forked from yk/clip_music_video
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
199 lines (169 loc) · 7.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from dall_e import map_pixels, unmap_pixels
import numpy as np
import torchvision
import tempfile
import imageio
import random
import kornia
import shutil
import torch
import time
import os
import re
def create_outputfolder():
outputfolder = os.path.join(os.getcwd(), 'output')
if os.path.exists(outputfolder):
shutil.rmtree(outputfolder)
os.mkdir(outputfolder)
def create_strp(d, timeformat):
return time.mktime(time.strptime(d, timeformat))
def download_stylegan_pt():
cwd = os.getcwd()
print(cwd)
if 'stylegan.pt' not in os.listdir(cwd):
url = "https://github.com/lernapparat/lernapparat/releases/download/v2019-02-01/karras2019stylegan-ffhq-1024x1024.for_g_all.pt"
wget.download(url, "stylegan.pt")
def init_textfile(textfile):
timeformat = "%M:%S"
starttime = "00:00"
with open(textfile, 'r') as file:
descs = file.readlines()
descs1 = [re.findall(r'(\d\d:\d\d) (.*)', d.strip('\n').strip())[0] for d in descs]
if len(descs1[0]) == 0:
descs1 = [re.findall(r'(\d\d:\d\d.\d\d) (.*)', d.strip('\n').strip())[0] for d in descs]
timeformat = "%M:%S.%f"
starttime = "00:00.00"
descs1 = [(create_strp(d[0], timeformat), d[1])for d in descs1]
firstline = (create_strp(starttime, timeformat), "start song")
if descs1[0][0] - firstline[0]:
descs1.insert(0, firstline)
lastline = (descs1[-1][0]+9, "end song")
descs1.append(lastline)
return descs1
def create_image(img, i, text, gen, pre_scaled=True):
if gen == 'stylegan':
img = (img.clamp(-1, 1) + 1) / 2.0
img = img[0].permute(1, 2, 0).detach().cpu().numpy() * 256
else:
img = np.array(img)[:,:,:]
img = np.transpose(img, (1, 2, 0))
if not pre_scaled:
img = scale(img, 48*4, 32*4)
img = np.array(img)
with tempfile.NamedTemporaryFile() as image_temp:
imageio.imwrite(image_temp.name+".png", img)
image_temp.seek(0)
return image_temp
nom = torchvision.transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
class Pars(torch.nn.Module):
def __init__(self, gen='biggan'):
super(Pars, self).__init__()
self.gen = gen
if self.gen == 'biggan':
params1 = torch.zeros(32, 128).normal_(std=1).cuda()
self.normu = torch.nn.Parameter(params1)
params_other = torch.zeros(32, 1000).normal_(-3.9, .3)
self.cls = torch.nn.Parameter(params_other)
self.thrsh_lat = torch.tensor(1).cuda()
self.thrsh_cls = torch.tensor(1.9).cuda()
elif self.gen == 'dall-e':
self.normu = torch.nn.Parameter(torch.zeros(1, 8192, 64, 64).cuda())
elif self.gen == 'stylegan':
latent_shape = (1, 1, 512)
latents_init = torch.zeros(latent_shape).squeeze(-1).cuda()
self.normu = torch.nn.Parameter(latents_init, requires_grad=True)
def forward(self):
if self.gen == 'biggan':
return self.normu, torch.sigmoid(self.cls)
elif self.gen == 'dall-e':
# normu = torch.nn.functional.gumbel_softmax(self.normu.view(1, 8192, -1), dim=-1).view(1, 8192, 64, 64)
normu = torch.nn.functional.gumbel_softmax(self.normu.view(1, 8192, -1), dim=-1, tau = 2).view(1, 8192, 64, 64)
return normu
def pad_augs(image):
pad = random.randint(1,50)
pad_px = random.randint(10,90)/100
pad_py = random.randint(10,90)/100
pad_dims = (int(pad*pad_px), pad-int(pad*pad_px), int(pad*pad_py), pad-int(pad*pad_py))
return torch.nn.functional.pad(image, pad_dims, "constant", 1)
def kornia_augs(image, sideX=512):
blur = (random.randint(0,int(sideX/5))*2)+1
kornia_model = torch.nn.Sequential(
kornia.augmentation.RandomAffine(20, p=0.55, keepdim=True),
kornia.augmentation.RandomHorizontalFlip(),
kornia.augmentation.GaussianBlur((blur,blur),(blur,blur), p=0.5, border_type="constant"),
kornia.augmentation.RandomSharpness(.5),
kornia.augmentation.ColorJitter(0.1, 0.1, 0.1, 0.1, p=0.6)
)
return kornia_model(image)
def ascend_txt(model, lats, sideX, sideY, perceptor, percep, gen, tokenizedtxt):
if gen == 'biggan':
cutn = 128
zs = [*lats()]
out = model(zs[0], zs[1], 1)
elif gen == 'dall-e':
cutn = 32
zs = lats()
out = unmap_pixels(torch.sigmoid(model(zs)[:, :3].float()))
elif gen == 'stylegan':
zs = lats.normu.repeat(1,18,1)
img = model(zs)
img = torch.nn.functional.upsample_bilinear(img, (224, 224))
img_logits, _text_logits = perceptor(img, tokenizedtxt.cuda())
return 1/img_logits * 100, img, zs
p_s = []
for ch in range(cutn):
# size = int(sideX*torch.zeros(1,).normal_(mean=.8, std=.3).clip(.5, .95))
size = int(sideX*torch.zeros(1,).normal_(mean=.39, std=.865).clip(.362, .7099))
offsetx = torch.randint(0, sideX - size, ())
offsety = torch.randint(0, sideY - size, ())
apper = out[:, :, offsetx:offsetx + size, offsety:offsety + size]
apper = pad_augs(apper)
# apper = kornia_augs(apper, sideX=sideX)
apper = torch.nn.functional.interpolate(apper, (224, 224), mode='nearest')
p_s.append(apper)
into = torch.cat(p_s, 0)
if gen == 'biggan':
# into = nom((into + 1) / 2)
up_noise = 0.01649
into = into + (up_noise)*torch.randn_like(into, requires_grad=True)
into = nom((into + 1) / 1.8)
elif gen == 'dall-e':
into = nom((into + 1) / 2)
iii = perceptor.encode_image(into)
llls = zs #lats()
if gen == 'dall-e':
return [0, 10*-torch.cosine_similarity(percep, iii).view(-1, 1).T.mean(1), zs]
lat_l = torch.abs(1 - torch.std(llls[0], dim=1)).mean() + \
torch.abs(torch.mean(llls[0])).mean() + \
4*torch.max(torch.square(llls[0]).mean(), lats.thrsh_lat)
for array in llls[0]:
mean = torch.mean(array)
diffs = array - mean
var = torch.mean(torch.pow(diffs, 2.0))
std = torch.pow(var, 0.5)
zscores = diffs / std
skews = torch.mean(torch.pow(zscores, 3.0))
kurtoses = torch.mean(torch.pow(zscores, 4.0)) - 3.0
lat_l = lat_l + torch.abs(kurtoses) / llls[0].shape[0] + torch.abs(skews) / llls[0].shape[0]
cls_l = ((50*torch.topk(llls[1],largest=False,dim=1,k=999)[0])**2).mean()
return [lat_l, cls_l, -100*torch.cosine_similarity(percep, iii, dim=-1).mean(), zs]
def train(i, model, lats, sideX, sideY, perceptor, percep, optimizer, text, tokenizedtxt, epochs=200, gen='biggan', img=None):
loss1 = ascend_txt(model, lats, sideX, sideY, perceptor, percep, gen, tokenizedtxt)
if gen == 'biggan':
loss = loss1[0] + loss1[1] + loss1[2]
zs = loss1[3]
elif gen == 'dall-e':
loss = loss1[0] + loss1[1]
loss = loss.mean()
zs = loss1[2]
elif gen == 'stylegan':
loss = loss1[0]
img = loss1[1].cpu()
zs = loss1[2]
optimizer.zero_grad()
loss.backward()
optimizer.step()
if i+1 == epochs:
# if it's the last step, return the final z
return zs
return False