-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpreparelabel.py
84 lines (76 loc) · 3.43 KB
/
preparelabel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import torch
from tqdm import tqdm
import os
join = os.path.join
from glob import glob
from segment_anything.build_sam3D import sam_model_registry3D
from torch.utils.data import DataLoader
import torchio as tio
from utils.data_loader import Dataset_Union_ALL_Val
import numpy as np
import argparse
parser = argparse.ArgumentParser(description='Store labels for augmented data.')
parser.add_argument('--data_train_path', type=str, default='./data/train', help='Path to the teacher encoder to generate logits')
parser.add_argument('--label_path_base', type=str, default='./data/augumentation/label', help='Base path for saving labels')
parser.add_argument('--train_path_base', type=str, default='./data/augumentation/images', help='Base path for saving training images')
parser.add_argument('--checkpoint_path', type=str, default='./ckpt/sam_med3d_turbo.pth', help='Path to the model checkpoint')
parser.add_argument('--crop_size', nargs=3, type=int, default=[128, 128, 128], help='Crop size for the images')
parser.add_argument('--batch_size', type=int, default=1, help='Batch size for data loading')
parser.add_argument('--shuffle', action='store_true', help='Whether to shuffle the dataset')
parser.add_argument('--device', type=str, default='cuda', help='Device to run the model on')
args = parser.parse_args()
def save_model_weights(model, save_path):
if not os.path.exists(os.path.dirname(save_path)):
os.makedirs(os.path.dirname(save_path))
torch.save(model.state_dict(), save_path)
print(f"Model weights saved to {save_path}")
def store_label(model, data: DataLoader, args):
i = 0
for batch_data in tqdm(data):
image3D, _, _ = batch_data
norm_transform = tio.ZNormalization(masking_method=lambda x: x > 0)
image3D = norm_transform(image3D.squeeze(dim=1))
image3D = image3D.unsqueeze(dim=1)
train_path = f"{args.train_path_base}/images{i}.pt"
label_path = f"{args.label_path_base}/label{i}.pt"
i += 1
image3D = image3D.float().to(args.device)
output = model(image3D)
for j in range(len(output)):
output[j] = output[j].cpu().squeeze(dim=0)
image3D = image3D.cpu().squeeze(dim=0)
torch.save(image3D, train_path)
torch.save(output, label_path)
print(f"Batch {i}: Saved image to {train_path} and label to {label_path}")
if __name__ == "__main__":
np.random.seed(2023)
torch.manual_seed(2023)
all_dataset_paths = glob(join(args.data_train_path))
all_dataset_paths = list(filter(os.path.isdir, all_dataset_paths))
print("get", len(all_dataset_paths), "datasets")
infer_transform = [
tio.ToCanonical(),
tio.CropOrPad(mask_name='label', target_shape=(128,128,128)),
]
test_dataset = Dataset_Union_ALL_Val(
paths=all_dataset_paths,
mode="Val",
data_type='Ts',
transform=tio.Compose(infer_transform),
threshold=0,
split_num=1,
split_idx=0,
pcc=False,
)
test_dataloader = DataLoader(
dataset=test_dataset,
sampler=None,
batch_size=1,
shuffle=True
)
device = args.device
sam_model_tune = sam_model_registry3D['vit_b_ori'](checkpoint=None).to(device)
model_dict = torch.load(args.checkpoint_path, map_location=device)
state_dict = model_dict['model_state_dict']
sam_model_tune.load_state_dict(state_dict)
store_label(sam_model_tune.image_encoder, test_dataloader, args)