, 0.9363, 0.0]
PeriodicSite: Cr (3.729, 2.032, 2.239) [0.4363, 0.2377, 0.5]
PeriodicSite: Cr (6.515, 4.818, 2.239) [0.7623, 0.5637, 0.5]
PeriodicSite: Cr (4.818, 6.515, 2.239) [0.5637, 0.7623, 0.5]
PeriodicSite: Cr (2.032, 3.729, 2.239) [0.2377, 0.4363, 0.5]
PeriodicSite: Cr (0.5445, 6.305, 0.0) [0.06371, 0.7377, 0.0]
PeriodicSite: Cr (8.003, 2.242, 0.0) [0.9363, 0.2623, 0.0]
PeriodicSite: Fe (0.0, 0.0, 0.0) [0.0, 0.0, 0.0]
PeriodicSite: Fe (4.274, 4.274, 2.239) [0.5, 0.5, 0.5]
PeriodicSite: Fe (3.958, 1.107, 0.0) [0.463, 0.1295, 0.0]
PeriodicSite: Fe (4.59, 7.44, 0.0) [0.537, 0.8705, 0.0]
PeriodicSite: Fe (3.167, 8.231, 2.239) [0.3705, 0.963, 0.5]
PeriodicSite: Fe (0.316, 5.38, 2.239) [0.03697, 0.6295, 0.5]
PeriodicSite: Fe (5.38, 0.316, 2.239) [0.6295, 0.03697, 0.5]
PeriodicSite: Fe (8.231, 3.167, 2.239) [0.963, 0.3705, 0.5]
PeriodicSite: Fe (1.107, 3.958, 0.0) [0.1295, 0.463, 0.0]
PeriodicSite: Fe (7.44, 4.59, 0.0) [0.8705, 0.537, 0.0]
PeriodicSite: Fe (1.562, 1.562, 1.127) [0.1827, 0.1827, 0.2517]
PeriodicSite: Fe (6.985, 6.985, 3.351) [0.8173, 0.8173, 0.7483]
PeriodicSite: Fe (6.985, 6.985, 1.127) [0.8173, 0.8173, 0.2517]
PeriodicSite: Fe (2.712, 5.835, 3.366) [0.3173, 0.6827, 0.7517]
PeriodicSite: Fe (2.712, 5.835, 1.112) [0.3173, 0.6827, 0.2483]
PeriodicSite: Fe (1.562, 1.562, 3.351) [0.1827, 0.1827, 0.7483]
PeriodicSite: Fe (5.835, 2.712, 1.112) [0.6827, 0.3173, 0.2483]
PeriodicSite: Fe (5.835, 2.712, 3.366) [0.6827, 0.3173, 0.7517]
PeriodicSite: Ni (3.418, 3.418, 0.0) [0.3999, 0.3999, 0.0]
PeriodicSite: Ni (5.129, 5.129, 0.0) [0.6001, 0.6001, 0.0]
PeriodicSite: Ni (0.8555, 7.692, 2.239) [0.1001, 0.8999, 0.5]
PeriodicSite: Ni (7.692, 0.8555, 2.239) [0.8999, 0.1001, 0.5]
\end{minted}
Now, we can quickly investigate the symmetry with tools we just learned:
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
spgA = SpacegroupAnalyzer(baseStructure)
spgA.get_symmetrized_structure()
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
SymmetrizedStructure
Full Formula (Cr8 Fe18 Ni4)
Reduced Formula: Cr4Fe9Ni2
Spacegroup: P4_2/mnm (136)
abc : 8.547048 8.547048 4.477714
angles: 90.000000 90.000000 90.000000
Sites (30)
# SP a b c Wyckoff
--- ---- -------- -------- -------- ---------
0 Cr 0.737702 0.063709 0 8i
1 Fe 0 0 0 2a
2 Fe 0.463029 0.129472 0 8i
3 Fe 0.182718 0.182718 0.251726 8j
4 Ni 0.39991 0.39991 0 4f
\end{minted}
We can quickly see that our atomic configuration has \textbf{5}
chemically unique sites of different multiplicities occupied by the
\textbf{3} elements of interest. However, performing the analysis like
that can quickly lead to problems if, for instance, we introduce even a
tiny disorder in the structure, like a substitutional defect.
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
sDilute = copy(baseStructure)
sDilute.replace(0, "Fe")
spgA = SpacegroupAnalyzer(sDilute)
spgA.get_symmetrized_structure()
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
SymmetrizedStructure
Full Formula (Cr7 Fe19 Ni4)
Reduced Formula: Cr7Fe19Ni4
Spacegroup: Pm (6)
abc : 8.547048 8.547048 4.477714
angles: 90.000000 90.000000 90.000000
Sites (30)
# SP a b c Wyckoff
--- ---- -------- -------- -------- ---------
0 Fe 0.737702 0.063709 0 1a
1 Cr 0.262298 0.936291 0 1a
2 Cr 0.436291 0.237702 0.5 1b
3 Cr 0.762298 0.563709 0.5 1b
4 Cr 0.563709 0.762298 0.5 1b
5 Cr 0.237702 0.436291 0.5 1b
6 Cr 0.063709 0.737702 0 1a
7 Cr 0.936291 0.262298 0 1a
8 Fe 0 0 0 1a
9 Fe 0.5 0.5 0.5 1b
10 Fe 0.463029 0.129472 0 1a
11 Fe 0.536971 0.870528 0 1a
12 Fe 0.370528 0.963029 0.5 1b
13 Fe 0.036971 0.629472 0.5 1b
14 Fe 0.629472 0.036971 0.5 1b
15 Fe 0.963029 0.370528 0.5 1b
16 Fe 0.129472 0.463029 0 1a
17 Fe 0.870528 0.536971 0 1a
18 Fe 0.182718 0.182718 0.251726 2c
19 Fe 0.817282 0.817282 0.748274 2c
20 Fe 0.317282 0.682718 0.751726 2c
21 Fe 0.682718 0.317282 0.248274 2c
22 Ni 0.39991 0.39991 0 1a
23 Ni 0.60009 0.60009 0 1a
24 Ni 0.10009 0.89991 0.5 1b
25 Ni 0.89991 0.10009 0.5 1b
\end{minted}
Without any change to the other 29 atoms, there are 25 unique sites
rather than 5. Thus, if one wants to see what are the symmetry-enforced
unique sites, determining underlying sublattices, in the structure, one
needs anonymize the atoms first.
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
for el in set(baseStructure.species):
baseStructure.replace_species({el: 'dummy'})
print(baseStructure)
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
Full Formula (Dummy30)
Reduced Formula: Dummy
abc : 8.547048 8.547048 4.477714
angles: 90.000000 90.000000 90.000000
pbc : True True True
Sites (30)
# SP a b c
--- ------- -------- -------- --------
0 Dummy0+ 0.737702 0.063709 0
1 Dummy0+ 0.262298 0.936291 0
2 Dummy0+ 0.436291 0.237702 0.5
3 Dummy0+ 0.762298 0.563709 0.5
4 Dummy0+ 0.563709 0.762298 0.5
5 Dummy0+ 0.237702 0.436291 0.5
6 Dummy0+ 0.063709 0.737702 0
7 Dummy0+ 0.936291 0.262298 0
8 Dummy0+ 0 0 0
9 Dummy0+ 0.5 0.5 0.5
10 Dummy0+ 0.463029 0.129472 0
11 Dummy0+ 0.536971 0.870528 0
12 Dummy0+ 0.370528 0.963029 0.5
13 Dummy0+ 0.036971 0.629472 0.5
14 Dummy0+ 0.629472 0.036971 0.5
15 Dummy0+ 0.963029 0.370528 0.5
16 Dummy0+ 0.129472 0.463029 0
17 Dummy0+ 0.870528 0.536971 0
18 Dummy0+ 0.182718 0.182718 0.251726
19 Dummy0+ 0.817282 0.817282 0.748274
20 Dummy0+ 0.817282 0.817282 0.251726
21 Dummy0+ 0.317282 0.682718 0.751726
22 Dummy0+ 0.317282 0.682718 0.248274
23 Dummy0+ 0.182718 0.182718 0.748274
24 Dummy0+ 0.682718 0.317282 0.248274
25 Dummy0+ 0.682718 0.317282 0.751726
26 Dummy0+ 0.39991 0.39991 0
27 Dummy0+ 0.60009 0.60009 0
28 Dummy0+ 0.10009 0.89991 0.5
29 Dummy0+ 0.89991 0.10009 0.5
\end{minted}
Which we then pass to the \texttt{SpacegroupAnalyzer}
to get the symmetry information as before:
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
spgA = SpacegroupAnalyzer(baseStructure)
spgA.get_symmetrized_structure()
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
SymmetrizedStructure
Full Formula (Dummy30)
Reduced Formula: Dummy
Spacegroup: P4_2/mnm (136)
abc : 8.547048 8.547048 4.477714
angles: 90.000000 90.000000 90.000000
Sites (30)
# SP a b c Wyckoff
--- ------- -------- -------- -------- ---------
0 Dummy0+ 0.737702 0.063709 0 8i
1 Dummy0+ 0 0 0 2a
2 Dummy0+ 0.463029 0.129472 0 8i
3 Dummy0+ 0.182718 0.182718 0.251726 8j
4 Dummy0+ 0.39991 0.39991 0 4f
\end{minted}
Or we can turn into a useful dict for generating all possible
occupancies of the structure.
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
spgA = SpacegroupAnalyzer(baseStructure)
uniqueDict = defaultdict(list)
for site, unique in enumerate(spgA.get_symmetry_dataset()['equivalent_atoms']):
uniqueDict[unique] += [site]
pprint(uniqueDict)
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
defaultdict(<class 'list'>,
{0: [0, 1, 2, 3, 4, 5, 6, 7],
8: [8, 9],
10: [10, 11, 12, 13, 14, 15, 16, 17],
18: [18, 19, 20, 21, 22, 23, 24, 25],
26: [26, 27, 28, 29]})
\end{minted}
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
from itertools import product
allPermutations = list(product(['Fe', 'Cr', 'Ni'], repeat=5))
print(
f'Obtained {len(allPermutations)} permutations of the sublattice occupancy\n'
'E.g.: {allPermutations[32]}')
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
Obtained 243 permutations of the sublattice occupancy
E.g.: ('Fe', 'Cr', 'Fe', 'Cr', 'Ni')
\end{minted}
We can now generate them iteratively, as done below:
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
structList = []
for permutation in allPermutations:
tempStructure = baseStructure.copy()
for unique, el in zip(uniqueDict, permutation):
for site in uniqueDict[unique]:
tempStructure.replace(site, el)
structList.append(tempStructure)
print(structList[25])
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
Full Formula (Cr4 Fe10 Ni16)
Reduced Formula: Cr2Fe5Ni8
abc : 8.547048 8.547048 4.477714
angles: 90.000000 90.000000 90.000000
pbc : True True True
Sites (30)
# SP a b c
--- ---- -------- -------- --------
0 Fe 0.737702 0.063709 0
1 Fe 0.262298 0.936291 0
2 Fe 0.436291 0.237702 0.5
3 Fe 0.762298 0.563709 0.5
4 Fe 0.563709 0.762298 0.5
5 Fe 0.237702 0.436291 0.5
6 Fe 0.063709 0.737702 0
7 Fe 0.936291 0.262298 0
8 Fe 0 0 0
9 Fe 0.5 0.5 0.5
10 Ni 0.463029 0.129472 0
11 Ni 0.536971 0.870528 0
12 Ni 0.370528 0.963029 0.5
13 Ni 0.036971 0.629472 0.5
14 Ni 0.629472 0.036971 0.5
15 Ni 0.963029 0.370528 0.5
16 Ni 0.129472 0.463029 0
17 Ni 0.870528 0.536971 0
18 Ni 0.182718 0.182718 0.251726
19 Ni 0.817282 0.817282 0.748274
20 Ni 0.817282 0.817282 0.251726
21 Ni 0.317282 0.682718 0.751726
22 Ni 0.317282 0.682718 0.248274
23 Ni 0.182718 0.182718 0.748274
24 Ni 0.682718 0.317282 0.248274
25 Ni 0.682718 0.317282 0.751726
26 Cr 0.39991 0.39991 0
27 Cr 0.60009 0.60009 0
28 Cr 0.10009 0.89991 0.5
29 Cr 0.89991 0.10009 0.5
\end{minted}
\hypertarget{persisting-on-disk}{%
\subsection{Persisting on Disk}\label{pysipfenntutorial:persisting-on-disk}}
The easiest way to persist a structure on disk is to use the
\texttt{to} method of the
\texttt{Structure} object, which will write the
structure in a variety of formats, including
\texttt{POSCAR} and \texttt{CIF}:
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
os.mkdir('POSCARs')
os.mkdir('CIFs')
for struct, permutation in zip(structList, allPermutations):
struct.to(filename='POSCARs/' + "".join(permutation) + '.POSCAR')
struct.to(filename='CIFs/' + "".join(permutation) + '.cif')
\end{minted}
And now we are ready to use them in a variety of other tools like DFTTK
covered last week or
\href{https://pysipfenn.readthedocs.io/en/stable/}{pySIPFENN} covered
during the next lecture!
\hypertarget{setting-up-mongodb}{%
\section{Setting up MongoDB}\label{pysipfenntutorial:setting-up-mongodb}}
With the ability to manipulate structures locally, one will quickly run
into two major problems:
\begin{itemize}
\item
\textbf{How to pass them between personal laptop, HPC clusters, and
lab workstations?}
\item
\textbf{How do I share them with others later?}
\end{itemize}
One of the easiest ways to do so is to use a cloud-based database, which
will allow us to synchronize our work regardless of what machine we use
and then share it with others in a highly secure way or publicly, as
needed. In this lecture, we will use
\href{https://www.mongodb.com/atlas}{MongoDB Atlas} to set up a small
NoSQL database on the cloud. For our needs and most of the other
personal needs of researchers, the Free Tier will be more than enough,
but if you need more, you can always upgrade to a paid plan for a few
dollars a month if you need to store tens of thousands of structures.
\emph{\textbf{Note for Online Students: At this point, we will pause the
Jupiter Notebook and switch to the MongoDB Atlas website to set up the
database.} The process is fairly straightforward but feel free to stop
by during office hours for help}
Now, we should have the following: - A database called
\texttt{matse580} with a collection called
\texttt{structures} - User with read/write access named
\texttt{student} - API key for the user to access the
database (looks like \texttt{2fnc92niu2bnc9o240dc}) -
Resulting connection string to the database (looks like
\texttt{mongodb+srv://student:2fnc92niu2bnc9o240dc@<cluster\_name>/matse580})
and we can move to populating it with data!
\hypertarget{pymongo}{%
\section{Connecting Pymongo}\label{pysipfenntutorial:pymongo}}
The \texttt{pymongo} is a Python library that allows us
to interact with MongoDB databases in a very intuitive way. Let's start
by importing its \texttt{MongoClient} class and
creating a connection to our database:
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
from pymongo import MongoClient
uri = 'mongodb+srv://amk7137:
[email protected]/?retryWrites=true&w=majority'
client = MongoClient(uri)
\end{minted}
We can see what databases are available:
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
client.list_database_names()
\end{minted}
Lets now go back to MongoDB Atlas and create a new database called
\texttt{matse580} and a collection called
\texttt{structures} in it, and hopefully see that they
are /available:
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
client.list_database_names()
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
['matse580', 'admin', 'local']
\end{minted}
To go one level deeper and see what collections are available in the
\texttt{matse580} database we just created, we can use
the \texttt{list\_collection\_names} method:
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
database = client['matse580']
database.list_collection_names()
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
['structures']
\end{minted}
And then read the entries in it!
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
collection = database['structures']
\end{minted}
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
for entry in collection.find():
print(entry)
\end{minted}
But that's not very useful, because we didn't put anything in it yet.
\hypertarget{inserting-data}{%
\section{Inserting Data}\label{pysipfenntutorial:inserting-data}}
We start by constructing our idea of how a structure should be
represented in the database. For that purpose, we will use a dictionary
representation of the structure. This process is very flexible as NoSQL
databases like MongoDB do not require a strict schema and can be
modified on the fly and post-processed later. For our purposes, we will
use the following schema:
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
def struct2entry(s: Structure):
# convert to pymatgen Structure dictionary default
strcutreDict = {'structure': s.as_dict()}
# convert to pymatgen Composition dictionary default
compositionDict = {'composition': s.composition.as_dict()}
# merge the two dictionaries
entry = {**strcutreDict, **compositionDict}
# add some extra information
entry.update({'density': s.density,
'volume': s.volume,
'reducedFormula': s.composition.reduced_formula,
'weightFractions': s.composition.to_weight_dict
})
# and a full POSCAR for easy ingestion into VASP
entry.update({'POSCAR': s.to(fmt='poscar')})
return entry
\end{minted}
\begin{minted}[xleftmargin=3\parindent, linenos=true, fontsize=\small]{python}
pprint(struct2entry(structList[25]))
\end{minted}
\begin{minted}[xleftmargin=3\parindent, fontsize=\small, bgcolor=subtlegray]{output}
{'POSCAR': 'Cr4 Fe10 Ni16\n'
...,
'composition': {'Cr': 4.0, 'Fe': 10.0, 'Ni': 16.0},
'density': 8.658038607159655,
'reducedFormula': 'Cr2Fe5Ni8',
'structure': {'@class': 'Structure',
'@module': 'pymatgen.core.structure',
'charge': 0,
'lattice': {'a': 8.547048,
'alpha': 90.0,
'b': 8.547048,
'beta': 90.0,
'c': 4.477714,
'gamma': 90.0,
'matrix': [[8.547048, 0.0, 0.0],
[0.0, 8.547048, 0.0],
[0.0, 0.0, 4.477714]],
'pbc': (True, True, True),
'volume': 327.10609528461225},
'properties': {},
'sites': [{'abc': [0.737702, 0.063709, 0.0],
'label': 'Fe',
'properties': {},
'species': [{'element': 'Fe', 'occu': 1}],
'xyz': [6.305174403696, 0.544523881032, 0.0]},
...
]},
'volume': 327.10609528461225,
'weightFractions': {'Cr': 0.12194716383563854,
'Fe': 0.3274351039982438,
'Ni': 0.5506177321661175}}
\end{minted}
Looks great! Now we can add some metadata to it, like who created it,
when, and what was the permutation label used to generate it earlier; to
then insert it into the database using the
\texttt{insert\_one} method, which is not the fastest,
but the most flexible way to do so: