-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataCover.cpp
301 lines (271 loc) · 9.21 KB
/
DataCover.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
//
// Created by jakob on 24.06.24.
//
#include "DataCover.h"
#include <cassert>
#include <algorithm>
#include <cmath>
#include <utility>
namespace MapperLib {
DataCover::DataCover(
size_t const resolution,
double const perc_overlap,
Matrix const& data,
std::optional<Vector> minima,
std::optional<Vector> maxima
): DataCover(std::vector<size_t>(get_data_dimension(data), resolution), perc_overlap, data, std::move(minima), std::move(maxima))
{}
DataCover::DataCover(
std::vector<size_t> resolution,
double const perc_overlap,
Matrix const &data,
std::optional<Vector> minima,
std::optional<Vector> maxima
):
_resolution(std::move(resolution)),
_perc_overlap(perc_overlap),
_data(data),
_data_dimension(get_data_dimension(data))
{
assert(check_data_equal_dimension(data));
assert(perc_overlap <= 0.5);
assert(_resolution.size() == _data_dimension);
if(minima.has_value() and minima.value().size() == _data_dimension) {
_minima = std::move(minima.value());
} else {
initialize_minima_from_data();
}
if(maxima.has_value() and minima.value().size() == _data_dimension) {
_maxima = std::move(maxima.value());
} else {
initialize_maxima_from_data();
}
}
DataCover::CubeId DataCover::get_native_cube_id(Vector const& vec) const
{
CubeId result(_data_dimension);
for(Dimension dim = 0; dim < _data_dimension; dim++) {
Scalar const cube_size_in_dim = (_maxima[dim] - _minima[dim])/static_cast<Scalar>(get_num_cubes_in_dimension(dim));
result[dim] = std::floor((vec[dim]-_minima[dim])/cube_size_in_dim);
assert(result[dim] >= 0 and result[dim] < static_cast<int>(get_num_cubes_in_dimension(dim)));
}
return result;
}
std::vector<PointId> DataCover::get_points_in_cube(IntegerCubeId const cube_id) const
{
if(not _cube_cache.has_value()) {
initialize_cube_cache();
}
return _cube_cache.value()[cube_id];
}
std::vector<IntegerCubeId> DataCover::get_neighbor_cubes(IntegerCubeId const integer_cube_id) const
{
auto const cube_ids = get_neighbor_cubes(convert_to_cube_id(integer_cube_id));
std::vector<IntegerCubeId> result;
for(auto const& cube_id : cube_ids) {
if(convert_to_integer_cube_id(cube_id) == integer_cube_id) continue;
result.push_back(convert_to_integer_cube_id(cube_id));
}
return result;
}
IntegerCubeId DataCover::convert_to_integer_cube_id(CubeId const &cube_id) const
{
IntegerCubeId result = 0;
for (Dimension dim = 0; dim < _data_dimension; dim++) {
size_t r = 1;
for(Dimension i = 0; i < dim; i++) {
r *= get_num_cubes_in_dimension(i);
}
result += cube_id[dim]*r;
}
return result;
}
DataCover::CubeId DataCover::convert_to_cube_id(IntegerCubeId const integer_cube_id) const
{
CubeId result(_data_dimension);
for (Dimension dim = 0; dim < _data_dimension; dim++) {
size_t r = 1;
for(Dimension i = 0; i < dim; i++) {
r *= get_num_cubes_in_dimension(i);
}
result[dim] = integer_cube_id / r % get_num_cubes_in_dimension(dim); // TODO: is this correct?
}
return result;
}
void DataCover::initialize_cube_cache() const
{
_cube_cache = std::vector<std::vector<PointId>>(get_total_num_cubes());
for (size_t i = 0; i < _data.size(); i++) {
auto const cubes = get_parent_cubes(_data[i]);
for(auto const& cube_id : cubes) {
_cube_cache.value()[convert_to_integer_cube_id(cube_id)].push_back(i);
}
}
}
std::vector<DataCover::CubeId> DataCover::get_parent_cubes(Vector const &v) const
{
auto const native_cube = get_native_cube_id(v);
auto const neighbor_cubes = get_neighbor_cubes(native_cube);
std::vector<CubeId> parent_cubes = {native_cube};
for (auto const& cube : neighbor_cubes) {
if(is_vector_in_cube(v, cube)){parent_cubes.push_back(cube);}
}
return parent_cubes;
}
bool DataCover::is_vector_in_cube(Vector const &vec, CubeId const &cube_id) const
{
auto const cube_center = get_cube_center(cube_id);
for (Dimension dim = 0; dim < _data_dimension; dim++) {
auto const cube_size_in_dim = (_maxima[dim] - _minima[dim])/get_num_cubes_in_dimension(dim);
if(std::abs(vec[dim] - cube_center[dim]) > (0.5+_perc_overlap)*cube_size_in_dim) {
return false;
}
}
return true;
}
size_t DataCover::get_total_num_cubes() const
{
size_t result = 1;
for (auto const size : _resolution) {
result *= size;
}
return result;
}
size_t DataCover::get_num_cubes_in_dimension(Dimension const dim) const
{
return _resolution[dim];
}
Scalar DataCover::get_data_min_in_dimension(Dimension const dimension) const
{
auto min = std::numeric_limits<Scalar>::max();
std::ranges::for_each(_data, [&](Vector const& v) {
if (v[dimension] < min) {
min = v[dimension];
}
});
return min;
}
Scalar DataCover::get_data_max_in_dimension(Dimension const dimension) const
{
auto max = std::numeric_limits<Scalar>::min();
std::ranges::for_each(_data, [&](Vector const& v) {
if (v[dimension] > max) {
max = v[dimension];
}
});
return max;
}
Scalar DataCover::get_data_width_in_dimension(Dimension const dimension) const
{
return get_data_max_in_dimension(dimension) - get_data_min_in_dimension(dimension);
}
Scalar DataCover::get_overhang_length_in_dimension(Dimension const dimension) const
{
return get_data_width_in_dimension(dimension) * overhang_factor;
}
void DataCover::initialize_minima_from_data()
{
_minima.resize(_data_dimension);
for(Dimension dim = 0; dim < _data_dimension; dim++) {
_minima[dim] = get_data_min_in_dimension(dim) - get_overhang_length_in_dimension(dim);
}
}
void DataCover::initialize_maxima_from_data()
{
_maxima.resize(_data_dimension);
for(Dimension dim = 0; dim < _data_dimension; dim++) {
_maxima[dim] = get_data_max_in_dimension(dim) + get_overhang_length_in_dimension(dim);
}
}
Vector DataCover::get_cube_center(CubeId const &cube_id) const
{
Vector result(_data_dimension);
for (Dimension dim = 0; dim < _data_dimension; dim++) {
Scalar const cube_size_in_dim = (_maxima[dim] - _minima[dim])/static_cast<Scalar>(get_num_cubes_in_dimension(dim));
result[dim] = (static_cast<double>(cube_id[dim]) + 0.5) * cube_size_in_dim + _minima[dim];
}
return result;
}
std::vector<DataCover::CubeId> DataCover::get_neighbor_cubes(CubeId const &cube_id) const
{
std::vector<CubeId> neighbors;
auto const num_neighbors = static_cast<size_t>(std::pow(3, _data_dimension));
for(size_t i = 0; i < num_neighbors; i++) {
auto neighbor = cube_id;
bool any_dim_out_of_bounds = false;
for (Dimension dim = 0; dim < _data_dimension; dim++) {
int const dimension_modifier = -1 + static_cast<int>(i/static_cast<int>(std::pow(3,dim))%3);
neighbor[dim] += dimension_modifier;
if(neighbor[dim] < 0 or neighbor[dim] >= static_cast<int>(get_num_cubes_in_dimension(dim))) {
any_dim_out_of_bounds = true;
break;
}
}
if(any_dim_out_of_bounds) {
continue;
}
if(neighbor == cube_id) {
continue;
}
neighbors.push_back(neighbor);
}
return neighbors;
}
} // Mapper
MapperLib::DataCoverFactory::DataCoverFactory(
size_t const resolution,
double const perc_overlap,
std::optional<Vector> minima,
std::optional<Vector> maxima
):
_single_resolution(resolution),
_perc_overlap(perc_overlap),
_minima(std::move(minima)),
_maxima(std::move(maxima))
{}
MapperLib::DataCoverFactory::DataCoverFactory(
std::vector<size_t> resolution,
double const perc_overlap,
std::optional<Vector> minima,
std::optional<Vector> maxima
):
_resolution(std::move(resolution)),
_perc_overlap(perc_overlap),
_minima(std::move(minima)),
_maxima(std::move(maxima))
{}
std::shared_ptr<MapperLib::DataCoverFactory> MapperLib::DataCoverFactory::make_shared(
size_t resolution,
double perc_overlap,
std::optional<Vector> minima,
std::optional<Vector> maxima
)
{
return std::make_shared<DataCoverFactory>(resolution, perc_overlap, std::move(minima), std::move(maxima));
}
std::shared_ptr<MapperLib::DataCoverFactory> MapperLib::DataCoverFactory::make_shared(
std::vector<size_t> resolution,
double perc_overlap,
std::optional<Vector> minima,
std::optional<Vector> maxima
)
{
return std::make_shared<DataCoverFactory>(std::move(resolution), perc_overlap, std::move(minima), std::move(maxima));
}
std::unique_ptr<MapperLib::DataCover> MapperLib::DataCoverFactory::create_data_cover(Matrix const &data) const
{
if(_single_resolution.has_value()) {
return std::make_unique<DataCover>(_single_resolution.value(), _perc_overlap, data, _minima, _maxima);
} else {
return std::make_unique<DataCover>(_resolution, _perc_overlap, data, _minima, _maxima);
}
}
std::ostream & operator<<(std::ostream &stream, MapperLib::DataCover::CubeId const& vec)
{
stream << "[";
for(auto const x : vec) {
stream << x << ", ";
}
stream << "\b\b]";
return stream;
}