-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllm_vertex.py
94 lines (85 loc) · 3.1 KB
/
llm_vertex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import httpx
import ijson
import llm
import os
import urllib.parse
SAFETY_SETTINGS = [
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_NONE",
},
]
@llm.hookimpl
def register_models(register):
register(VertexAI("gemini-1.5-flash-preview-0514"))
register(VertexAI("gemini-1.5-pro-preview-0514"))
register(VertexAI("gemini-1.0-pro"))
class VertexAI(llm.Model):
can_stream = True
def __init__(self, model_id):
self.model_id = model_id
self.location = os.environ.get("LLM_VERTEX_LOCATION", "us-central1")
self.project_id = os.environ.get("LLM_VERTEX_PROJECT_ID")
def build_messages(self, prompt, conversation):
if not conversation:
return [{"role": "user", "parts": [{"text": prompt.prompt}]}]
messages = []
for response in conversation.responses:
messages.append(
{"role": "user", "parts": [{"text": response.prompt.prompt}]}
)
messages.append({"role": "model", "parts": [{"text": response.text()}]})
messages.append({"role": "user", "parts": [{"text": prompt.prompt}]})
return messages
def execute(self, prompt, stream, response, conversation):
access_token = llm.get_key("", "vertex", "VERTEX_ACCESS_TOKEN")
url = "https://{LOCATION}-aiplatform.googleapis.com/v1/projects/{PROJECT_ID}/locations/{LOCATION}/publishers/google/models/{MODEL_ID}:streamGenerateContent".format(
MODEL_ID=self.model_id,
LOCATION=self.location,
PROJECT_ID=self.project_id
)
headers = {
"Authorization": f"Bearer {access_token}",
"Content-Type": "application/json"
}
gathered = []
body = {
"contents": self.build_messages(prompt, conversation),
"safetySettings": SAFETY_SETTINGS,
}
if prompt.system:
body["system_instructions"] = {"parts": [{"text": prompt.system}]}
with httpx.stream(
"POST",
url,
headers=headers,
timeout=None,
json=body,
) as http_response:
events = ijson.sendable_list()
coro = ijson.items_coro(events, "item")
for chunk in http_response.iter_bytes():
coro.send(chunk)
if events:
event = events[0]
if isinstance(event, dict) and "error" in event:
raise llm.ModelError(event["error"]["message"])
try:
yield event["candidates"][0]["content"]["parts"][0]["text"]
except KeyError:
yield ""
gathered.append(event)
events.clear()
response.response_json = gathered