-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathdecode2.vhdl
734 lines (649 loc) · 27.3 KB
/
decode2.vhdl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.decode_types.all;
use work.common.all;
use work.helpers.all;
use work.insn_helpers.all;
entity decode2 is
generic (
EX1_BYPASS : boolean := true;
HAS_FPU : boolean := true;
-- Non-zero to enable log data collection
LOG_LENGTH : natural := 0
);
port (
clk : in std_ulogic;
rst : in std_ulogic;
complete_in : in instr_tag_t;
busy_in : in std_ulogic;
stall_out : out std_ulogic;
stopped_out : out std_ulogic;
flush_in: in std_ulogic;
d_in : in Decode1ToDecode2Type;
e_out : out Decode2ToExecute1Type;
r_in : in RegisterFileToDecode2Type;
r_out : out Decode2ToRegisterFileType;
c_in : in CrFileToDecode2Type;
c_out : out Decode2ToCrFileType;
execute_bypass : in bypass_data_t;
execute_cr_bypass : in cr_bypass_data_t;
execute2_bypass : in bypass_data_t;
execute2_cr_bypass : in cr_bypass_data_t;
writeback_bypass : in bypass_data_t;
-- Access to SPRs from core_debug module
dbg_spr_req : in std_ulogic;
dbg_spr_addr : in std_ulogic_vector(7 downto 0);
log_out : out std_ulogic_vector(9 downto 0)
);
end entity decode2;
architecture behaviour of decode2 is
type reg_type is record
e : Decode2ToExecute1Type;
repeat : repeat_t;
busy : std_ulogic;
sgl_pipe : std_ulogic;
prev_sgl : std_ulogic;
input_ov : std_ulogic;
output_ov : std_ulogic;
read_rspr : std_ulogic;
end record;
constant reg_type_init : reg_type :=
(e => Decode2ToExecute1Init, repeat => NONE, others => '0');
signal dc2, dc2in : reg_type;
signal deferred : std_ulogic;
type decode_input_reg_t is record
reg_valid : std_ulogic;
reg : gspr_index_t;
data : std_ulogic_vector(63 downto 0);
end record;
constant decode_input_reg_init : decode_input_reg_t := ('0', (others => '0'), (others => '0'));
type decode_output_reg_t is record
reg_valid : std_ulogic;
reg : gspr_index_t;
end record;
constant decode_output_reg_init : decode_output_reg_t := ('0', (others => '0'));
function decode_input_reg_a (t : input_reg_a_t; insn_in : std_ulogic_vector(31 downto 0);
prefix : std_ulogic_vector(25 downto 0);
instr_addr : std_ulogic_vector(63 downto 0))
return decode_input_reg_t is
begin
if t = RA or ((t = RA_OR_ZERO or t = RA0_OR_CIA) and insn_ra(insn_in) /= "00000") then
return ('1', gpr_to_gspr(insn_ra(insn_in)), (others => '0'));
elsif t = CIA or (t = RA0_OR_CIA and insn_prefix_r(prefix) = '1') then
return ('0', (others => '0'), instr_addr);
elsif HAS_FPU and t = FRA then
return ('1', fpr_to_gspr(insn_fra(insn_in)), (others => '0'));
else
return ('0', (others => '0'), (others => '0'));
end if;
end;
function decode_input_reg_b (t : input_reg_b_t; insn_in : std_ulogic_vector(31 downto 0);
prefix : std_ulogic_vector(25 downto 0))
return decode_input_reg_t is
variable ret : decode_input_reg_t;
begin
case t is
when RB =>
ret := ('1', gpr_to_gspr(insn_rb(insn_in)), (others => '0'));
when FRB =>
if HAS_FPU then
ret := ('1', fpr_to_gspr(insn_frb(insn_in)), (others => '0'));
else
ret := ('0', (others => '0'), (others => '0'));
end if;
when CONST_UI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(unsigned(insn_ui(insn_in)), 64)));
when CONST_SI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_si(insn_in)), 64)));
when CONST_PSI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_prefixed_si(prefix, insn_in)), 64)));
when CONST_SI_HI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_si(insn_in)) & x"0000", 64)));
when CONST_UI_HI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(unsigned(insn_si(insn_in)) & x"0000", 64)));
when CONST_LI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_li(insn_in)) & "00", 64)));
when CONST_BD =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_bd(insn_in)) & "00", 64)));
when CONST_DS =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_ds(insn_in)) & "00", 64)));
when CONST_DQ =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_dq(insn_in)) & "0000", 64)));
when CONST_DXHI4 =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_dx(insn_in)) & x"0004", 64)));
when CONST_M1 =>
ret := ('0', (others => '0'), x"FFFFFFFFFFFFFFFF");
when CONST_SH =>
ret := ('0', (others => '0'), x"00000000000000" & "00" & insn_in(1) & insn_in(15 downto 11));
when CONST_SH32 =>
ret := ('0', (others => '0'), x"00000000000000" & "000" & insn_in(15 downto 11));
when NONE =>
ret := ('0', (others => '0'), (others => '0'));
end case;
return ret;
end;
function decode_input_reg_c (t : input_reg_c_t; insn_in : std_ulogic_vector(31 downto 0))
return decode_input_reg_t is
begin
case t is
when RS =>
return ('1', gpr_to_gspr(insn_rs(insn_in)), (others => '0'));
when RCR =>
return ('1', gpr_to_gspr(insn_rcreg(insn_in)), (others => '0'));
when FRS =>
if HAS_FPU then
return ('1', fpr_to_gspr(insn_frt(insn_in)), (others => '0'));
else
return ('0', (others => '0'), (others => '0'));
end if;
when FRC =>
if HAS_FPU then
return ('1', fpr_to_gspr(insn_frc(insn_in)), (others => '0'));
else
return ('0', (others => '0'), (others => '0'));
end if;
when NONE =>
return ('0', (others => '0'), (others => '0'));
end case;
end;
function decode_output_reg (t : output_reg_a_t; insn_in : std_ulogic_vector(31 downto 0))
return decode_output_reg_t is
begin
case t is
when RT =>
return ('1', gpr_to_gspr(insn_rt(insn_in)));
when RA =>
return ('1', gpr_to_gspr(insn_ra(insn_in)));
when FRT =>
if HAS_FPU then
return ('1', fpr_to_gspr(insn_frt(insn_in)));
else
return ('0', "000000");
end if;
when NONE =>
return ('0', "000000");
end case;
end;
function decode_rc (t : rc_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic is
begin
case t is
when RC | RCOE =>
return insn_rc(insn_in);
when ONE =>
return '1';
when NONE =>
return '0';
end case;
end;
-- control signals that are derived from insn_type
type mux_select_array_t is array(insn_type_t) of std_ulogic_vector(2 downto 0);
constant result_select : mux_select_array_t := (
OP_LOGIC => "001", -- logical_result
OP_XOR => "001",
OP_PRTY => "001",
OP_CMPB => "001",
OP_EXTS => "001",
OP_BPERM => "001",
OP_BREV => "001",
OP_BCD => "001",
OP_MTSPR => "001",
OP_RLC => "010", -- rotator_result
OP_RLCL => "010",
OP_RLCR => "010",
OP_SHL => "010",
OP_SHR => "010",
OP_EXTSWSLI => "010",
OP_BCREG => "101", -- ramspr_result
OP_RFID => "101",
OP_ADDG6S => "111", -- misc_result
OP_ISEL => "111",
OP_DARN => "111",
OP_MFMSR => "111",
OP_MFCR => "111",
OP_SETB => "111",
others => "000" -- default to adder_result
);
constant subresult_select : mux_select_array_t := (
OP_MUL_L64 => "000", -- muldiv_result
OP_MUL_H64 => "001",
OP_MUL_H32 => "010",
OP_DIV => "011",
OP_DIVE => "011",
OP_MOD => "011",
OP_ADDG6S => "001", -- misc_result
OP_ISEL => "010",
OP_DARN => "011",
OP_MFMSR => "100",
OP_MFCR => "101",
OP_SETB => "110",
OP_CMP => "000", -- cr_result
OP_CMPRB => "001",
OP_CMPEQB => "010",
OP_CROP => "011",
OP_MCRXRX => "100",
OP_MTCRF => "101",
others => "000"
);
signal decoded_reg_a : decode_input_reg_t;
signal decoded_reg_b : decode_input_reg_t;
signal decoded_reg_c : decode_input_reg_t;
signal decoded_reg_o : decode_output_reg_t;
-- issue control signals
signal control_valid_in : std_ulogic;
signal control_valid_out : std_ulogic;
signal control_serialize : std_logic;
signal gpr_write_valid : std_ulogic;
signal gpr_write : gspr_index_t;
signal gpr_a_read_valid : std_ulogic;
signal gpr_a_read : gspr_index_t;
signal gpr_a_bypass : std_ulogic_vector(1 downto 0);
signal gpr_b_read_valid : std_ulogic;
signal gpr_b_read : gspr_index_t;
signal gpr_b_bypass : std_ulogic_vector(1 downto 0);
signal gpr_c_read_valid : std_ulogic;
signal gpr_c_read : gspr_index_t;
signal gpr_c_bypass : std_ulogic_vector(1 downto 0);
signal cr_read_valid : std_ulogic;
signal cr_write_valid : std_ulogic;
signal cr_bypass : std_ulogic_vector(1 downto 0);
signal ov_read_valid : std_ulogic;
signal ov_write_valid : std_ulogic;
signal instr_tag : instr_tag_t;
begin
control_0: entity work.control
generic map (
EX1_BYPASS => EX1_BYPASS
)
port map (
clk => clk,
rst => rst,
complete_in => complete_in,
valid_in => control_valid_in,
deferred => deferred,
flush_in => flush_in,
serialize => control_serialize,
stop_mark_in => d_in.stop_mark,
gpr_write_valid_in => gpr_write_valid,
gpr_write_in => gpr_write,
gpr_a_read_valid_in => gpr_a_read_valid,
gpr_a_read_in => gpr_a_read,
gpr_b_read_valid_in => gpr_b_read_valid,
gpr_b_read_in => gpr_b_read,
gpr_c_read_valid_in => gpr_c_read_valid,
gpr_c_read_in => gpr_c_read,
execute_next_tag => execute_bypass.tag,
execute_next_cr_tag => execute_cr_bypass.tag,
execute2_next_tag => execute2_bypass.tag,
execute2_next_cr_tag => execute2_cr_bypass.tag,
cr_read_in => cr_read_valid,
cr_write_in => cr_write_valid,
cr_bypass => cr_bypass,
ov_read_in => ov_read_valid,
ov_write_in => ov_write_valid,
valid_out => control_valid_out,
stopped_out => stopped_out,
gpr_bypass_a => gpr_a_bypass,
gpr_bypass_b => gpr_b_bypass,
gpr_bypass_c => gpr_c_bypass,
instr_tag_out => instr_tag
);
deferred <= dc2.e.valid and busy_in;
decode2_0: process(clk)
begin
if rising_edge(clk) then
if rst = '1' or flush_in = '1' then
dc2 <= reg_type_init;
elsif deferred = '0' then
if dc2in.e.valid = '1' then
report "execute " & to_hstring(dc2in.e.nia) &
" tag=" & integer'image(dc2in.e.instr_tag.tag) & std_ulogic'image(dc2in.e.instr_tag.valid);
end if;
dc2 <= dc2in;
elsif dc2.read_rspr = '0' then
-- Update debug SPR access signals even when stalled
-- if the instruction in dc2.e doesn't read any SPRs.
dc2.e.dbg_spr_access <= dc2in.e.dbg_spr_access;
dc2.e.ramspr_even_rdaddr <= dc2in.e.ramspr_even_rdaddr;
dc2.e.ramspr_odd_rdaddr <= dc2in.e.ramspr_odd_rdaddr;
dc2.e.ramspr_rd_odd <= dc2in.e.ramspr_rd_odd;
end if;
if d_in.valid = '1' then
assert decoded_reg_a.reg_valid = '0' or decoded_reg_a.reg = d_in.reg_a severity failure;
assert decoded_reg_b.reg_valid = '0' or decoded_reg_b.reg = d_in.reg_b severity failure;
assert decoded_reg_c.reg_valid = '0' or decoded_reg_c.reg = d_in.reg_c severity failure;
end if;
end if;
end process;
c_out.read <= d_in.decode.input_cr;
decode2_addrs: process(all)
variable dec_a, dec_b, dec_c : decode_input_reg_t;
variable dec_o : decode_output_reg_t;
begin
dec_a := decode_input_reg_a (d_in.decode.input_reg_a, d_in.insn, d_in.prefix, d_in.nia);
dec_b := decode_input_reg_b (d_in.decode.input_reg_b, d_in.insn, d_in.prefix);
dec_c := decode_input_reg_c (d_in.decode.input_reg_c, d_in.insn);
dec_o := decode_output_reg (d_in.decode.output_reg_a, d_in.insn);
if d_in.valid = '0' or d_in.illegal_suffix = '1' then
dec_a.reg_valid := '0';
dec_b.reg_valid := '0';
dec_c.reg_valid := '0';
dec_o.reg_valid := '0';
end if;
decoded_reg_a <= dec_a;
decoded_reg_b <= dec_b;
decoded_reg_c <= dec_c;
decoded_reg_o <= dec_o;
r_out.read1_enable <= dec_a.reg_valid;
r_out.read2_enable <= dec_b.reg_valid;
r_out.read3_enable <= dec_c.reg_valid;
end process;
decode2_1: process(all)
variable v : reg_type;
variable length : std_ulogic_vector(3 downto 0);
variable op : insn_type_t;
variable unit : unit_t;
variable valid_in : std_ulogic;
variable decctr : std_ulogic;
variable sprs_busy : std_ulogic;
begin
v := dc2;
valid_in := d_in.valid or dc2.busy;
if dc2.busy = '0' then
v.e := Decode2ToExecute1Init;
sprs_busy := '0';
unit := d_in.decode.unit;
if d_in.valid = '1' then
v.prev_sgl := dc2.sgl_pipe;
v.sgl_pipe := d_in.decode.sgl_pipe;
end if;
v.e.input_cr := d_in.decode.input_cr;
v.e.output_cr := d_in.decode.output_cr;
-- Work out whether XER SO/OV/OV32 bits are set
-- or used by this instruction
v.e.rc := decode_rc(d_in.decode.rc, d_in.insn);
v.e.output_xer := d_in.decode.output_carry;
v.input_ov := d_in.decode.output_carry;
v.output_ov := '0';
if d_in.decode.input_carry = OV then
v.input_ov := '1';
v.output_ov := '1';
end if;
if v.e.rc = '1' and d_in.decode.facility /= FPU then
v.input_ov := '1';
end if;
case d_in.decode.insn_type is
when OP_ADD | OP_MUL_L64 | OP_DIV | OP_DIVE =>
if d_in.decode.rc = RCOE and insn_oe(d_in.insn) = '1' then
v.e.oe := '1';
v.e.output_xer := '1';
v.output_ov := '1';
v.input_ov := '1'; -- need SO state if setting OV to 0
end if;
when OP_MFSPR =>
if is_X(d_in.insn) then
v.input_ov := 'X';
else
case decode_spr_num(d_in.insn) is
when SPR_XER =>
v.input_ov := '1';
when SPR_DAR | SPR_DSISR | SPR_PID | SPR_PTCR =>
unit := LDST;
when others =>
end case;
end if;
when OP_MTSPR =>
if is_X(d_in.insn) then
v.e.output_xer := 'X';
v.output_ov := 'X';
v.sgl_pipe := 'X';
else
case decode_spr_num(d_in.insn) is
when SPR_XER =>
v.e.output_xer := '1';
v.output_ov := '1';
when SPR_DAR | SPR_DSISR | SPR_PID | SPR_PTCR =>
unit := LDST;
if d_in.valid = '1' then
v.sgl_pipe := '1';
end if;
when others =>
end case;
if d_in.spr_info.valid = '1' and d_in.valid = '1' then
v.sgl_pipe := '1';
end if;
end if;
when OP_CMP | OP_MCRXRX =>
v.input_ov := '1';
when others =>
end case;
if d_in.decode.lr = '1' then
v.e.lr := insn_lk(d_in.insn);
-- b and bc have even major opcodes; bcreg is considered absolute
v.e.br_abs := insn_aa(d_in.insn) or d_in.insn(26);
end if;
op := d_in.decode.insn_type;
-- Does this instruction decrement CTR?
-- bc, bclr, bctar with BO(2) = 0 do, but not bcctr.
decctr := '0';
if d_in.insn(23) = '0' and
(op = OP_BC or
(op = OP_BCREG and not (d_in.insn(10) = '1' and d_in.insn(6) = '0'))) then
decctr := '1';
end if;
v.e.dec_ctr := decctr;
v.repeat := d_in.decode.repeat;
if d_in.decode.repeat /= NONE then
v.e.repeat := '1';
end if;
v.e.spr_select := d_in.spr_info;
if decctr = '1' then
-- read and write CTR
v.e.ramspr_odd_rdaddr := RAMSPR_CTR;
v.e.ramspr_wraddr := RAMSPR_CTR;
v.e.ramspr_write_odd := '1';
sprs_busy := '1';
end if;
if v.e.lr = '1' then
-- write LR
v.e.ramspr_wraddr := RAMSPR_LR;
v.e.ramspr_write_even := '1';
end if;
case op is
when OP_BCREG =>
if d_in.insn(10) = '0' then
v.e.ramspr_even_rdaddr := RAMSPR_LR;
elsif d_in.insn(6) = '0' then
v.e.ramspr_odd_rdaddr := RAMSPR_CTR;
v.e.ramspr_rd_odd := '1';
else
v.e.ramspr_even_rdaddr := RAMSPR_TAR;
end if;
sprs_busy := '1';
when OP_MFSPR =>
v.e.ramspr_even_rdaddr := d_in.ram_spr.index;
v.e.ramspr_odd_rdaddr := d_in.ram_spr.index;
v.e.ramspr_rd_odd := d_in.ram_spr.isodd;
v.e.spr_is_ram := d_in.ram_spr.valid;
sprs_busy := d_in.ram_spr.valid;
when OP_MTSPR =>
v.e.ramspr_wraddr := d_in.ram_spr.index;
v.e.ramspr_write_even := d_in.ram_spr.valid and not d_in.ram_spr.isodd;
v.e.ramspr_write_odd := d_in.ram_spr.valid and d_in.ram_spr.isodd;
v.e.spr_is_ram := d_in.ram_spr.valid;
when OP_RFID =>
v.e.ramspr_even_rdaddr := RAMSPR_SRR0;
v.e.ramspr_odd_rdaddr := RAMSPR_SRR1;
sprs_busy := '1';
when others =>
end case;
v.read_rspr := sprs_busy and d_in.valid;
case d_in.decode.length is
when is1B =>
length := "0001";
when is2B =>
length := "0010";
when is4B =>
length := "0100";
when is8B =>
length := "1000";
when NONE =>
length := "0000";
end case;
-- execute unit
v.e.nia := d_in.nia;
v.e.unit := unit;
v.e.fac := d_in.decode.facility;
v.e.read_reg1 := d_in.reg_a;
v.e.read_reg2 := d_in.reg_b;
v.e.read_reg3 := d_in.reg_c;
v.e.reg_valid1 := decoded_reg_a.reg_valid;
v.e.reg_valid2 := decoded_reg_b.reg_valid;
v.e.reg_valid3 := decoded_reg_c.reg_valid;
v.e.write_reg := decoded_reg_o.reg;
v.e.write_reg_enable := decoded_reg_o.reg_valid;
v.e.invert_a := d_in.decode.invert_a;
v.e.insn_type := op;
v.e.invert_out := d_in.decode.invert_out;
v.e.input_carry := d_in.decode.input_carry;
v.e.output_carry := d_in.decode.output_carry;
v.e.is_32bit := d_in.decode.is_32bit;
v.e.is_signed := d_in.decode.is_signed;
v.e.insn := d_in.insn;
v.e.data_len := length;
v.e.byte_reverse := d_in.decode.byte_reverse;
v.e.sign_extend := d_in.decode.sign_extend;
v.e.update := d_in.decode.update;
v.e.reserve := d_in.decode.reserve;
v.e.br_pred := d_in.br_pred;
v.e.result_sel := result_select(op);
v.e.sub_select := subresult_select(op);
if op = OP_MFSPR then
if d_in.ram_spr.valid = '1' then
v.e.result_sel := "101"; -- ramspr_result
elsif d_in.spr_info.valid = '0' then
-- Privileged mfspr to invalid/unimplemented SPR numbers
-- writes the contents of RT back to RT (i.e. it's a no-op)
v.e.result_sel := "001"; -- logical_result
end if;
end if;
v.e.prefixed := d_in.prefixed;
v.e.illegal_suffix := d_in.illegal_suffix;
v.e.misaligned_prefix := d_in.misaligned_prefix;
elsif dc2.e.valid = '1' then
-- dc2.busy = 1 and dc2.e.valid = 1, thus this must be a repeated instruction.
-- Set up for the second iteration (if deferred = 1 this will all be ignored)
v.e.second := '1';
-- DUPD is the only possibility here:
-- update-form loads, 2nd instruction writes RA
v.e.write_reg := dc2.e.read_reg1;
end if;
-- issue control
control_valid_in <= valid_in;
control_serialize <= v.sgl_pipe or v.prev_sgl;
gpr_write_valid <= v.e.write_reg_enable;
gpr_write <= v.e.write_reg;
gpr_a_read_valid <= v.e.reg_valid1;
gpr_a_read <= v.e.read_reg1;
gpr_b_read_valid <= v.e.reg_valid2;
gpr_b_read <= v.e.read_reg2;
gpr_c_read_valid <= v.e.reg_valid3;
gpr_c_read <= v.e.read_reg3;
cr_write_valid <= v.e.output_cr or v.e.rc;
-- Since ops that write CR only write some of the fields,
-- any op that writes CR effectively also reads it.
cr_read_valid <= cr_write_valid or v.e.input_cr;
ov_read_valid <= v.input_ov;
ov_write_valid <= v.output_ov;
-- See if any of the operands can get their value via the bypass path.
if dc2.busy = '0' or gpr_a_bypass /= "00" then
case gpr_a_bypass is
when "01" =>
v.e.read_data1 := execute_bypass.data;
when "10" =>
v.e.read_data1 := execute2_bypass.data;
when "11" =>
v.e.read_data1 := writeback_bypass.data;
when others =>
if decoded_reg_a.reg_valid = '1' then
v.e.read_data1 := r_in.read1_data;
else
v.e.read_data1 := decoded_reg_a.data;
end if;
end case;
end if;
if dc2.busy = '0' or gpr_b_bypass /= "00" then
case gpr_b_bypass is
when "01" =>
v.e.read_data2 := execute_bypass.data;
when "10" =>
v.e.read_data2 := execute2_bypass.data;
when "11" =>
v.e.read_data2 := writeback_bypass.data;
when others =>
if decoded_reg_b.reg_valid = '1' then
v.e.read_data2 := r_in.read2_data;
else
v.e.read_data2 := decoded_reg_b.data;
end if;
end case;
end if;
if dc2.busy = '0' or gpr_c_bypass /= "00" then
case gpr_c_bypass is
when "01" =>
v.e.read_data3 := execute_bypass.data;
when "10" =>
v.e.read_data3 := execute2_bypass.data;
when "11" =>
v.e.read_data3 := writeback_bypass.data;
when others =>
if decoded_reg_c.reg_valid = '1' then
v.e.read_data3 := r_in.read3_data;
else
v.e.read_data3 := decoded_reg_c.data;
end if;
end case;
end if;
case cr_bypass is
when "10" =>
v.e.cr := execute_cr_bypass.data;
when "11" =>
v.e.cr := execute2_cr_bypass.data;
when others =>
v.e.cr := c_in.read_cr_data;
end case;
v.e.xerc := c_in.read_xerc_data;
v.e.valid := control_valid_out;
v.e.instr_tag := instr_tag;
v.busy := valid_in and (not control_valid_out or (v.e.repeat and not v.e.second));
stall_out <= dc2.busy or deferred;
v.e.dbg_spr_access := dbg_spr_req and not v.read_rspr;
if v.e.dbg_spr_access = '1' then
v.e.ramspr_even_rdaddr := unsigned(dbg_spr_addr(3 downto 1));
v.e.ramspr_odd_rdaddr := unsigned(dbg_spr_addr(3 downto 1));
v.e.ramspr_rd_odd := dbg_spr_addr(0);
end if;
-- Update registers
dc2in <= v;
-- Update outputs
e_out <= dc2.e;
end process;
d2_log: if LOG_LENGTH > 0 generate
signal log_data : std_ulogic_vector(9 downto 0);
begin
dec2_log : process(clk)
begin
if rising_edge(clk) then
log_data <= dc2.e.nia(5 downto 2) &
dc2.e.valid &
stopped_out &
stall_out &
(gpr_a_bypass(1) xor gpr_a_bypass(0)) &
(gpr_b_bypass(1) xor gpr_b_bypass(0)) &
(gpr_c_bypass(1) xor gpr_c_bypass(0));
end if;
end process;
log_out <= log_data;
end generate;
end architecture behaviour;