-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDe_function_total.py
170 lines (139 loc) · 4.79 KB
/
De_function_total.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from pymms.data import fgm, edp, fpi, util
import datetime as dt
import xarray as xr
import numpy as np
from scipy import constants as c
from matplotlib import pyplot as plt
from matplotlib import pyplot as plt, dates as mdates
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
import numpy as np
import numpy as np
import math
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from matplotlib.patches import Circle
from mpl_toolkits.mplot3d import Axes3D
import time
import os
def curl(K, V):
curl = 0
for k_name, v_name in zip(K, V):
k = K[k_name]
v = V[v_name]
curl += xr.concat([k[:,1]*v[:,2] - k[:,2]*v[:,1],
k[:,2]*v[:,0] - k[:,0]*v[:,2],
k[:,0]*v[:,1] - k[:,1]*v[:,0]], dim='component').transpose()
curl = curl.assign_coords({'component': ['x', 'y', 'z']})
return curl
def De_total(sc,mode,species,t0,t1):
optdesc = 'd{0}s-moms'.format(species)
#should it be brst or srvy?
data = fpi.load_moms(sc=sc, mode=mode, optdesc=optdesc, start_date=t0, end_date=t1)
data['velocity']
b= fgm.load_data(sc=sc, mode=mode, start_date=t0, end_date=t1)
b['B_GSE']
#brst of srvy for edp?
e= edp.load_data(sc=sc, mode='srvy', start_date=t0, end_date=t1)
#e['E_GSE']
def curl(K, V):
curl = 0
for k_name, v_name in zip(K, V):
k = K[k_name]
v = V[v_name]
curl += xr.concat([k[:,1]*v[:,2] - k[:,2]*v[:,1],
k[:,2]*v[:,0] - k[:,0]*v[:,2],
k[:,0]*v[:,1] - k[:,1]*v[:,0]], dim='component').transpose()
curl = curl.assign_coords({'component': ['x', 'y', 'z']})
return curl
#should this one then be linear?
b1 = b['B_GSE'].interp_like(e, method='linear')
data1 =data.interp_like(e, method='nearest')
B = xr.Dataset({'B1': b1})
U = xr.Dataset({'U1': data1['velocity'].rename({'velocity_index': 'component'}).assign_coords({'component': ['x', 'y', 'z']})})
B2 = 1e-9 * B
U2 = 1e-3 * U
curlB = curl(U2, B2)
#A = 1e-12 * curlB
e1=e['E_GSE']
#Error in here?!!
E = xr.Dataset({'E1': e1.rename({''.join(sc)+'_edp_label1_fast_l2': 'component'}).assign_coords({'component': ['x', 'y', 'z']})})
D= E['E1'] + curlB
D #(just shows how the data looks like)
fig, axes = plt.subplots(nrows=4, ncols=1, squeeze=False)
ax = axes[0,0]
D.loc[:,'x'].plot(ax=ax, label='x')
D.loc[:,'y'].plot(ax=ax, label='y')
D.loc[:,'z'].plot(ax=ax, label='z')
ax.set_title('Electron Frame Dissipation Rate')
ax.set_xlabel('')
ax.set_xticklabels([''])
ax.set_ylabel('De [$\\mu A/m^{2}$]')
ax.legend()
ax = axes[1,0]
D.loc[:,'x'].plot(ax=ax, label='x')
ax = axes[2,0]
D.loc[:,'y'].plot(ax=ax, label='y',color='orange')
ax = axes[3,0]
D.loc[:,'z'].plot(ax=ax, label='z',color='green')
#D=D.to_array()
#D=D.T
# Create the plot
nrows = 1
ncols = 1
figsize = (6.0, 2.0)
fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=figsize, squeeze=False)
ax = axes[0, 0]
# Plot using pcolormesh
mesh = ax.pcolormesh(D, shading='flat')
fig.colorbar(mesh, ax=ax)
# Other plot customization if needed
ax.set_xlabel('X-axis')
ax.set_ylabel('Y-axis')
ax.set_title('Pcolormesh Plot')
plt.show()
B['B1'] #(same as D)
#b_deleted = B['B1'].sel(b_index=slice(None, -1))
#n = B['B1'].shape[0]
b_deleted = B['B1'].sel({'b_index' :['x','y','z']})
b_deleted
x=np.cross(U2['U1'], b_deleted)
x= 1e-12 * x
U['U1']
D1= E['E1'] + x
D1
#plot
fig, axes = plt.subplots(nrows=4, ncols=2, squeeze=False)
# Current Density
ax = axes[0,0]
D1.loc[:,'x'].plot(ax=ax, label='x')
D1.loc[:,'y'].plot(ax=ax, label='y')
D1.loc[:,'z'].plot(ax=ax, label='z')
ax.set_title('Electron Frame Dissipation Rate')
ax.set_xlabel('')
ax.set_xticklabels([''])
ax.set_ylabel('De [$\\mu A/m^{2}$]')
ax.legend()
ax = axes[1,0]
D1.loc[:,'x'].plot(ax=ax, label='x')
ax = axes[2,0]
D1.loc[:,'y'].plot(ax=ax, label='y',color='orange')
ax = axes[3,0]
D1.loc[:,'z'].plot(ax=ax, label='z',color='green')
ax = axes[0,1]
D.loc[:,'x'].plot(ax=ax, label='x')
D.loc[:,'y'].plot(ax=ax, label='y')
D.loc[:,'z'].plot(ax=ax, label='z')
ax.set_title('Electron Frame Dissipation Rate')
ax.set_xlabel('')
ax.set_xticklabels([''])
ax.set_ylabel('De [$\\mu A/m^{2}$]')
ax.legend()
ax = axes[1,1]
D.loc[:,'x'].plot(ax=ax, label='x')
ax = axes[2,1]
D.loc[:,'y'].plot(ax=ax, label='y',color='orange')
ax = axes[3,1]
D.loc[:,'z'].plot(ax=ax, label='z',color='green')
#t0 = dt.datetime(2017, 7, 11, 22, 33, 30)
#t1 = dt.datetime(2017, 7, 11, 22, 34, 30)
#De('mms1','brst','e',t0,t1)