-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtd3.py
255 lines (203 loc) · 9.64 KB
/
td3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import numpy as np
import torch
import torch.nn as nn
from tqdm import tqdm
from models import Actor, CriticTD3
# https://github.com/sfujim/TD3/edit/master/TD3.py
# Implementation of Twin Delayed Deep Deterministic Policy Gradients (TD3)
if torch.cuda.is_available():
FloatTensor = torch.cuda.FloatTensor
else:
FloatTensor = torch.FloatTensor
class TD3(object):
def __init__(self, state_dim, action_dim, max_action, memory, args):
# actor
self.actor = Actor(state_dim, action_dim, max_action,
layer_norm=args.layer_norm)
self.actor_target = Actor(
state_dim, action_dim, max_action, layer_norm=args.layer_norm)
self.actor_target.load_state_dict(self.actor.state_dict())
self.actor_optimizer = torch.optim.Adam(
self.actor.parameters(), lr=args.actor_lr)
# critic
self.critic = CriticTD3(state_dim, action_dim,
layer_norm=args.layer_norm)
self.critic_target = CriticTD3(
state_dim, action_dim, layer_norm=args.layer_norm)
self.critic_target.load_state_dict(self.critic.state_dict())
self.critic_optimizer = torch.optim.Adam(
self.critic.parameters(), lr=args.critic_lr)
# cuda
if torch.cuda.is_available():
self.actor = self.actor.cuda()
self.actor_target = self.actor_target.cuda()
self.critic = self.critic.cuda()
self.critic_target = self.critic_target.cuda()
# misc
self.criterion = nn.MSELoss()
self.state_dim = state_dim
self.action_dim = action_dim
self.max_action = max_action
self.memory = memory
# hyper-parameters
self.tau = args.tau
self.discount = args.discount
self.batch_size = args.batch_size
self.policy_noise = args.policy_noise
self.noise_clip = args.noise_clip
self.policy_freq = args.policy_freq
def select_action(self, state, noise=None):
state = FloatTensor(
state.reshape(-1, self.state_dim))
action = self.actor(state).cpu().data.numpy().flatten()
if noise is not None:
action += noise.sample()
return np.clip(action, -self.max_action, self.max_action)
def train(self, iterations):
for it in tqdm(range(iterations)):
# Sample replay buffer
x, y, u, r, d = self.memory.sample(self.batch_size)
state = FloatTensor(x)
next_state = FloatTensor(y)
action = FloatTensor(u)
reward = FloatTensor(r)
done = FloatTensor(1 - d)
# Select action according to policy and add clipped noise
noise = np.clip(np.random.normal(0, self.policy_noise, size=(
self.batch_size, self.action_dim)), -self.noise_clip, self.noise_clip)
next_action = self.actor_target(
next_state) + FloatTensor(noise)
next_action = next_action.clamp(-self.max_action, self.max_action)
# Q target = reward + discount * min_i(Qi(next_state, pi(next_state)))
with torch.no_grad():
target_Q1, target_Q2 = self.critic_target(
next_state, next_action)
target_Q = torch.min(target_Q1, target_Q2)
target_Q = reward + (done * self.discount * target_Q)
# Get current Q estimates
current_Q1, current_Q2 = self.critic(state, action)
# Compute critic loss
critic_loss = self.criterion(
current_Q1, target_Q) + self.criterion(current_Q2, target_Q)
# Optimize the critic
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# Delayed policy updates
if it % self.policy_freq == 0:
# Compute actor loss
Q1, Q2 = self.critic(state, self.actor(state))
actor_loss = -Q1.mean()
# Optimize the actor
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# Update the frozen target models
for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
target_param.data.copy_(
self.tau * param.data + (1 - self.tau) * target_param.data)
for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):
target_param.data.copy_(
self.tau * param.data + (1 - self.tau) * target_param.data)
def load(self, filename):
self.actor.load_model(filename, "actor")
self.critic.load_model(filename, "critic")
def save(self, output):
self.actor.save_model(output, "actor")
self.critic.save_model(output, "critic")
class DTD3(object):
def __init__(self, state_dim, action_dim, max_action, memory, args):
# misc
self.criterion = nn.MSELoss()
self.state_dim = state_dim
self.action_dim = action_dim
self.max_action = max_action
self.memory = memory
self.n = args.n_actor
# actor
self.actors = [Actor(state_dim, action_dim, max_action,
layer_norm=args.layer_norm) for i in range(self.n)]
self.actors_target = [Actor(
state_dim, action_dim, max_action, layer_norm=args.layer_norm) for i in range(self.n)]
self.actors_optimizer = [torch.optim.Adam(
self.actors[i].parameters(), lr=args.actor_lr) for i in range(self.n)]
for i in range(self.n):
self.actors_target[i].load_state_dict(self.actors[i].state_dict())
# critic
self.critic = CriticTD3(state_dim, action_dim,
layer_norm=args.layer_norm)
self.critic_target = CriticTD3(
state_dim, action_dim, layer_norm=args.layer_norm)
self.critic_target.load_state_dict(self.critic.state_dict())
self.critic_optimizer = torch.optim.Adam(
self.critic.parameters(), lr=args.critic_lr)
# cuda
if torch.cuda.is_available():
for i in range(self.n):
self.actors[i] = self.actors[i].cuda()
self.actors_target[i] = self.actors_target[i].cuda()
self.critic = self.critic.cuda()
self.critic_target = self.critic_target.cuda()
# shared memory
for i in range(self.n):
self.actors[i].share_memory()
self.actors_target[i].share_memory()
self.critic.share_memory()
self.critic_target.share_memory()
# hyper-parameters
self.tau = args.tau
self.discount = args.discount
self.batch_size = args.batch_size
self.policy_noise = args.policy_noise
self.noise_clip = args.noise_clip
self.policy_freq = args.policy_freq
def train(self, iterations, actor_index):
for it in tqdm(range(iterations)):
# Sample replay buffer
states, n_states, actions, rewards, dones = self.memory.sample(
self.batch_size)
# Select action according to policy and add clipped noise
noise = np.clip(np.random.normal(0, self.policy_noise, size=(
self.batch_size, self.action_dim)), -self.noise_clip, self.noise_clip)
next_action = self.actors_target[actor_index](
n_states) + FloatTensor(noise)
next_action = next_action.clamp(-self.max_action, self.max_action)
# Q target = reward + discount * min_i(Qi(next_state, pi(next_state)))
with torch.no_grad():
target_Q1, target_Q2 = self.critic_target(
n_states, next_action)
target_Q = torch.min(target_Q1, target_Q2)
target_Q = rewards + (1 - dones) * self.discount * target_Q
# Get current Q estimates
current_Q1, current_Q2 = self.critic(states, actions)
# Compute critic loss
critic_loss = self.criterion(
current_Q1, target_Q) + self.criterion(current_Q2, target_Q)
# Optimize the critic
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# Delayed policy updates
if it % self.policy_freq == 0:
# Compute actor loss
Q1, Q2 = self.critic(states, self.actors[actor_index](states))
actor_loss = -Q1.mean()
# Optimize the actor
self.actors_optimizer[actor_index].zero_grad()
actor_loss.backward()
self.actors_optimizer[actor_index].step()
# Update the frozen target models
for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
target_param.data.copy_(
self.tau * param.data + (1 - self.tau) * target_param.data)
for param, target_param in zip(self.actors[actor_index].parameters(), self.actors_target[actor_index].parameters()):
target_param.data.copy_(
self.tau * param.data + (1 - self.tau) * target_param.data)
def load(self, filename):
for i in range(self.n):
self.actors[i].load_model(filename, "actor_" + str(i))
self.critic.load_model(filename, "critic")
def save(self, output):
for i in range(self.n):
self.actors[i].save_model(output, "actor_" + str(i))
self.critic.save_model(output, "critic")