-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAnalysis_OFF_DT.py
80 lines (67 loc) · 3.3 KB
/
Analysis_OFF_DT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt
import seaborn as sns
try:
# Load the data
file_path = 'modified_df_OFF.csv'
df = pd.read_csv(file_path)
# Preprocess the data
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
numeric_cols = df.select_dtypes(include=np.number).columns
df[numeric_cols] = df[numeric_cols].fillna(df[numeric_cols].mean())
df['Fifa Ability Overall'] = pd.to_numeric(df['Fifa Ability Overall'], errors='coerce')
df.dropna(subset=['Fifa Ability Overall'], inplace=True)
df = df.select_dtypes(include=np.number)
if df.empty:
raise ValueError("No numeric columns remaining after preprocessing")
# Define the feature and target variables
X = df.drop(columns=['Fifa Ability Overall'])
y = df['Fifa Ability Overall']
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train a Decision Tree regressor model
regressor = DecisionTreeRegressor(random_state=42)
regressor.fit(X_train, y_train)
# Make predictions on the test set
y_pred = regressor.predict(X_test)
# Evaluate the model
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print("Mean Squared Error:", mse)
print("R^2 Score:", r2)
# Calculate the number of matching values and accuracy percentage
tolerance = 1.5
matching_values = np.sum(np.abs(y_test - y_pred) <= tolerance)
total_values = len(y_test)
accuracy_percentage = (matching_values / total_values) * 100
print("Number of matching values:", matching_values)
print("Total values:", total_values)
print("Percentage of accuracy:", accuracy_percentage)
# Plotting the scatter plot with line of best fit
plt.figure(figsize=(10, 6))
sns.scatterplot(x=y_pred, y=y_test, color='skyblue', alpha=0.7, s=100) # Switched x and y
sns.lineplot(x=y_test, y=y_test, color='red') # Line of best fit
plt.title('Decision Tree Regression: Actual vs Predicted FIFA Ability Overall')
plt.xlabel('Predicted FIFA Ability Overall') # Changed x label
plt.ylabel('Actual Ability Overall') # Changed y label
plt.text(0.05, 0.95, f'Accuracy: {accuracy_percentage:.2f}%\nMatching Values: {matching_values}/{total_values}',
transform=plt.gca().transAxes, fontsize=12, verticalalignment='top', bbox=dict(boxstyle="round,pad=0.3", edgecolor='black', facecolor='white'))
plt.show()
# Plot the feature importance
feature_importances = regressor.feature_importances_
features = X.columns
plt.figure(figsize=(12, 6))
sns.barplot(x=features, y=feature_importances, palette='viridis')
plt.title('Feature Importance')
plt.xlabel('Features', fontsize=10)
plt.ylabel('Importance', fontsize=10)
plt.xticks(rotation=0) # Adjusted rotation parameter
plt.text(0.05, 0.95, f'Accuracy: {accuracy_percentage:.2f}%',
transform=plt.gca().transAxes, fontsize=12, verticalalignment='top', bbox=dict(boxstyle="round,pad=0.3", edgecolor='black', facecolor='white'))
plt.show()
except Exception as e:
print("An error occurred:", e)