-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlinear_gaussian_phi_learning.py
245 lines (201 loc) · 8.9 KB
/
linear_gaussian_phi_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# %%
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as functional
from core.data_generation import GaussianHMM, construct_HMM_matrices
from torch.distributions import Independent, Normal, MultivariateNormal, StudentT
from tqdm import tqdm
import core.nonamortised_models as models
import core.utils as utils
import math
import subprocess
import hydra
import os
from omegaconf import OmegaConf
import matplotlib.pyplot as plt
import time
def save_np(name, x):
np.save(name, x)
@hydra.main(config_path='conf', config_name="fig1a")
def main(cfg):
assert cfg.data.diagFG
utils.save_git_hash(hydra.utils.get_original_cwd())
device = cfg.device
seed = np.random.randint(0, 9999999) if cfg.seed is None else cfg.seed
print("seed", seed)
with open('seed.txt', 'w') as f:
f.write(str(seed))
np.random.seed(seed)
torch.manual_seed(seed)
saved_models_folder_name = 'saved_models'
os.mkdir(saved_models_folder_name)
DIM = cfg.data.dim
if cfg.data.path_to_data is None:
F, G, U, V = construct_HMM_matrices(dim=DIM,
F_eigvals=np.random.uniform(
cfg.data.F_min_eigval,
cfg.data.F_max_eigval, (DIM)),
G_eigvals=np.random.uniform(
cfg.data.G_min_eigval,
cfg.data.G_max_eigval, (DIM)),
U_std=cfg.data.U_std,
V_std=cfg.data.V_std,
diag=cfg.data.diagFG)
data_gen = GaussianHMM(xdim=DIM, ydim=DIM, F=F, G=G, U=U, V=V)
x_np, y_np = data_gen.generate_data(cfg.data.num_data)
save_np('datapoints.npy', np.stack((x_np, y_np)))
save_np('F.npy', F)
save_np('G.npy', G)
save_np('U.npy', U)
save_np('V.npy', V)
else:
path_to_data = hydra.utils.to_absolute_path(cfg.data.path_to_data) + '/'
F, G, U, V = np.load(path_to_data + 'F.npy'), \
np.load(path_to_data + 'G.npy'), \
np.load(path_to_data + 'U.npy'), \
np.load(path_to_data + 'V.npy')
xystack = np.load(path_to_data + 'datapoints.npy')
x_np = xystack[0, :, :]
y_np = xystack[1, :, :]
kalman_xs = np.zeros((y_np.shape[0], DIM))
kalman_Ps = np.zeros((y_np.shape[0], DIM, DIM))
# For t=0
kalman_Ps[0, :, :] = np.linalg.inv(np.eye(DIM) + G.T @ np.linalg.inv(V) @ G)
kalman_xs[0, :] = kalman_Ps[0, :, :] @ G.T @ np.linalg.inv(V) @ y_np[0, :]
kalman_filter = models.KalmanFilter(x_0=kalman_xs[0, :], P_0=kalman_Ps[0, :, :], F=F, G=G, U=U,
V=V)
for t in range(1, y_np.shape[0]):
kalman_filter.update(y_np[t, :])
kalman_xs[t, :] = kalman_filter.x
kalman_Ps[t, :, :] = kalman_filter.P
save_np('kalman_xs.npy', kalman_xs)
save_np('kalman_Ps.npy', kalman_Ps)
kalman_xs_pyt = torch.from_numpy(kalman_xs).float()
kalman_Ps_pyt = torch.from_numpy(kalman_Ps).float()
y = torch.from_numpy(y_np).float().to(device)
F = torch.from_numpy(F).float().to(device)
G = torch.from_numpy(G).float().to(device)
U = torch.from_numpy(U).float().to(device)
V = torch.from_numpy(V).float().to(device)
mean_0 = torch.zeros(DIM).to(device)
class F_Module(nn.Module):
def __init__(self):
super().__init__()
self.register_parameter('weight',
nn.Parameter(torch.zeros(DIM)))
self.F_mean_fn = lambda x, t: self.weight * x
self.F_cov_fn = lambda x, t: U
def forward(self, x, t=None):
return Independent(Normal(self.F_mean_fn(x, t),
torch.sqrt(torch.diag(U))), 1)
class G_Module(nn.Module):
def __init__(self):
super().__init__()
self.register_parameter('weight',
nn.Parameter(torch.zeros(DIM)))
self.G_mean_fn = lambda x, t: self.weight * x
def forward(self, x, t=None):
return Independent(Normal(self.G_mean_fn(x, t),
torch.sqrt(torch.diag(V))), 1)
class p_0_dist_module(nn.Module):
def __init__(self):
super().__init__()
self.mean_0 = mean_0
def forward(self):
return Independent(Normal(mean_0, 1.0), 1)
F_fn = F_Module().to(device)
F_fn.weight.data = torch.diag(F)
G_fn = G_Module().to(device)
G_fn.weight.data = torch.diag(G)
p_0_dist = p_0_dist_module().to(device)
def cond_q_mean_net_constructor():
class MeanNet(nn.Module):
def __init__(self):
super().__init__()
self.register_parameter('weight', nn.Parameter(torch.randn(DIM)))
self.register_parameter('bias', nn.Parameter(torch.randn(DIM)))
def forward(self, x):
return self.weight * x + self.bias
out = MeanNet()
return out
if cfg.model_training.func_type == 'Vx_t':
sigma = cfg.model_training.KRR_sigma
lam = cfg.model_training.KRR_lambda
def KRR_constructor():
return models.KernelRidgeRegressor(models.MaternKernel(
sigma=sigma, lam=lam, train_sigma=True, train_lam=False)).to(device)
model = models.Vx_t_phi_t_Model(
device, DIM, DIM,
torch.zeros(DIM, device=device), torch.ones(DIM, device=device),
cond_q_mean_net_constructor, torch.ones(DIM, device=device),
F_fn, G_fn, p_0_dist, cfg.model_training.phi_t_init_method,
cfg.model_training.window_size,
KRR_constructor, cfg.model_training.KRR_init_sigma_median,
cfg.model_training.approx_decay,
cfg.model_training.approx_with_filter,
cfg.model_training.window_size + 1
)
else:
raise ValueError('Unknown func_type type')
filter_means = []
filter_stds = []
x_Tm1_means = []
x_Tm1_covs = []
joint_kls = []
Z_losses = []
times = []
for T in tqdm(range(0, cfg.data.num_data)):
start_time = time.time()
if T == 0 or T == 1:
decay = cfg.model_training.initial_phi_decay
inner_iters = cfg.model_training.initial_phi_iters
lr = cfg.model_training.initial_phi_lr
else:
decay = cfg.model_training.phi_decay
inner_iters = cfg.model_training.phi_iters
lr = cfg.model_training.phi_lr
model.advance_timestep(y[T, :])
model_phi_t_optim = torch.optim.Adam(model.get_phi_T_params(), lr=lr)
phi_lr_decay = torch.optim.lr_scheduler.StepLR(model_phi_t_optim,
1, decay)
for k in range(inner_iters):
model_phi_t_optim.zero_grad()
model.populate_phi_grads(y, cfg.model_training.phi_minibatch_size)
model_phi_t_optim.step()
filter_means.append(model.q_t_mean_list[T].clone().detach().numpy())
filter_stds.append(np.exp(model.q_t_log_std_list[T].detach().numpy()))
if T > 0:
joint_kls.append(utils.KL_between_q_and_p_linear_back_q(
model.q_t_mean_list[T].detach().numpy(),
model.cond_q_t_mean_net_list[T].bias.detach().numpy(),
torch.diag(model.cond_q_t_mean_net_list[T].weight).detach().numpy(),
torch.exp(2*model.q_t_log_std_list[T]).detach().numpy(),
torch.exp(2*model.cond_q_t_log_std_list[T]).detach().numpy(),
kalman_xs[T, :], kalman_Ps[T, :, :],
kalman_xs[T-1, :], kalman_Ps[T-1, :],
F.detach().numpy(), U.detach().numpy()
))
phi_lr_decay.step()
model.update_V_t(y, cfg.model_training.V_batch_size)
Vx_optim = torch.optim.Adam(model.get_V_t_params(), lr=cfg.model_training.V_lr)
for k in range(cfg.model_training.V_iters):
Vx_optim.zero_grad()
V_loss, _, _ = model.V_t_loss(y, cfg.model_training.V_minibatch_size)
V_loss.backward()
Vx_optim.step()
end_time = time.time()
# Logging
# filter_means.append(model.q_t_mean_list[T].detach().numpy())
# filter_stds.append(np.exp(model.q_t_log_std_list[T].detach().numpy()))
times.append(end_time - start_time)
if (T % (round(max(cfg.data.num_data, 10) / 10)) == 0) or (T == cfg.data.num_data - 1):
save_np('filter_means.npy', np.array(filter_means))
save_np('filter_stds.npy', np.array(filter_stds))
save_np('joint_kls.npy', np.array(joint_kls))
save_np('times.npy', np.array(times))
plt.plot(joint_kls)
plt.yscale('log')
plt.show()
if __name__ == "__main__":
main()