-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathmnist_fp.yaml
44 lines (44 loc) · 1.76 KB
/
mnist_fp.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# Validation set evaluation metrics:
# Top-1 Accuracy: 99.4%
# Top-5 Accuracy: 100.0%
seed: null
environment:
platform: local
cuda:
cudnn_deterministic: true
cudnn_benchmark: false
data:
dataset_path: data/mnist/
download: true
train_batch_size: 64
test_batch_size: 5000
workers: 4
model:
architecture: lenet5
loss: nll_loss # select from {'cross_entropy', 'nll_loss', 'kl_div'}, see get_loss_fn() docs for details.
arch_config:
moving_average_mode: 'off' # select from {'off', 'eval_only', 'train_and_eval'}, see ActivationQuantizer docs for details.
moving_average_momentum: 0.99
x_quant: fp # select from {'fp', 'ls-1', 'ls-T', 'ls-2', 'gf-1', 'gf-2', 'gf-3' (any `gf-k`)}, see QuantConv2d docs for details.
w_quant: fp # select from {'fp', 'ls-1', 'ls-T', 'ls-2', 'gf-1', 'gf-2', 'gf-3' (any `gf-k`)}, see QuantConv2d docs for details.
clamp:
kind: identity # select from {'identity', 'symmetric'}, see QuantConv2d docs for details.
conv1_filters: 20
conv2_filters: 50
output_classes: 10
optimization:
epochs: 10
optimizer:
algorithm: adadelta # select from {'sgd', 'adam', 'adadelta'}, see get_optimizer() docs for details.
lr: 1.0
lr_scheduler:
scheduler: step_lr # select from {'step_lr', 'multi_step_lr', 'linear_lr', 'lambda_lr'}, see get_lr_scheduler() docs for details.
step_size: 1
gamma: 0.7
log:
level: INFO
interval: 10
tensorboard: true
tensorboard_root: runs/
root_experiments_dir: experiments/
save_model_freq: 2