forked from Intelligent-CAT-Lab/SEER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
540 lines (424 loc) · 18.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
import re
import os
import json
import sys
import tables as tb
import numpy as np
import random
from tqdm import tqdm
PAD_ID, SOS_ID, EOS_ID, UNK_ID = [0, 1, 2, 3]
def is_method_sig_format(statement):
"""
this function determines whether the given statement is a method signature or not
"""
tokens = statement.split()
keywords = ['public', 'private', 'protected', 'static', 'final', 'native', 'synchronized',
'abstract', 'transient']
if tokens == []:
return 1
if tokens[0] in keywords:
curly_bracket = False
opening_parenthesis = False
closing_parenthesis = False
for char in statement:
if char == ';' or char == '=':
return 1
if char == '{':
curly_bracket = True
break
elif char == '(':
opening_parenthesis = True
elif char == ')':
closing_parenthesis = True
if curly_bracket and opening_parenthesis and closing_parenthesis:
return 2
elif curly_bracket and not opening_parenthesis and not closing_parenthesis:
return 1
elif curly_bracket and not opening_parenthesis and closing_parenthesis:
return 1
else:
return 3
return 1
def is_method_sig(statement):
"""
this function determines whether the given statement is a method signature or not
params:
statement (str): a single statement from source code
return:
bool: returns true if the statement is a method signature, and false otherwise
"""
pattern = '(public|private|protected|static|final|native|synchronized|abstract|transient).*?\(.*?\).*?{'
match = re.search(pattern, statement)
if match is not None:
return True
return False
def extract_method_name(statement):
"""
this function extracts the method name from the method signature
params:
statement (str): method signature
return:
method_name (str): method name extracted from method signature
"""
assert is_method_sig(statement) == True
method_name = statement.split('(')[0].split(' ')[-1]
return method_name
def extract_method_names(location):
"""
this function extracts all method names from a test class
"""
method_names = []
with open(location, "r", encoding="ISO-8859-1", errors='ignore') as fr:
lines = fr.readlines()
for i in range(len(lines)):
line = lines[i].strip()
st = i + 1
while True:
res = is_method_sig_format(line)
if res == 1 or res == 2:
break
elif res == 3:
line = line + " " + lines[st].strip()
st += 1
continue
if not is_method_sig(line): continue
method_name = extract_method_name(line)
if not method_name.startswith('test'): continue
method_names.append(method_name)
return method_names
def mutant_compile_check(mutated_directory):
"""
this function tests whether created mutant is compilable or not
"""
os.system("defects4j compile -w " + mutated_directory + " > ./compile_results.txt")
with open("./compile_results.txt", "r", encoding="ISO-8859-1", errors='ignore') as f:
compile_error = "Compilation failed"
for line in f.readlines():
line = line.strip()
if compile_error in line:
return False
return True
def get_modified_method_names(project_name, bug_id):
"""
this function returns list of modified method names
"""
#assuming that you are working on the directory you run the tuple_generator.py
found_methods_dir = "./projects/" + project_name + "/" + str(bug_id) + "/output/modifiedClasses/foundMethods.txt"
with open(found_methods_dir, "r", encoding="ISO-8859-1", errors='ignore') as f:
found_methods = f.readlines()
found_methods = list(map(lambda x: x.strip()), found_methods)
return found_methods
def create_vocabulary(filtered_data, vocab_type):
"""
this function creates vocabulary from the given data
"""
vocabulary = {"<pad>": 0, "<s>": 1, "</s>": 2, "<unk>": 3}
filtered_triplets = [x for x in os.listdir(filtered_data) if x.startswith("triplets_") and x.endswith(".json")]
for triplet in filtered_triplets:
vocabulary = export_vocabulary(triplet, filtered_data, vocabulary, vocab_type)
json_f = json.dumps(vocabulary, indent = 4)
with open(f'{filtered_data}/vocab_{triplet[9:]}', 'w') as out_f:
out_f.write(json_f)
def export_vocabulary(triplet, filtered_data, vocabulary, vocab_type):
"""
this function exports vocabulary to json file
"""
# print(triplets[0])
# triplets = json.load(open(f'{filtered_data}/{triplets[0]}', 'r'))
triplet_json = json.load(open(f'{filtered_data}/{triplet}', 'r'))
# for triplet in triplets:
for key in triplet_json.keys():
source_code_pos = triplet_json[key]['C'].split()
test_code_tokens = triplet_json[key]['T'].split()
if vocab_type == 'code':
vocabulary = insert_to_vocabulary(source_code_pos, vocabulary)
elif vocab_type == 'test':
vocabulary = insert_to_vocabulary(test_code_tokens, vocabulary)
else:
vocabulary = insert_to_vocabulary(source_code_pos, vocabulary)
vocabulary = insert_to_vocabulary(test_code_tokens, vocabulary)
return vocabulary
def insert_to_vocabulary(tokens, vocabulary):
"""
this function inserts tokens to vocabulary
"""
for token in tokens:
stripped_token = token.strip().replace('\\', '')
if stripped_token not in vocabulary:
vocabulary[stripped_token] = len(vocabulary)
return vocabulary
class Particle(tb.IsDescription):
length = tb.UInt32Col(shape=(), dflt=0, pos=0)
pos = tb.UInt32Col(shape=(), dflt=0, pos=1)
def json_to_h5(type, fold, model):
"""
this function converts json file to h5 file for phase 1 of model training.
the logic stays the same for phase 2 as well with a few changes.
"""
code_pos_h5 = tb.open_file(f"./data/fold{fold}/codepos_{type}.h5", mode="w")
code_pos_diff_h5 = tb.open_file(f"./data/fold{fold}/codeposdiff_{type}.h5", mode="w")
code_neg_h5 = tb.open_file(f"./data/fold{fold}/codeneg_{type}.h5", mode="w")
code_neg_diff_h5 = tb.open_file(f"./data/fold{fold}/codenegdiff_{type}.h5", mode="w")
test_h5 = tb.open_file(f"./data/fold{fold}/test_{type}.h5", mode="w")
# label_h5 = tb.open_file(f"./phase2_dataset_final/fold{fold}/label_{type}.h5", mode="w")
code_pos_table = code_pos_h5.create_table(code_pos_h5.root, 'indices', Particle, 'a table of indices and lengths')
code_pos_e_array = code_pos_h5.create_earray(code_pos_h5.root, 'phrases', tb.Int64Atom(), (0,))
code_posdiff_table = code_pos_diff_h5.create_table(code_pos_diff_h5.root, 'indices', Particle, 'a table of indices and lengths')
code_posdiff_e_array = code_pos_diff_h5.create_earray(code_pos_diff_h5.root, 'phrases', tb.Int64Atom(), (0,))
code_neg_table = code_neg_h5.create_table(code_neg_h5.root, 'indices', Particle, 'a table of indices and lengths')
code_neg_e_array = code_neg_h5.create_earray(code_neg_h5.root, 'phrases', tb.Int64Atom(), (0,))
code_negdiff_table = code_neg_diff_h5.create_table(code_neg_diff_h5.root, 'indices', Particle, 'a table of indices and lengths')
code_negdiff_e_array = code_neg_diff_h5.create_earray(code_neg_diff_h5.root, 'phrases', tb.Int64Atom(), (0,))
test_table = test_h5.create_table(test_h5.root, 'indices', Particle, 'a table of indices and lengths')
test_e_array = test_h5.create_earray(test_h5.root, 'phrases', tb.Int64Atom(), (0,))
# label_e_array = label_h5.create_earray(label_h5.root, 'labels', tb.Int8Atom(), (0,))
if model == 'JointEmbedder':
with open('./data/vocab_all.json') as fr:
vocab_code = json.load(fr)
vocab_test = vocab_code
else:
with open('./data/vocab_code.json') as fr:
vocab_code = json.load(fr)
with open('./data/vocab_test.json') as fr:
vocab_test = json.load(fr)
if type == 'test':
with open(f'./data/{type}.json', "r", encoding="ISO-8859-1", errors='ignore') as fr:
tuples = json.load(fr)
else:
with open(f'./data/fold{fold}/{type}{fold}.json', "r", encoding="ISO-8859-1", errors='ignore') as fr:
tuples = json.load(fr)
code_positive_curr_pos = 0
code_positive_diff_curr_pos = 0
code_negative_curr_pos = 0
code_negative_diff_curr_pos = 0
test_curr_pos = 0
pbar = tqdm(tuples)
c = 0
for _id in pbar:
c += 1
pbar.set_description('Processing {}'.format(c))
code_pos = tuples[_id]['C+'].split()
code_pos_diff = [x.strip() for x in ' '.join(tuples[_id]['diff_C+']).split()]
code_neg = tuples[_id]['C-'].split()
code_neg_diff = [x.strip() for x in ' '.join(tuples[_id]['diff_C-']).split()]
test_code = tuples[_id]['T'].split()
# label = tuples[_id]['label']
particle = test_table.row
particle['length'] = len(test_code)
particle['pos'] = test_curr_pos
particle.append()
for token in test_code:
token = token.strip().replace('\\', '')
test_e_array.append(np.array([vocab_test[token]]))
test_curr_pos += len(test_code)
particle = code_pos_table.row
particle['length'] = len(code_pos)
particle['pos'] = code_positive_curr_pos
particle.append()
for token in code_pos:
token = token.strip().replace('\\', '')
code_pos_e_array.append(np.array([vocab_code[token]]))
code_positive_curr_pos += len(code_pos)
particle = code_posdiff_table.row
particle['length'] = len(code_pos_diff)
particle['pos'] = code_positive_diff_curr_pos
particle.append()
for token in code_pos_diff:
token = token.strip().replace('\\', '')
code_posdiff_e_array.append(np.array([vocab_code[token]]))
code_positive_diff_curr_pos += len(code_pos_diff)
particle = code_neg_table.row
particle['length'] = len(code_neg)
particle['pos'] = code_negative_curr_pos
particle.append()
for token in code_neg:
token = token.strip().replace('\\', '')
code_neg_e_array.append(np.array([vocab_code[token]]))
code_negative_curr_pos += len(code_neg)
particle = code_negdiff_table.row
particle['length'] = len(code_neg_diff)
particle['pos'] = code_negative_diff_curr_pos
particle.append()
for token in code_neg_diff:
token = token.strip().replace('\\', '')
code_negdiff_e_array.append(np.array([vocab_code[token]]))
code_negative_diff_curr_pos += len(code_neg_diff)
# if label == 'P':
# label_e_array.append(np.array([1]))
# else:
# label_e_array.append(np.array([0]))
code_pos_table.flush()
code_neg_table.flush()
test_table.flush()
code_pos_table.close()
code_neg_table.close()
test_table.close()
def get_max_len(dataset_dir):
"""
this function is used to get the max length of code and test in the dataset.
the max length is used to pad the code and test to the same length.
"""
triplets = [dataset_dir + '/phase2.json']
global_max_code_pos = 0
global_max_code_neg = 0
global_max_test = 0
code_pos = ''
code_neg = ''
test = ''
for processed_f in triplets:
json_file = {}
with open(processed_f) as fr:
json_file = json.load(fr)
for tuple_id in json_file:
curr_code_pos = json_file[tuple_id]['C+'].split()
curr_code_neg = json_file[tuple_id]['C-'].split()
curr_test = json_file[tuple_id]['T'].split()
if len(curr_code_pos) > global_max_code_pos:
code_pos = curr_code_pos
global_max_code_pos = len(curr_code_pos)
if len(curr_code_neg) > global_max_code_neg:
code_neg = curr_code_neg
global_max_code_neg = len(curr_code_neg)
if len(curr_test) > global_max_test:
test = curr_test
global_max_test = len(curr_test)
print("Max code pos size: ", global_max_code_pos)
print("Max code neg size: ", global_max_code_neg)
print("Max test size: ", global_max_test)
def sent2indexes(sentence, vocab, maxlen):
'''sentence: a string or list of string
return: a numpy array of word indices
'''
def convert_sent(sent, vocab, maxlen):
idxes = np.zeros(maxlen, dtype=np.int64)
idxes.fill(PAD_ID)
tokens = sent.split()
idx_len = min(len(tokens), maxlen)
for i in range(idx_len): idxes[i] = vocab.get(tokens[i], UNK_ID)
return idxes, idx_len
if type(sentence) is list:
inds, lens = [], []
for sent in sentence:
idxes, idx_len = convert_sent(sent, vocab, maxlen)
#idxes, idx_len = np.expand_dims(idxes, 0), np.array([idx_len])
inds.append(idxes)
lens.append(idx_len)
return np.vstack(inds), np.vstack(lens)
else:
inds, lens = sent2indexes([sentence], vocab, maxlen)
return inds[0], lens[0]
def indexes2sent(indexes, vocab, ignore_tok=PAD_ID):
'''indexes: numpy array'''
def revert_sent(indexes, ivocab, ignore_tok=PAD_ID):
indexes=filter(lambda i: i!=ignore_tok, indexes)
toks, length = [], 0
for idx in indexes:
toks.append(ivocab.get(idx, '<unk>'))
length+=1
if idx == EOS_ID:
break
return ' '.join(toks), length
ivocab = {v: k for k, v in vocab.items()}
if indexes.ndim==1:# one sentence
return revert_sent(indexes, ivocab, ignore_tok)
else:# dim>1
sentences, lens =[], [] # a batch of sentences
for inds in indexes:
sentence, length = revert_sent(inds, ivocab, ignore_tok)
sentences.append(sentence)
lens.append(length)
return sentences, lens
def train_valid_test_split(dataset_dir, test_rate, valid_rate):
"""
this function is used to split the dataset into train, valid and test sets.
"""
triplets = {}
with open(dataset_dir + '/phase2.json', "r", encoding="ISO-8859-1", errors='ignore') as f:
triplets = json.load(f)
# counter = len(dataset)
# test_keys = random.sample(list(dataset), int(float(test_rate) * counter))
for i in range(1, 11):
dataset = {}
counter = 0
for triplet_id in triplets:
dataset[counter] = triplets[triplet_id]
counter += 1
test_val_dataset = {}
for key in dataset.copy():
if dataset[key]['project'] in ['Csv', 'Time', 'Mockito']:
test_val_dataset[key] = dataset[key]
dataset.pop(key)
counter -= 1
train_temp = dataset.copy()
os.mkdir(f'./{dataset_dir}/fold{i}')
# valid_keys = random.sample(list(train_temp), int(float(valid_rate) * counter))
valid_dataset = {}
valid_keys = random.sample(list(test_val_dataset), len(test_val_dataset) // 2)
for key in valid_keys:
valid_dataset[key] = test_val_dataset[key]
test_val_dataset.pop(key)
json_f = json.dumps(valid_dataset, indent = 4)
with open(f'{dataset_dir}/fold{i}/valid{i}.json'.format(type), 'w') as out_f:
out_f.write(json_f)
json_f = json.dumps(train_temp, indent = 4)
with open(f'{dataset_dir}/fold{i}/train{i}.json'.format(type), 'w') as out_f:
out_f.write(json_f)
json_f = json.dumps(test_val_dataset, indent = 4)
with open(f'{dataset_dir}/fold{i}/test{i}.json'.format(type), 'w') as out_f:
out_f.write(json_f)
def filter_asserts():
"""
this function is used to filter the assert statements in the dataset.
"""
data = {}
with open('phase2.json') as fr:
data = json.load(fr)
pbar = tqdm(data)
for key in pbar:
pbar.set_description(f'processing {key}')
test = data[key]['T']
intervals = []
for i in range(len(test)):
if test[i:i+len('org.junit.Assert')] == 'org.junit.Assert':
c=i
paranthese_count = 0
while (test[c] != ';' or paranthese_count != 0) and c < len(test)-1:
if test[c] == '(' and test[c:c+len('(#document')] != '(#document' and test[c:c+len('(:lt')] != '(:lt':
paranthese_count += 1
elif test[c] == ')':
paranthese_count -= 1
c+=1
if test[c:c+len('org.junit.Assert')] == 'org.junit.Assert':
c -= 1
break
if test[c] == '}':
c -= 1
break
intervals.append((test[i:c+1], ''))
if test[i:i+len('assert')].lower() == 'assert':
c=i
paranthese_count = 0
while (test[c] != ';' or paranthese_count != 0) and c < len(test)-1:
if test[c] == '(':
paranthese_count += 1
elif test[c] == ')':
paranthese_count -= 1
c+=1
intervals.append((test[i:c+1], ''))
for r in intervals:
test = test.replace(*r)
test = ' '.join(test.split())
data[key]['T'] = test
with open('phase2_no_asserts.json', 'w') as fw:
json.dump(data, fw, indent=4)
if __name__ == '__main__':
if sys.argv[1] == 'create_vocabulary':
create_vocabulary('./real_data_gen/vocab/', sys.argv[2])
elif sys.argv[1] == 'json_to_h5':
json_to_h5(sys.argv[2], sys.argv[3], sys.argv[4])
elif sys.argv[1] == 'get_max_len':
get_max_len(sys.argv[2])
elif sys.argv[1] == 'train_valid_test_split':
train_valid_test_split(sys.argv[2], sys.argv[3], sys.argv[4])
elif sys.argv[1] == 'filter_asserts':
filter_asserts()