forked from XPoet/js-data-structure-and-algorithm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph.js
114 lines (109 loc) · 3.71 KB
/
graph.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import Dictionay from "../Map/map"
import Queue from "../Queue/queue"
// 封装图类
export default class Graph {
constructor() {
this.vertexes = [] // 存储顶点
this.adjList = new Dictionay() //存储边信息
}
// 添加顶点
addVertex(val) {
// 添加点
this.vertexes.push(val)
// 添加点的关系 采用邻接矩阵法 结构用set
this.adjList.set(val, [])
}
// 添加边
addEdge(val1, val2) {
// 添加边需要传入两个顶点, 因为边是两个顶点之间的边, 边不可能单独存在.
// 这里实现的是无向图, 所以这里不考虑方向问题
this.adjList.get(val1).push(val2)
this.adjList.get(val2).push(val1)
}
// 输出图结构
toString() {
let res = ''
for (let i = 0; i < this.vertexes.length; i++) {
res += this.vertexes[i] + "->"
let adj = this.adjList.get(this.vertexes[i])
for (let j = 0; j < adj.length; j++) {
res += adj[j] + ""
}
res += "\n"
}
return res
}
// 初始化顶点的颜色
_initializeColor() {
// 白色: 表示该顶点还没有被访问.
// 灰色: 表示该顶点被访问过, 但并未被探索过.
// 黑色: 表示该顶点被访问过且被完全探索过.
let colors = []
for (let i = 0; i < this.vertexes.length; i++) {
colors[this.vertexes[i]] = "white"
}
return colors
}
// 广度优先搜索
bfs(handle) {
// 1.初始化颜色
let color = this._initializeColor()
// 2. 创建队列
let queue = new Queue
// 3. 将传入的顶点放入队列
queue.enqueue(this.vertexes[0])
// 4.依赖队列操作数据 队列不为空时一直持续
while (!queue.isEmpty()) {
// 4.1 拿到队头
let qVal = queue.dequeue()
// 4.2 拿到队头所关联(相连)的点并设置为访问中状态(灰色)
let qAdj = this.adjList.get(qVal)
color[qVal] = "gray"
// 4.3 将队头关联的点添加到队尾
// 这一步是完成bfs的关键,依赖队列的先进先出的特点。
for (let i = 0; i < qAdj.length; i++) {
let a = qAdj[i]
if (color[a] === "white") {
color[a] = "gray"
queue.enqueue(a)
}
}
// 4.5设置访问完的点为黑色。
color[qVal] = "black"
if (handle) [
handle(qVal)
]
}
}
// 深度优先搜索
dfs(handle) {
// 1.初始化颜色
let color = this._initializeColor()
// 2. 遍历所有顶点,开始访问
for (let i = 0; i < this.vertexes.length; i++) {
if (color[this.vertexes[i]] === "white") {
this._dfsVisit(this.vertexes[i], color, handle)
}
}
}
// dfs的递归方法 这里直接使用函数的调用栈
_dfsVisit(val, color, handle) {
// 1. 将颜色设置为访问中
color[val] = "gray"
// 2. 执行相应的回调
if (handle) {
handle(val)
}
// 3. 拿与该点相邻的点,对每个点操作
let adj = this.adjList.get(val)
for (let i = 0; i < adj.length; i++) {
let w = adj[i]
// 如果相邻点未未访问状态,开始访问。
if (color[w] === "white") {
this._dfsVisit(w, color, handle)
}
}
// 4. 处理完后设置为访问过点。
color[val] = "black"
}
}