forked from kree/autocnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconftest.py
252 lines (216 loc) · 9.9 KB
/
conftest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import os
from unittest.mock import Mock, MagicMock, PropertyMock
import networkx as nx
import numpy as np
import pandas as pd
import pytest
from autocnet.control import control
from autocnet.graph.network import CandidateGraph, NetworkCandidateGraph
from autocnet.graph import edge, node
from autocnet.graph.node import Node
from autocnet.io.db import model
from plio.io.io_gdal import GeoDataset
@pytest.fixture(scope='session')
def candidategraph(node_a, node_b, node_c):
# TODO: Getting this fixture from the global conf is causing deepycopy
# to fail. Why?
cg = CandidateGraph()
# Create a candidategraph object - we instantiate a real CandidateGraph to
# have access of networkx functionality we do not want to test and then
# mock all autocnet functionality to control test behavior.
edges = [(0,1,{'data':edge.Edge(0,1)}),
(0,2,{'data':edge.Edge(0,2)}),
(1,2,{'data':edge.Edge(1,2)})]
cg.add_edges_from(edges)
match_indices = [([0,1,2,3,4,5,6,7], [0,1,2,3,4,5,6,7]),
([0,1,2,3,4,5,8,9], [0,1,2,3,4,5,8,9]),
([0,1,2,3,4,5,8,9], [0,1,2,3,4,5,6,7])]
matches = []
for i, e in enumerate(edges):
c = match_indices[i]
source_image = np.repeat(e[0], 8)
destin_image = np.repeat(e[1], 8)
coords = np.zeros(8)
data = np.vstack((source_image, c[0], destin_image, c[1],
coords, coords, coords, coords)).T
matches_df = pd.DataFrame(data, columns=['source_image', 'source_idx', 'destination_image', 'destination_idx',
'source_x', 'source_y', 'destination_x', 'destination_y'])
matches.append(matches_df)
# Mock in autocnet methods
cg.get_matches = MagicMock(return_value=matches)
# Mock in the node objects onto the candidate graph
cg.nodes[0]['data'] = node_a
cg.nodes[1]['data'] = node_b
cg.nodes[2]['data'] = node_c
return cg
@pytest.fixture
def default_configuration():
config = {'cluster': {'maxfailures': 3,
'queue': '',
'cluster_log_dir': '',
'cluster_submission': '',
'tmp_scratch_dir': '',
'extractor_memory': 8192,
'processing_memory': 8192},
'database': {'type': 'postgresql',
'username': 'postgres',
'password': 'NotTheDefault',
'host': 'localhost',
'port': 5432,
'pgbouncer_port': 5432,
'name': 'travis_ci_test',
'timeout': 500},
'pfeffernusse': {'url': ''},
'redis': {'basename': 'basename',
'host': 'host',
'port': '1111',
'completed_queue': 'basename:done',
'processing_queue': 'basename:proc',
'working_queue': 'basename:working'},
'spatial': {'target': 'MARS',
'latitudinal_srid': 4326,
'rectangular_srid': 4978,
'semimajor_rad': 3396190,
'semiminor_rad': 3376200,
'proj4_str': '+proj:longlat +a:3396190 +b:3376200 +no_defs',
'dem': None}}
if os.environ.get('TRAVIS', False):
config['database']['password'] = ''
return config
@pytest.fixture()
def ncg(default_configuration):
ncg = NetworkCandidateGraph()
ncg.config_from_dict(default_configuration)
return ncg
@pytest.fixture(scope='session')
def node_a(geodata_a):
na = Node(node_id=0, image_path='/foo/bar/', image_name='pretty.png')
na._geodata = geodata_a
return na
@ pytest.fixture(scope='session')
def node_b(geodata_b):
nb = Node(node_id=1, image_path='/foo/bar/', image_name='ugly.tif')
nb._geodata = geodata_b
return nb
@ pytest.fixture(scope='session')
def node_c(geodata_c):
nc = Node(node_id=2, image_path='/foo/bar/', image_name='duckling.jpg')
nc._geodata = geodata_c
return nc
#TODO: Can these be a single parameterized fixture - so much boilerplate!
@pytest.fixture(scope='session')
def geodata_a():
arr = np.ones((100,100))
arr[5,5] = -3.40282266e+38
a = Mock(spec=GeoDataset, raster_size=[10,10], no_data_value=-3.40282266e+38)
a.pixel_to_latlon = MagicMock(side_effect=lambda x, y: (x, y))
a.read_array = MagicMock(return_value=arr)
return a
@pytest.fixture(scope='session')
def geodata_b():
arr = np.ones((100,100))
b = Mock(spec=GeoDataset, raster_size=[10,10])
b.pixel_to_latlon = MagicMock(side_effect=lambda x, y: (x, y))
b.read_array = MagicMock(return_value=arr)
return b
@pytest.fixture(scope='session')
def geodata_c():
c = Mock(spec=Node)
c = Mock(spec=GeoDataset)
c.pixel_to_latlon = MagicMock(side_effect=lambda x, y: (x, y))
return c
@pytest.fixture(scope='session')
def controlnetwork():
df = pd.DataFrame([[0, 0.0, 0.0, (0.0, 1.0), 0, 0.0, 0.0, 0, 0, np.inf, True],
[0, 1.0, 0.0, (0.0, 1.0), 0, 0.0, 0.0, 0, 0, np.inf, True],
[1, 0.0, 1.0, (0.0, 1.0), 1, 0.0, 0.0, 0, 0, np.inf, True],
[1, 1.0, 1.0, (0.0, 1.0), 1, 0.0, 0.0, 0, 0, np.inf, True],
[2, 0.0, 2.0, (0.0, 1.0), 2, 0.0, 0.0, 0, 0, np.inf, True],
[2, 1.0, 2.0, (0.0, 1.0), 2, 0.0, 0.0, 0, 0, np.inf, True],
[3, 0.0, 3.0, (0.0, 1.0), 3, 0.0, 0.0, 0, 0, np.inf, True],
[3, 1.0, 3.0, (0.0, 1.0), 3, 0.0, 0.0, 0, 0, np.inf, True],
[4, 0.0, 4.0, (0.0, 1.0), 4, 0.0, 0.0, 0, 0, np.inf, True],
[4, 1.0, 4.0, (0.0, 1.0), 4, 0.0, 0.0, 0, 0, np.inf, True],
[5, 0.0, 5.0, (0.0, 1.0), 5, 0.0, 0.0, 0, 0, np.inf, True],
[5, 1.0, 5.0, (0.0, 1.0), 5, 0.0, 0.0, 0, 0, np.inf, True],
[6, 0.0, 6.0, (0.0, 1.0), 6, 0.0, 0.0, 0, 0, np.inf, True],
[6, 1.0, 6.0, (0.0, 1.0), 6, 0.0, 0.0, 0, 0, np.inf, True],
[7, 0.0, 7.0, (0.0, 1.0), 7, 0.0, 0.0, 0, 0, np.inf, True],
[7, 1.0, 7.0, (0.0, 1.0), 7, 0.0, 0.0, 0, 0, np.inf, True],
[0, 2.0, 0.0, (0.0, 2.0), 0, 0.0, 0.0, 0, 0, np.inf, True],
[1, 2.0, 1.0, (0.0, 2.0), 1, 0.0, 0.0, 0, 0, np.inf, True],
[2, 2.0, 2.0, (0.0, 2.0), 2, 0.0, 0.0, 0, 0, np.inf, True],
[3, 2.0, 3.0, (0.0, 2.0), 3, 0.0, 0.0, 0, 0, np.inf, True],
[4, 2.0, 4.0, (0.0, 2.0), 4, 0.0, 0.0, 0, 0, np.inf, True],
[5, 2.0, 5.0, (0.0, 2.0), 5, 0.0, 0.0, 0, 0, np.inf, True],
[8, 0.0, 8.0, (0.0, 2.0), 6, 0.0, 0.0, 0, 0, np.inf, True],
[8, 2.0, 8.0, (0.0, 2.0), 6, 0.0, 0.0, 0, 0, np.inf, True],
[9, 0.0, 9.0, (0.0, 2.0), 7, 0.0, 0.0, 0, 0, np.inf, True],
[9, 2.0, 9.0, (0.0, 2.0), 7, 0.0, 0.0, 0, 0, np.inf, True],
[10, 1.0, 8.0, (1.0, 2.0), 6, 0.0, 0.0, 0, 0, np.inf, True],
[10, 2.0, 6.0, (1.0, 2.0), 6, 0.0, 0.0, 0, 0, np.inf, True],
[11, 1.0, 9.0, (1.0, 2.0), 7, 0.0, 0.0, 0, 0, np.inf, True],
[11, 2.0, 7.0, (1.0, 2.0), 7, 0.0, 0.0, 0, 0, np.inf, True]],
columns=['point_id', 'image_index', 'keypoint_index',
'edge', 'match_idx', 'x', 'y','x_off', 'y_off',
'corr', 'valid'])
df.index.name = 'measure_id'
#Fix types
df['point_id'] = df['point_id'].astype(object)
df['match_idx'] = df['match_idx'].astype(object)
return df
@pytest.fixture
def tables(ncg):
engine = ncg.Session().get_bind()
return engine.table_names()
@pytest.fixture
def session(tables, request, ncg):
session = ncg.Session()
def cleanup():
session.rollback() # Necessary because some tests intentionally fail
for t in reversed(tables):
# Skip the srid table
if t != 'spatial_ref_sys':
session.execute(f'TRUNCATE TABLE {t} CASCADE')
# Reset the autoincrementing
if t in ['Images', 'Cameras', 'Matches', 'Measures']:
session.execute(f'ALTER SEQUENCE {t}_id_seq RESTART WITH 1')
session.commit()
# Ensure that this is the only connection to the DB
num_con = session.execute('SELECT sum(numbackends) FROM pg_stat_database;').scalar()
assert num_con == 1
session.close()
request.addfinalizer(cleanup)
return session
@pytest.fixture
def db_controlnetwork(session):
# Create the images
i1 = {'id':0, 'serial':'foo'}
i2 = {'id':1, 'serial':'bar'}
for i in [i1, i2]:
model.Images.create(session, **i)
for i, j in enumerate([0,2,4]):
ptype = 2
if j == 4:
ptype=3 # Ground
model.Points.create(session,
id=i,
_pointtype=ptype,
measures=[model.Measures(id=k+j,
imageid=k,
serial='None',
_measuretype=3,
sample=k,
line=k,
aprioriline=k,
apriorisample=k) for k in range(2)])
session.close()
"""@pytest.fixture(scope='session')
def bad_controlnetwork(controlnetwork_data):
cn = control.ControlNetwork()
cn.data = controlnetwork_data
# Since the data is being patched in, fix the measure counter
cn._measure_id = len(cn.data) + 1
# Add a duplicate measure in image 0 to point 0
cn.add_measure((0,11), (0,1), 2, [1,1], point_id=0)
return cn"""