-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathvector.cpp
108 lines (97 loc) · 2.98 KB
/
vector.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#include <stdio.h>
#include <math.h>
#include <assert.h>
#include "vector.h"
float sqr(float a) {return a*a;}
// vector (floating point) implementation
float magnitude(Vector v) {
return (float)sqrt(sqr(v.x) + sqr( v.y)+ sqr(v.z));
}
Vector normalize(Vector v) {
float d=magnitude(v);
if (d==0) {
printf("Cant normalize ZERO vector\n");
assert(0);
d=0.1f;
}
v.x/=d;
v.y/=d;
v.z/=d;
return v;
}
Vector operator+(Vector v1,Vector v2) {return Vector(v1.x+v2.x,v1.y+v2.y,v1.z+v2.z);}
Vector operator-(Vector v1,Vector v2) {return Vector(v1.x-v2.x,v1.y-v2.y,v1.z-v2.z);}
Vector operator-(Vector v) {return Vector(-v.x,-v.y,-v.z);}
Vector operator*(Vector v1,float s) {return Vector(v1.x*s,v1.y*s,v1.z*s);}
Vector operator*(float s, Vector v1) {return Vector(v1.x*s,v1.y*s,v1.z*s);}
Vector operator/(Vector v1,float s) {return v1*(1.0f/s);}
float operator^(Vector v1,Vector v2) {return v1.x*v2.x + v1.y*v2.y + v1.z*v2.z;}
Vector operator*(Vector v1,Vector v2) {
return Vector(
v1.y * v2.z - v1.z*v2.y,
v1.z * v2.x - v1.x*v2.z,
v1.x * v2.y - v1.y*v2.x);
}
Vector planelineintersection(Vector n,float d,Vector p1,Vector p2){
// returns the point where the line p1-p2 intersects the plane n&d
Vector dif = p2-p1;
float dn= n^dif;
float t = -(d+(n^p1) )/dn;
return p1 + (dif*t);
}
int concurrent(Vector a,Vector b) {
return(a.x==b.x && a.y==b.y && a.z==b.z);
}
// Matrix Implementation
matrix transpose(matrix m) {
return matrix( Vector(m.x.x,m.y.x,m.z.x),
Vector(m.x.y,m.y.y,m.z.y),
Vector(m.x.z,m.y.z,m.z.z));
}
Vector operator*(matrix m,Vector v){
m=transpose(m); // since column ordered
return Vector(m.x^v,m.y^v,m.z^v);
}
matrix operator*(matrix m1,matrix m2){
m1=transpose(m1);
return matrix(m1*m2.x,m1*m2.y,m1*m2.z);
}
//Quaternion Implementation
Quaternion operator*(Quaternion a,Quaternion b) {
Quaternion c;
c.r = a.r*b.r - a.x*b.x - a.y*b.y - a.z*b.z;
c.x = a.r*b.x + a.x*b.r + a.y*b.z - a.z*b.y;
c.y = a.r*b.y - a.x*b.z + a.y*b.r + a.z*b.x;
c.z = a.r*b.z + a.x*b.y - a.y*b.x + a.z*b.r;
return c;
}
Quaternion operator-(Quaternion q) {
return Quaternion(q.r*-1,q.x,q.y,q.z);
}
Quaternion operator*(Quaternion a,float b) {
return Quaternion(a.r*b, a.x*b, a.y*b, a.z*b);
}
Vector operator*(Quaternion q,Vector v) {
return q.getmatrix() * v;
}
Vector operator*(Vector v,Quaternion q){
assert(0); // must multiply with the quat on the left
return Vector(0.0f,0.0f,0.0f);
}
Quaternion operator+(Quaternion a,Quaternion b) {
return Quaternion(a.r+b.r, a.x+b.x, a.y+b.y, a.z+b.z);
}
float operator^(Quaternion a,Quaternion b) {
return (a.r*b.r + a.x*b.x + a.y*b.y + a.z*b.z);
}
Quaternion slerp(Quaternion a,Quaternion b,float interp){
if((a^b) <0.0) {
a.r=-a.r;
a.x=-a.x;
a.y=-a.y;
a.z=-a.z;
}
float theta = (float)acos(a^b);
if(theta==0.0f) { return(a);}
return a*(float)(sin(theta-interp*theta)/sin(theta)) + b*(float)(sin(interp*theta)/sin(theta));
}