-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunsung-heroes.tex
725 lines (700 loc) · 32.8 KB
/
unsung-heroes.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
% !TEX engine = lualatex
\documentclass[aspectratio=169,usepdftitle=false]{fireshonks}
%%%%%%%%%%%%%%%%%%%%%
% PAQUETES
%%%%%%%%%%%%%%%%%%%%%
\setdefaultlanguage{english}
\setotherlanguage{german}
\usepackage{tikz}
\usetikzlibrary{arrows.meta, matrix, shapes.geometric, overlay-beamer-styles}
\usepackage[german]{datetime2}
\usepackage{subcaption}
\usepackage{import}
\usepackage{siunitx}
\usepackage{fontawesome5}
\usepackage{emoji}
\sisetup{mode=text, per-mode=symbol}
\captionsetup{font+=scriptsize,justification=centering}
\usepackage{tabularray}
\UseTblrLibrary{booktabs}
\usepackage{qrcode}
%%%%%%%%%%%%%%%%%%%%%
% TEMPLATE
%%%%%%%%%%%%%%%%%%%%%
% Title graphics: BG + logo of the conference
\titlegraphic{
\begin{tikzpicture}[remember picture, overlay]
\mode<beamer>{\scoped[on background layer]\node [centered,opacity=0.4] at (current page.center) {\includegraphics[width=\pagewidth,height=\pageheight,keepaspectratio]{frontmatter/cropped-Try_This_At_Home-1920x1080-1.png}};}
\scoped[on background layer]\node [below left] at (current page.north east) {\includegraphics[height=4em,keepaspectratio]{frontmatter/annie-shenanigans}};
% Background: FireShonks \\
\scoped[on background layer]\node [above right,align=left,font=\tiny\itshape] at (current page.south west) {
Seal: \href{https://lethalbit.net}{Aki Van Ness}, CC-BY-SA-4.0
};
\end{tikzpicture}
}
%%%%%%%%%%%%%%%%%%
% METADATA
%%%%%%%%%%%%%%%%%%
\title{The Unsung Heroes of Imaging}
\author{amyspark}
\date{\DTMdate{2023-12-27}}
\addbibresource{bibliography.bib}
\begin{document}
\maketitle
\begin{frame}{About me}
\begin{itemize}[<*>]
\item Upstreamer \& Compiler Breaker at Centricular
\begin{itemize}[<*>]
\item Fine purveyors of Free and Open Source Software consulting
\item Maintainers of the GStreamer multimedia framework
\end{itemize}
\item Colour spaces, SIMD, build systems... curses are my specialty \emoji{woman-mage}
\item Occasional contributor to a lot of projects
\end{itemize}
\end{frame}
\begin{frame}{Motivation}
\begin{itemize}
\item Most of you may understand terms like \enquote{JPG picture}, \enquote{PNG}, even \enquote{TIFF}...
\item Watching TV? You may have heard about \enquote{PAL}, \enquote{NTSC}, \enquote{SECAM}
\item How do we store and broadcast colour images?
\end{itemize}
\end{frame}
\begin{frame}{Motivation}
\begin{itemize}
\item Why is a JPEG picture so small compared to PNG, TIFF, RAW...?
\item How can we watch \emoji{cat} videos on phones?
\item How were we able to watch colour TV before the PC era?
\item \emoji{woman-mage} there's a \emph{luma-chroma colour space} involved to compress them!
\item Lots of background to cover, includes a bit of HDR too!
\end{itemize}
\end{frame}
\begin{frame}{Scope}
\tableofcontents
\end{frame}
\section{Introduction}
\begin{frame}{How are colours specified?}
Colours are specified as coordinates in a \emph{colour space}.
\begin{itemize}[<+(1)->]
\item $n$-dimensional geometrical model
\item Light stimuli (colours) $\leftrightarrow$ vector coordinates
\item If you've taken a picture, or browsed the web, you've run across them
\begin{itemize}
\item The sRGB colour space powers most consumer content nowadays
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Colour spaces as a mathematical construct}
\begin{itemize}
\item Coordinate system
\item A subspace within that system
\item A mapping function from a \emph{supported} colour to a single point inside the subspace
\item The set of supported colours is the colour space's \emph{gamut}
\end{itemize}
\end{frame}
\begin{frame}{Formal definition of a colour space}
\begin{columns}<.->
\begin{column}<.->{.7\textwidth}
\begin{itemize}
\item Two sets of components:
\begin{enumerate}
\item Three independent, reference stimuli: \emph{primaries}
\item Colour of the light source: white point or \emph{illuminant}
\end{enumerate}
\item These components are represented by their \emph{chromaticity} coordinates
\item Plotting them in \emph{chromaticity diagrams} reveals the space's gamut
\end{itemize}
\end{column}
\begin{column}<.->{.3\textwidth}
\begin{figure}
\includegraphics[width=\columnwidth,keepaspectratio]{figures/bt709.pdf}
\caption*{The colour space of ITU-R BT.709 \parencite*{BT709}. Source: \href{https://commons.wikimedia.org/wiki/File:CIExy1931_Rec_709.svg}{GrandDrake}, \href{http://creativecommons.org/licenses/by-sa/3.0/}{CC BY-SA 3.0}, via Wikimedia Commons}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{How are colours stored and transmitted?}
From abstract to concrete:
\begin{enumerate}
\item Colour model \emph{type}
\item Colour \emph{model}
\item Colour \emph{space}
\item Colour \emph{encoding}
\end{enumerate}
\end{frame}
\begin{frame}{Colour model types}
How they represent colours with their primaries \autocite{allen23}:
\begin{itemize}
\item \emph{Additive} colour models mix light stimuli to form colours
\begin{itemize}
\item The most well known example is RGB
\item Three primaries: red, green, blue
\item Three coordinates: $(r, g, b)$ for each channel
\item HSL, HSI, HSV are linear transformations of RGB and are used in web dev
\end{itemize}
\item \emph{Subtractive} colour models absorb light stimuli to form colours
\begin{itemize}
\item The most well known example is CMYK (cyan, magenta, yellow, and black ink)
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Example: the sRGB colour space}
\emph{sRGB} (\enquote{standard RGB}) powers most consumer content nowadays.
\begin{itemize}
\item Type: Additive
\item Model: RGB
\item Definition: ISO/IEC 61966-2-1 \parencite*{srgb2002}
\item Encoding: Most standards provide conversion formulae for the intended bit depth
\begin{itemize}
\item This one is designed for \emph{8-bit unsigned integer}
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Colour management}
\begin{itemize}
\item In the analog era, there was a single colour space
\begin{itemize}
\item Standardized in Recommendations from the International Telecommunications Union
\item e.g. ITU.R BT-709 \parencite*{BT709} for digital SD TV content
\item There were variations in broadcasting standards -- we'll cover these later
\end{itemize}
\item In the digital era, we need \emph{colour management systems}
\end{itemize}
\end{frame}
\begin{frame}{Colour management}
\begin{itemize}
\item Modern colour management systems follow the International Colour Consortium's framework \autocite{allen}
\item \emph{Open-loop} colour management
\item Calculations are done in a \emph{profile connection space} (PCS)
\begin{itemize}
\item Intermediate, device-independent colour space
\item Primaries and illuminant are defined in this colour space
\end{itemize}
\item Conversions to/from each device $\equiv$ \emph{transformation} from/to the PCS
\begin{itemize}
\item (note the inverted directions)
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Open-loop colour management}
\begin{figure}
\begin{tikzpicture}[
node distance=3em and 5em,
device/.style={align=center, font=\Large},
pcs/.style={circle, text width=3em, align=center, draw},
transform/.style={->,shorten >=1pt,>=Latex,semithick}
]
\node (i1) [device] {\emoji{camera}};
\node (i2) [device, below=of i1] {\emoji{video-camera}};
\node (i3) [device, below=of i2] {\emoji{movie-camera}};
\node (pcs) [pcs, right=of i2] {PCS};
\node (d1) [device, above=of pcs] {\emoji{desktop-computer}};
\node (d2) [device, below=of pcs] {\emoji{mobile-phone}};
\node (o1) [device, above right=of pcs] {\emoji{printer}};
\node (o2) [device, below right=of pcs] {\emoji{printer}};
\draw[transform] (i1) -- (pcs) node [midway, visible on=<2->] {\emoji{arrows-counterclockwise}};
\draw[transform] (i2) -- (pcs) node [midway, visible on=<2->] {\emoji{arrows-counterclockwise}};
\draw[transform] (i3) -- (pcs) node [midway, visible on=<2->] {\emoji{arrows-counterclockwise}};
\draw[transform] (i1) -- (pcs) node [midway, visible on=<2->] {\emoji{arrows-counterclockwise}};
\draw[transform] (pcs) -- (d1) node [midway, visible on=<2->] {\emoji{arrows-counterclockwise}};
\draw[transform] (pcs) -- (d2) node [midway, visible on=<2->] {\emoji{arrows-counterclockwise}};
\draw[transform] (pcs) -- (o1) node [midway, visible on=<2->] {\emoji{arrows-counterclockwise}};
\draw[transform] (pcs) -- (o2) node [midway, visible on=<2->] {\emoji{arrows-counterclockwise}};
\end{tikzpicture}
\caption*{Adapted from \textcite[viii]{icc}}
\end{figure}
\end{frame}
\begin{frame}{The ICC colour management architecture}
Four key components:
\begin{enumerate}[<+(1)->]
\item The PCS
\item The \emph{colour management module}
\begin{itemize}
\item A software library that performs all the colour conversions
\item Usually embedded on your OS, there are also vendor offerings available
\end{itemize}
\item The device profiles
\begin{itemize}
\item Contain the data to transform between PCS and the device's colour space
\item \emoji{woman-mage} our spaces are here
\end{itemize}
\item Rendering \emph{intents}
\begin{itemize}
\item Exact matches between spaces may not be possible: \emph{out-of-gamut} colours
\item The CMS needs to \emph{predictably} account for this
\end{itemize}
\end{enumerate}
\end{frame}
\begin{frame}{The ICC colour management architecture}
\begin{center}
Interested? Watch my talk at DiVOC!
\qrcode[hyperlink,height=4\baselineskip]{https://media.ccc.de/v/divoc_bb3-48292-the-last-frontier-on-icc-profiles}
\url{https://media.ccc.de/v/divoc_bb3-48292-the-last-frontier-on-icc-profiles}
\end{center}
\end{frame}
\section{What are these spaces?}
\begin{frame}{Reasoning}
\begin{center}
Digital encoding of colour signals for transmission (TV, streaming, etc.)
\end{center}
\uncover<+(1)->{What does it need to cover? \autocite{tooms}}
\begin{enumerate}[<+(1)->]
% Tooms 14.2.1
\item Retaining colour balance
\begin{itemize}
\item Colour drifts between different cameras? \emoji{pleading-face}
\item Colour drifts between different screens? \emoji{pleading-face}
\end{itemize}
\item Preserving the lightness information
\begin{itemize}
\item Our eyes are most sensitive to light, not colour itself
\end{itemize}
\item Efficiency of the colour signal(s)
\begin{itemize}
\item e.g. a single 1080p frame, 8-bit RGB uncompressed, is \SI{170}{\mega\byte}
\item How much of this space/bandwidth is actually needed?
\end{itemize}
\end{enumerate}
\end{frame}
\begin{frame}{Light? Colour?}
\begin{itemize}
\item Representing faithfully the response of the eye to light stimuli
\item Colour information is split into two kinds of components:
\begin{enumerate}
\item Luma
\begin{itemize}
\item \emph{Grayscale}, \emph{lightness}, etc.
\item Represents the luminosity information of the image
\end{itemize}
\item Chroma
\begin{itemize}
\item Represents the colours themselves
\end{itemize}
\end{enumerate}
\end{itemize}
\end{frame}
\begin{frame}{Luma? Luminance?}
Before going on, we need to keep in mind that image transmission involves \emph{gamma correction} \autocite{tooms}.
\begin{itemize}
\item Formally called:
\begin{enumerate}
\item \emph{Opto-electric transfer function} (OETF) for the digitalization of the scene
\item \emph{Electro-opto transfer function} (EOTF) for the display of the image
\end{enumerate}
\item Accounts for the non-linearity on image sensors and display devices
\end{itemize}
\end{frame}
\begin{frame}{Gamma correction}
Let's assume that all devices handle the sRGB colour space:
\begin{figure}
\centering
\begin{tikzpicture}[
node distance=2em and 5em,
device/.style={align=center, font=\Large},
pcs/.style={circle, text width=3em, align=center, draw},
eotf/.style={->,shorten >=1pt,>=Latex,semithick,Red},
transform/.style={->,shorten >=1pt,>=Latex,semithick},
oetf/.style={->,shorten >=1pt,>=Latex,semithick,orange}
]
\node (i1) [device] {\emoji{camera}};
\node (i2) [device, below=of i1] {\emoji{video-camera}};
\node (i3) [device, below=of i2] {\emoji{movie-camera}};
\node (rgbi) [right=of i2]{RGB};
\node (pcs) [pcs, right=of rgbi] {PCS};
\node (rgbo) [right=of pcs] {RGB};
\node (o) [right=of rgbo] {};
\node (o1) [device, above=1em of o] {\emoji{mobile-phone}};
\node (o2) [device, above=of o1] {\emoji{desktop-computer}};
\node (o3) [device, below=1em of o] {\emoji{television}};
\node (o4) [device, below=of o3] {\emoji{dvd}};
\draw[oetf] (i1) -- (rgbi) node [midway, visible on=<2->] {\emoji{orange-circle}};
\draw[oetf] (i2) -- (rgbi) node [midway, visible on=<2->] {\emoji{orange-circle}};
\draw[oetf] (i3) -- (rgbi) node [midway, visible on=<2->] {\emoji{orange-circle}};
\draw[transform] (rgbi) -- (pcs) node [midway, visible on=<3->] {\emoji{arrows-counterclockwise}};
\draw[transform] (pcs) -- (rgbo) node [midway, visible on=<3->] {\emoji{arrows-counterclockwise}};
\draw[eotf] (rgbo) -- (o1) node [midway, visible on=<4->] {\emoji{red-square}};
\draw[eotf] (rgbo) -- (o2) node [midway, visible on=<4->] {\emoji{red-square}};
\draw[eotf] (rgbo) -- (o3) node [midway, visible on=<4->] {\emoji{red-square}};
\draw[eotf] (rgbo) -- (o4) node [midway, visible on=<4->] {\emoji{red-square}};
\node [anchor=top, below=1em of pcs]{
\small
\begin{tblr}{colspec={cl}}%
\onslide<2->{\emoji{orange-circle}} & \onslide<2->{OETF} \\
\onslide<3->{\emoji{arrows-counterclockwise}} & \onslide<3->{CMS transform to/from PCS} \\
\onslide<4->{\emoji{red-square}} & \onslide<4->{EOTF} \\
\end{tblr}
};
\end{tikzpicture}
\end{figure}
\end{frame}
\begin{frame}{Luma/chroma v. luminance/chrominance}
\begin{itemize}
\item \emph{Luma} and \emph{chroma} mean gamma-corrected channels
\begin{itemize}
\item $'$ attached to the variable name
\item It's usually written in the luminosity channel only
\item e.g. $Y'CbCr$ (one of the spaces we'll cover later) consumes gamma-corrected RGB
\end{itemize}
\item \emph{Luminance} and \emph{chrominance} mean linear (uncorrected) channels
\begin{itemize}
\item e.g. $YCbCr$ consumes linear RGB, and will result in washed colours if fed gamma-corrected RGB
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Why all this baggage?}
\begin{itemize}
\item Preserving colour balance is \emph{essential}
\item Errors in luma are very noticeable to the human eye
\item Errors in chroma? not so much
\item Codecs can drop spatial resolution \emph{and} lossily compress the colour data!
\begin{itemize}
\item Less bandwidth/storage required
\item Faster transmission rates
\item e.g. a single 1080p frame, 8-bit RGB uncompressed, is \SI{170}{\mega\byte}
\item But you can squeeze it to less than a MB!
\item JPEG, H.264, HEVC, VP9, AV1... \emoji{clamp}\emoji{clamp}\emoji{clamp}
\end{itemize}
\item The process is known as \emph{chroma subsampling}
\end{itemize}
\end{frame}
\begin{frame}{Chroma subsampling}
\begin{figure}
\centering
\def\svgwidth{.6\textwidth}
\subimport{figures}{Common_chroma_subsampling_ratios.pdf_tex}
\caption*{Source: \href{https://commons.wikimedia.org/wiki/File:Common_chroma_subsampling_ratios.svg}{Stevo88}, Public Domain, via Wikipedia Commons}
\end{figure}
\end{frame}
\section{Examples}
\begin{frame}{How's a luma-chroma space defined?}
\begin{center}
\emph{Transformations} of existing colour spaces
\end{center}
\begin{itemize}
\item Base colour space
\item Transformation function
\begin{itemize}
\item Usually (not always \emoji{wink}) a linear transformation of the source space
\end{itemize}
\item Transfer functions, where applicable
\end{itemize}
\end{frame}
\begin{frame}{Y'IQ}
\begin{columns}<.->
\begin{column}<.->{.7\textwidth}
\begin{itemize}
\item Created in 1953 for the NTSC analog broadcasting standard
\item The oldest luma-chroma space in the imaging field
\item ITU.R BT.470-6 \parencite*{BT470}, superseded by BT.1700-0 \parencite*{BT1700}
\item $(R', G', B')$ pixel $\rightarrow$ $(Y', I, Q)$ signal values
\item $Y'$ is the \emph{luma} signal
\begin{itemize}
\item Intuitively, our eyes are most sensitive to $G$
\item $G$ is a major contributor to the luminance value
\item $R$ and $B$ have smaller contributions
\end{itemize}
\item $I$ and $Q$ together form the \emph{chroma} signal
\begin{itemize}
\item Complementary \emph{colour difference} signals
\end{itemize}
\end{itemize}
\end{column}
\begin{column}<1->{.3\textwidth}
\begin{figure}
\includegraphics[height=10\baselineskip,keepaspectratio]{figures/YIQ_components.jpg}
\caption*{Source: \href{https://commons.wikimedia.org/wiki/File:YIQ_components.jpg}{(3ucky(3all}, CC-BY-SA 3.0, via Wikimedia Commons}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Y'IQ: BT.1700-0}
\begin{itemize}
\item Targets standard definition, analog transmissions
\item Targets a very old (CIE 1931) illuminant \emph{C}
\item However, quickly obsoleted with the invention of PAL
\item At the time, NTSC needed expensive circuitry to stabilize the signal
\end{itemize}
\uncover<+->{
\begin{align}
Y' & = 0.299R' + 0.587G' + 0.114B' \\
I & = 0.596R' - 0.275G' - 0.322 B' \\
Q & = 0.211R' - 0.523G' + 0.312B'
\end{align}
}
\end{frame}
\begin{frame}{Y'IQ: gamma correction}
\begin{itemize}
\item Y'IQ takes/returns a gamma-corrected RGB signal
\item The OETF relates the input luminance $L$ to the electrical signal $E$: \begin{equation}
\small
E = \begin{cases}
(1.099L^{0.045} - 0.099) & 0.018 < L \leq 1.00 \\
4.500L & 0 \leq L \leq 0.018
\end{cases}
\end{equation}
\item The EOTF relates the electrical signal $E$ to the output luminance $L$: \begin{equation}
\small
L = \begin{cases}
\frac{E + 0.099}{1.099}^\frac{1}{0.4500} & 0.0812 < E \leq 1.00 \\
\frac{E}{4.500} & 0 \leq L \leq 0.0812
\end{cases}
\end{equation}
\end{itemize}
\end{frame}
\begin{frame}{Y'DbDr}
\begin{columns}<.->
\begin{column}<.->{.7\textwidth}
\begin{itemize}
\item Entered use in France in 1967
\item Objective: fix NTSC's need for phase signal adjustment
\item $(R', G', B')$ pixel $\rightarrow$ $(Y', Db, Dr)$ signal values
\item $Y'$ is the \emph{luma} signal
\item $Db$ and $Dr$ together form the \emph{chroma} signal
\end{itemize}
\end{column}
\begin{column}<1->{.3\textwidth}
\begin{figure}
\includegraphics[height=10\baselineskip,keepaspectratio]{figures/YDbDr_components.jpg}
\caption*{Source: \href{https://commons.wikimedia.org/wiki/File:YDbDr_components.jpg}{(3ucky(3all}, CC-BY-SA 3.0, via Wikimedia Commons}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Y'DbDr}
\begin{itemize}
\item Standardized in ITU.R BT-470.6 \parencite*{BT470}
\item Didn't make it to its upgrade, BT.1700-0 -- obsolete
\item Targets the \emph{D65} white point (beaten Y'CbCr!)
\item Targets the analog domain \emph{entirely} -- no OETF or EOTF
\item Assumes a power law $gamma = 2.2$ for the non-linearity of the display
\end{itemize}
\end{frame}
\begin{frame}{Y'CbCr}
\begin{columns}<.->
\begin{column}<.->{.7\textwidth}
\begin{itemize}
\item Created in 1981 as a joint EBU - SMPTE standard
\item Objective: entirely digital signal compositing pipeline
\item $(R', G', B')$ pixel $\rightarrow$ $(Y', Cb, Cr)$ signal values
\item $Y'$ is the \emph{luma} signal
\item $Cb$ and $Cr$ together form the \emph{chroma} signal
\begin{itemize}
\item $Cb$ blue - luma, $Cr$ red - luma
\end{itemize}
\item Key property: less than \qty{25}{\percent} of the colour space relates to valid RGB colours! \autocite{7261497}
\item Standardized by the ITU in \emph{three} Recommendations
\end{itemize}
\end{column}
\begin{column}<1->{.3\textwidth}
\begin{figure}
\includegraphics[height=10\baselineskip,keepaspectratio]{figures/Barns_grand_tetons_YCbCr_separation.jpg}
\caption*{Source: \href{https://commons.wikimedia.org/wiki/File:Barns_grand_tetons_YCbCr_separation.jpg}{Mike1024}, Public domain, via Wikimedia Commons}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Y'CbCr: BT.601-7 (SD)}
\begin{itemize}
\item Last updated in \cite*{BT601}
\item Targets standard definition transmissions ($\leq$480p)
\item Designed for compatibility with legacy (monochrome, NTSC) receivers
\item Targets the \emph{D65} white point
\item Same gamma correction as Y'IQ
\end{itemize}
\uncover<+->{
\begin{align}
Y' & = 0.299R' + 0.587G' + 0.114B' \\
Cb & = \frac{0.701}{1.402}R' + \frac{-0.587}{1.402}G' + \frac{-0.114}{1.402}B' \\
Cr & = \frac{-0.299}{1.772}R' + \frac{-0.587}{1.772}G' + \frac{0.886}{1.772}B'
\end{align}
}
\end{frame}
\begin{frame}{Y'CbCr: BT.709-6 (HD)}
\begin{itemize}
\item Last updated in \cite*{BT709}
\item Revised version targeting HD transmissions
\item Drops legacy compatibility in exchange for accurate eye luminance response
\item Targets the \emph{D65} white point
\item (Still) the same gamma correction as BT.601
\end{itemize}
\uncover<+->{
\begin{align}
Y' & = 0.2126R' + 0.7152G' + 0.0722B' \\
Cb & = \frac{-0.2126}{1.8556}R' + \frac{-0.7152}{1.8556}G' + \frac{0.9278}{1.8556}B' \\
Cr & = \frac{0.7874}{1.5748}R' + \frac{-0.7152}{1.5748}G' + \frac{-0.0722}{1.5748}B'
\end{align}
}
\end{frame}
\begin{frame}{Y'CbCr: BT.2020-2 (4K/HDR)}
\begin{itemize}
\item Last updated in \cite*{BT2020}
\item Revised version targeting 4K and HDR
\item Upgraded transformation matrix and transform function
\item Maintains the \emph{D65} white point
\end{itemize}
\uncover<+->{
\begin{align}
Y' & = 0.2627R' + 0.6780G' + 0.0593B' \\
Cb & = \frac{0.2627}{1.8814}R' + \frac{0.6780}{1.8814}G' + \frac{0.9407}{1.8814}B' \\
Cr & = \frac{0.7373}{1.4746}R' + \frac{0.6780}{1.4746}G' + \frac{0.0593}{1.4746}B'
\end{align}
}
\end{frame}
\begin{frame}{Y'CbCr: gamma correction in BT.2020}
\begin{itemize}
\item BT.2020 defines both corrected and uncorrected versions
\item For the sake of consistency, we cover the Y'CbCr version (gamma corrected) for 10-bit depth
\item The OETF relates the input luminance $L$ to the electrical signal $E$: \begin{equation}
\small
E = \begin{cases}
(1.099L^{0.045} + 0.982) & 0.018 < L \leq 1.00 \\
4.500L & 0 \leq L \leq 0.018
\end{cases}
\end{equation}
\item The EOTF relates the electrical signal $E$ to the output luminance $L$: \begin{equation}
\small
L = \begin{cases}
\frac{E + 0.099}{1.099}^\frac{1}{0.4500} & 0.0812 < E \leq 1.00 \\
\frac{E}{4.500} & 0 \leq L \leq 0.0812
\end{cases}
\end{equation}
\end{itemize}
\end{frame}
\begin{frame}{sYCC}
\begin{columns}<.->
\begin{column}<.->{.7\textwidth}
\begin{itemize}
\item Standardized in 1999 as part of sRGB \autocite{srgb2002}
\item Defines the colour space for JPEG's lossy compression step (DCT)
\item $(R', G', B')$ pixel $\rightarrow$ $(Y', Cb, Cr)$ pixel
\item Based on the sRGB primaries, \emph{not NTSC or BT.709}
\item Allows extended gamut (colours that don't fit within the sRGB gamut)
\end{itemize}
\end{column}
\begin{column}<1->{.3\textwidth}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{YCgCo}
\begin{columns}<.->
\begin{column}<.->{.7\textwidth}
\begin{itemize}
\item Standardized as ITU-R H.273 \parencite*{ycocg}
\item $(R', G', B')$ pixel $\rightarrow$ $(Y, Cg, Co)$ signal values
\begin{itemize}
\item $Cg$ and $Co$ represent \enquote{orange} and \enquote{green} chroma
\item \emph{Not \enquote{chrominance} as the Wikipedia page suggests!}
\end{itemize}
\end{itemize}
\end{column}
\begin{column}<1->{.3\textwidth}
\begin{figure}
\includegraphics[height=10\baselineskip,keepaspectratio]{figures/Barns_grand_tetons_YCgCo_separation.jpg}
\caption*{Source: \href{https://commons.wikimedia.org/wiki/File:Barns_grand_tetons_YCgCo_separation.jpg}{Devcore}, Public Domain, via Wikimedia Commons}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{YCgCo}
\begin{itemize}
\item Standardized as ITU-R H.273 \parencite*{ycocg}
\item Standard provides a single point for all transfer functions you could use!
\item Designed for integer math -- $n+2$-bit depth is needed to preserve the full $n$-bit RGB range
\end{itemize}
\uncover<+->{
\begin{align}
\begin{bmatrix}
Y' \\
Cg \\
Co
\end{bmatrix} = \begin{bmatrix}
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
-\frac{1}{4} & \frac{1}{2} & -\frac{1}{4} \\
\frac{1}{2} & 0 & -\frac{1}{2}
\end{bmatrix} \times \begin{bmatrix}
R' \\
G' \\
B'
\end{bmatrix}
\end{align}
}
\end{frame}
\begin{frame}{ICtCp}
\begin{columns}<.->
\begin{column}<.->{.7\textwidth}
\begin{itemize}
\item Designed by \textcite{ictcp}
\item $(R', G', B')$ pixel $\rightarrow$ $(I, Ct, Cp)$ signal values
\begin{itemize}
\item Note: there's an optative linear RGB version
\end{itemize}
\item $I$ is the \emph{intensity} (luma) channel
\item $Ct$ and $Cp$ together form the \emph{chroma} channel
\begin{itemize}
\item $Ct$ is \emph{chroma tritan} (yellow-blue)
\item $Cp$ is \emph{chrome protan} (red-green)
\end{itemize}
\item Standardized in ITU.R BT-2100 \parencite*{BT2100}
\end{itemize}
\end{column}
\begin{column}<1->{.3\textwidth}
\begin{figure}
\includegraphics[height=10\baselineskip,keepaspectratio]{figures/ICtCp_components.jpg}
\caption*{Source: based on \href{https://commons.wikimedia.org/wiki/File:Barns_grand_tetons.jpg}{Jon Sullivan (PD Photo.org)}, Public Domain, via Wikimedia Commons}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{ICtCp}
\begin{itemize}
\item It is \emph{not} a linear transformation
\item Requires a complete CMS transformation pipeline
\item Also requires the BT.2100 transfer functions for HDR
\item $R'G'B' \xrightarrow{OETF} RGB \to LMS \to ICtCp$
\item Can't add more details, it'd turn this into a whole extra talk \emoji{sweat-smile}
\end{itemize}
\end{frame}
\section{Conclusions}
\begin{frame}{Remarks}
\begin{itemize}
\item So many colour spaces
\item Originally designed for analog broadcasting
\item Now present in all everyday multimedia applications
\item We covered
\begin{itemize}
\item A primer on colour spaces
\item The basics of colour managements
\item Why are luma-chroma colour spaces so essential
\item Examples
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Remarks}
\begin{itemize}
\item We did not cover the full background behind colour spaces
\begin{itemize}
\item Trichromacy, $LMS$ cone response functions
\end{itemize}
\item We also did not cover what's needed for 4K/HDR
\begin{itemize}
\item YCbCr v ICtCp in digital workflows
\end{itemize}
\item That would make for another hour of talk!
\item Extra references at the end of this talk's slides
\end{itemize}
\end{frame}
\begin{frame}{Thank you for watching!}
\begin{center}
{
\large
\textbf{Got any questions or comments?}
}
Q+A next
Email: \href{mailto:[email protected]?subject="FireShonks 2023"}{[email protected]}
Matrix: \href{https://matrix.to/\#/@amyspark:fairydust.space}{@amyspark:fairydust.space}
\end{center}
\end{frame}
% https://tex.stackexchange.com/questions/30461/beamer-nonumber-equivalent-for-slides
\begin{frame}[plain,noframenumbering,allowframebreaks]{\bibname}
\printbibliography[heading=none]
\end{frame}
\end{document}