-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
169 lines (141 loc) · 6.04 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import torch
import torch.nn as nn
from torchvision import transforms
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader
from torchvision.models import DenseNet121_Weights, Inception_V3_Weights
from torchvision.transforms.functional import crop
import logging
def create_logger(name):
logger = logging.getLogger(name)
logger.handlers.clear()
logger.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
formatter = logging.Formatter('[%(asctime)s] [%(name)s] %(message)s')
ch.setFormatter(formatter)
logger.addHandler(ch)
return logger
class DenseNet121_Multi_Class(nn.Module):
"""Model for training densenet baseline"""
def __init__(self, classCount, isTrained=False):
super(DenseNet121_Multi_Class, self).__init__()
# self.densenet = models.densenet121(weights = DenseNet121_Weights.DEFAULT)
self.densenet = torch.hub.load('pytorch/vision:v0.10.0', 'densenet121', weights = 'DenseNet121_Weights.IMAGENET1K_V1')
self.features = self.densenet.features
self.kernelCount = self.densenet.classifier.in_features
self.avgpool = nn.AdaptiveAvgPool2d(output_size = (1,1))
self.classifier = nn.Sequential(nn.Linear(self.kernelCount, classCount))
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
# flatten the x
x = x.view((x.shape[0],-1))
x = self.classifier(x)
x = self.sigmoid(x)
return x
class Inception_Multi_Class(nn.Module):
"""Model for training densenet baseline"""
def __init__(self, classCount, isTrained=False):
super(Inception_Multi_Class, self).__init__()
self.inception = torch.hub.load('pytorch/vision:v0.10.0', 'inception_v3', weights='Inception_V3_Weights.IMAGENET1K_V1')
self.kernelCount = self.inception.fc.in_features
self.inception.fc = nn.Linear(self.kernelCount, classCount)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.inception(x)
if hasattr(x, 'logits'):
x = self.sigmoid(x.logits)
else:
x = self.sigmoid(x)
return x
class ResNet_Multi_Class(nn.Module):
"""Model for training densenet baseline"""
def __init__(self, classCount, isTrained=False):
super(ResNet_Multi_Class, self).__init__()
# self.densenet = models.densenet121(weights = DenseNet121_Weights.DEFAULT)
self.resnet = torch.hub.load('pytorch/vision:v0.10.0', 'resnet50', weights='ResNet50_Weights.IMAGENET1K_V1')
# print(self.resnet)
self.kernelCount = self.resnet.fc.in_features
self.resnet.fc = nn.Linear(self.kernelCount, classCount)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.resnet(x)
x = self.sigmoid(x)
return x
class ResNeXt_Multi_Class(nn.Module):
"""Model for training densenet baseline"""
def __init__(self, classCount, isTrained=False):
super(ResNeXt_Multi_Class, self).__init__()
self.resnext = torch.hub.load('pytorch/vision:v0.10.0', 'resnext50_32x4d', weights='ResNeXt50_32X4D_Weights.IMAGENET1K_V2')
# print(self.resnet)
self.kernelCount = self.resnext.fc.in_features
self.resnext.fc = nn.Linear(self.kernelCount, classCount)
# self.sigmoid = nn.Sigmoid()
self.softmax = nn.Softmax()
def forward(self, x):
x = self.resnext(x)
# x = self.softmax(x)
return x
def croptop(image):
#print("Image size", image.size)
width, height = image.size
return crop(image, int(.08*height), 0, height, width)
def get_dataloader_preprocess(path: str, batch_size: int, image_size:int, num_workers:int):
""""Image Dataloader that returns a path"""
transform = transforms.Compose([
transforms.Lambda(croptop),
transforms.CenterCrop(image_size),
transforms.RandomApply(torch.nn.ModuleList([
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomRotation(10),
transforms.RandomAffine(degrees=0,translate=(.1,.1)),
transforms.ColorJitter(brightness=(.9,1.1)),
transforms.RandomAffine(degrees=0,scale=(0.85, 1.15)),
]), p=0.5),
#transforms.Normalize(mean=[ 0.406], std=[0.225]),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
dataset = ImageFolder(path, transform = transform)
dataloader = DataLoader(dataset, batch_size= batch_size, shuffle = True, num_workers=num_workers, drop_last=False)
return dataloader, len(dataset)
class ImageFolderWithPaths(ImageFolder):
def __getitem__(self, index) -> tuple:
image, label = super(ImageFolderWithPaths, self).__getitem__(index)
path = self.imgs[index][0]
return image, label, path
def get_dataloader_paths(path: str, batch_size: int, image_size:int, num_workers:int):
""""Image Dataloader that returns a path"""
transform = transforms.Compose([transforms.Resize((image_size, image_size)), transforms.ToTensor(),transforms.Normalize(mean = [0.485, 0.456, 0.406],
std = [0.229, 0.224, 0.225])])
dataset = ImageFolderWithPaths(path, transform = transform)
dataloader = DataLoader(dataset, batch_size= batch_size, shuffle = False, num_workers=num_workers, drop_last=False)
return dataloader, len(dataset)
def calculate_classwise_accuracy(li):
tot = 0
i = 0
head = 0
med = 0
tail = 0
while(i<7):
head+=li[i][1]
tot+=li[i][1]
i+=1
head/=7
while(i<16):
med+=li[i][1]
tot+=li[i][1]
i+=1
med/=9
while(i<20):
tail+=li[i][1]
tot+=li[i][1]
i+=1
tail/=4
tot/=20
return {'total': tot,
'head': head,
'medium' :med,
'tail': tail}