From 5d7ff98825eac832404aacbb6032374849ab4d06 Mon Sep 17 00:00:00 2001 From: Alberto Mateo Urdiales <48100888+amateo250@users.noreply.github.com> Date: Thu, 1 Aug 2024 17:11:24 +0200 Subject: [PATCH] update stengen cs --- cs/ENG/tbe_mva.zip | Bin 927057 -> 927057 bytes .../tbe_mva/scripts/backup/tbe_mva_backup.R | 6 +- images/stengen/beer_data_after.png | Bin 0 -> 16133 bytes images/stengen/beer_data_before.png | Bin 0 -> 18486 bytes images/stengen/epi.2by2_data.png | Bin 0 -> 27520 bytes pages/stengen-en.epiet.html | 2880 ++++++++++++++++- pages/stengen-en.epiet.qmd | 814 ++++- .../figure-html/unnamed-chunk-13-1.png | Bin 0 -> 18535 bytes .../figure-html/unnamed-chunk-15-1.png | Bin 0 -> 20272 bytes .../figure-html/unnamed-chunk-15-2.png | Bin 0 -> 16804 bytes .../figure-html/unnamed-chunk-18-1.png | Bin 0 -> 16804 bytes .../figure-html/unnamed-chunk-19-1.png | Bin 0 -> 18535 bytes .../figure-html/unnamed-chunk-21-1.png | Bin 0 -> 20300 bytes pages/tbe-en_epiet.html | 208 +- pages/tbe-en_epiet.qmd | 10 +- 15 files changed, 3748 insertions(+), 170 deletions(-) create mode 100644 images/stengen/beer_data_after.png create mode 100644 images/stengen/beer_data_before.png create mode 100644 images/stengen/epi.2by2_data.png create mode 100644 pages/stengen-en.epiet_files/figure-html/unnamed-chunk-13-1.png create mode 100644 pages/stengen-en.epiet_files/figure-html/unnamed-chunk-15-1.png create mode 100644 pages/stengen-en.epiet_files/figure-html/unnamed-chunk-15-2.png create mode 100644 pages/stengen-en.epiet_files/figure-html/unnamed-chunk-18-1.png create mode 100644 pages/stengen-en.epiet_files/figure-html/unnamed-chunk-19-1.png create mode 100644 pages/stengen-en.epiet_files/figure-html/unnamed-chunk-21-1.png diff --git a/cs/ENG/tbe_mva.zip b/cs/ENG/tbe_mva.zip index df0ee00416e81dfc4ab979211032bb095ad29669..54fae2315ee2c3f5d5f922a496d3e70d09b30f6e 100644 GIT binary patch delta 2158 zcmV-!2$A>E$~e)=I1Nxs0|XQR00000y?p(#4Gjzfy?p(X?+Y1|HVhI0y@N>%he-?p zhe-?qhe-?rw@C~HWFrV;PybloISxvbbX`8UtwEc{ID$UA3FH9>_OG+a!+~HBA3KMUp*|h;A&8893{cEAnXB2o}6!;hj z5Pvij(5#&f&t8pQv-6kKNA%f`Z`kWM7sJcZ@azh^i*0qkzryn5TWlz|sySt*oaP!6l^jass^WNBQitVu} zqK9j@DeBq`3^f~_w1RC zK5v+@kGf&@=smW~ko5b<`>}D@mb+OW*UWh?3w7{|Os?%t(kdPns>;WcWoKm{%ztcf z(^ER8sBn9`uD#HOZ*zr*n7$5kB=JWZ#$)8!G0^G@3h&*(5R;OL@-cxxF>xOQsUHrY;A`rpM`s&H%pH7Tk8n}gS~eC?gC`K9;0jpQTX!Z- z`+IInwaKJG#o$T`g}fCH%?XvIC;*mN~Yo$tU(XMZRE99*6Z zMniTvyc%K6L*IWq9bWBJorHG(4ojT}+C6+(!RY6*GD=>by<%9ae6;LL_+{_!h2K_8 zOHCOaTCH2w*u?4*`Yn?RggX$&Q#>22wTVMkcM!AwvEc~3J{u$3hCJxT8iP>V505f? zPTN%YYu7DOm??i2TPJ4^1Ak!*5+s0(cG+#(?tow0bPtbKbWbY`XE+tMp%)XF(o$7S zWGqXGZz|BuZPe-ECi=};p2H1vo-(sX`tYR@Hcis-bQ9rlk|&$0OyzT~WrPJ%p#dN9 zR!F@`9G`BY-k9adCs1Rct3=m$?hQ4gy5R}Vh_1J@z^4rs%<^bV^MBq|J4CFoQzs8~ zXV;j6WJca$4{Byt=;B0XE=IUfOP_|bSFTO`~rluIT z!Zn^nDu*3*^Tnv*9*XE8beu`&@KCER>^$2+(QRPS%(6UwyCu_taW}#8TCOt`x~s*; z_q6@5(wy73R%|83vxwf^m;eA60k^-GvcES=aQs?sMZ<;kaDVehMjp_s8hyPDH&C*Y z-%Se!RdhDn^oBO;oacyA94Z^T;Ae-_zLEjNbP54SR8Z-woquzcXgX6>nNHW^y3ayW zS)vSpDwTOvjmn++%@h1Mwu7)BX%?B#tU?LX`9kV`#%-xvhu@`%_p^bfG6Vvsf?iE@ zfE?Hz0xg#ARDZjvIMkd!Ku3RDm)p+vqC3EZ1;0@hM100@4^-v&4oR>ESRnxpXNgh- zs??VN4-@CidHfmno+fmWUE{SDOA8Y)Fve$rib8I??7dJdY;EHnvMKAg7d+2h_D|`e z-7^#4cE^;hZJFY7{T2f(aO3tN!M$-dYX9zPv#pZCoqq;3(E@ry?~pRwB{xnKbd04e z6WU1~Qc$>n9C1YK^MjfjJdSky=l zMHOZ(tzWYin}DBQYg^IbV0sbCIMr=QN-)B{<8G)O?Ty@e9SG_6N`2F}(^jdu0!v{q zgH&VQRoj0Sb)0T4{NGa*SXZw#2Y(WcoPTd>5kHJR;LmzH`RVJW#^mn~eg4kO zkpVZmjPNPlse^ccDz~c7sQGVq;qM1hVTPy1CKl9t_|Gv;)5zK~`uFu>F}1_R}W*t8lljYBpJ5kn@# z-KU4_wMvDKM9dL0p=MY<0CW#(+E$~e)=I1Nxs0|XQR00000lwwF1FSE{tC;JZ?U1cl4+i-_cHfW zTD^>*7fHR#5LF_Jmbf2L7IIRVqGwBwX7TG@?D92$8@aY^;tb**hso7;k&jF+4Ig#Q z4ly=XD|wUV1ihrA8@P{kp!*%h;}tpBOMg5rKozyj?e2;S!_6BL&}*Ii&U<6KDYnO^ zh#s!prl@Nd;F{?KbU*-!dYSM-+o5;}Vi2Etcxkp;5nMyA|HHkl5A6Vk<~!_|-Lq#l z`n+MrKI(?qqxaY{L(=ab@5jbrTkd9kTr=mnEY!g-GP$-pNvn8Rs45>%mYtP-Fn_bb zO;72VqQdR%y7odBzReXLV){DFk;ETu7>|)>$3UwuD7<$ALrh90%GX4tIKfSK5~6NX zlcir>S&=a10gYcNEgjed8Pumd=*WN0 zB+UlOwh#(V0A00U#G#Uv;=fLFP=AxZB!Rqq1O}j@D&ee?q$U(hsTEdQU4!JnXJ(|O zyHu(`tW4gD2n9OLq<%Png0HEY9-VC*F?aBVJ;Fs{YuQ*p4W2-Zf-7KIZ{3+V z?eDoQ)h3e$6@x1&6!KO)G$&M+q5$x-XOrV~A@Qhkl`PvjVbj$pb-n{DoqwJDb8vYw z7!BFw@M?rL4}Jgfba=H>brRbBJ1lh`X!r1C1*4zK$|!k#_KIPx^3k$0;g`L?7k*nY zEj49yXti!xV-u@O=(kKN5bi)6Pw{N9)+P>F-9gOy$A%;D`fQAB8}gtVYYakdKRn9p zIc-znuU)rDVW#|9Y@M7v41a_%NRR+B+GV$Cy90i0(>**|(LJp&oZ(d1hF(lyN=sES zk+Cc#zNtVrw^65uo9H)Zc@8(wdCJTl>BE;s*fdGQ(@liKNuF$~GL_G{mJt?6g$8`Y zTOsu(aeTUodSjL+pFoX)t`c42xi{2|>V_vcBf8$s0-rWmFw3Jc&3}7W?GUlTPMti| zon2!Nk{Nl2J;d2~G<9Gx^ne2Hz$QJ)r_3i*5?{C~!JSmi`HirzIRL;;#1!8~c;o^e zn2Mm(@kj7~1nccL{mdVZ`E8Mi7lldVb$+OK@Q66H^8MQuhzR|ohD@lLJMwNaM?K!z zhuW(RYtCo`$LN*bj(>p=C6+dCG_d*mL-y0prz4NfgR{Zuo2!%EK-peRy!al`nVMqU z3fFiRsT_9L%@?DJdnlrZ&~YZ6!$YmQu=8vOMYn-PGt2V$?Uqan#@z(VYq`!)=&lwU z-_!QLN^@@CTCtTB&mwwvV*&tR1l;~!%KqLg!SQRk6%7~C!+*^m8F@gjYV`Fs+(5}n zem5-`RMFXN(;M2XbDkqgaj0zUf}b5y`$`57(plxj zWr;EXs#NAxH7a-NH&5{6*bc&iq*-J_vkE0l=L@O(8Mmcw9e$T4-p>Y_$`A;k3VJos z0din>2((zbQ-AHI;!tz`03H2pU2Z$ui|zmu7W_t45b+tqJy4b7J0!sxV1)!YoFz&T zs8U}7JWQN3=kaIQdz#Qic8%9sEGV971oy_-sQtUE&9+JkcYhkxL<{H*y+g`ym)tl}&@q;> zOlT){NI~IZ0>WVQxa~Uo*0&c`c!wV|Hjn5_Gw3HX;r-Vo@VK z6jhkDw0_N6Yyy6It!+hzgXu*m<5agLDZvQ)j=Q0Dv^R3=bs(hMEA>s^PFtns3M_@e z6mFTKqJIOgZlW)~++wzr0evc&#I9~`0@@u}#f8`}t}s9;aOdAD4#c^Us?rV_ACgw! z_iEkA+OCA%o@DM<7Btf`1w_(!BK|!@Hl%~P3PYc5RH+YNH~d~LUjHns|EVsdW2pt# z!WY!pJ|Ig7Jy7VE_OC diff --git a/cs/ENG/tbe_mva/scripts/backup/tbe_mva_backup.R b/cs/ENG/tbe_mva/scripts/backup/tbe_mva_backup.R index c9d8687..3e7d4ad 100644 --- a/cs/ENG/tbe_mva/scripts/backup/tbe_mva_backup.R +++ b/cs/ENG/tbe_mva/scripts/backup/tbe_mva_backup.R @@ -110,7 +110,7 @@ tbe %>% geom_smooth(method = lm) + # this geometry will add a trend line. "lm" is for "linear model" - facet_grid(~sex) + # adding this function will generate a separate graph for each category of sex + facet_wrap(~sex) + # adding this function will generate a separate graph for each category of sex scale_x_continuous(name = "Age" , limits = c(0,100)) + # Format the x-axis to a range between 0 and 100 @@ -162,7 +162,7 @@ tbe %>% geom_histogram() + - facet_grid(~hyper) + # add facet_grid() to get a graph for each hyper status + facet_wrap(~hyper) + # add facet_wrap() to get a graph for each hyper status labs( x = "Length of hospitalization in days", @@ -177,7 +177,7 @@ tbe %>% geom_histogram(aes(y = ..density..)) + #here we are telling ggplot2 to display the density and not the freq count - facet_grid(~hyper) + # add facet_grid() to get a graph for each hyper status + facet_wrap(~hyper) + # add facet_wrap() to get a graph for each hyper status #the function below will add the normal curve. stat_function(fun = dnorm, #The fun = argument we are specifying that we want the normal curve diff --git a/images/stengen/beer_data_after.png b/images/stengen/beer_data_after.png new file mode 100644 index 0000000000000000000000000000000000000000..4f267b5ca54d632eee596a69cffa9677b09320fd GIT binary patch literal 16133 zcmcJ$1yEew+9ixb0tAP~HMqOGy98<6-3buf-Gh6AyGxLU;1=AiaY=ySZqvN?PTl#Z z>iehatC_BX?yf%PY&qxIdp&EdCrVXW2K7C`dnhO>bJ$QL*(F(ol5sQLutClh$c_jk^+KsP8T;)u6D=!Cs<3n(bzEICQB zPhSjA)?KU#wZSY;wWlY2JDpd4F5mD5r^K-_b+WMw&KPwpA0sT(BgNk*xsbC1o%fii zTya}GU<^9EdXgHZRzQimOvfvzPBG?=AvjCM@Z380lriRiFUj_b2mUAo(aXIK>}NVjQDfjz5uY>CSh}+9~89u(70i-p}E%%Ho8U^ob8Yc-;utu6@0I?L}h) zhEhLSY`q2+YQD%xc1+H`_V=F}ZAAn;v)qxsnvwcn);8pnO#l+7Np8E(7|$`cmS5w1 zUa@$eUs=g0S3oaV0gtWPcLBMtIQghA3?E*Mlpx2y01`1EulePGq*qMH2en+t!4wn} z6&wiWl8~4CU|?)yWaQg*|8?9TYy*wh6(`qsD{3ZW$S;xB9Dg>%TQ((C3a>-Xj0=J2MKT%Js zo)w-$Fm%kt!{~%#iv{W7G(t6gVtMN`(w{h^AsRNndFbM0S{7Sj_HzK;LJB( ztvJXv3Ffk(f&9d5?4(2z*-8KOhN*rAiRD>;C;U>jN}9VstUNx#cTd-NHW zAq8+mCZDzvtcOPkusMGWHP;e0)F4?lqD1oNhz&yPm5|{`YcrdrVJC3keqvU|obR-Bw=1qM)Av|Ds?C3!f4_yl4fZXj z=G0K>!j>Y${Xb4oft zA|`+5O=IU13glF04!JWjpw*X8yy**2V45?q?31mp$up%8OqSei)i=!Rsv99-0D&Lg z?#F^09NtmkgiW5QLT26vzUFh;6Rn2gQ{sj$O~N)B@p?^m-OswOz@f#DsY&zn!nUjp24Vgc~gX8e~)hh7Y9VuA1 zGlK?Z_7KYb8e3q$Zbt;`;hdPOd`;xY=qYF#U9&>ACc{@+(x4F$r>G3@pnMqt+&h z%>R0{!Tj%2;cH0~adb9$kJuV`K4EmF*f@r3S{iA;{N)VypX=jikp9bLdV`E-kElCk z%1z`zIOp>WiLE9cdv>zf9cKJoS_-FK6vUM&y2j~<`O;8T(tZoa=H1>VdyAtUx!D+) z7H!a?%3Cz{5kLb;?zP$N=o9*biRe5QS}qLJnTDq5Ixc56Cdf@)H;Ru%{0<+Vy)C)M z$gDgzN~)sgysbt8WP%JVIVO3$vC5cq-bSm2(+mlJ@+;6{d>4b5q`y)v%7iPB$}*ho zGava&oynSo(Xu!K{DcU~NR);j0E8{M4cvl0Y*ml;oewc1RqS4RODJGnDr4E#2gmT*R!8o!xYUuMXv(RMN(E4Xo z!-~lysUuGhjCWJ!giLE_u0;}Qkgj1&+pS({roAnwO?-q-)}B;ct+w=7tt> zw8LCCYQd=t$W1kffj6NXnOg_UP12_~UiTT*LudvuvMlWPSPD(!o}2Dd zmRprJ!5jtqdMird-Abph%h32t04qdvO2^;3mJ3izrWCcbIt2O5* zwof_>GXn8mT-v(K$vGjnDPX}e(+4bpHI6W@s;?lS_mjoLqqx0C(7y~xBOW`V_nS{K zWk;*X6P9og`CqG8oI+>-GSoCikCz{R8M%KudtY;F{9_7J1_C(9yE39$)@INK7RpDp zSU6n9_3V`d1oRd#TiS3NQWq}usYw)V;tcmiJ8t0OeaJGyuyy0}#eIDA z!PjC*$t%mZd6Rljlig>u_LH%!v<=&X&Gbu>QMM!$+fF0h5}$}ZKb1CSh!4_>uxCUG z_&zPyGdv)Csny%+aHfw*p2jQ`G-c2@ty$VJp+(FnDefiI9L;VM^u16 zZid}U(w{)a#5|WBMx}O{!CLI#U3wCTRO&097COc}JS@8{BhNg2$nBAs)J5L0xX=pX zqZ(z0;mD(Z=8;%wa|4GPFlL^)!yfweIh8n`f3E;fg19o>Q~$cxW@ezBF>1-ZjZ4LI zTPHRBTjwIP8+qArGZjSzGJ^S>j*&oS1_729Ok9Dy$nvN(|hnLFyxkyc_epIVubC3WxZ)W`3 zjq+3XSiOP{{pb&&lU-h|g>^l73DA8jud9GrefRw7Z~?o7rFV z%Si}%ML4ncz#nQWEUuZPnfQ8mjjmfN@kPl9-i-^TlKB<7L)3S zVSDb@zYKiUrGl(rDVV~5EKz${i7H+D4`1Gk*${M{#d0~XSj@eMwqVy~`Tb!5$ z!wdlvrnkQY0KlhT3IFy|Q55imK!!x9@Ja<^b?rkdhJi)x&%>yvTpbv5jIjlmtwLwxk+(@qdffR^4~qct4HVM{5%bKy z#E9Wt9{6M6Lx}?!VM!7umh@*Xl>D)%Y4~Rr_?lXwIwxb@xNB=ZuF$AnVJPu~6W;rB z(k-KbN5+67mIl?+2;^1|g3h+Cv$V*_mJI2p+&mUrjpwu($&!-tzQXbH2LIxV5lx1# zt{(Dwa}XGiHlG8~qRkI&mcJM@U&mSSIihOZYu#Ru+nZft?%u#T@+O*+{6ROWKGqg8w+B~?1QO@2LATT zpYpP1W(@t%X&JXZ3@YwJb+X17Aziaxm5rHM<&Ir5>|NtR%Q0|}9@CsACp;d?RaMNd z#dmnt(D81MY&(tE6z+P`{hane;P_c01M_s?*{Pwf2!8>&QO8#>p*+TMNg%DXVk+G& z0Ulk6$)uut{IhKg(|H>FMD4+M;dqKOi#;FhsfCY*Lj!Vf6fqgXAk#`nOc2f#$yl(z z;WJ71pZ|CFbo7wg@^?z!ZyVx#v6XjhyY~ZcWD_F|MMcy0V=v>mKxiZtBz6yW^FLx_ zX8zoifkhHZ3iA=Y5eYu?n~4fx2k=@G20BrPUoilKAlM=t8vo?oz0AANF8uzHTfO?z z?&iW(E|k}5l#7e=b*6+RqxR{WRpD5}1hLfOKfRpN2Dx?qhZ2ko$TkXeR+iswbfx6U zrx+N}G2~E&xvdBAj#Zdx8*&JeA9kSl(RfVq_W<56hcb8RoY)plCtU7>s0aC!vV90D ztnt4TcJ9WhV9q{6{q86{{H&A?!$m>ieYt=%JUXbIS=^U<_>#Cz;?$o^=Dq82nz>b$ zd@U~$4W)%9-IXuJnJG?PN`CHM>iZcDeQ3OH3{blJL>@T8q1DuBAvotc7dDa!mGeN_ zipbg-Hl%qhKj1kK{#C{I(mn*<$cDHJ9w;q2N5;J9#Lg`-YQ&f8N54cWkObuHMRdnh2(<8QF)pd+@LrwQq!c>!fFUWJT%z!ora61TeWN;f|M)lRPB^ zT4l=}Wz6~BWuSbWiF{fsqa0}%w7T1IY-$}fQ+_@66-0V<&=j;SF&z$b_>=})*wS!u zVa|W8^q*9FY=LD)OpgblCNxq1QUC&ZP`6{7!prt?G_Py{F{2IhY5vXx?wfNk2^J=D z18#!3i_-1bz-|gnpv-=rb|VAzbjJD16mRijReNExY2kcC&jePXyyQfuCf=t4a@}CETotBN4mEMGP$$i3wKYn z29zsL8o=(N;|?p($gY6({g?72NV4B*`#hiG*D@~LDA`2gFru0ExJ$OhC6w^fvx2b8 zTp&Eyr6_NVIofCY;9K-lFj_pCG=>~(3o>+n{(h{5;eH+VdGB|$059ISJO#^Y2`{Rb znTWij2VghM(7acX>ma`yB;oPA22j)p-^Gqry2k>J=v6EXn2#PdX~Q`QdLw zl*lVA$$Ck5?p^WC=XfopFa-O<8aTp{;^0=uJx`-P(#(pU^6o2~n!O8}ZGhp5z1oq=)LRw4XYtppY-v~+ zhynOoDVvJFKGELv-iG^|NN)iqiqW6J8i!!TjqC4^pZ0jQ2&JR*QH2I1zfea(xwmx+ z`k8=%wtQPX=Ctv}u}?44$#=(tuk<2rHX={0UvlX&9D?sm%T0us%=sK%3aVgT(lU|; zKH^xFM=KzIYO%zb+|{n8tcmj+-s{iY{mRIc{;qA$P46GD?#)`vx9eTK{cEENRo2N5 z%cw_l!O2v@>dti4*HEx=QE%rLxQ8DkJtn??N}}|ngPrE`H1E64SAP<7YShN-)E-B# zhh%RmP+g@hxMPJ3q@>$$vTIIE6)s#|H*M_M;eBaV>Ozzve27?{rc*`?uHj0!40dk? zXnmo3pm%U?0(E@|8I^vFrMXG)JF zyTV%rPq9pVoBTvN)Og(x3BDn$CLTo!pUA51XzL5v@~6yy8MQ~*lpkG&f-x1TUP~KT z=mh=%r%Fj?r-|+&@|7Hg;^pn^rw{8+pqSm2C7}fnt~@YE+1)@L_jPT18WuJ)V@}6k zKo~X>px^#wt@o58A=f^Nx_-vpoFlUGMv<3pHqbUXssp1#$zepUVDt~p!{T`Cbgw=gr%|;zMla$i8oNn*7WVNnu8p&C* zRavyA&^!GiRw1wl+AbemalJ5l8dPWdP#@pVrr+7HM4{YitM&m;h5l1f-pH|**Z;;e znJWM=9NHG`$u*`HEFvDasbK1{=OXcLJa;AZXuGH7#`7%dJ0pkB^^$Mc2h`iqscIJP zSOwM91l{Yp7g@J-LZ(<^>kCf_L8PMgll7uo1vxWe@SQ9lF&vU0tQiA!xRMDQdqO#j zkh42&a|fMKHq6)~dklu8!ck3i;jSEWp3TTEdlOx?<)mA~`2se*t|5VxRP(~=D z*>o37VcG56p^JhkD2180`m1_T;T^S1lAH5S< z8bS7>SGK2c!s8WVA(}>>!boighhG#ft#@YoLDxL&3LSwsHye6!#|apcN(n)N1)i|d zH;1f5#L_L~ogGA~)PMUc1H!M7y&Xr6aTD;ENQb;HJY#z!tsgl*i{v2`54ucw@SGD*4AXJP^r@acnxZ;R@v7S!A!rk-Ll9ES-*>H;{SUQeiImK&S~wFhzXO`f$B4-8KI?kg z#~v$#qz;#>%8Dc&sqIoNh8)M~C0l$&2eU{oU0Cb+4;U|8alXqZ(HGkaLM{SG8>s}< z*5fC<)I$}L%xJwdEfV*Z=qkbX?Y=0vNF&OqCfijQ=;8hCDlZ>lngMfNqZD4N5qYx~ z+9P>JJM_R6FR+U#m9=lUc=u`FrXmc`>)7HHkxfUCoR2N+oMW(lMz$&-Bd~SKHa+kZ zw&VOE2GL76Zs}U=s%^Juir6rAAxn2(Rp9u7Nm-v{@G7`{+bt4ro1@8;h<<8eE3J== zn$?>wQt~`F2+wxw#_7Rx*!g_>yN^r%b!`Thqm;CyxqPLK5LRD}#pPr@HbI5oQIRQo zrg^>Z_Uvd;4#DE~B+uQ0;lTpS5y*XpAX#$3n??E}y4t{G%qf=&*)#G`XTZlmW@W1A zyMVZIjA3&+wMw<3d^)eAmeOITlHtMS5 zq?6>8d!7kf;!X@9Y^HF+Za3oQNo#6*7jiyq{VUchAgDU2qXLbW^(BF7`+M|c_sjC{ zYh(7#&|Uu8tCpO1WaPpTV4QsTT$jBc&#DSi4D~QW&8)Z*hCgER_5483;9i`41raaf zBlKD^-*n#hlQhEG&)fJ*adMJ`bN@+n>L_*pp({Q93wi1P$WQ(k+LXgwrQqBnxuOw) z=z%sHPF=h!2Vf!ylXg+XreJ@Xh5Se|@cb2BI-CuF+Fdt7^NJB`Q3!CeF8CFCH zLSI`}mTrR#&qi)Ly5=~N(~z~2;>o{QK&_v)j#^xuEQR#c1|z*T$o!3bZqMJcit24S z5@c+>-BL!;e@D?WNNu#GNl=eZif}xzQ}+(hVf~O#Bxv)5>Qqj-Dg8GOUMbfu`-&;m zH?K#BEGc_-zeXGg|EKlsBzXn~WU;!&=>89vwGI(VR-M?4w5SvUMD@JsD!H>V7O%Lp z6()@3nRV#i5T>EmlU4~haA~Duj#{LTub%W+e%WkP?`h3tEwjGh)oYnhub0X6LLMvP}Q^kRg_RRpt?&IQh_INRtun*g0`C~$#++*(7 z^2hqsv%Wu=N4f}GNxg_P_$@K%j-yI+Car$K=PE1J=^RO;T6_Eba&kUx1DLh(HS_(S zSi&2XlJC(>maiI6=bt8);wkpjV=~aZw`^_Fnmv=M?@&bE_xgEbCvh5gkhQF9c%cZ# zQ9Ab^6j1`6zoE^dS@>~0xP3;&{zGdZfkf5sa;Gjld5JAqhjg0xycFgW7`dR}ORmZV z!OcgJ25v?VHo<1Cbq^MD;+|XFY=a*4-YPBI4MC1pj;dvg7kddb%+9n(^}F8?M||GVqDc_EHN&nUJuNp4TRSr5xt8_TBmDhg)De_p~wd%Y~E`{eMfSD z*^S?Y6F9LsZjM!z@rgeOMGF$$cFfbgB1{{{LC!HAYQpLYb@Zq?4mR zy8t$dif9N|Ab8I>7iNQ!_gjLs`scYjV5d|og7OU{x%H}7T5PX-sP%m-(O_S^!wet{ zJ{2}5CY0JB2kMADTPzIc2qVOhpcYY{<%>k!ENrJB!=A10en#G(QFR(UeoP~%j=|N5 zA3i2-o+8k?V1+hA;~kI-T7s^fiS&htvja9V?=`GK6L&w5tz1I5ya`od(#5XlFwx#_ zC!|IZ8n#=SN}Dl>ilyAPv<3z&i3F{u9PSz#u`ePq(9wusw-$OP7K(4Oqqme`Gei46 zM>`&bZsbCpD#Vt;36CZ}&Y*te!dNPd9G21JtQV=57^=Aj$J3_vA4K2w%+CC*rEW=| zkzOejNC#Q{+7M41XxLl=c=QhxBx_?J)1vQ5!|FQ{vstT2-T9?iBDfNDjMCMiYzoJw zV>f(xT`AA|zTcc{R8lB$zd`_^JHt0PzYYEh(u!sT)t9Xt()L=&2ubGbBl2 zqGIcx$4U&v_+z)Q`jA98Y_X=neSxta;qe&vl+<5^oiudd0L0r?e{bL(R*uh@j=wL2 zJ^IJ`e+*W#Kmv>CSZope9r~7+H+a0rtP=yR-w5+~(1;X=Z+1Ad5oh|~Pp+WH9JEwO zqWH@BVR72@)|(@x2ICj_s-O;W#}e69cNC7P3bRSBR@prjn!h}z^8V{G!@AXR9N;Eu9;%!xtS#8FXr47{;HK~ z$pa&Txx5Q4skxu@7=(5P&VutAP4CPe+uLUuWxUOq!|dlV9^3Y`dN<~>z$Ufz-%enc z-+NKU57^e*8cOLaCw%u+WiwhPXOQdyu8P$*zaIS89rt3t)-@$dIoO~G)awg$wu(PT680A|KkEE)QG`D~b zYpi~NYxhZNu2c!_Zik{^yNqNcjfs?Tr%)Bv%rV!oQ~Me*L!p%7^;uAY>J`_<735Y#5w1 zSl0pA_@WZ9qQrGGC1d41FGW}hqib+2=3I7UTUvmVJ3lQ1eg>nA)G5@VEv~!Z^25` zT*AeFwi94io11d(;-C-Hpg;PE2Um?|+jS!@aU=dUcEo;MkvS+QE&2;rgehaKeok$J zFXfaII&(rBJx^VY9ICZ)TW*Smp@U)S>6L|a45Cn0^;t$iTkw9X(S{%Q9X{^rLxKczOz81h6Ty-k)K6{D!Wbv; zD8sg1olg=if9D9N)LmUxVC??FN;L+sv52SXLRhPpz0GQN;KKmg_opCxMKy<_D{q;8 zBf|8ygZX3jGM(Ih?oI-S&A`uCEr%RAG4o6Q(FT{`Ni5L*K4O|Od#1N_C5&}n~0@RVdXT;!EKDrdzD_d3MG$sbk+iU zJ?3BDou3-irK}5=ZwacYbut_r#k1MouOsbaslg4d)sZIUn#vO%L!jYF>Apy<$K%Ht zF3-r5Ter@-XZfKmau@q}2x0!qY}eE7vq$R^>qP=wff&o0fyIz^$%_pg69r100t^s>e>{*>p3)P8HwqRz6aV9B6V@LO?t!g#Wkl7~4Kjya`OVNh} z?$XhA&Aq09)Ag(Y`+L(rsMd5qpT!Z2rU6;e%bQg##}M10*r&X(koPOc;&jb6xsgMw*rg z-X8~G4!KnPc;?*wH~wT>4;0YjhS`ugv0iT_J-PWupU}jv$KjTJB{?LZ^_@tqA&0}H z+chLuRq@FSM!MM)Y9#G&M#h}Zrsz^Ft4P5;Otq>5K|9E$G3)7`-_eav62h@&w#p_GfY)4G3<{#)&T>U~s=M2~zrOy?Jsv`EE~KeGkP(7LpJKI7zv?4HOd-0+ z9gKFeYpBDHWIW0qnV!;|tH*~7yO@CP<{s$Yrj{_)LFABJ;cPM&dI-F9{iN*FOe*nxIoPZ;&i(;hpcCDqPQk5r z#}gbjcRP+3uh*sL%g(@GgJeVl`5dUidqI6TciBXY`RHZ0MV$knC7`M8F z&W2m;M2>#zs;x{m>yNZvWhJYWf6CZMS-xfB(#2)0BT8BpsK5}M!o_$bBM;gBKuJ6C zf*E|8ygi3jZT)JE?(g^WMb~i8+_L$&(R2wnctsWB5lg=?!dm`yv4`a1zSp7}kjcef zn$S}qgY_Hf&Fcu7&#>M4=0KzLtcHk&#oF=>Yv@A^>K%RDFi!|CFo(N{^;ro?&QX+N z1){&r7is9EEOR}_JmHNDK8tN6smtQ(MfP)RIiYMWJqit`x`y>~er z^fbYanGdsxF{Gg8=Dk=V*vg>NWL^==mb6U}#qYWt~4?!Y5^A9@QLg$w)sp zOuttUyLo-@dFK2u#PSi)W1b+KGjQde>BRf~xO83m=7o3AN|E2#ND}?7-CH!1rE3o{ z**QNCZX!i#{i}k>OGV+-!|IYoz+BQD32Rx#v8O4f9}*S&;0;5*Hx=>VS(Hg=K7O;E z21W-~@T)p0|3>4tN7vBR+(-z@|4@$(+m$zPEG3Y#Et=<99)KM2<#moFu#cZ=5irvbf4sVn|W$YbVC$Tp(L~}q zDYk=a5dJ zfy1{4&w$G-&B5?Bli?jGOr4KlfV^{*>jJA!C8L36W;k)b8bbnBwX|T6ewVAp^@yGtxv**vK@&Kd$;|#(Z%0UFRc;3x6?u0oI#u8Zf zuc3$~og=G+8=X4V(Eeyd8ptf{0LgCb@!57fr>eE+(+nL3?vZr=$ooN55CLFwyb4SkhT`D5Gc z3L?C5LpX1?XWYNGwLUCk^gONF5c$-5U?+P2{&6tA;4Yne$Ng|D+!Kr;E2$R&y{y}x zUai2^)#-o-quY5Ga?M!-&y3xzNW3x!3slx)_H>d2?}C1y?IxHq7mpjc&%M<9{yPgu zl48E0G%~+D;*J`*F-Bb2o<@Y{zEUZMsNpx4zVc z%^LahGDSOEd+)OIm-YEKnMNEE4NmQ;r<=Ww$w8O~92&!DiA(9UrZt6~Bt?pEUbcCx zNacLv0=QHA$#m6C$oVX(#2s8|9}9#+pqKe~O%2DHLmD*Yo&esb=f6BUnBd>=*(2Up zDYw^8dk4qouB@h6{F1CCqwT2Wj9*w4C`17&8E^$S?6Bk&KCTr=?M9=E zEfdjgWtZI4H4ggjk7o|a_^Y9K}rse%)!8MoG{jwZh2< z&vrL8E$T7R#eL;oHRCo4gnW3iQpiJf&ygsMDcs}W(|OAP@Bj_A9!}zK!;&WJsmeBm zM==ta?*l9A>)r}~Zz;1%7i*evLQLCEVA=eG(38H)z2@Hqll^0I-TIgP^?$EI`0v7e zHFsoTPA;x_S>b+jO-KXYeh?3<)t6Lh`@slk9|2wD9^?N&`MIX$y;jv1AZAkLI~0G; zz$q-C&UlvC`RG3cG4q&66#3maD}wNGe~;<LU^^@>}{~YrEy^ zW57Q)n#oTnUEADxDi9+MSL@;bLRJeFlT(yC$G8-rM#hVElY?Xpndrw_G^s1RIXfY6kMh+AX;|o^XfDT^w$*WZa180*IBF&UCcOsP~yFyFFYHG+f1Oh{sl$f7vKB zJp84+0gd<=Ch-fd_boG%8ZhpJZDo$So~>JNAzosXilx_8PdN1H_>WyVWitqR zAL)~MsPnBDgg#g+-#=CAih=8Rmc`Q`qJ4Xg?$06|GrGf>{)Fr|@)v@^Gsl^`fzxa; zmPgmtlpB+_)8_J6&_QYM`O}SNb(zeM60wFVH3Pan)Z*ezcK2S!rg_m_{*#VByC04e zj$4?Y*L=hZs@)pvNz77uTTL%JzjSL?Vs!uET|YGFO$0g55l6bHtaE4g|qp7n*7N6qES?kYSlRAly?&IQ8FMav~}a%suOn8 zC(dv7dC@L^r!MqT{bAjXF46OdIvG`rnLNg zF8bvV`%s8icnkez0DaY}hXuQnpIr);bY1;)?|nbEKnf+V6?_R3k2>>i@Hh5~vsxO$e*_~N5(>YIWU*7W!Jg$Bh3&!pF*=7?< zvT>IHx-jhcb)qKEz}*a=7slqo$Cx)1@>}7Ceh7duy#h!CVF1fop8-!l2v4dnY#E>F zTN4nsx~sMDJ5r?2b{Z;M!ABCZ!kDhj%<1W+^x9wcNFmi7!n!)I7ZCN{8e&lrI(Uxc z{1fIeIiqUPg1aZmRuD}I^oQ{E=}ws`C_ia4jJQRZNcxf7CE4MiJkKf^p&K zVGdx|Jg)Cx;Dw5B*!2*}s4MyNTiFr9^!iFv)MG=P8fbLnm+i9EKpg{Iv#x0K@*bh; zwv)tJ)U)Nk*y zM7$y8dlwg1$zxZ4nD!!(!JC4(8e`haHY{#B?-KypndB`@JEhzw>)b@iPPCtS)QUf{ zAzxda7g}33j`2WBv>=RjRPIsGZO%z^`{>2%*3g~15KVlu$Zb@jdBO?9m!hBH_@Vt_^_$V$;Sepy>iGP^&}p71vlpb*(xxn~N^4IpA>Kr**p^>aZaN>mj= z4Y}}aqN+5+A>_pYt~?(Wz-K0tJ=5^i_pHUiNYl^HLJ&|AphRh5P8f+3KWU!f>__wh zpPYEU#aMzY76u8;jk1eKeM0)C<0a-cquNTv97aWb0MnX{7@q*NQ!S9TJ9`h~an#IL z7zdAfFsFouV}AEE)=ZW(e~As{wtVq7BQ=F?6!db79N9%kPS_*Fi$V`ulU{oP+q)6o zudY}12gjq`^7v82;-fMgm)nT*zHC^WBg%d#;h0JXM-sii0 zGo(w2e;?T%Qo(=t;Z8{n3k{B>V6d32$N_5Yok)I1z2HC2W0dC`KAW9Yt*k3sAU@Re z5u6|MA2+)N$%R=SQmgYoiw&}ptHIFA9$pZECw{DfL_})`aWZ;BgWX4@-7jQxmb!Hk zqx`bLw^I#t)PJSKa_p^|`r%)|ez6Pfu^Kj`5gwg)BVMZT#x~oaYpblGQt^NC=Ie%3 zY<}RNEj@}HUat7F4H@IrL$_mVFRIu5@SR51nP}LZ)&tg=`uZ1XzpNM&kVUl_z^~TD zf&n85AHjTeFG{zaeg;y?l*6~@?D9DydM*v^?j{`FL z_1VLIUG5=67nn8J7HS-y`3l4w!tS`U43x0CwpX*xhh(J~^o_DLX(E?#clb)sdZb3B zKeX9}mD84MNtpBhWlhnVu()D{sufn2c78!0crp@lK5QH~tsvdzH1(ti%b9VK&?9ff z$ToNxmzx}}Vb@`MIv=DapVteIWz%4Wv%JyeDL$h`y0v+xK!C3?Htt(bfgfPdgFmto zs%vch8rgyl+i-H>2r0|{&n`kLR+kdAo~B3{76ewm{cB-l zi0_mSrRT$>jfWQI^n$5qi$hi2D>!2hx%D~YrSzWBsN(J`X?n;j@j>qVP*G=L3Ny-Z zSDElgc^jjvWo1BW_=C>ACxu^LtJ@%y=Uxup-#BG^$TqO??YP)FgX;`?)TQ2h z{2AYq3D+?2lQv)a_~Dy<8#;d{pxS*OycTbEA)J*o7IL<(%q)`5oG-%l4YKR~a&e=>2d; zJ9LC#21%vs(KpD`iQW(y{cKU!d%k)dVfH)I1Z9o;;;+cnas6+mP#Q6a0M&$52q{Hf zL@8>x?WH{l!fLL`qNeaxB5)9uN4^rDD zW-@l?bn1Ru;M#4vp2kKhhW-%Y~@!`km2-I`xiw4=p`Af%}Xg?&P_x z>HSZ@#b1``8%28#%`dxgBVh^!E3&`OlTht18+P1@ZLYmNyFN|XJQym?>RdAsKAX0I zhlPMYNbHCMENws=Op;BNbz$}$#LmV~q;mZdJ7-sa8u!LrA&wA3H0nMDS?SKYS~J#e zVLyqx9(|JsgvX?9EPO^{k8@vnDFzjeD!l!~NX0kmenQeQsJaR4!kfUq2@-mzy>*Y> zlxr*12)wlfbut(lS-+=z@cB#Iq7b>bycf;`kop6$&^HfCLeQTy#M-8AIlVfukjcZ0 z+C1ldEcuv67$PI-B>q;tCiqscHV>`$f3+Iz{{_|mPe1>=3B>=ilkImP70zVdSy@vM o_X+%))X{|hZ>fV}^A%BFAp5s5hkqiZbR9}gN?Ec-+&K7u0A2Dcp#T5? literal 0 HcmV?d00001 diff --git a/images/stengen/beer_data_before.png b/images/stengen/beer_data_before.png new file mode 100644 index 0000000000000000000000000000000000000000..c0004596ccbda29ec6fb7f75e63ca5907a7cab7f GIT binary patch literal 18486 zcmb@t1yGz_({U?I2%cL?qbGPt`#26uP2!Q~&G z_kI6w_p92ft=**xsC#DWo^$u<(|z^TR|kDjltz0;^zPZSXK1oA0F`IYUVxuHd;SU; z3GqscMIr^_-*X2QY4K;J!z4S1i&v&%3S!Tml}Di58N5bZzqOUoa(MQPG~ns?dBnzv z@v~>r1F`_IuP%BA3tnb8*Uh32rY-y4@7yxl^%B}y36%L*SQAd`{>JQ)E7-LKqU8Q) zd(T$8qxE;(ud)QiZ5AGp1pdYg|HUKCm#1qG570FCr4F-=>lSVN;OA!Ut4k!dgZ%Do z@$aAFFWwy;-MP>yjL9ZFj3$YY54d?aavmibnM5_7rn$D{$(nrvAb!xc9-|+zv9Pd| zeGD?C5igAYN!UhQVsX>cg8%tIa1hx)Z-f5#-kwa~7DmacDR|q&%Vq!K=}rfLx!KJ4 z+Hqf676vN|B583&YAPzKOx~KHkXNRg6K}9n%&G^Qu)rJF58e!PF@O;TSt)B*QzggKy#q%^t_8ZB+ zeDK{X6TBU1%G#=0OXhGWW^WNnLfx+4fw19s#3!j{DJSL6#~Z|a;obFF(Fx7_zecST z*(?@K18(o$zwii75&!3V+meFxXmPlFs7cMZo>oi+elxy6_>%4Pn->b=D$}_K@qsx? z2%$SUU_FTNyAFE6+!}%HK5u|7|FqwtgIMS8PEVvNRufO)B1pGn-}xMLto`0XaaeVL zb{B|-6P<`*cy~qyt?BR4o`apqV#;3gA(oII`V?HP%d#KZsall7pS0+Kud@QE< ztRl2~ZEUL`Szkq_)1%-_wo7HbNo^LlCAO4c$tDp0GA>tP%1pb-9>kqgi{r9Hl|FWW zURV+FFi@^ykKO8-@W^CJm-A-4M0O+*(vRIRVERW;{0+x>F}Z5cM`(g&4jOnN zYB}(Ez&MCcYMtaC>-nc0Oh~5UHiHJz^w4W1DbyR(Z0cxG#ra9G{(_I=ba7KF>fSL2w} z=EonMshI21BZft_~pMWOMtFIBN(L^+cNZ9H*W3b#;VsAXaCX6()jT_H(f$@4Qi`3@YJ42#YToTYdn)ey=z1 zSLJ!1t1H|5SUAyTdzfWV+=Q$$?g~@ZCWC(0o6AT%LyJiJag=meXI$s;289Y+SfAsZ zmB&BlMC$->r1k2ayejKag`hkjF;-SzBw&5W09AK90ANS4Y&U5J3js|phA$o&ehKND zJp0hDf06YV_Ym-6B$l#Pgq=+5!W%_GV|`~F=ws_C@N;?LJ!f4-_KD;3IyzZ^O}OE* zj^xqOf9w&Yo#r1pm%3A_#>TU9KVw0^TH)<~dj~pg%*xa&r*C)VXDwWMrVyCZ`{e+b zfGejjqlvcCICH~f<1K|S{Q39%h0M#0H(V`jAXcHE3@$}J^xhqT9JJEP=mZbw&jOL6 zjKFwTrR(Jeq7Idh&upBN_m98%WQ_#$X^s-)=1jsps-vF|7MOQ-Jioe0G2_Dj_641P zMTpC{@0bMdaWif}&-~xEl~e#%)2-bMMr8GIyz>(OmaY1)&`4@J*7W_!`evruULjB6 z7pnj%V9;B=$|`_U=C8X=Xw^*X1{yeB<@X2RFV&eMpy&JR9tzIG5PT+IpI zt`Z}8oDP2g&Mwv5z-DK|(?*auz|_CixxRlw?EkE`BMo>rRgBNNhr>lUIL3-o1%3MG z5-3oIyys`b%jP*Nxx&wKQEws+drsJV0w2`pfAUQK7T;ILTuZ;qTq{Bbu02^ot|WC^ zION-T$RE4iiIXAb(Fk!{OS>se5_8Jm8u;uE6DV_T-Sg1TNRc6WuePen99~r_#bfS{ ztx|h-j=fmz!p5VDKK7ip8dP{XTx$Qx0J*vU$^a^n5g(5#J3Kt!d5cIYX5f;IP+dhg zKTl0)TnX6g5Z*k`ytFP$KR4J7CKd#v^egh+RQ=o!lz4I%O)l7g5y-?g`=zxBVDCie zr2~op>_nQH;^}l!?;eJFxm6e5z({%gSLs6^65Cv0ze#jE9&8)J8dHrp$_#D2wZNuQOv+g`+!x)5!^Nc{_9wF zrJZC1*|C^wv6{wfayPoDp4<^Gl^Yw7i(S#>srG!@v5)0(cfXFE#kVWPPXY_P6yMe0 zHFTKsOE{izXkmC_;mc9|(2n%dc<)gcaau8HF>~v=@|AfPci=fBL3v{kj|b?rvDX`1 zXOk*kpd+<&^4YcAc7~E%!*}bb5_Fo4cj?zT3;Ys~e=;yJ`DTRxC8$s2x@LkC=RwU; z9X|m1!^RzrITj;p&02`#knkJ9GK>-j5WFAipJJ@he8Qxc)s2*%Th2e$AbLzweUF?E96w%Ie}D z9QYB8xBdv5D}>`9;(PtX z5}{!_O7!Je!hN^F!#&?GgFI4Ud_&D!Y<}|G$IWsQOC|nM%g}+mAC>IVzzgsaJn96I7W50g)Kur-2D>xm+EH1HZiLU?=gOokTcTVDv8 z;c_%60KM{uZcKztO-&QR$uo7$Jc9HR+kgy%eUrj)e~bq~_zw@=2-NY_`$^2slcs^b zw*NUVt8h%8n52YIz}aT%FI|Y52VlXD@uFTV%HJbb>NkF0?b$)AoiZK=-pW5lwRYb= zeD9poLpTQPuxbT>aa7gn%5StdEGPH*m#C!i-pnLJvGaW0RvoV4y><12lO_MI^tSX_ zr{m_$$4uN3@Sf*G(fi-E>*7=T=N?(D*Lkvoxud zGELRN=B#I84S`JuPab;U^uGiZt}_1vsEEbSWRPw;CRDJJMb$^Af{!NX)C^57y|Ya9 zWD%0-bz8aUuc+wYw7VC>X#MG4I3f|0rZJ&og9~Lq6P(HofEhm_R7? z$QgLzHY>vZFq&4WcNxukE^6QIFrH8w403Ka25^LWa)(cIUDu=VXCESQ90!r!KeE&9 z^j)<}5Nex$mkzKK&aH-q%sRlT4X;hc;}Zvp8@uh~rv7jQOw?`wB5({xi zM2BY~eYifa01DJ5!Xw zSkQs%m+-rETvSj~?cVixSFjo7DAW!s2G2-q@vm8Qz3L-|ZS{rZn0<0-m|MqhQQ*6A z2ib=;SjMc6QIVk|>!+(iV`-53Df4X82(hDYSgM0-cq=P{Zito6KSC-%9C+B#_>Ju| z=1e6TO15)~W)RW(4}~^j3=Q-q-Hka15EA>hOB1WQ-2G8~j6oIxJPhu1jMZ*4;Ils2 z75?m{%prG0u88%Qcoh*QUF%vkwnS$GaEq?V0_&b;hI0BXrkdD)^3M(T&f{2f{vNMr zIBgI8-COTSMgFi!N^d)l{pNDM&YFp%EU_n0p_P2-_ypYnf@3%Tlq-STsjYazPZ$`f z3lM=oG5KN~u%}Ye;*0!KITJ|q9_Rn^Z7?$~v z#A-F9m67#&Q4~urM1tZLp#?*m^m5tnuRWmxHwc90-)YEC%7|U_i@?eG+fk$#AicNm z={bxOwqZOfSRz}Ut!Qc?*2j8bhC6;gF|}P|dsLX8T|Pg^xTXlV4EmPPhk&NAI0P{; zCw1RLapN_r6vcS#yT$If_k%W6%DhBQUbmqgDRaq3mh09MPiS0je7v4-dY@~tkP;=>kl!LY@3J zIr1-7S`xB9_)c%S>he>Bpv&)QMd6{@|;P;2YeoTo%Zr2*Nv@ zae(J$ZbCBOw5z|?DUk=nZGSZuoW-cYqQR<<|Cm|wCnbqP35S>ljm3@=?)Qf#%s2vf z09A;*-?je(gf!sn%zT^fk6mlnryp25s|;o(>y_rr-Qvh8RT(q+BCetQFf%2Sj0 zttm-t69c&>E20^^riBR)^KXw74AF|#55wCp9j%N*Hp4JYzQ0;-(u0w>2nWTWD!l%{ zTK5-@-_-oF`S?YJ>-D@ov%z5nN;g+6EW{vd<2S;CgDKJl$L9+H=&iK!2!L=FfRv&bpZP-S)_ z&ekkmA{`dt%-P0{5U5LMC9}cMY1>CL(S^2|1 z3nTaE0Q5+RFdx~{6_=^Pv8J2-kw8H>*2}+3aKe@zwQR zzw`lT@TZL#AXTP+J0QX-E}Ca8sXUePCA=CHqdHT~9}e4nV3a7?)N7h3N%G)<_F?Yq z7m}6fURR!iREhl3!e&u#(np$Eud+PO9;)9%|^8xrI1%d(z4I;BfnQKFz;fx0eRdrvtnldo= zYVBX7j%VhzI;r?ajA{$ilW8wR80Sw6PFm2rWwKtzSTBTVhk5Ot{zH${oT%6=X&Y~j z56|2nB8sa#!oNwJTA3XDdzC6T|9()*Z}I)+v{07SGWQ(-SFuq9sdNKJ{Hv)?uZ55) z1zMUXORGCX2!|-riuHKoL;I#MuF&HZSHC|ew(6oZKJ2WDNk+g(VubmHlTwfMoDxqK zlta}CsnM0%3GPE?AZq-30X3N&5)LP;A4Bk}+VA*ogeMLYlnY+>ix6&}I$rKqr60Gs zg|g#ga0SVm z^k9rf@FLcTN1B@+mPeFAN?e@CZeVs>mgn%C>jcmH1hCDECh1$ONiJ@W{NF9LjEX?U zGIG156`yA>L<>wZPX(UX4-!%Sckp5id)p}Pk68<>5aK)I_dZ@>RPaWj0|tut0SXOw zPsulp$NG**eWQ2u^$%J2YrIuckxWIvUdl6e@7^jg`N#B>+}l>a3?{P5!xBX37YLt@ z-T>DHD2KYu6QoW(sw~&7`Z$nw)Qo3sbYjwmdOQOR^V{8pP-J3MO=&%h>TmuL2_&j9 zBW~2ypOpsyj*!Kmsd~)81zgpm&sySg#^_Ac_`PyY#R8au?ZKa!cVD98=S`5XYpIIx z*~P9Z^}1^0U*egm!)sRY%r-g%*;*EH_rOHh+C)VPHMMASMKl~|TeCHvnBrphp5h$o zQ=DsBLOQ~blc5toPPc2f`=l6v7A`{mBJ#D-ky5*wP>J@=OMKdB2V^tHxj}!1X@RC= zX}riASV%P-`m^b%wReGLP!Ha=uwYUR#U-_Ebsb0RvUeRa6Xf#CS;FVI?Z9l5j!zF6 zp4{<08^p|oPOaX1*@I-c_P0#Su704a;y2nlv0?;ePMwAOVJfj1?8+x^U@`(%g^A}i z5Y`BzKG)r_)c8ADA{>DdjogLD;bGsUPKj8%PITHqU&23G8~I<^{r^6D{~H=$yba~$ z&X8q`$F|pYOiXUtYy@93hlZvo0=}AeZTYFKm?C3Yb0PS6M}|*L#GT7|2WH&O*+AIC z4#h8Lwe@w9qtJN9sG2;EJ6C+#&5e%;fFXkb7?aslr>=q*4baX*#n08PM!)N`Xgo{r zx37dy;Z+=VJ&cGH>*PT4GW_1`hWCKK;SIYTbw&;Zni`|Zg(?0u=A*cWJrY%>bvM8! zRo&h8ao?LNPc@5?!mfb4iTA7ZR>N{cP9*Pz7uik%IqSi*FE-~{du-*Ti61u(!`7~P zN~X__4z^E1L0~<<%;S6-s#%svne+Zq{Yu6+4S&!2o^{*M{+?N3Av$U_H8}4-Sagfl zfHyMuUBA6z-JSYA%VBScM7{7XDNH&k<444|&B?$E&v#tMLj&Q0xeGCIs#W1_4yRwx-v zBt^e}2Y^Nyu)QQ5Io@F?;_^5qf6~wWn1|nN2#)F8Udj?Y1PgC`MGh%vcs1;{EMO%u zaC`b3!HwYVDxG()4&*U!6ciN`^^Cg)TwmSM&&NA&?l5Jd^>tx282BHmDoziU{X!d# zR^)2L51X3DkY zt8z63BD{|H#$k#KeS$;gi*Huqdp*M2btceM&4GeIJz@aFlcTP<^54{uB~RAZi-h@z z(vcplYwNIJ<2-P2{}b!;8_{4`)nNmReAm@ev}~}ual6tcfCX%f(D@vj8t>ialVe@W zbgHViG>#J#is@foZ3%A+Xr}1TAvvZw>61}q;u|FPu9Hb)jq45cZ=g}n%9zG_g;3LX zg!@dIrwvc4%ga$|%ADj4U-Tv(tsuyyMaBsJ`=&FklC%-r_%uZF`SERBnWw2y6TSTF zr$YnO70V8St8A-#?U|$Pw$>bE6-!Sf1hq*s%eGCl+721Y9Pux&O{tz8jri_BR*R@9 zQZ!Y{LzfVwM-9~$gkEhjvgrt4u?zI@?_P&%EDeW4w}~!B@UgE1DErEJ;|Av;_*w(+ zsa>KYQ8J~Yr(P_|0(~_LZnnr_%bqAa28qdEsJY!&n9bQR#>V5S%LNQv+UPMqEaPg= zR@xKh^cd$Lm7O{c1gVezwjHouez22OoNwz7xAYQMbW=@>vn~QJiS8B?Xs_L8{fG#x zTSAak#_7UvypWMU8*6{0l-)s26E{T+ZZ^Os)1biWzj5dF3ukGllc!YvCpf|cN>zsR zjX%#(Tnjgw<1Eya6UYPhdg(!gt^aDWn51gBGWY34xCn(ULQ1qN-^o0vT_pIvnA+ga zKHC&HLvYd;_HRIGo}tNHkV$?}X;EWLD!6dqj2@{<|9`Ql)c-FZrWqvEu8|i}ZPN+wPxolMY(=ZAlQ+OM%1G%58y^z-!1EN$#Trlp{l$GMWwVrcV zwF>$R#NdU^R(i+%-WT-{zs2Uhh}V+4LAnRU|U*Dv?WEZ06? zHSC&d?A~LX<8>sJu$dDa&#bZSqD(KM@_#UP{9z%=)t<&3;m{$af5~(W$)VwJ9M_?R zjwIZaNk#-NrYO{G?{p}IdfIgN^M2<84o)Y%e3%+xLZ(ptySzgE zttz;E;1XI=NlHJmzakLQP&XE^!ex?jy|_y>5F0Z_=?lGw+5_=`Ch~%kc6h}8kHd~Jh!sEtHjGMCEze-EZAH{8vyciKKcXI z(q-lXhefz+jtl#V-xy~iQwG6O-ckYC(7prGlr-rnM*dHYNYWDd{XF-xa-h0 zb0dB$Gt+g~9IZG$=v|}pu5XW1XvQzRFuCdV#o?;#3Plu#u~}bO5QkFiVqRF@byF-| z`wp60ocNtL;cSG{IN#y^wg6?v8@uf4g00HM=jJ!76yO1Y$eo(@y%ri%3aVLeL=x1Ymr(!q!lBxon53^Nz|M;zBHh zz|l57EZ}#u^$38P0HBZbCpzo6_I5Wz!JQOT={h5cD>B0p4Kv4yi3omMcHxt&&IGIM zs>i_wPi>PXrEIt4rq`6U3FC1JsKyHT9yeD3pdAzG+a(0-{9#?wB)QFJZDU%EG~?>3 z-)=Si3B($qheXDbkTH{w1A9)3aT|b)@VJVSizhg)Gc#J3RM^}V*OR*c1>c=BR88km zOHl#0N6#TE%i3)bts%+@HGX!7)0|LiK!`DC)@-4jJk`%_jNnH0vCFKd_g-?)eb3ua zA4R)1IcS@-d}o+ouFvVu6$d$sZjq`e@#nSaMU61k!ML=T)YW+l;~??lylvv|->iJ@ zi&1TQ%D+@OehgS|T8+=fxDf6C{WFfWcAY15AzY2$|LYn@N1|u#G@X3Xp5PU%v#akqCAvvKhqGl9XQy8Th>DdtmNAQg0SvbP(%k6)0 zT?H;CDN@qW&GZWyjO>lmYav5qt;+Xt7F$$I+CwooBB+Up=-rQ;p~o+;gNi4Vj}-n~ ziq^Bc{#6wahQgCp?!ZLNFTp8dS1t8_&m=Kn0fg`SS(n+&^zr%{3_|q_VY^fF;pna` zU-nlix~mSpG!sJoDB>Afq?F}U6;TaVp^0WvP)G7dOH>OEEzeYm-9tXGQXD)BLixLOc7ko&Ue2y{Jpr?Y-h-au_69UVsBen5nldi{^CJVc(nQviw?<# zHa_B394Uy{XZy0ZZB+1{poH5O=Iz9{aa0-<(vgs+q0xwOqT+^8Qag-qws+n?AV$l6 z<4Dj4l8%Tkv?G?j=Q66D-r0M2fp;E}!2O*;25>GFl(gIMTH88Vzgxv9|AOUja2Mzp zcKY0#Da4+N0#C2_?ArR<@@l<}cXju2L6u&J*4^x6Y1u~2r)V7KSnV2^Pg&~QpqwP1 z-DY9Oh32BnaSt7vPN_vv;^x=078^cHz&N#|HfVydJ_*#-u^g@t>;kIz$ljpEycob_ z+iFAwc5reENiz~GSo+Qs=EC<(KOM*VRHIIjfBmVHpzUzbyi0B<=JGG7b9i-fPC`3U z{~2yI3;E$?gjL{$-uBSUZw>TV_7%;gN=2r$okTM=)hhBCMcPv4bzkyhcb=)*y^bH# zmpg|QUuZ*(NwoR%N>u02J^FW51CHiaZe6iw?F1|1vY8jbfARR)fKuh;VQNXxV^c(C zV&-hgiP1OvLgXCc!nQpa`6}g&HlubGZf&VlIl)N>(0yrlPk4=2ibV5f=8bgT1qpNn zJHA}#z{61r_(Ew58-@;W9!m$UXs*_6JIPHra)xGsSQWuTGj$c1f$qF4ANJQYcs6X5rIEXeU z#raTGA-&>COM0xsXn0H*idPM&=@FWlf*k0FZ@*Yr0XhWcePP~>NAQKi4Wy@_lQ)nu zt&$qe8*wU@ExnbADCE>~ttpt?6P<3qC>1*r+@&dVHNvOy3;Q8d~2h^iJEhxhL{#PE)GtST{a5}alJ>^B? z&c@KQsO}{3rH;%6pL*aHi}PNP3QgqOKL=t)ho~KJN2t_*-t! zO!3sGy@gL2DW4*(;bye)WIaC7^hv$27hCC7YwWr@EuTc10_)1i)9{Mu{s>=|>zyxs zdEVtyV1(y--8jY}s-wLbjNpXRlRk|W|JAhT2=$r`pA>e39q#vRhrRkL39DWe*hzo6 z@Ur_>XNOFjK2ho+w(hJZ|22)3+>+qa02aG^$<=Dh#-K`0=l-OWJ7Hxor%?r&9)-AX*9t{JZhf!_vG z^!csf{AJakkTk(TrMFbz%7pC+m7A!qoic+rC?e#4litn-MQLI3cO!mOUS%WSqP2%g?#v3H1;P8)Rt}>yn7iTPmD>)WE?itN z=1uHx+b1h;O1)s<(%~VOY^{}9e7(fblPt=8$sD}12aX_rO>MfcC$y0dI%(c#`H@Y^ z!&UhAS8100%lR<_MXfl>bm82&8643qO)h7#KP(5KIt zsc|HZ=k1_1NfP$^&g1-mK?M5t({ZZ1_|;GC;@2aa;MN)z?lX(-k}9@8OA(GAP{ZM` z6--gJiB3TU7EIVyiTwo{E zqj-_%Q%_Hm$%uj>2&q6&3{?OKgB$-K)^?}@aM9pEE`K6eMex2bK_i)@U4?*Xn6k6r ztVrso(;R;5L^SI>V;4HTDvgpGc2?@b7-jr;uSQ&Kg2&GAv?q}ZZJvnYw;K@K>|D6v zYTN7@y_696SFO;6!Rib#fm>vt6E`h*qLK9{dE1eIppO2`(6Q9BHrEj08yBQ8UZcif z9KG*huVu!T(K#!?in1_MAFqFlnyEJupfBeMgT! zmdE#D-Q?g-Hmp}IhtgBhJm)&0B@0w?0H~P!d49%>QdqkobeD!5T!FuK$;s)>MsfL# z=w%PmZ{Y*)u>|!F_ZPLCK8Yxb^j#=bB4r&8+`fO!D`(hG)G#CKo40wF#a`_8nGfom zv_5#JOcvAFFAY*~n$RXE?qwx-e)FYa>2W`H-c?32P!dHzj>u@|c6y;8(77s$9sjO( zV7^Bpuw_6d9v`-APR)IE#SMnrGBU4%r57yRTtUXO}+56C3$PHgxvUW)s$V* zV#vx^g`@3jVj+FB4tIcDXY~PCSkS-4HX{MVZ0WzYUv{zoL-y67`Uj#Rr_lKn@2PE> zs84^#yqmn(AxCqDg5f836jb?d8u4D>4oOh18rapNC8|x1ccMt+O+Ko)9xP z-|DA0ksAz*;X;2e9m8cF6sJq}5~G3}2n_bAslBweF0>IGXUh6$uU7fY`k-rlHDd3v zJTe6%v5kXn|1PIu^ts??H;VXJn8merSO$C{G?<3=&`BeSdz2=W5UU!U&SRQ{Y=KzZiVypubr)>>OG!Y{60OF z7_%157}IU}%6H(_O}aGJP4bN1!M!S*SN>OvolhF+gzDs(dC%Y)l?u?!R zM+;GGb$uUM095vu1$_gCS^C7#V0_$BPQCZ-?@{0d73fArF2kAoBE`Qj~%$>|T7ltkFO;X;y z4QU`PqRgOKn_UY&z8|}xFEm*Z47e6LuZO`WXs8O`;51d4k*|_<-Kp33RtpAwRN*fN$sCU4$ymviSYEBKX!VCv$e?sZ-|ypzJIX(@BkvwHWd?IbGodJY z%(0|`+`HIV*4Q{r0_zB%7t^;`nCT&Vb95Ge6%PNwFI&N!svVWr?`o;}&dqPAuvyuv z{r2p_Q^E9TiVvyk!-y+?X^xG0e-u$sCJn3iIuA|0V4L>sQlVzmuxZtS=AFSe<(Th# zljbZLwykd{AWN_m%w^ z7ENu?_~ZfZgRM@s@qoPWlUgCWI_1=`)x$|;u&Kb1f|NI0Y>P6{mfpJEwVTbvvji?d z%@zluxdcn|sOHT;Cf2 z5OUSbl7!*`5B$%^FMR{6HKHFx4}1dt>3N{KEj;O&|4+vP{+lfIzlI8G^dKl-$N}v4 z@MrbSO1(i)Rpaj$nFR#}hnym8OzM$tB$CHEZ1w2<0wo9A*GA7ec&TKB7<%if)mLQy zO(?%PDCydo4R$hRLxM8zXYhgZ^aP9`+U*c+kYOii+=T=NctnB1o!3vmnFdSw{#6M}I&Mh$Z$zsK zIk~#;e8?mQ!BBfU75vt%T)_U2 ztBu_e-JOdN7xm%Ue4cBvVY<8af|v;=wqVt(BS_QpvjT<{;cv<BA>+mOA zwzuw7dF|%e+ zr12O&ckaf=f@nuAA_{}1*YWB?-w}U1$2lCxHlP!nfq~T+I8Ba*nNwf%27@TqVp8Pf zg`>vQpO|6?ueqxGrpi&Fp?j<|&Elx-SZpz4z@V1Mbz{P<6vq}n$zQ#L?`7eawwx6E z-HpKnL0U)m?pA;Y%(9SADvHd}_jyVp!>W}CRoBTl%Yj9oS13qal*YLW#Ghx2$wd9hyCv3|zBnC}+H26a44OU}K+6i}c>)s1aj4Xo7S`Gn- zGiHM1_6S~(g%r15dTEDx)@_>z@vISn+l{~eKzQ!K;~eMRw0hRd0JLfe&O1qNFM{{N zilA=f`E9=Z99Kw{(G3Etd(CU}0OVdVgcpee=6n&){@L%ELJDH3-Fs2?|%bN}|XfQpIDnOTKY8X%or24v_9VR zR$hN!vY}d(j?8L=FBAZ6;DBZ6%1D}7y_cmwzVAZWi>?+p2&uVZAte=mH079XNtO`M z=Vt#CPGi6_D8^U$G&@7=dt{o*%@gX= zr+J&57A{U@RB~de^E!TBESNf?FlaPe*z?tGqe^xs9ZSxn-=M(WF zjQwLBG|C^dR#@`xxB#Pu=6uofZ{7PeHlZ0cF~|n%zP|=-3{c6{dgsRvjKX z>13LR(P28s=Ssuqc8y4>Xb6=?Q9kcI!IWDj8JWNH(4^3TWwXn58pvm8Rc`iJS}=t( zR9JCfTj6iiV2EdJC|~e$YAnOAQ{{%x$+-B()rcwq(tXa)OuLJ}AnPq=J|*tRu@y!Q z*7`-Ej8(0NzooyJU@@{qeaK|#M95|$wv^>{LWwf=wYyN{KY$nu?ztE8X=QoRsOVkL;tJ0rV4)%2c80*Xx={HBz6B? z;%eYoE;-nA#6tVoFW9sef~FfV#2%$nd~=6_0I%%K?^4L8yf_<9X8t+>4j+Lin#J|c z)tGw?G-If7*A7U_vNZg6bkwDaHstzrB||8%V6+GiTv%~^KZd_iFoZ%jV3|`qP1;l; zNvlod?h@M*!hRI+=g-nP6 zsC`BVjLOnN*@-=ws7Hx4Mm90S;oiRQr#m|8T`IyAIxp8=@Ac#PF2ugGL;EEc4wm&Z zM0CK7620bNS|ur6L#XUM=7mb;ctbsB ze$~r+??Ff8TWwxprqsyb!99+f$mow#ozy<;0RYL_OUH4OhNQfJJW`O@EA#;mr1XTL z{yxY4CGtq#>VSXn=F-N{!I?RS^9+rR<`E*dz!i>orQHtm{5!vXV8t677#MkMrV#gX z>UWf&&oc#Ri>RA3>@x^U>$`{<=_ig=A`qfu65P(}Gjn3Jv$tb&z{Kxk`pvt|hxjqL zhwY*P>l;=MxQwE{u`GhDx_KXe+!F^_1d-F{Ni>*|W5SZ#0g$*n$`u}w&MD;^akUoP z9Tr$~zTEA}dUvyYe7l|j)6xi2u!4)%Vku<1B0KwYd1@kd2;2I8+$oi(D?dXq^XD4< z&Z)$^X0GaO;S{ASKUG?{qTto{54V<9t;N;k4Y+$Z+8h^RLmmh}mc6NkUFUw!^&-jt3bUa$S@l9R611kx79bA%YT-PP7h%5wFlp>TCAO8HLyv4u~25-Gj%foEo_ij^qgXv03ryf~1 zV;T8Joo(%`0+cx4L7&Tpo;fuWKDpY6(4n}o25zsVq*yj={D&ouA2Ddj!uOd1^)|*; zjzec|j>-_7j$|>^e^j>ikK9$63;aJ%l7qPQyk4x?yG^Kxpiom=s>AvJ`?m z75h3e{>&ys12JLKZBqVSOTYu99($%eV|DMWt#ehP=ipj!eY2OZulGbJTbBO*4}0ue z;{H(13rDBQTnJ_XL$eA*(FjV|-KPgvZ3yXusmK>BX6=`v4G1@Wzj;7RqK&!U z2Sh5L?vmWmoo^w~2NQl{&7@V&%%2z7hE3Zo85T;NPXw>FN`Y{I&?tiAy-`iTSiLHE z`(fxEE)TE;3o&yj7?ikhcLP<;h3&+l$ zH0VmRW5F1~)zY}w53wzyQ(BBbzv|90gxF%Ep(D;3$!0Lw3KkMENc%OnGrn*3;87@`}&!%OQ^kT6sLqFYk@?_$~3Fle9m!;Ld5fErHSb{VvEEh>#bVp$1#2qI z$*IeEt)_9^{IV&%j|gK`ro^skS?a^#tHHSHEQGSi0nTN9cy4eNN~rW`h*U@zhZvb? zfDp2f_x}BLU?wWWi7q13XXY`Uen;T(j2{1v;KmDg?n(kfyk*#6SCCw&XTQw)`nf#d zD>05RQ!4f5PO2JB*q8K_JT_nGh7h6~Z%;OR67@*X1(1@Xhg_`)Q_z)4>@~9zTED>! zx!hn_p*|=}RQALBLF$;ivOo~UG)!Sr{lNMMnyKqgd@2+i6rya+FCy=CQ2dbfGjN;5 zAoEh{y_?X*pC+}7VM|1h#ncCRQLRe4#0c}DxR`fI`u^`+>JKcXz0>nkm7E^^6^ z;;inQcsEj>48(X~)|Q!7jYl26@Y{|@HSyahvR{u%PW*Nr<6rF{(98`F!taTwoGra& zNE=x^gnp4=Dv1u0y`vXOUzvOVK0JWOpf9jB5SpV!(b96tS_>!%HdYgh{CV|UG`)YS z_4LtbR6UR*J6KkY)^D1H<=WvuI@#fU`Ih~SdNMh$Ag8;?_hQi#O~olA&k#y`4@}__ z-2@j3x~LedELx$;4$b>4S-5;z~-d-yig6s z34Us{{f($ZPN`sXrZrPv=Hm+bqDgCdmUX-|?=QFVxP&~~;?Hj1AHDR7N^B z>DqS3b;j-kB|Ln=C~lagy_)5L&;x{^r9wThyZ^>-7TEVpckYH9*Z98Jl7$e8{Ehlt zw6^v{Do?1?B9>?L`a|<&;*nC9Pf+;;shtJG9d_$q7M5)i|I1D%o(%*xL^KDiqXGNU z{JZxYqVCcqIM3$_3{VH+e7BdV)PTA?gCLz+ktdk=6^+Ye@hlg>%(CVvolRaKccy2XXGxER( z8zhN){K}rna#M0Kf(lr^#Ra(`poou2&Edi{`MX0*EJ8>Y~g3P54zp ziX$(5xNEMR$By1sJT&;2zs61>-d^B*GpaE&4xv3uZJ&pjNT-}bDief`d{5J=)}TOC5DHnCvCJph{qcQYp4%WM-1 zXNO)P#;W@aN2Z=t#9W(x3%cyu14npW%kA>$5o`IzT2m7WH2boif0J<8@3Ip-`cc^6 zQ2J3xdqYu_%ImCg=7SAd-}P@o5{LF?Z=|}RNiRB~w;gWwL-uo!yEF; zy(UoTMrN^Lf1MPfE|@iX&GvE!Bo{v_%7Db3(v(?! z**z=_A)KyU6hM*GW>01;RT_@I;V7^gIHrfGqQBy&LS>^K949(XZ~>?+_`)o(B^5a zZ}XA8Hn@Qdf-kjC%NJFHl1m=He|hAva7z1oWP11i?I>G*@U+Wy8a2B08ZuuG>|ET( zthDIWj2F4ezvrtxxgh4*165y^H%iEqSPP6kD@h_h7W6g1!xoa#8D{EJr z>TdzY+;Lm(72xqW!izoL)bJLX)UBF-Hi>$GuBc>MbbGd#1-`)kgB z2W+`*suKOU@zI{CuWwhKe!Xh{58+Kk6QzXSJ$kI}oaE^j7ajBC^t9;RYxdqXOY42U zV26vs%;}IuT(s4jZFP6UQrG;tDD%Ipa^J+?MM<{vrpZ=+omOQZ-O=&tfY{!*+s?Nh z*dG+p!Sdks<@bJy%e8Y0zWoF)_i)mB*1owf``9dNcY#`y?vtC}T{4h#-R8G^o6XWk zW-(_s%%AUSWX5^F)6DYIe%`)IRm=tQWe4lah2)Yefh$I~EZVsza)V&XwDw(%cfa** zJ$B<^XRATwLGJYOLity}Z}Z;28mY51?fMJbT{nL%;Wt}5Eo%4OjQj`lPP$yFnDr&c z{}`wZf5m~kg9s2KzSKBn26vAD6gS3d5v{iLV(bhafOff~M zxk03*Xw5?sb5fL4B9xFI#G^guxqtT`_aD!Cp6B<+z1DrLm6e@qW$kP4&)(M_KJV9O zzpyYf5*CyYAU?iBLH{{=aA!pMY3;$+p+GC6TYOam7nTlw{Nj1j z^d=u)O|sCg%aMcMzdpR<5Xi?T8TaFJD0yMcosSPHdiSrJHlfbU8N?k&JKp}9U0cwH z8~XS2g=B&XPFvZdW6uR<J-czgGM>6r1#i1v-|ve5+8Ye)1OPv-Ic8TNtJK=GZFr zq3fr;9twhUZ^fkO?|k?*=+R-Ntk|QM-yRYGS$N$nh~?^Xy1$i$1a0`JeP$ifz)_?F z5xIebx*T24ff+aP!w1FtarsW}vv>mkr1^YLJpulk{LkMv6#h;A@>jm-zsbYD5B;#l zkL%D$uOC%BxE??LPyN5y-MH}!=+HlRfBWq)_Ma5ri4*^oZ5jOrbQaY=S?8H79-iv( zU3N#_YeR({urd^m{$|RtYaMBx3rsN1tMqsBCE!+5BzQjVTFY~4&BLn;rP1#Ay9}AZ zLn8I2X+nIDXa5k>^(jRqBw3-9mpi-o5CmR-o9-_*$h9r1_2@=SfmjU~a z40mVx<)iw~Ygke5WzAK+IWp6Oo*q`Ul&pAURCB&hF0jU7)4WN+TJz9>t-fEyA#I>h z$ZV>7cDBx2+q0>JNRTkXi@X$Kl(yY=Mp;oF5oHr|P{b-;y;Vr-XATCkE)i9J6FxjD z(VA-+y>^w=<0wU3@F`)+BL zyr^MZO8+~Go`6v;|gztQj7_Vyl3egSpXLk;y*a$x#?nKGfVH7P8S>3JpZkz z!P(Svx`r4M8-E0`V%WY-V8W2`&-?B?x|gDXyo;Gpo;e{w+SusW);%2@^J-Er1oqKw za4L&^(_KCUmKJSzTjN*0#{y1fG3Md=2*(RsceSOCy$*Cfu{0fX;xG9tYrK3`Y~Z)e zU)}Y*tmoa(C@u1ppm(=#+nw^M!z^j+oFPDBjG9hM1RZ{I5sp9(53v#}oOJqL{a*S! z^-g0J&WauB_-otHcqS^|+2l*+Br2hdeUc_pzM)^izMrP@9^drj1{8Z-_jI69wXF|2 zd-Oq1Ti9Qse!iApkA#4B!23C~j(Vjpbx--&j^6Y<_1Mq4=o?x*a5UF)?wQ6?G<)xD z_U|3g`b?^aHa<${uXTweHSev6RdYUD9~+JcrK3=HSHne$aA;X8q}CYWp8S{Segu(d zAEh%~QboWOEirK1b-Np}z98?2uU?Kwqdjh)kUkZC+*1*IFUjy^j^RVm_s1u14 zi6lr{GM1yTxi`5t*cXKw`7!|nq=Bwi)=}n6aLdP0v;c|d^1ECn0p&Zgl;AB2RGW1o zJ;6CtZ7zRbjIOl|fAp9$>JmZanoMbQ@IHBOB3?s$40JN==yOY*ZkUM4m0mC8@i``( z!nA@uAhZyiyVu#YDjk^>T$wf3ma}RDE*E_eYsS>bGL-j7Q|qoFI&4P+kjo?agL+CD zrMqH#T25N&RuX>At66a8=e8S+RD!M3YDp@DcA_RRI?I~fHLVrqe%^0_EkkeM=R>t9 zos;?{uxV66ePMM3Fz;N7^%PJ@6*3vSzc0+9Io@0n&X5B;DKE>)qGmq%thDWw|M6HL zW{hN7JjiV^H)T^j%C;25t>Yy0A|h+rmWd83RS?AFNOST=-tH{hzT2NSdN=ZO9kVK}G-Qd-5&UAxaO3v;}+v z;!yhN{h}7f!G=wax4*yHaEHs%!w!k4=g&!B0Ds$;Ek=fiVXFEgRzH)1NfX|#M@!9Y z2QDDk@pqdDin^ZZBdrw~iMA2EiiV}#rdvxA`?p)BVhgsL_C(P0;JsZ?>ua^aNrm1F zW4KLSB;e805xvkcx3!(O&AiDk=-80GJ;(&D`pS8Z5r`D%o;XjrKZ#qoog#;JiaH5H z%D2daS?>0jk$wsyMQpk4kw%W#V}Znmizz^zKYE?9Tt*md@=ex*zAUlkt4n5Eu=eXs zw^gyD5-9j(rL0E7q-GRpyLvrK6*%`yTQ^wQAAaFsx1ER!Mg}mCwe}}xx1MRZ)y5dV z{VCo#Tg^ntZZZUU{_WA@)%G;v_{ciJ4E(}+c7c^4>_K=lN@=&1N0y%c6}rwk-a8!{ zrDq5HI+6;2oWq2g-BS6Z&%w!$o%2p~bEF^kAITTs6!*&y)*LG(`T|x?9UA>q99=OQ zzg0DVyg&v|{+LW@Ux-!@`+ldaUCU#C)2(hXx)f*95?M-%i2r! z#OojOO|quOJG|HrN4UjI*Lt~YLPZkb@tw_xK04k8XNKXIBxgdje2sLcaF86hd8QUG zOOz8I!%t3a8uvh5yZ|K*BHi{p%Bu)LV&G;@`Nnd+@q!lp>k$In#QRL$Q3}KHkzykG z#sIi){2S{-p=2w~ERWT=*=|1(<~TJM7Ov_1h+sEHqhViY;N3IO6N0!ym|+L1PLuD% z{QF`OgK0NKv%Rn|2WSevQmxTPGa{Ek!a7`1JoFM2 zDITFYS9j0*>ev?UMSth7#@vT4k%<8xiBC+k2XfpMBqKiNV$wVVRK1%r{T1RG)&s@& z*E^R@{6G0P$jszk-(iv5H%55AQ8>P3!}G`L2SD?l(+S0Ec(l(8s5iyxOORYfN`#3YKb2E4K`~Dtvarz=>x0PEOL;?`}j2f zKQR7mRkHn(PY?LC^N2l@YT5wkGz(aQOHuA8E*`f(A5 zrq(5n04Ma<`lI!uQ`Fe>p5ebqS-Bv2X}fd{Oj{(_vgE>5k-u#-Cnt?)|O**XmZ~iIQ;k9B(oPr;qO2>&)}d6ZRKP z_czRmdj58?v@&!_3ZCB~aSa|sW8vrFhvl6m_bEp}GZ)v_GXYGgNB@tdu3fnMVGCNV=pnb|P%tq^3@BU~SvQ1U z$C`mqhTkSrq^cShrtHx9bJFR_p zhF|3gjy}0lC%nGhl%m(ge^Md5eo6vjTU0)<9O6cPpOq=R81j&VkiOe$RrQQq~6suO<4MT_ce^$BYZ>LcWqn96Vg-#6QTXK zIc-pjdet0XM{MtID=FD0`K_ZS23%4geH~>H2ALabG!!!h>L9KjZH0 znUS+;q*b|ME?X(C@*a1sWPQQ*7dzc&>0je2y(X?H%Bffbqqi5!>sK1ngnDsf6&V`L z!RyZ<$(aC?$F-5b%y+Md9;+Y2K5N6e(2B_;a=tDT}cz7(6rq988YOL zAhG_Kxo$A|uYgZclfq4Mq!XsEzCfq~T6NbzlQbp^FMU zY}1!uT*fv`$@VCS--!Tzv)|kMSJQO%U~-n)%TN?EeT+YguKZZZeBXy3EBf@01o(m| z0|wS@Q5*tY`|a!(aaVQHY*gF+UavnMC@4QOdIQ=COh1$-vNEh2(hwHdioQWyXA$zy zeCDzB4d8F#ABqeEl{1oh?s1abH+3h06&yvF+=V+6ZHin2cTuunz4GF)MH9f1{P4l& zR=GGlv&tU9qE%b*j;}{HCjky)O%_Z((apGs#h_YZs9de0Ddxp#MFmf1j+|%TZl@N< zg|H5lBcxG9Vv3!@!rr!0@Osqs&eRltr|IPc$b_ptP5LT_R%8kF>WqrLp&+Gx{&+pG z^}TUycYMAL`Z1jtLD6{JE9eY%D2Ob%^_%}%SL1G%-A-TplWW~p3RCOw48b8|s+4lW zcp7BZq4wNEbO7 zu7@T#v)<4-5pl1Zgj~SW`ZkX)tiN?leC8nb!bf}g-t-IwQmPz};Sa%CxbCOcclv~pc#D)AoAr4m z=yGlrjip-mW^B4w9Ww=nHS^}2+6z-Blr?4;gZ-B5y-=-@p|v7gPGv1Lx=%pUx{ zo-c0;$sKv2j$z8BpmHB)ZY#3#eFe1qv(^FZ#dlNLAHA1Ot`qh(^}B_^H6dM<FVaTc?6Zg$QS*G6Au}5Y7`w1@$oFBHQE}6Jvu*=S; ze}mb&m9C?z<@vFfZdOs1KJO3ky0DJ|2`?_JG<2;yo80a2yL-0k+?gOh>m6+lLC~Gv z3-j6G>`nB0hJ?l>8q?c*543K3$5hyzwT6*FWbFjq%$!}dc8Z#45EOgLU=Jn(5}zZ zol$+KsUJlU+}0jqEosRg1s$xC#_&-Ns*mv-yC8~I(9(2e&0xa9z1a5=4io3NL=_P( zgmH7Es#Ry)OLG<6rdZ+>`y9x3*6*9UeG?EoIi zyO72*uFUZ^oe7o|Ke9mhtm(##>t6uftgmryplk)eD4))VF zE94QOlC!q-XS&tXMl1G}H6Qlotp&^RXs6MAH3 zr%ShX{B@V$R4UyxIrU=va7v}bp{XTSdQ04Kx2Vug8jb5FVI^I!{U zz5A8VS?WuNqRGp@(?emmQZll4wG|+r%J(zF`u@}}c|z;Q*{=cnC-t+tYZ1b7yMt#p zsb#H%@`QPhtZQ&-<*8^>tOQEhY7YHWOBubV{eW7?RLQbjWO^XmD8&T`;j;OM<5MV5 z=YVX21{0iR5-d z5f<#g+I`%Pni&~qTm$G?2GgR{io>msCoY^4L|m{P%s3zJ*R{jbwP)A9@QK@#*llX! z0X2sT9tD~T=hh|@g3BwTiN!O$G7=F=)ho%WX)Fr!+0KB5*K%(`Z7m7dJa(*naGJl7 z!R*t{+Ybi4+9iA{o)Kyy!Y@^gOPfl4FCpukv|YW-KRHFNwn5j18;w$ltlXT`yu)#EN_(+L3jl5|F&1zZTO=1`S%}&NpSTXf$UXR8_hiTQ$TN z+X_vx8Wx)=>WfOzD6buvRDlKp$|)*LDG|mijqq=u8(0tN?2+`Q-1e3^JaFbG0>YNM70Os<5>9fcf?x;Yg$ZTnC|n8A#eR*`)sh5^ zrD|Z_B&NwtIVz8j(P>x-^|UEKKude+4l$cf{;nk=#>vZ}n2OyCueKf68LmjmxLpwu z)M@G8xwemmZg;pc^)zvt%j-I=V{L4^R)gk;X!F}fb984+WtdtaB{^IzEV@3v)`Oo% z#Cmh=^v|CwA?;m;?L`z1=)4n!aY^nvgg$Tbv^S7qlupE`Y8O%bCRUwZ9lQpQcOg|X z)74Qi%E;0xj0j9+LY*2M$-BLQSw_M1o>pfB6=w@;c;Y#i}pHm1eTt zPAwTgB}c49Hutnw8Yky7j%YIO@!*j)#8B_M060;L31;Lq9Z}B?2A9ZIw5iO=W=I_P zz@pK%aqWu}@2YNg4<45f)2+t24@$o8fS!IrmH_PH`o&G6>>l!)23lta$zNf{|EWZ-<(Qn=660sharr=s-=c17kTv_@+;EP}K# z!y)FFh8nX7lrQPazHQ{kP1|>QHaoFr0oaq@0*H-XULJRpdaGXNTJ2|AF;s0ML;U6A zupy^ae7HC5`Hf+4 z=!n3F55b*~JR53@xM+XO#JY-eUPp|;@2b*Eh+ap9Axu~R{*1kp5{FJfsXzgah;K7^`AB59Os27~sb z(Wy?m3rmZ>U!m&}{%b<7xkUBS8N>0!YqFlQY43(gcC1D>U7eSb!-@WE7*#r(6nKe% z>$>xv|H0`eKsn;Mw7}kNMNI29YABq=vNBi%3|4(> z>-t$7l`gB-LGy=pCdPY4>Gi_?Y!b@enlk%CZN3SCd46Ai+X;fb1^%v@Ie}XB8+MAw zH$d*68{4R6We+4OteKU9^40?en5p4;-osyxf=13HWX0>#Kz23x5>C|Z5%pBF-sJp8sHbhFa;Fqbnz!A#Wu6t$IeZ*W zP%Zu|+<3I^G<`Fj;sb^#XBvkomzMC8X3+FJFDqr**p7=pmOw&Z;G$j&uH7Rpnd;}F zzLkOJZ3j*~yrZj;kX^1b_*BnXt-8%&!&t3{ zca(yANpq>A2#<1V|2Ne{o<>gT?>%nh(T`G_r z5e4vHM{5;!yqqj}C}suX;w9blcJ0%>V#y(k>0SEfWvk;7gnL&`YmH!ES6{}joanpl z;Bo5(i&@b!Ts~io4uSCf2TX6fvoCod7lb~ypI*)Nh_1X4>A3aCql0kbQNIaz`cxQe zP=NC#54!)7*D1T|x#0r;<1&EfGruTtxzgfFRn1_CpqblmE!3f*p7hTGh4GSgMuus; zF1^~y>-%q6UZt)^>S0t|icQ4Vch6y&Yy6VN54uTF4;7L|%q>4_fB-&C;X2dhfBBPB z`A4&N!*99m|Bd0=+ zWpowct7iLUqcK%rn{j&u5TRC8pkZn-RXt)y7NC;H2Le9mgleb*_l9%>J*^TGUFyin zt^#C2rj<)zZ2xg-0(kIFhOP?7(M#O7dMws0PZJ`Ajon-f`O>PafY{ z4Vq;aYb?SJq;4ECOi!s(`QCN_I)KtZxcWJgp3YZb7)XV81rMD?&j95jhtXt$n)m*M zpvt}D4P^{bl~>X5Cbf;j!CkWaSb)~XOD?-_IxS7Q* zrX9TUg==?OrZidoQkzj1O}K#~z8G~J7gN7xn!dQo*4 z(F*2VyXD?udQFox2t1%(v{ruUSEJl$KY-P2J6el zG+%gcMmZL|Ql~xqqRWvL3oGixi%-oDvfnLnNpB7J2TSFlBf%Rn^&BG$Kt)uLVHP9I zT^|s}7K5!{HxO+L>{bs@ZDe`RdzPGPE>D_awiO=tUIvN6?A6nDYA#QT&Wxz21&4FN z)!*Hdvl-K5uToR=mnXo{VzSW4jR1ypg;+GWx>eP^f8k=&?`^S-b&g($m_RDaO^A$r>YLgcBE*?vIs_{CdOFFiCeTJ?e( z^YGiAe}fFnH?+7;kuByi8j;s4Cum#ed9z?{Z%B6r?+~S(a_b3)y8FU=xXz_9__``<=mD>Ky#K}t0c}9&2i%@QlzPQH ztTYXB%tOg*Mc;d~sgoGeai&q*NaLA^j}eX`sShe(&B*`*+tW zlxd3&HhR>u@fs!lc3~eI8kdrDh(NbeBUf)A(gi1CQR~J8KSKGC%~_bIEz9@b>&^k@ z!ERzive&)T=0A}!EaG1zRt@;Ia$AI>QuRyuh%xOKY|U1^GIEiL=&KKew1tY!jsEie ztg_~+uV<;ge{xW%J3I;N{j<@k66zvhNOlrs*{%``$3+oL$TXu$S^7McAjdHyhiCTxfq1+-aVK;m$O)*}s)Oss%WE z-llXgL$F{+7BJ9nx7lRT@ZD(w~8cC4s)NL=GUW-5UJW}jx>X32COf` zj$;iv_@*ygF=d+5emy;R8&FQAmAjX!hs8J;8fGRKf5e(=AA|gs24-i)VOGY-JM_Z* zc2Z#%&z5~S!}i`z6cYGpy2Dt1s_Ksr^z9gDR9HAqzk#d0Khe0jGb0Di;q@xE z*+yHX;5OH9ZU)!qNq!M8T)dO<9Jx18v5Et3<}g0a_|;MREs^S*lg4%xtc4ccfI1^& z^&e>peyohA*H;@WwmVaA6)5SL8U0v=HPa|kwp6IUWC3qe53b{`2lMw&bWvTvPtZY)6c`(H~X=9OEtrB*dH7H26KDEkiTx_2BdMeem73-Mi_DhI3_A(d;6R7hRElV`5tb&d@TlEMIX!o+1Y1wOK1$xgSoS)OQyL?mTM*+Bb&&|qH`id%)5}W| z(RsDc&7Nf-C_S?`;?k~!_S(%8epOhkJYRQef3rlXj;EQ``o)j?SGyv9dV|o6{Wgc= zoWBL!7%6VJe#CR1gqza|2A^iJbMw6)u;nIPVl$%H>lcHH$FjGE!J%2+&}ADm3zjr* zlOqc68oS%=F2Bl%RQJz{zcHZ>Jnn*-XL-Yx60dG=Ec`9{L!dj8n?lcO^6>O`IQ{vZ zsP_FN8tECF;Ryrc90GMEUx1LPd!W$;76RE+QYQl}%^Ksv(a;fHN{_eapJBCD(Q1eN z2ro4W=S?sHELo~i(|M4 zGTWXHWL9|$v`h?!lDTysIXYFZ2lUPC@kZ^kh(!C-+YW($rnLpREQoUkJJPD3 zI6&tdiGn$M=RZ%^dSqP30JOFJOw)UM0Ha^@Hs{}wypym8!t#0m*|F66ZXg6v(Ls;W zZ8n^k&0|vQ6QN%G9laR1LUHy1up@pi=%e`94(@SnSCe z^T**Rtd~wllidx|t9ok#YqnWUHZYcUQa_CVsI=ql`p_#xSyj4QW0x!9Pb;RYrlmVH ztJ{(0C3!T3JChS76tHF61<7l6-*Ib_ z5=cfr^t3{DldLmG`Rx!$%zj9~f6UjvPvXzhs%a6hoW;Uw{Sg;9;<~>nH+9@r03^vG zzmywlHaEcTbUu~!H82YT@qfMxEouE7oCsGyGo)8tXKk0BFb>q|Wu%!xaOl$Fsc?B8 zc&nak;=aYwS#_9c)QES3VqS;UEFR$fpnv=j@;K|QeUH(K<^^N(>IiG(=VK1YL2^Wz zOG@Kl_U3gD?F3qYOzf5x7c@DTMq9bno?RKVWt;su+qkzUGDyt>-sYy)q8Lhpk(<*b zu4s#(_ay54xAWdRKzI9kdJIChJJyrkfZes*9)I2+K(AK$265H7Ph7Er10yG@Do#P! z7bozFkT{X4?eI^=<2SS9t2)u~6pyEi=c&j)Duxiu|Z|QYHOJ65n~aF1r7!s z@wPIFNFNMpf<&7)^%`^X+E!|)gC5LQ>)>g2SjbAs3IG&M0n((kVX=Mu$nv^Ot>I6a z)&lme>L&2Q7j%YV>>~{K?;J#XX;($K1vp5B1$jZ;tDLjQGqM~1w%H=OP31T{I(uXX z)~-9(&MXnET-xLH2{vSv=&(kAB-uVBOR37!PSOkRcL1Heh=M4!2xLc226%kRzWOUZ zvrCk|G_VJ)iBxGpOt4zvb`TqZ zLDt|@V;fh^mw>X;+T#KfrOporHOKHSAL0}BYfkb9g-e>;{ zJX_RWEp;7^mP^|kDNsJx^f3fCE134!rh{kj{_nr6TZ52rZas_|4Zy2aR^FoTzB3w@ zfa&q^iJtg}pw9og7H%NYg8b!Kp3mrejWA(d6X?N1c0$F^{tHn5@>jxtH<$h2gnR#= zZ29>9yHNW7wQU8Zyzn_Tj6B`RdF^`numb|he}mhnAiUQzIaT4BwQN8LqdXkmPL)rW zlMfs5%+siMmIF5R;dL~oV(VGrD=GCtz8T2N>#qha_Hh5O{8I^M{|CxHB-Q)9>tDp5 zFXzVp>6bsF8*DCOcn3ao&wdv|HgBYI6!ua+Dq;XUc;IzQS<%AU#Z%Ol%}B)&3kCbn zx1S|YsA6>#PrcUoF)m;SwwkO|kEU%I5;CIqWH*1>_PyZ=ug(4x|spR?4PN zw31&5-`ncM1AMHGd9e5QgjRBRXZk_pMWk6zm4c1utvT0n}ucyM)x!L%U z>QRLENVF$pxxh?#c$AK7)!Lh$_q9TCLLeW(r4@WzBMq*oQXE2r5%hq-;`~I_9bWB8 zc4ez{$a|>mbS>4k`mJIPxkSGHZ{5+~DI=S_da6Y=pW3)znqi)uJ@4k#aR z%%mPFY$8KxFqjD`nW@TOU`OxckfbF`b&;wSF{^u7$lIn$TZ%-Y8 zO}KktUj$kzd~F(-J5f7%04%Rx(ypmKpPJZ$3i;iI9n3Iw{>~0T4niFL4cg>PlS@r0 zTBias95kOzR@UqffKxK$(Uu?MJ!yDzMHZtz?N3p*Lz~(&Y?7^abKCarr%7*5k+_Uf z?%Z1Sg$m;gG!)IjA5y5DQ`NGn8?Z_nSi9F8NYd(kZV|M(t*~%DYyP_|t|Vi<^=`)N z*1@o!kw#xG8YKXIQ^EmKn})Dy5C?4^2OsT%feu89OT@5o2jkC;H_^SIedfnDy|U-d@#QKAuZghS{*R{d=Q@k$E*Hk* zZ7oK%PiL=(nE4>4)l;yIsvrLP5rTMkS-A4T8w9B}AdWTUjo-*G~87+6+VPD^Ck4uoMj zJ8{UA_pM4Fk_p_k$7+nleTJ@OJnt75EMFLTR)SzRGAf}1sJ)S9SHr04Bp(Ci&6@n> z&S1%q^+=mF6+_Zmw**Y;XP>!paVY*krNHmcCps%su~e6im`15CE1t$*EvCr0&wyFx-_^WCxvS}>Bz;+JBeKXx%*_Z;p*vnu(0e;x3n8Mwk@oyJ{vs;sp=kg1H(rqM zL|CQn2m+i_IO^@6qw{ISTM?NtB`wFk~ z-P|Ba1aqx zvf5hSSiq2ah9%uk!ENeDBzD_|AfFrMK4$WWD#EFbV&3ERyDHYbSC z`FaF|F7Nar9$#i?o#lR0l>XhhI^S+ejQhk%0+iOu7@#~7h#*D>!M`X+=6^n)P|naS zZK5tniS#B-)hTVs1_{NjtiThW}UsMYaYcucKDL5`! z^g_J@&1B*|Rey2#Img)ZKLPsY;2<9OnoVK_Z!lQlcKMcn%khRyghX7t1!D)%|^ zb>?xB-Elq=QTn>cxz3mV2MpO~-o*aE1=t5hyMJR9doH^_%06+)(UEuk~?6>;1`FxGA^sV#-W!2%}S4QD6>bYEStN2 zQAN3qp#KT{a+X!nsBR~X`uGPzCPle_+Z{6j z)ASmQ&ey}Lxxt%xy>bgHRmV?>3RzR^jhP7h37OgPGXRir6PY`4%{f zMh)4W0Zx^MnU=;89oW{q_C!nJHe$tX#5iW}vOpU4`j$Nww`wh+GgVP?nd3FM%J!kQ z?P;CStzz391%%_RAUWD~)uOr}%;cnKM;m^n)u`_pHrMm$q^y5C%)niF>d@BFQtjt> zF1x&{?QVa~D1HA5dRZCz+N5D7GLVhFQ6Jz!5&Cp_pQWPc?8=L^S#DQ7+s3gz?q{@OZ+)n7_MRrem7ZE z;wcaXB6k9o@Rm{d4^d#e-_41p9NYaMOnB>W4&Tbl3XQahdjqddEyZ95NR`a%W;h}9hl0C7+hJJ68lk$$4&=} z>&DLZ%}2tT{WovZw;-qtaV%~4tweG|IahkV8K8;*OSkC9kQ32j=VEylt4UrJm8b!_ z;`BKi8u)U!D%ISfMH8=WE>};0S-ku#?pR69C z<`=$!)%y_rYr@}IznHF6go08a=3dLvkKm|yxdYab&0O?oPbOZ8d~4uWE#ke~BHkaZ zQK)`7#RKpiO@)p%6E~l7H}A|-kCGyWq)f`WRv>7@lb_MKUtA3HMW^!fiAIzustCJm z^OM%eGRTjRJBNOA4O=fKJIoFNUfwINqI_gH&&R4%^^MiyRAMY*eJpO8Tw*jY5w2SC zimIHxxsCG@V2hF}>_){y6ybgWjKfbm?H3vh^SxnvBcXk(Qx{R+uHs(*qm69&_ zS&VXdx)`z^si3NEC3LOj0Br=Wd;Jx)8l(-8I-^gw*qt}vYEe)km%u&!BVnCOq^nv`|eCq-BA=(KJ z7xv+qWLP;vM`EdD=-Rvd<%Nr@oi^^l_aT5<*il*ND7sj%;3kUwOCTAP?-(m_)hbP%dJ-4FJ`R|R{Z#w2vtOyj9zrkc|X_RSsK zSmKA)V)HFuBucXGtBYG6zZB8=-85fn} zQDr623>Tk5~2X4~ME~xLq=P z*W39n-$cYnrX>Usqo4|+nz%RsZwe>c~ zXg(Jysay-BP-(LGO3r@Sh_5@?@qMn)W*j$IPFVAr_DJQf>{1V*_TchH!JIm!9;Ma^I8CiiU z&m~ZKXx>X>S^z$(krmoaQ((IyS#3cVPC|d9nf^1%9S7CBLZ8uRG}wsiCFNP(iFheX zfS*GK@k)Td)j@>DTxntah3~Qo#XB;R@t6BscmH-Z4^8PMURWlMhp1+66@w*>dZLd; z{Z=@hb?8#9YBsOfbk?YKDe3K`UO!Y`9MWjE_0UFA>{NDr^6Y{kU~dAty|Yj}Rf?H+ zUR6;4I&27!jy6%vItkC&D2M2Lb~$k9`n)$msiQW^ix(eOUypqxjC`SlZbH)fX$OOE z+TgJ(!CzmEtpm{a{KHyEU3RCl-wid^tBjGC#Na~XTpdl-@{h5{5ByLnjkU3Ppq_b| z%jqR{MQeTea|72rNGx)h;DF7KcICT23oU*m!$=t@luix3rJ=!PkbAy`0BJO!?%3PWGtAGR;clhG5HjR|Er%*?%ZJH z%x5E!*no4k%a35X{~Gq4xnER1d{vJ`CIfYep_qRiW$*XmtN5ktO`@P|>UY_HZ;qdB zxjYmeXkkh*sXdMy^!bqE=sycersulTiJJ?#+H3w+*n#?J_kL6$^)iVy_PldJf;Wkt ztrlEQuPO_bDd%NmlPqW}9eI~?h~dE&<*Q?$K(lR?qa=9kT`rP|WBhZP1(fio*9tfF z=wM^T(p?z7`DmTQ;y?3;!I@X5jmEts2;7eTbGIs3IwoE zy;W^q_T7xg41RySo>$-`w<*6CW*K$a$o3)7UOCd|-f7gwGi;vo2KZ+A*d%GE0Pm!K z(O~eBTJXgR5G>y9V(Dy(5`CvO;06hi6L`R9R*Zwi1IfFYOebUS<^E6WOuuof?2mQn z;UWC`KKLbl!#!OJarat?n zkawY_XVP@0mXA8@C5>r!%gd5@X5lmBj(7TKWw!T5Mp^jiX!btIY(K1j@f5wjdg8zZ z64eILB$Rynrz?s)aUvT*i?sA#w%lx~Hp9?VHOAjP#2)bVla^$|P3J^~oif$1h8TQy zt9o%`j5ByB8wAkPFaE36^difXjn%u<1DaQIl(y(LGTQ*oEY&|ZGdLq}@K9PYY>+{j1cV@i3?a-jgeV9o$e4sMCIT`A z2xAf;BzzmN`=Cnrh2;F-6CDpK(JdS?Nz1CT96at;gL5b%KeD zfkn{dZl$ShRd$Y7xt2w@9DY8r!~;@iyP+UW`*aNq7zFfVzC07La$9?MyH+Z^Q|PqD z1VEq_@E*|U?1i?(4B2LBS)i{uRSxL7ZhZBcyt}3b?~-nA(XzZ)2;W+K!4QlR4a~G` zJLb!4oQGW7k4b@z70E^%?#LJN5@OVH(wz*tUEGv)gY@&YcTp5zO)@O$(u+Vpto!-- zFhoO=XU=zEA;~Cw0u%@?BfN4?xL$edG959L_wKbqBIo)dyF#gW-m&ZXJq-|P=2)dZ z(6MqBMoVoVrKw;+F@rkm^NG2g^1OkwG-o>Hmf`BeIE`>AVIvN>nFzq3}DJF?O?fg)q2#SbkJij~p?^T`V4q%YcF5cc% z1#elpWO;F-OhG*%^wIgub=GJj#wbZ9&n-&y?)sxs&RC@^Q`Yvu@?%!`dR1LGPrwlM zCV5NhsFe#Aq(;%I{cx8ro|C7IiDFeUeY_CsE=h-q?c%NJ<=an=T5;j&X6)-}%*1*F zpi+x(vjtgt1tXom$@zFA{U;Tr8|pm0Whay5I!8Z?ts23acT9gMVGRPldPH{P3hB6i zg9?rBdRDFVo8!A9e-z%{f7pykGjMfvHF`SSorOz*T&Kp$N)p8y2K*4elOo(o)^hI+ zc2r#->wWHzOYXJ1R#cU%b)1~JV$Flj#h7yAiVap>Zci@W?#XYR-lE~H7Pn}l)$Zv6 z{Xdzpk_|YKDqd;#`+^nDZb4WTQh}PC5(`v+AH(FujSuUpu2C)my94=ZQ^HlxQz9YC zf}+B(xa{~Lism7%7m08FRu35txl+;E%|x$hYQCHfNLY7MUxkqS>=3s`bAKgI^C$S> zEPG|)xKK#qn}?JE9J$0ixL{iw&hGUGfAp6L1iSQ|12Cw*ny#12*Qd`~J@6^)I+FS6 zV>#gZ&b`&+yR^{$`&`p@3(>Ea)-98{K7F31`>MDKJzZXT6H}gIou!JusXQ62c-)

}@7&eM~6=R&cl z6!1z@5?GnVx`zmC_f#{UFe4Tu06V#yk+ShHD*6hI z{3;+cl+XW*z}{}@n+FKr=cG(qtZ7Mt4z7x_c{E-@(E317FO=FMbaC-Umhy>qJ8?BL zkCd%G!AS6RUnxR?an`DL$ZD$GEj_M9=A>snK+f6TK$Yfbo-JASsldQqca0&K-4 zMB{|KG<3nUJ^b{Qy)iz34B9`2*VFB)H<2koPk71z*BbJW(;BYgD z-4}x7r|~xgIUBHfyPkt$D(a=y>jtwLV=n)QnMck3DWC23=k@7(5`-W*F#OgI6u0~) zWYV&FfMX2^|DD%e72=)|HY^CPSNCAxQtTjrVzvsWrltyn+d*$7fzk!jPod^CZ1}KJ zgk)n$zJ8i;YuZ`+<#IQ=WquE54N;$>%X8U-#OevnEE7(Ldzi!2Skja^xb|Roic9pG z)7lF`gao1_N6j*+{Bj~=dRH;$Kd1GQ>nU}u4y31Jh(Xp^9>})3Z%j(C7<_mo&)3$( zQff^O16M8f$;&x8tTd4Sfs5upTdpq{qJY`b?LxIanc~F3L(K04$!0f2fm+hNl16{= zXh78mVHxr&)XoCq37{b1(WuQPahZwI+iHKy-7^V1-x~|1^O_cS)h_Dx0~I~y^q~Q%Fi?Q<1&MEjkZ-YP zN)%r9tWCR$Z>n1AF#_XK<{QmbT|untZwDqERsh7lefO|`CN)?(`{S_NUC-Ls%p@2T zmyZr6Zkelm#>t}D?x9~XSX%9~R>{Kq`HuYorMDMQMs73#`4h%eYiz`ofaVaDSrQaI z!G6&l?0-|gr8qjD8RB!hhYHjxUV2{?Us!tlI;_akX{x)8h~&((TVY!vqoy?!3Cm$D zO2p8&86x~FT~JSc5YuY!C%6|<#!9v8cue%Vg2!IrFPEvEPl6vZbp=N>oG{MC?*r#| zRl~&hCsfLNUVpnKt4a;*pVI~#7SH6@v^I9QG)a9z1Y9Vr(tQVx(-956T(Ak7!yh=_ z()E+`*5Ptm!C7=?A=B9k?_7@MwVz9#eaV{!($W=2nF`odh7woE&sJ)$a=-aQ%>8}p zeMSvOGrSHWK=KT}$NbUMRkuQHc{KjSDfyE@1)dpGH)6a+)87#81m8&uLBQgG{4@<4 z;-8^LXDBxi&eA>p7=|E_kOegyhGQ znCQ>nNNa*fk=;SQS9OcA_nr6wfW@Y{479^qQ+A=pai5h#lVoJyThjak=UdB2X)4>m zv~54mj<9N1ekc+K*tYSJ|EL?~8F<_esSwYxx~MEwu=ouqWgP7Y)s1oN%^(%kbCwqdA?2SH8&vmZ@1&YID8-aoesG;c~3DSQJ*k zv=J+4thbrqEm-WE-b7swym|f-Jk4f=$$uwZiH34i)o;PgTu+*RNKb}Lm}+CgM@{$U z`&gVM(d+jKbTjC|6B$!_nr{5TJE!7nduTtJ@=@XA4X5lZ-vKOBEd4?5iCWXaWm}hE zxWQ-Wpbe#I5?+Z*Gw+3Y@34{$XI*XqdR2r2xzMqgwOS!UE`6E})by{TC&yRdRkbnl zqi508SigX@zUz?L2T#zU9ciE~gdZ1ige8G+-w(I(3j8g97S+-3!64pW#E4XGQCBPmQo;4vE?$4FtC4LcCU`(LB-!Aj1_>JYDy%D@E5=IQ&`abf?g!nv|{b| zwm>1X{>0a%Cob7lzo_)I=}WDWTcxyOp0ni~o(IVi6<<{ZgMExAWt zksol;;mqquNvGXk?MIfX2QP_$R+Fue{(v(`x4%J>xtZ)e?r#l$^jCo038M~7k~pL7 zDpIFGpo$uE3o~=rfGjf+ejMF0Y-Qf3RF#kzUD*s`^`_R~`$rdNTh@+YP ze9cI$I_}|G3^k8qNIiSA!T7n`KkoamubERa>49;>K8}2<+uX>sYv2%|VfbS8++)I- zr&^THd5bM7)0aB_YYMTF$J9t(T2-RTImP58Y`!DFJXPYX=?W;c!IVeL#xDwuov6&DcV6PsZ~sU-gLQ_{I&8`hxAp>DC~Ny;389=37RzsD*AFE2!rU7lq9u&Zu?+C|u%_fqt;#kIeit&fGUJ@d^YFk#YPh#louU z&69M__o!g9P*8Nh0t`L1|6x7XJ>(0WlGh3=o^vsD^_?4F!WqL6)7NM-I|vF!XM&<|_!p;)Q!eyBolAg>(V)x;QagJXQ> z*7G)Ovv~X_pl2@`)=JEUS%?Eug^IA38XkJ4ah}R{P>=guGn9T=%{Q_=M6NKs$^pF9 z2<B}Niy9xJD=dcW&BgjqsO8}S{`jC=-Da{i zOltvo;pstjZK$ursu0(~?LS!O #^8jS<=&$h32T>f!@9`Z$*8&0vk)hL?9hy;*! zR}FIB8oAz}qp%%0AA1vuD)r4{E8@87O80Itfc3V|@EY45r#3h-9YOkAtHJo3&a3fL*Uxs|$^hPhq z%Pc*NloqGoi+SbqMql`deObb<7&)Eb+2|I~nTAscBD&WlKe_IeX;$TZXtM5Tl1V6N zZj}F>4-D9V3g2C-k7scGrgQ?%&f#sOz-(kDl!_4gzu7akt6ibrE^fubEwJJq!Z(Su`NPB+Ghpv9oFPNwt(~K}eH; zJ^)ym2d!lT2uyu)@_*@-+X4IVbRRh1pVaBL)D65B>ht5VJ@fs|~+%_2ef zo%KnRg%LUIjhu`x^%!y;>|0ZYJhteNA+OQg8Mhl(>G$e^cBl4eTa}hG%~b!l-Og+Q zf2^uR&H(KLl-ue7NgEYKT_1Ly3~}ek@XIh!6`RBNsP*Ug+z6tKdC4QDLQck8uRItD z_sxSFxFD19fq;XDai{QGXp64j2Peg|Un-f60Sl9o*TpuqV70JxwpcM?VS4*-Y_rbDH5(a#N)B&DRDfzZ6+>bYOb$&o-cuh2a_ z`|bIMIUFMT)4lftaJ|h+Jk=L6QI1O2Gh9a7QrVPA^AS@AoV7D)`IvY`8F!`AS2SQ# zW8oFHyie3Z2{RR!WhK5ac~b*G&31;LU0{kX`6TBb_F(SPgTafIhpzyo*xWOAMv>~0 zn4ijq5GVaE7D01=K)}+FIq)AZyLipqzqx@7BWx6sk`Q@Ty#^1Xf|5wjtYe7`O%qqt z9T$;Qy)8pSdQN}t;a?-t1p3yGIgA>qz*9{Z@eS|r4gr_i`=#;cFUf=B)8WeH*FGV* z(399BlODD}%YnhSN3w(S57{qyfR2Nr*{zR~TxCOFf^>yJ5r|n zzUh*>jFR-*x6%^!&XmlqViTb^rYsA)^km+?;qRJ^sY?*Skau8#&_sQ=2 zDl}v-)%@LN`Vs5c-yNm@`-*?vwsqL|oM4~Ai@)nv|9z_9U!@fP{doSPD6IeEnt*8V z?|Yg5Pu}#C!)C}em+o|>)L%9e=*kWTyAI>Q6g$KRW!e58Uf-KUY+N zDNSYW@lJ~OX~X;&py)!hpky$RQw?H!k!)XyG;qyr0%mZ~6lG(9CI4C)gWS>Kx~VnT zUq`&Xk@Hj3!1tfd@BeTB6GOy%V;6V{kYV%oWL zu}CdJV*vYP-V2f5y~2CRa=@#yrSR1$UG&DRyzIVeM_dYYSBwj%zo#BVP={bNit(_~ zbYZy$TXy7jq!#MT;9^jb02M^og2kv8^NtVK$niCT;H1wEV1nN?{-+(uuD@)~mbZ5j z%K$2dQoOchq{2o1wdU~D3RGT3$uyB6{LW~gt3t{_CXi8+G)*NektCxysg23IA>lo( zY~pc$(N+Pbr8bUZY2oUEmWcRD%%IIh#0%7Y;@#S;?`xX zWI#3M2%cB9V~fln_JmUy5+_lT+qzTKnm<=^MALaa3JxYzi~F^u)`T9lPElN8sUql~ z&s$2ch)b~ctx(q_Vd5-A_Qq^1b^+?%$4QtN+MdR1xoQkqR~An=cm>5XRxI>40A?Wg zm%dqaw*2n=4Jdib^vF9N?zz|8rThH6RE*OKZnf-+cK?ox2|&#Me%Wf#c(t6}&KWPt zY8#euNKC%nI)c-^AY)r>8%A!XWrv=5iU@HwJQzxFcfN^-)UPh=XE^*B(^bbTh8NWr1a_Ua>3i^G|sMa*4f&pT7$S5h;uhz?+lG&Tw0hLkQ6?V zvf10=u`7hdwp!2j_Z*|`9EJe=DY#DW$8ZU7Zv_p^W=XGY*7ON`imuc!-3xbwsC}4H zmm`&fS9<|@EXT3(afMtCgcgVOoS{E!-P3Ni!B=k?Vn6G9$%jnJn3839Ic_2{4~Rm} zy`LOa5eg>g7Sd}XpbKbopaU65J6o%^e9{L1tC(T}-q@0D0x zudm7Ik{yn>;7%KFnV5iM20}=AjJv5}MOQ3ym!+zx{?|y$kiejsJtABIO&e_rq$ zBfsvLj(^x{M)2$rFvW-zJQfz|yn zmwlg(K!0(NnWpFd;_v3EHk2|}e;iqB6;=GkF^mS0lLj;6NPSziVc;jMb3~=tsJ#iA zFA+Ri(Uo7rjTE(h_qsPva9>~@G=MQrYzzVe`>D9(;3j4@U%Y~zB38-`pcn8|nJ4vg*bbu%ls4!{@!Qg1^lldqnPByXF$x>>D~ zMR)J<-fibS0G>J?*6CRmHVgeZkWSxK+oJ&xF>Cy2wm&ple(shP)QPI0orn*gejO(1 ziJqu^PE}<&T{NydXir%*q|h@@BJ>rdv;17ttFQ5w>V`W$NIT=GG^D6^gF0$%g(|QK?Vs_eHLHyAOH;GxK$m=tE~?7d zKwc%%RWT*cpCUp*6ds5V=tv~HILxeFPZHZNJzd^oWx}dfxe%kgwb|g z)Be-cq(XJbKp4mH*e#;>7opF|fw60@M6(+CLY07TcVo2h` z)gV#G;CiU`#bmkMyAlUWOm`Tr6}Lo$^ztl)0YXk&zq3NaXLA@?x!}Mor*KNtLEz++ zIp6G2XEh;z8@XS zLE|NJ@HXYqrp41kPdrNunoo`V3}rNX3vObW$qoZ&-1=sj$ow(lRh__b&ToFB%J+o* zz2A$E9cqYhrmHbs78gfWYaJJr!49e$Bv{r zq5C5rea?|y%Fi7L&g`<)ew%i)mv$>d{iTP%j$qvH*Rs>=N0j)C=D)f7nRyyYLq; zv_({>1lyKY{+*jKT)e3ICpm*Qj}piIG`Jre9squc%eflIcnR!w2abDLoW^628ieJF z?@B6QA(hTk9_%)V0blWT*EaJ%)oAb8(f>Qg4*gG{`uEP=ef$3PX-5B9mjyt+PaI;j zTq7Vb9DZ>TUi&2~80DAq*4i|{+~`Uic1E`QjHEmY)^ZKtIyb+phV_fLP!nsDrXA{I zy_K7TUU@%WC|kWHv?5Rdk=>0icLV-W^ae=4ZtVUW(17wf_5PbDLH)zr{mKqODOE@1 T4emR+bN$_l|KJ~*+ literal 0 HcmV?d00001 diff --git a/pages/stengen-en.epiet.html b/pages/stengen-en.epiet.html index 48625d5..cb3dff0 100644 --- a/pages/stengen-en.epiet.html +++ b/pages/stengen-en.epiet.html @@ -7,7 +7,7 @@ -quarto-inputd8a93774 +quarto-input84e263d0 + + +++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Characteristic

0, N = 188

+1

1, N = 103

+1
sex
+

+
    086 (46%)53 (51%)
    1102 (54%)50 (49%)
age_group
+

+
    0-1987 (48%)50 (50%)
    20+96 (52%)50 (50%)
    Unknown53
1 +

n (%)

+ + + + +


+ +
+QUESTION: What percentage of ill cases was female? +
+ +
+
+ + +
+

Step 5: Develop and test hypothesis

+

In the previous step we have described the number of ill attendees by date of onset, and we have described how sex and age were distributed according to illness status. The next step in an outbreak investigation would be to develop and test hypothesis about the possible source of the outbreak.

+
+

Step 5.1: Compute food-specific attack rates and % of cases exposed

+

Task: Create a list with exposed and unexposed cases and calculate the attack rates.

+
+ +

Click to read a hint

+
+


+

You could use the same approach we used before with tbl_summary() from {gtsummary}, but to calculate attack rates, you’ll need to change from column to row percentages.

+
+
+ +

Click to see a solution (try it yourself first!)

+
+


+
+
tira_clean %>% 
+  
+  select(tira, wmousse, dmousse, wmousse, beer, 
+         redjelly, fruitsalad, tomato, mince, salmon,
+         horseradish, chickenwin, roastbeef, pork, ill) %>% # we select the columns we're interested in
+  
+  tbl_summary(by = ill, percent = "row") %>% #we assign the grouping column and define where we want the percentages by row
+  
+  add_overall()    # we add the overall counts
+
+
+ + + ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Characteristic

Overall, N = 291

+1

0, N = 188

+1

1, N = 103

+1
tira
+

+

+
    0165 (100%)158 (96%)7 (4.2%)
    1121 (100%)27 (22%)94 (78%)
    Unknown532
wmousse
+

+

+
    0205 (100%)156 (76%)49 (24%)
    172 (100%)23 (32%)49 (68%)
    Unknown1495
dmousse
+

+

+
    0174 (100%)148 (85%)26 (15%)
    1113 (100%)37 (33%)76 (67%)
    Unknown431
beer
+

+

+
    0165 (100%)96 (58%)69 (42%)
    1106 (100%)76 (72%)30 (28%)
    Unknown20164
redjelly
+

+

+
    0212 (100%)154 (73%)58 (27%)
    179 (100%)34 (43%)45 (57%)
fruitsalad
+

+

+
    0220 (100%)163 (74%)57 (26%)
    171 (100%)25 (35%)46 (65%)
tomato
+

+

+
    0208 (100%)140 (67%)68 (33%)
    183 (100%)48 (58%)35 (42%)
mince
+

+

+
    0204 (100%)133 (65%)71 (35%)
    187 (100%)55 (63%)32 (37%)
salmon
+

+

+
    0183 (100%)120 (66%)63 (34%)
    1104 (100%)67 (64%)37 (36%)
    Unknown413
horseradish
+

+

+
    0217 (100%)145 (67%)72 (33%)
    172 (100%)42 (58%)30 (42%)
    Unknown211
chickenwin
+

+

+
    0207 (100%)137 (66%)70 (34%)
    184 (100%)51 (61%)33 (39%)
roastbeef
+

+

+
    0262 (100%)167 (64%)95 (36%)
    129 (100%)21 (72%)8 (28%)
pork
+

+

+
    0169 (100%)115 (68%)54 (32%)
    1120 (100%)72 (60%)48 (40%)
    Unknown211
1 +

n (%)

+ +
+
+
+


+
+
+QUESTION: What is the attack rate in those who ate withe mousse? +
+ +
+
+
+
+

Step 5.2: Estimate the relative risk of the different exposures

+

Task: First, estimate the relative risk for the exposure of having eaten white mousse at the dinner

+
+ +

Click to read a hint

+
+


+

One way yo estimate the relative risk in these situations is to use the function riskratio() from the package {epitools}. You need to first give the exposure and then the predictor.

+
+
+ +

Click to see a solution (try it yourself first!)

+
+


+
+
# Relative risk wmousse
+riskratio(tira_clean$wmousse, tira_clean$ill)
+
+
$data
+         Outcome
+Predictor   0  1 Total
+    0     156 49   205
+    1      23 49    72
+    Total 179 98   277
+
+$measure
+         risk ratio with 95% C.I.
+Predictor estimate    lower    upper
+        0 1.000000       NA       NA
+        1 2.847222 2.128267 3.809049
+
+$p.value
+         two-sided
+Predictor   midp.exact fisher.exact   chi.square
+        0           NA           NA           NA
+        1 4.219824e-11 5.825494e-11 1.576275e-11
+
+$correction
+[1] FALSE
+
+attr(,"method")
+[1] "Unconditional MLE & normal approximation (Wald) CI"
+
+
+


+
+
+QUESTION: What is the risk of illness among those who ate white mousse compared to those who did not have this food ? +
+ +
+
+

Task: Calculate now the risk ratio for all the other exposures to develop hypothesis of the possible source

+
+ +

Click to read a hint

+
+


+

You could write the riskratio() function changing the exposure variable one by one. However, to save time, avoid making errors and being more efficient, you could try to use approaches that allow you to apply the same function to many different objects (e.g., multiple columns) simultaneously. There are different options for this such as loops, lapply or purrr. Here we give the solution with purrr, so if you want to explore further purrr have a look at the dedicated section in the EpiRhandbook.

+
+
+ +

Click to see a solution (try it yourself first!)

+
+


+
+
tira_clean %>% 
+  select(-uniquekey, -age, -age_group, -sex, -dateonset, -ill) %>% # we first remove the columns we're not interested + the outcome column
+  map(.f = ~riskratio(.x, tira_clean$ill))     # here we call the function for each column. ".x" represents all the columns in the database that have not been removed previously
+
+
$tira
+$tira$data
+         Outcome
+Predictor   0   1 Total
+    0     158   7   165
+    1      27  94   121
+    Total 185 101   286
+
+$tira$measure
+         risk ratio with 95% C.I.
+Predictor estimate    lower    upper
+        0  1.00000       NA       NA
+        1 18.31169 8.814202 38.04291
+
+$tira$p.value
+         two-sided
+Predictor midp.exact fisher.exact   chi.square
+        0         NA           NA           NA
+        1          0 1.794084e-41 9.939537e-38
+
+$tira$correction
+[1] FALSE
+
+attr(,"method")
+[1] "Unconditional MLE & normal approximation (Wald) CI"
+
+$tportion
+$tportion$data
+         Outcome
+Predictor   0   1 Total
+    0     158   7   165
+    1      21  44    65
+    2       4  38    42
+    3       2  12    14
+    Total 185 101   286
+
+$tportion$measure
+         risk ratio with 95% C.I.
+Predictor estimate     lower    upper
+        0  1.00000        NA       NA
+        1 15.95604  7.581600 33.58069
+        2 21.32653 10.261806 44.32172
+        3 20.20408  9.488562 43.02073
+
+$tportion$p.value
+         two-sided
+Predictor   midp.exact fisher.exact   chi.square
+        0           NA           NA           NA
+        1 0.000000e+00 8.032814e-24 1.810033e-25
+        2 0.000000e+00 8.285272e-30 1.099996e-33
+        3 2.752243e-12 2.733856e-12 2.064029e-21
+
+$tportion$correction
+[1] FALSE
+
+attr(,"method")
+[1] "Unconditional MLE & normal approximation (Wald) CI"
+
+$wmousse
+$wmousse$data
+         Outcome
+Predictor   0  1 Total
+    0     156 49   205
+    1      23 49    72
+    Total 179 98   277
+
+$wmousse$measure
+         risk ratio with 95% C.I.
+Predictor estimate    lower    upper
+        0 1.000000       NA       NA
+        1 2.847222 2.128267 3.809049
+
+$wmousse$p.value
+         two-sided
+Predictor   midp.exact fisher.exact   chi.square
+        0           NA           NA           NA
+        1 4.219824e-11 5.825494e-11 1.576275e-11
+
+$wmousse$correction
+[1] FALSE
+
+attr(,"method")
+[1] "Unconditional MLE & normal approximation (Wald) CI"
+
+$dmousse
+$dmousse$data
+         Outcome
+Predictor   0   1 Total
+    0     148  26   174
+    1      37  76   113
+    Total 185 102   287
+
+$dmousse$measure
+         risk ratio with 95% C.I.
+Predictor estimate    lower    upper
+        0 1.000000       NA       NA
+        1 4.501021 3.086945 6.562862
+
+$dmousse$p.value
+         two-sided
+Predictor midp.exact fisher.exact   chi.square
+        0         NA           NA           NA
+        1          0 1.167009e-19 1.474249e-19
+
+$dmousse$correction
+[1] FALSE
+
+attr(,"method")
+[1] "Unconditional MLE & normal approximation (Wald) CI"
+
+$mousse
+$mousse$data
+         Outcome
+Predictor   0   1 Total
+    0     144  22   166
+    1      42  81   123
+    Total 186 103   289
+
+$mousse$measure
+         risk ratio with 95% C.I.
+Predictor estimate    lower    upper
+        0 1.000000       NA       NA
+        1 4.968958 3.299403 7.483336
+
+$mousse$p.value
+         two-sided
+Predictor midp.exact fisher.exact   chi.square
+        0         NA           NA           NA
+        1          0 1.257341e-20 2.669081e-20
+
+$mousse$correction
+[1] FALSE
+
+attr(,"method")
+[1] "Unconditional MLE & normal approximation (Wald) CI"
+
+$mportion
+$mportion$data
+         Outcome
+Predictor   0  1 Total
+    0     144 22   166
+    1      17 38    55
+    2      17 30    47
+    3       4  7    11
+    Total 182 97   279
+
+$mportion$measure
+         risk ratio with 95% C.I.
+Predictor estimate    lower    upper
+        0 1.000000       NA       NA
+        1 5.213223 3.399895 7.993687
+        2 4.816248 3.087198 7.513688
+        3 4.801653 2.655107 8.683592
+
+$mportion$p.value
+         two-sided
+Predictor   midp.exact fisher.exact   chi.square
+        0           NA           NA           NA
+        1 1.421085e-14 1.319062e-14 7.031442e-16
+        2 2.832690e-11 2.617491e-11 1.035313e-12
+        3 3.562368e-04 3.317748e-04 1.230337e-05
+
+$mportion$correction
+[1] FALSE
+
+attr(,"method")
+[1] "Unconditional MLE & normal approximation (Wald) CI"
+
+$beer
+$beer$data
+         Outcome
+Predictor   0  1 Total
+    0      96 69   165
+    1      76 30   106
+    Total 172 99   271
+
+$beer$measure
+         risk ratio with 95% C.I.
+Predictor  estimate     lower   upper
+        0 1.0000000        NA      NA
+        1 0.6767842 0.4757688 0.96273
+
+$beer$p.value
+         two-sided
+Predictor midp.exact fisher.exact chi.square
+        0         NA           NA         NA
+        1 0.02439079   0.02806394 0.02413045
+
+$beer$correction
+[1] FALSE
+
+attr(,"method")
+[1] "Unconditional MLE & normal approximation (Wald) CI"
+
+$redjelly
+$redjelly$data
+         Outcome
+Predictor   0   1 Total
+    0     154  58   212
+    1      34  45    79
+    Total 188 103   291
+
+$redjelly$measure
+         risk ratio with 95% C.I.
+Predictor estimate    lower    upper
+        0  1.00000       NA       NA
+        1  2.08206 1.555917 2.786123
+
+$redjelly$p.value
+         two-sided
+Predictor   midp.exact fisher.exact   chi.square
+        0           NA           NA           NA
+        1 4.364656e-06 4.415074e-06 2.646618e-06
+
+$redjelly$correction
+[1] FALSE
+
+attr(,"method")
+[1] "Unconditional MLE & normal approximation (Wald) CI"
+
+$fruitsalad
+$fruitsalad$data
+         Outcome
+Predictor   0   1 Total
+    0     163  57   220
+    1      25  46    71
+    Total 188 103   291
+
+$fruitsalad$measure
+         risk ratio with 95% C.I.
+Predictor estimate    lower    upper
+        0 1.000000       NA       NA
+        1 2.500618 1.886773 3.314171
+
+$fruitsalad$p.value
+         two-sided
+Predictor   midp.exact fisher.exact   chi.square
+        0           NA           NA           NA
+        1 6.152039e-09 9.998203e-09 2.572527e-09
+
+$fruitsalad$correction
+[1] FALSE
+
+attr(,"method")
+[1] "Unconditional MLE & normal approximation (Wald) CI"
+
+$tomato
+$tomato$data
+         Outcome
+Predictor   0   1 Total
+    0     140  68   208
+    1      48  35    83
+    Total 188 103   291
+
+$tomato$measure
+         risk ratio with 95% C.I.
+Predictor estimate     lower    upper
+        0 1.000000        NA       NA
+        1 1.289865 0.9379601 1.773799
+
+$tomato$p.value
+         two-sided
+Predictor midp.exact fisher.exact chi.square
+        0         NA           NA         NA
+        1   0.131876    0.1368934  0.1269162
+
+$tomato$correction
+[1] FALSE
+
+attr(,"method")
+[1] "Unconditional MLE & normal approximation (Wald) CI"
+
+$mince
+$mince$data
+         Outcome
+Predictor   0   1 Total
+    0     133  71   204
+    1      55  32    87
+    Total 188 103   291
+
+$mince$measure
+         risk ratio with 95% C.I.
+Predictor estimate     lower    upper
+        0 1.000000        NA       NA
+        1 1.056824 0.7571858 1.475036
+
+$mince$p.value
+         two-sided
+Predictor midp.exact fisher.exact chi.square
+        0         NA           NA         NA
+        1  0.7455228    0.7893882  0.7467072
+
+$mince$correction
+[1] FALSE
+
+attr(,"method")
+[1] "Unconditional MLE & normal approximation (Wald) CI"
+
+$salmon
+$salmon$data
+         Outcome
+Predictor   0   1 Total
+    0     120  63   183
+    1      67  37   104
+    Total 187 100   287
+
+$salmon$measure
+         risk ratio with 95% C.I.
+Predictor estimate     lower    upper
+        0 1.000000        NA       NA
+        1 1.033425 0.7452531 1.433026
+
+$salmon$p.value
+         two-sided
+Predictor midp.exact fisher.exact chi.square
+        0         NA           NA         NA
+        1  0.8427855    0.8976422  0.8440915
+
+$salmon$correction
+[1] FALSE
+
+attr(,"method")
+[1] "Unconditional MLE & normal approximation (Wald) CI"
+
+$horseradish
+$horseradish$data
+         Outcome
+Predictor   0   1 Total
+    0     145  72   217
+    1      42  30    72
+    Total 187 102   289
+
+$horseradish$measure
+         risk ratio with 95% C.I.
+Predictor estimate     lower    upper
+        0 1.000000        NA       NA
+        1 1.255787 0.9008457 1.750578
+
+$horseradish$p.value
+         two-sided
+Predictor midp.exact fisher.exact chi.square
+        0         NA           NA         NA
+        1  0.1973981    0.2026013  0.1916218
+
+$horseradish$correction
+[1] FALSE
+
+attr(,"method")
+[1] "Unconditional MLE & normal approximation (Wald) CI"
+
+$chickenwin
+$chickenwin$data
+         Outcome
+Predictor   0   1 Total
+    0     137  70   207
+    1      51  33    84
+    Total 188 103   291
+
+$chickenwin$measure
+         risk ratio with 95% C.I.
+Predictor estimate     lower    upper
+        0 1.000000        NA       NA
+        1 1.161735 0.8376217 1.611261
+
+$chickenwin$p.value
+         two-sided
+Predictor midp.exact fisher.exact chi.square
+        0         NA           NA         NA
+        1  0.3803364    0.4176598  0.3766386
+
+$chickenwin$correction
+[1] FALSE
+
+attr(,"method")
+[1] "Unconditional MLE & normal approximation (Wald) CI"
+
+$roastbeef
+$roastbeef$data
+         Outcome
+Predictor   0   1 Total
+    0     167  95   262
+    1      21   8    29
+    Total 188 103   291
+
+$roastbeef$measure
+         risk ratio with 95% C.I.
+Predictor  estimate     lower    upper
+        0 1.0000000        NA       NA
+        1 0.7607985 0.4129094 1.401795
+
+$roastbeef$p.value
+         two-sided
+Predictor midp.exact fisher.exact chi.square
+        0         NA           NA         NA
+        1   0.365577    0.4172932  0.3540318
+
+$roastbeef$correction
+[1] FALSE
+
+attr(,"method")
+[1] "Unconditional MLE & normal approximation (Wald) CI"
+
+$pork
+$pork$data
+         Outcome
+Predictor   0   1 Total
+    0     115  54   169
+    1      72  48   120
+    Total 187 102   289
+
+$pork$measure
+         risk ratio with 95% C.I.
+Predictor estimate     lower    upper
+        0 1.000000        NA       NA
+        1 1.251852 0.9176849 1.707703
+
+$pork$p.value
+         two-sided
+Predictor midp.exact fisher.exact chi.square
+        0         NA           NA         NA
+        1  0.1620037    0.1708777  0.1583527
+
+$pork$correction
+[1] FALSE
+
+attr(,"method")
+[1] "Unconditional MLE & normal approximation (Wald) CI"
+
+
+


+
+
+QUESTION: Which exposure has the highest risk ratio? +
+ +
+
+
+QUESTION: Which of the following seems like a protective factor? +
+ +
+
+
+QUESTION: Which of the following has a non-significant association? +
+ +
+
+
+QUESTION: Is there a dose-response in the association between illness and tiramisu? +
+ +
+
+

Several food items seemed to be associated with the occurrence of illness; tiramisu, dark and white chocolate mousse, fruit salad, and red jelly. They can potentially explain up to 94, 76, 49, 46, and 45 of the 103 cases, respectively. Investigators decided to identify their respective roles in the occurrence of illness. There also seems to be a dose-response in the amount of tiramisu eaten, with those eating 2 or more portions having a higher risk than those eating only 1 (who had a higher risk than those who did not eat tiramisu)

+

From the crude analysis, epidemiologists noticed that the occurrence of gastroenteritis was lower among those attendants who had drunk beer. They also decided to assess if beer had a protective effect on the occurrence of gastroenteritis.

+
+
+

Step 5.3: Confounding and effect modification

+

The finding that beer had a protective effect on GI illness is surprising. One of your colleagues suggested that tiramisu might be confounding this association. Given that tiramisu has the highest risk ratio, it might be that the dessert is associated with the outcome (causes it) and to the exposure (those drinking beer might have preferred not to ruin its sour flavour with the sweetness of tiramisu). Another colleague disagrees and thinks that, actually, tiramisu might be an effect modifier in the relation between beer and illness.

+

QUESTION: How would you check if tiramisu is a confounder or an effect modifier in the association between beer and illness?

+
+ +

Click to see a solution (try it yourself first!)

+
+


+

To check both things: confounding and effect modification, we should stratify our data by tiramisu consumption. Once stratified, we can calculate risk ratios in both strata and an adjusted risk ratio: the adjusted Mantel–Haenszel risk ratio. If this risk ratio is very different from the crude risk ratio (the overall risk ratio between beer and illness), then we can say that tiramisu is confounding the association between beer and illness. We normally define as “very different” when: \((RRcrude/RRadjusted - 1)*100\) is larger than 10-20% difference (no strict threshold, your interpretation and expertise counts!).

+

If there is confounding but no effect modification, the adjusted M-H risk ratio should be different from the crude rr, but the risk ratios in each strata -tiramisu yes and tiramisu no- should not be significantly different. If they are significantly different then there is effect modification. How do we know if they are significantly different? We can run a test to tell us that called the Mantel–Haenszel test of homogeneity.

+
+

Task: Check if tiramisu is a confounder or an effect modifier in the association between beer and illness

+

Try doing this task with the function epi.2by2() from the {epiR} package. Read very carefully the documentation of the function. Pay special attention at how the data needs to be structured. Read the hint if you are struggling

+
+ +

Click to read a hint

+
+


+

Unfortunately epi.2by2() is a very “picky” function. Although you can pass data into epi.2by2() in different formats, the easiest way is to create a new data frame grouped by the three columns that we will use: tira, beer and ill.  You could pass this new dataframe into epi.2by2() and it may work, but be careful. epi.2by2() will consider as exposed and as ill the first levels of your factor data, as per the image below Now run this line of code riskratio(tira_clean$beer, tira_clean$ill) and look at the first part of the output. You should see the output of the image below

+

As you see, in the top left (96) we have unexposed who did not become ill, but in the previous image we saw that epi.2by2() will consider those in the top left as exposed and ill. How to overcome this? The trick is to change the levels of the factor variables. By default, they have “0” as first level and “1” as second level. So, whilst grouping the data we can add a line that changes the order of the levels (See the solution if you don’t know what its meant)

+


+
+
+ +

Click to see a solution (try it yourself first!)

+
+


+
+
## Group the dataframe
+group_data <- tira_clean %>% 
+  mutate(across(.cols = c(tira, beer, ill), .fns = ~factor(.x, levels = c(1,0)))) %>% # we change the order of the levels
+  group_by(tira, beer, ill) %>% # it's important to group them in this order: strata, exposure, outcome
+  summarise(n = n()) 
+
+## Run the function to obtain M-H estimates
+strat_analysis <-  
+  epi.2by2(dat = group_data, method = "cohort.count", digits = 2, 
+           conf.level = 0.95, units = 100, interpret = FALSE, outcome = "as.columns")
+#Print the results
+strat_analysis
+
+
             Outcome +    Outcome -      Total                 Inc risk *
+Exposed +           30           74        104     28.85 (20.38 to 38.55)
+Exposed -           67           95        162     41.36 (33.69 to 49.35)
+Total               97          169        266     36.47 (30.67 to 42.56)
+
+
+Point estimates and 95% CIs:
+-------------------------------------------------------------------
+Inc risk ratio (crude)                         0.70 (0.49, 0.99)
+Inc risk ratio (M-H)                           0.80 (0.62, 1.03)
+Inc risk ratio (crude:M-H)                     0.87
+Inc odds ratio (crude)                         0.57 (0.34, 0.97)
+Inc odds ratio (M-H)                           0.48 (0.22, 1.05)
+Inc odds ratio (crude:M-H)                     1.19
+Attrib risk in the exposed (crude) *           -12.51 (-24.06, -0.97)
+Attrib risk in the exposed (M-H) *             -7.53 (-15.59, 0.52)
+Attrib risk (crude:M-H)                        1.66
+-------------------------------------------------------------------
+ M-H test of homogeneity of IRRs: chi2(1) = 0.136 Pr>chi2 = 0.713
+ M-H test of homogeneity of ORs: chi2(1) = 1.512 Pr>chi2 = 0.219
+ Test that M-H adjusted OR = 1:  chi2(1) = 3.590 Pr>chi2 = 0.029
+ Wald confidence limits
+ M-H: Mantel-Haenszel; CI: confidence interval
+ * Outcomes per 100 population units 
+
+
+


+
+
+QUESTION: Look at the results, what’s the magnitude of the difference between the adjusted MH risk ratio and the crude one? +
+ +
+
+
+QUESTION: Look at the results, is tiramisu an effect modifier in the association between beer and illness? +
+ +
+
+

You got several results. Let’s now review them to make sense of them:

+

The first part is a table in which you get the overall table for the association between beer and illness. The second part, titled Point estimates and 95% CIs: has different estimates depending on whether you’re interested in risk ratios, odds ratios or attributable risks. As we are carrying out a cohort study, we’re interested in the ones for risk ratios.

+

Inc risk ratio (crude): The crude incidence risk ratio, comparing the risk of the outcome between exposed and unexposed groups, with 95% confidence intervals. Inc risk ratio (M-H): The Mantel-Haenszel adjusted incidence risk ratio, accounting for stratification by tiramisu, with 95% confidence intervals. Inc risk ratio (crude:M-H): The ratio of the crude incidence risk ratio to the Mantel-Haenszel adjusted incidence risk ratio.

+

This is all we need to evaluate confounding. As we said before, we need to evaluate if the crude and the adjusted risk ratios are very different. We said that we can do that with the formula \((RRcrude/RRadjusted - 1)*100\). Here, the Inc risk ratio (crude:M-H): corresponds to the first part: \(RRcrude/RRadjusted\). So we need to substract 1 and multiple by 100: (0.87-1)*100. If you do that you’ll get 13%, which is borderline, but we can say that tiramisu is not massively confounding the association between beer and illness.

+

To know whether there is effect modification, you can check the M-H test of homogeneity of IRRs in the lower part of the results. As it is not significant (p = 0.713), we can conclude there is no effect modification of tiramisu on the association between beer and illness.

+
diff --git a/pages/stengen-en.epiet.qmd b/pages/stengen-en.epiet.qmd index 506b96d..31598c0 100644 --- a/pages/stengen-en.epiet.qmd +++ b/pages/stengen-en.epiet.qmd @@ -231,8 +231,9 @@ Participants are expected to be familiar with data management and basic analysis 3. Inside the folder "stengen_en": Subfolder "data" contains a raw data file named *tira.csv*. This is the only data file you will use in - this case study. - + this case study. In the same folder you can find the **data dictionary** with + a description of the dataframe variables. + 4. Subfolder scripts should be used to save any scripts related to the analysis. Inside "backup" you will find a solution script with the code of the case study named *stengen_mva_backup.R*. @@ -331,10 +332,10 @@ Using the updated list of attendants, a retrospective cohort study including all - Choose relevant characteristics to describe the population **Identify the outbreak vehicle if any** -- Chose the appropriate measure of association -- Chose the appropriate statistical tests and significance level - Calculate food-specific attack rates - Look at the proportions of cases exposed +- Chose the appropriate measure of association +- Chose the appropriate statistical tests and significance level - Calculate the percentages of cases exposed to each exposure - Search for any dose-response relationship if appropriate - Interpret the results @@ -411,7 +412,7 @@ Sys.setlocale("LC_ALL", "English") #### Step 1.3: Install/load packages Install and load the following packages: rio, skimr, janitor, gtsummary, -broom, rstatix, ggfortify and tidyverse. +rstatix, epitools, epiR, epikit and tidyverse. You can find more about installing/loading packages in the [Packages](https://epirhandbook.com/en/new_pages/basics.html#packages) @@ -467,7 +468,9 @@ pacman::p_load( janitor, # a package for data cleaning gtsummary, # to create frequency tables rstatix, # to generate summary statistics - EpiStats, # for univariable and stratified analysis + epitools, # for univariable analysis + epikit, # for creating age categories + epiR, # for the adjusted risk ratios across strata tidyverse # data management and visualization ) @@ -480,7 +483,7 @@ pacman::p_load( ### **Step 2: Import and explore data** ```{r, include=FALSE} -tira <- import("../cs/ENG/stengen_mva/data/tira.csv") +tira_raw <- import("../cs/ENG/stengen_mva/data/tira.csv") ``` #### Step 2.1: Import the data @@ -524,7 +527,7 @@ it yourself first!)
-```{r , echo=TRUE, results = 'hide', eval=FALSE} +```{r , echo=TRUE, eval=FALSE} # Import the dataset 'tira.csv' tira_raw <- import("data/tira.csv") ``` @@ -535,6 +538,7 @@ tira_raw <- import("data/tira.csv") + #### Step 2.2: Explore the data **Task**: Explore the data trying to answer the following questions: @@ -595,6 +599,23 @@ cat("QUESTION: What is the class of the column 'salmon'?", longmcq(opts)) ``` ::: +::: {.webex-check} + +```{r, results="asis", echo=FALSE} +pacman::p_load(webexercises) + +opts <- c( + "83%", + "70%", + answer = "29%", + "6%" +) + + +cat("QUESTION: What percentage of attendees ate tomato?", longmcq(opts)) + +``` +::: ::: {.webex-check} @@ -620,14 +641,14 @@ cat("QUESTION: What is the class of the column 'dateonset'?", longmcq(opts)) pacman::p_load(webexercises) opts <- c( - answer = "106", - "20", - "474", - "30" + "As 'NA'", + "As empy spaces", + "With an 'Unknown' cateogry", + answer = "With the number 9" ) -cat("QUESTION: How many cases drank beer at the party?", longmcq(opts)) +cat("QUESTION: How are missing categorised in the variables 'salmon', 'horseradish' and 'pork'?", longmcq(opts)) ``` ::: @@ -644,6 +665,7 @@ cat("QUESTION: How many cases drank beer at the party?", longmcq(opts))
An efficient way to explore data is to use the function `skim()` from the {skimr} package, as it gives you all the information needed with only one command. Of course, there are several alternatives. You can also have a look at `glimpse()` from {dplyr}, for example. +An easy way to explore single variables that have categories is to use `tabyl()` from {janitor}
@@ -660,11 +682,14 @@ it yourself first!)
-```{r , echo=TRUE, results = 'hide', eval=FALSE} +```{r , echo=TRUE} # Inspect your dataset and generate basic statistics using the skim function skim(tira_raw) - +# Glimpse is an alternative to skim which gives more accurate information about the nature of the variables glimpse(tira_raw) +# To see the different categories of the variables +tabyl(tira_raw, tomato) + ``` @@ -673,11 +698,77 @@ glimpse(tira_raw) -### **Step 3 Clean the data** +#### Step 2.3: Explore age in more detail + +**Task** Explore the age of attendees by: + +- Getting summary statistics + +- Generating a boxplot of age by illness status. + +
+ + + +`r fontawesome::fa("check", fill = "red")`Click to see a solution (try +it yourself first!) + + + +
+ +```{r , echo=TRUE} +## Generate summary statistics +summary(tira_raw$age) + +boxplot_age <- tira_raw %>% + + ggplot(mapping = aes(x = ill, + y = age, + fill = ill)) + + + geom_boxplot() + + + labs( + title = "Boxplot: Age distribution per disease status", + x = "Disease status", + y = "Age", + fill = "Illness (0=No;1=Yes)" + ) + + + theme_bw() + +boxplot_age +``` + +
+ +
+ +::: webex-check +```{r, results="asis", echo=FALSE} +pacman::p_load(webexercises) + +opts <- c( + "No ill", + "Ill", + answer = "Impossible to know from this boxplot" +) + + +cat("QUESTION: Which group (ill or not ill) has more variation around age's median?", longmcq(opts)) + +``` +::: + +We were not able to create the boxplot that we aimed for. In fact, you should have seen a warning message in your console saying, at the end, something like: "Did you forget to specify a `group` aesthetic or to convert a numerical variable into a factor?" + +Looks like all columns that consist of 1 (present) and 0 (absent) values are of class 'integer', including "ill". However, we want them to be categorial, otherwise we won't be able to carry out many of the analysis we want (including this boxplot). So now we'll sort this out alongside other cleaning functions. -You might notice that most of the columns are of class 'integer'. However, most variables consist out of 1 (present) and 0 (absent) values. For some of the following analyses, we will need R to treat these variables as factors (i.e., categorical variables). +### **Step 3: Clean the data** -**Task**: Change all present (1) / absent (0) variables from integer to factors. +#### Step 3.1: Transform categorical variables +**Task**: Change all present (1) / absent (0) variables from integer to factors. Do the same for the variables that record the number of portions eaten.
@@ -705,14 +796,14 @@ it yourself first!)
-```{r , echo=TRUE, results = 'hide', eval=FALSE} +```{r , echo=TRUE} tira_clean <- tira_raw %>% # tira_clean will be out clean dataframe after we have performed cleaning tasks on tira_raw # this would be changing one-by-one the columns into factors mutate(ill = as.factor(ill)) %>% # this would change all columns we are interested into 'factors' in only one command - mutate(across(.cols = !c(uniquekey, dateonset, age, mportion, tportion), # with the exclamation mark before c() we are telling R that we want all columns, except those in the c() list, to be transformed into factors + mutate(across(.cols = !c(uniquekey, dateonset, age), # with the exclamation mark before c() we are telling R that we want all columns, except those in the c() list, to be transformed into factors .fns = ~ as.factor(.x))) @@ -723,4 +814,685 @@ glimpse(tira_clean)
-
\ No newline at end of file + + +#### Step 3.2: Categorise "missing" as NA +We saw with the `skim()` overview -and in the data dictionary- that the variables *salmon*, *pork* and *horseradish* have 'missing' codified with number '9'. In most analysis, as for visualisations, it is very important that R considers missing data truly as "missing". To do that, missing data needs to be coded as NA (**without quotes**). Other codifications of missing data, such as empty spaces or the number 9 (as in this case) will mean that R will treat this data as a category or a number. For R, 9 is not different from number 1. + +**Task** Recode the columns salmon, pork and horseradish so that values of 9 are coded as NA. + +
+ + + +`r fontawesome::fa("lightbulb", fill = "gold")` Click to read a hint + + + +
+ +For this task you can use the `mutate()` function in combination with `recode()` or `if_else()`. The former is used specifically for recoding, whereas the latter is used to create/modify columns based on logical conditions. In any case, functions like `if_else()` and `recode()` may require you to specify the type of NA (e.g., NA_character_, NA_real_, NA_integer_) to ensure that the resulting vector maintains a consistent data type. This is important because R is strongly typed, meaning that each vector must contain elements of the same type. +If you want to know more about recoding, read the EpiRhandbook section on [Recoding](https://epirhandbook.com/new_pages/cleaning.html#re-code-values). Regardless of the approach that you choose, add it to the cleaning pipe command you started before, so that your code is tidy. +
+ +
+ + +
+ + + +`r fontawesome::fa("check", fill = "red")`Click to see a solution (try +it yourself first!) + + + +
+ +```{r , echo=TRUE} +tira_clean <- tira_raw %>% # tira_clean will be out clean dataframe after we have performed cleaning tasks on tira_raw + + # this would be changing one-by-one the columns into factors + mutate(ill = as.factor(ill)) %>% + + # this would change all columns we are interested into 'factors' in only one command + mutate(across(.cols = !c(uniquekey, dateonset, age), # with the exclamation mark before c() we are telling R that we want all columns, except those in the c() list, to be transformed into factors + .fns = ~ as.factor(.x))) %>% + + # we can do it one by one. Here we use recode for this example + mutate(salmon = recode(salmon, + "9" = NA_character_)) %>% + + # we can do all columns at the same time with across(). Now we use the if_else approach + mutate(across(.cols = c(salmon, horseradish, pork), .fns = ~ if_else(.x == "9", NA_character_, .x))) + + +# Check that the changes have been succesful +tabyl(tira_clean, pork) +``` + + +
+ +
+ +#### Step 3.3: Create age groups + + +**Task**: Create a new variable with two categories (those aged < age's median and those >=age's median). **Add the code to create this new variable to the cleaning command you created above to ensure your code is tidy. Do not write multiple cleaning commands** + + +
+ + + +`r fontawesome::fa("check", fill = "red")`Click to see a solution (try +it yourself first!) + + + +
+ +```{r , echo=TRUE} +tira_clean <- tira_raw %>% # tira_clean will be out clean dataframe after we have performed cleaning tasks on tira_raw + + # this would be changing one-by-one the columns into factors + mutate(ill = as.factor(ill)) %>% + + # this would change all columns we are interested into 'factors' in only one command + mutate(across(.cols = !c(uniquekey, dateonset, age), # with the exclamation mark before c() we are telling R that we want all columns, except those in the c() list, to be transformed into factors + .fns = ~ as.factor(.x))) %>% + + # we can do it one by one. Here we use recode for this example + mutate(salmon = recode(salmon, + "9" = NA_character_)) %>% + + # we can do all columns at the same time with across(). Now we use the if_else approach + mutate(across(.cols = c(salmon, horseradish, pork), .fns = ~ if_else(.x == "9", NA_character_, .x))) %>% + + # create age categories + mutate(age_group = age_categories(age, # the column to use to create the cateogories + lower = 0, # the lower value + upper = 20, # the upper value (we want a group of 20+) + by = 20)) # as we only want two groups, this is also 20 + + + +# Check that the changes have been succesful +tabyl(tira_clean, age_group) +``` + + +
+ +
+ + + + + +#### Step 3.4: Re-create the boxplot +**Task**: Create the boxplot we tried in **Step 2.3** using the clean version of the data. Save the boxplot in the subfolder "outputs". + +
+ + + +`r fontawesome::fa("check", fill = "red")`Click to see a solution (try +it yourself first!) + + + +
+```{r, echo=TRUE} +## Boxplot of age by illness status +boxplot_age <- tira_clean %>% + + ggplot(mapping = aes(x = ill, + y = age, + fill = ill)) + + + geom_boxplot() + + + labs( + title = "Boxplot: Age distribution per disease status", + x = "Disease status", + y = "Age", + fill = "Illness (0=No;1=Yes)" + ) + + + theme_bw() + +boxplot_age +``` + +```{r, echo=TRUE, eval=FALSE} + +### Save the boxplot +#### A static way of saving it +ggsave(filename = "outputs/boxplot_age.png", plot = boxplot_age) +#### A dynamic way of doing it so that it contains the date of the analysis +ggsave(filename = str_glue("outputs/boxplot_age_", #First we write the beginning of the file name until the date + str_replace_all(Sys.Date(), "-", ""), #Sys.Date() gives us the date of analysis. Str_replace_all() removes all hyphens + ".png"), # Finally we add the ending which is the file type + plot = boxplot_age) +``` +
+ +
+ +::: webex-check +```{r, results="asis", echo=FALSE} +pacman::p_load(webexercises) + +opts <- c( + "No ill", + answer = "Ill", + "Impossible to know from this boxplot" +) + + +cat("QUESTION: Which group (ill or not ill) has more variation around age's median?", longmcq(opts)) + +``` +::: + +### **Step 4: Descriptive analysis** + + +#### Step 4.2: Analysis by time + +**Task**: Generate an epidemic curve with the dates of onset. Display in the x-axis each day of the study period. + +
+ + + +`r fontawesome::fa("lightbulb", fill = "gold")` Click to read a hint + + + +
+ +You should be able, by now, to create the histogram required for this epicurve. For the x-axis breaks, remember there are two distinct elements in a `ggplot()`. Inside `geom_histogram()` we can specify the `binwidth =` of the bins to the unit we want (e.g, 1 for daily, 7 for weekly etc.). This will change how the epicurve is displayed. +The second element is the scale. Rememember that scales change the way the axis or the colours are displayed. In this case, as we want to modify the X-axis which is a date, we should use the function `scale_x_date()` and specify inside that we want `date_breaks =` by "day". +If you are struggling, have a look at the [Epicurves](https://epirhandbook.com/new_pages/epicurves.html#epicurves-with-ggplot2) chapter of the EpiRhandbook, I'm sure it will solve all your doubts! +
+ +
+ +
+ + + +`r fontawesome::fa("check", fill = "red")`Click to see a solution (try +it yourself first!) + + + +
+```{r, echo=TRUE} +tira_clean %>% + + ggplot(mapping = aes(x = dateonset)) + + + geom_histogram(binwidth = 1, # we assign the width of the bins to one day + color = "darkgreen", # color of lines around bars + fill = "lightgreen" ) + # color of fill within bars + + scale_x_date(date_breaks = "day") + # we want each day to be shown in the x-axis + + labs( + title = "Epicurve of cases by date of onset", + y = "Number of cases", + x = "" # we leave x-axis title blank because we already say in title it is date of onset + ) + + + theme_bw() + # predefined theme + + theme(axis.text.x = element_text(angle = 90)) # we change the angle of the days in the x-axis so it is readble. Important this happens at the end + + +``` + +
+ +
+ + +::: webex-check +```{r, results="asis", echo=FALSE} +pacman::p_load(webexercises) + +opts <- c( + "48h", + "A week later", + answer = "24h", + "The day of the party" +) + + +cat("QUESTION: How long after the party was peak day in cases?", longmcq(opts)) + +``` +::: + +#### Step 4.3: Analysis by person + +**Task**: Generate 2-by-2 tables with sex and age group by illness status + +
+ + + +`r fontawesome::fa("lightbulb", fill = "gold")` Click to read a hint + + + +
+ +There are several approaches to generate descriptive tables and cross-tabulations. You could use `tabyl()` from {janitor}, which is a very fast way; or you could use `group_by()` in combination with `summarise()`, from {dplyr} which is the most flexible. In this case, however, we show you the solution with a very efficient approach: `tbl_summary()` from {gtsummary} +
+ +
+ +
+ + + +`r fontawesome::fa("check", fill = "red")`Click to see a solution (try +it yourself first!) + + + +
+```{r, echo=TRUE} +tira_clean %>% + + select(sex, age_group, ill) %>% # we select the columns we're interested in + + tbl_summary(by = ill, percent = "column") # we assign the grouping column and define where we want the percentages by column +``` + +
+ +
+ +::: webex-check +```{r, results="asis", echo=FALSE} +pacman::p_load(webexercises) + +opts <- c( + answer = "51%", + "49%", + "45%", + "80%" +) + + +cat("QUESTION: What percentage of ill cases was female?", longmcq(opts)) + +``` +::: + +### **Step 5: Develop and test hypothesis** + +In the previous step we have described the number of ill attendees by date of onset, and we have described how sex and age were distributed according to illness status. The next step in an outbreak investigation would be to develop and test hypothesis about the possible source of the outbreak. + +#### Step 5.1: Compute food-specific attack rates and % of cases exposed + +**Task**: Create a list with exposed and unexposed cases and calculate the attack rates. + +
+ + + +`r fontawesome::fa("lightbulb", fill = "gold")` Click to read a hint + + + +
+ +You could use the same approach we used before with `tbl_summary()` from {gtsummary}, but to calculate attack rates, you'll need to change from column to row percentages. +
+ +
+ +
+ + + +`r fontawesome::fa("check", fill = "red")`Click to see a solution (try +it yourself first!) + + + +
+```{r, echo=TRUE} +tira_clean %>% + + select(tira, wmousse, dmousse, wmousse, beer, + redjelly, fruitsalad, tomato, mince, salmon, + horseradish, chickenwin, roastbeef, pork, ill) %>% # we select the columns we're interested in + + tbl_summary(by = ill, percent = "row") %>% #we assign the grouping column and define where we want the percentages by row + + add_overall() # we add the overall counts +``` + +
+ +
+ +::: webex-check +```{r, results="asis", echo=FALSE} +pacman::p_load(webexercises) + +opts <- c( + "39%", + "25%", + "78%", + answer = "68%" +) + + +cat("QUESTION: What is the attack rate in those who ate withe mousse?", longmcq(opts)) + +``` +::: + + +#### Step 5.2: Estimate the relative risk of the different exposures + +**Task**: First, estimate the relative risk for the exposure of having eaten white mousse at the dinner + +
+ + + +`r fontawesome::fa("lightbulb", fill = "gold")` Click to read a hint + + + +
+ +One way yo estimate the relative risk in these situations is to use the function `riskratio()` from the package {epitools}. You need to first give the exposure and then the predictor. +
+ +
+ +
+ + + +`r fontawesome::fa("check", fill = "red")`Click to see a solution (try +it yourself first!) + + + +
+```{r, echo=TRUE} +# Relative risk wmousse +riskratio(tira_clean$wmousse, tira_clean$ill) +``` + +
+ +
+ +::: webex-check +```{r, results="asis", echo=FALSE} +pacman::p_load(webexercises) + +opts <- c( + "2.1", + "179", + answer = "2.8", + "1.0" + ) + + +cat("QUESTION: What is the risk of illness among those who ate white mousse compared to those who did not have this food ?", longmcq(opts)) + +``` +::: + +**Task**: Calculate now the risk ratio for all the other exposures to develop hypothesis of the possible source + +
+ + + +`r fontawesome::fa("lightbulb", fill = "gold")` Click to read a hint + + + +
+ +You could write the `riskratio()` function changing the exposure variable one by one. However, to save time, avoid making errors and being more efficient, you could try to use approaches that allow you to apply the same function to many different objects (e.g., multiple columns) simultaneously. There are different options for this such as *loops*, *lapply* or *purrr*. Here we give the solution with *purrr*, so if you want to explore further purrr have a look at the dedicated [section](https://epirhandbook.com/new_pages/iteration.html#iter_purrr) in the EpiRhandbook. +
+ +
+ + +
+ + + +`r fontawesome::fa("check", fill = "red")`Click to see a solution (try +it yourself first!) + + + +
+```{r, echo=TRUE} +tira_clean %>% + select(-uniquekey, -age, -age_group, -sex, -dateonset, -ill) %>% # we first remove the columns we're not interested + the outcome column + map(.f = ~riskratio(.x, tira_clean$ill)) # here we call the function for each column. ".x" represents all the columns in the database that have not been removed previously +``` + +
+ +
+ +::: webex-check +```{r, results="asis", echo=FALSE} +pacman::p_load(webexercises) + +opts <- c( + "beer", + answer = "tiramisu", + "pork", + "dark mousse" + ) + + +cat("QUESTION: Which exposure has the highest risk ratio?", longmcq(opts)) + +``` +::: + + +::: webex-check +```{r, results="asis", echo=FALSE} +pacman::p_load(webexercises) + +opts <- c( + answer ="beer", + "tiramisu", + "pork", + "dark mousse" + ) + +cat("QUESTION: Which of the following seems like a protective factor?", longmcq(opts)) + +``` +::: + +::: webex-check +```{r, results="asis", echo=FALSE} +pacman::p_load(webexercises) + +opts <- c( + "beer", + "tiramisu", + answer = "pork", + "dark mousse" + ) + +cat("QUESTION: Which of the following has a non-significant association?", longmcq(opts)) + +``` +::: + +::: webex-check +```{r, results="asis", echo=FALSE} +pacman::p_load(webexercises) + +opts <- c( + answer = "Yes", + "No" + ) + +cat("QUESTION: Is there a dose-response in the association between illness and tiramisu?", longmcq(opts)) + +``` +::: + +Several food items seemed to be associated with the occurrence of illness; **tiramisu, dark and white chocolate mousse, fruit salad, and red jelly**. They can potentially explain up to 94, 76, 49, 46, and 45 of the 103 cases, respectively. Investigators decided to identify their respective roles in the occurrence of illness. There also seems to be a **dose-response** in the amount of tiramisu eaten, with those eating 2 or more portions having a higher risk than those eating only 1 (who had a higher risk than those who did not eat tiramisu) + +From the crude analysis, epidemiologists noticed that the occurrence of gastroenteritis was lower among those attendants who had drunk beer. They also decided to assess if beer had a protective effect on the occurrence of gastroenteritis. + +#### Step 5.3: Confounding and effect modification + +The finding that beer had a protective effect on GI illness is surprising. One of your colleagues suggested that tiramisu might be confounding this association. Given that tiramisu has the highest risk ratio, it might be that the dessert is associated with the outcome (causes it) and to the exposure (those drinking beer might have preferred not to ruin its sour flavour with the sweetness of tiramisu). Another colleague disagrees and thinks that, actually, tiramisu might be an effect modifier in the relation between beer and illness. + +QUESTION: How would you check if tiramisu is a confounder or an effect modifier in the association between beer and illness? + + +
+ + + +`r fontawesome::fa("check", fill = "red")`Click to see a solution (try +it yourself first!) + + + +
+ +To check both things: confounding and effect modification, we should stratify our data by tiramisu consumption. Once stratified, we can calculate risk ratios in both strata and an adjusted risk ratio: **the adjusted Mantel–Haenszel risk ratio**. If this risk ratio is very different from the crude risk ratio (the overall risk ratio between beer and illness), then we can say that tiramisu is confounding the association between beer and illness. We normally define as "very different" when: $(RRcrude/RRadjusted - 1)*100$ is larger than 10-20% difference (no strict threshold, your interpretation and expertise counts!). + +If there is confounding but no effect modification, the adjusted M-H risk ratio should be different from the crude rr, but **the risk ratios in each strata -tiramisu yes and tiramisu no- should not be significantly different**. If they are significantly different then there is **effect modification**. How do we know if they are significantly different? We can run a test to tell us that called **the Mantel–Haenszel test of homogeneity**. +
+ +
+ + + + +**Task**: Check if tiramisu is a confounder or an effect modifier in the association between beer and illness + +Try doing this task with the function `epi.2by2()` from the {epiR} package. **Read very carefully the documentation of the function**. Pay special attention at how the data needs to be structured. Read the hint if you are struggling + +
+ + + +`r fontawesome::fa("lightbulb", fill = "gold")` Click to read a hint + + + +
+ +Unfortunately `epi.2by2()` is a very "picky" function. Although you can pass data into `epi.2by2()` in different formats, the easiest way is to create a new data frame grouped by the three columns that we will use: tira, beer and ill. +You could pass this new dataframe into `epi.2by2()` and it may work, but be careful. `epi.2by2()` will consider as exposed and as ill the first levels of your factor data, as per the image below +![](../images/stengen/epi.2by2_data.png) +Now run this line of code `riskratio(tira_clean$beer, tira_clean$ill)` and look at the first part of the output. You should see the output of the image below +![](../images/stengen/beer_data_before.png) + +As you see, in the top left (96) we have unexposed who did not become ill, but in the previous image we saw that `epi.2by2()` will consider those in the top left as exposed and ill. How to overcome this? The trick is to change the levels of the factor variables. By default, they have "0" as first level and "1" as second level. So, whilst grouping the data we can add a line that changes the order of the levels (See the solution if you don't know what its meant) + + +
+ +
+ + + +
+ + + +`r fontawesome::fa("check", fill = "red")`Click to see a solution (try +it yourself first!) + + + +
+```{r, echo=TRUE} +## Group the dataframe +group_data <- tira_clean %>% + mutate(across(.cols = c(tira, beer, ill), .fns = ~factor(.x, levels = c(1,0)))) %>% # we change the order of the levels + group_by(tira, beer, ill) %>% # it's important to group them in this order: strata, exposure, outcome + summarise(n = n()) + +## Run the function to obtain M-H estimates +strat_analysis <- + epi.2by2(dat = group_data, method = "cohort.count", digits = 2, + conf.level = 0.95, units = 100, interpret = FALSE, outcome = "as.columns") +#Print the results +strat_analysis +``` + +
+ +
+ + +::: webex-check +```{r, results="asis", echo=FALSE} +pacman::p_load(webexercises) + +opts <- c( + answer = "13%", + "87%", + "30%", + "20%" + ) + +cat("QUESTION: Look at the results, what's the magnitude of the difference between the adjusted MH risk ratio and the crude one?", longmcq(opts)) + +``` +::: + +::: webex-check +```{r, results="asis", echo=FALSE} +pacman::p_load(webexercises) + +opts <- c( + answer = "No", + "Yes" + ) + +cat("QUESTION: Look at the results, is tiramisu an effect modifier in the association between beer and illness?", longmcq(opts)) + +``` +::: + +You got several results. Let's now review them to make sense of them: + +The first part is a table in which you get the overall table for the association between beer and illness. +The second part, titled *Point estimates and 95% CIs:* has different estimates depending on whether you're interested in risk ratios, odds ratios or attributable risks. As we are carrying out a cohort study, we're interested in the ones for **risk ratios**. + +**Inc risk ratio (crude)**: The crude incidence risk ratio, comparing the risk of the outcome between exposed and unexposed groups, with 95% confidence intervals. +**Inc risk ratio (M-H):** The Mantel-Haenszel adjusted incidence risk ratio, accounting for stratification by tiramisu, with 95% confidence intervals. +**Inc risk ratio (crude:M-H):** The ratio of the crude incidence risk ratio to the Mantel-Haenszel adjusted incidence risk ratio. + + +This is all we need to evaluate confounding. As we said before, we need to evaluate if the crude and the adjusted risk ratios are very different. We said that we can do that with the formula $(RRcrude/RRadjusted - 1)*100$. Here, the **Inc risk ratio (crude:M-H):** corresponds to the first part: $RRcrude/RRadjusted$. So we need to substract 1 and multiple by 100: (0.87-1)*100. If you do that you'll get 13%, which is borderline, but we can say that tiramisu is not massively confounding the association between beer and illness. + +To know whether there is effect modification, you can check the **M-H test of homogeneity of IRRs** in the lower part of the results. As it is not significant (p = 0.713), we can conclude there is no effect modification of tiramisu on the association between beer and illness. + + + diff --git a/pages/stengen-en.epiet_files/figure-html/unnamed-chunk-13-1.png b/pages/stengen-en.epiet_files/figure-html/unnamed-chunk-13-1.png new file mode 100644 index 0000000000000000000000000000000000000000..0089679ba413e8c984acc547a1e1fe66b8037185 GIT binary patch literal 18535 zcmeHv30zaxwl@Y86q%f&B2Y&v2vL!FNa}-XOM-o4*79?s8w&ffd1v-VnR z|JPc3pBtY!*{iMCxI#feLG9>~gU1yVmLe1s6n|Aw1g}(;Y#mfkSaRyKVb&J0dCOaRdn?FV$bJdnKko$aT;!d=_AV;&E&|U0*jUyS9fyv~MaR{lb9>{! z?$F=?UdWBB>y4`e608&wz-N0aBzS{oc^?Ty2}R(+PGExvkc)QAjYH?w_2%{hMcxWU z-d05k;Ne}AAg@&f{@6uq@BoScpf1j_E)HFni>|8!TL5(cz)rAYCwQ}qz$1YTR+ZHS ze*jpW4FJ8l=-#@x-n!i0Ua&eaI5-GC1MCHC2C$0&uwHL2&|3%ef;VN|gZ+Vx005{I z=$r=mx;)^>nIHuPooLzLl6cOTmx97a3P%rqaxyG^xc$P_bWTRbSkjrF*YDlEPu(G) z`!}cW_kN#J|9XS<>RQc)knYz>s~_TbD|tayeYEsvk<|Zq!->|y$@X@@WkiqX2Jzf)9Y%%nyh zg}K|(1IF#)mX?@_70yLHc^$EDjMTbrbf1RkOmwS5TScbQx8+dDH}P~^(z6k_{f4gN zZeI|q4jm*86Gp1xLQVAst)=1Pev+SPfT^xSf2HSWM4~UQuSe8M2)ui$sIN2?0flPe zi?C(M!usfd)9Skzr6$ywx3P)teOPJ1*mmqQed>iy%9{*sQ0bNCyMBiB?MvUx68&qg z7Yo)ueX#rD3Z$9+D&8^O$pefGB@rt&5!KPzuQ2nyir|-n#Akgzkc_tY{LYw;qr{#~ zu;IaCBZ#emmd_&$M9C`Rp&!!jJ4F1aN*n#+3>ekUdf4fj`uajB7B2ZJQX@i|QLopz z$!0X8sFw9JyEDYA-wh#1|cBFHn z29yWQF%D6#==S4fFN|z+9&7BtnW#@TvyK`E<~L8BC=drTjU$8++B%s*)tiUX&e<)q zN`BUB9vSAv(;VIFaiCU&%h+ndDmhV}7thv6&fs zdPeM@pYd~GKB+g>j0u~C;L)Ysnp5;2ltez`yTrT4`*ZgyXIG|)Ymh(yD&$8Cp=j3p zl+#|o)C11nu4Dxt%(%zTbZ;z{RwoQLex8Ojj|w>_>77s|UkS;+ATY(-nJc-k;!U6O zpS`D4*8IBHjh-iI{l;kWQt1_k{!fd8**D9;EPvqtK5u?day-Q&e{|b?b zwGdC9XD813>p7|K%&sDc_g3tqD#8Js2vMkm{u!yMhb{kl{I#ZPONyX+xjxjyQi{Qe zTxVX`48`GbI>($PJVaX||@CiWN(+t%!qN)d{_f1!I zy>vM6AaZRHY+KIxXpoDX^ou8$belcX4D#f;BvK+W(ddF#|N4k3Y)cw0ghAHik#dEw%?zVr(W~w! z`p=4IuvwHz*HBd2>HNzM=CGhi{~bVUSz{^9r?3>mas-F%7ftnF_jKNPTH70Rvmbd%e8MD??IgEOBbrws|b}4e=emGxCZx-Dhmw^1Q`& zTEkh%3R$#`QK%iV0qnBX!GDBWX#AZK^9kowJ1cTjaIrXeVlO|hcau_hSLrEAC^{`I zIqC-l6J~HtG2me>0xs^aXDOz~c&1guhREBijP(p@I7@HpE;cRV2LwI+5o2<^x>4h8 z5-x?Gr<<1NIe6<-_G4fOZq%vjp~ZW_7rPOC&4*S&+Cy^vP2(OFxiut#Z{46+<6L$x zwkDgKDt=TDlJA|So!q{LmlU%C6qQM@V<-cg*>co6q#+EedI}qlg6_3u7EO43#Ncps zoy+ccFd@pvMwLLMJa*wS& z8zAa#*xBMx)>fKyi@@&d^D0&<L+DxBs%GtqILRdUX{Ck7C;YsbteQ&e%%(sh1R zRVsEcKMacPNkW%4c6Ht2N{40v2@aN95|w|YsJN8#1g6Oo9l9Q%5QkMNlN|lIUQZe# zJTqf!d*i9-Wc_I4I5^@3xnneb%?U#X{Zwkl=oY+L=E1T;cOuv3#>+LlzQiMg#ppCd zK`LK$b7WeK>$EeU;fAo|MG=+au=7wG;PuYB@}v$rNzab13D?n`R$xD-BbN|F%J0!3SH?2W72a{zcm z_SwK&oSw#}2{Ro06`v6$6m{#43SvJ;@lU5qTYHD&TZ&iMl?U!YG0Vg;wn8tgh@05? zvc7m7-J1FoJK^l1`ZO%JSNwLiw;!;<(aw#n9Djb|V^?io)!;%3$b(!t+l_;y=!X9C zeNcaID$fn|^i5mE(7kMP>$c0EZ{GCvIm+q_CC-K77mfXAE4wYmI)?Toc79Kae}4M& z`Wg(EKBzwJ>r7~sj89JH>`Ll*6ZRxrt%0sl090l~@!wG0Z1QZtKm5iA>x~)aEq_>o&-FPw0)p+({zmX2wL#A)v zL88L3xZ#Fs!{Z*CJeYQbnLJW7?c4aR8JEA;hit=9jqCh40vy8 z*yoL^xblF;ZZB9G0cQrNk*E4ZK`l7yOm!yi^z$wB5WKM+4J~!Gr5<8-h=*#P&pz?E z*fyX_xb7*l{%m80Vf%|q$(HHeoix2`6~C1x`4pF8Stz*h9bL2B(~ziv>zrg0+-?k} z{zR4iKt8!OLi!-Bp4?WgJYj76qV#gdaz4_-Q^L)1#2aVcJ|oFx+4CIjJ`?r|2{3B$ zXjQ-RlpS^Q3RBMsPMDcagN+Eg&0Dg_TpXpO50e?BWR;5jYV5d_g|dzZz8Y(QQ@@+= zpR9(RbGZ+a2pSU5HfqN<*%@Fi->k0o>~?cV@9ZmT@QCzxjdsnqxE2+31b?dZx0t2W zB<7WE6ukLPr62W=6CG;(p%tqIgCNwbd>poAX_??PFJrRSktzjY=B601MoTjJnDp`E z{+L|K1$y)0xvPf2S2Xisg?$jUE+3l|h;78qrX<`q6N66je)cXcn{lq90%~G?|E&zo zxa%K-7yH7 z&os%1RcBfw6hD;z_4q+n5p;PHGBYWY9YZm-{0^JhuY{=v$&mqdde0SXQC8YI`JrDg z3l8)Sn$_f8eY~f(LflXf^(5O$x~*|I3A=^IY`J8R#_!@Am_sOe}Qo$;1#EXHedDSUR!xMWL%pEx0kurFR zB~CMV4-a|3!h%UE4mdb9woBXtcOrxV4ahAFMw-gLO^M`+@B0g~AyFLiT6{h=p}xZ5 zP>0caBLB1dtjkcWvb;ym9!C8$?#%AsA)1jrF~-+mhs~}z;?$;dT-#JU(^+l0O5qV< zm6EA`UoD>9UG9)KNwORoEn`I}KHtiOUdh)0d1Us6a5-?QyRmP|h#?$=PgpV9?{bf! zvZ^N48DATNmFb~f6HY(d?x&~F4o45_5SO@veS37=2%g&ZqW93d;QRUdEsMb{hawxauGiW$%F{q6}xbrMYtbEU6wdd>1E1@VeD87slbc*Cojnh79 z1O~X~Tr5(m5u|-dI0$S(wX#K-x+;|^3P5lu@9|=hO0XP%9wHhG(pi2b@b>P*GxK-R zW^6)0;6m{|u#~qAHj{gEy!qMzMVs)a?#>euLIM%(-h~JG71^kIMth{QJV6nW>!+J&(*ceSJCubk(aNt%(~FK&x@ihFVH{b08GY4OwuR-yqkVM(-*~{~{R*A+e;_VyfmVe@kkX{uo1=FJ_aPyTX-y z5dVbbVkq8D+SAn1f}1k0g7V|2VT0r*-v@5v&o<*eRurW7`vsSDEZNAAd2k1a8l83- zY0NjO|ZRk0^=Oa0>EI%QFVt9|rHhL_F%3eDbpcGnnIG zw`|TWH3ELFl@Bx9ov4APi0T1hXiiRnIJvnuAh=}EPRJITu8iDR`K&aPe0}Q^D4t>+ zu}*5Q<->DS+89?q0wKdOOIq}^YH{f{s?=?aN$B2`(ED}eOBDq=2Bxkfm3+CHl2wAI zBAbU>m_<5xWfSHmU^2GlJerP_YJHJ@i!$u8uT1do|M} zJ$5R`EnOzTQ5EXJ7Q6~LX1ZBCNx((JJkp36Gg51fA8CREubki95SCXHPrTGHL^_p~W7q*Vl4qYN;*C%r*0R z!2y}4Eb~?a#3qtKwV}TJ(S;>#_<~h&>H@u6zE$}`M!{izTD=v z`<1GCemid%Q<{?We;8P#wc~rU|DM`D^o~JdU8LI_%AD$8))l(4|hB3;GI9KI?scN8&rXI8Wl>-?b_K2Ibc(!sdw zV!Mr5`E)TBqgOH)!0#y%=gK00^`Du+KXCOQL!#kwL9>0iTZ=l^cGFx?*=Ua5Pz)YB z+Mbx`FX?K)Nw3DoFi%>u@$Ya@s~Cl}y+BS(eO*hF&& z=1I$zIgGY2>z4nF@Xx5&w^7NeENI-XKh*$bH6N{CnA_SoN+O;<6Z=?`hcc&pfm!p? zZJ!*Cy^oBKT!v)a57Oj~;+!ejl^Au6Ikc7~*(pyV{LyzDc@o;CkKClzSK%D75zGV_ z2-3SiDazXqs`1Dz1P0P? z-{mfdP#Xt+tT(39#=MAo0w$(}J62EVtQ(Ksi=e+p0FkB1@ATX~+dclc!UFfnus;m<}$q zntkRE^au#kCEccLSL?o`@jbFI7Ov;bXa-Bi>C-s_V)0}yMfYXf{NOd5Bg*lyJ4f-h zvbWwZk(~H7d-NUU*&-5ad{?B7%*Hx{02xn5AA5=6#D8H1eRn&TH9m(<}R*-G$xH z2`m0Agij#umXKIPJYB8~m0;e4WCqNo&ql)v9 zx!wV|vg+7T`IwSNi)CX9bWBssg$J`yIk1P+0mJ^LLy7XN)q6kM*pN|==l)8-*=X?! z%?rXEZ-*&I%N69kmlevPD@vZ(_rT#IRwsu%3Q}W|ZuCw9jrCC6{W7pyJ}PI>T2TJY zfo*`Xcn^^aN?GEOcT#qSsJG6}{(Okz^@&ZobJCHNyk}UB<#R!6;GYdVbyErlMR>t8 z3|)(NQn%B8DRs9DV$6FNbLKO79WP)MGcKm*GEdrco}D)ja~>wBs_^ydb`GH((Y^+R ziG)A72FY4HC^c0#(qopSt;O53ICC}f6=;8IhVb-G#}3>Yysp;b1eWnC-Vh-%Ld4ah zOE<~yE%MlnH#2g${_O7&@nBfPVt$eWG#qesrCIi~$@V_eFJQvCeE1@DnA*;$<)_n>M6K+c)s%^x zSYHE=@i|Rh9Qbe`h9bcT#k(j*sZ(;n{jmDz>v9{k*#Fj-IoT?LXHET&xz7GnaRZny zcOS?9IY44h?6DpNuv6=K?Jdk~T+p<@evo;xtoLsu_u~=%U>+WvIcEj6E!0x@cftLs zpC(88{As~JgceUS);^sAE(S1ZyW(lH6E_wAG7?;7-T5)NdahqFQ_JVGx>uEtUq>VS zk-Gdga8;XX%4MkZ0VDL6UcYfF?-QuK%-7d|kgcPnlD4gk>i2Wd84$9slLuM3Hmj7Y3P$?B86!`D;Se~_vH=X7ZIQXci<9ZQP%(%Yd9YzR`bKZY z5iqnt0!_4$3?!gCAyHylzaa)D#uB;jYtGiPY#Vd-46BCIE*GghRgncjBsg7ORcNg= z(pNHL0wG&1B13pE9E|ub)RYVS{3GO;Wua$zd~bnFd1&@SGcY**fhAzp?1PlZW{MAr z^KWTOM!thc_Fc;guys|n-(nADxW>MgIq`=Ug0BlkUyczhU6ov}&BsI+W(j#(EeUjA zKQx=4IRDWsNry28H(v|zc@XX*NnP#3cR8SfgnR+d!>X+artaCVayH{{E;;>g@5cJj z>mNDbzEl*CiwYNwyYibTVd4=mwF0|uK^ z)jTEzrDi4b+e`?V zETA-1tloKTv@k0R!8fMzCE)wZ)>?vethMcYjk7nWuFeGstZK2O;a}Pf z>kyyiyi1O1%+^&m&!>$)V5kom>fOrp4;V_e0_Pv?SS?x#FL&!cloz%J{8fHf|Ac^p z8@2t{yh{b~-mm?T=iL{DME=#vI-i5ad(?5Od~wKc69PfrbP_P22Z#g$PFDdXd^Y%bsPyG_oks7# zT=z>m&5oUh^?~zU(2gdr!0lTYb}NJ2JqGnqidZ4I1V^{6F}?W7y^`DcMUn7huRr#7 zB%X1*q4HFt80i`1FBr{eafYV=O_G*mzPrtWmMn( z4pBb(wlAP$pLNG3$9QF|O}*c#y9x@+2(s@2q)J-_fImU{i>pOSQ}?OzH&c?`7uT5R zc08r*%0H;|=6ZP*ZiH`qY8J#DQ91nydeqfR{Jcmdt#Z07itm(@&b`=`e;BL@;*O?E z(`nfd$-uBP!1c_?lpe}dJ#)?>(9qrVX4DhQf;(Nh$aT)!Aj8kP;nN!EeE2rg@_19+ zLEP!6^{-F0U3QNBir_~x^2VM|t#17e5y69)vV)WWcC3HDRYELm4v=}!k}-voHjfVXoSC}dj9Dk$R0JiRIk7Gje1vhMXKb6a@@ZZPUj34xB_wQ-Al@_O7hJ@tOovvzxAi182eDx;6L&%&#UfhG56tAbu*Om}c;U zY12q>%XGMfFn~dAZ2ooGV0G-PG8Yl{v^O|p1!taj8~oQk+3-h*{AUyvuo9ioh#9%w zNsw?%^rly?t;|12>{_3`Jh)L+j}DB3+am!2nwmc$wY%m3?zTJkXbYp%Jbou*BHz&d z*;(iohOCFkL5&u;jc7FI+*LdFW`xqlDI~aH>)C$dxsh}*xmG=+IEO|%fykut2&X1~o4wc0Na5#zCY%QfIC0*Nrl0ZDhdjFL{qkWK&> zCugDQk+kRaG^Mie3tZJ;iOc@ihh@~=MCf;f2knE(a-o?U^la@!lL56@aZ`PBFO<6R zM+>Q_daT|KcWz1&<7D>;`$X70^5$L>fORJhqBPDL%7|CP)A%MDIU8~ZS;G4}YVV&b zY@+A_U90rr}efaEbD@vsNdA{cxA;eayy0ns+0B*;+TBF4y*P9@yX*l0ASAFRTbmN{|`kuC| zBox~`?wGSu8Fosu2>g`Cxkm;J*9M4AQ|2qofU=$=#ngR*xRv?ogi=|^ zeD7Nr^(WdKkZ+I8jG|5ykTFxc=;@Cy)!Iyxsk1))duedtikL*BeBYiIw6(l}`4@f_ zx+Txf*b-CEFwu)wD;9mp87<42Y_Q<>4mLU!mE^}dur+x_zNG_sYRHu`hBml_IUxNZbVPaPPd>cJKc_VWF)pi*I%*~ep8ruNku>#I7f`}Z)1mpQlk$_4RH)Z?72$y zg{N0o^7KsY%GWfrNSDOAQk=*T}|xJQjt8hYQlQP4M}I zxu-u=5mdJ#e+GtX#M-3j&HRU9Qw`?d7I@4|HhK*w!cJSW$cg=Ue$72K9NeaSA0@$) z9(Rmcu>IO4xk5F^r@o;f|1I`%SV!aq{lQcvof(AWk&Z$$B#SpE3vkh3~@D0m@-|+kW|B^%Eu82ZN3taypp5 I|I2Uw1H^+zr2qf` literal 0 HcmV?d00001 diff --git a/pages/stengen-en.epiet_files/figure-html/unnamed-chunk-15-1.png b/pages/stengen-en.epiet_files/figure-html/unnamed-chunk-15-1.png new file mode 100644 index 0000000000000000000000000000000000000000..0c96655a6fce0c8c8e0691b0d2ba859f7e241caf GIT binary patch literal 20272 zcmeHv2|Scv+y68T24#r|S&|T;tPy4^p|VtxvX(F+CcCUnlAmNt_GPAokgc(VP-GWl zsSF`M%M4+{*vHI!t0{V(_kG^a|Np-K=kvV(_cz_9&)nxe*E#1p*SXI3TFxDM&Om1; z3qK181loC8SL*@@!~h3@w!eXH2kz9p+W!><+SYzf@8T)oCkUhl0@;Do)Ie&$cNEC3 z6jbw$j}OMjXUzu#E)<_NnxCIvK|uj{ZsVzqkDZzwa7C%vm8wNWsYL`LD9X+bv_Wj+69xRUivqq& z?V|eaN=xlZfo~c>XoJkgC&D=**EyoeId>EV<3m})Q0OXD6+QxJ$r-qS!rX}5rik3p zh$i5oMX7IW_w+L{ktg-7G@xz75z&d#|J&bdva zxudjFJ5Z^eT4@w;*_8ryfbMM613vww{lG;lrO~QTuqw256&mOTz9~Y#DZ;ra*SV<) zAV6!P(eP+%d=&~`1<(dA;1PU(lv;n3U4JQXMfLw6v_TB`&;WYsc^Jr7VXjAU! zC_sbu_3PJVPbZ)&w5AAJe-y31lmKnf!U&BMouj!Ht*}>B;@k-E0=;oo{5vrbu#@ zg}-=~k*a(_D(ke(G27h*FBD71iY>}6avgJQj=m_L-+SQT%h4H1KilCqI~b3?0gV8yu4Mot9b^YahANJBgiHfeAI52i8U!bZ%jv5@A6GvYPAbJOGwIRo12D7(ap)qCkv z5)%c6aU`1@NLHAoX+>>o%(L3o{ujt=#&NQu{wZyf6SXG@D~%J4JA$up`>8gDi?x)GQ=-ob#hR-*C9JnQYNjAq!1$g$peEx^KrhhdNccj%(*krC%}*3wG+g zGj_Xx<2mOJoL~l=U5EA2(v2cQcjXZUJB2Hh@#w&E4q`B6cm3VO1DW9Uk(B~V4Rh-C zaQOVGW3rSFP|Kq^KII3k!s>spfCcPdUc9ppT3j*4Hh)_#prqLF%)#IR&kL4Si_!=u zF-PINd{bQMwMP@X!Fi0^A%)jamn5NzEAtA?6CVjf0=9zHM}_tH)m1~+mV+tCX5^#m zkJ!7*$H9W(0n-hm^M>6pQkB~J{DkjX@LhKy;R6x{6IO;bh}SY!M5!A9G}0@r}Pk2!rTE0khD8N`pTPxVS!WxQk_$4Vx>s2JozOx~B0y$$T zTaAA?Zpa3IxwLv({B7Nem7%sYo4VV0gD!P;%39{k+tzEXOozkbvq}#h&Aj1%HdmgP zxRT+7)5d&|G3n)KzAI2Im$8>1m((upH-iDsJD_5)hKbtk zq$R(%Zg{hF96^EsHQpF1ah9PRj#at(RzM;gY_aG1?2OXgFjD!PZCqXbkZXL&<)J@w zxFJcbVxLa3qAr!0&kj@TUdp_9yrSw?FJo~jzalzk?YaJkt|12%OcBilTC5HI4qUo5o9h44PtU}1 z?(TK|k6t&7fr&3w%=!S%b1pwHZT#3iW0df1oX_uTtYfe4ynjz#j?4B-;{%fCu3rLe zgEFYqn135ZbLW2=uNrRLeZ7Xn|)le*WV3gDTzyV*zCu&LO<72VP7d(VZvZXH6Y|EW@=C=0$ z*w7S$U8BfZ>J=!-gkt^jy$97|WX&XoYmI7Ff@uD#=P>oY@m-0C_=r5CW$E#~{2i_W zAH7ayeOoYgYcpC-+}m1N(BHx*(A=vdlhe{GfJ<0nLB%0}(VAl>gy)iH`z*AQtd=iV z^Bt(#dF!P+XLd3?zTmWNd}7|0`;Bh|^0A69kg0G1Sy910a9;TzJ(4)rGoEZ#szIbu z*AL+~Q|Ua$JRf%2xAk+|FDOHtA;C&G=Hl4_@6U_Mne(j*P1L<&IHp#W)8efr6(&Wu z1iJm|TapgStXStIOmR%eC@p^5vYW`p5t5|3zo@xcEEQ?zG45&OMw1GyiQ(D z98ZbocK)@%)0o!e_es0qpxXVoTHgaOHbCOL!^!NjCJd$(vl_Y>i43>$n0f_N#+Ul8 zSc5g`vz8UcFFpMoAxRwv%Ralz&h*Htbg8fur^uTvSyh==>AYxdF;;$56lr>Kw|(!O zk5sF^R~hf^+E_$DPv9{IuqDsAyQA54E2r>R6h6UP%Do>HxkcG$~ve^$PB0UE6Ec9z$;dWH?v;V)eSlCMd5?XFS(+4VhGCZjFT zV&P1DZ0^lxlbQ}jC72rIOS0luA+2Tp=;QW*<#>V#vCElHz+BaZOE6doap+^!3AGz%;=Os8#!FHMkYg^ zr>~p#_Eq=|YDDkav`VY+ddV)L%h=B3z|ku^(^A?=sBE_TaWxi8`H$r;s=PqHH(vJ3 zn=A9KHeSsCjJGmBVrW%(G+qu_9&0k(dJsEpqbWLQJ0|r*bM3Yt1oje>DpQk*GNP&^co(16#zixgZH-zIe(ZebdCKXR4j^$508*eDext~hcXgd#2G3MntncXwD8NcQF#Xxl=F(ye)w>X z>(}AKK^YhCUtqi=j9zBW2oVRnAhZJdgaY z<02?o;H!e4q3#oAH%nK?;~2u4W}to1?7rJRzKw+QmX+-px~JN7l@lv)+H2&Tz*P+j z)Saq7SW~`G@FbSutZw^|@Yta49Ukvp08YF3524t9j@WG6!0X^w_p4OJloyqUJd`DI zH4HTuAvu;Jm$ySIj&Mj`7QyX9!BrT+46G0}F%Dt_9CH-~4}pLO_CUE0aS)^67=i7m zy9{8#T~PPyBIgR>n3G_X^9~3L57b>(1Q(8izXhY%nEz|U`X1EyP|%cV!)gjU&1kNs z3mvfPYvo6owW29BTRTNuV=cbsWw6p5PwQOdy^;RCS+n!Bh_&W;VZ*|~Khp5Fr~rZs zghl2!Ca-A7W#~4=ggS+!je7~xVrltTa&{iMi4yN&CT9)Z-itb6#$oT+=JnYs@W^`o zMw8S$yKLom?JVS)b!;Q2WHBSE)OsR?R8aG(aLmdUSvtya(z+L%H;~$0qfU*aNrQt+ zMR1pTsz<8lmtls1)B;r1gy$tp4F$7rnxv3I1%IU+Np??IoJc>qmf2?dm#F#ORG?_JINe?7X?J>*Y`zs)l!K)*%pjIFt* zC?42DYKK5r@__EydpEAXC+V-Re63TXYGLZ=Q(DJE%>SoK!}TCA!>2-(karD(lt{x=9FjE z`tDzIGhLg|XBGW(LV9E$X8&(5+z0me_DGq_V1Ja2^s; z4s2U^yU1a`qAhMPtbuT4kqaB;9^`UV4|VtTn@|{mDl(yb+O;q* zbs>|XN|2 z{oL6uVi2Di6i}M4)eM%qn8r**&UMg{8K)F3c|;GRGjjHm#FASo&z4H(FiULmsKH~p zks1I%0MNwQEog#^NQO|C5NOokUKpA>KEAxr<@j51=km&wXjkWQI9a7kAzF3|U0qCB zRu)MCm1fauFhJlP%Q_}K@{wN=>Yj=}VI~DOmg9J_4FLN4!1}OnT9_clA4cX0h|goc z!7H493nR9Hs}d~(3pBv*kN+C)(@KCD&j3gf^b=OhfU8u~6f_(OQk0(n!P){fz7*&x zOe~~t=+*;owY+!TNT743C?DRDAHEegyz8sO4CR^&=uqPKmnuL*yahd zbi9i_VpHiquZa$5Ss|b38jQuL?*FyJoTo_=RBBci$&En;>gxf$DV)D-(yNN%TM?92 zI@}OualL)B|2?eablw=ku(01)Y?N<;_@*%ixb(;a_@jF4vXSi!I~(r7Eq)r#sX&-A z-L0mG))Z+#yT$D(tO52&rE_p$300k>QMWQYg=%l#+yu|BiFIM;L%u|I?>nUyv}qZ4 zW4|TBNmB|5P3=ET$N5{H*{Xcu*=7?W|GphKX)qkas*|Y7*Pg%m%+qnvuGyO+(OMXz zL|4um1o<<_%2z*g0e+a1Pqi^#i#i>jbs2n?817@gUfP^4{`Q$#>Y$OKULa$5*2B$_ zPGi5p`h{)pt#F|#er|NDZ?!Z7Nwqy`k@wk{9stiSO5v=ec71SY*aP^;-g-4w+P=o4k|A>t~#w z!uGzuZ_Kt;P8UW{1|_!Z)G+vG|F?cYLBIs8rnR-u&vp6 zd5bi!_9yJh*E1O6KO$sb)^(f?+qJsAG1&7HI=;uPSR*%iyPlphM49aG7G|&BrIseR zxdve9^>Nv~H}Ta`-%HI92111R62&*c!HAMZ=#I3gjD@ zOxguprYJv|dXg6BRyuCH-0IGtBP}Q!co128fWq}s!v(_XfxLtFt9`w;;Gs7Di}_x zKJ0MxrMaI7ZW0nu`b@r)w`*qxrR}Mr3;gG}2MXLw&EtoYlC* zY%btxx-{dTyQqLu^j0n~y=GF5ty$gImf4w*nMfeetcHg_Xr-zk8lQBd3*xB}KlFl4 z3OLn=fbX)MuSDvzuP%5OrZgc4sG3Ck#DUE}c?x)%DKte<(<(=<7+*r>@ zCxz<+!ugP_s4*c<%F|Q*RiX7fzt{n37=y(=96nPa9B|pGI>PvCq74SxwJJbAc9AA~ zhSglTHa~ag#pW+AGg*kPX7>4JJo;>mDxM>8B|iUv`YUre+)C(@Ip+4{AaX250Y$A} ztIz#*A09)Tcx}KUT&`U3_TBRG%QGW?kgpc)zGSM$KePLu+~{Xh0Ac4V znAx8_h56d{LhM|x@;cOADo-G$5|1*sMvvmA=e-cr)73B;m)<2i^x-&h!YJZfwh*Ew zsl1cNe)ip(U!2cONKA91oQF2&$ z_jG#u&2~sY-3x*EQ)di(-e}myCns4?0o!pnGXA}{`R=i2hdch1$o23-3XNOsP#5^1 zvF7>k#m#`7EvDaA7x*nMOS;ta>xr+tb=j{3PHp#-BH$6AhL9!%ZN*CXp&WJX04fe? z^C$P9n|Ri@mreGD!-PpQd7H(#t_)0)^hwtGlHK;6-FD)*kuHfW54W;%EX-65g)|RR zR!HfAg}NVYVZ$s<&UCMya%DsAMUB&?oi7hgXmm7E;QsKaTI76vH!P(iT`>`R^qHeH zZYn?hP_^HmNI7qr#$dB~lf2`LNyfr=KWehlu%qwR$%VtGQT>3gcHa-brcE(8b;wgu zsctU)LFk7;ecA$18r^PboYW@CQv3mdS@9=fd3WElD|f0#U|K`+q(5N_nfdMa=#7#x zGqQv&U!7Yj4xH4>uVq)*&=46Fj4tFQc40z(g8{KTR>mwCaQ}-eqFx zxjb3|F|EUwv?T(oX$@A+?tXb=GoLtxX~54l4*5Nme9<-f>}Y((8oWS}Sy3Z&sELy} zsnmN9p2d{fAs6t|ui6z1cZ3P*&48sS8H(izXLBW@10KtD5X*d5b`(qElpPD(5g0!7 z#Xt|zRZ2;RI07al(Vij{so9AAR`*>W@`7d5aWSTuU-GqFGn!jo^lPx9c?T0=;{och zqv}WUoxFAtA1K+Y)B&2bdTDfO1~us=I*=CL;C@6Srl!MQ@8ow+urOHP`55{($wpDY zO|rXl>Uo}`D#FDeWykWO=e)h1+x)ndOZlKb<^U@Ha!|8P>Ka@^V!prNA#&_BEj(Lu zejl7vqp(1592+r&Odi|dqCZs8Uz|8y&y1YIjpcTuy%0h5vEqaj?naZA=Ys6+`AzOq zxVaeJmHBfYV|0}c4XO9NW^6rcc6L3Sj9pk=F89*n*xw}=aU|xGvLr{d9|sGCevZM4ciq4m+%@o zlYhB`Nlwk5R0~WnLQ_e?jph2ye2T%d+S9An936P*nU$NLHrRF9Q8BajJR%pBm`j(| zgS z+;B**@!BfI=xcrIrcdMPAsjx2>aR|U+ysxtm}X8%aQJ4N>%2y=u*PDLp=LFui5+%@ z!(Eg9^fOD$PExhf;KRCS063)Tdob*Y4j|CsbRzBcd9uw$-u>k^Obhm=QP#;tPbuf6;cg&L6Uz~Z9 zlqpKq8Nou~L2TL?laQq4`OYlMfQitnL7P)?en0NmT6*K4A(>ZE!t3Xf>7{y0Bh*Y43)3h^`4K10gzQ~sg7(V zT=T|BZ{Q5m_lRUQgAW3xv6$kIt!Klz?_Vd@2D1)FithU%Y7=IdM*Pa83z6$#`*Z)t z^L6V}r`xMc>c$`bnCoXql#rc?p+T+YvYXEORnaWrDn$*j|Kv0-Ql2j7?lQO)!BLb~ zWM$Cs)YN|v3037r%`}ATbwU;W&`O6N{_rc0o`bY-5`8u&4+YdLPI#xNa34f;Ue!`{tcy3+?MkuCJ)x0d(jEuyAz7%qUQ^ zN}v(Fuw9C`Vf#)9T_i~00U6VWy24w;OQ!mwEXSsJIB0IyXs_YX+`Hu#WOZdpJ6#9u zqdJmnwrn5<;Wwrud;q3P?OM!BDO2n8L3<<}Td{xc>yW?N@mBqSRV` zh6i3n5B`IwaX46G-93D(*(ryMwA9n2_YMMC$ZU{?69as30b?gJ#2GE&a0$Y$cqFj zKWlR7Elb|K->I0OD~@}E^rjnA7vykO4*JALY$2J$Q}QUr2&a%=%3`aK1KA6JWJ~Zy z$h)Q8v$(JGoAESX4$qPw6YctCkA?&GX=GY?Gz)o#HNCKNV$-;OUKvgGR^+$n9rB$F zo#;RW{S;UraYF06>DZyOedoNy7V9`D)DO@E*&4z-sdv3M=Wq}EZ}Iw0bs?gJW7`&Q z#`r8e>lVvU$)=0om=G~}zTmO1_)RU_O+pTU`fwv^8g9A2Ah@iXbv&AdR^#kY-^_Ftq4cMXzLNQ9!?e|DOvRi1#Mjhu& z_gE}}H8ggt_jc^luft#An*O;AD&a7neajW0CzG_Fb-coM-10mYzu^yPXYf(y*O(v9 zXLX(f+4*KPah35p1k3hoM=MjmLp*?t z8mhY0AM<2Oe>&it_V&MgCQpa8SEJ?^!JD3*;$_Qa_~vT+qV2QQGXzoT>i-pNUjPR$ z0=k1`Rd#txW<(E^OnzTw@+oDj!z}CDkX{XMn!vhbsSN7gzi4sG11}6l&vjnnJO5$ zB{uVPTzeHA2pfsC+B3aA!Tvy{3-&rGHD5T~3a#fHfi{$I7Uw#g6} zFQA0pv*~0J7CPdo^!;l?9fak6Q`#Q(3^9%P^wMa_muV#gW7SmtA@n17TGXII+*PYKO!@x&>kU+6;B@lqvMz{fyAT1ODW9sh2g!=>EzVxzm~8%!BrY zRVoKWAcjM}FML1<1{jid);x~#o4SqeOt_ywUswYSKEAKTaLwypnKYj~KT0UvpYBzJ z?B61Qz=Cc8%Y1%Qe5XKZu$=BZlVmMc+$A~Gg0K3e1-I_iK%2Rm+t=*_ZPY`17&ld7 z5`)j`$BSsfAbZjl!3_tm-||^5H@VG`ePDBqY=p?_I+(!=zucK%eRf!&wBJ^bDKmM- zCj`w!w`zc{IzTFBh6xbVD&0lMY=rR|($n5%LHOo&_tyaL9l(*l&42J9Y>^6MOx4~1 z1CHk;`VgN($%xm%;k~$PWICERd`Czl8~*=YYhKRlmi8Uumjal1HDzBO4Nd z1X4i>zloqZ=}iy=CS)4D^L=mAbm$$~uhjY_yu@6Ys z5DJ_Il0*hmXns{>sm%@ZE@bsH+Rz#Cr#j#)r?zGBZo(W+AI^hZ;~TE+^}*xReMDYY zXOE{P@XGf*waV~5(g%}q0>Fl>g~^z3 zj)p2uRxwurpzeQ4@dnJ;P2Pty=Bw&zbS1`B3+x7B%Iw@kyN?<3VB{-@HQ?~kTh8Ye zud?^!?q@`wZ2}s3L4wSPX0KY_WUE~&BNZ*l{JdjD~ z|KJ-0utny}9r=*H*HZ7pD#v{;@%;f8*zsv5xU8?>@(niZS$KTec!VDy69F|y zpd!Qp1^)y=%`if_QKlj|rQ?{&ZQxTF;MAf%2hsTsobx#Y*n$gEApmgT?;m};3fAx? zTvZR4_8D7(x(o92bY5nF^x6GrEDY`yRKl?OZSv^wS>eaDJMd3Wu5pGN!!b@g={HW2 zt6xLiRW6&+vuO*$<@_(LZU9CEUx~YHHr?_uVb~8k8Z=MQZsqwT4 z>zYQeU032HHV|o0MTz@mpAT<2=C$Rh-aF5N+K{5JzoJ;73#9G-{u6||dj?&%q}1PB zI{obMmV;yTBwR<@A-_G9gPWO3zK5gNfY=4g^-ul3PL+L)Wb&b#S z9o4a}+~2jeao{Ya+bH~3{?_7N)hN1)1CG(qVH4Yk2XA<7?K^;h{>X*<-%+I(1AnVD z^?qMbQQ1m<5d7`t`C$nhm18R4RO7U+c&_U6HVY)4a#24cjc`rc-|Jl)eo0myJ zEuTF&><>j(K5BMglXClX98;tBzG6h zqVqFA&il>eXap>+fzl02xT!Etb?=TStGsc_*R8+OO=nSj^qn+LIMPTqK;>rwlR%_K zrE*%;NGbR2Kpq8ZACCe_@TPzFgT?VuFG9qWegan>aF`8vr^~SbTHg!ah=%xl2`+r+ zJH~R=_7kOCs{TPRFMroXnB96!N!y9GOY+9PZmr+jI`oGzrn}U8|BC9m+@wHrpiQ^R zU|lYj*5({F3M1T@cRD!d=~;NojY9b-A8%dyD7!DYe=xPONaYFq1#lWr=@_dje@&Xw zsMyNNs@?T05_t&iZ(o|)^!ZTCAxG)l+rB&st%GMW?UByDUNcRD_rOIg?gp!I$6ELm z9OLveHP99wy#}M74_#TkbjfYvu&raVvTfyeMtoWnek?ej0aelJVf>a*-RkaBJfo=f8&0bWe&CjhmQ`=`Rl>s7#O1{5lt*H(G@ zX*WIfDUSVS9S`$n-cOU-1^bf^hgxFFy1ym{SN9Uv`6ig{#stfnoBFZs=xU}o_V>!Z z0xeYqS;%riJ`&lTdD9E&9OyOkaq!-~R}A0X!-?&2)H)x9s;iYB_T&0Trn;%=6Giya z2;mvQ1mt|UFczr7;z=-=*4GU+1rG0329)7arko<%-{;XUL(;FG`TV4cnQsTHb z8z*n;>sI+oYVgnHnVW%Q+DK$nB4vI_=G0(&L)Y!=VTmjF>974QJ=5=HNbRY;$>&5a zp$3KIs>Z~ZVvaqw>Td|VMBqJK#(f*c_h!~BpTK3-Oo25+ADOiQRh&re7C)+hL0atp zr>}e3`i_AFH{gv=$l$(}%O$zA!;p+#-PR&z@8hIfgsJ9Fn7Y z9bYMQHnWd`>`r8uFJeZzGe}a!x`10Nyvihs7>U+@@gha*ryLb_v~<<|58Yj_?gz zgS8;w;D>b=V~iZf3Ex7Dj0O`@s*{f@auR#c&2I?=lJ&Ved{Az?w)QVZ`t7p&-$$N` zM1WHb5M@UN-O424EZ|_i^4)~Al)yPvW5>CIdO?Hcb%Uf}$RDf_mV@&~OB1jQ=Xnk# zrhVqkyWN!Ga|bv>f3W#_irXWg$ORFgbPz}yFyQ^->3fG6=*Y-Zp_q}g5SGGS5EkZE zA3e>T@8zWQdB9^qhIec^B*ju5jyEPZ*K{PKQFCu4-pE6_cd@a0iN_XHAiBfizg*bp zt9bT))-&qn0pd4+7}X-b_TFs?DEPIPevD{?13BvXnxXD9(-X6Vr9EXrR~f;<9qg= literal 0 HcmV?d00001 diff --git a/pages/stengen-en.epiet_files/figure-html/unnamed-chunk-15-2.png b/pages/stengen-en.epiet_files/figure-html/unnamed-chunk-15-2.png new file mode 100644 index 0000000000000000000000000000000000000000..9190b2b65e5fe030782f7c6d95261b2ee11a1bee GIT binary patch literal 16804 zcmeHu30RX^lP(F7O%YIAWEW{gTM-u)SrdN|MA;M-WeM6Kpe#Xl2w9X?+C~D1ipmy6 z0f~UfzNVE1L>dT7KnM`o!xF*{353i^(4L-W{(JBL{4;m%%yT=&?+M>`PMtbcZ`G+& zb-sHxR%VhC@)ANqLXzgEOwI`jZ9oVK3I8f44DM8ys7(k7K^$!?&YuK-3JK{83AqXB z>kH|FYpjr4kr4T}qeqW|yZSvHG##O0(pDd@L;qmOeg~ zKHy5SBz$xekaH7sc5@TrcjA9y!9TZHa4m9+rMVRqxfOvc4|L{t^&$8WNIry*KBOT6 zAm;(_1j~;EpN}M;k3+nVJRU7ppBC#zD+1qG8feFF z2tGW}md4`^k$i?e5{5pKhK4|M-o(Vja*#I|22cS#d9)%PXgWmV4FO7g+JGMD#N+Xn zlOK_Qbj5v7UG^6eQi|mNhr|reToV%7DP(SP{Cr3fvzM3ZKuxCKl-p!rYZ0Lkwaxdr zr9zNPaMxR!q*JSgxYymc-V(=l=cglYu(k)i&1<~G;|-qeMYU3?)Z(M5{v&h!+^{ui z!=tTAO37$s>4O}tcsZe+^+WGaLP91d5s;lSkPUbf*fyapGB!e|O#bm3dctA)m&+Cx z?PR;!+Y;mVlg-JTde_;WQCT*ZtI>OGb+JGejzb+O4g6KJ{7a_h9`BdcLl0wY6BA|(PaDWCUtXX& zm!z&uBm}u#n_pDiPN@M+i@JK33jg1EB!cC6)MNd`<3))vGuA{imrZF z;NEiP;-nm@I{UbYL68Q=I z!xZ)$ckUwXsTs<0PkaL08%uFG;Mtko4mXsu4zQidryhOU#6l)IPjI+cb>&JrZ8mF8 zlWt$SJiBNZ#(TwP;np5mcltDkFBdn#jZ+*$*}D5RclDBVs7UN9+eR*x_FMYd&dxGw zPv0nAd2{H{l!BZSt7CU`K(*20wS{DMH0MTWoKcRp0(t(^wGoPpa^x2(a`@`WENT6#ZE%!x+QF@|!+Y&&|& zxI4htu| zK`4K&#^8W;cU>v7I`@VgIfRUh>pPVk7vT(kH4Ar|$@nz!^J_29V@HKI$J zve8ZVqOmCjh2GCu2Vwnp`*ue7LA+J&`G|RZ zS2lHX^izgOlG6dAJ85GP`Yf6~L<>Qzh`R5Wg)1cWc9#%_s)t13?mp&h|nGJEGZ;L(t z9-ope8gTR8NL&z0kJ2mEpP)J6BksZLc~ujduAuw@6&64IShOgbwYHW$Sku_NDvg~h z++M5lLCP%n%ZcT}ID%I`rfjG?2D?aJL&0lkx!PJ-6u}E^wytI@On+_HxrG?=7+C@} zzpHip%x>oX25w^j*|WibTwGDmT5c0u)t`g+36&XhH6$t^O}gbN3$k%{(-bx`j`IO@ z9i27e<$IuO^2b~m2^hHkXAb9OTf*t!GUD+{2JAvS=VO~ zRxa{M-*=UZt7RP4IE~i7bTfip=J=Twaa5V|{@1Ym*qK|n>b57Qrj`4N5%eQR%JT5a zTCEG-i$3jL4Blk|(sMWnRiWEiWF*EI#~dpX=(Ez`a+Sd~uIus*9Q^4#GS@?Mw(rx? zZHb=6H>Tg>nA@eA2$Oykr6r~WFp%ChiAM5fy*R8VLX>>X zH6RUQ&K&7cn6iZZ<6g?eAF*PS|9Cqds?O#)4w&xnqcWlND zI}&Rgc9%!6>Z#7bxuFM;$C07p*XEUJ$`oojO2CN+;AFDT`!e~A|BTzBQ>T4*5HQv9 zVC!6ZT{5rl4lM5sq}3IYa>tD;^}_34EOpe@ zkE0l5V?#&ZhEylE6v@mqBeBTe(-wg%3!7PEal2+d?K@UnbU(}vk?Xyt!DQ45KReVq ztdo#xat?K++0(oG>P5byHCbbEE4~<8gvbWrutIdjV!%z)PYa6`i$1dO%f^8nSjDbK zaPORVA?M4(dM^j3yRU@(egk3M+2OJDaCG416T3CHmM1mWH78PW9odxq#dmWpdDTB& z4OV&luEb~%;uN0bRGd{V<5apZ9Wso$tP40AB~6op=^p_{VU$x~Z9xt+m#M2Rm0WCI zq`L&cU7jTPB7_`)QJWno?YZB?9|D*RVfh?TiWLGWtPU@}og#)i199>18PV5DS>l2?Ij zI32gi1JiwGp{{m3o`m(tZP_Adk+WKpq|y!93)%2X%O=L``DbzP_i{?0IrwWJ_bzWz zbXgrGzSriLIy@91_D{r+{4T>A88SlZ?=<`a<%FMkH{@XE8n4lzUN80aU|I^$8y11l zcZq-f{?Cy^;!C_Sn=}@{X_9S}Z8k2eTzz2{&~(1jLo6%)1R~#DoG}=BcofO?UZ`1O zbvUmM#Z;fU*YtE;Uh;ULpO}Y^I0UoUKfj>qW&74S7)K6#C=t5XUan=)3NbW!sarcbgfW&Tn7=A-m!kNi))Y z`;Y z91Z;ri^p?bbz4K9HJ=pjPUh8z5;dUXPsWF&DP9McrBi};Nxsf$kv^{;iFb>iw|Y4o zb&6{KJa-1UtW4FGzb$BY&dMe1kaxT23+rXA^zX7fwP4hGRbtoo7-a^JWGpq`Op6i1 z%${B7Csq$yLnUwmV%6%c3bsyZs+m@sA&qzO@_+sQOAdcw;4cjPKgYlx7X%sd1p=Is znvF}AsNP>5>M!s7&tjlkU;jt%n z)~*eeaDlZ;Ljnnch9-z)K{H7in^8fdGxKe_f+pLz0nz*>g(u-gf+o>_tj#A7{NG}( zD#|}^E{8#H+{c%_T7eagWJc{I){14?eaJX`QV?xZ1os?M9nu(ymscYaUjO%5 zy1O56D}Ip{NXxb?^~rW9)NMdAo!nW0(gLWHV%H_QW zyIe+wJO4(Lu(y;xIlB+jz8>8E5w&jVyBCmQ^tr-TJ3e?<_JCOXx+pN=<(%nPfUCvm znF`se8h>IAnCTg|RyqpRnQ^Pi9=^i<$=bz!;6ex=EW1IF8$Ygw;H^eYMTNrYa>}^V zA`j;TCR__b++D;b&|QsqS1i*Xup^eK3LRGzfb$-fV~V(XAOGw{Dt`nuV$nLsVwwB^ zd~#^rj(>@qCX87T1a|y5M5g|5e|?-{fE;ia8He@K4fTF;IrtM^{v0xGYM(VhVAOXX zc4neK#itz``5PE*SbIEWc4#l5R2rB=@I8^8hI$Vo4o2XgJ#cyW& z{mCuB1yF-G{;@4Rv$#_o+Ep*36eJF7e>m0V1^L$J@lVc-1?v#M??s(NAlfg(v!4I` zK~IH7mu37tJ|71pcnE!nR|ESZvCMs4yX9|94S5jC#Gp6M1m3&5(?IV<^}$SlhFYtl9+K4r-N{XzfJg##0~ z624?qrTI$ai$(I5z-IuNTm_kfKkNKwyuKM<=kniR@tBc;5;WPz83VQkd{z`TOaO~N zZ-}}9IuC!-!nWpH`soIG&(aRw#`95F_s6W0M8}_e)Aj#S?EgjryL)%b8yoK*IgcEHMs1v|p`gIf%gmR4xna)0eXs$(AW2*A?kl zPy;)@+JsNR`5AU?r?5r3y_riwRizusHBTWl#K{x|D5Te{1D{gZn*=BL#E4m=tpgX6 zEmBrgqC{uPq4r7_k?e)qQN)CEkC&&*+fE}xW%4x)teuYtRcQ+5zDPh{vO+{cqe>+l z&M2S#)W#HhNZ$8%bl64VNKWgl3IE@quSSU`h+TNUrB$LBsu46m{ ze?+w>I$gZEB9=v(4B!56-I^#EF9`-YG=HpxI`Z^=TaI<-geEJh+~-TPbAT8{QAArw}A(BYMYW*1k@rTBhdPxhs$UMAp!L z$vvi9xHQX{`kWT5qRV|cI(8@PD%msTs$zI4#prhK+~;u8^+8bckg9O@!c9=E-Sg3? zqRWO%GOW;uxDcN@7j@uS2?o~a7G!)^eSI|uP*D)>Hrkd`l`@*%XfdZaGIm4Gy7PqI zgm*sg_wn?6-9*n6Epm}0V?g}(8c!P+-SD}RJ)Muudk)|3dSh^`?-#uNi_|I^!NhlA z_TTZ+G!EJ4QN8~}!*5Il%HqpL9b!g=yOpjtrl)$a{*&->w%TX+h@&8&!Q6WOppy5OrMz}jAuziiwFU*@!sA{>+YF~9y^U%znFt_>Y zpO*4wE-a7K1tL=WCgJs$E-(i<&dp@*1^?IY6SA?0rLfHf2CT|b8%+-vZ`zC^WBlqw zlg#|oZ4LhNB1jv>dLNJz5>gr9p9Od*#+Ym*oGHz))8?S!=PLciJ~)6_#9kZ37q%x;d&FOYr}>V2O88K{&TY*tPBl<6&y+t z4zvjNn-nga>3TnYfY@g(;(W09U8g~uG0UfUsM#V#m?;{NDl@IpM>;%*stQn(@H-XYF&;;G7Krl5yAJb=nNWCTGv+>gNXwU|Y@Z!8Z<0eu|FMG?;4)Fk&9eV{aWxsCz=aR$L{E z9lndwI<|sc5px5;%toLl3FwkDw{v|uyy0Y zq*@bH2D-v;pDXU#xFMiU45al2)>rF64~n~5vlH^SwnX%5Z?wru`1eK-?cL=jYLsL} zv$Vd^%qeN9m?h4fqWK~_?G&v2@%R?W<3WCglIUErRzb1Z3U{Xe`&G-A4MdL5d%lme zMJ%njB&>uj&)!WSZko2!)4Vl#+)51Aert;L0bNJGLxzDx<_-d36cSP~>ReNCessl1 z5An?t@t4d~?DN(CIkA0VjZCJ?w?Js$I*PQ+oPGn|4p+#`FxcB9m;1qBk06F}@kfxu zJ&%M=&1LX>2F<2eJCC{lu>!|hLX3DNYiR3Kc%@$Hv&DYf+y3blroFZ)iZzF2-|Zu+ z$JbMN0joWuqrAYuRHfeIzD@rcx9PyR&tY(FV*L1qSJnIaDkm=k$HdJ&j#zp( zX2NN!clBc~e~Ljq<1LxCKHk7W25F3nG1fYl6P!Lb>{p;~@OK-V0xnd0ZAQ(6DrNk;S7qM5@GlPLULEg{AB3ZV>LqEDv8FAB%bK6|y-1E7l#&^GR+p z)0L_`@%_>T04%_kgvk6$?(#x@fi6BWpDFyvp^=xNxEi^;USbcuzz+Brn*9&Mt8 z%TaI29-93jeC3DMhSV(-;hO@5^Shfi3p1@=j2cp^rENyftD6S)Yyg-($Bp~Jzmt5r z_uUszar$;YR5N_VX6+O0daA|lW1w0E4Ct&K9^kb(VK<#pVEpSFB zChY-MElwkNuCi1E|L-7$CUCwm1oYS0;{W95zrKxH>!7D(>ooUDm@_{TC0kZ`OWMX^ z-3VU^haFKR%I+!6omI@_!&Qeks=gH(cJmJdJ1K0>+r1GQb`{vp=q>#W{lmM#$-k$L zf=vH(XRO$7i;eI%djn1v*1knxGpAE)O%Rf&rbr-vM13uA zuMXb;0z55WZqPEGwip8`$h7T%^z!6k0h;`5Ti|{C6iyOaCM(F$f$)qh0_okz&$xk{ zp}-^F5#-#ydey%nqGfFA_%5{Mqe0wHf(#yrtgQJS5o|bJvON2)^kfD19u&}ChvE?4 zxQff^T!5!w0?_)H(Wt_WKl5#1U6<#CIg{1bw^CU2mbFc}3I%5?cH0DiICD5y~>dLrI< zI$6>=6EDlw&t*UU254QT|quZ68Cux3*M_`SH6vD_#xK_%rpEHIUMJz?=W?^hxGUnbtsB4a>uUUzO{nXl8-BtQYVeVyeo#?QCG zig*;r1 zaK@gF_k0yfvENs9{r8dzu<3O?{EyS;Uz~rn+y6ov`mdL{>m~;9rDiYq&Xiy3R0L^7 zf!pPq5ryq{^7fmf4{i>2^ZiR$m+CJ+Ogwb$DbeA3A!Q}5_-0dt%Pz3i?1fk!{~z(| zvz@qy1XO-2M7y@?G{RPz@&wFm@dEVOZ9G`Dqw{jNP`1Ie_JH|e9^un>5)aGRxJ;5@ zS{oqI_we#AAR5>w=3xO`DTuSbPWdmA|EMfCNHS#34JAG3>v0UaziSuqaLp#hwaC3$ z_ibBKlNtzTO<-E-nGmk5B3S$dz|sdn3||{r5r5s_o7aC_9;YQ3a2_>)Gj8Cl3nBpUK{OsMx2ok z#8akjSUv~WlWK=U$L%}z)tB7#-Uq2{L(})LOn!;Lmpxvm@;8LaJbejFYRt1j)>!0U z+oFb(g0eD6i(b)W5&Y?Bp1ln$1Qyj=ZseZBP% z&&4^=BG7L=7_F`1pCtSmreUausrCGjobN)jT(aWVLpk7r>&~m2fp{3ix|1ZrYb$~v zI;{O`fWJf}*wXx?D5_$QyhFVozLN1fIIsj@xPEd2^xh#TtlkFz6clUu=o8dj`Op)b z_u%7BP=e=!Zv9{lfb@D9_TLlw|Mu8+;(Z8L1TPBCt`k6wQhDg7|CWc>0hb%Tm=s;h zA>g6#@UF+DW#N$TY5)r2g~2hW9iHun_lSah_u-CA7mLl{2$sv6vvp4tLFvBsQX1i~ z9ylx%ooA}#;&%m<>0P4rYlnW_@ejO4S~x$MMr#{0aCTg5{8fZbUa7rChpoN^DJ?qL zARC-EPr#fwG}ZJF|6v=h)QpNUq$=DbKr<33CRx}#gpNr;lm5vH~!rFh& zm!d^Z#h~WC&$JexTn;*}EHHp{SsN?Y*?WSs3Dq*0=zse((yqVK#SKild#s5!WN4Es zundEWt@Q@$EaXdNfMeewU(c<9quzVg4@;e~Hh#7=r$m5P?&6=c`X}GIm1McLmM(sB zZ$MS~@{XXk?YxD*TfB+Uvwx`^wS5z#7iY9qu7gooe!i2~pA9RRaI44raGVr342s6! z?*{X$FdUW9rM^_z`I<8&5ZJaCVjdw;_@-p5J$6{zH4$l>pLY@a7liGNQZ%t*rxB`A zfczFphHheRS%^^>FJ$fQ+OSkvYNxaFRAbL0$CQ&}Y;?!!Me;B$Pu z{SlGm4PxsfW;qnQIU!V(t&vYuj8b?xm@9DJ)j%zFZ=Ls+QD^5==gF4D#^zwB3hjzZ z!374N?U%S$5s`MH1Au*RagU`ZrIo)MI%x(aWD#sfuX|Rd@LXb|G;uYbYQmm7c6F!Y zH|K8tjnCOeMs(K^;{M!v&DIM>t*LcWZ&qej8}@iRXjZMRjqm4r?~QbzDN<(DC4@qy zDbq!Yw^AI~yEv5@$@0BOGB`6;yo6ys*9}vLkej znVY53c&4MxX{;Pg=26cu6VQ&~Iu)O9AXXf}>wW#yTO~jTG~}IB4Ey5B?IqE)lNBqi zH+BX)RkFav;}4(9PBm{V=D1!%_qF&cBpx(w|JrmrC6DgM@PJqY zF1QDJnSC3b>qtvSY%tH`YbNM{iV1hT`p5-?1HG&r$TyP1zMc~qy4tx-xlT$y^HsG9 z-nlESk)@$>l4{%Av(e$sFAZV_srlAHtgjBo0sku)#=%%B z06QH#JW5TB=<}2a>8|i?GYauh3816>kBnKpp$E-0acXi_M^;IN*@5(2?DPls{5fkv z;vZTQXDm>yU*bY~xWrKT*??F1)^sm&*l@6ALy>d%Ro}dPbIh0WqQb=$Ch5#v^lFaY z5v8^5I}bqRku20M4eRVlq=`OnsC!kk*_nl%W^l);tf`3DCV1#;JyIn)#c!oXRz$Yk zKyx5!sk68POJ={HgF9D9z*jX8=l{udT7KnM`o!xF*{353i^(4L-W{(JBL{4;m%%yT=&?+M>`PMtbcZ`G+& zb-sHxR%VhC@)ANqLXzgEOwI`jZ9oVK3I8f44DM8ys7(k7K^$!?&YuK-3JK{83AqXB z>kH|FYpjr4kr4T}qeqW|yZSvHG##O0(pDd@L;qmOeg~ zKHy5SBz$xekaH7sc5@TrcjA9y!9TZHa4m9+rMVRqxfOvc4|L{t^&$8WNIry*KBOT6 zAm;(_1j~;EpN}M;k3+nVJRU7ppBC#zD+1qG8feFF z2tGW}md4`^k$i?e5{5pKhK4|M-o(Vja*#I|22cS#d9)%PXgWmV4FO7g+JGMD#N+Xn zlOK_Qbj5v7UG^6eQi|mNhr|reToV%7DP(SP{Cr3fvzM3ZKuxCKl-p!rYZ0Lkwaxdr zr9zNPaMxR!q*JSgxYymc-V(=l=cglYu(k)i&1<~G;|-qeMYU3?)Z(M5{v&h!+^{ui z!=tTAO37$s>4O}tcsZe+^+WGaLP91d5s;lSkPUbf*fyapGB!e|O#bm3dctA)m&+Cx z?PR;!+Y;mVlg-JTde_;WQCT*ZtI>OGb+JGejzb+O4g6KJ{7a_h9`BdcLl0wY6BA|(PaDWCUtXX& zm!z&uBm}u#n_pDiPN@M+i@JK33jg1EB!cC6)MNd`<3))vGuA{imrZF z;NEiP;-nm@I{UbYL68Q=I z!xZ)$ckUwXsTs<0PkaL08%uFG;Mtko4mXsu4zQidryhOU#6l)IPjI+cb>&JrZ8mF8 zlWt$SJiBNZ#(TwP;np5mcltDkFBdn#jZ+*$*}D5RclDBVs7UN9+eR*x_FMYd&dxGw zPv0nAd2{H{l!BZSt7CU`K(*20wS{DMH0MTWoKcRp0(t(^wGoPpa^x2(a`@`WENT6#ZE%!x+QF@|!+Y&&|& zxI4htu| zK`4K&#^8W;cU>v7I`@VgIfRUh>pPVk7vT(kH4Ar|$@nz!^J_29V@HKI$J zve8ZVqOmCjh2GCu2Vwnp`*ue7LA+J&`G|RZ zS2lHX^izgOlG6dAJ85GP`Yf6~L<>Qzh`R5Wg)1cWc9#%_s)t13?mp&h|nGJEGZ;L(t z9-ope8gTR8NL&z0kJ2mEpP)J6BksZLc~ujduAuw@6&64IShOgbwYHW$Sku_NDvg~h z++M5lLCP%n%ZcT}ID%I`rfjG?2D?aJL&0lkx!PJ-6u}E^wytI@On+_HxrG?=7+C@} zzpHip%x>oX25w^j*|WibTwGDmT5c0u)t`g+36&XhH6$t^O}gbN3$k%{(-bx`j`IO@ z9i27e<$IuO^2b~m2^hHkXAb9OTf*t!GUD+{2JAvS=VO~ zRxa{M-*=UZt7RP4IE~i7bTfip=J=Twaa5V|{@1Ym*qK|n>b57Qrj`4N5%eQR%JT5a zTCEG-i$3jL4Blk|(sMWnRiWEiWF*EI#~dpX=(Ez`a+Sd~uIus*9Q^4#GS@?Mw(rx? zZHb=6H>Tg>nA@eA2$Oykr6r~WFp%ChiAM5fy*R8VLX>>X zH6RUQ&K&7cn6iZZ<6g?eAF*PS|9Cqds?O#)4w&xnqcWlND zI}&Rgc9%!6>Z#7bxuFM;$C07p*XEUJ$`oojO2CN+;AFDT`!e~A|BTzBQ>T4*5HQv9 zVC!6ZT{5rl4lM5sq}3IYa>tD;^}_34EOpe@ zkE0l5V?#&ZhEylE6v@mqBeBTe(-wg%3!7PEal2+d?K@UnbU(}vk?Xyt!DQ45KReVq ztdo#xat?K++0(oG>P5byHCbbEE4~<8gvbWrutIdjV!%z)PYa6`i$1dO%f^8nSjDbK zaPORVA?M4(dM^j3yRU@(egk3M+2OJDaCG416T3CHmM1mWH78PW9odxq#dmWpdDTB& z4OV&luEb~%;uN0bRGd{V<5apZ9Wso$tP40AB~6op=^p_{VU$x~Z9xt+m#M2Rm0WCI zq`L&cU7jTPB7_`)QJWno?YZB?9|D*RVfh?TiWLGWtPU@}og#)i199>18PV5DS>l2?Ij zI32gi1JiwGp{{m3o`m(tZP_Adk+WKpq|y!93)%2X%O=L``DbzP_i{?0IrwWJ_bzWz zbXgrGzSriLIy@91_D{r+{4T>A88SlZ?=<`a<%FMkH{@XE8n4lzUN80aU|I^$8y11l zcZq-f{?Cy^;!C_Sn=}@{X_9S}Z8k2eTzz2{&~(1jLo6%)1R~#DoG}=BcofO?UZ`1O zbvUmM#Z;fU*YtE;Uh;ULpO}Y^I0UoUKfj>qW&74S7)K6#C=t5XUan=)3NbW!sarcbgfW&Tn7=A-m!kNi))Y z`;Y z91Z;ri^p?bbz4K9HJ=pjPUh8z5;dUXPsWF&DP9McrBi};Nxsf$kv^{;iFb>iw|Y4o zb&6{KJa-1UtW4FGzb$BY&dMe1kaxT23+rXA^zX7fwP4hGRbtoo7-a^JWGpq`Op6i1 z%${B7Csq$yLnUwmV%6%c3bsyZs+m@sA&qzO@_+sQOAdcw;4cjPKgYlx7X%sd1p=Is znvF}AsNP>5>M!s7&tjlkU;jt%n z)~*eeaDlZ;Ljnnch9-z)K{H7in^8fdGxKe_f+pLz0nz*>g(u-gf+o>_tj#A7{NG}( zD#|}^E{8#H+{c%_T7eagWJc{I){14?eaJX`QV?xZ1os?M9nu(ymscYaUjO%5 zy1O56D}Ip{NXxb?^~rW9)NMdAo!nW0(gLWHV%H_QW zyIe+wJO4(Lu(y;xIlB+jz8>8E5w&jVyBCmQ^tr-TJ3e?<_JCOXx+pN=<(%nPfUCvm znF`se8h>IAnCTg|RyqpRnQ^Pi9=^i<$=bz!;6ex=EW1IF8$Ygw;H^eYMTNrYa>}^V zA`j;TCR__b++D;b&|QsqS1i*Xup^eK3LRGzfb$-fV~V(XAOGw{Dt`nuV$nLsVwwB^ zd~#^rj(>@qCX87T1a|y5M5g|5e|?-{fE;ia8He@K4fTF;IrtM^{v0xGYM(VhVAOXX zc4neK#itz``5PE*SbIEWc4#l5R2rB=@I8^8hI$Vo4o2XgJ#cyW& z{mCuB1yF-G{;@4Rv$#_o+Ep*36eJF7e>m0V1^L$J@lVc-1?v#M??s(NAlfg(v!4I` zK~IH7mu37tJ|71pcnE!nR|ESZvCMs4yX9|94S5jC#Gp6M1m3&5(?IV<^}$SlhFYtl9+K4r-N{XzfJg##0~ z624?qrTI$ai$(I5z-IuNTm_kfKkNKwyuKM<=kniR@tBc;5;WPz83VQkd{z`TOaO~N zZ-}}9IuC!-!nWpH`soIG&(aRw#`95F_s6W0M8}_e)Aj#S?EgjryL)%b8yoK*IgcEHMs1v|p`gIf%gmR4xna)0eXs$(AW2*A?kl zPy;)@+JsNR`5AU?r?5r3y_riwRizusHBTWl#K{x|D5Te{1D{gZn*=BL#E4m=tpgX6 zEmBrgqC{uPq4r7_k?e)qQN)CEkC&&*+fE}xW%4x)teuYtRcQ+5zDPh{vO+{cqe>+l z&M2S#)W#HhNZ$8%bl64VNKWgl3IE@quSSU`h+TNUrB$LBsu46m{ ze?+w>I$gZEB9=v(4B!56-I^#EF9`-YG=HpxI`Z^=TaI<-geEJh+~-TPbAT8{QAArw}A(BYMYW*1k@rTBhdPxhs$UMAp!L z$vvi9xHQX{`kWT5qRV|cI(8@PD%msTs$zI4#prhK+~;u8^+8bckg9O@!c9=E-Sg3? zqRWO%GOW;uxDcN@7j@uS2?o~a7G!)^eSI|uP*D)>Hrkd`l`@*%XfdZaGIm4Gy7PqI zgm*sg_wn?6-9*n6Epm}0V?g}(8c!P+-SD}RJ)Muudk)|3dSh^`?-#uNi_|I^!NhlA z_TTZ+G!EJ4QN8~}!*5Il%HqpL9b!g=yOpjtrl)$a{*&->w%TX+h@&8&!Q6WOppy5OrMz}jAuziiwFU*@!sA{>+YF~9y^U%znFt_>Y zpO*4wE-a7K1tL=WCgJs$E-(i<&dp@*1^?IY6SA?0rLfHf2CT|b8%+-vZ`zC^WBlqw zlg#|oZ4LhNB1jv>dLNJz5>gr9p9Od*#+Ym*oGHz))8?S!=PLciJ~)6_#9kZ37q%x;d&FOYr}>V2O88K{&TY*tPBl<6&y+t z4zvjNn-nga>3TnYfY@g(;(W09U8g~uG0UfUsM#V#m?;{NDl@IpM>;%*stQn(@H-XYF&;;G7Krl5yAJb=nNWCTGv+>gNXwU|Y@Z!8Z<0eu|FMG?;4)Fk&9eV{aWxsCz=aR$L{E z9lndwI<|sc5px5;%toLl3FwkDw{v|uyy0Y zq*@bH2D-v;pDXU#xFMiU45al2)>rF64~n~5vlH^SwnX%5Z?wru`1eK-?cL=jYLsL} zv$Vd^%qeN9m?h4fqWK~_?G&v2@%R?W<3WCglIUErRzb1Z3U{Xe`&G-A4MdL5d%lme zMJ%njB&>uj&)!WSZko2!)4Vl#+)51Aert;L0bNJGLxzDx<_-d36cSP~>ReNCessl1 z5An?t@t4d~?DN(CIkA0VjZCJ?w?Js$I*PQ+oPGn|4p+#`FxcB9m;1qBk06F}@kfxu zJ&%M=&1LX>2F<2eJCC{lu>!|hLX3DNYiR3Kc%@$Hv&DYf+y3blroFZ)iZzF2-|Zu+ z$JbMN0joWuqrAYuRHfeIzD@rcx9PyR&tY(FV*L1qSJnIaDkm=k$HdJ&j#zp( zX2NN!clBc~e~Ljq<1LxCKHk7W25F3nG1fYl6P!Lb>{p;~@OK-V0xnd0ZAQ(6DrNk;S7qM5@GlPLULEg{AB3ZV>LqEDv8FAB%bK6|y-1E7l#&^GR+p z)0L_`@%_>T04%_kgvk6$?(#x@fi6BWpDFyvp^=xNxEi^;USbcuzz+Brn*9&Mt8 z%TaI29-93jeC3DMhSV(-;hO@5^Shfi3p1@=j2cp^rENyftD6S)Yyg-($Bp~Jzmt5r z_uUszar$;YR5N_VX6+O0daA|lW1w0E4Ct&K9^kb(VK<#pVEpSFB zChY-MElwkNuCi1E|L-7$CUCwm1oYS0;{W95zrKxH>!7D(>ooUDm@_{TC0kZ`OWMX^ z-3VU^haFKR%I+!6omI@_!&Qeks=gH(cJmJdJ1K0>+r1GQb`{vp=q>#W{lmM#$-k$L zf=vH(XRO$7i;eI%djn1v*1knxGpAE)O%Rf&rbr-vM13uA zuMXb;0z55WZqPEGwip8`$h7T%^z!6k0h;`5Ti|{C6iyOaCM(F$f$)qh0_okz&$xk{ zp}-^F5#-#ydey%nqGfFA_%5{Mqe0wHf(#yrtgQJS5o|bJvON2)^kfD19u&}ChvE?4 zxQff^T!5!w0?_)H(Wt_WKl5#1U6<#CIg{1bw^CU2mbFc}3I%5?cH0DiICD5y~>dLrI< zI$6>=6EDlw&t*UU254QT|quZ68Cux3*M_`SH6vD_#xK_%rpEHIUMJz?=W?^hxGUnbtsB4a>uUUzO{nXl8-BtQYVeVyeo#?QCG zig*;r1 zaK@gF_k0yfvENs9{r8dzu<3O?{EyS;Uz~rn+y6ov`mdL{>m~;9rDiYq&Xiy3R0L^7 zf!pPq5ryq{^7fmf4{i>2^ZiR$m+CJ+Ogwb$DbeA3A!Q}5_-0dt%Pz3i?1fk!{~z(| zvz@qy1XO-2M7y@?G{RPz@&wFm@dEVOZ9G`Dqw{jNP`1Ie_JH|e9^un>5)aGRxJ;5@ zS{oqI_we#AAR5>w=3xO`DTuSbPWdmA|EMfCNHS#34JAG3>v0UaziSuqaLp#hwaC3$ z_ibBKlNtzTO<-E-nGmk5B3S$dz|sdn3||{r5r5s_o7aC_9;YQ3a2_>)Gj8Cl3nBpUK{OsMx2ok z#8akjSUv~WlWK=U$L%}z)tB7#-Uq2{L(})LOn!;Lmpxvm@;8LaJbejFYRt1j)>!0U z+oFb(g0eD6i(b)W5&Y?Bp1ln$1Qyj=ZseZBP% z&&4^=BG7L=7_F`1pCtSmreUausrCGjobN)jT(aWVLpk7r>&~m2fp{3ix|1ZrYb$~v zI;{O`fWJf}*wXx?D5_$QyhFVozLN1fIIsj@xPEd2^xh#TtlkFz6clUu=o8dj`Op)b z_u%7BP=e=!Zv9{lfb@D9_TLlw|Mu8+;(Z8L1TPBCt`k6wQhDg7|CWc>0hb%Tm=s;h zA>g6#@UF+DW#N$TY5)r2g~2hW9iHun_lSah_u-CA7mLl{2$sv6vvp4tLFvBsQX1i~ z9ylx%ooA}#;&%m<>0P4rYlnW_@ejO4S~x$MMr#{0aCTg5{8fZbUa7rChpoN^DJ?qL zARC-EPr#fwG}ZJF|6v=h)QpNUq$=DbKr<33CRx}#gpNr;lm5vH~!rFh& zm!d^Z#h~WC&$JexTn;*}EHHp{SsN?Y*?WSs3Dq*0=zse((yqVK#SKild#s5!WN4Es zundEWt@Q@$EaXdNfMeewU(c<9quzVg4@;e~Hh#7=r$m5P?&6=c`X}GIm1McLmM(sB zZ$MS~@{XXk?YxD*TfB+Uvwx`^wS5z#7iY9qu7gooe!i2~pA9RRaI44raGVr342s6! z?*{X$FdUW9rM^_z`I<8&5ZJaCVjdw;_@-p5J$6{zH4$l>pLY@a7liGNQZ%t*rxB`A zfczFphHheRS%^^>FJ$fQ+OSkvYNxaFRAbL0$CQ&}Y;?!!Me;B$Pu z{SlGm4PxsfW;qnQIU!V(t&vYuj8b?xm@9DJ)j%zFZ=Ls+QD^5==gF4D#^zwB3hjzZ z!374N?U%S$5s`MH1Au*RagU`ZrIo)MI%x(aWD#sfuX|Rd@LXb|G;uYbYQmm7c6F!Y zH|K8tjnCOeMs(K^;{M!v&DIM>t*LcWZ&qej8}@iRXjZMRjqm4r?~QbzDN<(DC4@qy zDbq!Yw^AI~yEv5@$@0BOGB`6;yo6ys*9}vLkej znVY53c&4MxX{;Pg=26cu6VQ&~Iu)O9AXXf}>wW#yTO~jTG~}IB4Ey5B?IqE)lNBqi zH+BX)RkFav;}4(9PBm{V=D1!%_qF&cBpx(w|JrmrC6DgM@PJqY zF1QDJnSC3b>qtvSY%tH`YbNM{iV1hT`p5-?1HG&r$TyP1zMc~qy4tx-xlT$y^HsG9 z-nlESk)@$>l4{%Av(e$sFAZV_srlAHtgjBo0sku)#=%%B z06QH#JW5TB=<}2a>8|i?GYauh3816>kBnKpp$E-0acXi_M^;IN*@5(2?DPls{5fkv z;vZTQXDm>yU*bY~xWrKT*??F1)^sm&*l@6ALy>d%Ro}dPbIh0WqQb=$Ch5#v^lFaY z5v8^5I}bqRku20M4eRVlq=`OnsC!kk*_nl%W^l);tf`3DCV1#;JyIn)#c!oXRz$Yk zKyx5!sk68POJ={HgF9D9z*jX8=l{u-XOM-o4*79?s8w&ffd1v-VnR z|JPc3pBtY!*{iMCxI#feLG9>~gU1yVmLe1s6n|Aw1g}(;Y#mfkSaRyKVb&J0dCOaRdn?FV$bJdnKko$aT;!d=_AV;&E&|U0*jUyS9fyv~MaR{lb9>{! z?$F=?UdWBB>y4`e608&wz-N0aBzS{oc^?Ty2}R(+PGExvkc)QAjYH?w_2%{hMcxWU z-d05k;Ne}AAg@&f{@6uq@BoScpf1j_E)HFni>|8!TL5(cz)rAYCwQ}qz$1YTR+ZHS ze*jpW4FJ8l=-#@x-n!i0Ua&eaI5-GC1MCHC2C$0&uwHL2&|3%ef;VN|gZ+Vx005{I z=$r=mx;)^>nIHuPooLzLl6cOTmx97a3P%rqaxyG^xc$P_bWTRbSkjrF*YDlEPu(G) z`!}cW_kN#J|9XS<>RQc)knYz>s~_TbD|tayeYEsvk<|Zq!->|y$@X@@WkiqX2Jzf)9Y%%nyh zg}K|(1IF#)mX?@_70yLHc^$EDjMTbrbf1RkOmwS5TScbQx8+dDH}P~^(z6k_{f4gN zZeI|q4jm*86Gp1xLQVAst)=1Pev+SPfT^xSf2HSWM4~UQuSe8M2)ui$sIN2?0flPe zi?C(M!usfd)9Skzr6$ywx3P)teOPJ1*mmqQed>iy%9{*sQ0bNCyMBiB?MvUx68&qg z7Yo)ueX#rD3Z$9+D&8^O$pefGB@rt&5!KPzuQ2nyir|-n#Akgzkc_tY{LYw;qr{#~ zu;IaCBZ#emmd_&$M9C`Rp&!!jJ4F1aN*n#+3>ekUdf4fj`uajB7B2ZJQX@i|QLopz z$!0X8sFw9JyEDYA-wh#1|cBFHn z29yWQF%D6#==S4fFN|z+9&7BtnW#@TvyK`E<~L8BC=drTjU$8++B%s*)tiUX&e<)q zN`BUB9vSAv(;VIFaiCU&%h+ndDmhV}7thv6&fs zdPeM@pYd~GKB+g>j0u~C;L)Ysnp5;2ltez`yTrT4`*ZgyXIG|)Ymh(yD&$8Cp=j3p zl+#|o)C11nu4Dxt%(%zTbZ;z{RwoQLex8Ojj|w>_>77s|UkS;+ATY(-nJc-k;!U6O zpS`D4*8IBHjh-iI{l;kWQt1_k{!fd8**D9;EPvqtK5u?day-Q&e{|b?b zwGdC9XD813>p7|K%&sDc_g3tqD#8Js2vMkm{u!yMhb{kl{I#ZPONyX+xjxjyQi{Qe zTxVX`48`GbI>($PJVaX||@CiWN(+t%!qN)d{_f1!I zy>vM6AaZRHY+KIxXpoDX^ou8$belcX4D#f;BvK+W(ddF#|N4k3Y)cw0ghAHik#dEw%?zVr(W~w! z`p=4IuvwHz*HBd2>HNzM=CGhi{~bVUSz{^9r?3>mas-F%7ftnF_jKNPTH70Rvmbd%e8MD??IgEOBbrws|b}4e=emGxCZx-Dhmw^1Q`& zTEkh%3R$#`QK%iV0qnBX!GDBWX#AZK^9kowJ1cTjaIrXeVlO|hcau_hSLrEAC^{`I zIqC-l6J~HtG2me>0xs^aXDOz~c&1guhREBijP(p@I7@HpE;cRV2LwI+5o2<^x>4h8 z5-x?Gr<<1NIe6<-_G4fOZq%vjp~ZW_7rPOC&4*S&+Cy^vP2(OFxiut#Z{46+<6L$x zwkDgKDt=TDlJA|So!q{LmlU%C6qQM@V<-cg*>co6q#+EedI}qlg6_3u7EO43#Ncps zoy+ccFd@pvMwLLMJa*wS& z8zAa#*xBMx)>fKyi@@&d^D0&<L+DxBs%GtqILRdUX{Ck7C;YsbteQ&e%%(sh1R zRVsEcKMacPNkW%4c6Ht2N{40v2@aN95|w|YsJN8#1g6Oo9l9Q%5QkMNlN|lIUQZe# zJTqf!d*i9-Wc_I4I5^@3xnneb%?U#X{Zwkl=oY+L=E1T;cOuv3#>+LlzQiMg#ppCd zK`LK$b7WeK>$EeU;fAo|MG=+au=7wG;PuYB@}v$rNzab13D?n`R$xD-BbN|F%J0!3SH?2W72a{zcm z_SwK&oSw#}2{Ro06`v6$6m{#43SvJ;@lU5qTYHD&TZ&iMl?U!YG0Vg;wn8tgh@05? zvc7m7-J1FoJK^l1`ZO%JSNwLiw;!;<(aw#n9Djb|V^?io)!;%3$b(!t+l_;y=!X9C zeNcaID$fn|^i5mE(7kMP>$c0EZ{GCvIm+q_CC-K77mfXAE4wYmI)?Toc79Kae}4M& z`Wg(EKBzwJ>r7~sj89JH>`Ll*6ZRxrt%0sl090l~@!wG0Z1QZtKm5iA>x~)aEq_>o&-FPw0)p+({zmX2wL#A)v zL88L3xZ#Fs!{Z*CJeYQbnLJW7?c4aR8JEA;hit=9jqCh40vy8 z*yoL^xblF;ZZB9G0cQrNk*E4ZK`l7yOm!yi^z$wB5WKM+4J~!Gr5<8-h=*#P&pz?E z*fyX_xb7*l{%m80Vf%|q$(HHeoix2`6~C1x`4pF8Stz*h9bL2B(~ziv>zrg0+-?k} z{zR4iKt8!OLi!-Bp4?WgJYj76qV#gdaz4_-Q^L)1#2aVcJ|oFx+4CIjJ`?r|2{3B$ zXjQ-RlpS^Q3RBMsPMDcagN+Eg&0Dg_TpXpO50e?BWR;5jYV5d_g|dzZz8Y(QQ@@+= zpR9(RbGZ+a2pSU5HfqN<*%@Fi->k0o>~?cV@9ZmT@QCzxjdsnqxE2+31b?dZx0t2W zB<7WE6ukLPr62W=6CG;(p%tqIgCNwbd>poAX_??PFJrRSktzjY=B601MoTjJnDp`E z{+L|K1$y)0xvPf2S2Xisg?$jUE+3l|h;78qrX<`q6N66je)cXcn{lq90%~G?|E&zo zxa%K-7yH7 z&os%1RcBfw6hD;z_4q+n5p;PHGBYWY9YZm-{0^JhuY{=v$&mqdde0SXQC8YI`JrDg z3l8)Sn$_f8eY~f(LflXf^(5O$x~*|I3A=^IY`J8R#_!@Am_sOe}Qo$;1#EXHedDSUR!xMWL%pEx0kurFR zB~CMV4-a|3!h%UE4mdb9woBXtcOrxV4ahAFMw-gLO^M`+@B0g~AyFLiT6{h=p}xZ5 zP>0caBLB1dtjkcWvb;ym9!C8$?#%AsA)1jrF~-+mhs~}z;?$;dT-#JU(^+l0O5qV< zm6EA`UoD>9UG9)KNwORoEn`I}KHtiOUdh)0d1Us6a5-?QyRmP|h#?$=PgpV9?{bf! zvZ^N48DATNmFb~f6HY(d?x&~F4o45_5SO@veS37=2%g&ZqW93d;QRUdEsMb{hawxauGiW$%F{q6}xbrMYtbEU6wdd>1E1@VeD87slbc*Cojnh79 z1O~X~Tr5(m5u|-dI0$S(wX#K-x+;|^3P5lu@9|=hO0XP%9wHhG(pi2b@b>P*GxK-R zW^6)0;6m{|u#~qAHj{gEy!qMzMVs)a?#>euLIM%(-h~JG71^kIMth{QJV6nW>!+J&(*ceSJCubk(aNt%(~FK&x@ihFVH{b08GY4OwuR-yqkVM(-*~{~{R*A+e;_VyfmVe@kkX{uo1=FJ_aPyTX-y z5dVbbVkq8D+SAn1f}1k0g7V|2VT0r*-v@5v&o<*eRurW7`vsSDEZNAAd2k1a8l83- zY0NjO|ZRk0^=Oa0>EI%QFVt9|rHhL_F%3eDbpcGnnIG zw`|TWH3ELFl@Bx9ov4APi0T1hXiiRnIJvnuAh=}EPRJITu8iDR`K&aPe0}Q^D4t>+ zu}*5Q<->DS+89?q0wKdOOIq}^YH{f{s?=?aN$B2`(ED}eOBDq=2Bxkfm3+CHl2wAI zBAbU>m_<5xWfSHmU^2GlJerP_YJHJ@i!$u8uT1do|M} zJ$5R`EnOzTQ5EXJ7Q6~LX1ZBCNx((JJkp36Gg51fA8CREubki95SCXHPrTGHL^_p~W7q*Vl4qYN;*C%r*0R z!2y}4Eb~?a#3qtKwV}TJ(S;>#_<~h&>H@u6zE$}`M!{izTD=v z`<1GCemid%Q<{?We;8P#wc~rU|DM`D^o~JdU8LI_%AD$8))l(4|hB3;GI9KI?scN8&rXI8Wl>-?b_K2Ibc(!sdw zV!Mr5`E)TBqgOH)!0#y%=gK00^`Du+KXCOQL!#kwL9>0iTZ=l^cGFx?*=Ua5Pz)YB z+Mbx`FX?K)Nw3DoFi%>u@$Ya@s~Cl}y+BS(eO*hF&& z=1I$zIgGY2>z4nF@Xx5&w^7NeENI-XKh*$bH6N{CnA_SoN+O;<6Z=?`hcc&pfm!p? zZJ!*Cy^oBKT!v)a57Oj~;+!ejl^Au6Ikc7~*(pyV{LyzDc@o;CkKClzSK%D75zGV_ z2-3SiDazXqs`1Dz1P0P? z-{mfdP#Xt+tT(39#=MAo0w$(}J62EVtQ(Ksi=e+p0FkB1@ATX~+dclc!UFfnus;m<}$q zntkRE^au#kCEccLSL?o`@jbFI7Ov;bXa-Bi>C-s_V)0}yMfYXf{NOd5Bg*lyJ4f-h zvbWwZk(~H7d-NUU*&-5ad{?B7%*Hx{02xn5AA5=6#D8H1eRn&TH9m(<}R*-G$xH z2`m0Agij#umXKIPJYB8~m0;e4WCqNo&ql)v9 zx!wV|vg+7T`IwSNi)CX9bWBssg$J`yIk1P+0mJ^LLy7XN)q6kM*pN|==l)8-*=X?! z%?rXEZ-*&I%N69kmlevPD@vZ(_rT#IRwsu%3Q}W|ZuCw9jrCC6{W7pyJ}PI>T2TJY zfo*`Xcn^^aN?GEOcT#qSsJG6}{(Okz^@&ZobJCHNyk}UB<#R!6;GYdVbyErlMR>t8 z3|)(NQn%B8DRs9DV$6FNbLKO79WP)MGcKm*GEdrco}D)ja~>wBs_^ydb`GH((Y^+R ziG)A72FY4HC^c0#(qopSt;O53ICC}f6=;8IhVb-G#}3>Yysp;b1eWnC-Vh-%Ld4ah zOE<~yE%MlnH#2g${_O7&@nBfPVt$eWG#qesrCIi~$@V_eFJQvCeE1@DnA*;$<)_n>M6K+c)s%^x zSYHE=@i|Rh9Qbe`h9bcT#k(j*sZ(;n{jmDz>v9{k*#Fj-IoT?LXHET&xz7GnaRZny zcOS?9IY44h?6DpNuv6=K?Jdk~T+p<@evo;xtoLsu_u~=%U>+WvIcEj6E!0x@cftLs zpC(88{As~JgceUS);^sAE(S1ZyW(lH6E_wAG7?;7-T5)NdahqFQ_JVGx>uEtUq>VS zk-Gdga8;XX%4MkZ0VDL6UcYfF?-QuK%-7d|kgcPnlD4gk>i2Wd84$9slLuM3Hmj7Y3P$?B86!`D;Se~_vH=X7ZIQXci<9ZQP%(%Yd9YzR`bKZY z5iqnt0!_4$3?!gCAyHylzaa)D#uB;jYtGiPY#Vd-46BCIE*GghRgncjBsg7ORcNg= z(pNHL0wG&1B13pE9E|ub)RYVS{3GO;Wua$zd~bnFd1&@SGcY**fhAzp?1PlZW{MAr z^KWTOM!thc_Fc;guys|n-(nADxW>MgIq`=Ug0BlkUyczhU6ov}&BsI+W(j#(EeUjA zKQx=4IRDWsNry28H(v|zc@XX*NnP#3cR8SfgnR+d!>X+artaCVayH{{E;;>g@5cJj z>mNDbzEl*CiwYNwyYibTVd4=mwF0|uK^ z)jTEzrDi4b+e`?V zETA-1tloKTv@k0R!8fMzCE)wZ)>?vethMcYjk7nWuFeGstZK2O;a}Pf z>kyyiyi1O1%+^&m&!>$)V5kom>fOrp4;V_e0_Pv?SS?x#FL&!cloz%J{8fHf|Ac^p z8@2t{yh{b~-mm?T=iL{DME=#vI-i5ad(?5Od~wKc69PfrbP_P22Z#g$PFDdXd^Y%bsPyG_oks7# zT=z>m&5oUh^?~zU(2gdr!0lTYb}NJ2JqGnqidZ4I1V^{6F}?W7y^`DcMUn7huRr#7 zB%X1*q4HFt80i`1FBr{eafYV=O_G*mzPrtWmMn( z4pBb(wlAP$pLNG3$9QF|O}*c#y9x@+2(s@2q)J-_fImU{i>pOSQ}?OzH&c?`7uT5R zc08r*%0H;|=6ZP*ZiH`qY8J#DQ91nydeqfR{Jcmdt#Z07itm(@&b`=`e;BL@;*O?E z(`nfd$-uBP!1c_?lpe}dJ#)?>(9qrVX4DhQf;(Nh$aT)!Aj8kP;nN!EeE2rg@_19+ zLEP!6^{-F0U3QNBir_~x^2VM|t#17e5y69)vV)WWcC3HDRYELm4v=}!k}-voHjfVXoSC}dj9Dk$R0JiRIk7Gje1vhMXKb6a@@ZZPUj34xB_wQ-Al@_O7hJ@tOovvzxAi182eDx;6L&%&#UfhG56tAbu*Om}c;U zY12q>%XGMfFn~dAZ2ooGV0G-PG8Yl{v^O|p1!taj8~oQk+3-h*{AUyvuo9ioh#9%w zNsw?%^rly?t;|12>{_3`Jh)L+j}DB3+am!2nwmc$wY%m3?zTJkXbYp%Jbou*BHz&d z*;(iohOCFkL5&u;jc7FI+*LdFW`xqlDI~aH>)C$dxsh}*xmG=+IEO|%fykut2&X1~o4wc0Na5#zCY%QfIC0*Nrl0ZDhdjFL{qkWK&> zCugDQk+kRaG^Mie3tZJ;iOc@ihh@~=MCf;f2knE(a-o?U^la@!lL56@aZ`PBFO<6R zM+>Q_daT|KcWz1&<7D>;`$X70^5$L>fORJhqBPDL%7|CP)A%MDIU8~ZS;G4}YVV&b zY@+A_U90rr}efaEbD@vsNdA{cxA;eayy0ns+0B*;+TBF4y*P9@yX*l0ASAFRTbmN{|`kuC| zBox~`?wGSu8Fosu2>g`Cxkm;J*9M4AQ|2qofU=$=#ngR*xRv?ogi=|^ zeD7Nr^(WdKkZ+I8jG|5ykTFxc=;@Cy)!Iyxsk1))duedtikL*BeBYiIw6(l}`4@f_ zx+Txf*b-CEFwu)wD;9mp87<42Y_Q<>4mLU!mE^}dur+x_zNG_sYRHu`hBml_IUxNZbVPaPPd>cJKc_VWF)pi*I%*~ep8ruNku>#I7f`}Z)1mpQlk$_4RH)Z?72$y zg{N0o^7KsY%GWfrNSDOAQk=*T}|xJQjt8hYQlQP4M}I zxu-u=5mdJ#e+GtX#M-3j&HRU9Qw`?d7I@4|HhK*w!cJSW$cg=Ue$72K9NeaSA0@$) z9(Rmcu>IO4xk5F^r@o;f|1I`%SV!aq{lQcvof(AWk&Z$$B#SpE3vkh3~@D0m@-|+kW|B^%Eu82ZN3taypp5 I|I2Uw1H^+zr2qf` literal 0 HcmV?d00001 diff --git a/pages/stengen-en.epiet_files/figure-html/unnamed-chunk-21-1.png b/pages/stengen-en.epiet_files/figure-html/unnamed-chunk-21-1.png new file mode 100644 index 0000000000000000000000000000000000000000..a3c4c84ea13ac286af9447c3f9147f287053882c GIT binary patch literal 20300 zcmeHvc|25Y`#57QLK0~~Dzs>nBfzGw72Pt5ebzxVrj-|z49{?X}lYR-M`>%Q-6zpnc_C&cKi?z**` z*K%-htUIN5!i0l^2g%p)rz3phVS0IeT@lM$uP5v2}{#2gHO&Kx1CFscwZyQ2yjQQd`6-Q7{$ zjHt<|ELVf92-mFdAeb;dWPKRS8vKwo$S8E+D0EOSi~>%FLZCkr0C02{b^|A)kiqy6 zVelcs^+OhLMtsOx?)m{Z1_1!T<-;KGAI1j;qdQ8yJIbNE5IBL6m-{ne00#pA)6HNE zX1NY#MGSrbPGIEaeuKcl7-TTU$H#$r03!iV7~O>opwD0yWAFn5XkMNI03HCqU@&51 zAU6TJt+}pu(T#&+TQKu4XXFs+G6#nY$Eg!X&AgH(lEYD3+hbCEq1=%?N6rg`>D=Wm ztvMQ)UxStj49O0%PQ0`Yd9A(A9gjUpbBnTo71<9!nTy9IDD+8YLJ)K}&?F9e zsu248;=k9>o(2Wq8Xj*N;=>=ocT&6qkDhPy4W_6{4x+mRr%F;BjkUG{82HAw! zqpE_}s2WM2BT~M=FX!dm=s4cmtX->X19#19?R+y5emO+j>-t!8&Q*^`<;a7vk8Oz( z4NVh~euoyrvzj*s_xLvxOYvHCZ#c18 z@iPA>!^#HZD!pBE^SU*VPxPirD}_+?fC4#W1Rh9#3_=uftOur!8(^6VWg@q_vd&%n6u=-y3BwPBGZUJVVBUS9J@7cZX77;EvH zzR}cljp6O3KD@)Ah}H9Sjrz?D;A5o?N*o9+{lev+5a+2waZ1mA9}IJh9SF8w1buB0+!85%)Bl#+ zlt%UT>cH7DS|cGYsMh*sLyzQ}f$+Yd!Tb2xZP5bYs7JaIndJJcrlI@k`}^liUwWBc zsrNmJ)a@vxCUe0XO$_C`WlvOI)D6mETW(E@F2oV!lA8+cgdw&`hWSuDvcqClBeb;Z1~ zTtfN4z#vk5;#FKjWttPu?nHG*;2!!>umWSxMRd+PAB@`1MrVJES%wBS~(Qr_Emt8@82hy3)UAL2RFfvu~eIUY!~g-Ga-uv`)SrArHZZXOWY#7ttKz$;Q! z&s=L{?U@AMo*?`4C?u(R_MI{%zDGmZJ44oB@>rB%&gy6X*P7pwdY#p>Rm->3b zySxrKk9u)ir=)F7W7}-1xftPrAO_Djv@P;-OksjgQa?TYX`}|CVN6+xK3#FUS?*-A zl}VHC={2*T4UeiI&#Ut><-NcGIr#@@o0H?>LM{d>Pqy-?0rLQYOViLbiPZ1~dK)>6 zGKTw?bk6V;Z~ADB{yq&K9iO$f$I)C9Rtd#>PQy>$TzYoBUj_by+UGF|B=}&4qcqHDi*`U{DGp0Fk(2f$rLU!K2LtIf-D>91GAK$1q5% z{)n^LgEi3@AcN2Qy)3Co)C<(@lEk}pT260&jO#Oq%F;F}E4jXd@LKi$U5QqK=C843 zA^AI7W)tt;i zO)r)lczrTjv^2vc(<3B%df%M50_cKi%*-xFyX#+SAc~zxul?lv_y>A^>R` zfU<8gXFKI$fI6XmaH(UoqfX9K#wMZ1R{O@lK>+ewQse+BrH4!VTKWPc%WDVyM6Bs- zpTTtMt#u4{(hZ5oi{89B{Wg>VwEfs5erPS02apn?4zG+&W^@P+AQZcPt}58G)A)q#y6qQ zXu3bd)M#%UR5z#{ocVAj=ZoC8@ZcKNuqNHjQtt2i#rEO!FLla0lQsCFjl^y#F=cup zypV*MuJ~w*ArBWlC^^toH}O8^4iwyYk1$EWCoC8Y%Dwog4Lj3&BfeSbe02>%5;Lue zC*>e^#rXgNSRnwibLdNZT`FCmQ-h=u-A6 z^iXsMiMM)mT@1C{*zcP6D_z)W^b9N zmNtAQ*&`O5z1PD#1fpXV#HBnx9yq@ARZ#Ot`RI*B@igJOiHzR3(!Bt?`RWj0o0D(9 zO?^}*U^}!`Kj=v&*9C*M?%wT;V_|_dVV1j1#Wog;I3=C-7eYPBj0=KRwe{B?*&P~c z&41|hM$4~!3{lh2Ck_J0yP19Ar;;Q>ozHE@im1Gqdq9ONJhu*l9ycS==<~W{NW_y& zy&*8u{opeB_gs#jcrPmQ*j!^Voo)FyHxRyo%PCL#5$2>LF8D=Ij!QMSnfIZBIv3k! z86&VAg(Q!zOMQ0EhU&wM^x>?Egm9jdGRU6p>QLry6WHWWTa!8MG0UIde`9{>1bWXDn)|&WlL*m|p^S`c z+l?f>j6nVJ--*aSd)}LS79?uKBWuLHhbwh9VGFpN$ppvI{B2>nP_PW=IT?@+`k>P3 z+_$9ZEldh?he9!4zdHRw#D6bGTth+|>piM}^Jxr^?PaQ=?MB=Qn%KBtKo4=7A^G!p zKq`D)IY;zYE+Lw4^9-Q3q5}4aAZ3ki{o~$Z$me^7T3uXAX*GaK6GqBn2az?JfKJI)69^LOb9QKqPwJ3OQD$%$#(C?Pp-<929@%w8eFvVs*XOBAIXcl`z9K z^)RM_7Eu5hNI5keN83O_&!K>{wr>m`RZ+F^XR7O9=z6DVsJ#@RufGfZ^Z#xvNCC>{ zBUiXLV1D$V8~=c=&n*76)L&Hn#lTE6{9mTAe#z>8uLgFJAQWU%wZV+b#OiEUGRady z2#StD7OpU4FdPV{(Xowxc6ij)n7njliJ#j-(y3&Hy8Wz(6~H})HhU6%i#*|Jt)sdY z+jd^$H?vw{@La@!fgVG1uf=qvs2WPs=X$pD=O4tbG{)KHXuA9qWOFI6&tqT2f`&w~ zVbiui=w7aCE6g9>hsUSPmoa6KHiJVwEO+x(XnFRt;WiS6mRiY3D7k4JsyMRuArbQK zWf{NmH4#E_^LicQ_PS%}A%PVBHla6@ZYPY*3SNs47W(I!c#uuKAKsf%>Y&{lgS`s} zYU+t=6gbb}H>2L!D)b@@ZIBVtS8hdJ+HQ1Xg(Hw{i0&vn?I>%cfu2}l$1PD%uzPJg z;&W5U6fYCt-{w|A2c1fVycIU%Sm|w)-a(Np>?(xm ztal=+mmK)G8uUptW*j_EU!c(DSyQ?Q3hvX()nZJLY@02)b;|fl-X$9d%d*-P&uo6=<60FFEmETqN zVb450oO{({l0q3HHQj&y*g=Y&w}7W6%G3nHU1_BhMt?8tt%%d*RWx-uk1lZ(a1&DT z8Su&;nPMAdFBYi`+e+-|JdPIl?kWCoZ-tRIo!^oO+p#>o@vFovrPh>^JiW`vhAWwz zthS2lRF>pglB>IkL2BL-{&>&fRovG>yQZ&`OqkH_khBWM-`tK}7No!VzJnG%OE1pz z+i_*!M7w@oWImghnjr2(9GmI&e$0s6(pxqX{`~&%&ycd;hz$>J>j{&(=UVseX65e$ z2?AAE92Hznn$R8VscJipF5<{v>5Ll)xRYZlwe?jaJcZi3?yW(dUljzDrt=izMz=0@ zH+K7%Q_0CbTly4jc1Zq0Je612)7OuH>^LM%g8CB2KqfA<1RwaC*Po;zX03<YK}L_dxEvckCPSb6mah#aLv-AtVtSR+-i2<7ji< z-n)08Z1AKE`#gE6N~FzfeR4^v_b2z^{lN_%OQvR6X*3M8-!pasMt&aCn zJsjQ2IacP*Rbk~mr&SN)U@M>5V!gS3wygA$i8IEpYFenY ze%p~P^k5(No)xiasRK{3Zy`m*guyTr+n+sm>MR?7Z6t&b3}r-m)Cu2k^>oIaiey;` zuzJN_)nYSOM^y^LazCs3Na9xiVib>yb6};rK{>C5c2N0iwJ+xJ-R#Zl$_2`;%NEtV zcDtiLv4h<#PKar2(t?S>s-z|1$}Nf#plrd_5`_@GQbMDBdV1E;KCkL-T^>7HyQprY z_i)b=nv5tJ*~F?kHcL3=k`YvV51csFr|Zlnn3{aZ(EkTj&!VNzH|80!%BRYHEY6&` z2lj+Gm8{3chyb~-z)@u;MX-CB#!FFM8M~ z%(0rDz1Ti~G`FzsgTHD40{io(+}QD=KBNzHpJC~KgJ)%Ir1S^Wx7#$=*L7wy;RTCu z=KhAX8FQap$fOm4ZAXDMvg4k}rC9h|*AYL;lmi1*uph{uu;?8NbV>QBpv!>oxgCvK zEn_ktkD>clIEOA4Xn0T=!-%nVb`tfuyFmzv2d%cVV50(7b+=mMvt))=3*^6%6Ung# zJc@dFTp2CXIpPwVHhc)>OGJF`0lELo>2U)o=0MjI_OKclH^V*+&(ftnzFHU+7aaY3 z&Tq-Z_D<$ues|o+A5Su!3y6t&8p+ka>n{Fjn})$IKyIqT5Xf1FV+6{nYeBeLR^{>a zntq9N*?f0nI0|$4S;zR*E5WR?okvDa%eAmgCl7=J^xZA8af&88X$GS8RvK2WHM8~R z!VUyQF6;c(Lpr$tGjH~& zo6vD(b7}w`*qy9#5>`b_ndrHw($?@34R{x3udZ>c-TU&4kZT%ho`vbvfbIL493NJ# zw#w~myQbfqD8R^$|vLZN`qDn!qr6$wjyJ)Ew_Lh6*-@Y&?5 zVBrpif+(9x6UZmyho_>GwnUx}KSb8c3fw7x3|$dy0~xJ52tGeq9V z=l@(~{TqA_>~;L>X-}qK?u*adyz?BJa@>pEQkyZ)m3@(|MG9bi@h0-7?meAL~woZ9yrJeYVQftBz~Ki!>_outg79#?0G04=Dv z7I~g`WgN=##3QIDP1PxzN?@Dh1$1nUCwO8hy~-cWW>Xz_y2?3{d+2W) zb=4fgau#D)wSzTA zWxAw9KR2(=x2@0S1OZI4M1w#yLaVy0b?A-oY>_a`L){Y*oH5nPB4wrN++F3fR{QWL z5=bl>d3A8(B9Up$Dp~(@HwGZ(Vr)mvoI3HHA(hq37bgsA40&z1!WNgmgn~)?{km8! z=nJT4v&Uf@%5^L0bL&)Qe!_AWk@zDvunj};KgqHg2;}2OdL4fjpwq>qkm;;6Tvr~F zUu8^|37a%MiWs!5YH}}h$ zX6ApEnKbC-+fyEVhb1JEQf=9>V*gH1*2p!@c8CS43(X+SqL&BqGrau<=nI@zzVm|< ztkmt8GNp{v6N5%hExn<`Tw=s?|@h?l!Iyn5`Gi2m{9?vhpHH zPV}Gb3U*9|&mz39U0_h4jsuRlZae6#GixRqr0q@gZ0nK~W6?O8wVr)0uKRAYDD;$6 zsEf^QSr(ZaQNSjY>}8e25g))|XY)q)sXDWe{d+DnsPC49lIw@OlN^&xwXE z*AYv_lQXhY?oh}xaw)&#umQvWehSm)2Aa*g{KZ~7@khQ)vh zdW0`Fl|C{@Zl)h#RsRNS++F3d8>z@g&0WiBa@+3B82-fqWBB?fT{75Ps2!nCp2s9Z z>*b03ZJY%k3*Xrbs4SHy3g#3v9 z5x+3`>XSgq&$8-3II03)xajBOMssJ+tyh5zZ2iS05>3ILKTWc$?7?O^hFL>nZT%w( zZTCF)>YQQAxp$;N>+73!P2bn!B$4wuYFVUSS@OTsMB2YJEA!&hq0Ovg5o#6Vna4XLzBPX_P^5ib3|}uB!WL$kPhsZ(H|gX;jm%U%xPs`HKsF$;0~p z4HwksUiFn*`m0QKaLBw+YXjoXO43{X1>4crn%^(i_5&qn$zIp^ow}7t%wm2Z7B!N$ z*#hdC*QfneGak}$H{e(Iu+arPC?n1V8?d$xs+SS$2z=X*d%3*lHru(ncdK)cU)Md`N?(Nzwd}UuqvExf)}!jM4UD|0cOW(sMx#MvJHbsU~q94%h^S6X3dF%47jc}%Yd@2 zMoP$-?h^kT-`){7L;$pdyWxOc0sa{J3VK5F1p3@~7w}ex_sr}k+h+P2koAV;*$N=j zk%f*T$n)6(IBGD%@8+Z-+k~8xiA!m;k)g+W8O+?0SpmA^HrJ|YRd;Eq`i=QtbD5PT zbex>i$#(v#Y$>K=>~^l%kols_o+Ri9?9$rT$+$|~h5GRCZ!Fk#7v@>sJn5@x^p)4u&ArdGZ@AJJIum>E<4Cf=`{l!zHp9%t1--5l$!1k3fcUOsP>6Q&E zA-?0!_oP>sL8MXTz{?mb-hqjq(rB4k0aF<1z({o;SdaZ)=e%HC2UKrYOlciw)@6XZV@3rG~ktV!9#hnajNOw0EP_$k}76e`q0yQq_j@Ilze=nY& z{TNb6NNX>u1Imf=h# z^>YDtf}tI}JM9kH_%ZK@5V``m@706}19zlA)_`O6$%}*p?i@$EaEU5y25U3#+~7WK zEOraK7HJ};)4q@S<6NGIf{w9S<1sYAXet6L8$QcmF@^}Q>9$C`%2CXWH;DmDQCpzL z-s);p&d@he{EW{qgwVf@9L_9C(RQ02e3pSK2wm(v1JU%J9wei@YvoYh6L60kv|O;3 zz4-Lv8F@oVy58M(7zz?!DH#0T<8;Cn(W>1Cq#w*aJhImPi(N-y@nx+X)N{ka$%zeM z;ec9yMLtcO)}p;yoBIUji|~9PzA+;-Ko{{l2kp40mH5RBZ=5u@8DTCX{Q*uBp8Fyb zW4IVSH~I2PM4guMIq}iWn?wh8zmgW6+5JlDL5yktZtUyI#cWcxW3NB8I(riC>}EA7 zeouSqOD^7jd^ddaBIXn9VpX~A8M`9t`vw1FVF4J7TUCKJY5t6*PU|yHs+R9_Mk}Es z(Xn{Z@O^2hG9|nAWV*7E8ADLqey;qir!=@JwV|Z5yhZXnWVmSY=I1|#kN>W<3%F?S z`h5Jg&*>f>AOB5gL|2L!a^%drg-LofcrjzbU+ZhR_T|oP^haJro)`!Y1hoY|1F@6& zU4YkQVgIMR-y*m=wdk#TxsWyl zDfmLaJpJvS9R2xO>5tbJ<#)*)k`^5Y5d9qy?WX;T*u)H7M3q&yD8pkLx&|6=&bu%7 zvmxD>Yn=v&>_u>-_tSbYiW~=Ni_O;-j9Uj#?()7^ z4E60;?9dO)iY_XQSQ?uss*Zh-9sJ(!^o#G8OQ_u>34#;v;FV1rHJjkYym!XIkHFfP z7m(y_a+`Vb)_$?PP~2d-Sg+nL(e{bhZH+uD3U5iiBDLOYW|pwF`KwO*(hv!ecROA< zWZ~h3@0X9-%msur4aKZ8GDY-VNPdP<73+Yg{b$G=}X9Zy^FSkPi_c^|Tq7(BJ5)WrQa zO2VD$@rwhdGv`RouV~^`3;peJm>JyBWAMrW6`_>dW6fuq3^!cu>0s>M(sNDeMW6EI z>qQq;-?flEfzqc=!C$@MR}sx5MO`oqS%``=44I31ks@k~JUiJ)856el#x7RagC)j& z`)B&qf+|a;ud5LbdNpoG%T4ys57q<~BH3z51CC!02;0>q3$C3v&Qi_;-UN26-O_+X8(rK2w8BI z?_(;-GqG9FY|pz&y;o#Q0){PJE)dWDUeX=9Kg#&g_Sw=U?(eoL9;=HfpaQ() zJHL#OZy*a;_HShxAu7wN7LmA9LikuULEC6Ep zJ2IvUfd`72@O|%UnCnj+rdEGhHV*s0)@{3~*?ZzOUh+xEGW?R&@bS;L-LxWd{XO{v zVDc*vGM?SFy_OuU_ZP;X)NGX(p7IBJCw6Kw4ar{TWK>WQzNf-3@6I=niP)_()ef>u z3*w>(Amm}YU$i;sB-dTxxZcn;7sNnw9Dkc2e)nro(8+;nV3nJNkvZ!Ct5!;3-r0^V z__>{v&_!c%m$VK?2J{8=aSa#!4w`=>%>0Il$HH3oT-t*SjB0Zdt?Xk_n&k|CW;@e3 zK{Om2mrWsF8)}a9H}UuKom%IBvtQi5`?Dq}^xV}uGXr#C%PrrnB9#MPl(+YAP;p_q z)_hj~-iASV`U`LFLtjq4=vL`^n6~D-iJj+M^ncb9J;aFBNJ{vY@s(NFSS1o*@JB0~_-;0Q8@)N`D;L2`GzZg;FwRUi(g3m zPGT>=beAzy=j#`3d_RB3#srr;u+>2-im2(cZ!BhNh5fgzg zFLT0exfD}mZ8rJ4z4uOqMZN}ns;??oV>kHRaC{CedB-xe!hPrrC@f`C%J*$ttGqTi z=MP2vjLOh@qmjl#9eCSbW81WXq3`gliCmcTe%-A_Qd@wl@xor2MsIGhtQeGo5D(y4 z0O%Ysl!YHmI+xll2rRB`Y&hPuu*$CCFJv>C-yv?1@;vvI3pOU`LPMYI5l;*;Vmccz zr2l-2uwjbk0^PCA+#|97hl_LL?b`fO6v7OG?Qm$^VRyui60ndR7tlK7v!&G(H~Gx5 zcmMM@sMGWwv|3~Ux0Oazz{Fa@Zs7F{UwPQ94MeLHt|9cJVad4Z#z#x@3p4zB6$M;t zzPt{YObki$f9o&Bx#o?B45y_y7Oqjk^2kzRh+zFC4Li#}AL`zS^;W*03h^2F-55o` zS$}D-py`jMIc@B?p#jeDmOg_}pz?z+&&JNk-_K!8H+=N}BRa$X(oD=QfZgu?DF;V( zYYQ0u@VG3(pq6F9V~gJ0n#=sJ2)vdo{O>t;UDUB&`x*XCLYuVh{P)V)MN*eP@6%zy zT}&QrHH5fOw2D_u=)yx{Y#rvyga^XNzgDlvcUHd7i(8OSP+F;cUSqB9sA+*@Dx*JU3zN@YkdJn2#Fh??>(a3+n)B$SPPWggB8*6e^2fx?LHz zZ3W~E;7yxbktsc6OO2*D`TaJuSXXmQWd*=zpqy=b6&^h97~y{Qu=4zKS7D;}{+yXpX*<*qX`|q( zH_@@s|7gjuXmCqDAU=PglhJr0wEKCe?*iEKn#Ve&f%Q=VF3aLgSKS~<4{OiiT!}OX z+0@8^ElDe}2Jq@MN}?{zj^5Sv10Azsgdtb*7iq8!?KtTM4Wn8#X!y+HFS*DG$RQ(b zHsR0AUAnRT>U9Ki6(bV?MlPpZAQPTJ<{8(B5(vQ$KP1z%+OcoNccZS#we0&l-mq7` zuku5WAKtKChO-;Q3`!D1M4|$+IYnPub9UT2Nd3pC3|KDd<3D zCq3&oZ{JqA6>Ri8sW(XV%a*6cEBS?7bhB*XUc1DQ%DW#JjPBR|Pk(>wCm+N3kALIq dzikXU!lIU; literal 0 HcmV?d00001 diff --git a/pages/tbe-en_epiet.html b/pages/tbe-en_epiet.html index 9f758fa..c6df705 100644 --- a/pages/tbe-en_epiet.html +++ b/pages/tbe-en_epiet.html @@ -7,7 +7,7 @@ -quarto-inputca606479 +quarto-input35e6ff91 @@ -1488,7 +1488,7 @@