forked from bytedeco/javacv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSimilarity.java
101 lines (94 loc) · 4.47 KB
/
Similarity.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
/**
* Copyright 2021 JavaCV
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import org.bytedeco.opencv.global.opencv_core;
import org.bytedeco.opencv.global.opencv_imgcodecs;
import org.bytedeco.opencv.global.opencv_imgproc;
import org.bytedeco.opencv.opencv_core.Mat;
import org.bytedeco.opencv.opencv_core.Scalar;
import org.bytedeco.opencv.opencv_core.Size;
/**
* OpenCV similarity measurement examples:
* https://docs.opencv.org/master/d5/dc4/tutorial_video_input_psnr_ssim.html
*
* @author n-kai-cj
*/
public class Similarity {
private static double getPSNR(Mat I1, Mat I2) {
Mat s1 = new Mat();
opencv_core.absdiff(I1, I2, s1); // |I1 - I2|
s1.convertTo(s1, opencv_core.CV_32F); // cannot make a square on 8 bits
s1 = s1.mul(s1).asMat(); // |I1 - I2|^2
Scalar s = opencv_core.sumElems(s1); // sum elements per channel
double sse = s.get(0) + s.get(1) + s.get(2); // sum channels
if (sse <= 1e-10) { // for small values return zero
return 0;
} else {
double mse = sse / (double) (I1.channels() * I1.total());
double psnr = 10.0 * Math.log10((255 * 255) / mse);
return psnr;
}
}
private static Scalar getMSSIM(Mat i1, Mat i2) {
double C1 = 6.5025, C2 = 58.5225;
/***************************** INITS **********************************/
int d = opencv_core.CV_32F;
Mat I1 = new Mat();
Mat I2 = new Mat();
i1.convertTo(I1, d); // cannot calculate on one byte large values
i2.convertTo(I2, d);
Mat I2_2 = I2.mul(I2).asMat(); // I2^2
Mat I1_2 = I1.mul(I1).asMat(); // I1^2
Mat I1_I2 = I1.mul(I2).asMat(); // I1 * I2
/*************************** END INITS **********************************/
// PRELIMINARY COMPUTING
Mat mu1 = new Mat();
Mat mu2 = new Mat();
opencv_imgproc.GaussianBlur(I1, mu1, new Size(11, 11), 1.5);
opencv_imgproc.GaussianBlur(I2, mu2, new Size(11, 11), 1.5);
Mat mu1_2 = mu1.mul(mu1).asMat();
Mat mu2_2 = mu2.mul(mu2).asMat();
Mat mu1_mu2 = mu1.mul(mu2).asMat();
Mat sigma1_2 = new Mat();
Mat sigma2_2 = new Mat();
Mat sigma12 = new Mat();
opencv_imgproc.GaussianBlur(I1_2, sigma1_2, new Size(11, 11), 1.5);
sigma1_2 = opencv_core.subtract(sigma1_2, mu1_2).asMat();
opencv_imgproc.GaussianBlur(I2_2, sigma2_2, new Size(11, 11), 1.5);
sigma2_2 = opencv_core.subtract(sigma2_2, mu2_2).asMat();
opencv_imgproc.GaussianBlur(I1_I2, sigma12, new Size(11, 11), 1.5);
sigma12 = opencv_core.subtract(sigma12, mu1_mu2).asMat();
Mat t1, t2, t3;
t1 = opencv_core.add(opencv_core.multiply(2, mu1_mu2), Scalar.all(C1)).asMat();
t2 = opencv_core.add(opencv_core.multiply(2, sigma12), Scalar.all(C2)).asMat();
t3 = t1.mul(t2).asMat(); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
t1 = opencv_core.add(opencv_core.add(mu1_2, mu2_2), Scalar.all(C1)).asMat();
t2 = opencv_core.add(opencv_core.add(sigma1_2, sigma2_2), Scalar.all(C2)).asMat();
t1 = t1.mul(t2).asMat(); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
Mat ssim_map = new Mat();
opencv_core.divide(t3, t1, ssim_map); // ssim_map = t3./t1;
Scalar mssim = opencv_core.mean(ssim_map); // mssim = average of ssim map
return mssim;
}
public static void main(String[] args) {
Mat img1 = opencv_imgcodecs.imread("face.jpg");
Mat img2 = img1.clone();
opencv_imgproc.GaussianBlur(img2, img2, new Size(15, 15), 10);
double psnr = getPSNR(img1, img2);
Scalar mssim = getMSSIM(img1, img2);
System.out.println("PSNR: " + psnr);
System.out.printf("SSIM: %f, %f, %f\n", mssim.get(0), mssim.get(1), mssim.get(2));
}
}