-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathwebcam.py
102 lines (82 loc) · 3.72 KB
/
webcam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import face_recognition_api
import cv2
import os
import pickle
import numpy as np
import warnings
# Basic performance tweaks to make things run a lot faster:
# 1. Process each video frame at 1/4 resolution (though still display it at full resolution)
# 2. Only detect faces in every other frame of video.
# Get a reference to webcam #0 (the default one)
video_capture = cv2.VideoCapture(0)
# Load Face Recogniser classifier
fname = 'classifier.pkl'
if os.path.isfile(fname):
with open(fname, 'rb') as f:
(le, clf) = pickle.load(f)
else:
print('\x1b[0;37;43m' + "Classifier '{}' does not exist".format(fname) + '\x1b[0m')
quit()
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
with warnings.catch_warnings():
warnings.simplefilter("ignore")
while True:
# Grab a single frame of video
ret, frame = video_capture.read()
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition_api.face_locations(small_frame)
face_encodings = face_recognition_api.face_encodings(small_frame, face_locations)
face_names = []
predictions = []
if len(face_encodings) > 0:
closest_distances = clf.kneighbors(face_encodings, n_neighbors=1)
is_recognized = [closest_distances[0][i][0] <= 0.5 for i in range(len(face_locations))]
# predict classes and cull classifications that are not with high confidence
predictions = [(le.inverse_transform(int(pred)).title(), loc) if rec else ("Unknown", loc) for pred, loc, rec in
zip(clf.predict(face_encodings), face_locations, is_recognized)]
# # Predict the unknown faces in the video frame
# for face_encoding in face_encodings:
# face_encoding = face_encoding.reshape(1, -1)
#
# # predictions = clf.predict(face_encoding).ravel()
# # person = le.inverse_transform(int(predictions[0]))
#
# predictions = clf.predict_proba(face_encoding).ravel()
# maxI = np.argmax(predictions)
# person = le.inverse_transform(maxI)
# confidence = predictions[maxI]
# print(person, confidence)
# if confidence < 0.7:
# person = 'Unknown'
#
# face_names.append(person.title())
process_this_frame = not process_this_frame
# Display the results
for name, (top, right, bottom, left) in predictions:
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
# Display the resulting image
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()