forked from ykamikawa/tf-keras-SegUNet
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_mask.py
149 lines (131 loc) · 4.67 KB
/
train_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# -*- coding: utf-8 -*-
import keras.backend.tensorflow_backend as KTF
import tensorflow as tf
from keras.callbacks import EarlyStopping, TensorBoard, ModelCheckpoint
from generator_mask import data_gen_small
import os
import numpy as np
import argparse
import json
import pandas as pd
from SegUNet import CreateSegUNet
def main(args):
# set the necessary list
train_list = pd.read_csv(args.train_list,header=None)
val_list = pd.read_csv(args.val_list,header=None)
# set the necessary directories
trainimg_dir = args.trainimg_dir
trainmsk_dir = args.trainmsk_dir
valimg_dir = args.valimg_dir
valmsk_dir = args.valmsk_dir
# get old session
old_session = KTF.get_session()
with tf.Graph().as_default():
session = tf.Session('')
KTF.set_session(session)
KTF.set_learning_phase(1)
# set callbacks
fpath = './pretrained_mask/LIP_SegUNet_mask{epoch:02d}.hdf5'
cp_cb = ModelCheckpoint(filepath = fpath, monitor='val_loss', verbose=1, save_best_only=True, mode='auto', period=5)
es_cb = EarlyStopping(monitor='val_loss', patience=2, verbose=1, mode='auto')
tb_cb = TensorBoard(log_dir="./pretrained_mask", write_images=True)
# set generater
train_gen = data_gen_small(trainimg_dir,
trainmsk_dir,
train_list,
args.batch_size,
[args.input_shape[0], args.input_shape[1]],
args.n_labels)
val_gen = data_gen_small(valimg_dir,
valmsk_dir,
val_list,
args.batch_size,
[args.input_shape[0], args.input_shape[1]],
args.n_labels)
# set model
segunet = CreateSegUNet(args.input_shape,
args.n_labels,
args.kernel,
args.pool_size,
args.output_mode)
print(segunet.summary())
# compile model
segunet.compile(loss=args.loss,
optimizer=args.optimizer,
metrics=["accuracy"])
# fit with genarater
segunet.fit_generator(generator=train_gen,
steps_per_epoch=args.epoch_steps,
epochs=args.n_epochs,
validation_data=val_gen,
validation_steps=args.val_steps,
callbacks=[cp_cb, es_cb, tb_cb])
# save model
with open("./pretrained_mask/LIP_SegUNet_mask.json", "w") as json_file:
json_file.write(json.dumps(json.loads(segunet.to_json()), indent=2))
print("save json model done...")
if __name__ == "__main__":
# command line argments
parser = argparse.ArgumentParser(description="SegUNet LIP dataset")
parser.add_argument("--train_list",
help="train list path")
parser.add_argument("--trainimg_dir",
help="train image dir path")
parser.add_argument("--trainmsk_dir",
help="train mask dir path")
parser.add_argument("--val_list",
help="val list path")
parser.add_argument("--valimg_dir",
help="val image dir path")
parser.add_argument("--valmsk_dir",
help="val mask dir path")
parser.add_argument("--batch_size",
default=10,
type=int,
help="batch size")
parser.add_argument("--n_epochs",
default=50,
type=int,
help="number of epoch")
parser.add_argument("--epoch_steps",
default=2000,
type=int,
help="number of epoch step")
parser.add_argument("--val_steps",
default=500,
type=int,
help="number of valdation step")
parser.add_argument("--n_labels",
default=1,
type=int,
help="Number of label")
parser.add_argument("--input_shape",
default=(256, 256, 3),
help="Input images shape")
parser.add_argument("--kernel",
default=3,
type=int,
help="Kernel size")
parser.add_argument("--pool_size",
default=(2, 2),
help="pooling and unpooling size")
parser.add_argument("--output_mode",
default="sigmoid",
type=str,
help="output activation")
parser.add_argument("--loss",
default="binary_crossentropy",
type=str,
help="loss function")
parser.add_argument("--optimizer",
default="adadelta",
type=str,
help="oprimizer")
parser.add_argument("--gpu_num",
default="0",
type=str,
help="number of gpu")
args = parser.parse_args()
# gpu_num
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_num
main(args)