-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathkeras_model.py
150 lines (136 loc) · 7.01 KB
/
keras_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import numpy as np
np.random.seed(1234) # for reproducibility
import time
import os
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.utils import np_utils
from keras.datasets import mnist
def set_basic_model_param(model_info, dropout_scalar=1, batchsize=32):
'''
INPUT: (1) any additional information (to be converted to string)
that will be added to the filename when the model is saved
OUTPUT: (1) Dictionary of important values for formatting data and
compiling model.
For lightweight tuning of the model (ie. no change in overall structure)
it's easiest to keep all model parameters in one place.
'''
model_param = {'n_rows': 28,
'n_cols': 28,
'n_chan': 1,
'n_classes': 10,
'n_epoch': 4,
'batch_size': batchsize,
'pool_size': 2,
'conv_size': 3,
'n_conv_nodes': 32,
'n_dense_nodes': 128,
'primary_dropout': 0.25*dropout_scalar,
'secondary_dropout': 0.5*dropout_scalar,
'model_build': 'v.0.1_{}'.format(model_info)}
return model_param
def load_and_format_mnist_data(model_param, categorical_y=False):
'''
INPUT: (1) Dictionary: values important for formatting data appropriately
(2) boolean: make the y values categorical? Keras requires the
shape (#labels, #unique_labels), ie. (10000, 10) to train the
model. However, randomizing the y labels is more easily done
before the y labels are made categorical, when they are
still of shape (#labels,) ie. (10000,)
OUTPUT: (1) 4D numpy array: the X training data, of shape (#train_images,
#chan, #rows, #columns); for MNIST this is (60000, 1, 28, 28)
(2) 1D numpy array: the training labels, y, of shape (60000,)
(3) 4D numpy array: the X test data, of shape (#test_images,
#chan, #rows, #columns); for MNIST this is (10000, 1, 28, 28)
(4) 1D numpy array: the test labels, of shape (10000,)
This function loads the data and labels, reshapes the data to be in the
4D tensor shape that Keras requires (#images, #color_channels,
#rows, #cols) for training, and returns it. The method load_data()
returns the MNIST data, shuffled and split between train and test set.
'''
(X_train, y_train), (X_test, y_test) = mnist.load_data()
num_train_images, num_test_images = X_train.shape[0], X_test.shape[0]
X_train = X_train.reshape(num_train_images,
model_param['n_chan'],
model_param['n_rows'],
model_param['n_cols'])
X_test = X_test.reshape(num_test_images,
model_param['n_chan'],
model_param['n_rows'],
model_param['n_cols'])
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255.
X_test /= 255.
if categorical_y:
y_train = np_utils.to_categorical(y_train, model_param['n_classes'])
y_test = np_utils.to_categorical(y_test, model_param['n_classes'])
return X_train, y_train, X_test, y_test
def compile_model(model_param):
'''
INPUT: (1) Dictionary of model parameters
OUTPUT: (1) Compiled (but untrained) Keras model
Any large scale model architecture changes would happen here in
conjunction with adjustments to set_basic_model_param.
'''
model = Sequential()
model_param_to_add = [Convolution2D(model_param['n_conv_nodes'],
model_param['conv_size'],
model_param['conv_size'],
border_mode='valid',
input_shape=(model_param['n_chan'],
model_param['n_rows'],
model_param['n_cols'])),
Activation('relu'),
Convolution2D(model_param['n_conv_nodes'],
model_param['conv_size'],
model_param['conv_size']),
Activation('relu'),
MaxPooling2D(pool_size=(model_param['pool_size'],
model_param['pool_size'])),
Dropout(model_param['primary_dropout']),
Flatten(),
Dense(model_param['n_dense_nodes']),
Activation('relu'),
Dropout(model_param['secondary_dropout']),
Dense(model_param['n_classes']),
Activation('softmax')]
for process in model_param_to_add:
model.add(process)
model.compile(loss='categorical_crossentropy', optimizer='adadelta')
return model
def fit_and_save_model(model, model_param, X_train, y_train, X_test, y_test):
'''
INPUT: (1) Compiled (but untrained) Keras model
(2) Dictionary of model parameters
(3) 4D numpy array: the X training data, of shape (#train_images,
#chan, #rows, #columns); for MNIST this is (60000, 1, 28, 28)
(4) 1D numpy array: the training labels, y, of shape (60000,)
(5) 4D numpy array: the X test data, of shape (#test_images,
#chan, #rows, #columns); for MNIST this is (10000, 1, 28, 28)
(6) 1D numpy array: the test labels, of shape (10000,)
OUTPUT: None, but the model will be saved to /models
'''
start = time.clock()
model.fit(X_train, y_train, batch_size=model_param['batch_size'],
nb_epoch=model_param['n_epoch'],
show_accuracy=True, verbose=1,
validation_data=(X_test, y_test))
stop = time.clock()
total_run_time = (stop - start) / 60.
score = model.evaluate(X_test, y_test, show_accuracy=True, verbose=0)
print 'Test score: {}'.format(score[0])
print 'Test accuracy: {}'.format(score[1])
print 'Total run time: {}'.format(total_run_time)
model_name = 'KerasBaseModel_{}'.format(model_param['model_build'])
path_to_save_model = 'models/{}'.format(model_name)
json_file_name = '{}.json'.format(path_to_save_model)
weights_file_name = '{}.h5'.format(path_to_save_model)
if os.path.isfile(json_file_name) or os.path.isfile(weights_file_name):
json_file_name = '{}_copy.json'.format(path_to_save_model)
weights_file_name = '{}_copy.h5'.format(path_to_save_model)
print 'Please rename the model next time to avoid conflicts!'
json_string = model.to_json()
open(json_file_name, 'w').write(json_string)
model.save_weights(weights_file_name)