-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathUglyNumberIII.java
59 lines (53 loc) · 1.57 KB
/
UglyNumberIII.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
// https://leetcode.com/problems/ugly-number-iii
// T: O(log(MAX_VAL)) MAX_VAL = Integer.MAX_VAL here
// S: O(1)
public class UglyNumberIII {
private long a;
private long b;
private long c;
private long lcm_a_b;
private long lcm_a_c;
private long lcm_b_c;
private long lcm_a_b_c;
public int nthUglyNumber(int n, int a, int b, int c) {
setValues(a, b, c);
int left = 1, right = Integer.MAX_VALUE, middle;
long factors;
while (left <= right) {
middle = left + (right - left) / 2;
factors = numberOfFactors(middle);
if (factors >= n) right = middle - 1;
else left = middle + 1;
}
return left;
}
private void setValues(long a, long b, long c) {
this.a = a;
this.b = b;
this.c = c;
this.lcm_a_b = lcm(a, b);
this.lcm_a_c = lcm(a, c);
this.lcm_b_c = lcm(b, c);
this.lcm_a_b_c = lcm(lcm_a_b, c);
}
/*
* @param n number
* @return will tell how many factors are there of a, b and c between 1 and n
* e.g. if n=10 and a=2 b=3 so there are 7 factors {2, 3, 4, 6, 8, 9, 10}
*/
private long numberOfFactors(int n) {
return n / a
+ n / b
+ n / c
- n / lcm_a_b
- n / lcm_a_c
- n / lcm_b_c
+ n / lcm_a_b_c;
}
private long gcd(long a, long b) {
return b == 0 ? a : gcd(b, a % b);
}
private long lcm(long a, long b) {
return (a * b) / gcd(a, b);
}
}